code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def _A ( lowerCAmelCase_ : Any ): """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: lowerCAmelCase__ = k.replace(lowerCAmelCase_ , lowerCAmelCase_ ) if k.startswith("encoder" ): lowerCAmelCase__ = k.replace(".attn" , ".self_attn" ) lowerCAmelCase__ = k.replace("norm1" , "self_attn_layer_norm" ) lowerCAmelCase__ = k.replace("norm2" , "final_layer_norm" ) elif k.startswith("decoder" ): lowerCAmelCase__ = k.replace("norm1" , "self_attn_layer_norm" ) lowerCAmelCase__ = k.replace("norm2" , "encoder_attn_layer_norm" ) lowerCAmelCase__ = k.replace("norm3" , "final_layer_norm" ) return k def _A ( lowerCAmelCase_ : str ): """simple docstring""" lowerCAmelCase__ = [ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: lowerCAmelCase__ = sd.pop(lowerCAmelCase_ ) lowerCAmelCase__ = k.replace("layernorm_embedding" , "layer_norm" ) assert new_k not in sd lowerCAmelCase__ = v UpperCamelCase = ['START'] @torch.no_grad() def _A ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = torch.load(lowerCAmelCase_ , map_location="cpu" ) lowerCAmelCase__ = model["model"] lowerCAmelCase__ = BlenderbotConfig.from_json_file(lowerCAmelCase_ ) lowerCAmelCase__ = BlenderbotForConditionalGeneration(lowerCAmelCase_ ) lowerCAmelCase__ = m.model.state_dict().keys() lowerCAmelCase__ = [] lowerCAmelCase__ = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue lowerCAmelCase__ = rename_state_dict_key(lowerCAmelCase_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: lowerCAmelCase__ = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(lowerCAmelCase_ ) m.model.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ ) m.half() m.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) UpperCamelCase = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
61
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case : List[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = ["""pixel_values"""] def __init__( self : Optional[int] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **lowerCAmelCase_ : Any , ) -> None: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = size if size is not None else {'shortest_edge': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = do_center_crop __lowerCAmelCase = crop_size __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[int] , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __lowerCAmelCase = int((2_5_6 / 2_2_4) * size['shortest_edge'] ) __lowerCAmelCase = get_resize_output_image_size(lowerCAmelCase_ , size=lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( lowerCAmelCase_ , size=(size_dict['height'], size_dict['width']) , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : str , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : str , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(lowerCAmelCase_ , size=(size['height'], size['width']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[int, float] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray: return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[str] , ) -> np.ndarray: return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase_ : str , ) -> BatchFeature: __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase = image_std if image_std is not None else self.image_std __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: __lowerCAmelCase = [self.resize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_center_crop: __lowerCAmelCase = [self.center_crop(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_rescale: __lowerCAmelCase = [self.rescale(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_normalize: __lowerCAmelCase = [self.normalize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
53
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class SCREAMING_SNAKE_CASE ( datasets.BeamBasedBuilder ): '''simple docstring''' def _A ( self : Any ): return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=UpperCAmelCase_ , ) def _A ( self : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : str ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )] def _A ( self : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(UpperCAmelCase_ ) class SCREAMING_SNAKE_CASE ( datasets.BeamBasedBuilder ): '''simple docstring''' def _A ( self : str ): return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=UpperCAmelCase_ , ) def _A ( self : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] ): return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} ) ] def _A ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(UpperCAmelCase_ ) def lowerCamelCase__ ( ): """simple docstring""" return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def lowerCamelCase__ ( ): """simple docstring""" return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' @require_beam def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Optional[Any] = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE : Tuple = DummyBeamDataset(cache_dir=UpperCAmelCase_ , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(UpperCAmelCase_ , builder.name , "default" , "0.0.0" , f'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) SCREAMING_SNAKE_CASE : int = builder.as_dataset() self.assertEqual(dset["train"].num_rows , UpperCAmelCase_ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , UpperCAmelCase_ ) self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(UpperCAmelCase_ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def _A ( self : List[Any] ): import apache_beam as beam SCREAMING_SNAKE_CASE : List[Any] = beam.io.parquetio.WriteToParquet SCREAMING_SNAKE_CASE : Any = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE : Any = DummyBeamDataset(cache_dir=UpperCAmelCase_ , beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: SCREAMING_SNAKE_CASE : Tuple = partial(UpperCAmelCase_ , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( UpperCAmelCase_ , builder.name , "default" , "0.0.0" , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertTrue( os.path.exists( os.path.join( UpperCAmelCase_ , builder.name , "default" , "0.0.0" , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) SCREAMING_SNAKE_CASE : Optional[Any] = builder.as_dataset() self.assertEqual(dset["train"].num_rows , UpperCAmelCase_ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , UpperCAmelCase_ ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(UpperCAmelCase_ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def _A ( self : List[str] ): with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE : Optional[Any] = DummyBeamDataset(cache_dir=UpperCAmelCase_ ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def _A ( self : Dict ): SCREAMING_SNAKE_CASE : int = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: SCREAMING_SNAKE_CASE : Any = NestedBeamDataset(cache_dir=UpperCAmelCase_ , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(UpperCAmelCase_ , builder.name , "default" , "0.0.0" , f'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) SCREAMING_SNAKE_CASE : Optional[Any] = builder.as_dataset() self.assertEqual(dset["train"].num_rows , UpperCAmelCase_ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , UpperCAmelCase_ ) self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(UpperCAmelCase_ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset
62
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Optional[int]=8 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]=9_9 , lowerCAmelCase_ : List[Any]=1_6 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=3_6 , lowerCAmelCase_ : Optional[int]="gelu" , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : str=5_1_2 , lowerCAmelCase_ : List[str]=1_6 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Tuple=0.02 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : List[Any]=4 , lowerCAmelCase_ : List[str]=None , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope def lowercase ( self : Optional[int] ) -> Dict: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self : Any ) -> Union[str, Any]: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def lowercase ( self : Dict ) -> List[Any]: __lowerCAmelCase = self.get_config() __lowerCAmelCase = 3_0_0 return config def lowercase ( self : Optional[int] ) -> Union[str, Any]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = self.prepare_config_and_inputs() __lowerCAmelCase = True __lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = MraModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , ) -> Tuple: __lowerCAmelCase = True __lowerCAmelCase = MraModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , ) __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = MraForMaskedLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> str: __lowerCAmelCase = MraForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict ) -> Optional[Any]: __lowerCAmelCase = self.num_labels __lowerCAmelCase = MraForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict ) -> Any: __lowerCAmelCase = self.num_labels __lowerCAmelCase = MraForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] ) -> List[Any]: __lowerCAmelCase = self.num_choices __lowerCAmelCase = MraForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self : Tuple ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) a_ = False a_ = False a_ = False a_ = False a_ = () def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = MraModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : Tuple ) -> List[str]: self.config_tester.run_common_tests() def lowercase ( self : Optional[int] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase = type self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase_ ) def lowercase ( self : List[str] ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase_ ) def lowercase ( self : Tuple ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase_ ) @slow def lowercase ( self : Optional[int] ) -> Optional[int]: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = MraModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @unittest.skip(reason='MRA does not output attentions' ) def lowercase ( self : Optional[int] ) -> Tuple: return @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase ( self : Optional[Any] ) -> List[str]: __lowerCAmelCase = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) __lowerCAmelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : int ) -> Optional[int]: __lowerCAmelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) __lowerCAmelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = 5_0_2_6_5 __lowerCAmelCase = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : Any ) -> List[str]: __lowerCAmelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) __lowerCAmelCase = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = 5_0_2_6_5 __lowerCAmelCase = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
0
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class a : """simple docstring""" a : int a : Node | None = None a : Node | None = None def lowerCamelCase__ ( ): __UpperCAmelCase : Tuple = Node(1 ) __UpperCAmelCase : int = Node(2 ) __UpperCAmelCase : Optional[Any] = Node(3 ) __UpperCAmelCase : Dict = Node(4 ) __UpperCAmelCase : Tuple = Node(5 ) return tree def lowerCamelCase__ ( __lowerCamelCase : Node | None ): return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def lowerCamelCase__ ( __lowerCamelCase : Node | None ): return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def lowerCamelCase__ ( __lowerCamelCase : Node | None ): return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def lowerCamelCase__ ( __lowerCamelCase : Node | None ): return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def lowerCamelCase__ ( __lowerCamelCase : Node | None ): __UpperCAmelCase : list[Any] = [] if root is None: return output __UpperCAmelCase : Tuple = deque([root] ) while process_queue: __UpperCAmelCase : Optional[Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def lowerCamelCase__ ( __lowerCamelCase : Node | None , __lowerCamelCase : int ): __UpperCAmelCase : list[Any] = [] def populate_output(__lowerCamelCase : Node | None , __lowerCamelCase : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(__lowerCamelCase , __lowerCamelCase ) return output def lowerCamelCase__ ( __lowerCamelCase : Node | None , __lowerCamelCase : int ): __UpperCAmelCase : list[Any] = [] def populate_output(__lowerCamelCase : Node | None , __lowerCamelCase : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(__lowerCamelCase , __lowerCamelCase ) return output def lowerCamelCase__ ( __lowerCamelCase : Node | None ): if root is None: return [] __UpperCAmelCase : list[Sequence[Node | None]] = [] __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : int = height(__lowerCamelCase ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__lowerCamelCase , __lowerCamelCase ) ) __UpperCAmelCase : List[Any] = 1 else: output.append(get_nodes_from_right_to_left(__lowerCamelCase , __lowerCamelCase ) ) __UpperCAmelCase : Optional[int] = 0 return output def lowerCamelCase__ ( ): # Main function for testing. __UpperCAmelCase : List[Any] = make_tree() print(f"""In-order Traversal: {inorder(__lowerCamelCase )}""" ) print(f"""Pre-order Traversal: {preorder(__lowerCamelCase )}""" ) print(f"""Post-order Traversal: {postorder(__lowerCamelCase )}""" , """\n""" ) print(f"""Height of Tree: {height(__lowerCamelCase )}""" , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(__lowerCamelCase ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(__lowerCamelCase ) + 1 ): print(f"""Level {level}:""" , get_nodes_from_left_to_right(__lowerCamelCase , level=__lowerCamelCase ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(__lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
63
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _snake_case : Union[str, Any] = 2 class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , *, # begin keyword-only arguments lowerCAmelCase_ : str="<s>" , lowerCAmelCase_ : Dict="<pad>" , lowerCAmelCase_ : Any="</s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Optional[Any]=None , ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = bos, unk, pad, eos __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = {} __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = len(self.symbols ) def __eq__( self : Dict , lowerCAmelCase_ : Dict ) -> str: return self.indices == other.indices def __getitem__( self : List[Any] , lowerCAmelCase_ : int ) -> Union[str, Any]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : Tuple ) -> List[Any]: return len(self.symbols ) def __contains__( self : Optional[Any] , lowerCAmelCase_ : Dict ) -> Optional[int]: return sym in self.indices @classmethod def lowercase ( cls : Dict , lowerCAmelCase_ : str ) -> str: __lowerCAmelCase = cls() d.add_from_file(lowerCAmelCase_ ) return d def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : Any=False ) -> Optional[Any]: if word in self.indices and not overwrite: __lowerCAmelCase = self.indices[word] __lowerCAmelCase = self.count[idx] + n return idx else: __lowerCAmelCase = len(self.symbols ) __lowerCAmelCase = idx self.symbols.append(lowerCAmelCase_ ) self.count.append(lowerCAmelCase_ ) return idx def lowercase ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> Dict: return 0 def lowercase ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> int: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: with open(lowerCAmelCase_ , 'r' , encoding='utf-8' ) as fd: self.add_from_file(lowerCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(lowerCAmelCase_ ) ) return __lowerCAmelCase = f.readlines() __lowerCAmelCase = self._load_meta(lowerCAmelCase_ ) for line in lines[indices_start_line:]: try: __lowerCAmelCase , __lowerCAmelCase = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": __lowerCAmelCase = True __lowerCAmelCase , __lowerCAmelCase = line.rsplit(' ' , 1 ) else: __lowerCAmelCase = False __lowerCAmelCase = int(lowerCAmelCase_ ) __lowerCAmelCase = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(lowerCAmelCase_ ) ) self.add_symbol(lowerCAmelCase_ , n=lowerCAmelCase_ , overwrite=lowerCAmelCase_ ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def a_ ( lowerCAmelCase_ : List[str] ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} __lowerCAmelCase = dict((re.sub(R'@@$', '', lowerCAmelCase_ ), v) if k.endswith('@@' ) else (re.sub(R'$', '</w>', lowerCAmelCase_ ), v) for k, v in d.items() ) __lowerCAmelCase = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowerCAmelCase = d[k] # restore return da def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str] ): # prep if not os.path.exists(lowerCAmelCase_ ): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(lowerCAmelCase_, exist_ok=lowerCAmelCase_ ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'checkpoint.pt' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""" ) __lowerCAmelCase = torch.load(lowerCAmelCase_, map_location='cpu' ) __lowerCAmelCase = chkpt['cfg']['model'] # dicts __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'dict.txt' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {dict_file} does not exist!""" ) __lowerCAmelCase = Dictionary.load(lowerCAmelCase_ ) __lowerCAmelCase = rewrite_dict_keys(src_dict.indices ) __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, VOCAB_FILES_NAMES['vocab_file'] ) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # merges_file (bpecodes) __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'bpecodes' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""" ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(lowerCAmelCase_, lowerCAmelCase_ ) # model config __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'config.json' ) __lowerCAmelCase = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1E-12, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # tokenizer config __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F"""Generating {biogpt_tokenizer_config_file}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # model __lowerCAmelCase = chkpt['model'] # remove unneeded keys __lowerCAmelCase = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): __lowerCAmelCase = model_state_dict.pop(lowerCAmelCase_ ) else: __lowerCAmelCase = model_state_dict.pop(lowerCAmelCase_ ) __lowerCAmelCase = BioGptConfig.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = BioGptForCausalLM(lowerCAmelCase_ ) # check that it loads ok model_new.load_state_dict(lowerCAmelCase_ ) # save __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(lowerCAmelCase_, lowerCAmelCase_ ) print('Conversion is done!' ) if __name__ == "__main__": _snake_case : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : int = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ : Tuple = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowercase_ : Optional[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def A__ ( snake_case_ : int , snake_case_ : Optional[int] , snake_case_ : List[str] ): SCREAMING_SNAKE_CASE__: Optional[Any]= state_dict.pop(snake_case_ ) SCREAMING_SNAKE_CASE__: int= val def A__ ( snake_case_ : Optional[int] ): SCREAMING_SNAKE_CASE__: Tuple= OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: SCREAMING_SNAKE_CASE__: Optional[Any]= key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) SCREAMING_SNAKE_CASE__: Optional[Any]= value else: SCREAMING_SNAKE_CASE__: str= value return new_state_dict def A__ ( snake_case_ : Tuple , snake_case_ : Dict=False ): SCREAMING_SNAKE_CASE__: str= '''''' if is_panoptic: SCREAMING_SNAKE_CASE__: Dict= '''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) SCREAMING_SNAKE_CASE__: Union[str, Any]= state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) SCREAMING_SNAKE_CASE__: List[Any]= state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__: Optional[int]= in_proj_weight[:256, :] SCREAMING_SNAKE_CASE__: Any= in_proj_bias[:256] SCREAMING_SNAKE_CASE__: Optional[Any]= in_proj_weight[256:512, :] SCREAMING_SNAKE_CASE__: List[Any]= in_proj_bias[256:512] SCREAMING_SNAKE_CASE__: List[Any]= in_proj_weight[-256:, :] SCREAMING_SNAKE_CASE__: List[Any]= in_proj_bias[-256:] def A__ ( ): SCREAMING_SNAKE_CASE__: int= '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE__: Dict= Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im @torch.no_grad() def A__ ( snake_case_ : Tuple , snake_case_ : str ): SCREAMING_SNAKE_CASE__: Dict= ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: SCREAMING_SNAKE_CASE__: int= '''resnet101''' if "dc5" in model_name: SCREAMING_SNAKE_CASE__: Union[str, Any]= True SCREAMING_SNAKE_CASE__: Union[str, Any]= '''panoptic''' in model_name if is_panoptic: SCREAMING_SNAKE_CASE__: Optional[Any]= 250 else: SCREAMING_SNAKE_CASE__: Tuple= 91 SCREAMING_SNAKE_CASE__: Optional[Any]= '''huggingface/label-files''' SCREAMING_SNAKE_CASE__: Union[str, Any]= '''coco-detection-id2label.json''' SCREAMING_SNAKE_CASE__: List[str]= json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type='''dataset''' ) , '''r''' ) ) SCREAMING_SNAKE_CASE__: Optional[int]= {int(snake_case_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__: str= idalabel SCREAMING_SNAKE_CASE__: Tuple= {v: k for k, v in idalabel.items()} # load image processor SCREAMING_SNAKE_CASE__: Optional[int]= '''coco_panoptic''' if is_panoptic else '''coco_detection''' SCREAMING_SNAKE_CASE__: Union[str, Any]= ConditionalDetrImageProcessor(format=snake_case_ ) # prepare image SCREAMING_SNAKE_CASE__: Dict= prepare_img() SCREAMING_SNAKE_CASE__: str= image_processor(images=snake_case_ , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__: str= encoding['''pixel_values'''] logger.info(F'Converting model {model_name}...' ) # load original model from torch hub SCREAMING_SNAKE_CASE__: Optional[int]= torch.hub.load('''DeppMeng/ConditionalDETR''' , snake_case_ , pretrained=snake_case_ ).eval() SCREAMING_SNAKE_CASE__: List[str]= conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: SCREAMING_SNAKE_CASE__: Optional[Any]= '''conditional_detr.''' + src rename_key(snake_case_ , snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE__: Tuple= rename_backbone_keys(snake_case_ ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case_ , is_panoptic=snake_case_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them SCREAMING_SNAKE_CASE__: List[Any]= '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): SCREAMING_SNAKE_CASE__: Dict= state_dict.pop(snake_case_ ) SCREAMING_SNAKE_CASE__: int= val elif "class_labels_classifier" in key or "bbox_predictor" in key: SCREAMING_SNAKE_CASE__: Dict= state_dict.pop(snake_case_ ) SCREAMING_SNAKE_CASE__: int= val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: SCREAMING_SNAKE_CASE__: Union[str, Any]= state_dict.pop(snake_case_ ) SCREAMING_SNAKE_CASE__: int= val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): SCREAMING_SNAKE_CASE__: Dict= state_dict.pop(snake_case_ ) SCREAMING_SNAKE_CASE__: str= val # finally, create HuggingFace model and load state dict SCREAMING_SNAKE_CASE__: List[Any]= ConditionalDetrForSegmentation(snake_case_ ) if is_panoptic else ConditionalDetrForObjectDetection(snake_case_ ) model.load_state_dict(snake_case_ ) model.eval() model.push_to_hub(repo_id=snake_case_ , organization='''DepuMeng''' , commit_message='''Add model''' ) # verify our conversion SCREAMING_SNAKE_CASE__: Any= conditional_detr(snake_case_ ) SCREAMING_SNAKE_CASE__: Any= model(snake_case_ ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1E-4 ) # Save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": lowercase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) lowercase_ : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
64
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" a_ = """pixel_values""" a_ = False a_ = TimmBackboneConfig def __init__( self : Tuple , lowerCAmelCase_ : Any , **lowerCAmelCase_ : Optional[int] ) -> Optional[Any]: requires_backends(self , 'timm' ) super().__init__(lowerCAmelCase_ ) __lowerCAmelCase = config if config.backbone is None: raise ValueError('backbone is not set in the config. Please set it to a timm model name.' ) if config.backbone not in timm.list_models(): raise ValueError(f"""backbone {config.backbone} is not supported by timm.""" ) if hasattr(lowerCAmelCase_ , 'out_features' ) and config.out_features is not None: raise ValueError('out_features is not supported by TimmBackbone. Please use out_indices instead.' ) __lowerCAmelCase = getattr(lowerCAmelCase_ , 'use_pretrained_backbone' , lowerCAmelCase_ ) if pretrained is None: raise ValueError('use_pretrained_backbone is not set in the config. Please set it to True or False.' ) # We just take the final layer by default. This matches the default for the transformers models. __lowerCAmelCase = config.out_indices if getattr(lowerCAmelCase_ , 'out_indices' , lowerCAmelCase_ ) is not None else (-1,) __lowerCAmelCase = timm.create_model( config.backbone , pretrained=lowerCAmelCase_ , features_only=config.features_only , in_chans=config.num_channels , out_indices=lowerCAmelCase_ , **lowerCAmelCase_ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. __lowerCAmelCase = self._backbone.return_layers __lowerCAmelCase = {layer['module']: str(lowerCAmelCase_ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(lowerCAmelCase_ ) @classmethod def lowercase ( cls : int , lowerCAmelCase_ : Dict , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['vision', 'timm'] ) from ...models.timm_backbone import TimmBackboneConfig __lowerCAmelCase = kwargs.pop('config' , TimmBackboneConfig() ) __lowerCAmelCase = kwargs.pop('use_timm_backbone' , lowerCAmelCase_ ) if not use_timm: raise ValueError('use_timm_backbone must be True for timm backbones' ) __lowerCAmelCase = kwargs.pop('num_channels' , config.num_channels ) __lowerCAmelCase = kwargs.pop('features_only' , config.features_only ) __lowerCAmelCase = kwargs.pop('use_pretrained_backbone' , config.use_pretrained_backbone ) __lowerCAmelCase = kwargs.pop('out_indices' , config.out_indices ) __lowerCAmelCase = TimmBackboneConfig( backbone=lowerCAmelCase_ , num_channels=lowerCAmelCase_ , features_only=lowerCAmelCase_ , use_pretrained_backbone=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , ) return super()._from_config(lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Tuple , lowerCAmelCase_ : int ) -> Dict: pass def lowercase ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Any=None , **lowerCAmelCase_ : Dict ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('Cannot output attentions for timm backbones at the moment' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone __lowerCAmelCase = self._all_layers __lowerCAmelCase = self._backbone(lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = self._return_layers __lowerCAmelCase = tuple(hidden_states[i] for i in self.out_indices ) else: __lowerCAmelCase = self._backbone(lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = None __lowerCAmelCase = tuple(lowerCAmelCase_ ) __lowerCAmelCase = tuple(lowerCAmelCase_ ) if hidden_states is not None else None if not return_dict: __lowerCAmelCase = (feature_maps,) if output_hidden_states: __lowerCAmelCase = output + (hidden_states,) return output return BackboneOutput(feature_maps=lowerCAmelCase_ , hidden_states=lowerCAmelCase_ , attentions=lowerCAmelCase_ )
53
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class __lowercase ( __lowerCamelCase ): snake_case_ = """data2vec-text""" def __init__( self : str ,A : Union[str, Any]=30_522 ,A : Union[str, Any]=768 ,A : Tuple=12 ,A : Dict=12 ,A : Dict=3_072 ,A : Any="gelu" ,A : Union[str, Any]=0.1 ,A : int=0.1 ,A : int=512 ,A : Union[str, Any]=2 ,A : Tuple=0.0_2 ,A : Dict=1e-12 ,A : Optional[int]=1 ,A : Tuple=0 ,A : Optional[int]=2 ,A : Tuple="absolute" ,A : Any=True ,A : Optional[int]=None ,**A : Union[str, Any] ,): '''simple docstring''' super().__init__(pad_token_id=A ,bos_token_id=A ,eos_token_id=A ,**A ) UpperCAmelCase__ : Union[str, Any] = vocab_size UpperCAmelCase__ : Dict = hidden_size UpperCAmelCase__ : Dict = num_hidden_layers UpperCAmelCase__ : Optional[int] = num_attention_heads UpperCAmelCase__ : Tuple = hidden_act UpperCAmelCase__ : List[Any] = intermediate_size UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase__ : Any = max_position_embeddings UpperCAmelCase__ : Optional[int] = type_vocab_size UpperCAmelCase__ : Dict = initializer_range UpperCAmelCase__ : Union[str, Any] = layer_norm_eps UpperCAmelCase__ : List[Any] = position_embedding_type UpperCAmelCase__ : Union[str, Any] = use_cache UpperCAmelCase__ : Tuple = classifier_dropout class __lowercase ( __lowerCamelCase ): @property def __lowercase ( self : int ): '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase__ : Dict = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCAmelCase__ : Union[str, Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
65
from __future__ import annotations def a_ ( lowerCAmelCase_ : list[float] ): if len(lowerCAmelCase_ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) __lowerCAmelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
0
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCAmelCase_ : @staticmethod def __a ( *_lowerCAmelCase , **_lowerCAmelCase ): pass @is_pipeline_test @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @require_torch def __a ( self ): _lowercase : Union[str, Any] = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) _lowercase : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowercase : List[Any] = image_classifier(_lowerCAmelCase , candidate_labels=['a', 'b', 'c'] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(_lowerCAmelCase ) , [ [{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'b'}, {'score': 0.3_33, 'label': 'c'}], [{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'c'}, {'score': 0.3_33, 'label': 'b'}], ] , ) _lowercase : List[str] = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [ {'score': 0.3_33, 'label': ANY(_lowerCAmelCase )}, {'score': 0.3_33, 'label': ANY(_lowerCAmelCase )}, {'score': 0.3_33, 'label': ANY(_lowerCAmelCase )}, ], [ {'score': 0.3_33, 'label': ANY(_lowerCAmelCase )}, {'score': 0.3_33, 'label': ANY(_lowerCAmelCase )}, {'score': 0.3_33, 'label': ANY(_lowerCAmelCase )}, ], [ {'score': 0.3_33, 'label': ANY(_lowerCAmelCase )}, {'score': 0.3_33, 'label': ANY(_lowerCAmelCase )}, {'score': 0.3_33, 'label': ANY(_lowerCAmelCase )}, ], [ {'score': 0.3_33, 'label': ANY(_lowerCAmelCase )}, {'score': 0.3_33, 'label': ANY(_lowerCAmelCase )}, {'score': 0.3_33, 'label': ANY(_lowerCAmelCase )}, ], [ {'score': 0.3_33, 'label': ANY(_lowerCAmelCase )}, {'score': 0.3_33, 'label': ANY(_lowerCAmelCase )}, {'score': 0.3_33, 'label': ANY(_lowerCAmelCase )}, ], ] , ) @require_tf def __a ( self ): _lowercase : Dict = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf' ) _lowercase : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowercase : List[Any] = image_classifier(_lowerCAmelCase , candidate_labels=['a', 'b', 'c'] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'b'}, {'score': 0.3_33, 'label': 'c'}] , ) _lowercase : Optional[Any] = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [ {'score': 0.3_33, 'label': ANY(_lowerCAmelCase )}, {'score': 0.3_33, 'label': ANY(_lowerCAmelCase )}, {'score': 0.3_33, 'label': ANY(_lowerCAmelCase )}, ], [ {'score': 0.3_33, 'label': ANY(_lowerCAmelCase )}, {'score': 0.3_33, 'label': ANY(_lowerCAmelCase )}, {'score': 0.3_33, 'label': ANY(_lowerCAmelCase )}, ], [ {'score': 0.3_33, 'label': ANY(_lowerCAmelCase )}, {'score': 0.3_33, 'label': ANY(_lowerCAmelCase )}, {'score': 0.3_33, 'label': ANY(_lowerCAmelCase )}, ], [ {'score': 0.3_33, 'label': ANY(_lowerCAmelCase )}, {'score': 0.3_33, 'label': ANY(_lowerCAmelCase )}, {'score': 0.3_33, 'label': ANY(_lowerCAmelCase )}, ], [ {'score': 0.3_33, 'label': ANY(_lowerCAmelCase )}, {'score': 0.3_33, 'label': ANY(_lowerCAmelCase )}, {'score': 0.3_33, 'label': ANY(_lowerCAmelCase )}, ], ] , ) @slow @require_torch def __a ( self ): _lowercase : Dict = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes _lowercase : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowercase : Union[str, Any] = image_classifier(_lowerCAmelCase , candidate_labels=['cat', 'plane', 'remote'] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ] , ) _lowercase : Dict = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def __a ( self ): _lowercase : List[str] = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf' ) # This is an image of 2 cats with remotes and no planes _lowercase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowercase : int = image_classifier(_lowerCAmelCase , candidate_labels=['cat', 'plane', 'remote'] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ] , ) _lowercase : Any = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ], ] * 5 , )
66
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Union[str, Any]=1_0 , lowerCAmelCase_ : List[str]=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple="relu" , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : Optional[int]=None , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = embeddings_size __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_act __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = len(lowerCAmelCase_ ) def lowercase ( self : Optional[int] ) -> List[Any]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def lowercase ( self : Tuple ) -> List[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] ) -> str: __lowerCAmelCase = FlaxRegNetModel(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowercase ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int ) -> Tuple: __lowerCAmelCase = self.num_labels __lowerCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () a_ = False a_ = False a_ = False def lowercase ( self : Dict ) -> None: __lowerCAmelCase = FlaxRegNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : int ) -> Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : str ) -> Union[str, Any]: return def lowercase ( self : Dict ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def lowercase ( self : Union[str, Any] ) -> Any: pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def lowercase ( self : Tuple ) -> Tuple: pass def lowercase ( self : Optional[Any] ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: def check_hidden_states_output(lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : str ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Dict ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('JIT Enabled' ): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def a_ ( ): __lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : Union[str, Any] ) -> Optional[Any]: return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def lowercase ( self : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCAmelCase_ , return_tensors='np' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) # verify the logits __lowerCAmelCase = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
0
from sklearn.metrics import recall_score import datasets snake_case = """ Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. """ snake_case = """ Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} """ snake_case = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : int ) -> str: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) ,reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'] ,) def __UpperCAmelCase ( self : Optional[Any] ,__A : Union[str, Any] ,__A : Tuple ,__A : Tuple=None ,__A : List[str]=1 ,__A : List[str]="binary" ,__A : Optional[int]=None ,__A : str="warn" ,) -> Optional[Any]: _lowercase = recall_score( __A ,__A ,labels=__A ,pos_label=__A ,average=__A ,sample_weight=__A ,zero_division=__A ,) return {"recall": float(__A ) if score.size == 1 else score}
67
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process _snake_case : Optional[int] = logging.getLogger(__name__) _snake_case : Dict = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) _snake_case : List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(_UpperCamelCase )} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a_ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def lowercase ( self : List[Any] ) -> List[Any]: if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path' ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ = field(default=_UpperCamelCase , metadata={"""help""": """The input training data file (a text file)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a_ = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a_ = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def lowercase ( self : int ) -> int: if self.train_file is not None: __lowerCAmelCase = self.train_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __lowerCAmelCase = self.validation_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Union[str, Any] ): with open(lowerCAmelCase_, 'r', encoding='utf-8' ) as f: __lowerCAmelCase = [json.loads(lowerCAmelCase_ ) for line in f.read().splitlines() if (len(lowerCAmelCase_ ) > 0 and not line.isspace())] assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) __lowerCAmelCase = {c: dataset[c] for c in dataset.column_names} __lowerCAmelCase = refs return Dataset.from_dict(lowerCAmelCase_ ) def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s', lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset(data_args.dataset_name, data_args.dataset_config_name ) if "validation" not in datasets.keys(): __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[:{data_args.validation_split_percentage}%]""", ) __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[{data_args.validation_split_percentage}%:]""", ) else: __lowerCAmelCase = {} if data_args.train_file is not None: __lowerCAmelCase = data_args.train_file if data_args.validation_file is not None: __lowerCAmelCase = data_args.validation_file __lowerCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": __lowerCAmelCase = 'text' __lowerCAmelCase = load_dataset(lowerCAmelCase_, data_files=lowerCAmelCase_ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.config_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: __lowerCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: __lowerCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path, from_tf=bool('.ckpt' in model_args.model_name_or_path ), config=lowerCAmelCase_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info('Training new model from scratch' ) __lowerCAmelCase = AutoModelForMaskedLM.from_config(lowerCAmelCase_ ) model.resize_token_embeddings(len(lowerCAmelCase_ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __lowerCAmelCase = datasets['train'].column_names else: __lowerCAmelCase = datasets['validation'].column_names __lowerCAmelCase = 'text' if 'text' in column_names else column_names[0] __lowerCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(lowerCAmelCase_ : str ): # Remove empty lines __lowerCAmelCase = [line for line in examples['text'] if len(lowerCAmelCase_ ) > 0 and not line.isspace()] return tokenizer(examples['text'], padding=lowerCAmelCase_, truncation=lowerCAmelCase_, max_length=data_args.max_seq_length ) __lowerCAmelCase = datasets.map( lowerCAmelCase_, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, remove_columns=[text_column_name], load_from_cache_file=not data_args.overwrite_cache, ) # Add the chinese references if provided if data_args.train_ref_file is not None: __lowerCAmelCase = add_chinese_references(tokenized_datasets['train'], data_args.train_ref_file ) if data_args.validation_ref_file is not None: __lowerCAmelCase = add_chinese_references( tokenized_datasets['validation'], data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __lowerCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: __lowerCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. __lowerCAmelCase = DataCollatorForWholeWordMask(tokenizer=lowerCAmelCase_, mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowerCAmelCase = Trainer( model=lowerCAmelCase_, args=lowerCAmelCase_, train_dataset=tokenized_datasets['train'] if training_args.do_train else None, eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None, tokenizer=lowerCAmelCase_, data_collator=lowerCAmelCase_, ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload __lowerCAmelCase = os.path.join(training_args.output_dir, 'train_results.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir, 'trainer_state.json' ) ) # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = math.exp(eval_output['eval_loss'] ) __lowerCAmelCase = perplexity __lowerCAmelCase = os.path.join(training_args.output_dir, 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def a_ ( lowerCAmelCase_ : Tuple ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
53
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer __A = logging.get_logger(__name__) __A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json" ), }, "merges_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt" ), }, "tokenizer_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/tokenizer.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/tokenizer.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json", "roberta-base-openai-detector": ( "https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json" ), "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json" ), }, } __A = { "roberta-base": 5_12, "roberta-large": 5_12, "roberta-large-mnli": 5_12, "distilroberta-base": 5_12, "roberta-base-openai-detector": 5_12, "roberta-large-openai-detector": 5_12, } class _A ( UpperCamelCase ): """simple docstring""" lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Any = ['input_ids', 'attention_mask'] lowerCamelCase : Optional[int] = RobertaTokenizer def __init__( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Tuple="replace" , __SCREAMING_SNAKE_CASE : str="<s>" , __SCREAMING_SNAKE_CASE : List[Any]="</s>" , __SCREAMING_SNAKE_CASE : str="</s>" , __SCREAMING_SNAKE_CASE : Any="<s>" , __SCREAMING_SNAKE_CASE : int="<unk>" , __SCREAMING_SNAKE_CASE : Optional[Any]="<pad>" , __SCREAMING_SNAKE_CASE : int="<mask>" , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : List[Any]=True , **__SCREAMING_SNAKE_CASE : List[Any] , ) -> int: super().__init__( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , errors=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __UpperCAmelCase =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __SCREAMING_SNAKE_CASE ) != add_prefix_space: __UpperCAmelCase =getattr(__SCREAMING_SNAKE_CASE , pre_tok_state.pop("""type""" ) ) __UpperCAmelCase =add_prefix_space __UpperCAmelCase =pre_tok_class(**__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =add_prefix_space __UpperCAmelCase ="""post_processor""" __UpperCAmelCase =getattr(self.backend_tokenizer , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if tokenizer_component_instance: __UpperCAmelCase =json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __UpperCAmelCase =tuple(state["""sep"""] ) if "cls" in state: __UpperCAmelCase =tuple(state["""cls"""] ) __UpperCAmelCase =False if state.get("""add_prefix_space""" , __SCREAMING_SNAKE_CASE ) != add_prefix_space: __UpperCAmelCase =add_prefix_space __UpperCAmelCase =True if state.get("""trim_offsets""" , __SCREAMING_SNAKE_CASE ) != trim_offsets: __UpperCAmelCase =trim_offsets __UpperCAmelCase =True if changes_to_apply: __UpperCAmelCase =getattr(__SCREAMING_SNAKE_CASE , state.pop("""type""" ) ) __UpperCAmelCase =component_class(**__SCREAMING_SNAKE_CASE ) setattr(self.backend_tokenizer , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @property def _a ( self : List[str] ) -> str: if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def _a ( self : str , __SCREAMING_SNAKE_CASE : List[Any] ) -> List[Any]: __UpperCAmelCase =AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else value __UpperCAmelCase =value def _a ( self : Any , *__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : str ) -> BatchEncoding: __UpperCAmelCase =kwargs.get("""is_split_into_words""" , __SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] , *__SCREAMING_SNAKE_CASE : int , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> BatchEncoding: __UpperCAmelCase =kwargs.get("""is_split_into_words""" , __SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: __UpperCAmelCase =self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE ) def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int]=None ) -> List[str]: __UpperCAmelCase =[self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _a ( self : str , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase =[self.sep_token_id] __UpperCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
68
def a_ ( lowerCAmelCase_ : int = 200_0000 ): __lowerCAmelCase = [0 for i in range(n + 1 )] __lowerCAmelCase = 1 __lowerCAmelCase = 1 for i in range(2, int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i, n + 1, lowerCAmelCase_ ): __lowerCAmelCase = 1 __lowerCAmelCase = 0 for i in range(lowerCAmelCase_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"""{solution() = }""")
53
0
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) a : Tuple = logging.getLogger(__name__) a : Union[str, Any] = '''Hello world! cécé herlolip''' a : Optional[Any] = namedtuple( '''BertAbsConfig''', [ '''temp_dir''', '''large''', '''use_bert_emb''', '''finetune_bert''', '''encoder''', '''share_emb''', '''max_pos''', '''enc_layers''', '''enc_hidden_size''', '''enc_heads''', '''enc_ff_size''', '''enc_dropout''', '''dec_layers''', '''dec_hidden_size''', '''dec_heads''', '''dec_ff_size''', '''dec_dropout''', ], ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] ) -> Union[str, Any]: __snake_case = BertAbsConfig( temp_dir="." , finetune_bert=_UpperCAmelCase , large=_UpperCAmelCase , share_emb=_UpperCAmelCase , use_bert_emb=_UpperCAmelCase , encoder="bert" , max_pos=5_12 , enc_layers=6 , enc_hidden_size=5_12 , enc_heads=8 , enc_ff_size=5_12 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_68 , dec_heads=8 , dec_ff_size=20_48 , dec_dropout=0.2 , ) __snake_case = torch.load(_UpperCAmelCase , lambda _UpperCAmelCase , _UpperCAmelCase : storage ) __snake_case = AbsSummarizer(_UpperCAmelCase , torch.device("cpu" ) , _UpperCAmelCase ) original.eval() __snake_case = BertAbsSummarizer(_UpperCAmelCase , torch.device("cpu" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical" ) __snake_case = BertTokenizer.from_pretrained("bert-base-uncased" ) # prepare the model inputs __snake_case = tokenizer.encode("This is sample éàalj'-." ) encoder_input_ids.extend([tokenizer.pad_token_id] * (5_12 - len(_UpperCAmelCase )) ) __snake_case = torch.tensor(_UpperCAmelCase ).unsqueeze(0 ) __snake_case = tokenizer.encode("This is sample 3 éàalj'-." ) decoder_input_ids.extend([tokenizer.pad_token_id] * (5_12 - len(_UpperCAmelCase )) ) __snake_case = torch.tensor(_UpperCAmelCase ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __snake_case = encoder_input_ids __snake_case = decoder_input_ids __snake_case = __snake_case = None __snake_case = None __snake_case = __snake_case = None __snake_case = __snake_case = None __snake_case = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __snake_case = original(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )[0] __snake_case = original.generator(_UpperCAmelCase ) __snake_case = new_model( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )[0] __snake_case = new_model.generator(_UpperCAmelCase ) __snake_case = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(_UpperCAmelCase ) ) __snake_case = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(_UpperCAmelCase ) ) __snake_case = torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) if are_identical: logging.info("all weights are equal up to 1e-3" ) else: raise ValueError("the weights are different. The new model is likely different from the original one." ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary" ) torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin" ) if __name__ == "__main__": a : Dict = argparse.ArgumentParser() parser.add_argument( '''--bertabs_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''', ) a : Dict = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
69
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _snake_case : Tuple = logging.getLogger() _snake_case : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Any , lowerCAmelCase_ : Dict ) -> Optional[int]: os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowerCAmelCase = {'source': 'What is love ?', 'target': 'life'} __lowerCAmelCase = {'train': 1_2, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: __lowerCAmelCase = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(lowerCAmelCase_ , f"""{split}.{field}""" ) , 'w' ) as f: f.write(lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : str = "pytorch" ) -> List[str]: __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'output' ) __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'data' ) self._create_dummy_data(data_dir=lowerCAmelCase_ ) __lowerCAmelCase = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) __lowerCAmelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowerCAmelCase_ , env=self.get_env() ) __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'metrics.json' ) with open(lowerCAmelCase_ ) as f: __lowerCAmelCase = json.load(lowerCAmelCase_ ) return result @require_torch_gpu def lowercase ( self : str ) -> int: __lowerCAmelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def lowercase ( self : List[str] ) -> Dict: __lowerCAmelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def lowercase ( self : int ) -> Tuple: __lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def lowercase ( self : List[Any] ) -> str: __lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
53
0
lowerCamelCase : List[Any] = range(2, 20 + 1) lowerCamelCase : int = [10**k for k in range(ks[-1] + 1)] lowerCamelCase : dict[int, dict[int, list[list[int]]]] = {} def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] , lowercase : Union[str, Any] , lowercase : List[Any] , lowercase : Dict ): '''simple docstring''' lowerCamelCase_ = sum(a_i[j] for j in range(lowercase , len(lowercase ) ) ) lowerCamelCase_ = sum(a_i[j] * base[j] for j in range(min(len(lowercase ) , lowercase ) ) ) lowerCamelCase_ , lowerCamelCase_ = 0, 0 lowerCamelCase_ = n - i lowerCamelCase_ = memo.get(lowercase ) if sub_memo is not None: lowerCamelCase_ = sub_memo.get(lowercase ) if jumps is not None and len(lowercase ) > 0: # find and make the largest jump without going over lowerCamelCase_ = -1 for _k in range(len(lowercase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: lowerCamelCase_ = _k break if max_jump >= 0: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = jumps[max_jump] # since the difference between jumps is cached, add c lowerCamelCase_ = diff + c for j in range(min(lowercase , len(lowercase ) ) ): lowerCamelCase_ , lowerCamelCase_ = divmod(lowercase , 10 ) if new_c > 0: add(lowercase , lowercase , lowercase ) else: lowerCamelCase_ = [] else: lowerCamelCase_ = {c: []} lowerCamelCase_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps lowerCamelCase_ , lowerCamelCase_ = next_term(lowercase , k - 1 , i + dn , lowercase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead lowerCamelCase_ , lowerCamelCase_ = compute(lowercase , lowercase , i + dn , lowercase ) diff += _diff dn += terms_jumped lowerCamelCase_ = sub_memo[c] # keep jumps sorted by # of terms skipped lowerCamelCase_ = 0 while j < len(lowercase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowercase , (diff, dn, k) ) return (diff, dn) def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : List[str] , lowercase : Optional[Any] , lowercase : Tuple ): '''simple docstring''' if i >= n: return 0, i if k > len(lowercase ): a_i.extend([0 for _ in range(k - len(lowercase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) lowerCamelCase_ = i lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 0, 0, 0 for j in range(len(lowercase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 lowerCamelCase_ = ds_c + ds_b diff += addend lowerCamelCase_ = 0 for j in range(lowercase ): lowerCamelCase_ = a_i[j] + addend lowerCamelCase_ , lowerCamelCase_ = divmod(lowercase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowercase , lowercase , lowercase ) return diff, i - start_i def _SCREAMING_SNAKE_CASE ( lowercase : Tuple , lowercase : List[str] , lowercase : Dict ): '''simple docstring''' for j in range(lowercase , len(lowercase ) ): lowerCamelCase_ = digits[j] + addend if s >= 10: lowerCamelCase_ , lowerCamelCase_ = divmod(lowercase , 10 ) lowerCamelCase_ = addend // 10 + quotient else: lowerCamelCase_ = s lowerCamelCase_ = addend // 10 if addend == 0: break while addend > 0: lowerCamelCase_ , lowerCamelCase_ = divmod(lowercase , 10 ) digits.append(lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : int = 10**15 ): '''simple docstring''' lowerCamelCase_ = [1] lowerCamelCase_ = 1 lowerCamelCase_ = 0 while True: lowerCamelCase_ , lowerCamelCase_ = next_term(lowercase , 20 , i + dn , lowercase ) dn += terms_jumped if dn == n - i: break lowerCamelCase_ = 0 for j in range(len(lowercase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
70
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]="resnet50" , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Optional[Any]=True , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = out_indices if out_indices is not None else [4] __lowerCAmelCase = stage_names __lowerCAmelCase = out_features __lowerCAmelCase = backbone __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = use_pretrained_backbone __lowerCAmelCase = is_training def lowercase ( self : List[str] ) -> Any: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def lowercase ( self : List[Any] ) -> Union[str, Any]: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase ( self : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ) -> int: __lowerCAmelCase = TimmBackbone(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 1_4, 1_4) , ) def lowercase ( self : List[str] ) -> str: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (TimmBackbone,) if is_torch_available() else () a_ = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Tuple ) -> int: __lowerCAmelCase = TimmBackboneModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : Dict ) -> List[str]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Union[str, Any] ) -> Optional[int]: __lowerCAmelCase = 'resnet18' __lowerCAmelCase = 'microsoft/resnet-18' __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ , out_indices=[1, 2, 3] ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def lowercase ( self : List[str] ) -> Tuple: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def lowercase ( self : Dict ) -> int: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def lowercase ( self : str ) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase ( self : Any ) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase ( self : Optional[int] ) -> Optional[Any]: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def lowercase ( self : Dict ) -> Any: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Any ) -> Optional[int]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase ( self : Union[str, Any] ) -> Tuple: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase ( self : List[str] ) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Dict ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Tuple ) -> List[str]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def lowercase ( self : int ) -> Optional[int]: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def lowercase ( self : Union[str, Any] ) -> str: pass @unittest.skip('Safetensors is not supported by timm.' ) def lowercase ( self : Dict ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : List[str] ) -> Optional[Any]: pass def lowercase ( self : Union[str, Any] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = self.has_attentions # no need to test all models as different heads yield the same functionality __lowerCAmelCase = self.all_model_classes[0] __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = outputs[0][-1] # Encoder-/Decoder-only models __lowerCAmelCase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowerCAmelCase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowerCAmelCase_ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) __lowerCAmelCase = None __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) __lowerCAmelCase = False __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ )
53
0
'''simple docstring''' import pytest import datasets # Import fixture modules as plugins _lowerCamelCase = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def a__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] ) -> Optional[Any]: """simple docstring""" for item in items: if any(marker in item.keywords for marker in ["integration", "unit"] ): continue item.add_marker(pytest.mark.unit ) def a__ ( _SCREAMING_SNAKE_CASE : Optional[int] ) -> List[Any]: """simple docstring""" config.addinivalue_line("markers" , "torchaudio_latest: mark test to run with torchaudio>=0.12" ) @pytest.fixture(autouse=_SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict: """simple docstring""" UpperCAmelCase_ : Optional[int] = tmp_path_factory.getbasetemp() / "cache" UpperCAmelCase_ : int = test_hf_cache_home / "datasets" UpperCAmelCase_ : List[Any] = test_hf_cache_home / "metrics" UpperCAmelCase_ : str = test_hf_cache_home / "modules" monkeypatch.setattr("datasets.config.HF_DATASETS_CACHE" , str(_SCREAMING_SNAKE_CASE ) ) monkeypatch.setattr("datasets.config.HF_METRICS_CACHE" , str(_SCREAMING_SNAKE_CASE ) ) monkeypatch.setattr("datasets.config.HF_MODULES_CACHE" , str(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ : int = test_hf_datasets_cache / "downloads" monkeypatch.setattr("datasets.config.DOWNLOADED_DATASETS_PATH" , str(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ : Tuple = test_hf_datasets_cache / "downloads" / "extracted" monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(_SCREAMING_SNAKE_CASE ) ) @pytest.fixture(autouse=_SCREAMING_SNAKE_CASE , scope="session" ) def a__ ( ) -> Optional[Any]: """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=_SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE : List[Any] ) -> Any: """simple docstring""" monkeypatch.setattr("datasets.config.HF_UPDATE_DOWNLOAD_COUNTS" , _SCREAMING_SNAKE_CASE ) @pytest.fixture def a__ ( _SCREAMING_SNAKE_CASE : Optional[int] ) -> Any: """simple docstring""" monkeypatch.setattr("sqlalchemy.util.deprecations.SILENCE_UBER_WARNING" , _SCREAMING_SNAKE_CASE )
71
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def a_ ( lowerCAmelCase_ : str=None ): if subparsers is not None: __lowerCAmelCase = subparsers.add_parser('env' ) else: __lowerCAmelCase = argparse.ArgumentParser('Accelerate env command' ) parser.add_argument( '--config_file', default=lowerCAmelCase_, help='The config file to use for the default values in the launching script.' ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def a_ ( lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = torch.__version__ __lowerCAmelCase = torch.cuda.is_available() __lowerCAmelCase = is_xpu_available() __lowerCAmelCase = is_npu_available() __lowerCAmelCase = 'Not found' # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowerCAmelCase_ ): __lowerCAmelCase = load_config_from_file(args.config_file ).to_dict() __lowerCAmelCase = { '`Accelerate` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Numpy version': np.__version__, 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'PyTorch XPU available': str(lowerCAmelCase_ ), 'PyTorch NPU available': str(lowerCAmelCase_ ), 'System RAM': F"""{psutil.virtual_memory().total / 1024 ** 3:.2f} GB""", } if pt_cuda_available: __lowerCAmelCase = torch.cuda.get_device_name() print('\nCopy-and-paste the text below in your GitHub issue\n' ) print('\n'.join([F"""- {prop}: {val}""" for prop, val in info.items()] ) ) print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:' ) __lowerCAmelCase = ( '\n'.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else F"""\t{accelerate_config}""" ) print(lowerCAmelCase_ ) __lowerCAmelCase = accelerate_config return info def a_ ( ): __lowerCAmelCase = env_command_parser() __lowerCAmelCase = parser.parse_args() env_command(lowerCAmelCase_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
53
0
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __magic_name__ ( tf.keras.layers.Layer ): def __init__( self , snake_case_ , snake_case_ , snake_case_ = None , snake_case_ = None ): super().__init__() lowercase =pad_token_id lowercase =max_length lowercase =vocab lowercase =merges lowercase =BytePairTokenizer(snake_case_ , snake_case_ , sequence_length=snake_case_ ) @classmethod def _A( cls , snake_case_ , *snake_case_ , **snake_case_ ): lowercase =[''' '''.join(snake_case_ ) for m in tokenizer.bpe_ranks.keys()] lowercase =tokenizer.get_vocab() return cls(snake_case_ , snake_case_ , *snake_case_ , **snake_case_ ) @classmethod def _A( cls , snake_case_ , *snake_case_ , **snake_case_ ): lowercase =GPTaTokenizer.from_pretrained(snake_case_ , *snake_case_ , **snake_case_ ) return cls.from_tokenizer(snake_case_ , *snake_case_ , **snake_case_ ) @classmethod def _A( cls , snake_case_ ): return cls(**snake_case_ ) def _A( self ): return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def _A( self , snake_case_ , snake_case_ = None ): lowercase =self.tf_tokenizer(snake_case_ ) lowercase =tf.ones_like(snake_case_ ) if self.pad_token_id is not None: # pad the tokens up to max length lowercase =max_length if max_length is not None else self.max_length if max_length is not None: lowercase , lowercase =pad_model_inputs( snake_case_ , max_seq_length=snake_case_ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
72
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a_ ( ): __lowerCAmelCase = ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores', type=lowerCAmelCase_, default=1, help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script', type=lowerCAmelCase_, help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ), ) # rest from the training program parser.add_argument('training_script_args', nargs=lowerCAmelCase_ ) return parser.parse_args() def a_ ( ): __lowerCAmelCase = parse_args() # Import training_script as a module. __lowerCAmelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __lowerCAmelCase = script_fpath.stem __lowerCAmelCase = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv __lowerCAmelCase = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores ) if __name__ == "__main__": main()
53
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : Union[str, Any] = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys a_ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
73
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict=1_3 , lowerCAmelCase_ : str=3_2 , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : str=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Tuple=[2, 2, 3, 2] , lowerCAmelCase_ : str=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[int]=3_7 , lowerCAmelCase_ : Dict="gelu" , lowerCAmelCase_ : List[Any]=1_0 , lowerCAmelCase_ : str=0.02 , lowerCAmelCase_ : Dict=["stage2", "stage3", "stage4"] , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : List[Any]=None , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = num_stages __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = out_features __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = num_stages def lowercase ( self : Dict ) -> List[str]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase ( self : List[str] ) -> Union[str, Any]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowercase ( self : Dict ) -> List[str]: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_1_2 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=lowerCAmelCase_ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=4_0 , auxiliary_channels=2_5_6 , auxiliary_num_convs=1 , auxiliary_concat_input=lowerCAmelCase_ , loss_ignore_index=2_5_5 , num_labels=self.num_labels , ) def lowercase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int ) -> Optional[Any]: __lowerCAmelCase = UperNetForSemanticSegmentation(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase ( self : Union[str, Any] ) -> Union[str, Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (UperNetForSemanticSegmentation,) if is_torch_available() else () a_ = {"""image-segmentation""": UperNetForSemanticSegmentation} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Optional[int] ) -> Dict: __lowerCAmelCase = UperNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : List[str] ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Tuple ) -> Union[str, Any]: return def lowercase ( self : Optional[int] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase_ ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def lowercase ( self : Optional[int] ) -> Dict: pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def lowercase ( self : Optional[Any] ) -> Dict: pass @unittest.skip(reason='UperNet does not have a base model' ) def lowercase ( self : Optional[int] ) -> List[Any]: pass @unittest.skip(reason='UperNet does not have a base model' ) def lowercase ( self : str ) -> Dict: pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowercase ( self : Optional[Any] ) -> Optional[int]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : Tuple ) -> List[Any]: pass def lowercase ( self : Union[str, Any] ) -> Tuple: def check_hidden_states_output(lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Any ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = _config_zero_init(lowerCAmelCase_ ) __lowerCAmelCase = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __lowerCAmelCase = model_class(config=lowerCAmelCase_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='UperNet does not have tied weights' ) def lowercase ( self : Any ) -> int: pass @slow def lowercase ( self : Optional[int] ) -> Optional[int]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def a_ ( ): __lowerCAmelCase = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k', repo_type='dataset', filename='ADE_val_00000001.jpg' ) __lowerCAmelCase = Image.open(lowerCAmelCase_ ).convert('RGB' ) return image @require_torch @require_vision @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Dict ) -> Union[str, Any]: __lowerCAmelCase = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(lowerCAmelCase_ ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(lowerCAmelCase_ ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase_ = { """configuration_efficientformer""": [ """EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientFormerConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""EfficientFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientFormerForImageClassification""", """EfficientFormerForImageClassificationWithTeacher""", """EfficientFormerModel""", """EfficientFormerPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFEfficientFormerForImageClassification""", """TFEfficientFormerForImageClassificationWithTeacher""", """TFEfficientFormerModel""", """TFEfficientFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
74
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Optional[Any] ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : int ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_, keep_in_memory=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Dict, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, features=lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Any ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_, split=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type', [str, list] ) def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : Any, lowerCAmelCase_ : Dict ): if issubclass(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = text_path elif issubclass(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = [text_path] __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : int, lowerCAmelCase_ : Tuple=("train",) ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) for split in splits: __lowerCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def a_ ( lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Dict ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = TextDatasetReader({'train': text_path}, cache_dir=lowerCAmelCase_, keep_in_memory=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = TextDatasetReader({'train': text_path}, features=lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : Optional[int] ): if split: __lowerCAmelCase = {split: text_path} else: __lowerCAmelCase = 'train' __lowerCAmelCase = {'train': text_path, 'test': text_path} __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
53
0
'''simple docstring''' from __future__ import annotations def a__ ( lowerCAmelCase__ ) -> list[int]: return [ord(lowerCAmelCase__ ) - 96 for elem in plain] def a__ ( lowerCAmelCase__ ) -> str: return "".join(chr(elem + 96 ) for elem in encoded ) def a__ ( ) -> None: UpperCAmelCase__ : Optional[Any] = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , lowerCAmelCase__ ) print('''Decoded:''' , decode(lowerCAmelCase__ ) ) if __name__ == "__main__": main()
75
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case : Union[str, Any] = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : int=False ): __lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Optional[int]=False ): for i in range(config.num_hidden_layers ): if base_model: __lowerCAmelCase = '' else: __lowerCAmelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] __lowerCAmelCase = in_proj_bias[: config.hidden_size] __lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase = in_proj_bias[-config.hidden_size :] def a_ ( lowerCAmelCase_ : List[str] ): __lowerCAmelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Optional[Any]=True ): __lowerCAmelCase = ViTConfig() # patch_size if model_name[-1] == "8": __lowerCAmelCase = 8 # set labels if required if not base_model: __lowerCAmelCase = 1000 __lowerCAmelCase = 'huggingface/label-files' __lowerCAmelCase = 'imagenet-1k-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 6 # load original model from torch hub __lowerCAmelCase = torch.hub.load('facebookresearch/dino:main', lowerCAmelCase_ ) original_model.eval() # load state_dict of original model, remove and rename some keys __lowerCAmelCase = original_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase_ ) __lowerCAmelCase = create_rename_keys(lowerCAmelCase_, base_model=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # load HuggingFace model if base_model: __lowerCAmelCase = ViTModel(lowerCAmelCase_, add_pooling_layer=lowerCAmelCase_ ).eval() else: __lowerCAmelCase = ViTForImageClassification(lowerCAmelCase_ ).eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor __lowerCAmelCase = ViTImageProcessor() __lowerCAmelCase = image_processor(images=prepare_img(), return_tensors='pt' ) __lowerCAmelCase = encoding['pixel_values'] __lowerCAmelCase = model(lowerCAmelCase_ ) if base_model: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_, outputs.last_hidden_state[:, 0, :], atol=1E-1 ) else: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase_, outputs.logits, atol=1E-3 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) _snake_case : List[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
53
0
"""simple docstring""" def __UpperCAmelCase ( __UpperCamelCase ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') a_ = int(input('Enter number: ').strip()) print(F"{number} is {'' if perfect(number) else 'not '}a Perfect Number.")
