code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def a_ ( lowerCAmelCase_ : int ): if isinstance(lowerCAmelCase_, collections.abc.Iterable ): return x return (x, x) @require_tf class _UpperCAmelCase : """simple docstring""" def lowercase ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : str ) -> Optional[Any]: pass def lowercase ( self : str ) -> Dict: pass def lowercase ( self : Tuple ) -> List[Any]: pass def lowercase ( self : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple=None , **lowerCAmelCase_ : Optional[int] ) -> Optional[int]: __lowerCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = TFVisionTextDualEncoderModel(lowerCAmelCase_ ) __lowerCAmelCase = model(input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def lowercase ( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple=None , **lowerCAmelCase_ : int ) -> Optional[int]: __lowerCAmelCase , __lowerCAmelCase = self.get_vision_text_model(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=lowerCAmelCase_ , text_model=lowerCAmelCase_ ) __lowerCAmelCase = model(input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowercase ( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : Tuple ) -> Any: __lowerCAmelCase , __lowerCAmelCase = self.get_vision_text_model(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = {'vision_model': vision_model, 'text_model': text_model} __lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase_ ) __lowerCAmelCase = model(input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowercase ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple=None , **lowerCAmelCase_ : Tuple ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.get_vision_text_model(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=lowerCAmelCase_ , text_model=lowerCAmelCase_ ) __lowerCAmelCase = model(input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) __lowerCAmelCase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = model(input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) __lowerCAmelCase = after_output[0].numpy() __lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase_ , 1e-5 ) def lowercase ( self : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=None , **lowerCAmelCase_ : List[str] ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase = self.get_vision_text_model(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=lowerCAmelCase_ , text_model=lowerCAmelCase_ ) __lowerCAmelCase = model( input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , output_attentions=lowerCAmelCase_ ) __lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(lowerCAmelCase_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowerCAmelCase = to_atuple(vision_model.config.image_size ) __lowerCAmelCase = to_atuple(vision_model.config.patch_size ) __lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowerCAmelCase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(lowerCAmelCase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float ) -> Optional[int]: __lowerCAmelCase = np.abs((a - b) ).max() self.assertLessEqual(lowerCAmelCase_ , lowerCAmelCase_ , f"""Difference between torch and flax is {diff} (>= {tol}).""" ) def lowercase ( self : Tuple ) -> Dict: __lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**lowerCAmelCase_ ) def lowercase ( self : Any ) -> int: __lowerCAmelCase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCAmelCase_ ) def lowercase ( self : int ) -> int: __lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCAmelCase_ ) def lowercase ( self : Dict ) -> int: __lowerCAmelCase = self.prepare_config_and_inputs() self.check_save_load(**lowerCAmelCase_ ) def lowercase ( self : str ) -> int: __lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCAmelCase_ ) @slow def lowercase ( self : Dict ) -> List[str]: __lowerCAmelCase , __lowerCAmelCase = self.get_pretrained_model_and_inputs() __lowerCAmelCase = model_a(**lowerCAmelCase_ ) __lowerCAmelCase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = model_a(**lowerCAmelCase_ ) __lowerCAmelCase = after_outputs[0].numpy() __lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase_ , 1e-5 ) @require_tf class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" def lowercase ( self : Dict ) -> Optional[int]: __lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-random-bert' ) __lowerCAmelCase = 1_3 __lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowerCAmelCase = random_attention_mask([batch_size, 4] ) __lowerCAmelCase = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple ) -> Union[str, Any]: __lowerCAmelCase = TFViTModel(lowerCAmelCase_ , name='vision_model' ) __lowerCAmelCase = TFBertModel(lowerCAmelCase_ , name='text_model' ) return vision_model, text_model def lowercase ( self : Any ) -> Optional[Any]: __lowerCAmelCase = TFViTModelTester(self ) __lowerCAmelCase = TFBertModelTester(self ) __lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() __lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = vision_config_and_inputs ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" def lowercase ( self : Optional[Any] ) -> List[str]: # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. __lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf' , 'hf-internal-testing/tiny-random-roberta' ) __lowerCAmelCase = 1_3 __lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowerCAmelCase = random_attention_mask([batch_size, 4] ) __lowerCAmelCase = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def lowercase ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]=None , **lowerCAmelCase_ : Optional[Any] ) -> Optional[int]: __lowerCAmelCase , __lowerCAmelCase = self.get_vision_text_model(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=lowerCAmelCase_ , text_model=lowerCAmelCase_ ) __lowerCAmelCase = model( input_ids=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , output_attentions=lowerCAmelCase_ ) __lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(lowerCAmelCase_ ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __lowerCAmelCase = to_atuple(vision_model.config.image_size ) __lowerCAmelCase = to_atuple(vision_model.config.patch_size ) __lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowerCAmelCase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(lowerCAmelCase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowercase ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Any ) -> int: __lowerCAmelCase = TFDeiTModel(lowerCAmelCase_ , name='vision_model' ) __lowerCAmelCase = TFRobertaModel(lowerCAmelCase_ , name='text_model' ) return vision_model, text_model def lowercase ( self : List[str] ) -> List[Any]: __lowerCAmelCase = TFDeiTModelTester(self ) __lowerCAmelCase = TFRobertaModelTester(self ) __lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() __lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = vision_config_and_inputs ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" def lowercase ( self : Dict ) -> Dict: __lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf' , 'hf-internal-testing/tiny-random-bert' ) __lowerCAmelCase = 1_3 __lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowerCAmelCase = random_attention_mask([batch_size, 4] ) __lowerCAmelCase = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def lowercase ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] ) -> Dict: __lowerCAmelCase = TFCLIPVisionModel(lowerCAmelCase_ , name='vision_model' ) __lowerCAmelCase = TFBertModel(lowerCAmelCase_ , name='text_model' ) return vision_model, text_model def lowercase ( self : List[Any] ) -> str: __lowerCAmelCase = TFCLIPVisionModelTester(self ) __lowerCAmelCase = TFBertModelTester(self ) __lowerCAmelCase = clip_model_tester.prepare_config_and_inputs() __lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = vision_config_and_inputs ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase ( self : List[str] ) -> Optional[int]: __lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian' , logit_scale_init_value=1.0 , from_pt=lowerCAmelCase_ ) __lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) __lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) __lowerCAmelCase = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='np' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowerCAmelCase = np.array([[1.2_28_47_27, 0.3_10_41_22]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , lowerCAmelCase_ , atol=1e-3 ) )
53
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def a_ ( lowerCAmelCase_ : str=None ): if subparsers is not None: __lowerCAmelCase = subparsers.add_parser('env' ) else: __lowerCAmelCase = argparse.ArgumentParser('Accelerate env command' ) parser.add_argument( '--config_file', default=lowerCAmelCase_, help='The config file to use for the default values in the launching script.' ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def a_ ( lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = torch.__version__ __lowerCAmelCase = torch.cuda.is_available() __lowerCAmelCase = is_xpu_available() __lowerCAmelCase = is_npu_available() __lowerCAmelCase = 'Not found' # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowerCAmelCase_ ): __lowerCAmelCase = load_config_from_file(args.config_file ).to_dict() __lowerCAmelCase = { '`Accelerate` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Numpy version': np.__version__, 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'PyTorch XPU available': str(lowerCAmelCase_ ), 'PyTorch NPU available': str(lowerCAmelCase_ ), 'System RAM': F"""{psutil.virtual_memory().total / 1024 ** 3:.2f} GB""", } if pt_cuda_available: __lowerCAmelCase = torch.cuda.get_device_name() print('\nCopy-and-paste the text below in your GitHub issue\n' ) print('\n'.join([F"""- {prop}: {val}""" for prop, val in info.items()] ) ) print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:' ) __lowerCAmelCase = ( '\n'.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else F"""\t{accelerate_config}""" ) print(lowerCAmelCase_ ) __lowerCAmelCase = accelerate_config return info def a_ ( ): __lowerCAmelCase = env_command_parser() __lowerCAmelCase = parser.parse_args() env_command(lowerCAmelCase_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