76
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : str ) -> Any: __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : Tuple ) -> Optional[int]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : List[Any] ) -> int: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : str ) -> str: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[str]: # pass variant but use the non-variant filenames __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> Union[str, Any]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : List[str] ) -> List[Any]: # pass variant but use the non-variant filenames __lowerCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) )
53
0
"""simple docstring""" import math def _UpperCamelCase ( UpperCamelCase = 100 ) -> int: """simple docstring""" __UpperCAmelCase : Any = sum(i * i for i in range(1 , n + 1 ) ) __UpperCAmelCase : Union[str, Any] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
77
import math def a_ ( lowerCAmelCase_ : list, lowerCAmelCase_ : int ): __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) __lowerCAmelCase = 0 while arr[min(lowerCAmelCase_, lowerCAmelCase_ ) - 1] < x: __lowerCAmelCase = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: __lowerCAmelCase = prev + 1 if prev == min(lowerCAmelCase_, lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": _snake_case : List[str] = input('Enter numbers separated by a comma:\n').strip() _snake_case : Optional[Any] = [int(item) for item in user_input.split(',')] _snake_case : List[str] = int(input('Enter the number to be searched:\n')) _snake_case : Optional[int] = jump_search(arr, x) if res == -1: print('Number not found!') else: print(F"""Number {x} is at index {res}""")
53
0
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> Union[str, Any]: '''simple docstring''' if b == 0: return 1 if (b % 2) == 0: return actual_power(snake_case_ , int(b / 2 ) ) * actual_power(snake_case_ , int(b / 2 ) ) else: return a * actual_power(snake_case_ , int(b / 2 ) ) * actual_power(snake_case_ , int(b / 2 ) ) def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> float: '''simple docstring''' if b < 0: return 1 / actual_power(snake_case_ , snake_case_ ) return actual_power(snake_case_ , snake_case_ ) if __name__ == "__main__": print(power(-2, -3))
78
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[Any], lowerCAmelCase_ : str ): # Initialise PyTorch model __lowerCAmelCase = RemBertConfig.from_json_file(lowerCAmelCase_ ) print('Building PyTorch model from configuration: {}'.format(str(lowerCAmelCase_ ) ) ) __lowerCAmelCase = RemBertModel(lowerCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Save pytorch-model print('Save PyTorch model to {}'.format(lowerCAmelCase_ ) ) torch.save(model.state_dict(), lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : int = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
53
0
from functools import lru_cache @lru_cache def _lowerCamelCase ( __lowerCamelCase ) -> int: '''simple docstring''' if num < 0: raise ValueError("""Number should not be negative.""" ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
79
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _snake_case : Any = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224', out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) __lowerCAmelCase = MaskFormerConfig(backbone_config=lowerCAmelCase_ ) __lowerCAmelCase = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok __lowerCAmelCase = 847 __lowerCAmelCase = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok __lowerCAmelCase = 150 __lowerCAmelCase = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok __lowerCAmelCase = 171 __lowerCAmelCase = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO __lowerCAmelCase = 133 __lowerCAmelCase = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok __lowerCAmelCase = 19 __lowerCAmelCase = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok __lowerCAmelCase = 65 __lowerCAmelCase = 'mapillary-vistas-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} return config def a_ ( lowerCAmelCase_ : Tuple ): __lowerCAmelCase = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') ) for source_index, target_index in zip(range(3, 0, -1 ), range(0, 3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') ) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') ) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') ) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') ) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Tuple ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int ): __lowerCAmelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowerCAmelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[:dim, :] __lowerCAmelCase = in_proj_bias[: dim] __lowerCAmelCase = in_proj_weight[ dim : dim * 2, : ] __lowerCAmelCase = in_proj_bias[ dim : dim * 2 ] __lowerCAmelCase = in_proj_weight[ -dim :, : ] __lowerCAmelCase = in_proj_bias[-dim :] # fmt: on def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : Dict ): # fmt: off __lowerCAmelCase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: hidden_size, :] __lowerCAmelCase = in_proj_bias[:config.hidden_size] __lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCAmelCase = in_proj_weight[-hidden_size :, :] __lowerCAmelCase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: hidden_size, :] __lowerCAmelCase = in_proj_bias[:config.hidden_size] __lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCAmelCase = in_proj_weight[-hidden_size :, :] __lowerCAmelCase = in_proj_bias[-hidden_size :] # fmt: on def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : bool = False ): __lowerCAmelCase = get_maskformer_config(lowerCAmelCase_ ) # load original state_dict with open(lowerCAmelCase_, 'rb' ) as f: __lowerCAmelCase = pickle.load(lowerCAmelCase_ ) __lowerCAmelCase = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowerCAmelCase = create_rename_keys(lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_swin_q_k_v(lowerCAmelCase_, config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase_, lowerCAmelCase_ ) # update to torch tensors for key, value in state_dict.items(): __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ) # load 🤗 model __lowerCAmelCase = MaskFormerForInstanceSegmentation(lowerCAmelCase_ ) model.eval() for name, param in model.named_parameters(): print(lowerCAmelCase_, param.shape ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowerCAmelCase_, strict=lowerCAmelCase_ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCAmelCase_ ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results __lowerCAmelCase = prepare_img() if "vistas" in model_name: __lowerCAmelCase = 65 elif "cityscapes" in model_name: __lowerCAmelCase = 6_5535 else: __lowerCAmelCase = 255 __lowerCAmelCase = True if 'ade' in model_name else False __lowerCAmelCase = MaskFormerImageProcessor(ignore_index=lowerCAmelCase_, reduce_labels=lowerCAmelCase_ ) __lowerCAmelCase = image_processor(lowerCAmelCase_, return_tensors='pt' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) print('Logits:', outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowerCAmelCase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], lowerCAmelCase_, atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print('Pushing model and image processor to the hub...' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _snake_case : List[str] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
53
0
__UpperCamelCase : List[str] = """Alexander Joslin""" import operator as op from .stack import Stack def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} __lowercase = Stack() __lowercase = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowerCamelCase ) ) elif i in operators: # RULE 2 operator_stack.push(lowerCamelCase ) elif i == ")": # RULE 4 __lowercase = operator_stack.peek() operator_stack.pop() __lowercase = operand_stack.peek() operand_stack.pop() __lowercase = operand_stack.peek() operand_stack.pop() __lowercase = operators[opr](lowerCamelCase , lowerCamelCase ) operand_stack.push(lowerCamelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __UpperCamelCase : Union[str, Any] = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
80
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): _snake_case : List[Any] = True from torch.cuda.amp import autocast _snake_case : Dict = logging.getLogger(__name__) def a_ ( lowerCAmelCase_ : str=None, lowerCAmelCase_ : str=None ): return field(default_factory=lambda: default, metadata=lowerCAmelCase_ ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) a_ = field( default=0.1 , metadata={"""help""": """The dropout ratio for the attention probabilities."""} ) a_ = field( default=0.1 , metadata={"""help""": """The dropout ratio for activations inside the fully connected layer."""} ) a_ = field( default=0.1 , metadata={ """help""": """The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.""" } , ) a_ = field( default=0.1 , metadata={"""help""": """The dropout probabilitiy for all 1D convolutional layers in feature extractor."""} , ) a_ = field( default=0.05 , metadata={ """help""": ( """Propability of each feature vector along the time axis to be chosen as the start of the vector""" """span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature""" """vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.""" ) } , ) a_ = field(default=0.0 , metadata={"""help""": """The LayerDrop probability."""} ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ = field( default="""train+validation""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of validation examples to this """ """value if set.""" ) } , ) a_ = list_field( default=[""",""", """?""", """.""", """!""", """-""", """;""", """:""", """\"\"""", """%""", """'""", """\"""", """�"""] , metadata={"""help""": """A list of characters to remove from the transcripts."""} , ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = 42 a_ = True a_ = None a_ = None a_ = None a_ = None def __call__( self : int , lowerCAmelCase_ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods __lowerCAmelCase = [{'input_values': feature['input_values']} for feature in features] __lowerCAmelCase = [{'input_ids': feature['labels']} for feature in features] __lowerCAmelCase = self.processor.pad( lowerCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) __lowerCAmelCase = self.processor.pad( labels=lowerCAmelCase_ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='pt' , ) # replace padding with -100 to ignore loss correctly __lowerCAmelCase = labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_0_0 ) __lowerCAmelCase = labels return batch class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Tuple , lowerCAmelCase_ : nn.Module , lowerCAmelCase_ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: model.train() __lowerCAmelCase = self._prepare_inputs(lowerCAmelCase_ ) if self.use_amp: with autocast(): __lowerCAmelCase = self.compute_loss(lowerCAmelCase_ , lowerCAmelCase_ ) else: __lowerCAmelCase = self.compute_loss(lowerCAmelCase_ , lowerCAmelCase_ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": __lowerCAmelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __lowerCAmelCase = loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: __lowerCAmelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowerCAmelCase_ ).backward() elif self.use_apex: with amp.scale_loss(lowerCAmelCase_ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowerCAmelCase_ ) else: loss.backward() return loss.detach() def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s', lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: __lowerCAmelCase = datasets.load_dataset( 'common_voice', data_args.dataset_config_name, split=data_args.train_split_name ) __lowerCAmelCase = datasets.load_dataset('common_voice', data_args.dataset_config_name, split='test' ) # Create and save tokenizer __lowerCAmelCase = F"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(lowerCAmelCase_ : Any ): __lowerCAmelCase = re.sub(lowerCAmelCase_, '', batch['sentence'] ).lower() + ' ' return batch __lowerCAmelCase = train_dataset.map(lowerCAmelCase_, remove_columns=['sentence'] ) __lowerCAmelCase = eval_dataset.map(lowerCAmelCase_, remove_columns=['sentence'] ) def extract_all_chars(lowerCAmelCase_ : Tuple ): __lowerCAmelCase = ' '.join(batch['text'] ) __lowerCAmelCase = list(set(lowerCAmelCase_ ) ) return {"vocab": [vocab], "all_text": [all_text]} __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, batched=lowerCAmelCase_, batch_size=-1, keep_in_memory=lowerCAmelCase_, remove_columns=train_dataset.column_names, ) __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, batched=lowerCAmelCase_, batch_size=-1, keep_in_memory=lowerCAmelCase_, remove_columns=eval_dataset.column_names, ) __lowerCAmelCase = list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) ) __lowerCAmelCase = {v: k for k, v in enumerate(lowerCAmelCase_ )} __lowerCAmelCase = vocab_dict[' '] del vocab_dict[" "] __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = len(lowerCAmelCase_ ) with open('vocab.json', 'w' ) as vocab_file: json.dump(lowerCAmelCase_, lowerCAmelCase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = WavaVecaCTCTokenizer( 'vocab.json', unk_token='[UNK]', pad_token='[PAD]', word_delimiter_token='|', ) __lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_6000, padding_value=0.0, do_normalize=lowerCAmelCase_, return_attention_mask=lowerCAmelCase_ ) __lowerCAmelCase = WavaVecaProcessor(feature_extractor=lowerCAmelCase_, tokenizer=lowerCAmelCase_ ) __lowerCAmelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, activation_dropout=model_args.activation_dropout, attention_dropout=model_args.attention_dropout, hidden_dropout=model_args.hidden_dropout, feat_proj_dropout=model_args.feat_proj_dropout, mask_time_prob=model_args.mask_time_prob, gradient_checkpointing=training_args.gradient_checkpointing, layerdrop=model_args.layerdrop, ctc_loss_reduction='mean', pad_token_id=processor.tokenizer.pad_token_id, vocab_size=len(processor.tokenizer ), ) if data_args.max_train_samples is not None: __lowerCAmelCase = min(len(lowerCAmelCase_ ), data_args.max_train_samples ) __lowerCAmelCase = train_dataset.select(range(lowerCAmelCase_ ) ) if data_args.max_val_samples is not None: __lowerCAmelCase = eval_dataset.select(range(data_args.max_val_samples ) ) __lowerCAmelCase = torchaudio.transforms.Resample(4_8000, 1_6000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(lowerCAmelCase_ : int ): __lowerCAmelCase , __lowerCAmelCase = torchaudio.load(batch['path'] ) __lowerCAmelCase = resampler(lowerCAmelCase_ ).squeeze().numpy() __lowerCAmelCase = 1_6000 __lowerCAmelCase = batch['text'] return batch __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, remove_columns=train_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) __lowerCAmelCase = eval_dataset.map( lowerCAmelCase_, remove_columns=eval_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) def prepare_dataset(lowerCAmelCase_ : Union[str, Any] ): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'] ) ) == 1 ), F"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" __lowerCAmelCase = processor( audio=batch['speech'], text=batch['target_text'], sampling_rate=batch['sampling_rate'][0] ) batch.update(lowerCAmelCase_ ) return batch __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, remove_columns=train_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, ) __lowerCAmelCase = eval_dataset.map( lowerCAmelCase_, remove_columns=eval_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, ) # Metric __lowerCAmelCase = datasets.load_metric('wer' ) def compute_metrics(lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = pred.predictions __lowerCAmelCase = np.argmax(lowerCAmelCase_, axis=-1 ) __lowerCAmelCase = processor.tokenizer.pad_token_id __lowerCAmelCase = processor.batch_decode(lowerCAmelCase_ ) # we do not want to group tokens when computing the metrics __lowerCAmelCase = processor.batch_decode(pred.label_ids, group_tokens=lowerCAmelCase_ ) __lowerCAmelCase = wer_metric.compute(predictions=lowerCAmelCase_, references=lowerCAmelCase_ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator __lowerCAmelCase = DataCollatorCTCWithPadding(processor=lowerCAmelCase_, padding=lowerCAmelCase_ ) # Initialize our Trainer __lowerCAmelCase = CTCTrainer( model=lowerCAmelCase_, data_collator=lowerCAmelCase_, args=lowerCAmelCase_, compute_metrics=lowerCAmelCase_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=processor.feature_extractor, ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() __lowerCAmelCase = train_result.metrics __lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase_ ) ) __lowerCAmelCase = min(lowerCAmelCase_, len(lowerCAmelCase_ ) ) trainer.log_metrics('train', lowerCAmelCase_ ) trainer.save_metrics('train', lowerCAmelCase_ ) trainer.save_state() # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(lowerCAmelCase_ ) __lowerCAmelCase = min(lowerCAmelCase_, len(lowerCAmelCase_ ) ) trainer.log_metrics('eval', lowerCAmelCase_ ) trainer.save_metrics('eval', lowerCAmelCase_ ) return results if __name__ == "__main__": main()
53
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _snake_case : str = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[int] = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Union[str, Any] = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[Any] = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys _snake_case : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
81
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _snake_case : Any = logging.get_logger(__name__) _snake_case : int = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _snake_case : Optional[Any] = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } _snake_case : str = { 'yjernite/retribert-base-uncased': 512, } _snake_case : Optional[int] = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = PRETRAINED_INIT_CONFIGURATION a_ = RetriBertTokenizer a_ = ["""input_ids""", """attention_mask"""] def __init__( self : Dict , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : str="[UNK]" , lowerCAmelCase_ : Optional[Any]="[SEP]" , lowerCAmelCase_ : List[str]="[PAD]" , lowerCAmelCase_ : Optional[int]="[CLS]" , lowerCAmelCase_ : List[Any]="[MASK]" , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : List[Any] , ) -> Dict: super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(lowerCAmelCase_ , normalizer_state.pop('type' ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**lowerCAmelCase_ ) __lowerCAmelCase = do_lower_case def lowercase ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int]=None ) -> Optional[int]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
53
0
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class lowercase__ : '''simple docstring''' def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : str ) -> Dict: '''simple docstring''' return None class lowercase__ : '''simple docstring''' def lowercase__ ( self : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' return None class lowercase__ ( unittest.TestCase ): '''simple docstring''' UpperCamelCase = [ # (model_name, model_kwargs) ('''bert-base-cased''', {}), ('''gpt2''', {'''use_cache''': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def lowercase__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(_UpperCAmelCase , "tf" , 12 , **_UpperCAmelCase ) @require_torch @slow def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(_UpperCAmelCase , "pt" , 12 , **_UpperCAmelCase ) @require_torch @slow def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' from transformers import BertModel UpperCAmelCase_ = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(_UpperCAmelCase ) ) vocab_file.flush() UpperCAmelCase_ = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: UpperCAmelCase_ = BertModel(BertConfig(vocab_size=len(_UpperCAmelCase ) ) ) model.save_pretrained(_UpperCAmelCase ) self._test_export(_UpperCAmelCase , "pt" , 12 , _UpperCAmelCase ) @require_tf @slow def lowercase__ ( self : str ) -> Any: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: UpperCAmelCase_ = self._test_export(_UpperCAmelCase , "tf" , 12 , **_UpperCAmelCase ) UpperCAmelCase_ = quantize(Path(_UpperCAmelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(_UpperCAmelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def lowercase__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: UpperCAmelCase_ = self._test_export(_UpperCAmelCase , "pt" , 12 , **_UpperCAmelCase ) UpperCAmelCase_ = quantize(_UpperCAmelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(_UpperCAmelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: UpperCAmelCase_ = Path(_UpperCAmelCase ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) return path except Exception as e: self.fail(_UpperCAmelCase ) @require_torch @require_tokenizers @slow def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' from transformers import BertModel UpperCAmelCase_ = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) UpperCAmelCase_ = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(_UpperCAmelCase , _UpperCAmelCase , "pt" ) @require_tf @require_tokenizers @slow def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' from transformers import TFBertModel UpperCAmelCase_ = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) UpperCAmelCase_ = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(_UpperCAmelCase , _UpperCAmelCase , "tf" ) def lowercase__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = FeatureExtractionPipeline(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = infer_shapes(_UpperCAmelCase , _UpperCAmelCase ) # Assert all variables are present self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , _UpperCAmelCase ) self.assertSequenceEqual(variable_names[3:] , _UpperCAmelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def lowercase__ ( self : Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = ["input_ids", "attention_mask", "token_type_ids"] UpperCAmelCase_ = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} UpperCAmelCase_ , UpperCAmelCase_ = ensure_valid_input(FuncContiguousArgs() , _UpperCAmelCase , _UpperCAmelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(_UpperCAmelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(_UpperCAmelCase ) , set(_UpperCAmelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(_UpperCAmelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) UpperCAmelCase_ , UpperCAmelCase_ = ensure_valid_input(FuncNonContiguousArgs() , _UpperCAmelCase , _UpperCAmelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(_UpperCAmelCase ) , 1 ) self.assertEqual(len(_UpperCAmelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
82
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _snake_case : Union[str, Any] = imread(R'digital_image_processing/image_data/lena_small.jpg') _snake_case : Optional[int] = cvtColor(img, COLOR_BGR2GRAY) def a_ ( ): __lowerCAmelCase = cn.convert_to_negative(lowerCAmelCase_ ) # assert negative_img array for at least one True assert negative_img.any() def a_ ( ): with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowerCAmelCase_, 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def a_ ( ): __lowerCAmelCase = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def a_ ( ): __lowerCAmelCase = imread('digital_image_processing/image_data/lena_small.jpg', 0 ) # assert ambiguous array for all == True assert canny_img.all() __lowerCAmelCase = canny.canny(lowerCAmelCase_ ) # assert canny array for at least one True assert canny_array.any() def a_ ( ): assert gg.gaussian_filter(lowerCAmelCase_, 5, sigma=0.9 ).all() def a_ ( ): # laplace diagonals __lowerCAmelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __lowerCAmelCase = conv.img_convolve(lowerCAmelCase_, lowerCAmelCase_ ).astype(lowerCAmelCase_ ) assert res.any() def a_ ( ): assert med.median_filter(lowerCAmelCase_, 3 ).any() def a_ ( ): __lowerCAmelCase , __lowerCAmelCase = sob.sobel_filter(lowerCAmelCase_ ) assert grad.any() and theta.any() def a_ ( ): __lowerCAmelCase = sp.make_sepia(lowerCAmelCase_, 20 ) assert sepia.all() def a_ ( lowerCAmelCase_ : str = "digital_image_processing/image_data/lena_small.jpg" ): __lowerCAmelCase = bs.Burkes(imread(lowerCAmelCase_, 1 ), 120 ) burkes.process() assert burkes.output_img.any() def a_ ( lowerCAmelCase_ : str = "digital_image_processing/image_data/lena_small.jpg", ): __lowerCAmelCase = rs.NearestNeighbour(imread(lowerCAmelCase_, 1 ), 400, 200 ) nn.process() assert nn.output.any() def a_ ( ): __lowerCAmelCase = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. __lowerCAmelCase = imread(lowerCAmelCase_, 0 ) # Test for get_neighbors_pixel function() return not None __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = image[x_coordinate][y_coordinate] __lowerCAmelCase = lbp.get_neighbors_pixel( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __lowerCAmelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): __lowerCAmelCase = lbp.local_binary_value(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) assert lbp_image.any()
53
0
"""simple docstring""" from __future__ import annotations lowerCAmelCase__ = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] lowerCAmelCase__ = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def snake_case_ ( A_ : list[float] ): '''simple docstring''' _lowerCamelCase : Tuple = [] _lowerCamelCase : List[str] = len(A_ ) for i in range(A_ ): _lowerCamelCase : float = -1 for j in range(i + 1, A_ ): if arr[i] < arr[j]: _lowerCamelCase : int = arr[j] break result.append(A_ ) return result def snake_case_ ( A_ : list[float] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = [] for i, outer in enumerate(A_ ): _lowerCamelCase : float = -1 for inner in arr[i + 1 :]: if outer < inner: _lowerCamelCase : List[str] = inner break result.append(A_ ) return result def snake_case_ ( A_ : list[float] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = len(A_ ) _lowerCamelCase : list[float] = [] _lowerCamelCase : list[float] = [-1] * arr_size for index in reversed(range(A_ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: _lowerCamelCase : Any = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCAmelCase__ = ( '''from __main__ import arr, next_greatest_element_slow, ''' '''next_greatest_element_fast, next_greatest_element''' ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
83
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case : List[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = ["""pixel_values"""] def __init__( self : Optional[int] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **lowerCAmelCase_ : Any , ) -> None: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = size if size is not None else {'shortest_edge': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = do_center_crop __lowerCAmelCase = crop_size __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[int] , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __lowerCAmelCase = int((2_5_6 / 2_2_4) * size['shortest_edge'] ) __lowerCAmelCase = get_resize_output_image_size(lowerCAmelCase_ , size=lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( lowerCAmelCase_ , size=(size_dict['height'], size_dict['width']) , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : str , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : str , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(lowerCAmelCase_ , size=(size['height'], size['width']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[int, float] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray: return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[str] , ) -> np.ndarray: return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase_ : str , ) -> BatchFeature: __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase = image_std if image_std is not None else self.image_std __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: __lowerCAmelCase = [self.resize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_center_crop: __lowerCAmelCase = [self.center_crop(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_rescale: __lowerCAmelCase = [self.rescale(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_normalize: __lowerCAmelCase = [self.normalize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
53
0
from __future__ import annotations import os from typing import Any import requests UpperCAmelCase = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user UpperCAmelCase = BASE_URL + '''/user''' # https://github.com/settings/tokens UpperCAmelCase = os.environ.get('''USER_TOKEN''', '''''') def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = { 'Authorization': F'''token {auth_token}''', 'Accept': 'application/vnd.github.v3+json', } return requests.get(__SCREAMING_SNAKE_CASE , headers=__SCREAMING_SNAKE_CASE ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F"""{key}: {value}""") else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
84
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Optional[int]=8 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]=9_9 , lowerCAmelCase_ : List[Any]=1_6 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=3_6 , lowerCAmelCase_ : Optional[int]="gelu" , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : str=5_1_2 , lowerCAmelCase_ : List[str]=1_6 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Tuple=0.02 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : List[Any]=4 , lowerCAmelCase_ : List[str]=None , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope def lowercase ( self : Optional[int] ) -> Dict: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self : Any ) -> Union[str, Any]: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def lowercase ( self : Dict ) -> List[Any]: __lowerCAmelCase = self.get_config() __lowerCAmelCase = 3_0_0 return config def lowercase ( self : Optional[int] ) -> Union[str, Any]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = self.prepare_config_and_inputs() __lowerCAmelCase = True __lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = MraModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , ) -> Tuple: __lowerCAmelCase = True __lowerCAmelCase = MraModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , ) __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = MraForMaskedLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> str: __lowerCAmelCase = MraForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict ) -> Optional[Any]: __lowerCAmelCase = self.num_labels __lowerCAmelCase = MraForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict ) -> Any: __lowerCAmelCase = self.num_labels __lowerCAmelCase = MraForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] ) -> List[Any]: __lowerCAmelCase = self.num_choices __lowerCAmelCase = MraForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self : Tuple ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) a_ = False a_ = False a_ = False a_ = False a_ = () def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = MraModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : Tuple ) -> List[str]: self.config_tester.run_common_tests() def lowercase ( self : Optional[int] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase = type self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase_ ) def lowercase ( self : List[str] ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase_ ) def lowercase ( self : Tuple ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase_ ) @slow def lowercase ( self : Optional[int] ) -> Optional[int]: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = MraModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @unittest.skip(reason='MRA does not output attentions' ) def lowercase ( self : Optional[int] ) -> Tuple: return @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase ( self : Optional[Any] ) -> List[str]: __lowerCAmelCase = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) __lowerCAmelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : int ) -> Optional[int]: __lowerCAmelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) __lowerCAmelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = 5_0_2_6_5 __lowerCAmelCase = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : Any ) -> List[str]: __lowerCAmelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) __lowerCAmelCase = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = 5_0_2_6_5 __lowerCAmelCase = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
0
# Algorithm for the pigeonhole sorting def _a ( lowercase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = min(lowercase__ ) # min() finds the minimum value SCREAMING_SNAKE_CASE__ : List[str] = max(lowercase__ ) # max() finds the maximum value SCREAMING_SNAKE_CASE__ : List[str] = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size SCREAMING_SNAKE_CASE__ : Any = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(lowercase__ , lowercase__ ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. SCREAMING_SNAKE_CASE__ : List[str] = 0 for count in range(lowercase__ ): while holes[count] > 0: holes[count] -= 1 SCREAMING_SNAKE_CASE__ : List[Any] = count + min_val i += 1 def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(lowercase__ ) print('Sorted order is:' , ' '.join(lowercase__ ) ) if __name__ == "__main__": main()
85
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _snake_case : Union[str, Any] = 2 class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , *, # begin keyword-only arguments lowerCAmelCase_ : str="<s>" , lowerCAmelCase_ : Dict="<pad>" , lowerCAmelCase_ : Any="</s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Optional[Any]=None , ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = bos, unk, pad, eos __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = {} __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = len(self.symbols ) def __eq__( self : Dict , lowerCAmelCase_ : Dict ) -> str: return self.indices == other.indices def __getitem__( self : List[Any] , lowerCAmelCase_ : int ) -> Union[str, Any]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : Tuple ) -> List[Any]: return len(self.symbols ) def __contains__( self : Optional[Any] , lowerCAmelCase_ : Dict ) -> Optional[int]: return sym in self.indices @classmethod def lowercase ( cls : Dict , lowerCAmelCase_ : str ) -> str: __lowerCAmelCase = cls() d.add_from_file(lowerCAmelCase_ ) return d def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : Any=False ) -> Optional[Any]: if word in self.indices and not overwrite: __lowerCAmelCase = self.indices[word] __lowerCAmelCase = self.count[idx] + n return idx else: __lowerCAmelCase = len(self.symbols ) __lowerCAmelCase = idx self.symbols.append(lowerCAmelCase_ ) self.count.append(lowerCAmelCase_ ) return idx def lowercase ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> Dict: return 0 def lowercase ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> int: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: with open(lowerCAmelCase_ , 'r' , encoding='utf-8' ) as fd: self.add_from_file(lowerCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(lowerCAmelCase_ ) ) return __lowerCAmelCase = f.readlines() __lowerCAmelCase = self._load_meta(lowerCAmelCase_ ) for line in lines[indices_start_line:]: try: __lowerCAmelCase , __lowerCAmelCase = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": __lowerCAmelCase = True __lowerCAmelCase , __lowerCAmelCase = line.rsplit(' ' , 1 ) else: __lowerCAmelCase = False __lowerCAmelCase = int(lowerCAmelCase_ ) __lowerCAmelCase = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(lowerCAmelCase_ ) ) self.add_symbol(lowerCAmelCase_ , n=lowerCAmelCase_ , overwrite=lowerCAmelCase_ ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def a_ ( lowerCAmelCase_ : List[str] ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} __lowerCAmelCase = dict((re.sub(R'@@$', '', lowerCAmelCase_ ), v) if k.endswith('@@' ) else (re.sub(R'$', '</w>', lowerCAmelCase_ ), v) for k, v in d.items() ) __lowerCAmelCase = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowerCAmelCase = d[k] # restore return da def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str] ): # prep if not os.path.exists(lowerCAmelCase_ ): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(lowerCAmelCase_, exist_ok=lowerCAmelCase_ ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'checkpoint.pt' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""" ) __lowerCAmelCase = torch.load(lowerCAmelCase_, map_location='cpu' ) __lowerCAmelCase = chkpt['cfg']['model'] # dicts __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'dict.txt' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {dict_file} does not exist!""" ) __lowerCAmelCase = Dictionary.load(lowerCAmelCase_ ) __lowerCAmelCase = rewrite_dict_keys(src_dict.indices ) __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, VOCAB_FILES_NAMES['vocab_file'] ) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # merges_file (bpecodes) __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'bpecodes' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""" ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(lowerCAmelCase_, lowerCAmelCase_ ) # model config __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'config.json' ) __lowerCAmelCase = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1E-12, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # tokenizer config __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F"""Generating {biogpt_tokenizer_config_file}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # model __lowerCAmelCase = chkpt['model'] # remove unneeded keys __lowerCAmelCase = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): __lowerCAmelCase = model_state_dict.pop(lowerCAmelCase_ ) else: __lowerCAmelCase = model_state_dict.pop(lowerCAmelCase_ ) __lowerCAmelCase = BioGptConfig.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = BioGptForCausalLM(lowerCAmelCase_ ) # check that it loads ok model_new.load_state_dict(lowerCAmelCase_ ) # save __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(lowerCAmelCase_, lowerCAmelCase_ ) print('Conversion is done!' ) if __name__ == "__main__": _snake_case : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : int = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
0
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class _a : """simple docstring""" def __init__( self : str , UpperCAmelCase : int , UpperCAmelCase : str=13 , UpperCAmelCase : str=7 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Tuple=99 , UpperCAmelCase : Optional[Any]=64 , UpperCAmelCase : Union[str, Any]=5 , UpperCAmelCase : List[Any]=4 , UpperCAmelCase : int=37 , UpperCAmelCase : int="gelu" , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : str=512 , UpperCAmelCase : List[Any]=16 , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Optional[int]=0.02 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Any=4 , UpperCAmelCase : Dict=None , ): A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = num_labels A_ = num_choices A_ = scope A_ = vocab_size - 1 def __A ( self : Optional[int] ): A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = self.get_config() return config, input_ids, input_mask, token_labels def __A ( self : Dict ): return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def __A ( self : Optional[Any] ): A_ , A_ , A_ , A_ = self.prepare_config_and_inputs() A_ = True return config, input_ids, input_mask, token_labels def __A ( self : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ): A_ = GPTNeoXModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] ): A_ = True A_ = GPTNeoXModel(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ): A_ = GPTNeoXForCausalLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str ): A_ = self.num_labels A_ = GPTNeoXForQuestionAnswering(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] ): A_ = self.num_labels A_ = GPTNeoXForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self : str , UpperCAmelCase : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : int ): A_ = self.num_labels A_ = GPTNeoXForTokenClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] ): A_ = True A_ = GPTNeoXForCausalLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() # first forward pass A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , use_cache=UpperCAmelCase ) A_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) A_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A_ = torch.cat([input_ids, next_tokens] , dim=-1 ) A_ = torch.cat([input_mask, next_mask] , dim=-1 ) A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , output_hidden_states=UpperCAmelCase ) A_ = output_from_no_past["hidden_states"][0] A_ = model( UpperCAmelCase , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , output_hidden_states=UpperCAmelCase , )["hidden_states"][0] # select random slice A_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() A_ = output_from_no_past[:, -3:, random_slice_idx].detach() A_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-3 ) ) def __A ( self : Dict ): A_ = self.prepare_config_and_inputs() A_ , A_ , A_ , A_ = config_and_inputs A_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _a ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Any = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase : Any = (GPTNeoXForCausalLM,) if is_torch_available() else () _lowerCamelCase : Dict = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : Optional[int] = False _lowerCamelCase : List[Any] = False _lowerCamelCase : int = False _lowerCamelCase : Dict = False def __A ( self : List[Any] ): A_ = GPTNeoXModelTester(self ) A_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=64 , num_attention_heads=8 ) def __A ( self : Any ): self.config_tester.run_common_tests() def __A ( self : Any ): A_ , A_ , A_ , A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def __A ( self : int ): A_ , A_ , A_ , A_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def __A ( self : Optional[int] ): # This regression test was failing with PyTorch < 1.3 A_ , A_ , A_ , A_ = self.model_tester.prepare_config_and_inputs_for_decoder() A_ = None self.model_tester.create_and_check_model_as_decoder(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def __A ( self : int ): A_ , A_ , A_ , A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def __A ( self : Tuple ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*UpperCAmelCase ) def __A ( self : int ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def __A ( self : Dict ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def __A ( self : Optional[int] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @unittest.skip(reason="Feed forward chunking is not implemented" ) def __A ( self : Tuple ): pass @parameterized.expand([("linear",), ("dynamic",)] ) def __A ( self : Dict , UpperCAmelCase : Optional[Any] ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = ids_tensor([1, 10] , config.vocab_size ) A_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A_ = GPTNeoXModel(UpperCAmelCase ) original_model.to(UpperCAmelCase ) original_model.eval() A_ = original_model(UpperCAmelCase ).last_hidden_state A_ = original_model(UpperCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A_ = {"type": scaling_type, "factor": 10.0} A_ = GPTNeoXModel(UpperCAmelCase ) scaled_model.to(UpperCAmelCase ) scaled_model.eval() A_ = scaled_model(UpperCAmelCase ).last_hidden_state A_ = scaled_model(UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-5 ) ) @require_torch class _a ( unittest.TestCase ): """simple docstring""" @slow def __A ( self : Any ): A_ = AutoTokenizer.from_pretrained("EleutherAI/pythia-410m-deduped" ) for checkpointing in [True, False]: A_ = GPTNeoXForCausalLM.from_pretrained("EleutherAI/pythia-410m-deduped" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(UpperCAmelCase ) A_ = tokenizer("My favorite food is" , return_tensors="pt" ).to(UpperCAmelCase ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 A_ = "My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure" A_ = model.generate(**UpperCAmelCase , do_sample=UpperCAmelCase , max_new_tokens=20 ) A_ = tokenizer.batch_decode(UpperCAmelCase )[0] self.assertEqual(UpperCAmelCase , UpperCAmelCase )
86
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" a_ = """pixel_values""" a_ = False a_ = TimmBackboneConfig def __init__( self : Tuple , lowerCAmelCase_ : Any , **lowerCAmelCase_ : Optional[int] ) -> Optional[Any]: requires_backends(self , 'timm' ) super().__init__(lowerCAmelCase_ ) __lowerCAmelCase = config if config.backbone is None: raise ValueError('backbone is not set in the config. Please set it to a timm model name.' ) if config.backbone not in timm.list_models(): raise ValueError(f"""backbone {config.backbone} is not supported by timm.""" ) if hasattr(lowerCAmelCase_ , 'out_features' ) and config.out_features is not None: raise ValueError('out_features is not supported by TimmBackbone. Please use out_indices instead.' ) __lowerCAmelCase = getattr(lowerCAmelCase_ , 'use_pretrained_backbone' , lowerCAmelCase_ ) if pretrained is None: raise ValueError('use_pretrained_backbone is not set in the config. Please set it to True or False.' ) # We just take the final layer by default. This matches the default for the transformers models. __lowerCAmelCase = config.out_indices if getattr(lowerCAmelCase_ , 'out_indices' , lowerCAmelCase_ ) is not None else (-1,) __lowerCAmelCase = timm.create_model( config.backbone , pretrained=lowerCAmelCase_ , features_only=config.features_only , in_chans=config.num_channels , out_indices=lowerCAmelCase_ , **lowerCAmelCase_ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. __lowerCAmelCase = self._backbone.return_layers __lowerCAmelCase = {layer['module']: str(lowerCAmelCase_ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(lowerCAmelCase_ ) @classmethod def lowercase ( cls : int , lowerCAmelCase_ : Dict , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['vision', 'timm'] ) from ...models.timm_backbone import TimmBackboneConfig __lowerCAmelCase = kwargs.pop('config' , TimmBackboneConfig() ) __lowerCAmelCase = kwargs.pop('use_timm_backbone' , lowerCAmelCase_ ) if not use_timm: raise ValueError('use_timm_backbone must be True for timm backbones' ) __lowerCAmelCase = kwargs.pop('num_channels' , config.num_channels ) __lowerCAmelCase = kwargs.pop('features_only' , config.features_only ) __lowerCAmelCase = kwargs.pop('use_pretrained_backbone' , config.use_pretrained_backbone ) __lowerCAmelCase = kwargs.pop('out_indices' , config.out_indices ) __lowerCAmelCase = TimmBackboneConfig( backbone=lowerCAmelCase_ , num_channels=lowerCAmelCase_ , features_only=lowerCAmelCase_ , use_pretrained_backbone=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , ) return super()._from_config(lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Tuple , lowerCAmelCase_ : int ) -> Dict: pass def lowercase ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Any=None , **lowerCAmelCase_ : Dict ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('Cannot output attentions for timm backbones at the moment' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone __lowerCAmelCase = self._all_layers __lowerCAmelCase = self._backbone(lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = self._return_layers __lowerCAmelCase = tuple(hidden_states[i] for i in self.out_indices ) else: __lowerCAmelCase = self._backbone(lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = None __lowerCAmelCase = tuple(lowerCAmelCase_ ) __lowerCAmelCase = tuple(lowerCAmelCase_ ) if hidden_states is not None else None if not return_dict: __lowerCAmelCase = (feature_maps,) if output_hidden_states: __lowerCAmelCase = output + (hidden_states,) return output return BackboneOutput(feature_maps=lowerCAmelCase_ , hidden_states=lowerCAmelCase_ , attentions=lowerCAmelCase_ )
53
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=False ) -> Optional[int]: """simple docstring""" A__ = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''') ) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''') ) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''') ) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias""") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=False ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: A__ = '''''' else: A__ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) A__ = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[ : config.hidden_size, : ] A__ = in_proj_bias[: config.hidden_size] A__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ = in_proj_weight[ -config.hidden_size :, : ] A__ = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: """simple docstring""" A__ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = dct.pop(lowercase_ ) A__ = val def SCREAMING_SNAKE_CASE ( ) -> Dict: """simple docstring""" A__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A__ = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=False ) -> List[Any]: """simple docstring""" A__ = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=lowercase_ , ) A__ = ViTHybridConfig(backbone_config=lowercase_ , image_size=384 , num_labels=1_000 ) A__ = False # load original model from timm A__ = timm.create_model(lowercase_ , pretrained=lowercase_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys A__ = timm_model.state_dict() if base_model: remove_classification_head_(lowercase_ ) A__ = create_rename_keys(lowercase_ , lowercase_ ) for src, dest in rename_keys: rename_key(lowercase_ , lowercase_ , lowercase_ ) read_in_q_k_v(lowercase_ , lowercase_ , lowercase_ ) A__ = '''huggingface/label-files''' A__ = '''imagenet-1k-id2label.json''' A__ = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) A__ = {int(lowercase_ ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": A__ = ViTHybridModel(lowercase_ ).eval() else: A__ = ViTHybridForImageClassification(lowercase_ ).eval() model.load_state_dict(lowercase_ ) # create image processor A__ = create_transform(**resolve_data_config({} , model=lowercase_ ) ) A__ = transform.transforms A__ = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } A__ = ViTHybridImageProcessor( do_resize=lowercase_ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase_ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=lowercase_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) A__ = prepare_img() A__ = transform(lowercase_ ).unsqueeze(0 ) A__ = processor(lowercase_ , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(lowercase_ , lowercase_ ) # verify logits with torch.no_grad(): A__ = model(lowercase_ ) A__ = outputs.logits print('''Predicted class:''' , logits.argmax(-1 ).item() ) if base_model: A__ = timm_model.forward_features(lowercase_ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowercase_ , outputs.pooler_output , atol=1E-3 ) else: A__ = timm_model(lowercase_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase_ , outputs.logits , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowercase_ ) if push_to_hub: print(f"""Pushing model and processor to the hub {vit_name}""" ) model.push_to_hub(f"""ybelkada/{vit_name}""" ) processor.push_to_hub(f"""ybelkada/{vit_name}""" ) if __name__ == "__main__": _lowerCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) _lowerCamelCase : Dict = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
87
from __future__ import annotations def a_ ( lowerCAmelCase_ : list[float] ): if len(lowerCAmelCase_ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) __lowerCAmelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class lowercase__ ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=30 , SCREAMING_SNAKE_CASE=400 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=1 / 255 , SCREAMING_SNAKE_CASE=True , ) -> Dict: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _lowerCamelCase : Union[str, Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} _lowerCamelCase : Union[str, Any] = parent _lowerCamelCase : Optional[Any] = batch_size _lowerCamelCase : Optional[int] = num_channels _lowerCamelCase : Union[str, Any] = min_resolution _lowerCamelCase : Optional[int] = max_resolution _lowerCamelCase : List[Any] = do_resize _lowerCamelCase : str = size _lowerCamelCase : Union[str, Any] = do_normalize _lowerCamelCase : Union[str, Any] = image_mean _lowerCamelCase : Tuple = image_std _lowerCamelCase : List[Any] = do_rescale _lowerCamelCase : Dict = rescale_factor _lowerCamelCase : Any = do_pad def UpperCamelCase_ ( self) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False) -> Any: if not batched: _lowerCamelCase : Tuple = image_inputs[0] if isinstance(SCREAMING_SNAKE_CASE , Image.Image): _lowerCamelCase , _lowerCamelCase : Any = image.size else: _lowerCamelCase , _lowerCamelCase : int = image.shape[1], image.shape[2] if w < h: _lowerCamelCase : Optional[int] = int(self.size["""shortest_edge"""] * h / w) _lowerCamelCase : Optional[int] = self.size["""shortest_edge"""] elif w > h: _lowerCamelCase : Any = self.size["""shortest_edge"""] _lowerCamelCase : Union[str, Any] = int(self.size["""shortest_edge"""] * w / h) else: _lowerCamelCase : Optional[Any] = self.size["""shortest_edge"""] _lowerCamelCase : Optional[Any] = self.size["""shortest_edge"""] else: _lowerCamelCase : Any = [] for image in image_inputs: _lowerCamelCase , _lowerCamelCase : List[str] = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) _lowerCamelCase : List[Any] = max(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE: item[0])[0] _lowerCamelCase : int = max(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE: item[1])[1] return expected_height, expected_width @require_torch @require_vision class lowercase__ ( A_ ,unittest.TestCase ): __UpperCAmelCase = ConditionalDetrImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self) -> Optional[Any]: _lowerCamelCase : Dict = ConditionalDetrImageProcessingTester(self) @property def UpperCamelCase_ ( self) -> str: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self) -> Dict: _lowerCamelCase : Any = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """image_mean""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """image_std""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """do_normalize""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """do_resize""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , """size""")) def UpperCamelCase_ ( self) -> int: _lowerCamelCase : int = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333}) self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[int] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=SCREAMING_SNAKE_CASE) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84}) self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> Tuple: pass def UpperCamelCase_ ( self) -> Any: # Initialize image_processing _lowerCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict) # create random PIL images _lowerCamelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , Image.Image) # Test not batched input _lowerCamelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values _lowerCamelCase , _lowerCamelCase : Optional[Any] = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[Any] = image_processing(SCREAMING_SNAKE_CASE , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self) -> int: # Initialize image_processing _lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _lowerCamelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , numpify=SCREAMING_SNAKE_CASE) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , np.ndarray) # Test not batched input _lowerCamelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values _lowerCamelCase , _lowerCamelCase : int = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase : int = image_processing(SCREAMING_SNAKE_CASE , return_tensors="""pt""").pixel_values _lowerCamelCase , _lowerCamelCase : Any = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self) -> Optional[Any]: # Initialize image_processing _lowerCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _lowerCamelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , torchify=SCREAMING_SNAKE_CASE) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor) # Test not batched input _lowerCamelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values _lowerCamelCase , _lowerCamelCase : Optional[int] = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase : Optional[Any] = image_processing(SCREAMING_SNAKE_CASE , return_tensors="""pt""").pixel_values _lowerCamelCase , _lowerCamelCase : Tuple = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCamelCase_ ( self) -> str: # prepare image and target _lowerCamelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""") as f: _lowerCamelCase : List[Any] = json.loads(f.read()) _lowerCamelCase : Union[str, Any] = {"""image_id""": 3_9769, """annotations""": target} # encode them _lowerCamelCase : Any = ConditionalDetrImageProcessor.from_pretrained("""microsoft/conditional-detr-resnet-50""") _lowerCamelCase : Optional[Any] = image_processing(images=SCREAMING_SNAKE_CASE , annotations=SCREAMING_SNAKE_CASE , return_tensors="""pt""") # verify pixel values _lowerCamelCase : Dict = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding["""pixel_values"""].shape , SCREAMING_SNAKE_CASE) _lowerCamelCase : Tuple = torch.tensor([0.27_96, 0.31_38, 0.34_81]) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4)) # verify area _lowerCamelCase : List[str] = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , SCREAMING_SNAKE_CASE)) # verify boxes _lowerCamelCase : Union[str, Any] = torch.Size([6, 4]) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , SCREAMING_SNAKE_CASE) _lowerCamelCase : List[str] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , SCREAMING_SNAKE_CASE , atol=1e-3)) # verify image_id _lowerCamelCase : Union[str, Any] = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , SCREAMING_SNAKE_CASE)) # verify is_crowd _lowerCamelCase : Any = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , SCREAMING_SNAKE_CASE)) # verify class_labels _lowerCamelCase : Any = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , SCREAMING_SNAKE_CASE)) # verify orig_size _lowerCamelCase : List[str] = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , SCREAMING_SNAKE_CASE)) # verify size _lowerCamelCase : Tuple = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , SCREAMING_SNAKE_CASE)) @slow def UpperCamelCase_ ( self) -> Optional[Any]: # prepare image, target and masks_path _lowerCamelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""") as f: _lowerCamelCase : Optional[int] = json.loads(f.read()) _lowerCamelCase : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} _lowerCamelCase : List[str] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""") # encode them _lowerCamelCase : List[str] = ConditionalDetrImageProcessor(format="""coco_panoptic""") _lowerCamelCase : Dict = image_processing(images=SCREAMING_SNAKE_CASE , annotations=SCREAMING_SNAKE_CASE , masks_path=SCREAMING_SNAKE_CASE , return_tensors="""pt""") # verify pixel values _lowerCamelCase : int = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding["""pixel_values"""].shape , SCREAMING_SNAKE_CASE) _lowerCamelCase : Union[str, Any] = torch.tensor([0.27_96, 0.31_38, 0.34_81]) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4)) # verify area _lowerCamelCase : Union[str, Any] = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , SCREAMING_SNAKE_CASE)) # verify boxes _lowerCamelCase : int = torch.Size([6, 4]) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , SCREAMING_SNAKE_CASE) _lowerCamelCase : List[Any] = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , SCREAMING_SNAKE_CASE , atol=1e-3)) # verify image_id _lowerCamelCase : List[str] = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , SCREAMING_SNAKE_CASE)) # verify is_crowd _lowerCamelCase : Dict = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , SCREAMING_SNAKE_CASE)) # verify class_labels _lowerCamelCase : str = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , SCREAMING_SNAKE_CASE)) # verify masks _lowerCamelCase : Any = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , SCREAMING_SNAKE_CASE) # verify orig_size _lowerCamelCase : List[Any] = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , SCREAMING_SNAKE_CASE)) # verify size _lowerCamelCase : Optional[Any] = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , SCREAMING_SNAKE_CASE))
88
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Union[str, Any]=1_0 , lowerCAmelCase_ : List[str]=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple="relu" , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : Optional[int]=None , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = embeddings_size __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_act __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = len(lowerCAmelCase_ ) def lowercase ( self : Optional[int] ) -> List[Any]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def lowercase ( self : Tuple ) -> List[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] ) -> str: __lowerCAmelCase = FlaxRegNetModel(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowercase ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int ) -> Tuple: __lowerCAmelCase = self.num_labels __lowerCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () a_ = False a_ = False a_ = False def lowercase ( self : Dict ) -> None: __lowerCAmelCase = FlaxRegNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : int ) -> Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : str ) -> Union[str, Any]: return def lowercase ( self : Dict ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def lowercase ( self : Union[str, Any] ) -> Any: pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def lowercase ( self : Tuple ) -> Tuple: pass def lowercase ( self : Optional[Any] ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: def check_hidden_states_output(lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : str ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Dict ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('JIT Enabled' ): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def a_ ( ): __lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : Union[str, Any] ) -> Optional[Any]: return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def lowercase ( self : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCAmelCase_ , return_tensors='np' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) # verify the logits __lowerCAmelCase = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
0
import os from math import logaa def UpperCamelCase_( lowerCamelCase_ = "base_exp.txt" ) -> int: _lowercase : float = 0 _lowercase : Dict = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCamelCase_ ) , lowerCamelCase_ ) ) ): _lowercase , _lowercase : Union[str, Any] = list(map(lowerCamelCase_ , line.split(',' ) ) ) if x * logaa(lowerCamelCase_ ) > largest: _lowercase : Any = x * logaa(lowerCamelCase_ ) _lowercase : Union[str, Any] = i + 1 return result if __name__ == "__main__": print(solution())
89
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process _snake_case : Optional[int] = logging.getLogger(__name__) _snake_case : Dict = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) _snake_case : List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(_UpperCamelCase )} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a_ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def lowercase ( self : List[Any] ) -> List[Any]: if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path' ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ = field(default=_UpperCamelCase , metadata={"""help""": """The input training data file (a text file)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a_ = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a_ = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def lowercase ( self : int ) -> int: if self.train_file is not None: __lowerCAmelCase = self.train_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __lowerCAmelCase = self.validation_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Union[str, Any] ): with open(lowerCAmelCase_, 'r', encoding='utf-8' ) as f: __lowerCAmelCase = [json.loads(lowerCAmelCase_ ) for line in f.read().splitlines() if (len(lowerCAmelCase_ ) > 0 and not line.isspace())] assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) __lowerCAmelCase = {c: dataset[c] for c in dataset.column_names} __lowerCAmelCase = refs return Dataset.from_dict(lowerCAmelCase_ ) def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s', lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset(data_args.dataset_name, data_args.dataset_config_name ) if "validation" not in datasets.keys(): __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[:{data_args.validation_split_percentage}%]""", ) __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[{data_args.validation_split_percentage}%:]""", ) else: __lowerCAmelCase = {} if data_args.train_file is not None: __lowerCAmelCase = data_args.train_file if data_args.validation_file is not None: __lowerCAmelCase = data_args.validation_file __lowerCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": __lowerCAmelCase = 'text' __lowerCAmelCase = load_dataset(lowerCAmelCase_, data_files=lowerCAmelCase_ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.config_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: __lowerCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: __lowerCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path, from_tf=bool('.ckpt' in model_args.model_name_or_path ), config=lowerCAmelCase_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info('Training new model from scratch' ) __lowerCAmelCase = AutoModelForMaskedLM.from_config(lowerCAmelCase_ ) model.resize_token_embeddings(len(lowerCAmelCase_ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __lowerCAmelCase = datasets['train'].column_names else: __lowerCAmelCase = datasets['validation'].column_names __lowerCAmelCase = 'text' if 'text' in column_names else column_names[0] __lowerCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(lowerCAmelCase_ : str ): # Remove empty lines __lowerCAmelCase = [line for line in examples['text'] if len(lowerCAmelCase_ ) > 0 and not line.isspace()] return tokenizer(examples['text'], padding=lowerCAmelCase_, truncation=lowerCAmelCase_, max_length=data_args.max_seq_length ) __lowerCAmelCase = datasets.map( lowerCAmelCase_, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, remove_columns=[text_column_name], load_from_cache_file=not data_args.overwrite_cache, ) # Add the chinese references if provided if data_args.train_ref_file is not None: __lowerCAmelCase = add_chinese_references(tokenized_datasets['train'], data_args.train_ref_file ) if data_args.validation_ref_file is not None: __lowerCAmelCase = add_chinese_references( tokenized_datasets['validation'], data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __lowerCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: __lowerCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. __lowerCAmelCase = DataCollatorForWholeWordMask(tokenizer=lowerCAmelCase_, mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowerCAmelCase = Trainer( model=lowerCAmelCase_, args=lowerCAmelCase_, train_dataset=tokenized_datasets['train'] if training_args.do_train else None, eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None, tokenizer=lowerCAmelCase_, data_collator=lowerCAmelCase_, ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload __lowerCAmelCase = os.path.join(training_args.output_dir, 'train_results.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir, 'trainer_state.json' ) ) # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = math.exp(eval_output['eval_loss'] ) __lowerCAmelCase = perplexity __lowerCAmelCase = os.path.join(training_args.output_dir, 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def a_ ( lowerCAmelCase_ : Tuple ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
53
0
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __UpperCAmelCase = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class a__ ( a__ ): '''simple docstring''' lowercase__ : bool = field(default=a__ , metadata={"help": "Whether to use SortishSampler or not."} ) lowercase__ : bool = field( default=a__ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase__ : Optional[int] = field( default=a__ , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowercase__ : Optional[int] = field( default=a__ , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowercase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=a__ , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = super().to_dict() for k, v in d.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ = v.to_dict() return d
90
def a_ ( lowerCAmelCase_ : int = 200_0000 ): __lowerCAmelCase = [0 for i in range(n + 1 )] __lowerCAmelCase = 1 __lowerCAmelCase = 1 for i in range(2, int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i, n + 1, lowerCAmelCase_ ): __lowerCAmelCase = 1 __lowerCAmelCase = 0 for i in range(lowerCAmelCase_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"""{solution() = }""")
53
0
"""simple docstring""" from __future__ import annotations import math class lowerCAmelCase_ : '''simple docstring''' def __init__( self : str ,A_ : int ) -> None: A = size # approximate the overall size of segment tree with given value A = [0 for i in range(0 ,4 * size )] # create array to store lazy update A = [0 for i in range(0 ,4 * size )] A = [0 for i in range(0 ,4 * size )] # flag for lazy update def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : int ) -> int: return idx * 2 def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : int ) -> int: return idx * 2 + 1 def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : int ,A_ : int ,A_ : int ,A_ : list[int] ) -> None: if left_element == right_element: A = a[left_element - 1] else: A = (left_element + right_element) // 2 self.build(self.left(A_ ) ,A_ ,A_ ,A_ ) self.build(self.right(A_ ) ,mid + 1 ,A_ ,A_ ) A = max( self.segment_tree[self.left(A_ )] ,self.segment_tree[self.right(A_ )] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : int ,A_ : int ,A_ : int ,A_ : int ,A_ : int ,A_ : int ) -> bool: if self.flag[idx] is True: A = self.lazy[idx] A = False if left_element != right_element: A = self.lazy[idx] A = self.lazy[idx] A = True A = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: A = val if left_element != right_element: A = val A = val A = True A = True return True A = (left_element + right_element) // 2 self.update(self.left(A_ ) ,A_ ,A_ ,A_ ,A_ ,A_ ) self.update(self.right(A_ ) ,mid + 1 ,A_ ,A_ ,A_ ,A_ ) A = max( self.segment_tree[self.left(A_ )] ,self.segment_tree[self.right(A_ )] ) return True def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : int ,A_ : int ,A_ : int ,A_ : int ,A_ : int ) -> int | float: if self.flag[idx] is True: A = self.lazy[idx] A = False if left_element != right_element: A = self.lazy[idx] A = self.lazy[idx] A = True A = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] A = (left_element + right_element) // 2 A = self.query(self.left(A_ ) ,A_ ,A_ ,A_ ,A_ ) A = self.query(self.right(A_ ) ,mid + 1 ,A_ ,A_ ,A_ ) return max(A_ ,A_ ) def __str__( self : Union[str, Any] ) -> str: return str([self.query(1 ,1 ,self.size ,A_ ,A_ ) for i in range(1 ,self.size + 1 )] ) if __name__ == "__main__": _lowercase = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] _lowercase = 15 _lowercase = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 1_11) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 2_35) print(segt)
91
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _snake_case : Tuple = logging.getLogger() _snake_case : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Any , lowerCAmelCase_ : Dict ) -> Optional[int]: os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowerCAmelCase = {'source': 'What is love ?', 'target': 'life'} __lowerCAmelCase = {'train': 1_2, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: __lowerCAmelCase = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(lowerCAmelCase_ , f"""{split}.{field}""" ) , 'w' ) as f: f.write(lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : str = "pytorch" ) -> List[str]: __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'output' ) __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'data' ) self._create_dummy_data(data_dir=lowerCAmelCase_ ) __lowerCAmelCase = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) __lowerCAmelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowerCAmelCase_ , env=self.get_env() ) __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'metrics.json' ) with open(lowerCAmelCase_ ) as f: __lowerCAmelCase = json.load(lowerCAmelCase_ ) return result @require_torch_gpu def lowercase ( self : str ) -> int: __lowerCAmelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def lowercase ( self : List[str] ) -> Dict: __lowerCAmelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def lowercase ( self : int ) -> Tuple: __lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def lowercase ( self : List[Any] ) -> str: __lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
53
0
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( __magic_name__ : str , __magic_name__ : list[str] | None = None ) -> list[list[str]]: lowercase : int =word_bank or [] # create a table lowercase : int =len(__magic_name__ ) + 1 lowercase : list[list[list[str]]] =[] for _ in range(__magic_name__ ): table.append([] ) # seed value lowercase : Union[str, Any] =[[]] # because empty string has empty combination # iterate through the indices for i in range(__magic_name__ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(__magic_name__ )] == word: lowercase : list[list[str]] =[ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(__magic_name__ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(__magic_name__ )]: combination.reverse() return table[len(__magic_name__ )] if __name__ == "__main__": print(all_construct("""jwajalapa""", ["""jwa""", """j""", """w""", """a""", """la""", """lapa"""])) print(all_construct("""rajamati""", ["""s""", """raj""", """amat""", """raja""", """ma""", """i""", """t"""])) print( all_construct( """hexagonosaurus""", ["""h""", """ex""", """hex""", """ag""", """ago""", """ru""", """auru""", """rus""", """go""", """no""", """o""", """s"""], ) )
92
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]="resnet50" , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Optional[Any]=True , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = out_indices if out_indices is not None else [4] __lowerCAmelCase = stage_names __lowerCAmelCase = out_features __lowerCAmelCase = backbone __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = use_pretrained_backbone __lowerCAmelCase = is_training def lowercase ( self : List[str] ) -> Any: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def lowercase ( self : List[Any] ) -> Union[str, Any]: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase ( self : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ) -> int: __lowerCAmelCase = TimmBackbone(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 1_4, 1_4) , ) def lowercase ( self : List[str] ) -> str: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (TimmBackbone,) if is_torch_available() else () a_ = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Tuple ) -> int: __lowerCAmelCase = TimmBackboneModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : Dict ) -> List[str]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Union[str, Any] ) -> Optional[int]: __lowerCAmelCase = 'resnet18' __lowerCAmelCase = 'microsoft/resnet-18' __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ , out_indices=[1, 2, 3] ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def lowercase ( self : List[str] ) -> Tuple: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def lowercase ( self : Dict ) -> int: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def lowercase ( self : str ) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase ( self : Any ) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase ( self : Optional[int] ) -> Optional[Any]: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def lowercase ( self : Dict ) -> Any: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Any ) -> Optional[int]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase ( self : Union[str, Any] ) -> Tuple: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase ( self : List[str] ) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Dict ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Tuple ) -> List[str]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def lowercase ( self : int ) -> Optional[int]: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def lowercase ( self : Union[str, Any] ) -> str: pass @unittest.skip('Safetensors is not supported by timm.' ) def lowercase ( self : Dict ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : List[str] ) -> Optional[Any]: pass def lowercase ( self : Union[str, Any] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = self.has_attentions # no need to test all models as different heads yield the same functionality __lowerCAmelCase = self.all_model_classes[0] __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = outputs[0][-1] # Encoder-/Decoder-only models __lowerCAmelCase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowerCAmelCase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowerCAmelCase_ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) __lowerCAmelCase = None __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) __lowerCAmelCase = False __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ )
53
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def __A (_SCREAMING_SNAKE_CASE ) ->Union[str, Any]: """simple docstring""" lowerCAmelCase__ :Dict = SwinvaConfig() lowerCAmelCase__ :List[str] = swinva_name.split('_' ) lowerCAmelCase__ :Tuple = name_split[1] if "to" in name_split[3]: lowerCAmelCase__ :Optional[Any] = int(name_split[3][-3:] ) else: lowerCAmelCase__ :Optional[Any] = int(name_split[3] ) if "to" in name_split[2]: lowerCAmelCase__ :Optional[int] = int(name_split[2][-2:] ) else: lowerCAmelCase__ :List[Any] = int(name_split[2][6:] ) if model_size == "tiny": lowerCAmelCase__ :Tuple = 96 lowerCAmelCase__ :List[Any] = (2, 2, 6, 2) lowerCAmelCase__ :Union[str, Any] = (3, 6, 12, 24) elif model_size == "small": lowerCAmelCase__ :Union[str, Any] = 96 lowerCAmelCase__ :List[str] = (2, 2, 18, 2) lowerCAmelCase__ :str = (3, 6, 12, 24) elif model_size == "base": lowerCAmelCase__ :List[Any] = 128 lowerCAmelCase__ :Union[str, Any] = (2, 2, 18, 2) lowerCAmelCase__ :List[str] = (4, 8, 16, 32) else: lowerCAmelCase__ :List[str] = 192 lowerCAmelCase__ :int = (2, 2, 18, 2) lowerCAmelCase__ :int = (6, 12, 24, 48) if "to" in swinva_name: lowerCAmelCase__ :Optional[Any] = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): lowerCAmelCase__ :Union[str, Any] = 2_1841 lowerCAmelCase__ :Any = 'huggingface/label-files' lowerCAmelCase__ :Any = 'imagenet-22k-id2label.json' lowerCAmelCase__ :Optional[int] = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase__ :Any = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowerCAmelCase__ :Dict = idalabel lowerCAmelCase__ :str = {v: k for k, v in idalabel.items()} else: lowerCAmelCase__ :Any = 1000 lowerCAmelCase__ :str = 'huggingface/label-files' lowerCAmelCase__ :str = 'imagenet-1k-id2label.json' lowerCAmelCase__ :Any = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase__ :List[Any] = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowerCAmelCase__ :Union[str, Any] = idalabel lowerCAmelCase__ :List[Any] = {v: k for k, v in idalabel.items()} lowerCAmelCase__ :Any = img_size lowerCAmelCase__ :Dict = num_classes lowerCAmelCase__ :List[str] = embed_dim lowerCAmelCase__ :Dict = depths lowerCAmelCase__ :Optional[Any] = num_heads lowerCAmelCase__ :Optional[int] = window_size return config def __A (_SCREAMING_SNAKE_CASE ) ->Optional[Any]: """simple docstring""" if "patch_embed.proj" in name: lowerCAmelCase__ :Dict = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowerCAmelCase__ :int = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: lowerCAmelCase__ :int = 'encoder.' + name if "attn.proj" in name: lowerCAmelCase__ :List[str] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowerCAmelCase__ :List[str] = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowerCAmelCase__ :int = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCAmelCase__ :int = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCAmelCase__ :List[str] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCAmelCase__ :Tuple = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: lowerCAmelCase__ :int = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: lowerCAmelCase__ :Any = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: lowerCAmelCase__ :Dict = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: lowerCAmelCase__ :Optional[int] = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if name == "norm.weight": lowerCAmelCase__ :Any = 'layernorm.weight' if name == "norm.bias": lowerCAmelCase__ :Optional[Any] = 'layernorm.bias' if "head" in name: lowerCAmelCase__ :int = name.replace('head' , 'classifier' ) else: lowerCAmelCase__ :Optional[Any] = 'swinv2.' + name return name def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Union[str, Any]: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCAmelCase__ :Tuple = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: lowerCAmelCase__ :List[Any] = key.split('.' ) lowerCAmelCase__ :Union[str, Any] = int(key_split[1] ) lowerCAmelCase__ :Tuple = int(key_split[3] ) lowerCAmelCase__ :Tuple = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCAmelCase__ :Union[str, Any] = val[:dim, :] lowerCAmelCase__ :Any = val[dim : dim * 2, :] lowerCAmelCase__ :Dict = val[-dim:, :] else: lowerCAmelCase__ :Dict = val[:dim] lowerCAmelCase__ :Optional[int] = val[ dim : dim * 2 ] lowerCAmelCase__ :str = val[-dim:] else: lowerCAmelCase__ :Tuple = val return orig_state_dict def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[int]: """simple docstring""" lowerCAmelCase__ :Any = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() lowerCAmelCase__ :Tuple = get_swinva_config(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[Any] = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ :Dict = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Dict = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase__ :List[str] = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swinva_name.replace('_' , '-' ) ) ) lowerCAmelCase__ :Tuple = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) lowerCAmelCase__ :str = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) lowerCAmelCase__ :Optional[Any] = timm_model(inputs['pixel_values'] ) lowerCAmelCase__ :List[Any] = model(**_SCREAMING_SNAKE_CASE ).logits assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) print(F"Saving model {swinva_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) model.push_to_hub( repo_path_or_name=Path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , organization='nandwalritik' , commit_message='Add model' , ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swinv2_name""", default="""swinv2_tiny_patch4_window8_256""", type=str, help="""Name of the Swinv2 timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) __A = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
93
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def a_ ( lowerCAmelCase_ : str=None ): if subparsers is not None: __lowerCAmelCase = subparsers.add_parser('env' ) else: __lowerCAmelCase = argparse.ArgumentParser('Accelerate env command' ) parser.add_argument( '--config_file', default=lowerCAmelCase_, help='The config file to use for the default values in the launching script.' ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def a_ ( lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = torch.__version__ __lowerCAmelCase = torch.cuda.is_available() __lowerCAmelCase = is_xpu_available() __lowerCAmelCase = is_npu_available() __lowerCAmelCase = 'Not found' # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowerCAmelCase_ ): __lowerCAmelCase = load_config_from_file(args.config_file ).to_dict() __lowerCAmelCase = { '`Accelerate` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Numpy version': np.__version__, 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'PyTorch XPU available': str(lowerCAmelCase_ ), 'PyTorch NPU available': str(lowerCAmelCase_ ), 'System RAM': F"""{psutil.virtual_memory().total / 1024 ** 3:.2f} GB""", } if pt_cuda_available: __lowerCAmelCase = torch.cuda.get_device_name() print('\nCopy-and-paste the text below in your GitHub issue\n' ) print('\n'.join([F"""- {prop}: {val}""" for prop, val in info.items()] ) ) print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:' ) __lowerCAmelCase = ( '\n'.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else F"""\t{accelerate_config}""" ) print(lowerCAmelCase_ ) __lowerCAmelCase = accelerate_config return info def a_ ( ): __lowerCAmelCase = env_command_parser() __lowerCAmelCase = parser.parse_args() env_command(lowerCAmelCase_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
53
0
'''simple docstring''' import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = VQModel UpperCamelCase_ = '''sample''' @property def A__ ( self : Optional[Any] , UpperCAmelCase : Any=(32, 32) ) -> str: '''simple docstring''' lowercase : List[Any] =4 lowercase : Any =3 lowercase : Optional[Any] =floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase ) return {"sample": image} @property def A__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' return (3, 32, 32) @property def A__ ( self : Any ) -> int: '''simple docstring''' return (3, 32, 32) def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : int ={ '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } lowercase : List[Any] =self.dummy_input return init_dict, inputs_dict def A__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' pass def A__ ( self : Dict ) -> List[Any]: '''simple docstring''' pass def A__ ( self : str ) -> Any: '''simple docstring''' lowercase , lowercase : List[Any] =VQModel.from_pretrained('''fusing/vqgan-dummy''' , output_loading_info=UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(UpperCAmelCase ) lowercase : Dict =model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : Optional[int] =VQModel.from_pretrained('''fusing/vqgan-dummy''' ) model.to(UpperCAmelCase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowercase : Any =torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) lowercase : int =image.to(UpperCAmelCase ) with torch.no_grad(): lowercase : List[str] =model(UpperCAmelCase ).sample lowercase : Dict =output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowercase : List[Any] =torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3] ) # fmt: on self.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) )
94
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a_ ( ): __lowerCAmelCase = ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores', type=lowerCAmelCase_, default=1, help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script', type=lowerCAmelCase_, help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ), ) # rest from the training program parser.add_argument('training_script_args', nargs=lowerCAmelCase_ ) return parser.parse_args() def a_ ( ): __lowerCAmelCase = parse_args() # Import training_script as a module. __lowerCAmelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __lowerCAmelCase = script_fpath.stem __lowerCAmelCase = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv __lowerCAmelCase = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores ) if __name__ == "__main__": main()
53
0
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) lowerCamelCase_ = logging.getLogger() def snake_case ( ): UpperCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCAmelCase_ : Optional[Any] = parser.parse_args() return args.f class UpperCamelCase_ (__A ): def _SCREAMING_SNAKE_CASE ( self : str ) -> None: UpperCAmelCase_ : List[str] = logging.StreamHandler(sys.stdout ) logger.addHandler(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : List[str] ) -> Tuple: UpperCAmelCase_ : Optional[int] = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , "run_glue_deebert.py" ) with patch.object(lowerCAmelCase_ , "argv" , lowerCAmelCase_ ): UpperCAmelCase_ : Dict = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowerCAmelCase_ , 0.6_6_6 ) @slow @require_torch_non_multi_gpu def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: UpperCAmelCase_ : Tuple = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split() self.run_and_check(lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowerCAmelCase_ ) UpperCAmelCase_ : str = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowerCAmelCase_ )
95
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict=1_3 , lowerCAmelCase_ : str=3_2 , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : str=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Tuple=[2, 2, 3, 2] , lowerCAmelCase_ : str=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[int]=3_7 , lowerCAmelCase_ : Dict="gelu" , lowerCAmelCase_ : List[Any]=1_0 , lowerCAmelCase_ : str=0.02 , lowerCAmelCase_ : Dict=["stage2", "stage3", "stage4"] , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : List[Any]=None , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = num_stages __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = out_features __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = num_stages def lowercase ( self : Dict ) -> List[str]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase ( self : List[str] ) -> Union[str, Any]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowercase ( self : Dict ) -> List[str]: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_1_2 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=lowerCAmelCase_ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=4_0 , auxiliary_channels=2_5_6 , auxiliary_num_convs=1 , auxiliary_concat_input=lowerCAmelCase_ , loss_ignore_index=2_5_5 , num_labels=self.num_labels , ) def lowercase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int ) -> Optional[Any]: __lowerCAmelCase = UperNetForSemanticSegmentation(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase ( self : Union[str, Any] ) -> Union[str, Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (UperNetForSemanticSegmentation,) if is_torch_available() else () a_ = {"""image-segmentation""": UperNetForSemanticSegmentation} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Optional[int] ) -> Dict: __lowerCAmelCase = UperNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : List[str] ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Tuple ) -> Union[str, Any]: return def lowercase ( self : Optional[int] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase_ ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def lowercase ( self : Optional[int] ) -> Dict: pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def lowercase ( self : Optional[Any] ) -> Dict: pass @unittest.skip(reason='UperNet does not have a base model' ) def lowercase ( self : Optional[int] ) -> List[Any]: pass @unittest.skip(reason='UperNet does not have a base model' ) def lowercase ( self : str ) -> Dict: pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowercase ( self : Optional[Any] ) -> Optional[int]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : Tuple ) -> List[Any]: pass def lowercase ( self : Union[str, Any] ) -> Tuple: def check_hidden_states_output(lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Any ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = _config_zero_init(lowerCAmelCase_ ) __lowerCAmelCase = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __lowerCAmelCase = model_class(config=lowerCAmelCase_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='UperNet does not have tied weights' ) def lowercase ( self : Any ) -> int: pass @slow def lowercase ( self : Optional[int] ) -> Optional[int]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def a_ ( ): __lowerCAmelCase = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k', repo_type='dataset', filename='ADE_val_00000001.jpg' ) __lowerCAmelCase = Image.open(lowerCAmelCase_ ).convert('RGB' ) return image @require_torch @require_vision @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Dict ) -> Union[str, Any]: __lowerCAmelCase = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(lowerCAmelCase_ ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(lowerCAmelCase_ ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
0
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class __A ( unittest.TestCase ): def lowerCamelCase__ ( self : List[str] ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights __magic_name__: List[Any] = FlaxDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-pipe""" , safety_checker=__snake_case , cache_dir=__snake_case ) __magic_name__: List[str] = [t[-1] for t in os.walk(os.path.join(__snake_case , os.listdir(__snake_case )[0] , """snapshots""" ) )] __magic_name__: Tuple = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(""".bin""" ) for f in files ) @slow @require_flax class __A ( unittest.TestCase ): def lowerCamelCase__ ( self : List[Any] ) -> Tuple: __magic_name__, __magic_name__: Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-pipe""" , safety_checker=__snake_case ) __magic_name__: List[str] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) __magic_name__: str = jax.random.PRNGKey(0 ) __magic_name__: Optional[int] = 4 __magic_name__: List[str] = jax.device_count() __magic_name__: Dict = num_samples * [prompt] __magic_name__: List[str] = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng __magic_name__: Tuple = replicate(__snake_case ) __magic_name__: List[str] = jax.random.split(__snake_case , __snake_case ) __magic_name__: List[Any] = shard(__snake_case ) __magic_name__: Dict = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1514745 ) < 1E-3 assert np.abs(np.abs(__snake_case , dtype=np.floataa ).sum() - 49947.875 ) < 5E-1 __magic_name__: str = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(__snake_case ) == num_samples def lowerCamelCase__ ( self : Optional[Any] ) -> Any: __magic_name__, __magic_name__: Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""flax""" , safety_checker=__snake_case ) __magic_name__: List[Any] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) __magic_name__: Dict = jax.random.PRNGKey(0 ) __magic_name__: int = 5_0 __magic_name__: int = jax.device_count() __magic_name__: str = num_samples * [prompt] __magic_name__: str = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng __magic_name__: List[Any] = replicate(__snake_case ) __magic_name__: int = jax.random.split(__snake_case , __snake_case ) __magic_name__: Tuple = shard(__snake_case ) __magic_name__: Tuple = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05652401) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2383808.2) ) < 5E-1 def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: __magic_name__, __magic_name__: Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=__snake_case ) __magic_name__: str = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) __magic_name__: List[str] = jax.random.PRNGKey(0 ) __magic_name__: Optional[int] = 5_0 __magic_name__: Tuple = jax.device_count() __magic_name__: Dict = num_samples * [prompt] __magic_name__: Dict = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng __magic_name__: List[str] = replicate(__snake_case ) __magic_name__: Tuple = jax.random.split(__snake_case , __snake_case ) __magic_name__: Optional[Any] = shard(__snake_case ) __magic_name__: List[Any] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2373516.75) ) < 5E-1 def lowerCamelCase__ ( self : Any ) -> Union[str, Any]: __magic_name__, __magic_name__: Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa ) __magic_name__: str = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) __magic_name__: Dict = jax.random.PRNGKey(0 ) __magic_name__: Union[str, Any] = 5_0 __magic_name__: Optional[Any] = jax.device_count() __magic_name__: int = num_samples * [prompt] __magic_name__: Union[str, Any] = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng __magic_name__: Optional[Any] = replicate(__snake_case ) __magic_name__: Any = jax.random.split(__snake_case , __snake_case ) __magic_name__: Optional[int] = shard(__snake_case ) __magic_name__: Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2373516.75) ) < 5E-1 def lowerCamelCase__ ( self : Union[str, Any] ) -> Dict: __magic_name__: Union[str, Any] = FlaxDDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , set_alpha_to_one=__snake_case , steps_offset=1 , ) __magic_name__, __magic_name__: str = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , scheduler=__snake_case , safety_checker=__snake_case , ) __magic_name__: Dict = scheduler.create_state() __magic_name__: List[str] = scheduler_state __magic_name__: Optional[Any] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) __magic_name__: Optional[Any] = jax.random.PRNGKey(0 ) __magic_name__: List[Any] = 5_0 __magic_name__: Tuple = jax.device_count() __magic_name__: Union[str, Any] = num_samples * [prompt] __magic_name__: Any = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng __magic_name__: List[str] = replicate(__snake_case ) __magic_name__: List[str] = jax.random.split(__snake_case , __snake_case ) __magic_name__: Dict = shard(__snake_case ) __magic_name__: Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045043945) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2347693.5) ) < 5E-1 def lowerCamelCase__ ( self : Tuple ) -> List[str]: __magic_name__: List[Any] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) __magic_name__: Union[str, Any] = jax.device_count() __magic_name__: List[str] = num_samples * [prompt] __magic_name__: List[str] = jax.random.split(jax.random.PRNGKey(0 ) , __snake_case ) __magic_name__, __magic_name__: int = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=__snake_case , ) __magic_name__: str = replicate(__snake_case ) __magic_name__: List[Any] = pipeline.prepare_inputs(__snake_case ) __magic_name__: Optional[Any] = shard(__snake_case ) __magic_name__: Any = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) __magic_name__: Optional[int] = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention __magic_name__, __magic_name__: Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=__snake_case , use_memory_efficient_attention=__snake_case , ) __magic_name__: Union[str, Any] = replicate(__snake_case ) __magic_name__: List[str] = pipeline.prepare_inputs(__snake_case ) __magic_name__: Dict = shard(__snake_case ) __magic_name__: List[Any] = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) __magic_name__: Tuple = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
96
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Optional[Any] ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : int ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_, keep_in_memory=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Dict, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, features=lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Any ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_, split=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type', [str, list] ) def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : Any, lowerCAmelCase_ : Dict ): if issubclass(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = text_path elif issubclass(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = [text_path] __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : int, lowerCAmelCase_ : Tuple=("train",) ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) for split in splits: __lowerCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def a_ ( lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Dict ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = TextDatasetReader({'train': text_path}, cache_dir=lowerCAmelCase_, keep_in_memory=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = TextDatasetReader({'train': text_path}, features=lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : Optional[int] ): if split: __lowerCAmelCase = {split: text_path} else: __lowerCAmelCase = 'train' __lowerCAmelCase = {'train': text_path, 'test': text_path} __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
53
0
import string def a ( snake_case__: str ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): lowercase_ = '''''' for symbol in message: if symbol in string.ascii_uppercase: lowercase_ = string.ascii_uppercase.find(snake_case__ ) lowercase_ = num - key if num < 0: lowercase_ = num + len(string.ascii_uppercase ) lowercase_ = translated + string.ascii_uppercase[num] else: lowercase_ = translated + symbol print(F'''Decryption using Key #{key}: {translated}''' ) def a ( ): '''simple docstring''' lowercase_ = input('''Encrypted message: ''' ) lowercase_ = message.upper() decrypt(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
97
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case : Union[str, Any] = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : int=False ): __lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Optional[int]=False ): for i in range(config.num_hidden_layers ): if base_model: __lowerCAmelCase = '' else: __lowerCAmelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] __lowerCAmelCase = in_proj_bias[: config.hidden_size] __lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase = in_proj_bias[-config.hidden_size :] def a_ ( lowerCAmelCase_ : List[str] ): __lowerCAmelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Optional[Any]=True ): __lowerCAmelCase = ViTConfig() # patch_size if model_name[-1] == "8": __lowerCAmelCase = 8 # set labels if required if not base_model: __lowerCAmelCase = 1000 __lowerCAmelCase = 'huggingface/label-files' __lowerCAmelCase = 'imagenet-1k-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 6 # load original model from torch hub __lowerCAmelCase = torch.hub.load('facebookresearch/dino:main', lowerCAmelCase_ ) original_model.eval() # load state_dict of original model, remove and rename some keys __lowerCAmelCase = original_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase_ ) __lowerCAmelCase = create_rename_keys(lowerCAmelCase_, base_model=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # load HuggingFace model if base_model: __lowerCAmelCase = ViTModel(lowerCAmelCase_, add_pooling_layer=lowerCAmelCase_ ).eval() else: __lowerCAmelCase = ViTForImageClassification(lowerCAmelCase_ ).eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor __lowerCAmelCase = ViTImageProcessor() __lowerCAmelCase = image_processor(images=prepare_img(), return_tensors='pt' ) __lowerCAmelCase = encoding['pixel_values'] __lowerCAmelCase = model(lowerCAmelCase_ ) if base_model: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_, outputs.last_hidden_state[:, 0, :], atol=1E-1 ) else: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase_, outputs.logits, atol=1E-3 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) _snake_case : List[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
53
0
'''simple docstring''' import torch from diffusers import DiffusionPipeline class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int ) -> str: '''simple docstring''' super().__init__() self.register_modules(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) def __call__( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) _UpperCamelCase = 1 _UpperCamelCase = self.unet(lowerCAmelCase__ , lowerCAmelCase__ ).sample _UpperCamelCase = self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample _UpperCamelCase = scheduler_output - scheduler_output + torch.ones_like(lowerCAmelCase__ ) return result
98
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : str ) -> Any: __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : Tuple ) -> Optional[int]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : List[Any] ) -> int: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : str ) -> str: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[str]: # pass variant but use the non-variant filenames __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> Union[str, Any]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : List[str] ) -> List[Any]: # pass variant but use the non-variant filenames __lowerCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) )
53
0
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self , __A , __A , __A ): self.assertEqual(len(__A ) , len(__A ) ) for a, b in zip(__A , __A ): self.assertAlmostEqual(__A , __A , delta=__A ) def snake_case_ ( self ): __a = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(__A ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def snake_case_ ( self ): __a = None ops.enable_eager_execution_internal() __a = tf.config.list_physical_devices("""CPU""" ) if len(__A ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) __a = tf.config.list_logical_devices(device_type="""CPU""" ) __a = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): __a = GradientAccumulator() __a = tf.Variable([4.0, 3.0] ) __a , __a = create_optimizer(5E-5 , 10 , 5 ) __a = tf.Variable([0.0, 0.0] , trainable=__A ) def accumulate_on_replica(__A ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(__A , __A ): with strategy.scope(): __a = strategy.experimental_local_results(__A ) local_variables[0].assign(__A ) local_variables[1].assign(__A ) strategy.run(__A , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(__A ) def _check_local_values(__A , __A ): __a = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , __A , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , __A , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
99
import math def a_ ( lowerCAmelCase_ : list, lowerCAmelCase_ : int ): __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) __lowerCAmelCase = 0 while arr[min(lowerCAmelCase_, lowerCAmelCase_ ) - 1] < x: __lowerCAmelCase = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: __lowerCAmelCase = prev + 1 if prev == min(lowerCAmelCase_, lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": _snake_case : List[str] = input('Enter numbers separated by a comma:\n').strip() _snake_case : Optional[Any] = [int(item) for item in user_input.split(',')] _snake_case : List[str] = int(input('Enter the number to be searched:\n')) _snake_case : Optional[int] = jump_search(arr, x) if res == -1: print('Number not found!') else: print(F"""Number {x} is at index {res}""")
53
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _A : List[str] = pytest.mark.integration @require_faiss class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(A_ ) for x in np.arange(30 ).tolist()]} ) return dset def lowercase_ ( self ): '''simple docstring''' import faiss SCREAMING_SNAKE_CASE__ = self._create_dummy_dataset() SCREAMING_SNAKE_CASE__ = dset.map( lambda A_ , A_ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=A_ , keep_in_memory=A_ ) SCREAMING_SNAKE_CASE__ = dset.add_faiss_index('''vecs''' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) dset.drop_index('''vecs''' ) def lowercase_ ( self ): '''simple docstring''' import faiss SCREAMING_SNAKE_CASE__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def lowercase_ ( self ): '''simple docstring''' import faiss SCREAMING_SNAKE_CASE__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A_ ) as tmp_file: dset.save_faiss_index('''vecs''' , tmp_file.name ) dset.load_faiss_index('''vecs2''' , tmp_file.name ) os.unlink(tmp_file.name ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = dset.get_nearest_examples('''vecs2''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' ) dset.drop_index('''vecs''' ) self.assertRaises(A_ , partial(dset.get_nearest_examples , '''vecs2''' , np.ones(5 , dtype=np.floataa ) ) ) def lowercase_ ( self ): '''simple docstring''' from elasticsearch import Elasticsearch SCREAMING_SNAKE_CASE__ = self._create_dummy_dataset() with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: SCREAMING_SNAKE_CASE__ = {'''acknowledged''': True} mocked_bulk.return_value([(True, None)] * 30 ) SCREAMING_SNAKE_CASE__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 29}]}} SCREAMING_SNAKE_CASE__ = Elasticsearch() dset.add_elasticsearch_index('''filename''' , es_client=A_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = dset.get_nearest_examples('''filename''' , '''my_name-train_29''' ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) @require_faiss class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase_ ( self ): '''simple docstring''' import faiss SCREAMING_SNAKE_CASE__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query SCREAMING_SNAKE_CASE__ = np.zeros(5 , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = index.search(A_ ) self.assertRaises(A_ , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries SCREAMING_SNAKE_CASE__ = np.eye(5 , dtype=np.floataa )[::-1] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = index.search_batch(A_ ) self.assertRaises(A_ , index.search_batch , queries[0] ) SCREAMING_SNAKE_CASE__ = [scores[0] for scores in total_scores] SCREAMING_SNAKE_CASE__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(A_ ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , A_ ) def lowercase_ ( self ): '''simple docstring''' import faiss SCREAMING_SNAKE_CASE__ = FaissIndex(string_factory='''Flat''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) SCREAMING_SNAKE_CASE__ = FaissIndex(string_factory='''LSH''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(A_ ): SCREAMING_SNAKE_CASE__ = FaissIndex(string_factory='''Flat''' , custom_index=faiss.IndexFlat(5 ) ) def lowercase_ ( self ): '''simple docstring''' import faiss SCREAMING_SNAKE_CASE__ = faiss.IndexFlat(5 ) SCREAMING_SNAKE_CASE__ = FaissIndex(custom_index=A_ ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def lowercase_ ( self ): '''simple docstring''' import faiss SCREAMING_SNAKE_CASE__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A_ ) as tmp_file: index.save(tmp_file.name ) SCREAMING_SNAKE_CASE__ = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) SCREAMING_SNAKE_CASE__ = np.zeros(5 , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = index.search(A_ ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def __snake_case ( lowerCAmelCase_ ) -> List[str]: import faiss SCREAMING_SNAKE_CASE__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) SCREAMING_SNAKE_CASE__ = '''index.faiss''' SCREAMING_SNAKE_CASE__ = f'''mock://{index_name}''' index.save(lowerCAmelCase_ , storage_options=mockfs.storage_options ) SCREAMING_SNAKE_CASE__ = FaissIndex.load(lowerCAmelCase_ , storage_options=mockfs.storage_options ) SCREAMING_SNAKE_CASE__ = np.zeros(5 , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = index.search(lowerCAmelCase_ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase_ ( self ): '''simple docstring''' from elasticsearch import Elasticsearch with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: SCREAMING_SNAKE_CASE__ = Elasticsearch() SCREAMING_SNAKE_CASE__ = {'''acknowledged''': True} SCREAMING_SNAKE_CASE__ = ElasticSearchIndex(es_client=A_ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['''foo''', '''bar''', '''foobar'''] ) # single query SCREAMING_SNAKE_CASE__ = '''foo''' SCREAMING_SNAKE_CASE__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = index.search(A_ ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout SCREAMING_SNAKE_CASE__ = '''foo''' SCREAMING_SNAKE_CASE__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = index.search(A_ , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries SCREAMING_SNAKE_CASE__ = ['''foo''', '''bar''', '''foobar'''] SCREAMING_SNAKE_CASE__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = index.search_batch(A_ ) SCREAMING_SNAKE_CASE__ = [scores[0] for scores in total_scores] SCREAMING_SNAKE_CASE__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(A_ ) , 0 ) self.assertListEqual([1, 1, 1] , A_ ) # batched queries with timeout SCREAMING_SNAKE_CASE__ = ['''foo''', '''bar''', '''foobar'''] SCREAMING_SNAKE_CASE__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = index.search_batch(A_ , request_timeout=30 ) SCREAMING_SNAKE_CASE__ = [scores[0] for scores in total_scores] SCREAMING_SNAKE_CASE__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(A_ ) , 0 ) self.assertListEqual([1, 1, 1] , A_ )
100
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[Any], lowerCAmelCase_ : str ): # Initialise PyTorch model __lowerCAmelCase = RemBertConfig.from_json_file(lowerCAmelCase_ ) print('Building PyTorch model from configuration: {}'.format(str(lowerCAmelCase_ ) ) ) __lowerCAmelCase = RemBertModel(lowerCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Save pytorch-model print('Save PyTorch model to {}'.format(lowerCAmelCase_ ) ) torch.save(model.state_dict(), lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : int = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
53
0
from collections import Counter from timeit import timeit def a__ ( A__ = "", ): return sum(c % 2 for c in Counter(input_str.replace(' ', '' ).lower() ).values() ) < 2 def a__ ( A__ = "" ): if len(A__ ) == 0: return True SCREAMING_SNAKE_CASE_ : Optional[int] = input_str.replace(' ', '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string SCREAMING_SNAKE_CASE_ : dict[str, int] = {} for character in lower_case_input_str: SCREAMING_SNAKE_CASE_ : Optional[Any] = character_freq_dict.get(A__, 0 ) + 1 SCREAMING_SNAKE_CASE_ : str = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def a__ ( A__ = "" ): print('\nFor string = ', A__, ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()', '\tans =', can_string_be_rearranged_as_palindrome_counter(A__ ), '\ttime =', timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)', setup='import __main__ as z', ), 'seconds', ) print( '> can_string_be_rearranged_as_palindrome()', '\tans =', can_string_be_rearranged_as_palindrome(A__ ), '\ttime =', timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)', setup='import __main__ as z', ), 'seconds', ) if __name__ == "__main__": lowerCAmelCase__ : int =input( 'Enter string to determine if it can be rearranged as a palindrome or not: ' ).strip() benchmark(check_str) lowerCAmelCase__ : List[Any] =can_string_be_rearranged_as_palindrome_counter(check_str) print(F"""{check_str} can {"" if status else "not "}be rearranged as a palindrome""")
101
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _snake_case : Any = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224', out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) __lowerCAmelCase = MaskFormerConfig(backbone_config=lowerCAmelCase_ ) __lowerCAmelCase = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok __lowerCAmelCase = 847 __lowerCAmelCase = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok __lowerCAmelCase = 150 __lowerCAmelCase = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok __lowerCAmelCase = 171 __lowerCAmelCase = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO __lowerCAmelCase = 133 __lowerCAmelCase = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok __lowerCAmelCase = 19 __lowerCAmelCase = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok __lowerCAmelCase = 65 __lowerCAmelCase = 'mapillary-vistas-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} return config def a_ ( lowerCAmelCase_ : Tuple ): __lowerCAmelCase = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') ) for source_index, target_index in zip(range(3, 0, -1 ), range(0, 3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') ) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') ) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') ) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') ) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Tuple ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int ): __lowerCAmelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowerCAmelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[:dim, :] __lowerCAmelCase = in_proj_bias[: dim] __lowerCAmelCase = in_proj_weight[ dim : dim * 2, : ] __lowerCAmelCase = in_proj_bias[ dim : dim * 2 ] __lowerCAmelCase = in_proj_weight[ -dim :, : ] __lowerCAmelCase = in_proj_bias[-dim :] # fmt: on def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : Dict ): # fmt: off __lowerCAmelCase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: hidden_size, :] __lowerCAmelCase = in_proj_bias[:config.hidden_size] __lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCAmelCase = in_proj_weight[-hidden_size :, :] __lowerCAmelCase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: hidden_size, :] __lowerCAmelCase = in_proj_bias[:config.hidden_size] __lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCAmelCase = in_proj_weight[-hidden_size :, :] __lowerCAmelCase = in_proj_bias[-hidden_size :] # fmt: on def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : bool = False ): __lowerCAmelCase = get_maskformer_config(lowerCAmelCase_ ) # load original state_dict with open(lowerCAmelCase_, 'rb' ) as f: __lowerCAmelCase = pickle.load(lowerCAmelCase_ ) __lowerCAmelCase = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowerCAmelCase = create_rename_keys(lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_swin_q_k_v(lowerCAmelCase_, config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase_, lowerCAmelCase_ ) # update to torch tensors for key, value in state_dict.items(): __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ) # load 🤗 model __lowerCAmelCase = MaskFormerForInstanceSegmentation(lowerCAmelCase_ ) model.eval() for name, param in model.named_parameters(): print(lowerCAmelCase_, param.shape ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowerCAmelCase_, strict=lowerCAmelCase_ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCAmelCase_ ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results __lowerCAmelCase = prepare_img() if "vistas" in model_name: __lowerCAmelCase = 65 elif "cityscapes" in model_name: __lowerCAmelCase = 6_5535 else: __lowerCAmelCase = 255 __lowerCAmelCase = True if 'ade' in model_name else False __lowerCAmelCase = MaskFormerImageProcessor(ignore_index=lowerCAmelCase_, reduce_labels=lowerCAmelCase_ ) __lowerCAmelCase = image_processor(lowerCAmelCase_, return_tensors='pt' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) print('Logits:', outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowerCAmelCase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], lowerCAmelCase_, atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print('Pushing model and image processor to the hub...' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _snake_case : List[str] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
53
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __magic_name__ : List[str] = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : List[str] = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Optional[Any] = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Dict = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys __magic_name__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
102
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): _snake_case : List[Any] = True from torch.cuda.amp import autocast _snake_case : Dict = logging.getLogger(__name__) def a_ ( lowerCAmelCase_ : str=None, lowerCAmelCase_ : str=None ): return field(default_factory=lambda: default, metadata=lowerCAmelCase_ ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) a_ = field( default=0.1 , metadata={"""help""": """The dropout ratio for the attention probabilities."""} ) a_ = field( default=0.1 , metadata={"""help""": """The dropout ratio for activations inside the fully connected layer."""} ) a_ = field( default=0.1 , metadata={ """help""": """The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.""" } , ) a_ = field( default=0.1 , metadata={"""help""": """The dropout probabilitiy for all 1D convolutional layers in feature extractor."""} , ) a_ = field( default=0.05 , metadata={ """help""": ( """Propability of each feature vector along the time axis to be chosen as the start of the vector""" """span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature""" """vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.""" ) } , ) a_ = field(default=0.0 , metadata={"""help""": """The LayerDrop probability."""} ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ = field( default="""train+validation""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of validation examples to this """ """value if set.""" ) } , ) a_ = list_field( default=[""",""", """?""", """.""", """!""", """-""", """;""", """:""", """\"\"""", """%""", """'""", """\"""", """�"""] , metadata={"""help""": """A list of characters to remove from the transcripts."""} , ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = 42 a_ = True a_ = None a_ = None a_ = None a_ = None def __call__( self : int , lowerCAmelCase_ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods __lowerCAmelCase = [{'input_values': feature['input_values']} for feature in features] __lowerCAmelCase = [{'input_ids': feature['labels']} for feature in features] __lowerCAmelCase = self.processor.pad( lowerCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) __lowerCAmelCase = self.processor.pad( labels=lowerCAmelCase_ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='pt' , ) # replace padding with -100 to ignore loss correctly __lowerCAmelCase = labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_0_0 ) __lowerCAmelCase = labels return batch class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Tuple , lowerCAmelCase_ : nn.Module , lowerCAmelCase_ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: model.train() __lowerCAmelCase = self._prepare_inputs(lowerCAmelCase_ ) if self.use_amp: with autocast(): __lowerCAmelCase = self.compute_loss(lowerCAmelCase_ , lowerCAmelCase_ ) else: __lowerCAmelCase = self.compute_loss(lowerCAmelCase_ , lowerCAmelCase_ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": __lowerCAmelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __lowerCAmelCase = loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: __lowerCAmelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowerCAmelCase_ ).backward() elif self.use_apex: with amp.scale_loss(lowerCAmelCase_ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowerCAmelCase_ ) else: loss.backward() return loss.detach() def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s', lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: __lowerCAmelCase = datasets.load_dataset( 'common_voice', data_args.dataset_config_name, split=data_args.train_split_name ) __lowerCAmelCase = datasets.load_dataset('common_voice', data_args.dataset_config_name, split='test' ) # Create and save tokenizer __lowerCAmelCase = F"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(lowerCAmelCase_ : Any ): __lowerCAmelCase = re.sub(lowerCAmelCase_, '', batch['sentence'] ).lower() + ' ' return batch __lowerCAmelCase = train_dataset.map(lowerCAmelCase_, remove_columns=['sentence'] ) __lowerCAmelCase = eval_dataset.map(lowerCAmelCase_, remove_columns=['sentence'] ) def extract_all_chars(lowerCAmelCase_ : Tuple ): __lowerCAmelCase = ' '.join(batch['text'] ) __lowerCAmelCase = list(set(lowerCAmelCase_ ) ) return {"vocab": [vocab], "all_text": [all_text]} __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, batched=lowerCAmelCase_, batch_size=-1, keep_in_memory=lowerCAmelCase_, remove_columns=train_dataset.column_names, ) __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, batched=lowerCAmelCase_, batch_size=-1, keep_in_memory=lowerCAmelCase_, remove_columns=eval_dataset.column_names, ) __lowerCAmelCase = list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) ) __lowerCAmelCase = {v: k for k, v in enumerate(lowerCAmelCase_ )} __lowerCAmelCase = vocab_dict[' '] del vocab_dict[" "] __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = len(lowerCAmelCase_ ) with open('vocab.json', 'w' ) as vocab_file: json.dump(lowerCAmelCase_, lowerCAmelCase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = WavaVecaCTCTokenizer( 'vocab.json', unk_token='[UNK]', pad_token='[PAD]', word_delimiter_token='|', ) __lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_6000, padding_value=0.0, do_normalize=lowerCAmelCase_, return_attention_mask=lowerCAmelCase_ ) __lowerCAmelCase = WavaVecaProcessor(feature_extractor=lowerCAmelCase_, tokenizer=lowerCAmelCase_ ) __lowerCAmelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, activation_dropout=model_args.activation_dropout, attention_dropout=model_args.attention_dropout, hidden_dropout=model_args.hidden_dropout, feat_proj_dropout=model_args.feat_proj_dropout, mask_time_prob=model_args.mask_time_prob, gradient_checkpointing=training_args.gradient_checkpointing, layerdrop=model_args.layerdrop, ctc_loss_reduction='mean', pad_token_id=processor.tokenizer.pad_token_id, vocab_size=len(processor.tokenizer ), ) if data_args.max_train_samples is not None: __lowerCAmelCase = min(len(lowerCAmelCase_ ), data_args.max_train_samples ) __lowerCAmelCase = train_dataset.select(range(lowerCAmelCase_ ) ) if data_args.max_val_samples is not None: __lowerCAmelCase = eval_dataset.select(range(data_args.max_val_samples ) ) __lowerCAmelCase = torchaudio.transforms.Resample(4_8000, 1_6000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(lowerCAmelCase_ : int ): __lowerCAmelCase , __lowerCAmelCase = torchaudio.load(batch['path'] ) __lowerCAmelCase = resampler(lowerCAmelCase_ ).squeeze().numpy() __lowerCAmelCase = 1_6000 __lowerCAmelCase = batch['text'] return batch __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, remove_columns=train_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) __lowerCAmelCase = eval_dataset.map( lowerCAmelCase_, remove_columns=eval_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) def prepare_dataset(lowerCAmelCase_ : Union[str, Any] ): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'] ) ) == 1 ), F"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" __lowerCAmelCase = processor( audio=batch['speech'], text=batch['target_text'], sampling_rate=batch['sampling_rate'][0] ) batch.update(lowerCAmelCase_ ) return batch __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, remove_columns=train_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, ) __lowerCAmelCase = eval_dataset.map( lowerCAmelCase_, remove_columns=eval_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, ) # Metric __lowerCAmelCase = datasets.load_metric('wer' ) def compute_metrics(lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = pred.predictions __lowerCAmelCase = np.argmax(lowerCAmelCase_, axis=-1 ) __lowerCAmelCase = processor.tokenizer.pad_token_id __lowerCAmelCase = processor.batch_decode(lowerCAmelCase_ ) # we do not want to group tokens when computing the metrics __lowerCAmelCase = processor.batch_decode(pred.label_ids, group_tokens=lowerCAmelCase_ ) __lowerCAmelCase = wer_metric.compute(predictions=lowerCAmelCase_, references=lowerCAmelCase_ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator __lowerCAmelCase = DataCollatorCTCWithPadding(processor=lowerCAmelCase_, padding=lowerCAmelCase_ ) # Initialize our Trainer __lowerCAmelCase = CTCTrainer( model=lowerCAmelCase_, data_collator=lowerCAmelCase_, args=lowerCAmelCase_, compute_metrics=lowerCAmelCase_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=processor.feature_extractor, ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() __lowerCAmelCase = train_result.metrics __lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase_ ) ) __lowerCAmelCase = min(lowerCAmelCase_, len(lowerCAmelCase_ ) ) trainer.log_metrics('train', lowerCAmelCase_ ) trainer.save_metrics('train', lowerCAmelCase_ ) trainer.save_state() # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(lowerCAmelCase_ ) __lowerCAmelCase = min(lowerCAmelCase_, len(lowerCAmelCase_ ) ) trainer.log_metrics('eval', lowerCAmelCase_ ) trainer.save_metrics('eval', lowerCAmelCase_ ) return results if __name__ == "__main__": main()
53
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ['''DeiTFeatureExtractor'''] snake_case = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
103
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _snake_case : Any = logging.get_logger(__name__) _snake_case : int = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _snake_case : Optional[Any] = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } _snake_case : str = { 'yjernite/retribert-base-uncased': 512, } _snake_case : Optional[int] = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = PRETRAINED_INIT_CONFIGURATION a_ = RetriBertTokenizer a_ = ["""input_ids""", """attention_mask"""] def __init__( self : Dict , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : str="[UNK]" , lowerCAmelCase_ : Optional[Any]="[SEP]" , lowerCAmelCase_ : List[str]="[PAD]" , lowerCAmelCase_ : Optional[int]="[CLS]" , lowerCAmelCase_ : List[Any]="[MASK]" , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : List[Any] , ) -> Dict: super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(lowerCAmelCase_ , normalizer_state.pop('type' ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**lowerCAmelCase_ ) __lowerCAmelCase = do_lower_case def lowercase ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int]=None ) -> Optional[int]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
53
0
"""simple docstring""" UpperCamelCase = 0 # The first color of the flag. UpperCamelCase = 1 # The second color of the flag. UpperCamelCase = 2 # The third color of the flag. UpperCamelCase = (red, white, blue) def _lowerCamelCase ( UpperCAmelCase_ : list ) -> list: """simple docstring""" if not sequence: return [] if len(UpperCAmelCase_ ) == 1: return list(UpperCAmelCase_ ) A__ = 0 A__ = len(UpperCAmelCase_ ) - 1 A__ = 0 while mid <= high: if sequence[mid] == colors[0]: A__ , A__ = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: A__ , A__ = sequence[high], sequence[mid] high -= 1 else: A__ = F"""The elements inside the sequence must contains only {colors} values""" raise ValueError(UpperCAmelCase_ ) return sequence if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input("""Enter numbers separated by commas:\n""").strip() UpperCamelCase = [int(item.strip()) for item in user_input.split(""",""")] print(f'{dutch_national_flag_sort(unsorted)}')
104
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _snake_case : Union[str, Any] = imread(R'digital_image_processing/image_data/lena_small.jpg') _snake_case : Optional[int] = cvtColor(img, COLOR_BGR2GRAY) def a_ ( ): __lowerCAmelCase = cn.convert_to_negative(lowerCAmelCase_ ) # assert negative_img array for at least one True assert negative_img.any() def a_ ( ): with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowerCAmelCase_, 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def a_ ( ): __lowerCAmelCase = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def a_ ( ): __lowerCAmelCase = imread('digital_image_processing/image_data/lena_small.jpg', 0 ) # assert ambiguous array for all == True assert canny_img.all() __lowerCAmelCase = canny.canny(lowerCAmelCase_ ) # assert canny array for at least one True assert canny_array.any() def a_ ( ): assert gg.gaussian_filter(lowerCAmelCase_, 5, sigma=0.9 ).all() def a_ ( ): # laplace diagonals __lowerCAmelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __lowerCAmelCase = conv.img_convolve(lowerCAmelCase_, lowerCAmelCase_ ).astype(lowerCAmelCase_ ) assert res.any() def a_ ( ): assert med.median_filter(lowerCAmelCase_, 3 ).any() def a_ ( ): __lowerCAmelCase , __lowerCAmelCase = sob.sobel_filter(lowerCAmelCase_ ) assert grad.any() and theta.any() def a_ ( ): __lowerCAmelCase = sp.make_sepia(lowerCAmelCase_, 20 ) assert sepia.all() def a_ ( lowerCAmelCase_ : str = "digital_image_processing/image_data/lena_small.jpg" ): __lowerCAmelCase = bs.Burkes(imread(lowerCAmelCase_, 1 ), 120 ) burkes.process() assert burkes.output_img.any() def a_ ( lowerCAmelCase_ : str = "digital_image_processing/image_data/lena_small.jpg", ): __lowerCAmelCase = rs.NearestNeighbour(imread(lowerCAmelCase_, 1 ), 400, 200 ) nn.process() assert nn.output.any() def a_ ( ): __lowerCAmelCase = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. __lowerCAmelCase = imread(lowerCAmelCase_, 0 ) # Test for get_neighbors_pixel function() return not None __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = image[x_coordinate][y_coordinate] __lowerCAmelCase = lbp.get_neighbors_pixel( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __lowerCAmelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): __lowerCAmelCase = lbp.local_binary_value(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) assert lbp_image.any()
53
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class lowerCAmelCase_ ( unittest.TestCase ): def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : Union[str, Any] = BlipImageProcessor() SCREAMING_SNAKE_CASE_ : List[Any] = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-BertModel' ) SCREAMING_SNAKE_CASE_ : Any = BlipProcessor(snake_case__ ,snake_case__ ) processor.save_pretrained(self.tmpdirname ) def snake_case ( self ,**snake_case__ ): return AutoProcessor.from_pretrained(self.tmpdirname ,**snake_case__ ).tokenizer def snake_case ( self ,**snake_case__ ): return AutoProcessor.from_pretrained(self.tmpdirname ,**snake_case__ ).image_processor def snake_case ( self ): shutil.rmtree(self.tmpdirname ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [Image.fromarray(np.moveaxis(snake_case__ ,0 ,-1 ) ) for x in image_inputs] return image_inputs def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = BlipProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_image_processor(do_normalize=snake_case__ ,padding_value=1.0 ) SCREAMING_SNAKE_CASE_ : Any = BlipProcessor.from_pretrained( self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=snake_case__ ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,snake_case__ ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = self.get_image_processor() SCREAMING_SNAKE_CASE_ : int = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : List[Any] = BlipProcessor(tokenizer=snake_case__ ,image_processor=snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Optional[int] = image_processor(snake_case__ ,return_tensors='np' ) SCREAMING_SNAKE_CASE_ : Dict = processor(images=snake_case__ ,return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Any = BlipProcessor(tokenizer=snake_case__ ,image_processor=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 'lower newer' SCREAMING_SNAKE_CASE_ : str = processor(text=snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer(snake_case__ ,return_token_type_ids=snake_case__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Optional[int] = BlipProcessor(tokenizer=snake_case__ ,image_processor=snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = 'lower newer' SCREAMING_SNAKE_CASE_ : Tuple = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : List[Any] = processor(text=snake_case__ ,images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) ,['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(snake_case__ ): processor() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.get_image_processor() SCREAMING_SNAKE_CASE_ : str = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Optional[Any] = BlipProcessor(tokenizer=snake_case__ ,image_processor=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_ : str = processor.batch_decode(snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = tokenizer.batch_decode(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Dict = BlipProcessor(tokenizer=snake_case__ ,image_processor=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = 'lower newer' SCREAMING_SNAKE_CASE_ : List[Any] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Optional[int] = processor(text=snake_case__ ,images=snake_case__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,['pixel_values', 'input_ids', 'attention_mask'] )
105
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case : List[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = ["""pixel_values"""] def __init__( self : Optional[int] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **lowerCAmelCase_ : Any , ) -> None: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = size if size is not None else {'shortest_edge': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = do_center_crop __lowerCAmelCase = crop_size __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[int] , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __lowerCAmelCase = int((2_5_6 / 2_2_4) * size['shortest_edge'] ) __lowerCAmelCase = get_resize_output_image_size(lowerCAmelCase_ , size=lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( lowerCAmelCase_ , size=(size_dict['height'], size_dict['width']) , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : str , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : str , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(lowerCAmelCase_ , size=(size['height'], size['width']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[int, float] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray: return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[str] , ) -> np.ndarray: return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase_ : str , ) -> BatchFeature: __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase = image_std if image_std is not None else self.image_std __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: __lowerCAmelCase = [self.resize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_center_crop: __lowerCAmelCase = [self.center_crop(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_rescale: __lowerCAmelCase = [self.rescale(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_normalize: __lowerCAmelCase = [self.normalize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
53
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __snake_case :Dict ={'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :List[Any] =[ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys __snake_case :str =_LazyModule(__name__, globals()['__file__'], _import_structure)
106
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Optional[int]=8 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]=9_9 , lowerCAmelCase_ : List[Any]=1_6 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=3_6 , lowerCAmelCase_ : Optional[int]="gelu" , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : str=5_1_2 , lowerCAmelCase_ : List[str]=1_6 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Tuple=0.02 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : List[Any]=4 , lowerCAmelCase_ : List[str]=None , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope def lowercase ( self : Optional[int] ) -> Dict: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self : Any ) -> Union[str, Any]: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def lowercase ( self : Dict ) -> List[Any]: __lowerCAmelCase = self.get_config() __lowerCAmelCase = 3_0_0 return config def lowercase ( self : Optional[int] ) -> Union[str, Any]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = self.prepare_config_and_inputs() __lowerCAmelCase = True __lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = MraModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , ) -> Tuple: __lowerCAmelCase = True __lowerCAmelCase = MraModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , ) __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = MraForMaskedLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> str: __lowerCAmelCase = MraForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict ) -> Optional[Any]: __lowerCAmelCase = self.num_labels __lowerCAmelCase = MraForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict ) -> Any: __lowerCAmelCase = self.num_labels __lowerCAmelCase = MraForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] ) -> List[Any]: __lowerCAmelCase = self.num_choices __lowerCAmelCase = MraForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self : Tuple ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) a_ = False a_ = False a_ = False a_ = False a_ = () def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = MraModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : Tuple ) -> List[str]: self.config_tester.run_common_tests() def lowercase ( self : Optional[int] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase = type self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase_ ) def lowercase ( self : List[str] ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase_ ) def lowercase ( self : Tuple ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase_ ) @slow def lowercase ( self : Optional[int] ) -> Optional[int]: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = MraModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @unittest.skip(reason='MRA does not output attentions' ) def lowercase ( self : Optional[int] ) -> Tuple: return @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase ( self : Optional[Any] ) -> List[str]: __lowerCAmelCase = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) __lowerCAmelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : int ) -> Optional[int]: __lowerCAmelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) __lowerCAmelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = 5_0_2_6_5 __lowerCAmelCase = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : Any ) -> List[str]: __lowerCAmelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) __lowerCAmelCase = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = 5_0_2_6_5 __lowerCAmelCase = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
0
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowercase_ : """simple docstring""" __lowerCAmelCase = 42 __lowerCAmelCase = 42 class lowercase_ : """simple docstring""" def __init__( self : Optional[int], UpperCamelCase__ : int ) -> Any: _A = [[] for _ in range(UpperCamelCase__ )] _A = size def __getitem__( self : Dict, UpperCamelCase__ : int ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def __UpperCAmelCase ( self : List[str] ) -> List[Any]: return self._size def __UpperCAmelCase ( self : str, UpperCamelCase__ : int, UpperCamelCase__ : int, UpperCamelCase__ : int ) -> List[Any]: if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(UpperCamelCase__, UpperCamelCase__ ) ) def __UpperCAmelCase ( self : List[str], UpperCamelCase__ : int, UpperCamelCase__ : int ) -> int | None: _A = deque([start_vertex] ) _A = [None] * self.size _A = 0 while queue: _A = queue.popleft() _A = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _A = current_distance + edge.weight _A = distances[edge.destination_vertex] if ( isinstance(UpperCamelCase__, UpperCamelCase__ ) and new_distance >= dest_vertex_distance ): continue _A = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
107
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _snake_case : Union[str, Any] = 2 class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , *, # begin keyword-only arguments lowerCAmelCase_ : str="<s>" , lowerCAmelCase_ : Dict="<pad>" , lowerCAmelCase_ : Any="</s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Optional[Any]=None , ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = bos, unk, pad, eos __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = {} __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = len(self.symbols ) def __eq__( self : Dict , lowerCAmelCase_ : Dict ) -> str: return self.indices == other.indices def __getitem__( self : List[Any] , lowerCAmelCase_ : int ) -> Union[str, Any]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : Tuple ) -> List[Any]: return len(self.symbols ) def __contains__( self : Optional[Any] , lowerCAmelCase_ : Dict ) -> Optional[int]: return sym in self.indices @classmethod def lowercase ( cls : Dict , lowerCAmelCase_ : str ) -> str: __lowerCAmelCase = cls() d.add_from_file(lowerCAmelCase_ ) return d def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : Any=False ) -> Optional[Any]: if word in self.indices and not overwrite: __lowerCAmelCase = self.indices[word] __lowerCAmelCase = self.count[idx] + n return idx else: __lowerCAmelCase = len(self.symbols ) __lowerCAmelCase = idx self.symbols.append(lowerCAmelCase_ ) self.count.append(lowerCAmelCase_ ) return idx def lowercase ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> Dict: return 0 def lowercase ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> int: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: with open(lowerCAmelCase_ , 'r' , encoding='utf-8' ) as fd: self.add_from_file(lowerCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(lowerCAmelCase_ ) ) return __lowerCAmelCase = f.readlines() __lowerCAmelCase = self._load_meta(lowerCAmelCase_ ) for line in lines[indices_start_line:]: try: __lowerCAmelCase , __lowerCAmelCase = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": __lowerCAmelCase = True __lowerCAmelCase , __lowerCAmelCase = line.rsplit(' ' , 1 ) else: __lowerCAmelCase = False __lowerCAmelCase = int(lowerCAmelCase_ ) __lowerCAmelCase = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(lowerCAmelCase_ ) ) self.add_symbol(lowerCAmelCase_ , n=lowerCAmelCase_ , overwrite=lowerCAmelCase_ ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def a_ ( lowerCAmelCase_ : List[str] ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} __lowerCAmelCase = dict((re.sub(R'@@$', '', lowerCAmelCase_ ), v) if k.endswith('@@' ) else (re.sub(R'$', '</w>', lowerCAmelCase_ ), v) for k, v in d.items() ) __lowerCAmelCase = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowerCAmelCase = d[k] # restore return da def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str] ): # prep if not os.path.exists(lowerCAmelCase_ ): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(lowerCAmelCase_, exist_ok=lowerCAmelCase_ ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'checkpoint.pt' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""" ) __lowerCAmelCase = torch.load(lowerCAmelCase_, map_location='cpu' ) __lowerCAmelCase = chkpt['cfg']['model'] # dicts __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'dict.txt' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {dict_file} does not exist!""" ) __lowerCAmelCase = Dictionary.load(lowerCAmelCase_ ) __lowerCAmelCase = rewrite_dict_keys(src_dict.indices ) __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, VOCAB_FILES_NAMES['vocab_file'] ) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # merges_file (bpecodes) __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'bpecodes' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""" ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(lowerCAmelCase_, lowerCAmelCase_ ) # model config __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'config.json' ) __lowerCAmelCase = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1E-12, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # tokenizer config __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F"""Generating {biogpt_tokenizer_config_file}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # model __lowerCAmelCase = chkpt['model'] # remove unneeded keys __lowerCAmelCase = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): __lowerCAmelCase = model_state_dict.pop(lowerCAmelCase_ ) else: __lowerCAmelCase = model_state_dict.pop(lowerCAmelCase_ ) __lowerCAmelCase = BioGptConfig.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = BioGptForCausalLM(lowerCAmelCase_ ) # check that it loads ok model_new.load_state_dict(lowerCAmelCase_ ) # save __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(lowerCAmelCase_, lowerCAmelCase_ ) print('Conversion is done!' ) if __name__ == "__main__": _snake_case : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : int = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
0
from __future__ import annotations import math class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Optional[Any] , lowerCamelCase : int ) -> None: """simple docstring""" _UpperCAmelCase = size # approximate the overall size of segment tree with given value _UpperCAmelCase = [0 for i in range(0 , 4 * size )] # create array to store lazy update _UpperCAmelCase = [0 for i in range(0 , 4 * size )] _UpperCAmelCase = [0 for i in range(0 , 4 * size )] # flag for lazy update def lowerCamelCase ( self : Union[str, Any] , lowerCamelCase : int ) -> int: """simple docstring""" return idx * 2 def lowerCamelCase ( self : str , lowerCamelCase : int ) -> int: """simple docstring""" return idx * 2 + 1 def lowerCamelCase ( self : Optional[Any] , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : list[int] ) -> None: """simple docstring""" if left_element == right_element: _UpperCAmelCase = a[left_element - 1] else: _UpperCAmelCase = (left_element + right_element) // 2 self.build(self.left(lowerCamelCase ) , lowerCamelCase , lowerCamelCase , lowerCamelCase ) self.build(self.right(lowerCamelCase ) , mid + 1 , lowerCamelCase , lowerCamelCase ) _UpperCAmelCase = max( self.segment_tree[self.left(lowerCamelCase )] , self.segment_tree[self.right(lowerCamelCase )] ) def lowerCamelCase ( self : Optional[int] , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ) -> bool: """simple docstring""" if self.flag[idx] is True: _UpperCAmelCase = self.lazy[idx] _UpperCAmelCase = False if left_element != right_element: _UpperCAmelCase = self.lazy[idx] _UpperCAmelCase = self.lazy[idx] _UpperCAmelCase = True _UpperCAmelCase = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: _UpperCAmelCase = val if left_element != right_element: _UpperCAmelCase = val _UpperCAmelCase = val _UpperCAmelCase = True _UpperCAmelCase = True return True _UpperCAmelCase = (left_element + right_element) // 2 self.update(self.left(lowerCamelCase ) , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) self.update(self.right(lowerCamelCase ) , mid + 1 , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) _UpperCAmelCase = max( self.segment_tree[self.left(lowerCamelCase )] , self.segment_tree[self.right(lowerCamelCase )] ) return True def lowerCamelCase ( self : Optional[int] , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ) -> int | float: """simple docstring""" if self.flag[idx] is True: _UpperCAmelCase = self.lazy[idx] _UpperCAmelCase = False if left_element != right_element: _UpperCAmelCase = self.lazy[idx] _UpperCAmelCase = self.lazy[idx] _UpperCAmelCase = True _UpperCAmelCase = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] _UpperCAmelCase = (left_element + right_element) // 2 _UpperCAmelCase = self.query(self.left(lowerCamelCase ) , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) _UpperCAmelCase = self.query(self.right(lowerCamelCase ) , mid + 1 , lowerCamelCase , lowerCamelCase , lowerCamelCase ) return max(lowerCamelCase , lowerCamelCase ) def __str__( self : Optional[int] ) -> str: """simple docstring""" return str([self.query(1 , 1 , self.size , lowerCamelCase , lowerCamelCase ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": __a: Optional[int] = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] __a: Union[str, Any] = 15 __a: Dict = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
108
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" a_ = """pixel_values""" a_ = False a_ = TimmBackboneConfig def __init__( self : Tuple , lowerCAmelCase_ : Any , **lowerCAmelCase_ : Optional[int] ) -> Optional[Any]: requires_backends(self , 'timm' ) super().__init__(lowerCAmelCase_ ) __lowerCAmelCase = config if config.backbone is None: raise ValueError('backbone is not set in the config. Please set it to a timm model name.' ) if config.backbone not in timm.list_models(): raise ValueError(f"""backbone {config.backbone} is not supported by timm.""" ) if hasattr(lowerCAmelCase_ , 'out_features' ) and config.out_features is not None: raise ValueError('out_features is not supported by TimmBackbone. Please use out_indices instead.' ) __lowerCAmelCase = getattr(lowerCAmelCase_ , 'use_pretrained_backbone' , lowerCAmelCase_ ) if pretrained is None: raise ValueError('use_pretrained_backbone is not set in the config. Please set it to True or False.' ) # We just take the final layer by default. This matches the default for the transformers models. __lowerCAmelCase = config.out_indices if getattr(lowerCAmelCase_ , 'out_indices' , lowerCAmelCase_ ) is not None else (-1,) __lowerCAmelCase = timm.create_model( config.backbone , pretrained=lowerCAmelCase_ , features_only=config.features_only , in_chans=config.num_channels , out_indices=lowerCAmelCase_ , **lowerCAmelCase_ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. __lowerCAmelCase = self._backbone.return_layers __lowerCAmelCase = {layer['module']: str(lowerCAmelCase_ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(lowerCAmelCase_ ) @classmethod def lowercase ( cls : int , lowerCAmelCase_ : Dict , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['vision', 'timm'] ) from ...models.timm_backbone import TimmBackboneConfig __lowerCAmelCase = kwargs.pop('config' , TimmBackboneConfig() ) __lowerCAmelCase = kwargs.pop('use_timm_backbone' , lowerCAmelCase_ ) if not use_timm: raise ValueError('use_timm_backbone must be True for timm backbones' ) __lowerCAmelCase = kwargs.pop('num_channels' , config.num_channels ) __lowerCAmelCase = kwargs.pop('features_only' , config.features_only ) __lowerCAmelCase = kwargs.pop('use_pretrained_backbone' , config.use_pretrained_backbone ) __lowerCAmelCase = kwargs.pop('out_indices' , config.out_indices ) __lowerCAmelCase = TimmBackboneConfig( backbone=lowerCAmelCase_ , num_channels=lowerCAmelCase_ , features_only=lowerCAmelCase_ , use_pretrained_backbone=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , ) return super()._from_config(lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Tuple , lowerCAmelCase_ : int ) -> Dict: pass def lowercase ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Any=None , **lowerCAmelCase_ : Dict ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('Cannot output attentions for timm backbones at the moment' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone __lowerCAmelCase = self._all_layers __lowerCAmelCase = self._backbone(lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = self._return_layers __lowerCAmelCase = tuple(hidden_states[i] for i in self.out_indices ) else: __lowerCAmelCase = self._backbone(lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = None __lowerCAmelCase = tuple(lowerCAmelCase_ ) __lowerCAmelCase = tuple(lowerCAmelCase_ ) if hidden_states is not None else None if not return_dict: __lowerCAmelCase = (feature_maps,) if output_hidden_states: __lowerCAmelCase = output + (hidden_states,) return output return BackboneOutput(feature_maps=lowerCAmelCase_ , hidden_states=lowerCAmelCase_ , attentions=lowerCAmelCase_ )
53
0
'''simple docstring''' a = range(2, 20 + 1) a = [10**k for k in range(ks[-1] + 1)] a = {} def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __SCREAMING_SNAKE_CASE = sum(a_i[j] for j in range(__UpperCAmelCase , len(__UpperCAmelCase ) ) ) __SCREAMING_SNAKE_CASE = sum(a_i[j] * base[j] for j in range(min(len(__UpperCAmelCase ) , __UpperCAmelCase ) ) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0, 0 __SCREAMING_SNAKE_CASE = n - i __SCREAMING_SNAKE_CASE = memo.get(__UpperCAmelCase ) if sub_memo is not None: __SCREAMING_SNAKE_CASE = sub_memo.get(__UpperCAmelCase ) if jumps is not None and len(__UpperCAmelCase ) > 0: # find and make the largest jump without going over __SCREAMING_SNAKE_CASE = -1 for _k in range(len(__UpperCAmelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: __SCREAMING_SNAKE_CASE = _k break if max_jump >= 0: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = jumps[max_jump] # since the difference between jumps is cached, add c __SCREAMING_SNAKE_CASE = diff + c for j in range(min(__UpperCAmelCase , len(__UpperCAmelCase ) ) ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = divmod(__UpperCAmelCase , 10 ) if new_c > 0: add(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: __SCREAMING_SNAKE_CASE = [] else: __SCREAMING_SNAKE_CASE = {c: []} __SCREAMING_SNAKE_CASE = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = next_term(__UpperCAmelCase , k - 1 , i + dn , __UpperCAmelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = compute(__UpperCAmelCase , __UpperCAmelCase , i + dn , __UpperCAmelCase ) diff += _diff dn += terms_jumped __SCREAMING_SNAKE_CASE = sub_memo[c] # keep jumps sorted by # of terms skipped __SCREAMING_SNAKE_CASE = 0 while j < len(__UpperCAmelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__UpperCAmelCase , (diff, dn, k) ) return (diff, dn) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' if i >= n: return 0, i if k > len(__UpperCAmelCase ): a_i.extend([0 for _ in range(k - len(__UpperCAmelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) __SCREAMING_SNAKE_CASE = i __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0, 0, 0 for j in range(len(__UpperCAmelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 __SCREAMING_SNAKE_CASE = ds_c + ds_b diff += addend __SCREAMING_SNAKE_CASE = 0 for j in range(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE = a_i[j] + addend __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = divmod(__UpperCAmelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return diff, i - start_i def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' for j in range(__UpperCAmelCase , len(__UpperCAmelCase ) ): __SCREAMING_SNAKE_CASE = digits[j] + addend if s >= 10: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = divmod(__UpperCAmelCase , 10 ) __SCREAMING_SNAKE_CASE = addend // 10 + quotient else: __SCREAMING_SNAKE_CASE = s __SCREAMING_SNAKE_CASE = addend // 10 if addend == 0: break while addend > 0: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = divmod(__UpperCAmelCase , 10 ) digits.append(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase = 10**15 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = [1] __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 0 while True: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = next_term(__UpperCAmelCase , 20 , i + dn , __UpperCAmelCase ) dn += terms_jumped if dn == n - i: break __SCREAMING_SNAKE_CASE = 0 for j in range(len(__UpperCAmelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F'''{solution() = }''')
109
from __future__ import annotations def a_ ( lowerCAmelCase_ : list[float] ): if len(lowerCAmelCase_ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) __lowerCAmelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
0
"""simple docstring""" from __future__ import annotations import queue class a : def __init__( self , UpperCamelCase_ ): UpperCAmelCase__ : int = data UpperCAmelCase__ : Dict = None UpperCAmelCase__ : Optional[int] = None def lowerCamelCase ( ): print('\n********Press N to stop entering at any point of time********\n' ) UpperCAmelCase__ : int = input('Enter the value of the root node: ' ).strip().lower() UpperCAmelCase__ : queue.Queue = queue.Queue() UpperCAmelCase__ : Dict = TreeNode(int(_snake_case ) ) q.put(_snake_case ) while not q.empty(): UpperCAmelCase__ : Tuple = q.get() UpperCAmelCase__ : List[Any] = F'''Enter the left node of {node_found.data}: ''' UpperCAmelCase__ : Dict = input(_snake_case ).strip().lower() or 'n' if check == "n": return tree_node UpperCAmelCase__ : Optional[int] = TreeNode(int(_snake_case ) ) UpperCAmelCase__ : Tuple = left_node q.put(_snake_case ) UpperCAmelCase__ : int = F'''Enter the right node of {node_found.data}: ''' UpperCAmelCase__ : int = input(_snake_case ).strip().lower() or 'n' if check == "n": return tree_node UpperCAmelCase__ : int = TreeNode(int(_snake_case ) ) UpperCAmelCase__ : Any = right_node q.put(_snake_case ) raise def lowerCamelCase ( _snake_case ): if not isinstance(_snake_case ,_snake_case ) or not node: return print(node.data ,end=',' ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase ( _snake_case ): if not isinstance(_snake_case ,_snake_case ) or not node: return in_order(node.left ) print(node.data ,end=',' ) in_order(node.right ) def lowerCamelCase ( _snake_case ): if not isinstance(_snake_case ,_snake_case ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data ,end=',' ) def lowerCamelCase ( _snake_case ): if not isinstance(_snake_case ,_snake_case ) or not node: return UpperCAmelCase__ : queue.Queue = queue.Queue() q.put(_snake_case ) while not q.empty(): UpperCAmelCase__ : int = q.get() print(node_dequeued.data ,end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase ( _snake_case ): if not isinstance(_snake_case ,_snake_case ) or not node: return UpperCAmelCase__ : queue.Queue = queue.Queue() q.put(_snake_case ) while not q.empty(): UpperCAmelCase__ : Optional[Any] = [] while not q.empty(): UpperCAmelCase__ : Union[str, Any] = q.get() print(node_dequeued.data ,end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_snake_case ) def lowerCamelCase ( _snake_case ): if not isinstance(_snake_case ,_snake_case ) or not node: return UpperCAmelCase__ : list[TreeNode] = [] UpperCAmelCase__ : Optional[int] = node while n or stack: while n: # start from root node, find its left child print(n.data ,end=',' ) stack.append(_snake_case ) UpperCAmelCase__ : Optional[int] = n.left # end of while means current node doesn't have left child UpperCAmelCase__ : Union[str, Any] = stack.pop() # start to traverse its right child UpperCAmelCase__ : Dict = n.right def lowerCamelCase ( _snake_case ): if not isinstance(_snake_case ,_snake_case ) or not node: return UpperCAmelCase__ : list[TreeNode] = [] UpperCAmelCase__ : Optional[Any] = node while n or stack: while n: stack.append(_snake_case ) UpperCAmelCase__ : int = n.left UpperCAmelCase__ : Tuple = stack.pop() print(n.data ,end=',' ) UpperCAmelCase__ : Tuple = n.right def lowerCamelCase ( _snake_case ): if not isinstance(_snake_case ,_snake_case ) or not node: return UpperCAmelCase__ , UpperCAmelCase__ : str = [], [] UpperCAmelCase__ : Union[str, Any] = node stacka.append(_snake_case ) while stacka: # to find the reversed order of post order, store it in stack2 UpperCAmelCase__ : Tuple = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_snake_case ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data ,end=',' ) def lowerCamelCase ( _snake_case = "" ,_snake_case=50 ,_snake_case="*" ): if not s: return "\n" + width * char UpperCAmelCase__ , UpperCAmelCase__ : str = divmod(width - len(_snake_case ) - 2 ,2 ) return F'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) UpperCamelCase__ = build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 50 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
110
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Union[str, Any]=1_0 , lowerCAmelCase_ : List[str]=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple="relu" , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : Optional[int]=None , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = embeddings_size __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_act __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = len(lowerCAmelCase_ ) def lowercase ( self : Optional[int] ) -> List[Any]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def lowercase ( self : Tuple ) -> List[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] ) -> str: __lowerCAmelCase = FlaxRegNetModel(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowercase ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int ) -> Tuple: __lowerCAmelCase = self.num_labels __lowerCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () a_ = False a_ = False a_ = False def lowercase ( self : Dict ) -> None: __lowerCAmelCase = FlaxRegNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : int ) -> Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : str ) -> Union[str, Any]: return def lowercase ( self : Dict ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def lowercase ( self : Union[str, Any] ) -> Any: pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def lowercase ( self : Tuple ) -> Tuple: pass def lowercase ( self : Optional[Any] ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: def check_hidden_states_output(lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : str ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Dict ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('JIT Enabled' ): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def a_ ( ): __lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : Union[str, Any] ) -> Optional[Any]: return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def lowercase ( self : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCAmelCase_ , return_tensors='np' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) # verify the logits __lowerCAmelCase = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
0
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor _lowerCAmelCase: str = logging.get_logger(__name__) class lowercase_ (_UpperCamelCase ): def __init__( self , *lowercase_ , **lowercase_) -> None: warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_)
20
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process _snake_case : Optional[int] = logging.getLogger(__name__) _snake_case : Dict = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) _snake_case : List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(_UpperCamelCase )} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a_ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def lowercase ( self : List[Any] ) -> List[Any]: if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path' ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ = field(default=_UpperCamelCase , metadata={"""help""": """The input training data file (a text file)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a_ = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a_ = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def lowercase ( self : int ) -> int: if self.train_file is not None: __lowerCAmelCase = self.train_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __lowerCAmelCase = self.validation_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Union[str, Any] ): with open(lowerCAmelCase_, 'r', encoding='utf-8' ) as f: __lowerCAmelCase = [json.loads(lowerCAmelCase_ ) for line in f.read().splitlines() if (len(lowerCAmelCase_ ) > 0 and not line.isspace())] assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) __lowerCAmelCase = {c: dataset[c] for c in dataset.column_names} __lowerCAmelCase = refs return Dataset.from_dict(lowerCAmelCase_ ) def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s', lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset(data_args.dataset_name, data_args.dataset_config_name ) if "validation" not in datasets.keys(): __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[:{data_args.validation_split_percentage}%]""", ) __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[{data_args.validation_split_percentage}%:]""", ) else: __lowerCAmelCase = {} if data_args.train_file is not None: __lowerCAmelCase = data_args.train_file if data_args.validation_file is not None: __lowerCAmelCase = data_args.validation_file __lowerCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": __lowerCAmelCase = 'text' __lowerCAmelCase = load_dataset(lowerCAmelCase_, data_files=lowerCAmelCase_ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.config_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: __lowerCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: __lowerCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path, from_tf=bool('.ckpt' in model_args.model_name_or_path ), config=lowerCAmelCase_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info('Training new model from scratch' ) __lowerCAmelCase = AutoModelForMaskedLM.from_config(lowerCAmelCase_ ) model.resize_token_embeddings(len(lowerCAmelCase_ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __lowerCAmelCase = datasets['train'].column_names else: __lowerCAmelCase = datasets['validation'].column_names __lowerCAmelCase = 'text' if 'text' in column_names else column_names[0] __lowerCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(lowerCAmelCase_ : str ): # Remove empty lines __lowerCAmelCase = [line for line in examples['text'] if len(lowerCAmelCase_ ) > 0 and not line.isspace()] return tokenizer(examples['text'], padding=lowerCAmelCase_, truncation=lowerCAmelCase_, max_length=data_args.max_seq_length ) __lowerCAmelCase = datasets.map( lowerCAmelCase_, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, remove_columns=[text_column_name], load_from_cache_file=not data_args.overwrite_cache, ) # Add the chinese references if provided if data_args.train_ref_file is not None: __lowerCAmelCase = add_chinese_references(tokenized_datasets['train'], data_args.train_ref_file ) if data_args.validation_ref_file is not None: __lowerCAmelCase = add_chinese_references( tokenized_datasets['validation'], data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __lowerCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: __lowerCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. __lowerCAmelCase = DataCollatorForWholeWordMask(tokenizer=lowerCAmelCase_, mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowerCAmelCase = Trainer( model=lowerCAmelCase_, args=lowerCAmelCase_, train_dataset=tokenized_datasets['train'] if training_args.do_train else None, eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None, tokenizer=lowerCAmelCase_, data_collator=lowerCAmelCase_, ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload __lowerCAmelCase = os.path.join(training_args.output_dir, 'train_results.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir, 'trainer_state.json' ) ) # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = math.exp(eval_output['eval_loss'] ) __lowerCAmelCase = perplexity __lowerCAmelCase = os.path.join(training_args.output_dir, 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def a_ ( lowerCAmelCase_ : Tuple ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
53
0
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class UpperCAmelCase: """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=13 , lowerCamelCase=7 , lowerCamelCase=6 , lowerCamelCase=17 , lowerCamelCase=23 , lowerCamelCase=11 , lowerCamelCase=True , ) -> str: """simple docstring""" lowercase__ : List[str] = parent lowercase__ : Optional[Any] = batch_size lowercase__ : List[str] = seq_length lowercase__ : str = act_dim lowercase__ : int = state_dim lowercase__ : Dict = hidden_size lowercase__ : int = max_length lowercase__ : List[str] = is_training def __a ( self ) -> int: """simple docstring""" lowercase__ : List[str] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) lowercase__ : List[Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) lowercase__ : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase__ : Any = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase__ : Dict = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) lowercase__ : Optional[int] = random_attention_mask((self.batch_size, self.seq_length) ) lowercase__ : List[Any] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __a ( self ) -> Union[str, Any]: """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> Dict: """simple docstring""" lowercase__ : Tuple = DecisionTransformerModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() lowercase__ : Optional[Any] = model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def __a ( self ) -> Optional[Any]: """simple docstring""" lowercase__ : Dict = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : Union[str, Any] = config_and_inputs lowercase__ : Tuple = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class UpperCAmelCase( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a : Optional[int] = (DecisionTransformerModel,) if is_torch_available() else () a : Optional[Any] = () a : int = {"""feature-extraction""": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids a : Union[str, Any] = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features a : Tuple = False a : Any = False a : Any = False a : Union[str, Any] = False a : List[str] = False a : int = False a : Optional[int] = False a : str = False a : Optional[Any] = False def __a ( self ) -> Optional[Any]: """simple docstring""" lowercase__ : Any = DecisionTransformerModelTester(self ) lowercase__ : Any = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 ) def __a ( self ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def __a ( self ) -> int: """simple docstring""" lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) @slow def __a ( self ) -> Union[str, Any]: """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = DecisionTransformerModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def __a ( self ) -> str: """simple docstring""" lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : int = model_class(lowerCAmelCase_ ) lowercase__ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Union[str, Any] = [*signature.parameters.keys()] lowercase__ : Dict = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(lowerCAmelCase_ )] , lowerCAmelCase_ ) @require_torch class UpperCAmelCase( unittest.TestCase ): """simple docstring""" @slow def __a ( self ) -> Any: """simple docstring""" lowercase__ : Dict = 2 # number of steps of autoregressive prediction we will perform lowercase__ : int = 10 # defined by the RL environment, may be normalized lowercase__ : Tuple = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) lowercase__ : Optional[Any] = model.to(lowerCAmelCase_ ) lowercase__ : Union[str, Any] = model.config torch.manual_seed(0 ) lowercase__ : Optional[Any] = torch.randn(1 , 1 , config.state_dim ).to(device=lowerCAmelCase_ , dtype=torch.floataa ) # env.reset() lowercase__ : Optional[Any] = torch.tensor( [[0.24_27_93, -0.28_69_30_74, 0.8_74_26_13], [0.67_81_52_74, -0.08_10_10_85, -0.12_95_21_47]] , device=lowerCAmelCase_ ) lowercase__ : List[Any] = torch.tensor(lowerCAmelCase_ , device=lowerCAmelCase_ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) lowercase__ : Union[str, Any] = state lowercase__ : Dict = torch.zeros(1 , 0 , config.act_dim , device=lowerCAmelCase_ , dtype=torch.floataa ) lowercase__ : List[str] = torch.zeros(1 , 0 , device=lowerCAmelCase_ , dtype=torch.floataa ) lowercase__ : Any = torch.tensor(0 , device=lowerCAmelCase_ , dtype=torch.long ).reshape(1 , 1 ) for step in range(lowerCAmelCase_ ): lowercase__ : List[str] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=lowerCAmelCase_ )] , dim=1 ) lowercase__ : Union[str, Any] = torch.cat([rewards, torch.zeros(1 , 1 , device=lowerCAmelCase_ )] , dim=1 ) lowercase__ : Optional[int] = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): lowercase__ , lowercase__ , lowercase__ : Optional[Any] = model( states=lowerCAmelCase_ , actions=lowerCAmelCase_ , rewards=lowerCAmelCase_ , returns_to_go=lowerCAmelCase_ , timesteps=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : int = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=lowerCAmelCase_ , dtype=torch.floataa ), 1.0, False, {}, ) lowercase__ : Dict = action_pred[0, -1] lowercase__ : Optional[Any] = torch.cat([states, state] , dim=1 ) lowercase__ : Dict = returns_to_go[0, -1] - reward lowercase__ : List[Any] = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) lowercase__ : str = torch.cat( [timesteps, torch.ones((1, 1) , device=lowerCAmelCase_ , dtype=torch.long ) * (step + 1)] , dim=1 )
397
def a_ ( lowerCAmelCase_ : int = 200_0000 ): __lowerCAmelCase = [0 for i in range(n + 1 )] __lowerCAmelCase = 1 __lowerCAmelCase = 1 for i in range(2, int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i, n + 1, lowerCAmelCase_ ): __lowerCAmelCase = 1 __lowerCAmelCase = 0 for i in range(lowerCAmelCase_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"""{solution() = }""")
53
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'google/vivit-b-16x2-kinetics400': ( 'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class UpperCAmelCase__ ( _UpperCamelCase ): '''simple docstring''' UpperCAmelCase_ = '''vivit''' def __init__( self : Union[str, Any] , UpperCamelCase : int=2_24 , UpperCamelCase : Optional[int]=32 , UpperCamelCase : Dict=[2, 16, 16] , UpperCamelCase : Any=3 , UpperCamelCase : Union[str, Any]=7_68 , UpperCamelCase : str=12 , UpperCamelCase : Dict=12 , UpperCamelCase : int=30_72 , UpperCamelCase : Dict="gelu_fast" , UpperCamelCase : List[Any]=0.0 , UpperCamelCase : int=0.0 , UpperCamelCase : Optional[int]=0.02 , UpperCamelCase : int=1E-06 , UpperCamelCase : Optional[int]=True , **UpperCamelCase : Any , ): """simple docstring""" _lowercase : List[str] = hidden_size _lowercase : int = num_hidden_layers _lowercase : List[Any] = num_attention_heads _lowercase : Tuple = intermediate_size _lowercase : int = hidden_act _lowercase : Optional[Any] = hidden_dropout_prob _lowercase : List[Any] = attention_probs_dropout_prob _lowercase : Optional[int] = initializer_range _lowercase : Dict = layer_norm_eps _lowercase : List[Any] = image_size _lowercase : str = num_frames _lowercase : Union[str, Any] = tubelet_size _lowercase : Tuple = num_channels _lowercase : Any = qkv_bias super().__init__(**lowerCAmelCase_ )
322
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _snake_case : Tuple = logging.getLogger() _snake_case : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Any , lowerCAmelCase_ : Dict ) -> Optional[int]: os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowerCAmelCase = {'source': 'What is love ?', 'target': 'life'} __lowerCAmelCase = {'train': 1_2, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: __lowerCAmelCase = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(lowerCAmelCase_ , f"""{split}.{field}""" ) , 'w' ) as f: f.write(lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : str = "pytorch" ) -> List[str]: __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'output' ) __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'data' ) self._create_dummy_data(data_dir=lowerCAmelCase_ ) __lowerCAmelCase = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) __lowerCAmelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowerCAmelCase_ , env=self.get_env() ) __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'metrics.json' ) with open(lowerCAmelCase_ ) as f: __lowerCAmelCase = json.load(lowerCAmelCase_ ) return result @require_torch_gpu def lowercase ( self : str ) -> int: __lowerCAmelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def lowercase ( self : List[str] ) -> Dict: __lowerCAmelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def lowercase ( self : int ) -> Tuple: __lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def lowercase ( self : List[Any] ) -> str: __lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
53
0
from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase ( _UpperCamelCase ): def snake_case ( self : Tuple ): lowerCamelCase :List[str] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase_ , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase_ , '''num_heads''' ) ) class _lowerCAmelCase : def __init__( self : str , __snake_case : int , __snake_case : Union[str, Any]=13 , __snake_case : List[Any]=64 , __snake_case : Any=3 , __snake_case : int=[16, 48, 96] , __snake_case : Optional[Any]=[1, 3, 6] , __snake_case : Dict=[1, 2, 10] , __snake_case : str=[7, 3, 3] , __snake_case : int=[4, 2, 2] , __snake_case : Union[str, Any]=[2, 1, 1] , __snake_case : Union[str, Any]=[2, 2, 2] , __snake_case : Dict=[False, False, True] , __snake_case : Union[str, Any]=[0.0, 0.0, 0.0] , __snake_case : List[str]=0.0_2 , __snake_case : Optional[int]=1e-1_2 , __snake_case : Union[str, Any]=True , __snake_case : Union[str, Any]=True , __snake_case : str=2 , ): lowerCamelCase :Dict = parent lowerCamelCase :Dict = batch_size lowerCamelCase :str = image_size lowerCamelCase :Union[str, Any] = patch_sizes lowerCamelCase :Any = patch_stride lowerCamelCase :Optional[Any] = patch_padding lowerCamelCase :List[str] = is_training lowerCamelCase :Optional[int] = use_labels lowerCamelCase :Dict = num_labels lowerCamelCase :Dict = num_channels lowerCamelCase :int = embed_dim lowerCamelCase :Dict = num_heads lowerCamelCase :Optional[Any] = stride_kv lowerCamelCase :List[Any] = depth lowerCamelCase :List[Any] = cls_token lowerCamelCase :Union[str, Any] = attention_drop_rate lowerCamelCase :Optional[Any] = initializer_range lowerCamelCase :List[Any] = layer_norm_eps def snake_case ( self : List[str] ): lowerCamelCase :str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase :Any = None if self.use_labels: # create a random int32 tensor of given shape lowerCamelCase :str = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase :Any = self.get_config() return config, pixel_values, labels def snake_case ( self : Tuple ): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def snake_case ( self : Tuple , __snake_case : Any , __snake_case : List[Any] , __snake_case : Dict ): lowerCamelCase :str = TFCvtModel(config=lowerCAmelCase_ ) lowerCamelCase :int = model(lowerCAmelCase_ , training=lowerCAmelCase_ ) lowerCamelCase :Optional[int] = (self.image_size, self.image_size) lowerCamelCase , lowerCamelCase :Optional[int] = image_size[0], image_size[1] for i in range(len(self.depth ) ): lowerCamelCase :Tuple = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) lowerCamelCase :int = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def snake_case ( self : Optional[int] , __snake_case : str , __snake_case : List[Any] , __snake_case : List[str] ): lowerCamelCase :str = self.num_labels lowerCamelCase :List[str] = TFCvtForImageClassification(lowerCAmelCase_ ) lowerCamelCase :Tuple = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self : Optional[int] ): lowerCamelCase :Dict = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase :Any = config_and_inputs lowerCamelCase :Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _UpperCAmelCase = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () _UpperCAmelCase = ( {'feature-extraction': TFCvtModel, 'image-classification': TFCvtForImageClassification} if is_tf_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def snake_case ( self : Optional[int] ): lowerCamelCase :Dict = TFCvtModelTester(self ) lowerCamelCase :List[str] = TFCvtConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def snake_case ( self : Dict ): self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason='''Cvt does not output attentions''' ) def snake_case ( self : Tuple ): pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def snake_case ( self : List[Any] ): pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def snake_case ( self : Optional[Any] ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) def snake_case ( self : List[str] ): super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def snake_case ( self : Optional[Any] ): super().test_keras_fit() @unittest.skip(reason='''Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8''' ) def snake_case ( self : List[Any] ): lowerCamelCase :Union[str, Any] = tf.keras.mixed_precision.Policy('''mixed_float16''' ) tf.keras.mixed_precision.set_global_policy(lowerCAmelCase_ ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy('''float32''' ) def snake_case ( self : List[str] ): lowerCamelCase , lowerCamelCase :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Union[str, Any] = model_class(lowerCAmelCase_ ) lowerCamelCase :str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase :str = [*signature.parameters.keys()] lowerCamelCase :Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def snake_case ( self : str ): def check_hidden_states_output(__snake_case : str , __snake_case : Any , __snake_case : int ): lowerCamelCase :Dict = model_class(lowerCAmelCase_ ) lowerCamelCase :Dict = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) lowerCamelCase :Any = outputs.hidden_states lowerCamelCase :Optional[Any] = len(self.model_tester.depth ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) lowerCamelCase , lowerCamelCase :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :str = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase :Tuple = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case ( self : List[str] ): lowerCamelCase :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def snake_case ( self : Optional[int] ): lowerCamelCase :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @slow def snake_case ( self : Dict ): for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase :Optional[int] = TFCvtModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def _lowerCamelCase ( ): lowerCamelCase :Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_tf @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def snake_case ( self : str ): return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def snake_case ( self : List[Any] ): lowerCamelCase :Optional[Any] = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCamelCase :int = self.default_image_processor lowerCamelCase :Optional[Any] = prepare_img() lowerCamelCase :Any = image_processor(images=lowerCAmelCase_ , return_tensors='''tf''' ) # forward pass lowerCamelCase :Tuple = model(**lowerCAmelCase_ ) # verify the logits lowerCamelCase :int = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) lowerCamelCase :Optional[Any] = tf.constant([0.9_2_8_5, 0.9_0_1_5, -0.3_1_5_0] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowerCAmelCase_ , atol=1e-4 ) )
166
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]="resnet50" , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Optional[Any]=True , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = out_indices if out_indices is not None else [4] __lowerCAmelCase = stage_names __lowerCAmelCase = out_features __lowerCAmelCase = backbone __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = use_pretrained_backbone __lowerCAmelCase = is_training def lowercase ( self : List[str] ) -> Any: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def lowercase ( self : List[Any] ) -> Union[str, Any]: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase ( self : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ) -> int: __lowerCAmelCase = TimmBackbone(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 1_4, 1_4) , ) def lowercase ( self : List[str] ) -> str: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (TimmBackbone,) if is_torch_available() else () a_ = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Tuple ) -> int: __lowerCAmelCase = TimmBackboneModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : Dict ) -> List[str]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Union[str, Any] ) -> Optional[int]: __lowerCAmelCase = 'resnet18' __lowerCAmelCase = 'microsoft/resnet-18' __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ , out_indices=[1, 2, 3] ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def lowercase ( self : List[str] ) -> Tuple: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def lowercase ( self : Dict ) -> int: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def lowercase ( self : str ) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase ( self : Any ) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase ( self : Optional[int] ) -> Optional[Any]: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def lowercase ( self : Dict ) -> Any: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Any ) -> Optional[int]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase ( self : Union[str, Any] ) -> Tuple: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase ( self : List[str] ) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Dict ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Tuple ) -> List[str]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def lowercase ( self : int ) -> Optional[int]: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def lowercase ( self : Union[str, Any] ) -> str: pass @unittest.skip('Safetensors is not supported by timm.' ) def lowercase ( self : Dict ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : List[str] ) -> Optional[Any]: pass def lowercase ( self : Union[str, Any] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = self.has_attentions # no need to test all models as different heads yield the same functionality __lowerCAmelCase = self.all_model_classes[0] __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = outputs[0][-1] # Encoder-/Decoder-only models __lowerCAmelCase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowerCAmelCase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowerCAmelCase_ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) __lowerCAmelCase = None __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) __lowerCAmelCase = False __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ )
53
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : List[str] = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = ['YolosFeatureExtractor'] lowerCamelCase : Optional[Any] = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys lowerCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
587
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def a_ ( lowerCAmelCase_ : str=None ): if subparsers is not None: __lowerCAmelCase = subparsers.add_parser('env' ) else: __lowerCAmelCase = argparse.ArgumentParser('Accelerate env command' ) parser.add_argument( '--config_file', default=lowerCAmelCase_, help='The config file to use for the default values in the launching script.' ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def a_ ( lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = torch.__version__ __lowerCAmelCase = torch.cuda.is_available() __lowerCAmelCase = is_xpu_available() __lowerCAmelCase = is_npu_available() __lowerCAmelCase = 'Not found' # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowerCAmelCase_ ): __lowerCAmelCase = load_config_from_file(args.config_file ).to_dict() __lowerCAmelCase = { '`Accelerate` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Numpy version': np.__version__, 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'PyTorch XPU available': str(lowerCAmelCase_ ), 'PyTorch NPU available': str(lowerCAmelCase_ ), 'System RAM': F"""{psutil.virtual_memory().total / 1024 ** 3:.2f} GB""", } if pt_cuda_available: __lowerCAmelCase = torch.cuda.get_device_name() print('\nCopy-and-paste the text below in your GitHub issue\n' ) print('\n'.join([F"""- {prop}: {val}""" for prop, val in info.items()] ) ) print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:' ) __lowerCAmelCase = ( '\n'.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else F"""\t{accelerate_config}""" ) print(lowerCAmelCase_ ) __lowerCAmelCase = accelerate_config return info def a_ ( ): __lowerCAmelCase = env_command_parser() __lowerCAmelCase = parser.parse_args() env_command(lowerCAmelCase_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
53
0
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration UpperCamelCase = HfArgumentParser(InitializationArguments) UpperCamelCase = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks UpperCamelCase = { 'vocab_size': len(tokenizer), 'scale_attn_by_inverse_layer_idx': True, 'reorder_and_upcast_attn': True, } # Load model config (GPT-2 large in this case) UpperCamelCase = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config UpperCamelCase = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
520
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a_ ( ): __lowerCAmelCase = ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores', type=lowerCAmelCase_, default=1, help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script', type=lowerCAmelCase_, help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ), ) # rest from the training program parser.add_argument('training_script_args', nargs=lowerCAmelCase_ ) return parser.parse_args() def a_ ( ): __lowerCAmelCase = parse_args() # Import training_script as a module. __lowerCAmelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __lowerCAmelCase = script_fpath.stem __lowerCAmelCase = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv __lowerCAmelCase = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores ) if __name__ == "__main__": main()
53
0
import math from datetime import datetime, timedelta def A ( _lowercase ): SCREAMING_SNAKE_CASE : str = year % 19 SCREAMING_SNAKE_CASE : Any = year % 4 SCREAMING_SNAKE_CASE : str = year % 7 SCREAMING_SNAKE_CASE : Tuple = math.floor(year / 100 ) SCREAMING_SNAKE_CASE : str = math.floor((13 + 8 * leap_day_inhibits) / 25 ) SCREAMING_SNAKE_CASE : List[str] = leap_day_inhibits / 4 SCREAMING_SNAKE_CASE : Union[str, Any] = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 SCREAMING_SNAKE_CASE : Tuple = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 SCREAMING_SNAKE_CASE : int = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon SCREAMING_SNAKE_CASE : List[str] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(lowerCAmelCase_ , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(lowerCAmelCase_ , 4 , 18 ) else: return datetime(lowerCAmelCase_ , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): __UpperCamelCase : Union[str, Any] = 'will be' if year > datetime.now().year else 'was' print(f"""Easter in {year} {tense} {gauss_easter(year)}""")
248
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict=1_3 , lowerCAmelCase_ : str=3_2 , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : str=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Tuple=[2, 2, 3, 2] , lowerCAmelCase_ : str=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[int]=3_7 , lowerCAmelCase_ : Dict="gelu" , lowerCAmelCase_ : List[Any]=1_0 , lowerCAmelCase_ : str=0.02 , lowerCAmelCase_ : Dict=["stage2", "stage3", "stage4"] , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : List[Any]=None , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = num_stages __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = out_features __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = num_stages def lowercase ( self : Dict ) -> List[str]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase ( self : List[str] ) -> Union[str, Any]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowercase ( self : Dict ) -> List[str]: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_1_2 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=lowerCAmelCase_ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=4_0 , auxiliary_channels=2_5_6 , auxiliary_num_convs=1 , auxiliary_concat_input=lowerCAmelCase_ , loss_ignore_index=2_5_5 , num_labels=self.num_labels , ) def lowercase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int ) -> Optional[Any]: __lowerCAmelCase = UperNetForSemanticSegmentation(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase ( self : Union[str, Any] ) -> Union[str, Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (UperNetForSemanticSegmentation,) if is_torch_available() else () a_ = {"""image-segmentation""": UperNetForSemanticSegmentation} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Optional[int] ) -> Dict: __lowerCAmelCase = UperNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : List[str] ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Tuple ) -> Union[str, Any]: return def lowercase ( self : Optional[int] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase_ ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def lowercase ( self : Optional[int] ) -> Dict: pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def lowercase ( self : Optional[Any] ) -> Dict: pass @unittest.skip(reason='UperNet does not have a base model' ) def lowercase ( self : Optional[int] ) -> List[Any]: pass @unittest.skip(reason='UperNet does not have a base model' ) def lowercase ( self : str ) -> Dict: pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowercase ( self : Optional[Any] ) -> Optional[int]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : Tuple ) -> List[Any]: pass def lowercase ( self : Union[str, Any] ) -> Tuple: def check_hidden_states_output(lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Any ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = _config_zero_init(lowerCAmelCase_ ) __lowerCAmelCase = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __lowerCAmelCase = model_class(config=lowerCAmelCase_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='UperNet does not have tied weights' ) def lowercase ( self : Any ) -> int: pass @slow def lowercase ( self : Optional[int] ) -> Optional[int]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def a_ ( ): __lowerCAmelCase = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k', repo_type='dataset', filename='ADE_val_00000001.jpg' ) __lowerCAmelCase = Image.open(lowerCAmelCase_ ).convert('RGB' ) return image @require_torch @require_vision @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Dict ) -> Union[str, Any]: __lowerCAmelCase = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(lowerCAmelCase_ ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(lowerCAmelCase_ ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
0
from __future__ import annotations def _UpperCAmelCase ( UpperCAmelCase : list[int] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ): """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): __lowerCamelCase , __lowerCamelCase : Any = array[indexa], array[indexa] def _UpperCAmelCase ( UpperCAmelCase : list[int] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ): """simple docstring""" if length > 1: __lowerCamelCase : List[Any] = int(length / 2 ) for i in range(lowerCAmelCase_ , low + middle ): comp_and_swap(lowerCAmelCase_ , lowerCAmelCase_ , i + middle , lowerCAmelCase_ ) bitonic_merge(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) bitonic_merge(lowerCAmelCase_ , low + middle , lowerCAmelCase_ , lowerCAmelCase_ ) def _UpperCAmelCase ( UpperCAmelCase : list[int] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ): """simple docstring""" if length > 1: __lowerCamelCase : str = int(length / 2 ) bitonic_sort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , 1 ) bitonic_sort(lowerCAmelCase_ , low + middle , lowerCAmelCase_ , 0 ) bitonic_merge(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": __UpperCamelCase : str = input('Enter numbers separated by a comma:\n').strip() __UpperCamelCase : List[Any] = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
519
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Optional[Any] ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : int ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_, keep_in_memory=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Dict, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, features=lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Any ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_, split=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type', [str, list] ) def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : Any, lowerCAmelCase_ : Dict ): if issubclass(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = text_path elif issubclass(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = [text_path] __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : int, lowerCAmelCase_ : Tuple=("train",) ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) for split in splits: __lowerCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def a_ ( lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Dict ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = TextDatasetReader({'train': text_path}, cache_dir=lowerCAmelCase_, keep_in_memory=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = TextDatasetReader({'train': text_path}, features=lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : Optional[int] ): if split: __lowerCAmelCase = {split: text_path} else: __lowerCAmelCase = 'train' __lowerCAmelCase = {'train': text_path, 'test': text_path} __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
53
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch _lowercase = logging.get_logger(__name__) @dataclass class _lowercase : def __init__( self , A__=False , A__=False , A__=6.0 , A__=None , A__=False , A__=False , A__=None , A__="fp4" , A__=False , **A__ , ) -> Optional[int]: snake_case = load_in_abit snake_case = load_in_abit snake_case = llm_inta_threshold snake_case = llm_inta_skip_modules snake_case = llm_inta_enable_fpaa_cpu_offload snake_case = llm_inta_has_fpaa_weight snake_case = bnb_abit_quant_type snake_case = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: snake_case = torch.floataa elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): snake_case = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , torch.dtype ): snake_case = bnb_abit_compute_dtype else: raise ValueError('''bnb_4bit_compute_dtype must be a string or a torch.dtype''' ) self.post_init() def UpperCamelCase ( self ) -> int: if not isinstance(self.llm_inta_threshold , lowerCAmelCase_ ): raise ValueError('''llm_int8_threshold must be a float''' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , lowerCAmelCase_ ): raise ValueError('''llm_int8_skip_modules must be a list of strings''' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , lowerCAmelCase_ ): raise ValueError('''llm_int8_enable_fp32_cpu_offload must be a boolean''' ) if not isinstance(self.llm_inta_has_fpaa_weight , lowerCAmelCase_ ): raise ValueError('''llm_int8_has_fp16_weight must be a boolean''' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('''bnb_4bit_compute_dtype must be torch.dtype''' ) if not isinstance(self.bnb_abit_quant_type , lowerCAmelCase_ ): raise ValueError('''bnb_4bit_quant_type must be a string''' ) if not isinstance(self.bnb_abit_use_double_quant , lowerCAmelCase_ ): raise ValueError('''bnb_4bit_use_double_quant must be a boolean''' ) if self.load_in_abit and not version.parse(importlib.metadata.version('''bitsandbytes''' ) ) >= version.parse( '''0.39.0''' ): raise ValueError( '''4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version''' ) def UpperCamelCase ( self ) -> int: return self.load_in_abit or self.load_in_abit def UpperCamelCase ( self ) -> Any: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def UpperCamelCase ( cls , A__ , A__ , **A__ ) -> Any: snake_case = cls(**lowerCAmelCase_ ) snake_case = [] for key, value in kwargs.items(): if hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) to_remove.append(lowerCAmelCase_ ) for key in to_remove: kwargs.pop(lowerCAmelCase_ , lowerCAmelCase_ ) if return_unused_kwargs: return config, kwargs else: return config def UpperCamelCase ( self , A__ ) -> Any: with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: snake_case = self.to_dict() snake_case = json.dumps(lowerCAmelCase_ , indent=2 , sort_keys=lowerCAmelCase_ ) + '''\n''' writer.write(lowerCAmelCase_ ) def UpperCamelCase ( self ) -> Dict[str, Any]: snake_case = copy.deepcopy(self.__dict__ ) snake_case = str(output['''bnb_4bit_compute_dtype'''] ).split('''.''' )[1] return output def __repr__( self ) -> Union[str, Any]: return F"""{self.__class__.__name__} {self.to_json_string()}""" def UpperCamelCase ( self , A__ = True ) -> str: if use_diff is True: snake_case = self.to_diff_dict() else: snake_case = self.to_dict() return json.dumps(lowerCAmelCase_ , indent=2 , sort_keys=lowerCAmelCase_ ) + "\n" def UpperCamelCase ( self ) -> Dict[str, Any]: snake_case = self.to_dict() # get the default config dict snake_case = BitsAndBytesConfig().to_dict() snake_case = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: snake_case = value return serializable_config_dict
342
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case : Union[str, Any] = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : int=False ): __lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Optional[int]=False ): for i in range(config.num_hidden_layers ): if base_model: __lowerCAmelCase = '' else: __lowerCAmelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] __lowerCAmelCase = in_proj_bias[: config.hidden_size] __lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase = in_proj_bias[-config.hidden_size :] def a_ ( lowerCAmelCase_ : List[str] ): __lowerCAmelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Optional[Any]=True ): __lowerCAmelCase = ViTConfig() # patch_size if model_name[-1] == "8": __lowerCAmelCase = 8 # set labels if required if not base_model: __lowerCAmelCase = 1000 __lowerCAmelCase = 'huggingface/label-files' __lowerCAmelCase = 'imagenet-1k-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 6 # load original model from torch hub __lowerCAmelCase = torch.hub.load('facebookresearch/dino:main', lowerCAmelCase_ ) original_model.eval() # load state_dict of original model, remove and rename some keys __lowerCAmelCase = original_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase_ ) __lowerCAmelCase = create_rename_keys(lowerCAmelCase_, base_model=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # load HuggingFace model if base_model: __lowerCAmelCase = ViTModel(lowerCAmelCase_, add_pooling_layer=lowerCAmelCase_ ).eval() else: __lowerCAmelCase = ViTForImageClassification(lowerCAmelCase_ ).eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor __lowerCAmelCase = ViTImageProcessor() __lowerCAmelCase = image_processor(images=prepare_img(), return_tensors='pt' ) __lowerCAmelCase = encoding['pixel_values'] __lowerCAmelCase = model(lowerCAmelCase_ ) if base_model: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_, outputs.last_hidden_state[:, 0, :], atol=1E-1 ) else: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase_, outputs.logits, atol=1E-3 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) _snake_case : List[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
53
0
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class UpperCAmelCase_ ( _UpperCamelCase ): '''simple docstring''' A : List[str] = 42 class UpperCAmelCase_ ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' @register_to_config def __init__( self , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = 88 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = 32 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "geglu" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = True , ) -> str: super().__init__() snake_case_ : Union[str, Any] = num_attention_heads snake_case_ : List[str] = attention_head_dim snake_case_ : Optional[Any] = num_attention_heads * attention_head_dim snake_case_ : Optional[Any] = in_channels snake_case_ : Tuple = torch.nn.GroupNorm(num_groups=lowerCAmelCase_ , num_channels=lowerCAmelCase_ , eps=1e-6 , affine=lowerCAmelCase_ ) snake_case_ : List[Any] = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ ) # 3. Define transformers blocks snake_case_ : Optional[Any] = nn.ModuleList( [ BasicTransformerBlock( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , dropout=lowerCAmelCase_ , cross_attention_dim=lowerCAmelCase_ , activation_fn=lowerCAmelCase_ , attention_bias=lowerCAmelCase_ , double_self_attention=lowerCAmelCase_ , norm_elementwise_affine=lowerCAmelCase_ , ) for d in range(lowerCAmelCase_ ) ] ) snake_case_ : List[str] = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ) -> Optional[Any]: snake_case_ , snake_case_ , snake_case_ , snake_case_ : Optional[Any] = hidden_states.shape snake_case_ : Union[str, Any] = batch_frames // num_frames snake_case_ : Any = hidden_states snake_case_ : List[str] = hidden_states[None, :].reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) snake_case_ : Optional[Any] = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) snake_case_ : Any = self.norm(lowerCAmelCase_ ) snake_case_ : int = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , lowerCAmelCase_ , lowerCAmelCase_ ) snake_case_ : Tuple = self.proj_in(lowerCAmelCase_ ) # 2. Blocks for block in self.transformer_blocks: snake_case_ : Optional[int] = block( lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , timestep=lowerCAmelCase_ , cross_attention_kwargs=lowerCAmelCase_ , class_labels=lowerCAmelCase_ , ) # 3. Output snake_case_ : Optional[Any] = self.proj_out(lowerCAmelCase_ ) snake_case_ : str = ( hidden_states[None, None, :] .reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) snake_case_ : Tuple = hidden_states.reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) snake_case_ : Optional[Any] = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=lowerCAmelCase_ )
568
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : str ) -> Any: __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : Tuple ) -> Optional[int]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : List[Any] ) -> int: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : str ) -> str: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[str]: # pass variant but use the non-variant filenames __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> Union[str, Any]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : List[str] ) -> List[Any]: # pass variant but use the non-variant filenames __lowerCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) )
53
0
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def A_ ( A__ , A__ ) -> List[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def A_ ( A__ , A__ , A__ ) -> Optional[int]: a__ : Any = tmp_path / 'cache' a__ : List[str] = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): a__ : int = TextDatasetReader(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , keep_in_memory=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_ , lowerCAmelCase_ ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def A_ ( A__ , A__ , A__ ) -> Union[str, Any]: a__ : Optional[int] = tmp_path / 'cache' a__ : List[str] = {'text': 'string'} a__ : Optional[int] = features.copy() if features else default_expected_features a__ : str = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) a__ : str = TextDatasetReader(lowerCAmelCase_ , features=lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_ , lowerCAmelCase_ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def A_ ( A__ , A__ , A__ ) -> Optional[Any]: a__ : Union[str, Any] = tmp_path / 'cache' a__ : List[str] = {'text': 'string'} a__ : List[str] = TextDatasetReader(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , split=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_ , lowerCAmelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def A_ ( A__ , A__ , A__ ) -> int: if issubclass(lowerCAmelCase_ , lowerCAmelCase_ ): a__ : int = text_path elif issubclass(lowerCAmelCase_ , lowerCAmelCase_ ): a__ : Optional[Any] = [text_path] a__ : List[Any] = tmp_path / 'cache' a__ : List[str] = {'text': 'string'} a__ : str = TextDatasetReader(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_ , lowerCAmelCase_ ) def A_ ( A__ , A__ , A__=("train",) ) -> Any: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for split in splits: a__ : Any = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def A_ ( A__ , A__ , A__ ) -> Union[str, Any]: a__ : int = tmp_path / 'cache' a__ : List[Any] = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): a__ : int = TextDatasetReader({'train': text_path} , cache_dir=lowerCAmelCase_ , keep_in_memory=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_ , lowerCAmelCase_ ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def A_ ( A__ , A__ , A__ ) -> str: a__ : int = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" a__ : Optional[Any] = {'text': 'string'} a__ : Union[str, Any] = features.copy() if features else default_expected_features a__ : Any = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) a__ : str = TextDatasetReader({'train': text_path} , features=lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_ , lowerCAmelCase_ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def A_ ( A__ , A__ , A__ ) -> List[str]: if split: a__ : int = {split: text_path} else: a__ : Any = 'train' a__ : Tuple = {'train': text_path, 'test': text_path} a__ : Union[str, Any] = tmp_path / 'cache' a__ : Optional[int] = {'text': 'string'} a__ : List[Any] = TextDatasetReader(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_ , lowerCAmelCase_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
302
import math def a_ ( lowerCAmelCase_ : list, lowerCAmelCase_ : int ): __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) __lowerCAmelCase = 0 while arr[min(lowerCAmelCase_, lowerCAmelCase_ ) - 1] < x: __lowerCAmelCase = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: __lowerCAmelCase = prev + 1 if prev == min(lowerCAmelCase_, lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": _snake_case : List[str] = input('Enter numbers separated by a comma:\n').strip() _snake_case : Optional[Any] = [int(item) for item in user_input.split(',')] _snake_case : List[str] = int(input('Enter the number to be searched:\n')) _snake_case : Optional[int] = jump_search(arr, x) if res == -1: print('Number not found!') else: print(F"""Number {x} is at index {res}""")
53
0
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): _lowerCAmelCase: List[Any] = True from torch.cuda.amp import autocast _lowerCAmelCase: Dict = logging.getLogger(__name__) def _lowercase( __a : str=None , __a : str=None ): return field(default_factory=lambda: default , metadata=lowerCAmelCase_ ) @dataclass class lowercase_ : snake_case =field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) snake_case =field( default=_UpperCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) snake_case =field( default=_UpperCamelCase , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) snake_case =field( default=0.1 , metadata={'help': 'The dropout ratio for the attention probabilities.'} ) snake_case =field( default=0.1 , metadata={'help': 'The dropout ratio for activations inside the fully connected layer.'} ) snake_case =field( default=0.1 , metadata={ 'help': 'The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.' } , ) snake_case =field( default=0.1 , metadata={'help': 'The dropout probabilitiy for all 1D convolutional layers in feature extractor.'} , ) snake_case =field( default=0.05 , metadata={ 'help': ( 'Propability of each feature vector along the time axis to be chosen as the start of the vector' 'span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature' 'vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.' ) } , ) snake_case =field(default=0.0 , metadata={'help': 'The LayerDrop probability.'} ) @dataclass class lowercase_ : snake_case =field( default=_UpperCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) snake_case =field( default='train+validation' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) snake_case =field( default=_UpperCamelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) snake_case =field( default=_UpperCamelCase , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) snake_case =field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) snake_case =field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of validation examples to this ' 'value if set.' ) } , ) snake_case =list_field( default=[',', '?', '.', '!', '-', ';', ':', '\"\"', '%', '\'', '\"', '�'] , metadata={'help': 'A list of characters to remove from the transcripts.'} , ) @dataclass class lowercase_ : snake_case =42 snake_case =True snake_case =None snake_case =None snake_case =None snake_case =None def __call__( self , lowercase_) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods a__ =[{'input_values': feature['input_values']} for feature in features] a__ =[{'input_ids': feature['labels']} for feature in features] a__ =self.processor.pad( lowerCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) a__ =self.processor.pad( labels=lowerCAmelCase_ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='pt' , ) # replace padding with -100 to ignore loss correctly a__ =labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1) , -100) a__ =labels return batch class lowercase_ (_UpperCamelCase ): def __UpperCamelCase ( self , lowercase_ , lowercase_) -> torch.Tensor: model.train() a__ =self._prepare_inputs(lowerCAmelCase_) if self.use_amp: with autocast(): a__ =self.compute_loss(lowerCAmelCase_ , lowerCAmelCase_) else: a__ =self.compute_loss(lowerCAmelCase_ , lowerCAmelCase_) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": a__ =loss.mean() elif model.module.config.ctc_loss_reduction == "sum": a__ =loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(F"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""") if self.args.gradient_accumulation_steps > 1: a__ =loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowerCAmelCase_).backward() elif self.use_apex: with amp.scale_loss(lowerCAmelCase_ , self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowerCAmelCase_) else: loss.backward() return loss.detach() def _lowercase( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a__ =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a__ , a__ , a__ =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a__ , a__ , a__ =parser.parse_args_into_dataclasses() # Detecting last checkpoint. a__ =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: a__ =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: a__ =datasets.load_dataset( 'common_voice' , data_args.dataset_config_name , split=data_args.train_split_name ) a__ =datasets.load_dataset('common_voice' , data_args.dataset_config_name , split='test' ) # Create and save tokenizer a__ =f"""[{''.join(data_args.chars_to_ignore )}]""" def remove_special_characters(__a : Any ): a__ =re.sub(lowerCAmelCase_ , '' , batch['sentence'] ).lower() + ' ' return batch a__ =train_dataset.map(lowerCAmelCase_ , remove_columns=['sentence'] ) a__ =eval_dataset.map(lowerCAmelCase_ , remove_columns=['sentence'] ) def extract_all_chars(__a : Tuple ): a__ =' '.join(batch['text'] ) a__ =list(set(lowerCAmelCase_ ) ) return {"vocab": [vocab], "all_text": [all_text]} a__ =train_dataset.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , batch_size=-1 , keep_in_memory=lowerCAmelCase_ , remove_columns=train_dataset.column_names , ) a__ =train_dataset.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , batch_size=-1 , keep_in_memory=lowerCAmelCase_ , remove_columns=eval_dataset.column_names , ) a__ =list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) ) a__ ={v: k for k, v in enumerate(lowerCAmelCase_ )} a__ =vocab_dict[' '] del vocab_dict[" "] a__ =len(lowerCAmelCase_ ) a__ =len(lowerCAmelCase_ ) with open('vocab.json' , 'w' ) as vocab_file: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a__ =WavaVecaCTCTokenizer( 'vocab.json' , unk_token='[UNK]' , pad_token='[PAD]' , word_delimiter_token='|' , ) a__ =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0.0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ ) a__ =WavaVecaProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) a__ =WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='mean' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: a__ =min(len(lowerCAmelCase_ ) , data_args.max_train_samples ) a__ =train_dataset.select(range(lowerCAmelCase_ ) ) if data_args.max_val_samples is not None: a__ =eval_dataset.select(range(data_args.max_val_samples ) ) a__ =torchaudio.transforms.Resample(4_8000 , 1_6000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(__a : int ): a__ , a__ =torchaudio.load(batch['path'] ) a__ =resampler(lowerCAmelCase_ ).squeeze().numpy() a__ =1_6000 a__ =batch['text'] return batch a__ =train_dataset.map( lowerCAmelCase_ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) a__ =eval_dataset.map( lowerCAmelCase_ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(__a : Union[str, Any] ): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'] ) ) == 1 ), f"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" a__ =processor( audio=batch['speech'] , text=batch['target_text'] , sampling_rate=batch['sampling_rate'][0] ) batch.update(lowerCAmelCase_ ) return batch a__ =train_dataset.map( lowerCAmelCase_ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=lowerCAmelCase_ , num_proc=data_args.preprocessing_num_workers , ) a__ =eval_dataset.map( lowerCAmelCase_ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=lowerCAmelCase_ , num_proc=data_args.preprocessing_num_workers , ) # Metric a__ =datasets.load_metric('wer' ) def compute_metrics(__a : Optional[Any] ): a__ =pred.predictions a__ =np.argmax(lowerCAmelCase_ , axis=-1 ) a__ =processor.tokenizer.pad_token_id a__ =processor.batch_decode(lowerCAmelCase_ ) # we do not want to group tokens when computing the metrics a__ =processor.batch_decode(pred.label_ids , group_tokens=lowerCAmelCase_ ) a__ =wer_metric.compute(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator a__ =DataCollatorCTCWithPadding(processor=lowerCAmelCase_ , padding=lowerCAmelCase_ ) # Initialize our Trainer a__ =CTCTrainer( model=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , args=lowerCAmelCase_ , compute_metrics=lowerCAmelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: a__ =last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): a__ =model_args.model_name_or_path else: a__ =None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) a__ =trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() a__ =train_result.metrics a__ =( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase_ ) ) a__ =min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) trainer.log_metrics('train' , lowerCAmelCase_ ) trainer.save_metrics('train' , lowerCAmelCase_ ) trainer.save_state() # Evaluation a__ ={} if training_args.do_eval: logger.info('*** Evaluate ***' ) a__ =trainer.evaluate() a__ =data_args.max_val_samples if data_args.max_val_samples is not None else len(lowerCAmelCase_ ) a__ =min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) trainer.log_metrics('eval' , lowerCAmelCase_ ) trainer.save_metrics('eval' , lowerCAmelCase_ ) return results if __name__ == "__main__": main()
20
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[Any], lowerCAmelCase_ : str ): # Initialise PyTorch model __lowerCAmelCase = RemBertConfig.from_json_file(lowerCAmelCase_ ) print('Building PyTorch model from configuration: {}'.format(str(lowerCAmelCase_ ) ) ) __lowerCAmelCase = RemBertModel(lowerCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Save pytorch-model print('Save PyTorch model to {}'.format(lowerCAmelCase_ ) ) torch.save(model.state_dict(), lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : int = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
53
0
def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: lowercase__ : List[Any] = [0 for i in range(len(lowerCAmelCase_ ) )] # initialize interval's left pointer and right pointer lowercase__ , lowercase__ : int = 0, 0 for i in range(1 ,len(lowerCAmelCase_ ) ): # case when current index is inside the interval if i <= right_pointer: lowercase__ : List[Any] = min(right_pointer - i + 1 ,z_result[i - left_pointer] ) lowercase__ : Dict = min_edge while go_next(lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: lowercase__ , lowercase__ : str = i, i + z_result[i] - 1 return z_result def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> Any: return i + z_result[i] < len(lowerCAmelCase_ ) and s[z_result[i]] == s[i + z_result[i]] def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> Tuple: lowercase__ : Optional[Any] = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string lowercase__ : Optional[Any] = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(lowerCAmelCase_ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
397
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _snake_case : Any = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224', out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) __lowerCAmelCase = MaskFormerConfig(backbone_config=lowerCAmelCase_ ) __lowerCAmelCase = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok __lowerCAmelCase = 847 __lowerCAmelCase = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok __lowerCAmelCase = 150 __lowerCAmelCase = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok __lowerCAmelCase = 171 __lowerCAmelCase = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO __lowerCAmelCase = 133 __lowerCAmelCase = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok __lowerCAmelCase = 19 __lowerCAmelCase = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok __lowerCAmelCase = 65 __lowerCAmelCase = 'mapillary-vistas-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} return config def a_ ( lowerCAmelCase_ : Tuple ): __lowerCAmelCase = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') ) for source_index, target_index in zip(range(3, 0, -1 ), range(0, 3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') ) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') ) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') ) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') ) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Tuple ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int ): __lowerCAmelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowerCAmelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[:dim, :] __lowerCAmelCase = in_proj_bias[: dim] __lowerCAmelCase = in_proj_weight[ dim : dim * 2, : ] __lowerCAmelCase = in_proj_bias[ dim : dim * 2 ] __lowerCAmelCase = in_proj_weight[ -dim :, : ] __lowerCAmelCase = in_proj_bias[-dim :] # fmt: on def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : Dict ): # fmt: off __lowerCAmelCase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: hidden_size, :] __lowerCAmelCase = in_proj_bias[:config.hidden_size] __lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCAmelCase = in_proj_weight[-hidden_size :, :] __lowerCAmelCase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: hidden_size, :] __lowerCAmelCase = in_proj_bias[:config.hidden_size] __lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCAmelCase = in_proj_weight[-hidden_size :, :] __lowerCAmelCase = in_proj_bias[-hidden_size :] # fmt: on def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : bool = False ): __lowerCAmelCase = get_maskformer_config(lowerCAmelCase_ ) # load original state_dict with open(lowerCAmelCase_, 'rb' ) as f: __lowerCAmelCase = pickle.load(lowerCAmelCase_ ) __lowerCAmelCase = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowerCAmelCase = create_rename_keys(lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_swin_q_k_v(lowerCAmelCase_, config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase_, lowerCAmelCase_ ) # update to torch tensors for key, value in state_dict.items(): __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ) # load 🤗 model __lowerCAmelCase = MaskFormerForInstanceSegmentation(lowerCAmelCase_ ) model.eval() for name, param in model.named_parameters(): print(lowerCAmelCase_, param.shape ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowerCAmelCase_, strict=lowerCAmelCase_ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCAmelCase_ ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results __lowerCAmelCase = prepare_img() if "vistas" in model_name: __lowerCAmelCase = 65 elif "cityscapes" in model_name: __lowerCAmelCase = 6_5535 else: __lowerCAmelCase = 255 __lowerCAmelCase = True if 'ade' in model_name else False __lowerCAmelCase = MaskFormerImageProcessor(ignore_index=lowerCAmelCase_, reduce_labels=lowerCAmelCase_ ) __lowerCAmelCase = image_processor(lowerCAmelCase_, return_tensors='pt' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) print('Logits:', outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowerCAmelCase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], lowerCAmelCase_, atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print('Pushing model and image processor to the hub...' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _snake_case : List[str] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
53
0
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml UpperCamelCase__ = NewType('DataClass', Any) UpperCamelCase__ = NewType('DataClassType', Any) def UpperCamelCase__ ( UpperCAmelCase_ ) -> Tuple: '''simple docstring''' if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).' ) def UpperCamelCase__ ( UpperCAmelCase_ ) -> Optional[int]: '''simple docstring''' _lowercase : List[Any] = {str(lowerCAmelCase_ ): choice for choice in choices} return lambda UpperCAmelCase_ : str_to_choice.get(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCamelCase__ ( *, UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = dataclasses.MISSING , UpperCAmelCase_ = dataclasses.MISSING , UpperCAmelCase_ = None , **UpperCAmelCase_ , ) -> Optional[int]: '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls _lowercase : List[str] = {} if aliases is not None: _lowercase : List[str] = aliases if help is not None: _lowercase : Optional[Any] = help return dataclasses.field(metadata=lowerCAmelCase_ , default=lowerCAmelCase_ , default_factory=lowerCAmelCase_ , **lowerCAmelCase_ ) class UpperCAmelCase__ ( _UpperCamelCase ): '''simple docstring''' UpperCAmelCase_ = 4_2 def __init__( self : Union[str, Any] , UpperCamelCase : Union[DataClassType, Iterable[DataClassType]] , **UpperCamelCase : Optional[Any] ): """simple docstring""" if "formatter_class" not in kwargs: _lowercase : Union[str, Any] = ArgumentDefaultsHelpFormatter super().__init__(**lowerCAmelCase_ ) if dataclasses.is_dataclass(lowerCAmelCase_ ): _lowercase : Union[str, Any] = [dataclass_types] _lowercase : List[Any] = list(lowerCAmelCase_ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(lowerCAmelCase_ ) @staticmethod def lowerCAmelCase_ ( UpperCamelCase : ArgumentParser , UpperCamelCase : dataclasses.Field ): """simple docstring""" _lowercase : List[str] = F'--{field.name}' _lowercase : Optional[Any] = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , lowerCAmelCase_ ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) _lowercase : Optional[Any] = kwargs.pop('''aliases''' , [] ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _lowercase : Union[str, Any] = [aliases] _lowercase : Optional[Any] = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(lowerCAmelCase_ , '''UnionType''' ) and isinstance(lowerCAmelCase_ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(lowerCAmelCase_ ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' F' Problem encountered in field \'{field.name}\'.' ) if type(lowerCAmelCase_ ) not in field.type.__args__: # filter `str` in Union _lowercase : Any = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] _lowercase : Optional[Any] = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) _lowercase : str = ( field.type.__args__[0] if isinstance(lowerCAmelCase_ , field.type.__args__[1] ) else field.type.__args__[1] ) _lowercase : str = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) _lowercase : str = {} if origin_type is Literal or (isinstance(field.type , lowerCAmelCase_ ) and issubclass(field.type , lowerCAmelCase_ )): if origin_type is Literal: _lowercase : Dict = field.type.__args__ else: _lowercase : Tuple = [x.value for x in field.type] _lowercase : Union[str, Any] = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: _lowercase : Union[str, Any] = field.default else: _lowercase : Any = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument _lowercase : List[Any] = copy(lowerCAmelCase_ ) # Hack because type=bool in argparse does not behave as we want. _lowercase : List[Any] = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. _lowercase : List[Any] = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way _lowercase : int = default # This tells argparse we accept 0 or 1 value after --field_name _lowercase : str = '''?''' # This is the value that will get picked if we do --field_name (without value) _lowercase : Optional[Any] = True elif isclass(lowerCAmelCase_ ) and issubclass(lowerCAmelCase_ , lowerCAmelCase_ ): _lowercase : Any = field.type.__args__[0] _lowercase : int = '''+''' if field.default_factory is not dataclasses.MISSING: _lowercase : str = field.default_factory() elif field.default is dataclasses.MISSING: _lowercase : Tuple = True else: _lowercase : Optional[Any] = field.type if field.default is not dataclasses.MISSING: _lowercase : str = field.default elif field.default_factory is not dataclasses.MISSING: _lowercase : Union[str, Any] = field.default_factory() else: _lowercase : str = True parser.add_argument(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): _lowercase : Optional[int] = False parser.add_argument(F'--no_{field.name}' , action='''store_false''' , dest=field.name , **lowerCAmelCase_ ) def lowerCAmelCase_ ( self : int , UpperCamelCase : DataClassType ): """simple docstring""" if hasattr(lowerCAmelCase_ , '''_argument_group_name''' ): _lowercase : str = self.add_argument_group(dtype._argument_group_name ) else: _lowercase : Dict = self try: _lowercase : int = get_type_hints(lowerCAmelCase_ ) except NameError: raise RuntimeError( F'Type resolution failed for {dtype}. Try declaring the class in global scope or ' '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(lowerCAmelCase_ ): _lowercase : Any = '''.'''.join(map(lowerCAmelCase_ , sys.version_info[:3] ) ) raise RuntimeError( F'Type resolution failed for {dtype} on Python {python_version}. Try removing ' '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(lowerCAmelCase_ ): if not field.init: continue _lowercase : Optional[int] = type_hints[field.name] self._parse_dataclass_field(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase_ ( self : Union[str, Any] , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Optional[Any]=False , UpperCamelCase : Dict=True , UpperCamelCase : Any=None , UpperCamelCase : str=None , ): """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): _lowercase : Optional[Any] = [] if args_filename: args_files.append(Path(lowerCAmelCase_ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values _lowercase : List[Any] = ArgumentParser() args_file_parser.add_argument(lowerCAmelCase_ , type=lowerCAmelCase_ , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) _lowercase , _lowercase : int = args_file_parser.parse_known_args(args=lowerCAmelCase_ ) _lowercase : Dict = vars(lowerCAmelCase_ ).get(args_file_flag.lstrip('''-''' ) , lowerCAmelCase_ ) if cmd_args_file_paths: args_files.extend([Path(lowerCAmelCase_ ) for p in cmd_args_file_paths] ) _lowercase : List[Any] = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last _lowercase : Dict = file_args + args if args is not None else file_args + sys.argv[1:] _lowercase , _lowercase : str = self.parse_known_args(args=lowerCAmelCase_ ) _lowercase : Tuple = [] for dtype in self.dataclass_types: _lowercase : Optional[Any] = {f.name for f in dataclasses.fields(lowerCAmelCase_ ) if f.init} _lowercase : Union[str, Any] = {k: v for k, v in vars(lowerCAmelCase_ ).items() if k in keys} for k in keys: delattr(lowerCAmelCase_ , lowerCAmelCase_ ) _lowercase : List[str] = dtype(**lowerCAmelCase_ ) outputs.append(lowerCAmelCase_ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(lowerCAmelCase_ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'Some specified arguments are not used by the HfArgumentParser: {remaining_args}' ) return (*outputs,) def lowerCAmelCase_ ( self : Dict , UpperCamelCase : Dict[str, Any] , UpperCamelCase : bool = False ): """simple docstring""" _lowercase : Any = set(args.keys() ) _lowercase : Any = [] for dtype in self.dataclass_types: _lowercase : Any = {f.name for f in dataclasses.fields(lowerCAmelCase_ ) if f.init} _lowercase : int = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) _lowercase : str = dtype(**lowerCAmelCase_ ) outputs.append(lowerCAmelCase_ ) if not allow_extra_keys and unused_keys: raise ValueError(F'Some keys are not used by the HfArgumentParser: {sorted(lowerCAmelCase_ )}' ) return tuple(lowerCAmelCase_ ) def lowerCAmelCase_ ( self : List[str] , UpperCamelCase : str , UpperCamelCase : bool = False ): """simple docstring""" with open(Path(lowerCAmelCase_ ) , encoding='''utf-8''' ) as open_json_file: _lowercase : Union[str, Any] = json.loads(open_json_file.read() ) _lowercase : Optional[int] = self.parse_dict(lowerCAmelCase_ , allow_extra_keys=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ ) def lowerCAmelCase_ ( self : Optional[int] , UpperCamelCase : str , UpperCamelCase : bool = False ): """simple docstring""" _lowercase : str = self.parse_dict(yaml.safe_load(Path(lowerCAmelCase_ ).read_text() ) , allow_extra_keys=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
322
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): _snake_case : List[Any] = True from torch.cuda.amp import autocast _snake_case : Dict = logging.getLogger(__name__) def a_ ( lowerCAmelCase_ : str=None, lowerCAmelCase_ : str=None ): return field(default_factory=lambda: default, metadata=lowerCAmelCase_ ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) a_ = field( default=0.1 , metadata={"""help""": """The dropout ratio for the attention probabilities."""} ) a_ = field( default=0.1 , metadata={"""help""": """The dropout ratio for activations inside the fully connected layer."""} ) a_ = field( default=0.1 , metadata={ """help""": """The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.""" } , ) a_ = field( default=0.1 , metadata={"""help""": """The dropout probabilitiy for all 1D convolutional layers in feature extractor."""} , ) a_ = field( default=0.05 , metadata={ """help""": ( """Propability of each feature vector along the time axis to be chosen as the start of the vector""" """span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature""" """vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.""" ) } , ) a_ = field(default=0.0 , metadata={"""help""": """The LayerDrop probability."""} ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ = field( default="""train+validation""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of validation examples to this """ """value if set.""" ) } , ) a_ = list_field( default=[""",""", """?""", """.""", """!""", """-""", """;""", """:""", """\"\"""", """%""", """'""", """\"""", """�"""] , metadata={"""help""": """A list of characters to remove from the transcripts."""} , ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = 42 a_ = True a_ = None a_ = None a_ = None a_ = None def __call__( self : int , lowerCAmelCase_ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods __lowerCAmelCase = [{'input_values': feature['input_values']} for feature in features] __lowerCAmelCase = [{'input_ids': feature['labels']} for feature in features] __lowerCAmelCase = self.processor.pad( lowerCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) __lowerCAmelCase = self.processor.pad( labels=lowerCAmelCase_ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='pt' , ) # replace padding with -100 to ignore loss correctly __lowerCAmelCase = labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_0_0 ) __lowerCAmelCase = labels return batch class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Tuple , lowerCAmelCase_ : nn.Module , lowerCAmelCase_ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: model.train() __lowerCAmelCase = self._prepare_inputs(lowerCAmelCase_ ) if self.use_amp: with autocast(): __lowerCAmelCase = self.compute_loss(lowerCAmelCase_ , lowerCAmelCase_ ) else: __lowerCAmelCase = self.compute_loss(lowerCAmelCase_ , lowerCAmelCase_ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": __lowerCAmelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __lowerCAmelCase = loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: __lowerCAmelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowerCAmelCase_ ).backward() elif self.use_apex: with amp.scale_loss(lowerCAmelCase_ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowerCAmelCase_ ) else: loss.backward() return loss.detach() def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s', lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: __lowerCAmelCase = datasets.load_dataset( 'common_voice', data_args.dataset_config_name, split=data_args.train_split_name ) __lowerCAmelCase = datasets.load_dataset('common_voice', data_args.dataset_config_name, split='test' ) # Create and save tokenizer __lowerCAmelCase = F"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(lowerCAmelCase_ : Any ): __lowerCAmelCase = re.sub(lowerCAmelCase_, '', batch['sentence'] ).lower() + ' ' return batch __lowerCAmelCase = train_dataset.map(lowerCAmelCase_, remove_columns=['sentence'] ) __lowerCAmelCase = eval_dataset.map(lowerCAmelCase_, remove_columns=['sentence'] ) def extract_all_chars(lowerCAmelCase_ : Tuple ): __lowerCAmelCase = ' '.join(batch['text'] ) __lowerCAmelCase = list(set(lowerCAmelCase_ ) ) return {"vocab": [vocab], "all_text": [all_text]} __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, batched=lowerCAmelCase_, batch_size=-1, keep_in_memory=lowerCAmelCase_, remove_columns=train_dataset.column_names, ) __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, batched=lowerCAmelCase_, batch_size=-1, keep_in_memory=lowerCAmelCase_, remove_columns=eval_dataset.column_names, ) __lowerCAmelCase = list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) ) __lowerCAmelCase = {v: k for k, v in enumerate(lowerCAmelCase_ )} __lowerCAmelCase = vocab_dict[' '] del vocab_dict[" "] __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = len(lowerCAmelCase_ ) with open('vocab.json', 'w' ) as vocab_file: json.dump(lowerCAmelCase_, lowerCAmelCase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = WavaVecaCTCTokenizer( 'vocab.json', unk_token='[UNK]', pad_token='[PAD]', word_delimiter_token='|', ) __lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_6000, padding_value=0.0, do_normalize=lowerCAmelCase_, return_attention_mask=lowerCAmelCase_ ) __lowerCAmelCase = WavaVecaProcessor(feature_extractor=lowerCAmelCase_, tokenizer=lowerCAmelCase_ ) __lowerCAmelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, activation_dropout=model_args.activation_dropout, attention_dropout=model_args.attention_dropout, hidden_dropout=model_args.hidden_dropout, feat_proj_dropout=model_args.feat_proj_dropout, mask_time_prob=model_args.mask_time_prob, gradient_checkpointing=training_args.gradient_checkpointing, layerdrop=model_args.layerdrop, ctc_loss_reduction='mean', pad_token_id=processor.tokenizer.pad_token_id, vocab_size=len(processor.tokenizer ), ) if data_args.max_train_samples is not None: __lowerCAmelCase = min(len(lowerCAmelCase_ ), data_args.max_train_samples ) __lowerCAmelCase = train_dataset.select(range(lowerCAmelCase_ ) ) if data_args.max_val_samples is not None: __lowerCAmelCase = eval_dataset.select(range(data_args.max_val_samples ) ) __lowerCAmelCase = torchaudio.transforms.Resample(4_8000, 1_6000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(lowerCAmelCase_ : int ): __lowerCAmelCase , __lowerCAmelCase = torchaudio.load(batch['path'] ) __lowerCAmelCase = resampler(lowerCAmelCase_ ).squeeze().numpy() __lowerCAmelCase = 1_6000 __lowerCAmelCase = batch['text'] return batch __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, remove_columns=train_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) __lowerCAmelCase = eval_dataset.map( lowerCAmelCase_, remove_columns=eval_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) def prepare_dataset(lowerCAmelCase_ : Union[str, Any] ): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'] ) ) == 1 ), F"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" __lowerCAmelCase = processor( audio=batch['speech'], text=batch['target_text'], sampling_rate=batch['sampling_rate'][0] ) batch.update(lowerCAmelCase_ ) return batch __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, remove_columns=train_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, ) __lowerCAmelCase = eval_dataset.map( lowerCAmelCase_, remove_columns=eval_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, ) # Metric __lowerCAmelCase = datasets.load_metric('wer' ) def compute_metrics(lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = pred.predictions __lowerCAmelCase = np.argmax(lowerCAmelCase_, axis=-1 ) __lowerCAmelCase = processor.tokenizer.pad_token_id __lowerCAmelCase = processor.batch_decode(lowerCAmelCase_ ) # we do not want to group tokens when computing the metrics __lowerCAmelCase = processor.batch_decode(pred.label_ids, group_tokens=lowerCAmelCase_ ) __lowerCAmelCase = wer_metric.compute(predictions=lowerCAmelCase_, references=lowerCAmelCase_ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator __lowerCAmelCase = DataCollatorCTCWithPadding(processor=lowerCAmelCase_, padding=lowerCAmelCase_ ) # Initialize our Trainer __lowerCAmelCase = CTCTrainer( model=lowerCAmelCase_, data_collator=lowerCAmelCase_, args=lowerCAmelCase_, compute_metrics=lowerCAmelCase_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=processor.feature_extractor, ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() __lowerCAmelCase = train_result.metrics __lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase_ ) ) __lowerCAmelCase = min(lowerCAmelCase_, len(lowerCAmelCase_ ) ) trainer.log_metrics('train', lowerCAmelCase_ ) trainer.save_metrics('train', lowerCAmelCase_ ) trainer.save_state() # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(lowerCAmelCase_ ) __lowerCAmelCase = min(lowerCAmelCase_, len(lowerCAmelCase_ ) ) trainer.log_metrics('eval', lowerCAmelCase_ ) trainer.save_metrics('eval', lowerCAmelCase_ ) return results if __name__ == "__main__": main()
53
0
def _lowerCamelCase ( a_ : float , a_ : float , a_ : float , a_ : float , a_ : float , ): lowerCamelCase :List[Any] = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters): raise ValueError('''All input parameters must be positive''') if any(p > 1 for p in parameters[1:4]): raise ValueError('''Relative densities cannot be greater than one''') else: lowerCamelCase :str = 1 - (matter_density + radiation_density + dark_energy) lowerCamelCase :Union[str, Any] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) lowerCamelCase :Dict = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation A__ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
166
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _snake_case : Any = logging.get_logger(__name__) _snake_case : int = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _snake_case : Optional[Any] = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } _snake_case : str = { 'yjernite/retribert-base-uncased': 512, } _snake_case : Optional[int] = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = PRETRAINED_INIT_CONFIGURATION a_ = RetriBertTokenizer a_ = ["""input_ids""", """attention_mask"""] def __init__( self : Dict , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : str="[UNK]" , lowerCAmelCase_ : Optional[Any]="[SEP]" , lowerCAmelCase_ : List[str]="[PAD]" , lowerCAmelCase_ : Optional[int]="[CLS]" , lowerCAmelCase_ : List[Any]="[MASK]" , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : List[Any] , ) -> Dict: super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(lowerCAmelCase_ , normalizer_state.pop('type' ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**lowerCAmelCase_ ) __lowerCAmelCase = do_lower_case def lowercase ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int]=None ) -> Optional[int]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
53
0
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def SCREAMING_SNAKE_CASE__ ( lowercase=None ) -> Any: if subparsers is not None: snake_case : List[str] = subparsers.add_parser("""env""" ) else: snake_case : Tuple = argparse.ArgumentParser("""Accelerate env command""" ) parser.add_argument( """--config_file""" ,default=lowerCAmelCase_ ,help="""The config file to use for the default values in the launching script.""" ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[Any]: snake_case : List[str] = torch.__version__ snake_case : Tuple = torch.cuda.is_available() snake_case : Tuple = is_xpu_available() snake_case : str = is_npu_available() snake_case : Union[str, Any] = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowerCAmelCase_ ): snake_case : int = load_config_from_file(args.config_file ).to_dict() snake_case : Union[str, Any] = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": f"""{pt_version} ({pt_cuda_available})""", """PyTorch XPU available""": str(lowerCAmelCase_ ), """PyTorch NPU available""": str(lowerCAmelCase_ ), """System RAM""": f"""{psutil.virtual_memory().total / 1024 ** 3:.2f} GB""", } if pt_cuda_available: snake_case : List[Any] = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""" ) print("""\n""".join([f"""- {prop}: {val}""" for prop, val in info.items()] ) ) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" ) snake_case : Union[str, Any] = ( """\n""".join([f"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) else f"""\t{accelerate_config}""" ) print(lowerCAmelCase_ ) snake_case : Any = accelerate_config return info def SCREAMING_SNAKE_CASE__ ( ) -> Dict: snake_case : Optional[int] = env_command_parser() snake_case : List[str] = parser.parse_args() env_command(lowerCAmelCase_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
587
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _snake_case : Union[str, Any] = imread(R'digital_image_processing/image_data/lena_small.jpg') _snake_case : Optional[int] = cvtColor(img, COLOR_BGR2GRAY) def a_ ( ): __lowerCAmelCase = cn.convert_to_negative(lowerCAmelCase_ ) # assert negative_img array for at least one True assert negative_img.any() def a_ ( ): with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowerCAmelCase_, 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def a_ ( ): __lowerCAmelCase = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def a_ ( ): __lowerCAmelCase = imread('digital_image_processing/image_data/lena_small.jpg', 0 ) # assert ambiguous array for all == True assert canny_img.all() __lowerCAmelCase = canny.canny(lowerCAmelCase_ ) # assert canny array for at least one True assert canny_array.any() def a_ ( ): assert gg.gaussian_filter(lowerCAmelCase_, 5, sigma=0.9 ).all() def a_ ( ): # laplace diagonals __lowerCAmelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __lowerCAmelCase = conv.img_convolve(lowerCAmelCase_, lowerCAmelCase_ ).astype(lowerCAmelCase_ ) assert res.any() def a_ ( ): assert med.median_filter(lowerCAmelCase_, 3 ).any() def a_ ( ): __lowerCAmelCase , __lowerCAmelCase = sob.sobel_filter(lowerCAmelCase_ ) assert grad.any() and theta.any() def a_ ( ): __lowerCAmelCase = sp.make_sepia(lowerCAmelCase_, 20 ) assert sepia.all() def a_ ( lowerCAmelCase_ : str = "digital_image_processing/image_data/lena_small.jpg" ): __lowerCAmelCase = bs.Burkes(imread(lowerCAmelCase_, 1 ), 120 ) burkes.process() assert burkes.output_img.any() def a_ ( lowerCAmelCase_ : str = "digital_image_processing/image_data/lena_small.jpg", ): __lowerCAmelCase = rs.NearestNeighbour(imread(lowerCAmelCase_, 1 ), 400, 200 ) nn.process() assert nn.output.any() def a_ ( ): __lowerCAmelCase = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. __lowerCAmelCase = imread(lowerCAmelCase_, 0 ) # Test for get_neighbors_pixel function() return not None __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = image[x_coordinate][y_coordinate] __lowerCAmelCase = lbp.get_neighbors_pixel( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __lowerCAmelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): __lowerCAmelCase = lbp.local_binary_value(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) assert lbp_image.any()
53
0
import math def lowerCamelCase_ ( _lowercase , _lowercase ) -> Optional[Any]: __A : Dict = len(lowerCAmelCase_ ) __A : int = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) __A : Optional[Any] = 0 while arr[min(lowerCAmelCase_ , lowerCAmelCase_ ) - 1] < x: __A : str = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: __A : List[Any] = prev + 1 if prev == min(lowerCAmelCase_ , lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": UpperCamelCase = input('Enter numbers separated by a comma:\n').strip() UpperCamelCase = [int(item) for item in user_input.split(',')] UpperCamelCase = int(input('Enter the number to be searched:\n')) UpperCamelCase = jump_search(arr, x) if res == -1: print('Number not found!') else: print(F'''Number {x} is at index {res}''')
520
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case : List[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = ["""pixel_values"""] def __init__( self : Optional[int] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **lowerCAmelCase_ : Any , ) -> None: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = size if size is not None else {'shortest_edge': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = do_center_crop __lowerCAmelCase = crop_size __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[int] , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __lowerCAmelCase = int((2_5_6 / 2_2_4) * size['shortest_edge'] ) __lowerCAmelCase = get_resize_output_image_size(lowerCAmelCase_ , size=lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( lowerCAmelCase_ , size=(size_dict['height'], size_dict['width']) , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : str , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : str , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(lowerCAmelCase_ , size=(size['height'], size['width']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[int, float] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray: return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[str] , ) -> np.ndarray: return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase_ : str , ) -> BatchFeature: __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase = image_std if image_std is not None else self.image_std __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: __lowerCAmelCase = [self.resize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_center_crop: __lowerCAmelCase = [self.center_crop(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_rescale: __lowerCAmelCase = [self.rescale(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_normalize: __lowerCAmelCase = [self.normalize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
53
0
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__ ( unittest.TestCase): def __init__( self : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int]=3 , UpperCamelCase__ : Dict=32 , UpperCamelCase__ : Tuple=3 , UpperCamelCase__ : Union[str, Any]=10 , UpperCamelCase__ : List[str]=[10, 20, 30, 40] , UpperCamelCase__ : Optional[int]=[1, 1, 2, 1] , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Any=True , UpperCamelCase__ : Tuple="relu" , UpperCamelCase__ : Union[str, Any]=3 , UpperCamelCase__ : Optional[int]=None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = parent SCREAMING_SNAKE_CASE : List[Any] = batch_size SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = embeddings_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_sizes SCREAMING_SNAKE_CASE : List[Any] = depths SCREAMING_SNAKE_CASE : Optional[Any] = is_training SCREAMING_SNAKE_CASE : Tuple = use_labels SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : List[str] = num_labels SCREAMING_SNAKE_CASE : Tuple = scope SCREAMING_SNAKE_CASE : Optional[Any] = len(lowerCAmelCase_ ) def __A ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : List[str] = self.get_config() return config, pixel_values def __A ( self : Tuple ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __A ( self : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = FlaxRegNetModel(config=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __A ( self : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class lowercase__ ( _UpperCamelCase , unittest.TestCase): UpperCamelCase_ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def __A ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = FlaxRegNetModelTester(self ) SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def __A ( self : int ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self : str ): '''simple docstring''' return def __A ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __A ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def __A ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def __A ( self : Tuple ): '''simple docstring''' pass def __A ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Any = model_class(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : str = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : int = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def __A ( self : List[Any] ): '''simple docstring''' def check_hidden_states_output(UpperCamelCase__ : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple ): SCREAMING_SNAKE_CASE : Dict = model_class(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) SCREAMING_SNAKE_CASE : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Optional[int] = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __A ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : Dict ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('''JIT Enabled''' ): SCREAMING_SNAKE_CASE : List[Any] = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE : Tuple = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def A ( ): SCREAMING_SNAKE_CASE : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class lowercase__ ( unittest.TestCase): @cached_property def __A ( self : Union[str, Any] ): '''simple docstring''' return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def __A ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) SCREAMING_SNAKE_CASE : Any = self.default_image_processor SCREAMING_SNAKE_CASE : Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE : int = image_processor(images=lowerCAmelCase_ , return_tensors='''np''' ) SCREAMING_SNAKE_CASE : Any = model(**lowerCAmelCase_ ) # verify the logits SCREAMING_SNAKE_CASE : str = (1, 1000) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4 ) )
248
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Optional[int]=8 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]=9_9 , lowerCAmelCase_ : List[Any]=1_6 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=3_6 , lowerCAmelCase_ : Optional[int]="gelu" , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : str=5_1_2 , lowerCAmelCase_ : List[str]=1_6 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Tuple=0.02 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : List[Any]=4 , lowerCAmelCase_ : List[str]=None , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope def lowercase ( self : Optional[int] ) -> Dict: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self : Any ) -> Union[str, Any]: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def lowercase ( self : Dict ) -> List[Any]: __lowerCAmelCase = self.get_config() __lowerCAmelCase = 3_0_0 return config def lowercase ( self : Optional[int] ) -> Union[str, Any]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = self.prepare_config_and_inputs() __lowerCAmelCase = True __lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = MraModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , ) -> Tuple: __lowerCAmelCase = True __lowerCAmelCase = MraModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , ) __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = MraForMaskedLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> str: __lowerCAmelCase = MraForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict ) -> Optional[Any]: __lowerCAmelCase = self.num_labels __lowerCAmelCase = MraForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict ) -> Any: __lowerCAmelCase = self.num_labels __lowerCAmelCase = MraForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] ) -> List[Any]: __lowerCAmelCase = self.num_choices __lowerCAmelCase = MraForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self : Tuple ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) a_ = False a_ = False a_ = False a_ = False a_ = () def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = MraModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : Tuple ) -> List[str]: self.config_tester.run_common_tests() def lowercase ( self : Optional[int] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase = type self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase_ ) def lowercase ( self : List[str] ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase_ ) def lowercase ( self : Tuple ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase_ ) @slow def lowercase ( self : Optional[int] ) -> Optional[int]: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = MraModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @unittest.skip(reason='MRA does not output attentions' ) def lowercase ( self : Optional[int] ) -> Tuple: return @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase ( self : Optional[Any] ) -> List[str]: __lowerCAmelCase = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) __lowerCAmelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : int ) -> Optional[int]: __lowerCAmelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) __lowerCAmelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = 5_0_2_6_5 __lowerCAmelCase = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : Any ) -> List[str]: __lowerCAmelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) __lowerCAmelCase = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = 5_0_2_6_5 __lowerCAmelCase = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
0
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig __UpperCamelCase : Optional[int] = logging.get_logger(__name__) # General docstring __UpperCamelCase : int = 'RegNetConfig' # Base docstring __UpperCamelCase : List[str] = 'facebook/regnet-y-040' __UpperCamelCase : List[Any] = [1, 1088, 7, 7] # Image classification docstring __UpperCamelCase : List[Any] = 'facebook/regnet-y-040' __UpperCamelCase : Union[str, Any] = 'tabby, tabby cat' __UpperCamelCase : str = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class _UpperCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[str] , _lowerCamelCase : int , _lowerCamelCase : int = 3 , _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1 , _lowerCamelCase : Optional[str] = "relu" , **_lowerCamelCase : Any , ): '''simple docstring''' super().__init__(**lowerCAmelCase_ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __lowerCamelCase : Any = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __lowerCamelCase : Union[str, Any] = tf.keras.layers.ConvaD( filters=lowerCAmelCase_ , kernel_size=lowerCAmelCase_ , strides=lowerCAmelCase_ , padding="""VALID""" , groups=lowerCAmelCase_ , use_bias=lowerCAmelCase_ , name="""convolution""" , ) __lowerCamelCase : List[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="""normalization""" ) __lowerCamelCase : Dict = ACTaFN[activation] if activation is not None else tf.identity def _snake_case ( self : Optional[Any] , _lowerCamelCase : List[str] ): '''simple docstring''' __lowerCamelCase : str = self.convolution(self.padding(lowerCAmelCase_ ) ) __lowerCamelCase : int = self.normalization(lowerCAmelCase_ ) __lowerCamelCase : Any = self.activation(lowerCAmelCase_ ) return hidden_state class _UpperCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Dict , _lowerCamelCase : RegNetConfig , **_lowerCamelCase : Optional[Any] ): '''simple docstring''' super().__init__(**lowerCAmelCase_ ) __lowerCamelCase : int = config.num_channels __lowerCamelCase : str = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="""embedder""" , ) def _snake_case ( self : Optional[int] , _lowerCamelCase : Optional[Any] ): '''simple docstring''' __lowerCamelCase : str = shape_list(lowerCAmelCase_ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __lowerCamelCase : str = tf.transpose(lowerCAmelCase_ , perm=(0, 2, 3, 1) ) __lowerCamelCase : Tuple = self.embedder(lowerCAmelCase_ ) return hidden_state class _UpperCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Dict , _lowerCamelCase : int , _lowerCamelCase : int = 2 , **_lowerCamelCase : Tuple ): '''simple docstring''' super().__init__(**lowerCAmelCase_ ) __lowerCamelCase : List[str] = tf.keras.layers.ConvaD( filters=lowerCAmelCase_ , kernel_size=1 , strides=lowerCAmelCase_ , use_bias=lowerCAmelCase_ , name="""convolution""" ) __lowerCamelCase : Tuple = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="""normalization""" ) def _snake_case ( self : List[Any] , _lowerCamelCase : tf.Tensor , _lowerCamelCase : bool = False ): '''simple docstring''' return self.normalization(self.convolution(lowerCAmelCase_ ) , training=lowerCAmelCase_ ) class _UpperCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : str , _lowerCamelCase : int , _lowerCamelCase : int , **_lowerCamelCase : Optional[int] ): '''simple docstring''' super().__init__(**lowerCAmelCase_ ) __lowerCamelCase : Tuple = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCAmelCase_ , name="""pooler""" ) __lowerCamelCase : str = [ tf.keras.layers.ConvaD(filters=lowerCAmelCase_ , kernel_size=1 , activation="""relu""" , name="""attention.0""" ), tf.keras.layers.ConvaD(filters=lowerCAmelCase_ , kernel_size=1 , activation="""sigmoid""" , name="""attention.2""" ), ] def _snake_case ( self : Optional[int] , _lowerCamelCase : List[str] ): '''simple docstring''' __lowerCamelCase : Any = self.pooler(lowerCAmelCase_ ) for layer_module in self.attention: __lowerCamelCase : Union[str, Any] = layer_module(lowerCAmelCase_ ) __lowerCamelCase : Optional[Any] = hidden_state * pooled return hidden_state class _UpperCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Dict , _lowerCamelCase : RegNetConfig , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int = 1 , **_lowerCamelCase : Optional[int] ): '''simple docstring''' super().__init__(**lowerCAmelCase_ ) __lowerCamelCase : Tuple = in_channels != out_channels or stride != 1 __lowerCamelCase : Dict = max(1 , out_channels // config.groups_width ) __lowerCamelCase : str = ( TFRegNetShortCut(lowerCAmelCase_ , stride=lowerCAmelCase_ , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __lowerCamelCase : int = [ TFRegNetConvLayer(lowerCAmelCase_ , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( lowerCAmelCase_ , stride=lowerCAmelCase_ , groups=lowerCAmelCase_ , activation=config.hidden_act , name="""layer.1""" ), TFRegNetConvLayer(lowerCAmelCase_ , kernel_size=1 , activation=lowerCAmelCase_ , name="""layer.2""" ), ] __lowerCamelCase : Tuple = ACTaFN[config.hidden_act] def _snake_case ( self : List[str] , _lowerCamelCase : str ): '''simple docstring''' __lowerCamelCase : int = hidden_state for layer_module in self.layers: __lowerCamelCase : int = layer_module(lowerCAmelCase_ ) __lowerCamelCase : Union[str, Any] = self.shortcut(lowerCAmelCase_ ) hidden_state += residual __lowerCamelCase : Optional[int] = self.activation(lowerCAmelCase_ ) return hidden_state class _UpperCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Optional[Any] , _lowerCamelCase : RegNetConfig , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int = 1 , **_lowerCamelCase : List[str] ): '''simple docstring''' super().__init__(**lowerCAmelCase_ ) __lowerCamelCase : List[str] = in_channels != out_channels or stride != 1 __lowerCamelCase : Union[str, Any] = max(1 , out_channels // config.groups_width ) __lowerCamelCase : int = ( TFRegNetShortCut(lowerCAmelCase_ , stride=lowerCAmelCase_ , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) __lowerCamelCase : Any = [ TFRegNetConvLayer(lowerCAmelCase_ , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( lowerCAmelCase_ , stride=lowerCAmelCase_ , groups=lowerCAmelCase_ , activation=config.hidden_act , name="""layer.1""" ), TFRegNetSELayer(lowerCAmelCase_ , reduced_channels=int(round(in_channels / 4 ) ) , name="""layer.2""" ), TFRegNetConvLayer(lowerCAmelCase_ , kernel_size=1 , activation=lowerCAmelCase_ , name="""layer.3""" ), ] __lowerCamelCase : int = ACTaFN[config.hidden_act] def _snake_case ( self : Tuple , _lowerCamelCase : Optional[Any] ): '''simple docstring''' __lowerCamelCase : List[Any] = hidden_state for layer_module in self.layers: __lowerCamelCase : Tuple = layer_module(lowerCAmelCase_ ) __lowerCamelCase : Optional[Any] = self.shortcut(lowerCAmelCase_ ) hidden_state += residual __lowerCamelCase : str = self.activation(lowerCAmelCase_ ) return hidden_state class _UpperCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Any , _lowerCamelCase : RegNetConfig , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int = 2 , _lowerCamelCase : int = 2 , **_lowerCamelCase : Optional[int] ): '''simple docstring''' super().__init__(**lowerCAmelCase_ ) __lowerCamelCase : Tuple = TFRegNetXLayer if config.layer_type == """x""" else TFRegNetYLayer __lowerCamelCase : int = [ # downsampling is done in the first layer with stride of 2 layer(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ , name="""layers.0""" ), *[layer(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def _snake_case ( self : int , _lowerCamelCase : int ): '''simple docstring''' for layer_module in self.layers: __lowerCamelCase : List[Any] = layer_module(lowerCAmelCase_ ) return hidden_state class _UpperCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[Any] , _lowerCamelCase : RegNetConfig , **_lowerCamelCase : str ): '''simple docstring''' super().__init__(**lowerCAmelCase_ ) __lowerCamelCase : str = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCAmelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="""stages.0""" , ) ) __lowerCamelCase : int = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCAmelCase_ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , depth=lowerCAmelCase_ , name=F"""stages.{i+1}""" ) ) def _snake_case ( self : Any , _lowerCamelCase : tf.Tensor , _lowerCamelCase : bool = False , _lowerCamelCase : bool = True ): '''simple docstring''' __lowerCamelCase : Optional[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __lowerCamelCase : List[Any] = hidden_states + (hidden_state,) __lowerCamelCase : List[Any] = stage_module(lowerCAmelCase_ ) if output_hidden_states: __lowerCamelCase : int = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase_ , hidden_states=lowerCAmelCase_ ) @keras_serializable class _UpperCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' a_ : int = RegNetConfig def __init__( self : Optional[Any] , _lowerCamelCase : Union[str, Any] , **_lowerCamelCase : Optional[Any] ): '''simple docstring''' super().__init__(**lowerCAmelCase_ ) __lowerCamelCase : Any = config __lowerCamelCase : Optional[Any] = TFRegNetEmbeddings(lowerCAmelCase_ , name="""embedder""" ) __lowerCamelCase : Optional[Any] = TFRegNetEncoder(lowerCAmelCase_ , name="""encoder""" ) __lowerCamelCase : Union[str, Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCAmelCase_ , name="""pooler""" ) @unpack_inputs def _snake_case ( self : str , _lowerCamelCase : tf.Tensor , _lowerCamelCase : Optional[bool] = None , _lowerCamelCase : Optional[bool] = None , _lowerCamelCase : bool = False , ): '''simple docstring''' __lowerCamelCase : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase : Dict = self.embedder(lowerCAmelCase_ , training=lowerCAmelCase_ ) __lowerCamelCase : str = self.encoder( lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , training=lowerCAmelCase_ ) __lowerCamelCase : Tuple = encoder_outputs[0] __lowerCamelCase : Optional[Any] = self.pooler(lowerCAmelCase_ ) # Change to NCHW output format have uniformity in the modules __lowerCamelCase : List[Any] = tf.transpose(lowerCAmelCase_ , perm=(0, 3, 1, 2) ) __lowerCamelCase : Dict = tf.transpose(lowerCAmelCase_ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __lowerCamelCase : Optional[int] = tuple([tf.transpose(lowerCAmelCase_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase_ , pooler_output=lowerCAmelCase_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class _UpperCamelCase ( _UpperCamelCase ): '''simple docstring''' a_ : Any = RegNetConfig a_ : Optional[Any] = "regnet" a_ : str = "pixel_values" @property def _snake_case ( self : Tuple ): '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) , dtype=tf.floataa )} __UpperCamelCase : List[str] = R'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' __UpperCamelCase : Union[str, Any] = R'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top.",_UpperCamelCase,) class _UpperCamelCase ( _UpperCamelCase ): '''simple docstring''' def __init__( self : Dict , _lowerCamelCase : RegNetConfig , *_lowerCamelCase : Tuple , **_lowerCamelCase : List[str] ): '''simple docstring''' super().__init__(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCamelCase : Union[str, Any] = TFRegNetMainLayer(lowerCAmelCase_ , name="""regnet""" ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _snake_case ( self : int , _lowerCamelCase : tf.Tensor , _lowerCamelCase : Optional[bool] = None , _lowerCamelCase : Optional[bool] = None , _lowerCamelCase : List[Any]=False , ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase : Any = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase : int = self.regnet( pixel_values=lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , training=lowerCAmelCase_ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ",_UpperCamelCase,) class _UpperCamelCase ( _UpperCamelCase,_UpperCamelCase ): '''simple docstring''' def __init__( self : str , _lowerCamelCase : RegNetConfig , *_lowerCamelCase : Optional[Any] , **_lowerCamelCase : Tuple ): '''simple docstring''' super().__init__(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCamelCase : str = config.num_labels __lowerCamelCase : int = TFRegNetMainLayer(lowerCAmelCase_ , name="""regnet""" ) # classification head __lowerCamelCase : Dict = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="""classifier.1""" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _snake_case ( self : Optional[int] , _lowerCamelCase : tf.Tensor = None , _lowerCamelCase : tf.Tensor = None , _lowerCamelCase : bool = None , _lowerCamelCase : bool = None , _lowerCamelCase : str=False , ): '''simple docstring''' __lowerCamelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase : Any = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase : str = self.regnet( lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , training=lowerCAmelCase_ ) __lowerCamelCase : List[str] = outputs.pooler_output if return_dict else outputs[1] __lowerCamelCase : Any = self.classifier[0](lowerCAmelCase_ ) __lowerCamelCase : Any = self.classifier[1](lowerCAmelCase_ ) __lowerCamelCase : List[Any] = None if labels is None else self.hf_compute_loss(labels=lowerCAmelCase_ , logits=lowerCAmelCase_ ) if not return_dict: __lowerCamelCase : Tuple = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCAmelCase_ , logits=lowerCAmelCase_ , hidden_states=outputs.hidden_states )
519
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _snake_case : Union[str, Any] = 2 class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , *, # begin keyword-only arguments lowerCAmelCase_ : str="<s>" , lowerCAmelCase_ : Dict="<pad>" , lowerCAmelCase_ : Any="</s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Optional[Any]=None , ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = bos, unk, pad, eos __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = {} __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = len(self.symbols ) def __eq__( self : Dict , lowerCAmelCase_ : Dict ) -> str: return self.indices == other.indices def __getitem__( self : List[Any] , lowerCAmelCase_ : int ) -> Union[str, Any]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : Tuple ) -> List[Any]: return len(self.symbols ) def __contains__( self : Optional[Any] , lowerCAmelCase_ : Dict ) -> Optional[int]: return sym in self.indices @classmethod def lowercase ( cls : Dict , lowerCAmelCase_ : str ) -> str: __lowerCAmelCase = cls() d.add_from_file(lowerCAmelCase_ ) return d def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : Any=False ) -> Optional[Any]: if word in self.indices and not overwrite: __lowerCAmelCase = self.indices[word] __lowerCAmelCase = self.count[idx] + n return idx else: __lowerCAmelCase = len(self.symbols ) __lowerCAmelCase = idx self.symbols.append(lowerCAmelCase_ ) self.count.append(lowerCAmelCase_ ) return idx def lowercase ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> Dict: return 0 def lowercase ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> int: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: with open(lowerCAmelCase_ , 'r' , encoding='utf-8' ) as fd: self.add_from_file(lowerCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(lowerCAmelCase_ ) ) return __lowerCAmelCase = f.readlines() __lowerCAmelCase = self._load_meta(lowerCAmelCase_ ) for line in lines[indices_start_line:]: try: __lowerCAmelCase , __lowerCAmelCase = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": __lowerCAmelCase = True __lowerCAmelCase , __lowerCAmelCase = line.rsplit(' ' , 1 ) else: __lowerCAmelCase = False __lowerCAmelCase = int(lowerCAmelCase_ ) __lowerCAmelCase = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(lowerCAmelCase_ ) ) self.add_symbol(lowerCAmelCase_ , n=lowerCAmelCase_ , overwrite=lowerCAmelCase_ ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def a_ ( lowerCAmelCase_ : List[str] ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} __lowerCAmelCase = dict((re.sub(R'@@$', '', lowerCAmelCase_ ), v) if k.endswith('@@' ) else (re.sub(R'$', '</w>', lowerCAmelCase_ ), v) for k, v in d.items() ) __lowerCAmelCase = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowerCAmelCase = d[k] # restore return da def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str] ): # prep if not os.path.exists(lowerCAmelCase_ ): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(lowerCAmelCase_, exist_ok=lowerCAmelCase_ ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'checkpoint.pt' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""" ) __lowerCAmelCase = torch.load(lowerCAmelCase_, map_location='cpu' ) __lowerCAmelCase = chkpt['cfg']['model'] # dicts __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'dict.txt' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {dict_file} does not exist!""" ) __lowerCAmelCase = Dictionary.load(lowerCAmelCase_ ) __lowerCAmelCase = rewrite_dict_keys(src_dict.indices ) __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, VOCAB_FILES_NAMES['vocab_file'] ) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # merges_file (bpecodes) __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'bpecodes' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""" ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(lowerCAmelCase_, lowerCAmelCase_ ) # model config __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'config.json' ) __lowerCAmelCase = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1E-12, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # tokenizer config __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F"""Generating {biogpt_tokenizer_config_file}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # model __lowerCAmelCase = chkpt['model'] # remove unneeded keys __lowerCAmelCase = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): __lowerCAmelCase = model_state_dict.pop(lowerCAmelCase_ ) else: __lowerCAmelCase = model_state_dict.pop(lowerCAmelCase_ ) __lowerCAmelCase = BioGptConfig.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = BioGptForCausalLM(lowerCAmelCase_ ) # check that it loads ok model_new.load_state_dict(lowerCAmelCase_ ) # save __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(lowerCAmelCase_, lowerCAmelCase_ ) print('Conversion is done!' ) if __name__ == "__main__": _snake_case : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : int = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
342
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" a_ = """pixel_values""" a_ = False a_ = TimmBackboneConfig def __init__( self : Tuple , lowerCAmelCase_ : Any , **lowerCAmelCase_ : Optional[int] ) -> Optional[Any]: requires_backends(self , 'timm' ) super().__init__(lowerCAmelCase_ ) __lowerCAmelCase = config if config.backbone is None: raise ValueError('backbone is not set in the config. Please set it to a timm model name.' ) if config.backbone not in timm.list_models(): raise ValueError(f"""backbone {config.backbone} is not supported by timm.""" ) if hasattr(lowerCAmelCase_ , 'out_features' ) and config.out_features is not None: raise ValueError('out_features is not supported by TimmBackbone. Please use out_indices instead.' ) __lowerCAmelCase = getattr(lowerCAmelCase_ , 'use_pretrained_backbone' , lowerCAmelCase_ ) if pretrained is None: raise ValueError('use_pretrained_backbone is not set in the config. Please set it to True or False.' ) # We just take the final layer by default. This matches the default for the transformers models. __lowerCAmelCase = config.out_indices if getattr(lowerCAmelCase_ , 'out_indices' , lowerCAmelCase_ ) is not None else (-1,) __lowerCAmelCase = timm.create_model( config.backbone , pretrained=lowerCAmelCase_ , features_only=config.features_only , in_chans=config.num_channels , out_indices=lowerCAmelCase_ , **lowerCAmelCase_ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. __lowerCAmelCase = self._backbone.return_layers __lowerCAmelCase = {layer['module']: str(lowerCAmelCase_ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(lowerCAmelCase_ ) @classmethod def lowercase ( cls : int , lowerCAmelCase_ : Dict , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['vision', 'timm'] ) from ...models.timm_backbone import TimmBackboneConfig __lowerCAmelCase = kwargs.pop('config' , TimmBackboneConfig() ) __lowerCAmelCase = kwargs.pop('use_timm_backbone' , lowerCAmelCase_ ) if not use_timm: raise ValueError('use_timm_backbone must be True for timm backbones' ) __lowerCAmelCase = kwargs.pop('num_channels' , config.num_channels ) __lowerCAmelCase = kwargs.pop('features_only' , config.features_only ) __lowerCAmelCase = kwargs.pop('use_pretrained_backbone' , config.use_pretrained_backbone ) __lowerCAmelCase = kwargs.pop('out_indices' , config.out_indices ) __lowerCAmelCase = TimmBackboneConfig( backbone=lowerCAmelCase_ , num_channels=lowerCAmelCase_ , features_only=lowerCAmelCase_ , use_pretrained_backbone=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , ) return super()._from_config(lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Tuple , lowerCAmelCase_ : int ) -> Dict: pass def lowercase ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Any=None , **lowerCAmelCase_ : Dict ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('Cannot output attentions for timm backbones at the moment' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone __lowerCAmelCase = self._all_layers __lowerCAmelCase = self._backbone(lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = self._return_layers __lowerCAmelCase = tuple(hidden_states[i] for i in self.out_indices ) else: __lowerCAmelCase = self._backbone(lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = None __lowerCAmelCase = tuple(lowerCAmelCase_ ) __lowerCAmelCase = tuple(lowerCAmelCase_ ) if hidden_states is not None else None if not return_dict: __lowerCAmelCase = (feature_maps,) if output_hidden_states: __lowerCAmelCase = output + (hidden_states,) return output return BackboneOutput(feature_maps=lowerCAmelCase_ , hidden_states=lowerCAmelCase_ , attentions=lowerCAmelCase_ )
53
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowerCAmelCase__ ( ): snake_case_ : Optional[Any] = ArgumentParser( description=( "PyTorch TPU distributed training launch " "helper utility that will spawn up " "multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=lowerCAmelCase_ , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=lowerCAmelCase_ , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=lowerCAmelCase_ ) return parser.parse_args() def lowerCAmelCase__ ( ): snake_case_ : Optional[int] = parse_args() # Import training_script as a module. snake_case_ : Tuple = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) snake_case_ : Dict = script_fpath.stem snake_case_ : Optional[Any] = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv snake_case_ : str = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
568
from __future__ import annotations def a_ ( lowerCAmelCase_ : list[float] ): if len(lowerCAmelCase_ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) __lowerCAmelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
0
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class A__ ( _UpperCamelCase ): """simple docstring""" __A : Optional[Any] = (UnCLIPScheduler,) def __lowercase ( self , **lowercase) -> str: '''simple docstring''' a__ : Optional[Any] = { 'num_train_timesteps': 1000, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**lowerCAmelCase_) return config def __lowercase ( self) -> Optional[int]: '''simple docstring''' for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_) def __lowercase ( self) -> List[Any]: '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowerCAmelCase_) def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase_) def __lowercase ( self) -> List[Any]: '''simple docstring''' for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowerCAmelCase_) def __lowercase ( self) -> Any: '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowerCAmelCase_) def __lowercase ( self) -> Tuple: '''simple docstring''' for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowerCAmelCase_ , prev_timestep=lowerCAmelCase_) def __lowercase ( self) -> Dict: '''simple docstring''' a__ : Any = self.scheduler_classes[0] a__ : str = self.get_scheduler_config(variance_type='fixed_small_log') a__ : Optional[int] = scheduler_class(**lowerCAmelCase_) assert torch.sum(torch.abs(scheduler._get_variance(0) - 1.0000e-10)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0_54_96_25)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.9_99_49_87)) < 1e-5 def __lowercase ( self) -> int: '''simple docstring''' a__ : int = self.scheduler_classes[0] a__ : int = self.get_scheduler_config(variance_type='learned_range') a__ : str = scheduler_class(**lowerCAmelCase_) a__ : Union[str, Any] = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowerCAmelCase_) - -10.1_71_27_90 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=lowerCAmelCase_) - -5.7_99_80_52 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=lowerCAmelCase_) - -0.0_01_00_11 < 1e-5 def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : Dict = self.scheduler_classes[0] a__ : Optional[int] = self.get_scheduler_config() a__ : int = scheduler_class(**lowerCAmelCase_) a__ : List[Any] = scheduler.timesteps a__ : int = self.dummy_model() a__ : Optional[int] = self.dummy_sample_deter a__ : List[Any] = torch.manual_seed(0) for i, t in enumerate(lowerCAmelCase_): # 1. predict noise residual a__ : Dict = model(lowerCAmelCase_ , lowerCAmelCase_) # 2. predict previous mean of sample x_t-1 a__ : Dict = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_).prev_sample a__ : Any = pred_prev_sample a__ : str = torch.sum(torch.abs(lowerCAmelCase_)) a__ : Any = torch.mean(torch.abs(lowerCAmelCase_)) assert abs(result_sum.item() - 252.268_2495) < 1e-2 assert abs(result_mean.item() - 0.3_28_47_43) < 1e-3 def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : Tuple = self.scheduler_classes[0] a__ : Any = self.get_scheduler_config() a__ : Optional[Any] = scheduler_class(**lowerCAmelCase_) scheduler.set_timesteps(25) a__ : int = scheduler.timesteps a__ : int = self.dummy_model() a__ : List[str] = self.dummy_sample_deter a__ : int = torch.manual_seed(0) for i, t in enumerate(lowerCAmelCase_): # 1. predict noise residual a__ : Optional[Any] = model(lowerCAmelCase_ , lowerCAmelCase_) if i + 1 == timesteps.shape[0]: a__ : Any = None else: a__ : List[str] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 a__ : Union[str, Any] = scheduler.step( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , prev_timestep=lowerCAmelCase_ , generator=lowerCAmelCase_).prev_sample a__ : Optional[Any] = pred_prev_sample a__ : Dict = torch.sum(torch.abs(lowerCAmelCase_)) a__ : str = torch.mean(torch.abs(lowerCAmelCase_)) assert abs(result_sum.item() - 258.204_4983) < 1e-2 assert abs(result_mean.item() - 0.3_36_20_38) < 1e-3 def __lowercase ( self) -> Optional[Any]: '''simple docstring''' pass def __lowercase ( self) -> Tuple: '''simple docstring''' pass
302
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Union[str, Any]=1_0 , lowerCAmelCase_ : List[str]=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple="relu" , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : Optional[int]=None , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = embeddings_size __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_act __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = len(lowerCAmelCase_ ) def lowercase ( self : Optional[int] ) -> List[Any]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def lowercase ( self : Tuple ) -> List[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] ) -> str: __lowerCAmelCase = FlaxRegNetModel(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowercase ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int ) -> Tuple: __lowerCAmelCase = self.num_labels __lowerCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () a_ = False a_ = False a_ = False def lowercase ( self : Dict ) -> None: __lowerCAmelCase = FlaxRegNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : int ) -> Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : str ) -> Union[str, Any]: return def lowercase ( self : Dict ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def lowercase ( self : Union[str, Any] ) -> Any: pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def lowercase ( self : Tuple ) -> Tuple: pass def lowercase ( self : Optional[Any] ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: def check_hidden_states_output(lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : str ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Dict ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('JIT Enabled' ): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def a_ ( ): __lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : Union[str, Any] ) -> Optional[Any]: return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def lowercase ( self : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCAmelCase_ , return_tensors='np' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) # verify the logits __lowerCAmelCase = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
0
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging _lowerCAmelCase: Optional[Any] = ( 'https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py' ) _lowerCAmelCase: Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name def _lowercase( ): a__ ='https://pypi.org/pypi/diffusers/json' a__ =json.loads(request.urlopen(lowerCAmelCase_ ).read() )['releases'].keys() return sorted(lowerCAmelCase_ , key=lambda __a : version.Version(lowerCAmelCase_ ) ) def _lowercase( ): # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(lowerCAmelCase_ ) os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) a__ =Path(lowerCAmelCase_ ) / '__init__.py' if not init_path.exists(): init_path.touch() def _lowercase( __a : Union[str, os.PathLike] ): init_hf_modules() a__ =Path(lowerCAmelCase_ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) a__ =dynamic_module_path / '__init__.py' if not init_path.exists(): init_path.touch() def _lowercase( __a : List[Any] ): with open(lowerCAmelCase_ , 'r' , encoding='utf-8' ) as f: a__ =f.read() # Imports of the form `import .xxx` a__ =re.findall('^\s*import\s+\.(\S+)\s*$' , lowerCAmelCase_ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('^\s*from\s+\.(\S+)\s+import' , lowerCAmelCase_ , flags=re.MULTILINE ) # Unique-ify return list(set(lowerCAmelCase_ ) ) def _lowercase( __a : List[str] ): a__ =False a__ =[module_file] a__ =[] # Let's recurse through all relative imports while not no_change: a__ =[] for f in files_to_check: new_imports.extend(get_relative_imports(lowerCAmelCase_ ) ) a__ =Path(lowerCAmelCase_ ).parent a__ =[str(module_path / m ) for m in new_imports] a__ =[f for f in new_import_files if f not in all_relative_imports] a__ =[f"""{f}.py""" for f in new_import_files] a__ =len(lowerCAmelCase_ ) == 0 all_relative_imports.extend(lowerCAmelCase_ ) return all_relative_imports def _lowercase( __a : List[str] ): with open(lowerCAmelCase_ , 'r' , encoding='utf-8' ) as f: a__ =f.read() # Imports of the form `import xxx` a__ =re.findall('^\s*import\s+(\S+)\s*$' , lowerCAmelCase_ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('^\s*from\s+(\S+)\s+import' , lowerCAmelCase_ , flags=re.MULTILINE ) # Only keep the top-level module a__ =[imp.split('.' )[0] for imp in imports if not imp.startswith('.' )] # Unique-ify and test we got them all a__ =list(set(lowerCAmelCase_ ) ) a__ =[] for imp in imports: try: importlib.import_module(lowerCAmelCase_ ) except ImportError: missing_packages.append(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: raise ImportError( 'This modeling file requires the following packages that were not found in your environment: ' f"""{', '.join(lowerCAmelCase_ )}. Run `pip install {' '.join(lowerCAmelCase_ )}`""" ) return get_relative_imports(lowerCAmelCase_ ) def _lowercase( __a : List[Any] , __a : Dict ): a__ =module_path.replace(os.path.sep , '.' ) a__ =importlib.import_module(lowerCAmelCase_ ) if class_name is None: return find_pipeline_class(lowerCAmelCase_ ) return getattr(lowerCAmelCase_ , lowerCAmelCase_ ) def _lowercase( __a : Optional[int] ): from ..pipelines import DiffusionPipeline a__ =dict(inspect.getmembers(lowerCAmelCase_ , inspect.isclass ) ) a__ =None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , lowerCAmelCase_ ) and cls.__module__.split('.' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:""" f""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in""" f""" {loaded_module}.""" ) a__ =cls return pipeline_class def _lowercase( __a : Union[str, os.PathLike] , __a : str , __a : Optional[Union[str, os.PathLike]] = None , __a : bool = False , __a : bool = False , __a : Optional[Dict[str, str]] = None , __a : Optional[Union[bool, str]] = None , __a : Optional[str] = None , __a : bool = False , ): a__ =str(lowerCAmelCase_ ) a__ =os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) if os.path.isfile(lowerCAmelCase_ ): a__ =module_file_or_url a__ ='local' elif pretrained_model_name_or_path.count('/' ) == 0: a__ =get_diffusers_versions() # cut ".dev0" a__ ='v' + '.'.join(__version__.split('.' )[:3] ) # retrieve github version that matches if revision is None: a__ =latest_version if latest_version[1:] in available_versions else 'main' logger.info(f"""Defaulting to latest_version: {revision}.""" ) elif revision in available_versions: a__ =f"""v{revision}""" elif revision == "main": a__ =revision else: raise ValueError( f"""`custom_revision`: {revision} does not exist. Please make sure to choose one of""" f""" {', '.join(available_versions + ['main'] )}.""" ) # community pipeline on GitHub a__ =COMMUNITY_PIPELINES_URL.format(revision=lowerCAmelCase_ , pipeline=lowerCAmelCase_ ) try: a__ =cached_download( lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , force_download=lowerCAmelCase_ , proxies=lowerCAmelCase_ , resume_download=lowerCAmelCase_ , local_files_only=lowerCAmelCase_ , use_auth_token=lowerCAmelCase_ , ) a__ ='git' a__ =pretrained_model_name_or_path + '.py' except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise else: try: # Load from URL or cache if already cached a__ =hf_hub_download( lowerCAmelCase_ , lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , force_download=lowerCAmelCase_ , proxies=lowerCAmelCase_ , resume_download=lowerCAmelCase_ , local_files_only=lowerCAmelCase_ , use_auth_token=lowerCAmelCase_ , ) a__ =os.path.join('local' , '--'.join(pretrained_model_name_or_path.split('/' ) ) ) except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise # Check we have all the requirements in our environment a__ =check_imports(lowerCAmelCase_ ) # Now we move the module inside our cached dynamic modules. a__ =DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(lowerCAmelCase_ ) a__ =Path(lowerCAmelCase_ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(lowerCAmelCase_ , submodule_path / module_file ) for module_needed in modules_needed: a__ =f"""{module_needed}.py""" shutil.copy(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): a__ =use_auth_token elif use_auth_token is True: a__ =HfFolder.get_token() else: a__ =None a__ =model_info(lowerCAmelCase_ , revision=lowerCAmelCase_ , token=lowerCAmelCase_ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. a__ =submodule_path / commit_hash a__ =full_submodule + os.path.sep + commit_hash create_dynamic_module(lowerCAmelCase_ ) if not (submodule_path / module_file).exists(): shutil.copy(lowerCAmelCase_ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( lowerCAmelCase_ , f"""{module_needed}.py""" , cache_dir=lowerCAmelCase_ , force_download=lowerCAmelCase_ , resume_download=lowerCAmelCase_ , proxies=lowerCAmelCase_ , use_auth_token=lowerCAmelCase_ , revision=lowerCAmelCase_ , local_files_only=lowerCAmelCase_ , ) return os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) def _lowercase( __a : Union[str, os.PathLike] , __a : str , __a : Optional[str] = None , __a : Optional[Union[str, os.PathLike]] = None , __a : bool = False , __a : bool = False , __a : Optional[Dict[str, str]] = None , __a : Optional[Union[bool, str]] = None , __a : Optional[str] = None , __a : bool = False , **__a : List[Any] , ): a__ =get_cached_module_file( lowerCAmelCase_ , lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , force_download=lowerCAmelCase_ , resume_download=lowerCAmelCase_ , proxies=lowerCAmelCase_ , use_auth_token=lowerCAmelCase_ , revision=lowerCAmelCase_ , local_files_only=lowerCAmelCase_ , ) return get_class_in_module(lowerCAmelCase_ , final_module.replace('.py' , '' ) )
20
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process _snake_case : Optional[int] = logging.getLogger(__name__) _snake_case : Dict = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) _snake_case : List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(_UpperCamelCase )} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a_ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def lowercase ( self : List[Any] ) -> List[Any]: if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path' ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ = field(default=_UpperCamelCase , metadata={"""help""": """The input training data file (a text file)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a_ = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a_ = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def lowercase ( self : int ) -> int: if self.train_file is not None: __lowerCAmelCase = self.train_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __lowerCAmelCase = self.validation_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Union[str, Any] ): with open(lowerCAmelCase_, 'r', encoding='utf-8' ) as f: __lowerCAmelCase = [json.loads(lowerCAmelCase_ ) for line in f.read().splitlines() if (len(lowerCAmelCase_ ) > 0 and not line.isspace())] assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) __lowerCAmelCase = {c: dataset[c] for c in dataset.column_names} __lowerCAmelCase = refs return Dataset.from_dict(lowerCAmelCase_ ) def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s', lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset(data_args.dataset_name, data_args.dataset_config_name ) if "validation" not in datasets.keys(): __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[:{data_args.validation_split_percentage}%]""", ) __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[{data_args.validation_split_percentage}%:]""", ) else: __lowerCAmelCase = {} if data_args.train_file is not None: __lowerCAmelCase = data_args.train_file if data_args.validation_file is not None: __lowerCAmelCase = data_args.validation_file __lowerCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": __lowerCAmelCase = 'text' __lowerCAmelCase = load_dataset(lowerCAmelCase_, data_files=lowerCAmelCase_ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.config_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: __lowerCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: __lowerCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path, from_tf=bool('.ckpt' in model_args.model_name_or_path ), config=lowerCAmelCase_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info('Training new model from scratch' ) __lowerCAmelCase = AutoModelForMaskedLM.from_config(lowerCAmelCase_ ) model.resize_token_embeddings(len(lowerCAmelCase_ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __lowerCAmelCase = datasets['train'].column_names else: __lowerCAmelCase = datasets['validation'].column_names __lowerCAmelCase = 'text' if 'text' in column_names else column_names[0] __lowerCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(lowerCAmelCase_ : str ): # Remove empty lines __lowerCAmelCase = [line for line in examples['text'] if len(lowerCAmelCase_ ) > 0 and not line.isspace()] return tokenizer(examples['text'], padding=lowerCAmelCase_, truncation=lowerCAmelCase_, max_length=data_args.max_seq_length ) __lowerCAmelCase = datasets.map( lowerCAmelCase_, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, remove_columns=[text_column_name], load_from_cache_file=not data_args.overwrite_cache, ) # Add the chinese references if provided if data_args.train_ref_file is not None: __lowerCAmelCase = add_chinese_references(tokenized_datasets['train'], data_args.train_ref_file ) if data_args.validation_ref_file is not None: __lowerCAmelCase = add_chinese_references( tokenized_datasets['validation'], data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __lowerCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: __lowerCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. __lowerCAmelCase = DataCollatorForWholeWordMask(tokenizer=lowerCAmelCase_, mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowerCAmelCase = Trainer( model=lowerCAmelCase_, args=lowerCAmelCase_, train_dataset=tokenized_datasets['train'] if training_args.do_train else None, eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None, tokenizer=lowerCAmelCase_, data_collator=lowerCAmelCase_, ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload __lowerCAmelCase = os.path.join(training_args.output_dir, 'train_results.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir, 'trainer_state.json' ) ) # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = math.exp(eval_output['eval_loss'] ) __lowerCAmelCase = perplexity __lowerCAmelCase = os.path.join(training_args.output_dir, 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def a_ ( lowerCAmelCase_ : Tuple ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
53
0
# Function to print upper half of diamond (pyramid) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: for i in range(0 ,lowerCAmelCase_ ): for _ in range(0 ,n - i - 1 ): # printing spaces print(" " ,end="" ) for _ in range(0 ,i + 1 ): # printing stars print("* " ,end="" ) print() def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: for i in range(lowerCAmelCase_ ,0 ,-1 ): for _ in range(lowerCAmelCase_ ,0 ,-1 ): # printing stars print("* " ,end="" ) print() for _ in range(n - i + 1 ,0 ,-1 ): # printing spaces print(" " ,end="" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Any: if n <= 0: print(" ... .... nothing printing :(" ) return floyd(lowerCAmelCase_ ) # upper half reverse_floyd(lowerCAmelCase_ ) # lower half if __name__ == "__main__": print(r'''| /\ | |- | |- |--| |\ /| |-''') print(r'''|/ \| |- |_ |_ |__| | \/ | |_''') __a : Optional[Any] = 1 while K: __a : Any = int(input('''enter the number and , and see the magic : ''')) print() pretty_print(user_number) __a : Optional[int] = int(input('''press 0 to exit... and 1 to continue...''')) print('''Good Bye...''')
397
def a_ ( lowerCAmelCase_ : int = 200_0000 ): __lowerCAmelCase = [0 for i in range(n + 1 )] __lowerCAmelCase = 1 __lowerCAmelCase = 1 for i in range(2, int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i, n + 1, lowerCAmelCase_ ): __lowerCAmelCase = 1 __lowerCAmelCase = 0 for i in range(lowerCAmelCase_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"""{solution() = }""")
53
0
import itertools import math def UpperCamelCase__ ( UpperCAmelCase_ ) -> List[str]: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase__ ( ) -> str: '''simple docstring''' _lowercase : Optional[Any] = 2 while True: if is_prime(lowerCAmelCase_ ): yield num num += 1 def UpperCamelCase__ ( UpperCAmelCase_ = 10001 ) -> Any: '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , lowerCAmelCase_ ) ) if __name__ == "__main__": print(F"""{solution() = }""")
322
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _snake_case : Tuple = logging.getLogger() _snake_case : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Any , lowerCAmelCase_ : Dict ) -> Optional[int]: os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowerCAmelCase = {'source': 'What is love ?', 'target': 'life'} __lowerCAmelCase = {'train': 1_2, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: __lowerCAmelCase = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(lowerCAmelCase_ , f"""{split}.{field}""" ) , 'w' ) as f: f.write(lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : str = "pytorch" ) -> List[str]: __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'output' ) __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'data' ) self._create_dummy_data(data_dir=lowerCAmelCase_ ) __lowerCAmelCase = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) __lowerCAmelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowerCAmelCase_ , env=self.get_env() ) __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'metrics.json' ) with open(lowerCAmelCase_ ) as f: __lowerCAmelCase = json.load(lowerCAmelCase_ ) return result @require_torch_gpu def lowercase ( self : str ) -> int: __lowerCAmelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def lowercase ( self : List[str] ) -> Dict: __lowerCAmelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def lowercase ( self : int ) -> Tuple: __lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def lowercase ( self : List[Any] ) -> str: __lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
53
0
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": A__ = input("""Enter image url: """).strip() print(F'Downloading image from {url} ...') A__ = BeautifulSoup(requests.get(url).content, """html.parser""") # The image URL is in the content field of the first meta tag with property og:image A__ = soup.find("""meta""", {"""property""": """og:image"""})['content'] A__ = requests.get(image_url).content A__ = F'{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg' with open(file_name, """wb""") as fp: fp.write(image_data) print(F'Done. Image saved to disk as {file_name}.')
166
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]="resnet50" , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Optional[Any]=True , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = out_indices if out_indices is not None else [4] __lowerCAmelCase = stage_names __lowerCAmelCase = out_features __lowerCAmelCase = backbone __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = use_pretrained_backbone __lowerCAmelCase = is_training def lowercase ( self : List[str] ) -> Any: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def lowercase ( self : List[Any] ) -> Union[str, Any]: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase ( self : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ) -> int: __lowerCAmelCase = TimmBackbone(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 1_4, 1_4) , ) def lowercase ( self : List[str] ) -> str: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (TimmBackbone,) if is_torch_available() else () a_ = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Tuple ) -> int: __lowerCAmelCase = TimmBackboneModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : Dict ) -> List[str]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Union[str, Any] ) -> Optional[int]: __lowerCAmelCase = 'resnet18' __lowerCAmelCase = 'microsoft/resnet-18' __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ , out_indices=[1, 2, 3] ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def lowercase ( self : List[str] ) -> Tuple: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def lowercase ( self : Dict ) -> int: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def lowercase ( self : str ) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase ( self : Any ) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase ( self : Optional[int] ) -> Optional[Any]: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def lowercase ( self : Dict ) -> Any: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Any ) -> Optional[int]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase ( self : Union[str, Any] ) -> Tuple: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase ( self : List[str] ) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Dict ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Tuple ) -> List[str]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def lowercase ( self : int ) -> Optional[int]: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def lowercase ( self : Union[str, Any] ) -> str: pass @unittest.skip('Safetensors is not supported by timm.' ) def lowercase ( self : Dict ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : List[str] ) -> Optional[Any]: pass def lowercase ( self : Union[str, Any] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = self.has_attentions # no need to test all models as different heads yield the same functionality __lowerCAmelCase = self.all_model_classes[0] __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = outputs[0][-1] # Encoder-/Decoder-only models __lowerCAmelCase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowerCAmelCase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowerCAmelCase_ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) __lowerCAmelCase = None __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) __lowerCAmelCase = False __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ )
53
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = { 'edbeeching/decision-transformer-gym-hopper-medium': ( 'https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __lowercase (_UpperCamelCase ): """simple docstring""" _snake_case = """decision_transformer""" _snake_case = ["""past_key_values"""] _snake_case = { """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , A=1_7 , A=4 , A=1_2_8 , A=4_0_9_6 , A=True , A=1 , A=1_0_2_4 , A=3 , A=1 , A=None , A="relu" , A=0.1 , A=0.1 , A=0.1 , A=1e-5 , A=0.02 , A=True , A=True , A=5_0_2_5_6 , A=5_0_2_5_6 , A=False , A=False , **A , ) -> Optional[Any]: snake_case : Dict = state_dim snake_case : Dict = act_dim snake_case : Optional[int] = hidden_size snake_case : str = max_ep_len snake_case : Tuple = action_tanh snake_case : Union[str, Any] = vocab_size snake_case : Optional[int] = n_positions snake_case : str = n_layer snake_case : Tuple = n_head snake_case : Dict = n_inner snake_case : Optional[Any] = activation_function snake_case : Union[str, Any] = resid_pdrop snake_case : int = embd_pdrop snake_case : Union[str, Any] = attn_pdrop snake_case : List[Any] = layer_norm_epsilon snake_case : Optional[Any] = initializer_range snake_case : Optional[Any] = scale_attn_weights snake_case : Optional[int] = use_cache snake_case : Dict = scale_attn_by_inverse_layer_idx snake_case : Union[str, Any] = reorder_and_upcast_attn snake_case : Optional[Any] = bos_token_id snake_case : Optional[int] = eos_token_id super().__init__(bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ )
587
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def a_ ( lowerCAmelCase_ : str=None ): if subparsers is not None: __lowerCAmelCase = subparsers.add_parser('env' ) else: __lowerCAmelCase = argparse.ArgumentParser('Accelerate env command' ) parser.add_argument( '--config_file', default=lowerCAmelCase_, help='The config file to use for the default values in the launching script.' ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def a_ ( lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = torch.__version__ __lowerCAmelCase = torch.cuda.is_available() __lowerCAmelCase = is_xpu_available() __lowerCAmelCase = is_npu_available() __lowerCAmelCase = 'Not found' # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowerCAmelCase_ ): __lowerCAmelCase = load_config_from_file(args.config_file ).to_dict() __lowerCAmelCase = { '`Accelerate` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Numpy version': np.__version__, 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'PyTorch XPU available': str(lowerCAmelCase_ ), 'PyTorch NPU available': str(lowerCAmelCase_ ), 'System RAM': F"""{psutil.virtual_memory().total / 1024 ** 3:.2f} GB""", } if pt_cuda_available: __lowerCAmelCase = torch.cuda.get_device_name() print('\nCopy-and-paste the text below in your GitHub issue\n' ) print('\n'.join([F"""- {prop}: {val}""" for prop, val in info.items()] ) ) print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:' ) __lowerCAmelCase = ( '\n'.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else F"""\t{accelerate_config}""" ) print(lowerCAmelCase_ ) __lowerCAmelCase = accelerate_config return info def a_ ( ): __lowerCAmelCase = env_command_parser() __lowerCAmelCase = parser.parse_args() env_command(lowerCAmelCase_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
53
0
import os import time import numpy as np import onnxruntime as ort UpperCamelCase = '1' UpperCamelCase = '0' UpperCamelCase = '1' UpperCamelCase = ort.SessionOptions() UpperCamelCase = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print('Create inference session...') UpperCamelCase = ['TensorrtExecutionProvider', 'CUDAExecutionProvider'] UpperCamelCase = ort.InferenceSession('model.onnx', sess_options=sess_opt, providers=execution_provider) UpperCamelCase = ort.RunOptions() UpperCamelCase = 128 UpperCamelCase = 1 UpperCamelCase = np.ones((batch, sequence), dtype=np.intaa) UpperCamelCase = np.ones((batch, sequence), dtype=np.intaa) UpperCamelCase = np.ones((batch, sequence), dtype=np.intaa) print('Warm up phase...') sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('Start inference...') UpperCamelCase = time.time() UpperCamelCase = 2_000 UpperCamelCase = {} for iter in range(max_iters): UpperCamelCase = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('Average Inference Time = {:.3f} ms'.format((time.time() - start_time) * 1_000 / max_iters))
520
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a_ ( ): __lowerCAmelCase = ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores', type=lowerCAmelCase_, default=1, help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script', type=lowerCAmelCase_, help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ), ) # rest from the training program parser.add_argument('training_script_args', nargs=lowerCAmelCase_ ) return parser.parse_args() def a_ ( ): __lowerCAmelCase = parse_args() # Import training_script as a module. __lowerCAmelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __lowerCAmelCase = script_fpath.stem __lowerCAmelCase = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv __lowerCAmelCase = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores ) if __name__ == "__main__": main()
53
0
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
248
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict=1_3 , lowerCAmelCase_ : str=3_2 , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : str=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Tuple=[2, 2, 3, 2] , lowerCAmelCase_ : str=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[int]=3_7 , lowerCAmelCase_ : Dict="gelu" , lowerCAmelCase_ : List[Any]=1_0 , lowerCAmelCase_ : str=0.02 , lowerCAmelCase_ : Dict=["stage2", "stage3", "stage4"] , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : List[Any]=None , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = num_stages __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = out_features __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = num_stages def lowercase ( self : Dict ) -> List[str]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase ( self : List[str] ) -> Union[str, Any]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowercase ( self : Dict ) -> List[str]: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_1_2 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=lowerCAmelCase_ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=4_0 , auxiliary_channels=2_5_6 , auxiliary_num_convs=1 , auxiliary_concat_input=lowerCAmelCase_ , loss_ignore_index=2_5_5 , num_labels=self.num_labels , ) def lowercase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int ) -> Optional[Any]: __lowerCAmelCase = UperNetForSemanticSegmentation(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase ( self : Union[str, Any] ) -> Union[str, Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (UperNetForSemanticSegmentation,) if is_torch_available() else () a_ = {"""image-segmentation""": UperNetForSemanticSegmentation} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Optional[int] ) -> Dict: __lowerCAmelCase = UperNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : List[str] ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Tuple ) -> Union[str, Any]: return def lowercase ( self : Optional[int] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase_ ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def lowercase ( self : Optional[int] ) -> Dict: pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def lowercase ( self : Optional[Any] ) -> Dict: pass @unittest.skip(reason='UperNet does not have a base model' ) def lowercase ( self : Optional[int] ) -> List[Any]: pass @unittest.skip(reason='UperNet does not have a base model' ) def lowercase ( self : str ) -> Dict: pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowercase ( self : Optional[Any] ) -> Optional[int]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : Tuple ) -> List[Any]: pass def lowercase ( self : Union[str, Any] ) -> Tuple: def check_hidden_states_output(lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Any ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = _config_zero_init(lowerCAmelCase_ ) __lowerCAmelCase = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __lowerCAmelCase = model_class(config=lowerCAmelCase_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='UperNet does not have tied weights' ) def lowercase ( self : Any ) -> int: pass @slow def lowercase ( self : Optional[int] ) -> Optional[int]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def a_ ( ): __lowerCAmelCase = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k', repo_type='dataset', filename='ADE_val_00000001.jpg' ) __lowerCAmelCase = Image.open(lowerCAmelCase_ ).convert('RGB' ) return image @require_torch @require_vision @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Dict ) -> Union[str, Any]: __lowerCAmelCase = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(lowerCAmelCase_ ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(lowerCAmelCase_ ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
0
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class _UpperCamelCase ( _UpperCamelCase ): '''simple docstring''' def _snake_case ( self : Any ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = tempfile.mkdtemp() __lowerCamelCase : Dict = 5 # Realm tok __lowerCamelCase : Dict = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """test""", """question""", """this""", """is""", """the""", """first""", """second""", """third""", """fourth""", """fifth""", """record""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __lowerCamelCase : List[Any] = os.path.join(self.tmpdirname , """realm_tokenizer""" ) os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowerCamelCase : Union[str, Any] = os.path.join(lowerCAmelCase_ , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) __lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , """realm_block_records""" ) os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) def _snake_case ( self : Optional[int] ): '''simple docstring''' return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , """realm_tokenizer""" ) ) def _snake_case ( self : List[str] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _snake_case ( self : List[str] ): '''simple docstring''' __lowerCamelCase : List[str] = RealmConfig(num_block_records=self.num_block_records ) return config def _snake_case ( self : str ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = Dataset.from_dict( { """id""": ["""0""", """1"""], """question""": ["""foo""", """bar"""], """answers""": [["""Foo""", """Bar"""], ["""Bar"""]], } ) return dataset def _snake_case ( self : List[Any] ): '''simple docstring''' __lowerCamelCase : Tuple = np.array( [ B"""This is the first record""", B"""This is the second record""", B"""This is the third record""", B"""This is the fourth record""", B"""This is the fifth record""", B"""This is a longer longer longer record""", ] , dtype=lowerCAmelCase_ , ) return block_records def _snake_case ( self : Tuple ): '''simple docstring''' __lowerCamelCase : Optional[int] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def _snake_case ( self : Tuple ): '''simple docstring''' __lowerCamelCase : List[Any] = self.get_config() __lowerCamelCase : List[Any] = self.get_dummy_retriever() __lowerCamelCase : List[str] = retriever.tokenizer __lowerCamelCase : Union[str, Any] = np.array([0, 3] , dtype="""long""" ) __lowerCamelCase : List[str] = tokenizer(["""Test question"""] ).input_ids __lowerCamelCase : str = tokenizer( ["""the fourth"""] , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ).input_ids __lowerCamelCase : str = config.reader_seq_len __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Union[str, Any] = retriever( lowerCAmelCase_ , lowerCAmelCase_ , answer_ids=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors="""np""" ) self.assertEqual(len(lowerCAmelCase_ ) , 2 ) self.assertEqual(len(lowerCAmelCase_ ) , 2 ) self.assertEqual(len(lowerCAmelCase_ ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 1_0) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 1_0) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """first""", """record""", """[SEP]"""] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """fourth""", """record""", """[SEP]"""] , ) def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowerCamelCase : List[str] = self.get_config() __lowerCamelCase : str = self.get_dummy_retriever() __lowerCamelCase : List[str] = retriever.tokenizer __lowerCamelCase : Optional[int] = np.array([0, 3, 5] , dtype="""long""" ) __lowerCamelCase : Dict = tokenizer(["""Test question"""] ).input_ids __lowerCamelCase : str = tokenizer( ["""the fourth""", """longer longer"""] , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ).input_ids __lowerCamelCase : Any = config.reader_seq_len __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = retriever( lowerCAmelCase_ , lowerCAmelCase_ , answer_ids=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors="""np""" ) self.assertEqual([False, True, True] , lowerCAmelCase_ ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , lowerCAmelCase_ ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , lowerCAmelCase_ ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowerCamelCase : int = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) # Test local path __lowerCamelCase : str = retriever.from_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) self.assertEqual(retriever.block_records[0] , B"""This is the first record""" ) # Test mocked remote path with patch("""transformers.models.realm.retrieval_realm.hf_hub_download""" ) as mock_hf_hub_download: __lowerCamelCase : Optional[int] = os.path.join( os.path.join(self.tmpdirname , """realm_block_records""" ) , _REALM_BLOCK_RECORDS_FILENAME ) __lowerCamelCase : Union[str, Any] = RealmRetriever.from_pretrained("""google/realm-cc-news-pretrained-openqa""" ) self.assertEqual(retriever.block_records[0] , B"""This is the first record""" )
519
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Optional[Any] ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : int ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_, keep_in_memory=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Dict, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, features=lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Any ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_, split=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type', [str, list] ) def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : Any, lowerCAmelCase_ : Dict ): if issubclass(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = text_path elif issubclass(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = [text_path] __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : int, lowerCAmelCase_ : Tuple=("train",) ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) for split in splits: __lowerCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def a_ ( lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Dict ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = TextDatasetReader({'train': text_path}, cache_dir=lowerCAmelCase_, keep_in_memory=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = TextDatasetReader({'train': text_path}, features=lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : Optional[int] ): if split: __lowerCAmelCase = {split: text_path} else: __lowerCAmelCase = 'train' __lowerCAmelCase = {'train': text_path, 'test': text_path} __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
53
0
'''simple docstring''' import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets _lowercase = datasets.logging.get_logger(__name__) _lowercase = '\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n' _lowercase = '\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project\'s README at https://github.com/google-research/bleurt#readme for more information.\n' _lowercase = '\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n \'scores\': List of scores.\nExamples:\n\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> bleurt = datasets.load_metric("bleurt")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results["scores"]])\n [1.03, 1.04]\n' _lowercase = { 'bleurt-tiny-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip', 'bleurt-tiny-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip', 'bleurt-base-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip', 'bleurt-base-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip', 'bleurt-large-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip', 'bleurt-large-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip', 'BLEURT-20-D3': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip', 'BLEURT-20-D6': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip', 'BLEURT-20-D12': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip', 'BLEURT-20': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): def UpperCamelCase ( self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/google-research/bleurt''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/bleurt'''] , reference_urls=['''https://github.com/google-research/bleurt''', '''https://arxiv.org/abs/2004.04696'''] , ) def UpperCamelCase ( self , A__ ) -> List[Any]: # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( '''Using default BLEURT-Base checkpoint for sequence maximum length 128. ''' '''You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').''' ) snake_case = '''bleurt-base-128''' if self.config_name.lower() in CHECKPOINT_URLS: snake_case = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: snake_case = self.config_name.upper() else: raise KeyError( F"""{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}""" ) # download the model checkpoint specified by self.config_name and set up the scorer snake_case = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) snake_case = score.BleurtScorer(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) def UpperCamelCase ( self , A__ , A__ ) -> List[Any]: snake_case = self.scorer.score(references=lowerCAmelCase_ , candidates=lowerCAmelCase_ ) return {"scores": scores}
342
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case : Union[str, Any] = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : int=False ): __lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Optional[int]=False ): for i in range(config.num_hidden_layers ): if base_model: __lowerCAmelCase = '' else: __lowerCAmelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] __lowerCAmelCase = in_proj_bias[: config.hidden_size] __lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase = in_proj_bias[-config.hidden_size :] def a_ ( lowerCAmelCase_ : List[str] ): __lowerCAmelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Optional[Any]=True ): __lowerCAmelCase = ViTConfig() # patch_size if model_name[-1] == "8": __lowerCAmelCase = 8 # set labels if required if not base_model: __lowerCAmelCase = 1000 __lowerCAmelCase = 'huggingface/label-files' __lowerCAmelCase = 'imagenet-1k-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 6 # load original model from torch hub __lowerCAmelCase = torch.hub.load('facebookresearch/dino:main', lowerCAmelCase_ ) original_model.eval() # load state_dict of original model, remove and rename some keys __lowerCAmelCase = original_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase_ ) __lowerCAmelCase = create_rename_keys(lowerCAmelCase_, base_model=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # load HuggingFace model if base_model: __lowerCAmelCase = ViTModel(lowerCAmelCase_, add_pooling_layer=lowerCAmelCase_ ).eval() else: __lowerCAmelCase = ViTForImageClassification(lowerCAmelCase_ ).eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor __lowerCAmelCase = ViTImageProcessor() __lowerCAmelCase = image_processor(images=prepare_img(), return_tensors='pt' ) __lowerCAmelCase = encoding['pixel_values'] __lowerCAmelCase = model(lowerCAmelCase_ ) if base_model: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_, outputs.last_hidden_state[:, 0, :], atol=1E-1 ) else: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase_, outputs.logits, atol=1E-3 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) _snake_case : List[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
53
0
class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: snake_case_ : int = n snake_case_ : Optional[Any] = [None] * self.n snake_case_ : Dict = 0 # index of the first element snake_case_ : int = 0 snake_case_ : Optional[int] = 0 def __len__( self ) -> int: return self.size def _lowerCAmelCase ( self ) -> bool: return self.size == 0 def _lowerCAmelCase ( self ) -> List[Any]: return False if self.is_empty() else self.array[self.front] def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Dict: if self.size >= self.n: raise Exception("QUEUE IS FULL" ) snake_case_ : int = data snake_case_ : str = (self.rear + 1) % self.n self.size += 1 return self def _lowerCAmelCase ( self ) -> str: if self.size == 0: raise Exception("UNDERFLOW" ) snake_case_ : List[str] = self.array[self.front] snake_case_ : List[Any] = None snake_case_ : Dict = (self.front + 1) % self.n self.size -= 1 return temp
568
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : str ) -> Any: __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : Tuple ) -> Optional[int]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : List[Any] ) -> int: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : str ) -> str: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[str]: # pass variant but use the non-variant filenames __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> Union[str, Any]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : List[str] ) -> List[Any]: # pass variant but use the non-variant filenames __lowerCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) )
53
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Tuple = logging.get_logger(__name__) lowercase : List[Any] = { 'microsoft/git-base': 'https://huggingface.co/microsoft/git-base/resolve/main/config.json', } class A__ ( _UpperCamelCase ): """simple docstring""" __A : Union[str, Any] = '''git_vision_model''' def __init__( self , lowercase=768 , lowercase=3072 , lowercase=12 , lowercase=12 , lowercase=3 , lowercase=224 , lowercase=16 , lowercase="quick_gelu" , lowercase=1e-5 , lowercase=0.0 , lowercase=0.02 , **lowercase , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**lowerCAmelCase_) a__ : int = hidden_size a__ : List[str] = intermediate_size a__ : List[str] = num_hidden_layers a__ : Any = num_attention_heads a__ : Tuple = num_channels a__ : List[str] = patch_size a__ : Union[str, Any] = image_size a__ : Any = initializer_range a__ : str = attention_dropout a__ : List[str] = layer_norm_eps a__ : List[Any] = hidden_act @classmethod def __lowercase ( cls , lowercase , **lowercase) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowerCAmelCase_) a__ , a__ : str = cls.get_config_dict(lowerCAmelCase_ , **lowerCAmelCase_) # get the vision config dict if we are loading from GITConfig if config_dict.get('model_type') == "git": a__ : Optional[int] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.') return cls.from_dict(lowerCAmelCase_ , **lowerCAmelCase_) class A__ ( _UpperCamelCase ): """simple docstring""" __A : int = '''git''' def __init__( self , lowercase=None , lowercase=3_0522 , lowercase=768 , lowercase=6 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=1024 , lowercase=0.02 , lowercase=1e-12 , lowercase=0 , lowercase="absolute" , lowercase=True , lowercase=False , lowercase=101 , lowercase=102 , lowercase=None , **lowercase , ) -> List[Any]: '''simple docstring''' super().__init__(bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , pad_token_id=lowerCAmelCase_ , **lowerCAmelCase_) if vision_config is None: a__ : str = {} logger.info('vision_config is None. initializing the GitVisionConfig with default values.') a__ : Tuple = GitVisionConfig(**lowerCAmelCase_) a__ : List[Any] = vocab_size a__ : List[str] = hidden_size a__ : Optional[int] = num_hidden_layers a__ : Optional[Any] = num_attention_heads a__ : List[str] = hidden_act a__ : List[Any] = intermediate_size a__ : List[Any] = hidden_dropout_prob a__ : Union[str, Any] = attention_probs_dropout_prob a__ : str = max_position_embeddings a__ : Tuple = initializer_range a__ : List[str] = layer_norm_eps a__ : str = position_embedding_type a__ : Tuple = use_cache a__ : List[str] = tie_word_embeddings a__ : List[str] = num_image_with_embedding a__ : Any = bos_token_id a__ : int = eos_token_id def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : Union[str, Any] = copy.deepcopy(self.__dict__) a__ : Dict = self.vision_config.to_dict() a__ : Optional[int] = self.__class__.model_type return output
302
import math def a_ ( lowerCAmelCase_ : list, lowerCAmelCase_ : int ): __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) __lowerCAmelCase = 0 while arr[min(lowerCAmelCase_, lowerCAmelCase_ ) - 1] < x: __lowerCAmelCase = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: __lowerCAmelCase = prev + 1 if prev == min(lowerCAmelCase_, lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": _snake_case : List[str] = input('Enter numbers separated by a comma:\n').strip() _snake_case : Optional[Any] = [int(item) for item in user_input.split(',')] _snake_case : List[str] = int(input('Enter the number to be searched:\n')) _snake_case : Optional[int] = jump_search(arr, x) if res == -1: print('Number not found!') else: print(F"""Number {x} is at index {res}""")
53
0
from math import factorial def _lowercase( __a : int = 20 ): a__ =2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... a__ =n // 2 return int(factorial(lowerCAmelCase_ ) / (factorial(lowerCAmelCase_ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: _lowerCAmelCase: Union[str, Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
20
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[Any], lowerCAmelCase_ : str ): # Initialise PyTorch model __lowerCAmelCase = RemBertConfig.from_json_file(lowerCAmelCase_ ) print('Building PyTorch model from configuration: {}'.format(str(lowerCAmelCase_ ) ) ) __lowerCAmelCase = RemBertModel(lowerCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Save pytorch-model print('Save PyTorch model to {}'.format(lowerCAmelCase_ ) ) torch.save(model.state_dict(), lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : int = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
53
0
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def snake_case_ ( SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_=None ) -> Dict: return field(default_factory=lambda: default ,metadata=lowerCAmelCase_ ) @dataclass class UpperCAmelCase: """simple docstring""" a : Union[str, Any] = field( metadata={"""help""": """The csv file to plot."""} , ) a : Union[str, Any] = field( default=_UpperCamelCase , metadata={"""help""": """Whether to plot along batch size or sequence length. Defaults to sequence length."""} , ) a : List[Any] = field( default=_UpperCamelCase , metadata={"""help""": """Whether the csv file has time results or memory results. Defaults to memory results."""} , ) a : str = field( default=_UpperCamelCase , metadata={"""help""": """Disable logarithmic scale when plotting"""} , ) a : Union[str, Any] = field( default=_UpperCamelCase , metadata={ """help""": """Whether the csv file has training results or inference results. Defaults to inference results.""" } , ) a : List[str] = field( default=_UpperCamelCase , metadata={"""help""": """Filename under which the plot will be saved. If unused no plot is saved."""} , ) a : Union[str, Any] = list_field( default=_UpperCamelCase , metadata={"""help""": """List of model names that are used instead of the ones in the csv file."""} ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> int: try: int(lowerCAmelCase_ ) return True except ValueError: return False def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: try: float(lowerCAmelCase_ ) return True except ValueError: return False class UpperCAmelCase: """simple docstring""" def __init__( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" lowercase__ : Union[str, Any] = args lowercase__ : Optional[int] = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline="" ) as csv_file: lowercase__ : List[Any] = csv.DictReader(lowerCAmelCase_ ) for row in reader: lowercase__ : Tuple = row["model"] self.result_dict[model_name]["bsz"].append(int(row["batch_size"] ) ) self.result_dict[model_name]["seq_len"].append(int(row["sequence_length"] ) ) if can_convert_to_int(row["result"] ): # value is not None lowercase__ : List[Any] = int(row["result"] ) elif can_convert_to_float(row["result"] ): # value is not None lowercase__ : List[Any] = float(row["result"] ) def __a ( self ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ : Dict = plt.subplots() lowercase__ : Tuple = "Time usage" if self.args.is_time else "Memory usage" lowercase__ : Optional[Any] = title_str + " for training" if self.args.is_train else title_str + " for inference" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("log" ) ax.set_yscale("log" ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): lowercase__ : int = sorted(set(self.result_dict[model_name]["bsz"] ) ) lowercase__ : Any = sorted(set(self.result_dict[model_name]["seq_len"] ) ) lowercase__ : Optional[int] = self.result_dict[model_name]["result"] ((lowercase__) , (lowercase__)) : Union[str, Any] = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) lowercase__ : int = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: lowercase__ : Any = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=lowerCAmelCase_ , ) else: lowercase__ : Any = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((lowercase__) , (lowercase__)) : Tuple = ( ("batch_size", "len") if self.args.plot_along_batch else ("in #tokens", "bsz") ) lowercase__ : Union[str, Any] = np.asarray(lowerCAmelCase_ , lowerCAmelCase_ )[: len(lowerCAmelCase_ )] plt.scatter( lowerCAmelCase_ , lowerCAmelCase_ , label=f"""{label_model_name} - {inner_loop_label}: {inner_loop_value}""" ) plt.plot(lowerCAmelCase_ , lowerCAmelCase_ , "--" ) title_str += f""" {label_model_name} vs.""" lowercase__ : Optional[int] = title_str[:-4] lowercase__ : Optional[int] = "Time in s" if self.args.is_time else "Memory in MB" # plot plt.title(lowerCAmelCase_ ) plt.xlabel(lowerCAmelCase_ ) plt.ylabel(lowerCAmelCase_ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def snake_case_ ( ) -> Tuple: lowercase__ : int = HfArgumentParser(lowerCAmelCase_ ) lowercase__ : Optional[Any] = parser.parse_args_into_dataclasses()[0] lowercase__ : Tuple = Plot(args=lowerCAmelCase_ ) plot.plot() if __name__ == "__main__": main()
397
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _snake_case : Any = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224', out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) __lowerCAmelCase = MaskFormerConfig(backbone_config=lowerCAmelCase_ ) __lowerCAmelCase = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok __lowerCAmelCase = 847 __lowerCAmelCase = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok __lowerCAmelCase = 150 __lowerCAmelCase = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok __lowerCAmelCase = 171 __lowerCAmelCase = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO __lowerCAmelCase = 133 __lowerCAmelCase = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok __lowerCAmelCase = 19 __lowerCAmelCase = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok __lowerCAmelCase = 65 __lowerCAmelCase = 'mapillary-vistas-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} return config def a_ ( lowerCAmelCase_ : Tuple ): __lowerCAmelCase = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') ) for source_index, target_index in zip(range(3, 0, -1 ), range(0, 3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') ) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') ) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') ) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') ) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Tuple ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int ): __lowerCAmelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowerCAmelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[:dim, :] __lowerCAmelCase = in_proj_bias[: dim] __lowerCAmelCase = in_proj_weight[ dim : dim * 2, : ] __lowerCAmelCase = in_proj_bias[ dim : dim * 2 ] __lowerCAmelCase = in_proj_weight[ -dim :, : ] __lowerCAmelCase = in_proj_bias[-dim :] # fmt: on def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : Dict ): # fmt: off __lowerCAmelCase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: hidden_size, :] __lowerCAmelCase = in_proj_bias[:config.hidden_size] __lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCAmelCase = in_proj_weight[-hidden_size :, :] __lowerCAmelCase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: hidden_size, :] __lowerCAmelCase = in_proj_bias[:config.hidden_size] __lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCAmelCase = in_proj_weight[-hidden_size :, :] __lowerCAmelCase = in_proj_bias[-hidden_size :] # fmt: on def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : bool = False ): __lowerCAmelCase = get_maskformer_config(lowerCAmelCase_ ) # load original state_dict with open(lowerCAmelCase_, 'rb' ) as f: __lowerCAmelCase = pickle.load(lowerCAmelCase_ ) __lowerCAmelCase = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowerCAmelCase = create_rename_keys(lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_swin_q_k_v(lowerCAmelCase_, config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase_, lowerCAmelCase_ ) # update to torch tensors for key, value in state_dict.items(): __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ) # load 🤗 model __lowerCAmelCase = MaskFormerForInstanceSegmentation(lowerCAmelCase_ ) model.eval() for name, param in model.named_parameters(): print(lowerCAmelCase_, param.shape ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowerCAmelCase_, strict=lowerCAmelCase_ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCAmelCase_ ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results __lowerCAmelCase = prepare_img() if "vistas" in model_name: __lowerCAmelCase = 65 elif "cityscapes" in model_name: __lowerCAmelCase = 6_5535 else: __lowerCAmelCase = 255 __lowerCAmelCase = True if 'ade' in model_name else False __lowerCAmelCase = MaskFormerImageProcessor(ignore_index=lowerCAmelCase_, reduce_labels=lowerCAmelCase_ ) __lowerCAmelCase = image_processor(lowerCAmelCase_, return_tensors='pt' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) print('Logits:', outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowerCAmelCase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], lowerCAmelCase_, atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print('Pushing model and image processor to the hub...' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _snake_case : List[str] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
53
0
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCamelCase__ = logging.get_logger(__name__) def UpperCamelCase__ ( UpperCAmelCase_ ) -> Any: '''simple docstring''' _lowercase : Tuple = r'''\w+[.]\d+''' _lowercase : List[str] = re.findall(lowerCAmelCase_ , lowerCAmelCase_ ) for pat in pats: _lowercase : Dict = key.replace(lowerCAmelCase_ , '''_'''.join(pat.split('''.''' ) ) ) return key def UpperCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> Optional[int]: '''simple docstring''' _lowercase : List[Any] = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): _lowercase : Union[str, Any] = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: _lowercase : Optional[Any] = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: _lowercase : int = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer _lowercase : int = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: _lowercase : List[Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _lowercase : Optional[Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": _lowercase : Optional[int] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _lowercase : Optional[int] = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _lowercase : int = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=42 ) -> Dict: '''simple docstring''' _lowercase : int = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params _lowercase : Dict = flax_model.init_weights(PRNGKey(lowerCAmelCase_ ) ) _lowercase : str = flatten_dict(lowerCAmelCase_ ) _lowercase : List[Any] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _lowercase : List[Any] = rename_key(lowerCAmelCase_ ) _lowercase : Any = tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters _lowercase , _lowercase : Optional[int] = rename_key_and_reshape_tensor(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # also add unexpected weight so that warning is thrown _lowercase : Dict = jnp.asarray(lowerCAmelCase_ ) return unflatten_dict(lowerCAmelCase_ )
322
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): _snake_case : List[Any] = True from torch.cuda.amp import autocast _snake_case : Dict = logging.getLogger(__name__) def a_ ( lowerCAmelCase_ : str=None, lowerCAmelCase_ : str=None ): return field(default_factory=lambda: default, metadata=lowerCAmelCase_ ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) a_ = field( default=0.1 , metadata={"""help""": """The dropout ratio for the attention probabilities."""} ) a_ = field( default=0.1 , metadata={"""help""": """The dropout ratio for activations inside the fully connected layer."""} ) a_ = field( default=0.1 , metadata={ """help""": """The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.""" } , ) a_ = field( default=0.1 , metadata={"""help""": """The dropout probabilitiy for all 1D convolutional layers in feature extractor."""} , ) a_ = field( default=0.05 , metadata={ """help""": ( """Propability of each feature vector along the time axis to be chosen as the start of the vector""" """span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature""" """vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.""" ) } , ) a_ = field(default=0.0 , metadata={"""help""": """The LayerDrop probability."""} ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ = field( default="""train+validation""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of validation examples to this """ """value if set.""" ) } , ) a_ = list_field( default=[""",""", """?""", """.""", """!""", """-""", """;""", """:""", """\"\"""", """%""", """'""", """\"""", """�"""] , metadata={"""help""": """A list of characters to remove from the transcripts."""} , ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = 42 a_ = True a_ = None a_ = None a_ = None a_ = None def __call__( self : int , lowerCAmelCase_ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods __lowerCAmelCase = [{'input_values': feature['input_values']} for feature in features] __lowerCAmelCase = [{'input_ids': feature['labels']} for feature in features] __lowerCAmelCase = self.processor.pad( lowerCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) __lowerCAmelCase = self.processor.pad( labels=lowerCAmelCase_ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='pt' , ) # replace padding with -100 to ignore loss correctly __lowerCAmelCase = labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_0_0 ) __lowerCAmelCase = labels return batch class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Tuple , lowerCAmelCase_ : nn.Module , lowerCAmelCase_ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: model.train() __lowerCAmelCase = self._prepare_inputs(lowerCAmelCase_ ) if self.use_amp: with autocast(): __lowerCAmelCase = self.compute_loss(lowerCAmelCase_ , lowerCAmelCase_ ) else: __lowerCAmelCase = self.compute_loss(lowerCAmelCase_ , lowerCAmelCase_ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": __lowerCAmelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __lowerCAmelCase = loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: __lowerCAmelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowerCAmelCase_ ).backward() elif self.use_apex: with amp.scale_loss(lowerCAmelCase_ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowerCAmelCase_ ) else: loss.backward() return loss.detach() def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s', lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: __lowerCAmelCase = datasets.load_dataset( 'common_voice', data_args.dataset_config_name, split=data_args.train_split_name ) __lowerCAmelCase = datasets.load_dataset('common_voice', data_args.dataset_config_name, split='test' ) # Create and save tokenizer __lowerCAmelCase = F"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(lowerCAmelCase_ : Any ): __lowerCAmelCase = re.sub(lowerCAmelCase_, '', batch['sentence'] ).lower() + ' ' return batch __lowerCAmelCase = train_dataset.map(lowerCAmelCase_, remove_columns=['sentence'] ) __lowerCAmelCase = eval_dataset.map(lowerCAmelCase_, remove_columns=['sentence'] ) def extract_all_chars(lowerCAmelCase_ : Tuple ): __lowerCAmelCase = ' '.join(batch['text'] ) __lowerCAmelCase = list(set(lowerCAmelCase_ ) ) return {"vocab": [vocab], "all_text": [all_text]} __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, batched=lowerCAmelCase_, batch_size=-1, keep_in_memory=lowerCAmelCase_, remove_columns=train_dataset.column_names, ) __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, batched=lowerCAmelCase_, batch_size=-1, keep_in_memory=lowerCAmelCase_, remove_columns=eval_dataset.column_names, ) __lowerCAmelCase = list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) ) __lowerCAmelCase = {v: k for k, v in enumerate(lowerCAmelCase_ )} __lowerCAmelCase = vocab_dict[' '] del vocab_dict[" "] __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = len(lowerCAmelCase_ ) with open('vocab.json', 'w' ) as vocab_file: json.dump(lowerCAmelCase_, lowerCAmelCase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = WavaVecaCTCTokenizer( 'vocab.json', unk_token='[UNK]', pad_token='[PAD]', word_delimiter_token='|', ) __lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_6000, padding_value=0.0, do_normalize=lowerCAmelCase_, return_attention_mask=lowerCAmelCase_ ) __lowerCAmelCase = WavaVecaProcessor(feature_extractor=lowerCAmelCase_, tokenizer=lowerCAmelCase_ ) __lowerCAmelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, activation_dropout=model_args.activation_dropout, attention_dropout=model_args.attention_dropout, hidden_dropout=model_args.hidden_dropout, feat_proj_dropout=model_args.feat_proj_dropout, mask_time_prob=model_args.mask_time_prob, gradient_checkpointing=training_args.gradient_checkpointing, layerdrop=model_args.layerdrop, ctc_loss_reduction='mean', pad_token_id=processor.tokenizer.pad_token_id, vocab_size=len(processor.tokenizer ), ) if data_args.max_train_samples is not None: __lowerCAmelCase = min(len(lowerCAmelCase_ ), data_args.max_train_samples ) __lowerCAmelCase = train_dataset.select(range(lowerCAmelCase_ ) ) if data_args.max_val_samples is not None: __lowerCAmelCase = eval_dataset.select(range(data_args.max_val_samples ) ) __lowerCAmelCase = torchaudio.transforms.Resample(4_8000, 1_6000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(lowerCAmelCase_ : int ): __lowerCAmelCase , __lowerCAmelCase = torchaudio.load(batch['path'] ) __lowerCAmelCase = resampler(lowerCAmelCase_ ).squeeze().numpy() __lowerCAmelCase = 1_6000 __lowerCAmelCase = batch['text'] return batch __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, remove_columns=train_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) __lowerCAmelCase = eval_dataset.map( lowerCAmelCase_, remove_columns=eval_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) def prepare_dataset(lowerCAmelCase_ : Union[str, Any] ): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'] ) ) == 1 ), F"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" __lowerCAmelCase = processor( audio=batch['speech'], text=batch['target_text'], sampling_rate=batch['sampling_rate'][0] ) batch.update(lowerCAmelCase_ ) return batch __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, remove_columns=train_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, ) __lowerCAmelCase = eval_dataset.map( lowerCAmelCase_, remove_columns=eval_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, ) # Metric __lowerCAmelCase = datasets.load_metric('wer' ) def compute_metrics(lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = pred.predictions __lowerCAmelCase = np.argmax(lowerCAmelCase_, axis=-1 ) __lowerCAmelCase = processor.tokenizer.pad_token_id __lowerCAmelCase = processor.batch_decode(lowerCAmelCase_ ) # we do not want to group tokens when computing the metrics __lowerCAmelCase = processor.batch_decode(pred.label_ids, group_tokens=lowerCAmelCase_ ) __lowerCAmelCase = wer_metric.compute(predictions=lowerCAmelCase_, references=lowerCAmelCase_ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator __lowerCAmelCase = DataCollatorCTCWithPadding(processor=lowerCAmelCase_, padding=lowerCAmelCase_ ) # Initialize our Trainer __lowerCAmelCase = CTCTrainer( model=lowerCAmelCase_, data_collator=lowerCAmelCase_, args=lowerCAmelCase_, compute_metrics=lowerCAmelCase_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=processor.feature_extractor, ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() __lowerCAmelCase = train_result.metrics __lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase_ ) ) __lowerCAmelCase = min(lowerCAmelCase_, len(lowerCAmelCase_ ) ) trainer.log_metrics('train', lowerCAmelCase_ ) trainer.save_metrics('train', lowerCAmelCase_ ) trainer.save_state() # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(lowerCAmelCase_ ) __lowerCAmelCase = min(lowerCAmelCase_, len(lowerCAmelCase_ ) ) trainer.log_metrics('eval', lowerCAmelCase_ ) trainer.save_metrics('eval', lowerCAmelCase_ ) return results if __name__ == "__main__": main()
53
0
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy A__ = logging.get_logger(__name__) class _lowerCAmelCase ( _UpperCamelCase ): def __init__( self : str , __snake_case : int , __snake_case : int , __snake_case : float , **__snake_case : List[str] ): lowerCamelCase :Optional[Any] = feature_size lowerCamelCase :Optional[int] = sampling_rate lowerCamelCase :Union[str, Any] = padding_value lowerCamelCase :Optional[Any] = kwargs.pop('''padding_side''' , '''right''' ) lowerCamelCase :List[str] = kwargs.pop('''return_attention_mask''' , lowerCAmelCase_ ) super().__init__(**lowerCAmelCase_ ) def snake_case ( self : Union[str, Any] , __snake_case : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , __snake_case : Union[bool, str, PaddingStrategy] = True , __snake_case : Optional[int] = None , __snake_case : bool = False , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[Union[str, TensorType]] = None , ): # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(lowerCAmelCase_ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): lowerCamelCase :List[Any] = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( '''You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`''' F" to this method that includes {self.model_input_names[0]}, but you provided" F" {list(processed_features.keys() )}" ) lowerCamelCase :str = processed_features[self.model_input_names[0]] lowerCamelCase :List[str] = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowerCAmelCase_ ) == 0: if return_attention_mask: lowerCamelCase :int = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch lowerCamelCase :Tuple = required_input[0] if isinstance(lowerCAmelCase_ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. lowerCamelCase :List[Any] = 0 while len(required_input[index] ) == 0: index += 1 if index < len(lowerCAmelCase_ ): lowerCamelCase :Any = required_input[index][0] if return_tensors is None: if is_tf_tensor(lowerCAmelCase_ ): lowerCamelCase :Optional[int] = '''tf''' elif is_torch_tensor(lowerCAmelCase_ ): lowerCamelCase :int = '''pt''' elif isinstance(lowerCAmelCase_ , (int, float, list, tuple, np.ndarray) ): lowerCamelCase :Tuple = '''np''' else: raise ValueError( F"type of {first_element} unknown: {type(lowerCAmelCase_ )}. " '''Should be one of a python, numpy, pytorch or tensorflow object.''' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): lowerCamelCase :str = to_numpy(lowerCAmelCase_ ) else: lowerCamelCase :Optional[Any] = [to_numpy(lowerCAmelCase_ ) for v in value] # Convert padding_strategy in PaddingStrategy lowerCamelCase :List[str] = self._get_padding_strategies(padding=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) lowerCamelCase :Optional[Any] = processed_features[self.model_input_names[0]] lowerCamelCase :List[str] = len(lowerCAmelCase_ ) if not all(len(lowerCAmelCase_ ) == batch_size for v in processed_features.values() ): raise ValueError('''Some items in the output dictionary have a different batch size than others.''' ) lowerCamelCase :int = [] for i in range(lowerCAmelCase_ ): lowerCamelCase :Any = {k: v[i] for k, v in processed_features.items()} # truncation lowerCamelCase :Tuple = self._truncate( lowerCAmelCase_ , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , truncation=lowerCAmelCase_ , ) truncated_inputs.append(lowerCAmelCase_ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length lowerCamelCase :Tuple = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) lowerCamelCase :int = PaddingStrategy.MAX_LENGTH lowerCamelCase :Union[str, Any] = {} for i in range(lowerCAmelCase_ ): # padding lowerCamelCase :List[str] = self._pad( truncated_inputs[i] , max_length=lowerCAmelCase_ , padding_strategy=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) for key, value in outputs.items(): if key not in batch_outputs: lowerCamelCase :str = [] if value.dtype is np.dtype(np.floataa ): lowerCamelCase :Optional[Any] = value.astype(np.floataa ) batch_outputs[key].append(lowerCAmelCase_ ) return BatchFeature(lowerCAmelCase_ , tensor_type=lowerCAmelCase_ ) def snake_case ( self : Tuple , __snake_case : Union[Dict[str, np.ndarray], BatchFeature] , __snake_case : Optional[int] = None , __snake_case : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , ): lowerCamelCase :List[Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: lowerCamelCase :List[str] = len(lowerCAmelCase_ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): lowerCamelCase :List[str] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of lowerCamelCase :Optional[int] = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowerCAmelCase_ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: lowerCamelCase :int = np.ones(len(lowerCAmelCase_ ) , dtype=np.intaa ) if needs_to_be_padded: lowerCamelCase :Any = max_length - len(lowerCAmelCase_ ) if self.padding_side == "right": if return_attention_mask: lowerCamelCase :Optional[Any] = np.pad( processed_features['''attention_mask'''] , (0, difference) ) lowerCamelCase :str = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) lowerCamelCase :Any = np.pad( lowerCAmelCase_ , lowerCAmelCase_ , '''constant''' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: lowerCamelCase :Optional[Any] = np.pad( processed_features['''attention_mask'''] , (difference, 0) ) lowerCamelCase :str = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) lowerCamelCase :Tuple = np.pad( lowerCAmelCase_ , lowerCAmelCase_ , '''constant''' , constant_values=self.padding_value ) else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return processed_features def snake_case ( self : Union[str, Any] , __snake_case : Union[Dict[str, np.ndarray], BatchFeature] , __snake_case : Optional[int] = None , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , ): if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('''When setting ``truncation=True``, make sure that ``max_length`` is defined.''' ) lowerCamelCase :Tuple = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): lowerCamelCase :Union[str, Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of lowerCamelCase :List[Any] = len(lowerCAmelCase_ ) > max_length if needs_to_be_truncated: lowerCamelCase :Any = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: lowerCamelCase :int = processed_features['''attention_mask'''][:max_length] return processed_features def snake_case ( self : Tuple , __snake_case : str=False , __snake_case : Optional[Any]=None ): # Get padding strategy if padding is not False: if padding is True: lowerCamelCase :str = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): lowerCamelCase :Tuple = PaddingStrategy(lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): lowerCamelCase :Dict = padding else: lowerCamelCase :int = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( '''Asking to pad but the feature_extractor does not have a padding value. Please select a value to use''' ''' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.''' ) return padding_strategy
166
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _snake_case : Any = logging.get_logger(__name__) _snake_case : int = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _snake_case : Optional[Any] = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } _snake_case : str = { 'yjernite/retribert-base-uncased': 512, } _snake_case : Optional[int] = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = PRETRAINED_INIT_CONFIGURATION a_ = RetriBertTokenizer a_ = ["""input_ids""", """attention_mask"""] def __init__( self : Dict , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : str="[UNK]" , lowerCAmelCase_ : Optional[Any]="[SEP]" , lowerCAmelCase_ : List[str]="[PAD]" , lowerCAmelCase_ : Optional[int]="[CLS]" , lowerCAmelCase_ : List[Any]="[MASK]" , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : List[Any] , ) -> Dict: super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(lowerCAmelCase_ , normalizer_state.pop('type' ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**lowerCAmelCase_ ) __lowerCAmelCase = do_lower_case def lowercase ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int]=None ) -> Optional[int]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
53
0
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: return "".join(chr(ord(lowerCAmelCase_ ) - 32 ) if """a""" <= char <= """z""" else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
587
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _snake_case : Union[str, Any] = imread(R'digital_image_processing/image_data/lena_small.jpg') _snake_case : Optional[int] = cvtColor(img, COLOR_BGR2GRAY) def a_ ( ): __lowerCAmelCase = cn.convert_to_negative(lowerCAmelCase_ ) # assert negative_img array for at least one True assert negative_img.any() def a_ ( ): with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowerCAmelCase_, 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def a_ ( ): __lowerCAmelCase = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def a_ ( ): __lowerCAmelCase = imread('digital_image_processing/image_data/lena_small.jpg', 0 ) # assert ambiguous array for all == True assert canny_img.all() __lowerCAmelCase = canny.canny(lowerCAmelCase_ ) # assert canny array for at least one True assert canny_array.any() def a_ ( ): assert gg.gaussian_filter(lowerCAmelCase_, 5, sigma=0.9 ).all() def a_ ( ): # laplace diagonals __lowerCAmelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __lowerCAmelCase = conv.img_convolve(lowerCAmelCase_, lowerCAmelCase_ ).astype(lowerCAmelCase_ ) assert res.any() def a_ ( ): assert med.median_filter(lowerCAmelCase_, 3 ).any() def a_ ( ): __lowerCAmelCase , __lowerCAmelCase = sob.sobel_filter(lowerCAmelCase_ ) assert grad.any() and theta.any() def a_ ( ): __lowerCAmelCase = sp.make_sepia(lowerCAmelCase_, 20 ) assert sepia.all() def a_ ( lowerCAmelCase_ : str = "digital_image_processing/image_data/lena_small.jpg" ): __lowerCAmelCase = bs.Burkes(imread(lowerCAmelCase_, 1 ), 120 ) burkes.process() assert burkes.output_img.any() def a_ ( lowerCAmelCase_ : str = "digital_image_processing/image_data/lena_small.jpg", ): __lowerCAmelCase = rs.NearestNeighbour(imread(lowerCAmelCase_, 1 ), 400, 200 ) nn.process() assert nn.output.any() def a_ ( ): __lowerCAmelCase = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. __lowerCAmelCase = imread(lowerCAmelCase_, 0 ) # Test for get_neighbors_pixel function() return not None __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = image[x_coordinate][y_coordinate] __lowerCAmelCase = lbp.get_neighbors_pixel( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __lowerCAmelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): __lowerCAmelCase = lbp.local_binary_value(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) assert lbp_image.any()
53
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _a ( unittest.TestCase ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=7 , __UpperCAmelCase=3 , __UpperCAmelCase=18 , __UpperCAmelCase=30 , __UpperCAmelCase=400 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=None , ): __A : Union[str, Any] = size if size is not None else {"shortest_edge": 20} __A : Optional[Any] = crop_size if crop_size is not None else {"height": 18, "width": 18} __A : List[Any] = parent __A : List[Any] = batch_size __A : int = num_channels __A : List[str] = image_size __A : Dict = min_resolution __A : Any = max_resolution __A : Optional[Any] = do_resize __A : Optional[int] = size __A : str = do_center_crop __A : Tuple = crop_size def __UpperCAmelCase( self ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class _a ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : Any = MobileNetVaImageProcessor if is_vision_available() else None def __UpperCAmelCase( self ): __A : int = MobileNetVaImageProcessingTester(self ) @property def __UpperCAmelCase( self ): return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase( self ): __A : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , "do_resize" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , "size" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , "do_center_crop" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , "crop_size" ) ) def __UpperCAmelCase( self ): __A : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 20} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) __A : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def __UpperCAmelCase( self ): pass def __UpperCAmelCase( self ): # Initialize image_processing __A : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , Image.Image ) # Test not batched input __A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __A : str = image_processing(lowerCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __UpperCAmelCase( self ): # Initialize image_processing __A : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , np.ndarray ) # Test not batched input __A : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __A : int = image_processing(lowerCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __UpperCAmelCase( self ): # Initialize image_processing __A : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , torch.Tensor ) # Test not batched input __A : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __A : str = image_processing(lowerCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
520
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case : List[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = ["""pixel_values"""] def __init__( self : Optional[int] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **lowerCAmelCase_ : Any , ) -> None: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = size if size is not None else {'shortest_edge': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = do_center_crop __lowerCAmelCase = crop_size __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[int] , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __lowerCAmelCase = int((2_5_6 / 2_2_4) * size['shortest_edge'] ) __lowerCAmelCase = get_resize_output_image_size(lowerCAmelCase_ , size=lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( lowerCAmelCase_ , size=(size_dict['height'], size_dict['width']) , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : str , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : str , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(lowerCAmelCase_ , size=(size['height'], size['width']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[int, float] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray: return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[str] , ) -> np.ndarray: return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase_ : str , ) -> BatchFeature: __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase = image_std if image_std is not None else self.image_std __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: __lowerCAmelCase = [self.resize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_center_crop: __lowerCAmelCase = [self.center_crop(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_rescale: __lowerCAmelCase = [self.rescale(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_normalize: __lowerCAmelCase = [self.normalize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
53
0
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def A ( _lowercase ): SCREAMING_SNAKE_CASE : Tuple = int(number**0.5 ) return number == sq * sq def A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : List[Any] = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den SCREAMING_SNAKE_CASE : Union[str, Any] = x_den * y_den * z_den SCREAMING_SNAKE_CASE : str = gcd(lowerCAmelCase_ , lowerCAmelCase_ ) top //= hcf bottom //= hcf return top, bottom def A ( _lowercase = 35 ): SCREAMING_SNAKE_CASE : int = set() SCREAMING_SNAKE_CASE : int = 42 SCREAMING_SNAKE_CASE : List[Any] = Fraction(0 ) SCREAMING_SNAKE_CASE : List[str] = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 SCREAMING_SNAKE_CASE : List[str] = x_num * y_den + x_den * y_num SCREAMING_SNAKE_CASE : Optional[Any] = x_den * y_den SCREAMING_SNAKE_CASE : Union[str, Any] = gcd(lowerCAmelCase_ , lowerCAmelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE : Optional[int] = add_three( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) unique_s.add(lowerCAmelCase_ ) # n=2 SCREAMING_SNAKE_CASE : List[str] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) SCREAMING_SNAKE_CASE : Union[str, Any] = x_den * x_den * y_den * y_den if is_sq(lowerCAmelCase_ ) and is_sq(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE : Tuple = int(sqrt(lowerCAmelCase_ ) ) SCREAMING_SNAKE_CASE : List[str] = int(sqrt(lowerCAmelCase_ ) ) SCREAMING_SNAKE_CASE : Optional[int] = gcd(lowerCAmelCase_ , lowerCAmelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE : Union[str, Any] = add_three( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) unique_s.add(lowerCAmelCase_ ) # n=-1 SCREAMING_SNAKE_CASE : Tuple = x_num * y_num SCREAMING_SNAKE_CASE : Any = x_den * y_num + x_num * y_den SCREAMING_SNAKE_CASE : List[str] = gcd(lowerCAmelCase_ , lowerCAmelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE : Dict = add_three( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) unique_s.add(lowerCAmelCase_ ) # n=2 SCREAMING_SNAKE_CASE : str = x_num * x_num * y_num * y_num SCREAMING_SNAKE_CASE : List[str] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowerCAmelCase_ ) and is_sq(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE : Dict = int(sqrt(lowerCAmelCase_ ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(sqrt(lowerCAmelCase_ ) ) SCREAMING_SNAKE_CASE : Optional[int] = gcd(lowerCAmelCase_ , lowerCAmelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE : List[Any] = add_three( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) unique_s.add(lowerCAmelCase_ ) for num, den in unique_s: total += Fraction(lowerCAmelCase_ , lowerCAmelCase_ ) return total.denominator + total.numerator if __name__ == "__main__": print(f"""{solution() = }""")
248
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Optional[int]=8 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]=9_9 , lowerCAmelCase_ : List[Any]=1_6 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=3_6 , lowerCAmelCase_ : Optional[int]="gelu" , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : str=5_1_2 , lowerCAmelCase_ : List[str]=1_6 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Tuple=0.02 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : List[Any]=4 , lowerCAmelCase_ : List[str]=None , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope def lowercase ( self : Optional[int] ) -> Dict: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self : Any ) -> Union[str, Any]: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def lowercase ( self : Dict ) -> List[Any]: __lowerCAmelCase = self.get_config() __lowerCAmelCase = 3_0_0 return config def lowercase ( self : Optional[int] ) -> Union[str, Any]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = self.prepare_config_and_inputs() __lowerCAmelCase = True __lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = MraModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , ) -> Tuple: __lowerCAmelCase = True __lowerCAmelCase = MraModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , ) __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = MraForMaskedLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> str: __lowerCAmelCase = MraForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict ) -> Optional[Any]: __lowerCAmelCase = self.num_labels __lowerCAmelCase = MraForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict ) -> Any: __lowerCAmelCase = self.num_labels __lowerCAmelCase = MraForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] ) -> List[Any]: __lowerCAmelCase = self.num_choices __lowerCAmelCase = MraForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self : Tuple ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) a_ = False a_ = False a_ = False a_ = False a_ = () def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = MraModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : Tuple ) -> List[str]: self.config_tester.run_common_tests() def lowercase ( self : Optional[int] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase = type self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase_ ) def lowercase ( self : List[str] ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase_ ) def lowercase ( self : Tuple ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase_ ) @slow def lowercase ( self : Optional[int] ) -> Optional[int]: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = MraModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @unittest.skip(reason='MRA does not output attentions' ) def lowercase ( self : Optional[int] ) -> Tuple: return @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase ( self : Optional[Any] ) -> List[str]: __lowerCAmelCase = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) __lowerCAmelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : int ) -> Optional[int]: __lowerCAmelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) __lowerCAmelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = 5_0_2_6_5 __lowerCAmelCase = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : Any ) -> List[str]: __lowerCAmelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) __lowerCAmelCase = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = 5_0_2_6_5 __lowerCAmelCase = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
0
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase : Tuple = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class _UpperCamelCase ( _UpperCamelCase,unittest.TestCase ): '''simple docstring''' a_ : Union[str, Any] = DebertaVaTokenizer a_ : Any = DebertaVaTokenizerFast a_ : List[Any] = True a_ : str = True def _snake_case ( self : List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __lowerCamelCase : Dict = DebertaVaTokenizer(lowerCAmelCase_ , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self : Any , _lowerCamelCase : Union[str, Any] ): '''simple docstring''' __lowerCamelCase : Optional[int] = """this is a test""" __lowerCamelCase : Any = """this is a test""" return input_text, output_text def _snake_case ( self : List[Any] ): '''simple docstring''' __lowerCamelCase : Optional[int] = """<pad>""" __lowerCamelCase : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ ) def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowerCamelCase : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(lowerCAmelCase_ ) , 3_0_0_0_1 ) def _snake_case ( self : Tuple ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 3_0_0_0_0 ) def _snake_case ( self : Dict ): '''simple docstring''' __lowerCamelCase : Optional[int] = """ \tHeLLo!how \n Are yoU? """ __lowerCamelCase : Tuple = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on __lowerCamelCase : Any = DebertaVaTokenizer(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ ) __lowerCamelCase : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCamelCase : Union[str, Any] = DebertaVaTokenizerFast(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ ) __lowerCamelCase : Any = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def _snake_case ( self : str ): '''simple docstring''' pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' pass def _snake_case ( self : Tuple ): '''simple docstring''' __lowerCamelCase : Optional[int] = """I was born in 92000, and this is falsé.""" __lowerCamelCase : Dict = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCamelCase : Union[str, Any] = DebertaVaTokenizer(lowerCAmelCase_ , split_by_punct=lowerCAmelCase_ ) __lowerCamelCase : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCamelCase : Tuple = DebertaVaTokenizerFast(lowerCAmelCase_ , split_by_punct=lowerCAmelCase_ ) __lowerCamelCase : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowerCamelCase : Tuple = """I was born in 92000, and this is falsé.""" __lowerCamelCase : int = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCamelCase : Optional[Any] = DebertaVaTokenizer(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , split_by_punct=lowerCAmelCase_ ) __lowerCamelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCamelCase : Union[str, Any] = DebertaVaTokenizerFast(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , split_by_punct=lowerCAmelCase_ ) __lowerCamelCase : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def _snake_case ( self : Dict ): '''simple docstring''' __lowerCamelCase : List[Any] = """I was born in 92000, and this is falsé.""" __lowerCamelCase : str = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCamelCase : Tuple = DebertaVaTokenizer(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , split_by_punct=lowerCAmelCase_ ) __lowerCamelCase : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCamelCase : str = DebertaVaTokenizerFast(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , split_by_punct=lowerCAmelCase_ ) __lowerCamelCase : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def _snake_case ( self : Dict ): '''simple docstring''' __lowerCamelCase : int = """I was born in 92000, and this is falsé.""" __lowerCamelCase : Optional[int] = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowerCamelCase : int = DebertaVaTokenizer(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , split_by_punct=lowerCAmelCase_ ) __lowerCamelCase : Optional[int] = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCamelCase : Any = DebertaVaTokenizerFast(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , split_by_punct=lowerCAmelCase_ ) __lowerCamelCase : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowerCamelCase : List[Any] = """ \tHeLLo!how \n Are yoU? """ __lowerCamelCase : Tuple = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on __lowerCamelCase : Optional[int] = DebertaVaTokenizer(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , split_by_punct=lowerCAmelCase_ ) __lowerCamelCase : List[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCamelCase : List[Any] = DebertaVaTokenizerFast(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , split_by_punct=lowerCAmelCase_ ) __lowerCamelCase : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def _snake_case ( self : Dict ): '''simple docstring''' __lowerCamelCase : Optional[Any] = self.get_tokenizer() __lowerCamelCase : Tuple = self.get_rust_tokenizer() __lowerCamelCase : str = """I was born in 92000, and this is falsé.""" __lowerCamelCase : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) __lowerCamelCase : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCamelCase : List[str] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) __lowerCamelCase : List[Any] = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCamelCase : List[Any] = self.get_rust_tokenizer() __lowerCamelCase : Union[str, Any] = tokenizer.encode(lowerCAmelCase_ ) __lowerCamelCase : Optional[int] = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowerCamelCase : str = """This is a test""" __lowerCamelCase : Any = [1_3, 1, 4_3_9_8, 2_5, 2_1, 1_2_8_9] __lowerCamelCase : int = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCamelCase : List[str] = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] __lowerCamelCase : Union[str, Any] = DebertaVaTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) __lowerCamelCase : Union[str, Any] = DebertaVaTokenizerFast(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) __lowerCamelCase : Any = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCamelCase : Optional[int] = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCamelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCamelCase : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCamelCase : Union[str, Any] = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCamelCase : List[str] = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # fmt: off __lowerCamelCase : Any = """I was born in 92000, and this is falsé.""" __lowerCamelCase : Optional[Any] = [1_3, 1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] __lowerCamelCase : int = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] __lowerCamelCase : Dict = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowerCamelCase : List[Any] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCamelCase : Optional[int] = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCamelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCamelCase : Optional[int] = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCamelCase : List[str] = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCamelCase : Tuple = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowerCamelCase : Tuple = DebertaVaTokenizer(lowerCAmelCase_ ) __lowerCamelCase : Union[str, Any] = tokenizer.encode("""sequence builders""" ) __lowerCamelCase : Optional[int] = tokenizer.encode("""multi-sequence build""" ) __lowerCamelCase : Tuple = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) __lowerCamelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , lowerCAmelCase_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , lowerCAmelCase_ , ) @slow def _snake_case ( self : Any ): '''simple docstring''' __lowerCamelCase : List[str] = {"""input_ids""": [[1, 3_9_8_6_7, 3_6, 1_9_3_9_0, 4_8_6, 2_7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 6_0_6_8_5, 1_2_2_5, 7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 9_3_6_7, 1_6_8_9_9, 1_8, 1_5_9_3_7, 5_3, 5_9_4, 7_7_3, 1_8, 1_6_2_8_7, 3_0_4_6_5, 3_6, 1_5_9_3_7, 6, 4_1_1_3_9, 3_8, 3_6_9_7_9, 6_0_7_6_3, 1_9_1, 6, 3_4_1_3_2, 9_9, 6, 5_0_5_3_8, 3_9_0, 4_3_2_3_0, 6, 3_4_1_3_2, 2_7_7_9, 2_0_8_5_0, 1_4, 6_9_9, 1_0_7_2, 1_1_9_4, 3_6, 3_8_2, 1_0_9_0_1, 5_3, 7, 6_9_9, 1_0_7_2, 2_0_8_4, 3_6, 2_0_4_2_2, 6_3_0, 5_3, 1_9, 1_0_5, 3_0_4_9, 1_8_9_6, 1_0_5_3, 1_6_8_9_9, 1_5_0_6, 1_1, 3_7_9_7_8, 4_2_4_3, 7, 1_2_3_7, 3_1_8_6_9, 2_0_0, 1_6_5_6_6, 6_5_4, 6, 3_5_0_5_2, 8_1_4_3_6, 7, 5_5_6_3_0, 1_3_5_9_3, 4, 2], [1, 2_6, 1_5_0_1_1, 1_3, 6_6_7, 8, 1_0_5_3, 1_8, 2_3_6_1_1, 1_2_3_7, 7_2_3_5_6, 1_2_8_2_0, 3_4, 1_0_4_1_3_4, 1_2_0_9, 3_5, 1_3_3_1_3, 6_6_2_7, 2_1, 2_0_2, 3_4_7, 7, 1_6_4, 2_3_9_9, 1_1, 4_6, 4_4_8_5, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_2_3_2, 2_8_6_4, 1_5_7_8_5, 1_4_9_5_1, 1_0_5, 5, 8_5_8_1, 1_2_5_0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
519
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _snake_case : Union[str, Any] = 2 class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , *, # begin keyword-only arguments lowerCAmelCase_ : str="<s>" , lowerCAmelCase_ : Dict="<pad>" , lowerCAmelCase_ : Any="</s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Optional[Any]=None , ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = bos, unk, pad, eos __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = {} __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = len(self.symbols ) def __eq__( self : Dict , lowerCAmelCase_ : Dict ) -> str: return self.indices == other.indices def __getitem__( self : List[Any] , lowerCAmelCase_ : int ) -> Union[str, Any]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : Tuple ) -> List[Any]: return len(self.symbols ) def __contains__( self : Optional[Any] , lowerCAmelCase_ : Dict ) -> Optional[int]: return sym in self.indices @classmethod def lowercase ( cls : Dict , lowerCAmelCase_ : str ) -> str: __lowerCAmelCase = cls() d.add_from_file(lowerCAmelCase_ ) return d def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : Any=False ) -> Optional[Any]: if word in self.indices and not overwrite: __lowerCAmelCase = self.indices[word] __lowerCAmelCase = self.count[idx] + n return idx else: __lowerCAmelCase = len(self.symbols ) __lowerCAmelCase = idx self.symbols.append(lowerCAmelCase_ ) self.count.append(lowerCAmelCase_ ) return idx def lowercase ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> Dict: return 0 def lowercase ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> int: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: with open(lowerCAmelCase_ , 'r' , encoding='utf-8' ) as fd: self.add_from_file(lowerCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(lowerCAmelCase_ ) ) return __lowerCAmelCase = f.readlines() __lowerCAmelCase = self._load_meta(lowerCAmelCase_ ) for line in lines[indices_start_line:]: try: __lowerCAmelCase , __lowerCAmelCase = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": __lowerCAmelCase = True __lowerCAmelCase , __lowerCAmelCase = line.rsplit(' ' , 1 ) else: __lowerCAmelCase = False __lowerCAmelCase = int(lowerCAmelCase_ ) __lowerCAmelCase = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(lowerCAmelCase_ ) ) self.add_symbol(lowerCAmelCase_ , n=lowerCAmelCase_ , overwrite=lowerCAmelCase_ ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def a_ ( lowerCAmelCase_ : List[str] ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} __lowerCAmelCase = dict((re.sub(R'@@$', '', lowerCAmelCase_ ), v) if k.endswith('@@' ) else (re.sub(R'$', '</w>', lowerCAmelCase_ ), v) for k, v in d.items() ) __lowerCAmelCase = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowerCAmelCase = d[k] # restore return da def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str] ): # prep if not os.path.exists(lowerCAmelCase_ ): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(lowerCAmelCase_, exist_ok=lowerCAmelCase_ ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'checkpoint.pt' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""" ) __lowerCAmelCase = torch.load(lowerCAmelCase_, map_location='cpu' ) __lowerCAmelCase = chkpt['cfg']['model'] # dicts __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'dict.txt' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {dict_file} does not exist!""" ) __lowerCAmelCase = Dictionary.load(lowerCAmelCase_ ) __lowerCAmelCase = rewrite_dict_keys(src_dict.indices ) __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, VOCAB_FILES_NAMES['vocab_file'] ) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # merges_file (bpecodes) __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'bpecodes' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""" ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(lowerCAmelCase_, lowerCAmelCase_ ) # model config __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'config.json' ) __lowerCAmelCase = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1E-12, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # tokenizer config __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F"""Generating {biogpt_tokenizer_config_file}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # model __lowerCAmelCase = chkpt['model'] # remove unneeded keys __lowerCAmelCase = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): __lowerCAmelCase = model_state_dict.pop(lowerCAmelCase_ ) else: __lowerCAmelCase = model_state_dict.pop(lowerCAmelCase_ ) __lowerCAmelCase = BioGptConfig.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = BioGptForCausalLM(lowerCAmelCase_ ) # check that it loads ok model_new.load_state_dict(lowerCAmelCase_ ) # save __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(lowerCAmelCase_, lowerCAmelCase_ ) print('Conversion is done!' ) if __name__ == "__main__": _snake_case : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : int = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
0
'''simple docstring''' def __UpperCamelCase ( a : list , a : int = 0 ) ->Optional[Any]: snake_case = length or len(lowerCAmelCase_ ) snake_case = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: snake_case , snake_case = list_data[i + 1], list_data[i] snake_case = True return list_data if not swapped else bubble_sort(lowerCAmelCase_ , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
342
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" a_ = """pixel_values""" a_ = False a_ = TimmBackboneConfig def __init__( self : Tuple , lowerCAmelCase_ : Any , **lowerCAmelCase_ : Optional[int] ) -> Optional[Any]: requires_backends(self , 'timm' ) super().__init__(lowerCAmelCase_ ) __lowerCAmelCase = config if config.backbone is None: raise ValueError('backbone is not set in the config. Please set it to a timm model name.' ) if config.backbone not in timm.list_models(): raise ValueError(f"""backbone {config.backbone} is not supported by timm.""" ) if hasattr(lowerCAmelCase_ , 'out_features' ) and config.out_features is not None: raise ValueError('out_features is not supported by TimmBackbone. Please use out_indices instead.' ) __lowerCAmelCase = getattr(lowerCAmelCase_ , 'use_pretrained_backbone' , lowerCAmelCase_ ) if pretrained is None: raise ValueError('use_pretrained_backbone is not set in the config. Please set it to True or False.' ) # We just take the final layer by default. This matches the default for the transformers models. __lowerCAmelCase = config.out_indices if getattr(lowerCAmelCase_ , 'out_indices' , lowerCAmelCase_ ) is not None else (-1,) __lowerCAmelCase = timm.create_model( config.backbone , pretrained=lowerCAmelCase_ , features_only=config.features_only , in_chans=config.num_channels , out_indices=lowerCAmelCase_ , **lowerCAmelCase_ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. __lowerCAmelCase = self._backbone.return_layers __lowerCAmelCase = {layer['module']: str(lowerCAmelCase_ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(lowerCAmelCase_ ) @classmethod def lowercase ( cls : int , lowerCAmelCase_ : Dict , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['vision', 'timm'] ) from ...models.timm_backbone import TimmBackboneConfig __lowerCAmelCase = kwargs.pop('config' , TimmBackboneConfig() ) __lowerCAmelCase = kwargs.pop('use_timm_backbone' , lowerCAmelCase_ ) if not use_timm: raise ValueError('use_timm_backbone must be True for timm backbones' ) __lowerCAmelCase = kwargs.pop('num_channels' , config.num_channels ) __lowerCAmelCase = kwargs.pop('features_only' , config.features_only ) __lowerCAmelCase = kwargs.pop('use_pretrained_backbone' , config.use_pretrained_backbone ) __lowerCAmelCase = kwargs.pop('out_indices' , config.out_indices ) __lowerCAmelCase = TimmBackboneConfig( backbone=lowerCAmelCase_ , num_channels=lowerCAmelCase_ , features_only=lowerCAmelCase_ , use_pretrained_backbone=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , ) return super()._from_config(lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Tuple , lowerCAmelCase_ : int ) -> Dict: pass def lowercase ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Any=None , **lowerCAmelCase_ : Dict ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('Cannot output attentions for timm backbones at the moment' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone __lowerCAmelCase = self._all_layers __lowerCAmelCase = self._backbone(lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = self._return_layers __lowerCAmelCase = tuple(hidden_states[i] for i in self.out_indices ) else: __lowerCAmelCase = self._backbone(lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = None __lowerCAmelCase = tuple(lowerCAmelCase_ ) __lowerCAmelCase = tuple(lowerCAmelCase_ ) if hidden_states is not None else None if not return_dict: __lowerCAmelCase = (feature_maps,) if output_hidden_states: __lowerCAmelCase = output + (hidden_states,) return output return BackboneOutput(feature_maps=lowerCAmelCase_ , hidden_states=lowerCAmelCase_ , attentions=lowerCAmelCase_ )
53
0
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCAmelCase__ ( _a : Optional[int] , _a : List[Any]=0.999 , _a : List[str]="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(_a : int ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_a : str ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) snake_case_ : Optional[int] = [] for i in range(lowerCAmelCase_ ): snake_case_ : Optional[int] = i / num_diffusion_timesteps snake_case_ : Any = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCAmelCase_ ) / alpha_bar_fn(lowerCAmelCase_ ) , lowerCAmelCase_ ) ) return torch.tensor(lowerCAmelCase_ , dtype=torch.floataa ) class UpperCAmelCase_ ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' A : Optional[int] = [e.name for e in KarrasDiffusionSchedulers] A : Tuple = 2 @register_to_config def __init__( self , _SCREAMING_SNAKE_CASE = 1000 , _SCREAMING_SNAKE_CASE = 0.0_0085 , _SCREAMING_SNAKE_CASE = 0.012 , _SCREAMING_SNAKE_CASE = "linear" , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "epsilon" , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = 1.0 , _SCREAMING_SNAKE_CASE = "linspace" , _SCREAMING_SNAKE_CASE = 0 , ) -> List[Any]: if trained_betas is not None: snake_case_ : str = torch.tensor(lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": snake_case_ : Any = torch.linspace(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. snake_case_ : int = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCAmelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule snake_case_ : List[str] = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type="cosine" ) elif beta_schedule == "exp": snake_case_ : Optional[Any] = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type="exp" ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) snake_case_ : List[str] = 1.0 - self.betas snake_case_ : Optional[int] = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) snake_case_ : List[str] = use_karras_sigmas def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> str: if schedule_timesteps is None: snake_case_ : Dict = self.timesteps snake_case_ : Any = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: snake_case_ : int = 1 if len(lowerCAmelCase_ ) > 1 else 0 else: snake_case_ : List[str] = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep snake_case_ : Optional[int] = self._index_counter[timestep_int] return indices[pos].item() @property def _lowerCAmelCase ( self ) -> List[Any]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> torch.FloatTensor: snake_case_ : Any = self.index_for_timestep(lowerCAmelCase_ ) snake_case_ : int = self.sigmas[step_index] snake_case_ : int = sample / ((sigma**2 + 1) ** 0.5) return sample def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , ) -> Union[str, Any]: snake_case_ : Optional[Any] = num_inference_steps snake_case_ : str = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": snake_case_ : Optional[int] = np.linspace(0 , num_train_timesteps - 1 , lowerCAmelCase_ , dtype=lowerCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": snake_case_ : List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case_ : Union[str, Any] = (np.arange(0 , lowerCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(lowerCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": snake_case_ : str = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case_ : Optional[int] = (np.arange(lowerCAmelCase_ , 0 , -step_ratio )).round().copy().astype(lowerCAmelCase_ ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) snake_case_ : int = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) snake_case_ : str = np.log(lowerCAmelCase_ ) snake_case_ : Dict = np.interp(lowerCAmelCase_ , np.arange(0 , len(lowerCAmelCase_ ) ) , lowerCAmelCase_ ) if self.config.use_karras_sigmas: snake_case_ : List[Any] = self._convert_to_karras(in_sigmas=lowerCAmelCase_ , num_inference_steps=self.num_inference_steps ) snake_case_ : Tuple = np.array([self._sigma_to_t(lowerCAmelCase_ , lowerCAmelCase_ ) for sigma in sigmas] ) snake_case_ : Dict = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) snake_case_ : Any = torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ ) snake_case_ : Tuple = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) snake_case_ : Dict = torch.from_numpy(lowerCAmelCase_ ) snake_case_ : List[str] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(lowerCAmelCase_ ).startswith("mps" ): # mps does not support float64 snake_case_ : int = timesteps.to(lowerCAmelCase_ , dtype=torch.floataa ) else: snake_case_ : List[str] = timesteps.to(device=lowerCAmelCase_ ) # empty dt and derivative snake_case_ : int = None snake_case_ : List[str] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter snake_case_ : int = defaultdict(lowerCAmelCase_ ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: # get log sigma snake_case_ : Optional[Any] = np.log(lowerCAmelCase_ ) # get distribution snake_case_ : Dict = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range snake_case_ : str = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) snake_case_ : int = low_idx + 1 snake_case_ : List[Any] = log_sigmas[low_idx] snake_case_ : Any = log_sigmas[high_idx] # interpolate sigmas snake_case_ : str = (low - log_sigma) / (low - high) snake_case_ : List[str] = np.clip(lowerCAmelCase_ , 0 , 1 ) # transform interpolation to time range snake_case_ : Optional[Any] = (1 - w) * low_idx + w * high_idx snake_case_ : List[Any] = t.reshape(sigma.shape ) return t def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> torch.FloatTensor: snake_case_ : int = in_sigmas[-1].item() snake_case_ : Optional[int] = in_sigmas[0].item() snake_case_ : Optional[int] = 7.0 # 7.0 is the value used in the paper snake_case_ : Optional[Any] = np.linspace(0 , 1 , lowerCAmelCase_ ) snake_case_ : Dict = sigma_min ** (1 / rho) snake_case_ : Optional[Any] = sigma_max ** (1 / rho) snake_case_ : List[Any] = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _lowerCAmelCase ( self ) -> Any: return self.dt is None def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , ) -> Union[SchedulerOutput, Tuple]: snake_case_ : Dict = self.index_for_timestep(lowerCAmelCase_ ) # advance index counter by 1 snake_case_ : Union[str, Any] = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: snake_case_ : List[Any] = self.sigmas[step_index] snake_case_ : str = self.sigmas[step_index + 1] else: # 2nd order / Heun's method snake_case_ : Any = self.sigmas[step_index - 1] snake_case_ : Tuple = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API snake_case_ : Dict = 0 snake_case_ : Any = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": snake_case_ : List[str] = sigma_hat if self.state_in_first_order else sigma_next snake_case_ : Union[str, Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": snake_case_ : Tuple = sigma_hat if self.state_in_first_order else sigma_next snake_case_ : Optional[int] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": snake_case_ : int = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: snake_case_ : List[str] = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order snake_case_ : str = (sample - pred_original_sample) / sigma_hat # 3. delta timestep snake_case_ : Tuple = sigma_next - sigma_hat # store for 2nd order step snake_case_ : Tuple = derivative snake_case_ : Optional[Any] = dt snake_case_ : Union[str, Any] = sample else: # 2. 2nd order / Heun's method snake_case_ : Union[str, Any] = (sample - pred_original_sample) / sigma_next snake_case_ : List[str] = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample snake_case_ : str = self.dt snake_case_ : List[str] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" snake_case_ : Dict = None snake_case_ : int = None snake_case_ : Optional[Any] = None snake_case_ : int = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase_ ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples snake_case_ : List[str] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCAmelCase_ ): # mps does not support float64 snake_case_ : Optional[int] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) snake_case_ : List[str] = timesteps.to(original_samples.device , dtype=torch.floataa ) else: snake_case_ : Optional[Any] = self.timesteps.to(original_samples.device ) snake_case_ : Dict = timesteps.to(original_samples.device ) snake_case_ : Any = [self.index_for_timestep(lowerCAmelCase_ , lowerCAmelCase_ ) for t in timesteps] snake_case_ : List[str] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): snake_case_ : Any = sigma.unsqueeze(-1 ) snake_case_ : Any = original_samples + noise * sigma return noisy_samples def __len__( self ) -> Union[str, Any]: return self.config.num_train_timesteps
568
from __future__ import annotations def a_ ( lowerCAmelCase_ : list[float] ): if len(lowerCAmelCase_ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) __lowerCAmelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
0
def A_ ( A__ , A__ ) -> Optional[int]: return price * (1 + tax_rate) if __name__ == "__main__": print(F"""{price_plus_tax(1_0_0, 0.25) = }""") print(F"""{price_plus_tax(1_2_5.5_0, 0.05) = }""")
302
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Union[str, Any]=1_0 , lowerCAmelCase_ : List[str]=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple="relu" , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : Optional[int]=None , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = embeddings_size __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_act __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = len(lowerCAmelCase_ ) def lowercase ( self : Optional[int] ) -> List[Any]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def lowercase ( self : Tuple ) -> List[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] ) -> str: __lowerCAmelCase = FlaxRegNetModel(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowercase ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int ) -> Tuple: __lowerCAmelCase = self.num_labels __lowerCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () a_ = False a_ = False a_ = False def lowercase ( self : Dict ) -> None: __lowerCAmelCase = FlaxRegNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : int ) -> Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : str ) -> Union[str, Any]: return def lowercase ( self : Dict ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def lowercase ( self : Union[str, Any] ) -> Any: pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def lowercase ( self : Tuple ) -> Tuple: pass def lowercase ( self : Optional[Any] ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: def check_hidden_states_output(lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : str ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Dict ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('JIT Enabled' ): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def a_ ( ): __lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : Union[str, Any] ) -> Optional[Any]: return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def lowercase ( self : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCAmelCase_ , return_tensors='np' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) # verify the logits __lowerCAmelCase = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
0
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowercase_ : def __init__( self , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_="resnet50" , lowercase_=3 , lowercase_=32 , lowercase_=3 , lowercase_=True , lowercase_=True , ) -> List[Any]: a__ =parent a__ =out_indices if out_indices is not None else [4] a__ =stage_names a__ =out_features a__ =backbone a__ =batch_size a__ =image_size a__ =num_channels a__ =use_pretrained_backbone a__ =is_training def __UpperCamelCase ( self) -> Any: a__ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ =self.get_config() return config, pixel_values def __UpperCamelCase ( self) -> Union[str, Any]: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __UpperCamelCase ( self , lowercase_ , lowercase_) -> int: a__ =TimmBackbone(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() with torch.no_grad(): a__ =model(lowerCAmelCase_) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __UpperCamelCase ( self) -> str: a__ =self.prepare_config_and_inputs() a__ , a__ =config_and_inputs a__ ={'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class lowercase_ (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): snake_case =(TimmBackbone,) if is_torch_available() else () snake_case ={'feature-extraction': TimmBackbone} if is_torch_available() else {} snake_case =False snake_case =False snake_case =False snake_case =False def __UpperCamelCase ( self) -> int: a__ =TimmBackboneModelTester(self) a__ =ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_) def __UpperCamelCase ( self) -> List[str]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self) -> Optional[int]: a__ ='resnet18' a__ ='microsoft/resnet-18' a__ =AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_) a__ =AutoBackbone.from_pretrained(lowerCAmelCase_) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(len(timm_model.stage_names) , len(transformers_model.stage_names)) self.assertEqual(timm_model.channels , transformers_model.channels) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,)) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names) - 1]) a__ =AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ , out_indices=[1, 2, 3]) a__ =AutoBackbone.from_pretrained(lowerCAmelCase_ , out_indices=[1, 2, 3]) self.assertEqual(timm_model.out_indices , transformers_model.out_indices) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(timm_model.channels , transformers_model.channels) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking') def __UpperCamelCase ( self) -> Tuple: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute') def __UpperCamelCase ( self) -> int: pass @unittest.skip('TimmBackbone initialization is managed on the timm side') def __UpperCamelCase ( self) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def __UpperCamelCase ( self) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def __UpperCamelCase ( self) -> Optional[Any]: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint') def __UpperCamelCase ( self) -> Any: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> Optional[int]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def __UpperCamelCase ( self) -> Tuple: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def __UpperCamelCase ( self) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def __UpperCamelCase ( self) -> List[str]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.') def __UpperCamelCase ( self) -> Optional[int]: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.') def __UpperCamelCase ( self) -> str: pass @unittest.skip('Safetensors is not supported by timm.') def __UpperCamelCase ( self) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self) -> Optional[Any]: pass def __UpperCamelCase ( self) -> Optional[Any]: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowerCAmelCase_) a__ =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ =[*signature.parameters.keys()] a__ =['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_) def __UpperCamelCase ( self) -> Union[str, Any]: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() a__ =True a__ =self.has_attentions # no need to test all models as different heads yield the same functionality a__ =self.all_model_classes[0] a__ =model_class(lowerCAmelCase_) model.to(lowerCAmelCase_) a__ =self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_) a__ =model(**lowerCAmelCase_) a__ =outputs[0][-1] # Encoder-/Decoder-only models a__ =outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: a__ =outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowerCAmelCase_) self.assertIsNotNone(hidden_states.grad) if self.has_attentions: self.assertIsNotNone(attentions.grad) def __UpperCamelCase ( self) -> Optional[Any]: a__ , a__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ =model_class(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() a__ =model(**lowerCAmelCase_) self.assertEqual(len(result.feature_maps) , len(config.out_indices)) self.assertEqual(len(model.channels) , len(config.out_indices)) # Check output of last stage is taken if out_features=None, out_indices=None a__ =copy.deepcopy(lowerCAmelCase_) a__ =None a__ =model_class(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() a__ =model(**lowerCAmelCase_) self.assertEqual(len(result.feature_maps) , 1) self.assertEqual(len(model.channels) , 1) # Check backbone can be initialized with fresh weights a__ =copy.deepcopy(lowerCAmelCase_) a__ =False a__ =model_class(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() a__ =model(**lowerCAmelCase_)
20
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process _snake_case : Optional[int] = logging.getLogger(__name__) _snake_case : Dict = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) _snake_case : List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(_UpperCamelCase )} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a_ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def lowercase ( self : List[Any] ) -> List[Any]: if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path' ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ = field(default=_UpperCamelCase , metadata={"""help""": """The input training data file (a text file)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a_ = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a_ = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def lowercase ( self : int ) -> int: if self.train_file is not None: __lowerCAmelCase = self.train_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __lowerCAmelCase = self.validation_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Union[str, Any] ): with open(lowerCAmelCase_, 'r', encoding='utf-8' ) as f: __lowerCAmelCase = [json.loads(lowerCAmelCase_ ) for line in f.read().splitlines() if (len(lowerCAmelCase_ ) > 0 and not line.isspace())] assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) __lowerCAmelCase = {c: dataset[c] for c in dataset.column_names} __lowerCAmelCase = refs return Dataset.from_dict(lowerCAmelCase_ ) def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s', lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset(data_args.dataset_name, data_args.dataset_config_name ) if "validation" not in datasets.keys(): __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[:{data_args.validation_split_percentage}%]""", ) __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[{data_args.validation_split_percentage}%:]""", ) else: __lowerCAmelCase = {} if data_args.train_file is not None: __lowerCAmelCase = data_args.train_file if data_args.validation_file is not None: __lowerCAmelCase = data_args.validation_file __lowerCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": __lowerCAmelCase = 'text' __lowerCAmelCase = load_dataset(lowerCAmelCase_, data_files=lowerCAmelCase_ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.config_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: __lowerCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: __lowerCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path, from_tf=bool('.ckpt' in model_args.model_name_or_path ), config=lowerCAmelCase_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info('Training new model from scratch' ) __lowerCAmelCase = AutoModelForMaskedLM.from_config(lowerCAmelCase_ ) model.resize_token_embeddings(len(lowerCAmelCase_ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __lowerCAmelCase = datasets['train'].column_names else: __lowerCAmelCase = datasets['validation'].column_names __lowerCAmelCase = 'text' if 'text' in column_names else column_names[0] __lowerCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(lowerCAmelCase_ : str ): # Remove empty lines __lowerCAmelCase = [line for line in examples['text'] if len(lowerCAmelCase_ ) > 0 and not line.isspace()] return tokenizer(examples['text'], padding=lowerCAmelCase_, truncation=lowerCAmelCase_, max_length=data_args.max_seq_length ) __lowerCAmelCase = datasets.map( lowerCAmelCase_, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, remove_columns=[text_column_name], load_from_cache_file=not data_args.overwrite_cache, ) # Add the chinese references if provided if data_args.train_ref_file is not None: __lowerCAmelCase = add_chinese_references(tokenized_datasets['train'], data_args.train_ref_file ) if data_args.validation_ref_file is not None: __lowerCAmelCase = add_chinese_references( tokenized_datasets['validation'], data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __lowerCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: __lowerCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. __lowerCAmelCase = DataCollatorForWholeWordMask(tokenizer=lowerCAmelCase_, mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowerCAmelCase = Trainer( model=lowerCAmelCase_, args=lowerCAmelCase_, train_dataset=tokenized_datasets['train'] if training_args.do_train else None, eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None, tokenizer=lowerCAmelCase_, data_collator=lowerCAmelCase_, ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload __lowerCAmelCase = os.path.join(training_args.output_dir, 'train_results.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir, 'trainer_state.json' ) ) # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = math.exp(eval_output['eval_loss'] ) __lowerCAmelCase = perplexity __lowerCAmelCase = os.path.join(training_args.output_dir, 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def a_ ( lowerCAmelCase_ : Tuple ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
53
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __a : Optional[int] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Optional[int] = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __a : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
397
def a_ ( lowerCAmelCase_ : int = 200_0000 ): __lowerCAmelCase = [0 for i in range(n + 1 )] __lowerCAmelCase = 1 __lowerCAmelCase = 1 for i in range(2, int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i, n + 1, lowerCAmelCase_ ): __lowerCAmelCase = 1 __lowerCAmelCase = 0 for i in range(lowerCAmelCase_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"""{solution() = }""")
53
0
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCamelCase__ = logging.getLogger(__name__) UpperCamelCase__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCamelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase__ : '''simple docstring''' UpperCAmelCase_ = field( default=_UpperCamelCase , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCAmelCase_ = field( default=_UpperCamelCase , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(_UpperCamelCase )} , ) UpperCAmelCase_ = field( default=_UpperCamelCase , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCAmelCase_ = field( default=_UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCAmelCase_ = field( default=_UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCAmelCase_ = field( default=_UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCAmelCase_ = field( default=_UpperCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCAmelCase_ = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCAmelCase_ = field( default=_UpperCamelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' ) @dataclass class UpperCAmelCase__ : '''simple docstring''' UpperCAmelCase_ = field( default=_UpperCamelCase , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) UpperCAmelCase_ = field( default=_UpperCamelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCAmelCase_ = field(default=_UpperCamelCase , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCAmelCase_ = field( default=_UpperCamelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCAmelCase_ = field( default=_UpperCamelCase , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) UpperCAmelCase_ = field( default=_UpperCamelCase , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) UpperCAmelCase_ = field( default=_UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCAmelCase_ = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) UpperCAmelCase_ = field( default=_UpperCamelCase , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) UpperCAmelCase_ = field( default=_UpperCamelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCAmelCase_ = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCAmelCase_ = field( default=_UpperCamelCase , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def lowerCAmelCase_ ( self : int ): """simple docstring""" if self.train_file is not None: _lowercase : str = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: _lowercase : Any = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def UpperCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ ) -> Optional[int]: '''simple docstring''' with open(lowerCAmelCase_ , '''r''' , encoding='''utf-8''' ) as f: _lowercase : int = [json.loads(lowerCAmelCase_ ) for line in f.read().splitlines() if (len(lowerCAmelCase_ ) > 0 and not line.isspace())] assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) _lowercase : Dict = {c: dataset[c] for c in dataset.column_names} _lowercase : int = refs return Dataset.from_dict(lowerCAmelCase_ ) def UpperCamelCase__ ( ) -> Dict: '''simple docstring''' _lowercase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowercase , _lowercase , _lowercase : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowercase , _lowercase , _lowercase : Optional[Any] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _lowercase : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowercase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _lowercase : Union[str, Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): _lowercase : Dict = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'train[:{data_args.validation_split_percentage}%]' , ) _lowercase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'train[{data_args.validation_split_percentage}%:]' , ) else: _lowercase : Tuple = {} if data_args.train_file is not None: _lowercase : Optional[int] = data_args.train_file if data_args.validation_file is not None: _lowercase : Optional[Any] = data_args.validation_file _lowercase : List[Any] = data_args.train_file.split('''.''' )[-1] if extension == "txt": _lowercase : int = '''text''' _lowercase : Dict = load_dataset(lowerCAmelCase_ , data_files=lowerCAmelCase_ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowercase : List[Any] = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: _lowercase : List[str] = AutoConfig.from_pretrained(model_args.config_name , **lowerCAmelCase_ ) elif model_args.model_name_or_path: _lowercase : Union[str, Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , **lowerCAmelCase_ ) else: _lowercase : Tuple = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(F'New config: {config}' ) _lowercase : List[str] = { '''cache_dir''': model_args.cache_dir, '''use_fast''': model_args.use_fast_tokenizer, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: _lowercase : Tuple = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **lowerCAmelCase_ ) elif model_args.model_name_or_path: _lowercase : Tuple = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **lowerCAmelCase_ ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) if model_args.model_name_or_path: _lowercase : Tuple = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) _lowercase : Optional[int] = AutoModelForMaskedLM.from_config(lowerCAmelCase_ ) model.resize_token_embeddings(len(lowerCAmelCase_ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: _lowercase : List[str] = datasets['''train'''].column_names else: _lowercase : int = datasets['''validation'''].column_names _lowercase : Union[str, Any] = '''text''' if '''text''' in column_names else column_names[0] _lowercase : int = '''max_length''' if data_args.pad_to_max_length else False def tokenize_function(UpperCAmelCase_ ): # Remove empty lines _lowercase : Any = [line for line in examples['''text'''] if len(lowerCAmelCase_ ) > 0 and not line.isspace()] return tokenizer(examples['''text'''] , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=data_args.max_seq_length ) _lowercase : Any = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: _lowercase : Optional[int] = add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: _lowercase : List[str] = add_chinese_references( tokenized_datasets['''validation'''] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer _lowercase : List[Any] = data_args.train_ref_file or data_args.validation_ref_file if has_ref: _lowercase : Optional[Any] = False # Data collator # This one will take care of randomly masking the tokens. _lowercase : str = DataCollatorForWholeWordMask(tokenizer=lowerCAmelCase_ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _lowercase : str = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , ) # Training if training_args.do_train: if last_checkpoint is not None: _lowercase : List[Any] = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): _lowercase : Tuple = model_args.model_name_or_path else: _lowercase : Optional[int] = None _lowercase : Optional[int] = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload _lowercase : Optional[int] = os.path.join(training_args.output_dir , '''train_results.txt''' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_ , '''w''' ) as writer: logger.info('''***** Train results *****''' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # Evaluation _lowercase : Union[str, Any] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _lowercase : Dict = trainer.evaluate() _lowercase : Optional[Any] = math.exp(eval_output['''eval_loss'''] ) _lowercase : Tuple = perplexity _lowercase : Any = os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in sorted(results.items() ): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) return results def UpperCamelCase__ ( UpperCAmelCase_ ) -> str: '''simple docstring''' main() if __name__ == "__main__": main()
322
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _snake_case : Tuple = logging.getLogger() _snake_case : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Any , lowerCAmelCase_ : Dict ) -> Optional[int]: os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowerCAmelCase = {'source': 'What is love ?', 'target': 'life'} __lowerCAmelCase = {'train': 1_2, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: __lowerCAmelCase = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(lowerCAmelCase_ , f"""{split}.{field}""" ) , 'w' ) as f: f.write(lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : str = "pytorch" ) -> List[str]: __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'output' ) __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'data' ) self._create_dummy_data(data_dir=lowerCAmelCase_ ) __lowerCAmelCase = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) __lowerCAmelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowerCAmelCase_ , env=self.get_env() ) __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'metrics.json' ) with open(lowerCAmelCase_ ) as f: __lowerCAmelCase = json.load(lowerCAmelCase_ ) return result @require_torch_gpu def lowercase ( self : str ) -> int: __lowerCAmelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def lowercase ( self : List[str] ) -> Dict: __lowerCAmelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def lowercase ( self : int ) -> Tuple: __lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def lowercase ( self : List[Any] ) -> str: __lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
53
0
def _lowerCamelCase ( a_ : float , a_ : int): if digit_amount > 0: return round(number - int(lowerCAmelCase_) , lowerCAmelCase_) return number - int(lowerCAmelCase_) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
166
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]="resnet50" , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Optional[Any]=True , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = out_indices if out_indices is not None else [4] __lowerCAmelCase = stage_names __lowerCAmelCase = out_features __lowerCAmelCase = backbone __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = use_pretrained_backbone __lowerCAmelCase = is_training def lowercase ( self : List[str] ) -> Any: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def lowercase ( self : List[Any] ) -> Union[str, Any]: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase ( self : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ) -> int: __lowerCAmelCase = TimmBackbone(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 1_4, 1_4) , ) def lowercase ( self : List[str] ) -> str: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (TimmBackbone,) if is_torch_available() else () a_ = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Tuple ) -> int: __lowerCAmelCase = TimmBackboneModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : Dict ) -> List[str]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Union[str, Any] ) -> Optional[int]: __lowerCAmelCase = 'resnet18' __lowerCAmelCase = 'microsoft/resnet-18' __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ , out_indices=[1, 2, 3] ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def lowercase ( self : List[str] ) -> Tuple: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def lowercase ( self : Dict ) -> int: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def lowercase ( self : str ) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase ( self : Any ) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase ( self : Optional[int] ) -> Optional[Any]: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def lowercase ( self : Dict ) -> Any: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Any ) -> Optional[int]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase ( self : Union[str, Any] ) -> Tuple: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase ( self : List[str] ) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Dict ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Tuple ) -> List[str]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def lowercase ( self : int ) -> Optional[int]: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def lowercase ( self : Union[str, Any] ) -> str: pass @unittest.skip('Safetensors is not supported by timm.' ) def lowercase ( self : Dict ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : List[str] ) -> Optional[Any]: pass def lowercase ( self : Union[str, Any] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = self.has_attentions # no need to test all models as different heads yield the same functionality __lowerCAmelCase = self.all_model_classes[0] __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = outputs[0][-1] # Encoder-/Decoder-only models __lowerCAmelCase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowerCAmelCase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowerCAmelCase_ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) __lowerCAmelCase = None __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) __lowerCAmelCase = False __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ )
53
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCamelCase : Union[str, Any] = 1_6 lowerCamelCase : Optional[Any] = 3_2 def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase = 16 ) -> List[Any]: snake_case : Union[str, Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) snake_case : str = load_dataset("""glue""" ,"""mrpc""" ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) snake_case : Dict = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=lowerCAmelCase_ ,max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case : int = datasets.map( lowerCAmelCase_ ,batched=lowerCAmelCase_ ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case : str = tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case : Union[str, Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case : List[Any] = 16 elif accelerator.mixed_precision != "no": snake_case : Optional[int] = 8 else: snake_case : Tuple = None return tokenizer.pad( lowerCAmelCase_ ,padding="""longest""" ,max_length=lowerCAmelCase_ ,pad_to_multiple_of=lowerCAmelCase_ ,return_tensors="""pt""" ,) # Instantiate dataloaders. snake_case : List[Any] = DataLoader( tokenized_datasets["""train"""] ,shuffle=lowerCAmelCase_ ,collate_fn=lowerCAmelCase_ ,batch_size=lowerCAmelCase_ ) snake_case : List[str] = DataLoader( tokenized_datasets["""validation"""] ,shuffle=lowerCAmelCase_ ,collate_fn=lowerCAmelCase_ ,batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCamelCase : Union[str, Any] = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Dict: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" ,lowerCAmelCase_ ) == "1": snake_case : Dict = 2 # Initialize accelerator snake_case : Optional[int] = Accelerator(cpu=args.cpu ,mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case : List[str] = config["""lr"""] snake_case : Union[str, Any] = int(config["""num_epochs"""] ) snake_case : List[Any] = int(config["""seed"""] ) snake_case : Optional[int] = int(config["""batch_size"""] ) snake_case : Optional[Any] = evaluate.load("""glue""" ,"""mrpc""" ) # If the batch size is too big we use gradient accumulation snake_case : Any = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: snake_case : Optional[int] = batch_size // MAX_GPU_BATCH_SIZE snake_case : Optional[Any] = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase_ ) snake_case , snake_case : Optional[int] = get_dataloaders(lowerCAmelCase_ ,lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case : Any = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" ,return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case : Optional[int] = model.to(accelerator.device ) # Instantiate optimizer snake_case : str = AdamW(params=model.parameters() ,lr=lowerCAmelCase_ ) # Instantiate scheduler snake_case : int = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ ,num_warmup_steps=100 ,num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case , snake_case , snake_case , snake_case , snake_case : List[Any] = accelerator.prepare( lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) snake_case : List[str] = model(**lowerCAmelCase_ ) snake_case : Tuple = outputs.loss snake_case : str = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() snake_case : Any = 0 for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case : Tuple = model(**lowerCAmelCase_ ) snake_case : Any = outputs.logits.argmax(dim=-1 ) snake_case , snake_case : Tuple = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(lowerCAmelCase_ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples snake_case : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case : Optional[int] = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=lowerCAmelCase_ ,references=lowerCAmelCase_ ,) snake_case : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" ,lowerCAmelCase_ ) def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: snake_case : List[str] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" ,type=lowerCAmelCase_ ,default=lowerCAmelCase_ ,choices=["""no""", """fp16""", """bf16""", """fp8"""] ,help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" ,) parser.add_argument("""--cpu""" ,action="""store_true""" ,help="""If passed, will train on the CPU.""" ) snake_case : int = parser.parse_args() snake_case : List[Any] = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ ,lowerCAmelCase_ ) if __name__ == "__main__": main()
587
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def a_ ( lowerCAmelCase_ : str=None ): if subparsers is not None: __lowerCAmelCase = subparsers.add_parser('env' ) else: __lowerCAmelCase = argparse.ArgumentParser('Accelerate env command' ) parser.add_argument( '--config_file', default=lowerCAmelCase_, help='The config file to use for the default values in the launching script.' ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def a_ ( lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = torch.__version__ __lowerCAmelCase = torch.cuda.is_available() __lowerCAmelCase = is_xpu_available() __lowerCAmelCase = is_npu_available() __lowerCAmelCase = 'Not found' # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowerCAmelCase_ ): __lowerCAmelCase = load_config_from_file(args.config_file ).to_dict() __lowerCAmelCase = { '`Accelerate` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Numpy version': np.__version__, 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'PyTorch XPU available': str(lowerCAmelCase_ ), 'PyTorch NPU available': str(lowerCAmelCase_ ), 'System RAM': F"""{psutil.virtual_memory().total / 1024 ** 3:.2f} GB""", } if pt_cuda_available: __lowerCAmelCase = torch.cuda.get_device_name() print('\nCopy-and-paste the text below in your GitHub issue\n' ) print('\n'.join([F"""- {prop}: {val}""" for prop, val in info.items()] ) ) print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:' ) __lowerCAmelCase = ( '\n'.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else F"""\t{accelerate_config}""" ) print(lowerCAmelCase_ ) __lowerCAmelCase = accelerate_config return info def a_ ( ): __lowerCAmelCase = env_command_parser() __lowerCAmelCase = parser.parse_args() env_command(lowerCAmelCase_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
53
0
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class _a ( _UpperCamelCase ): '''simple docstring''' lowerCamelCase_ : Dict = ["""image_processor""", """tokenizer"""] lowerCamelCase_ : str = """OwlViTImageProcessor""" lowerCamelCase_ : Tuple = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): __A : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCAmelCase_ , ) __A : Optional[int] = kwargs.pop("feature_extractor" ) __A : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="max_length" , __UpperCAmelCase="np" , **__UpperCAmelCase ): if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or (isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and not isinstance(text[0] , lowerCAmelCase_ )): __A : List[str] = [self.tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ )] elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(text[0] , lowerCAmelCase_ ): __A : Optional[Any] = [] # Maximum number of queries across batch __A : Tuple = max([len(lowerCAmelCase_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(lowerCAmelCase_ ) != max_num_queries: __A : Any = t + [" "] * (max_num_queries - len(lowerCAmelCase_ )) __A : Tuple = self.tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) encodings.append(lowerCAmelCase_ ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": __A : Tuple = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) __A : Optional[int] = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __A : Tuple = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) __A : Optional[int] = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __A : Tuple = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) __A : Optional[Any] = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __A : Optional[int] = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) __A : Tuple = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) __A : Tuple = BatchEncoding() __A : Optional[int] = input_ids __A : str = attention_mask if query_images is not None: __A : int = BatchEncoding() __A : Optional[Any] = self.image_processor( lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ).pixel_values __A : List[str] = query_pixel_values if images is not None: __A : str = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if text is not None and images is not None: __A : Optional[int] = image_features.pixel_values return encoding elif query_images is not None and images is not None: __A : List[Any] = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase_ ) , tensor_type=lowerCAmelCase_ ) def __UpperCAmelCase( self , *__UpperCAmelCase , **__UpperCAmelCase ): return self.image_processor.post_process(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __UpperCAmelCase( self , *__UpperCAmelCase , **__UpperCAmelCase ): return self.image_processor.post_process_object_detection(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __UpperCAmelCase( self , *__UpperCAmelCase , **__UpperCAmelCase ): return self.image_processor.post_process_image_guided_detection(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __UpperCAmelCase( self , *__UpperCAmelCase , **__UpperCAmelCase ): return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __UpperCAmelCase( self , *__UpperCAmelCase , **__UpperCAmelCase ): return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def __UpperCAmelCase( self ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowerCAmelCase_ , ) return self.image_processor_class @property def __UpperCAmelCase( self ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowerCAmelCase_ , ) return self.image_processor
520
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a_ ( ): __lowerCAmelCase = ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores', type=lowerCAmelCase_, default=1, help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script', type=lowerCAmelCase_, help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ), ) # rest from the training program parser.add_argument('training_script_args', nargs=lowerCAmelCase_ ) return parser.parse_args() def a_ ( ): __lowerCAmelCase = parse_args() # Import training_script as a module. __lowerCAmelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __lowerCAmelCase = script_fpath.stem __lowerCAmelCase = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv __lowerCAmelCase = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores ) if __name__ == "__main__": main()
53
0