53
1
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase_ : int ) -> Optional[Any]: __lowerCAmelCase = n __lowerCAmelCase = [None] * self.n __lowerCAmelCase = 0 # index of the first element __lowerCAmelCase = 0 __lowerCAmelCase = 0 def __len__( self : Optional[int] ) -> int: return self.size def lowercase ( self : Any ) -> bool: return self.size == 0 def lowercase ( self : Any ) -> List[Any]: return False if self.is_empty() else self.array[self.front] def lowercase ( self : str , lowerCAmelCase_ : List[str] ) -> Dict: if self.size >= self.n: raise Exception('QUEUE IS FULL' ) __lowerCAmelCase = data __lowerCAmelCase = (self.rear + 1) % self.n self.size += 1 return self def lowercase ( self : Optional[Any] ) -> str: if self.size == 0: raise Exception('UNDERFLOW' ) __lowerCAmelCase = self.array[self.front] __lowerCAmelCase = None __lowerCAmelCase = (self.front + 1) % self.n self.size -= 1 return temp
53
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a_ ( ): __lowerCAmelCase = ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores', type=lowerCAmelCase_, default=1, help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script', type=lowerCAmelCase_, help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ), ) # rest from the training program parser.add_argument('training_script_args', nargs=lowerCAmelCase_ ) return parser.parse_args() def a_ ( ): __lowerCAmelCase = parse_args() # Import training_script as a module. __lowerCAmelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __lowerCAmelCase = script_fpath.stem __lowerCAmelCase = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv __lowerCAmelCase = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores ) if __name__ == "__main__": main()
53
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a_ ( ): __lowerCAmelCase = ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores', type=lowerCAmelCase_, default=1, help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script', type=lowerCAmelCase_, help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ), ) # rest from the training program parser.add_argument('training_script_args', nargs=lowerCAmelCase_ ) return parser.parse_args() def a_ ( ): __lowerCAmelCase = parse_args() # Import training_script as a module. __lowerCAmelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __lowerCAmelCase = script_fpath.stem __lowerCAmelCase = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv __lowerCAmelCase = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores ) if __name__ == "__main__": main()
53
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict=1_3 , lowerCAmelCase_ : str=3_2 , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : str=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Tuple=[2, 2, 3, 2] , lowerCAmelCase_ : str=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[int]=3_7 , lowerCAmelCase_ : Dict="gelu" , lowerCAmelCase_ : List[Any]=1_0 , lowerCAmelCase_ : str=0.02 , lowerCAmelCase_ : Dict=["stage2", "stage3", "stage4"] , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : List[Any]=None , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = num_stages __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = out_features __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = num_stages def lowercase ( self : Dict ) -> List[str]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase ( self : List[str] ) -> Union[str, Any]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowercase ( self : Dict ) -> List[str]: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_1_2 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=lowerCAmelCase_ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=4_0 , auxiliary_channels=2_5_6 , auxiliary_num_convs=1 , auxiliary_concat_input=lowerCAmelCase_ , loss_ignore_index=2_5_5 , num_labels=self.num_labels , ) def lowercase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int ) -> Optional[Any]: __lowerCAmelCase = UperNetForSemanticSegmentation(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase ( self : Union[str, Any] ) -> Union[str, Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (UperNetForSemanticSegmentation,) if is_torch_available() else () a_ = {"""image-segmentation""": UperNetForSemanticSegmentation} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Optional[int] ) -> Dict: __lowerCAmelCase = UperNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : List[str] ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Tuple ) -> Union[str, Any]: return def lowercase ( self : Optional[int] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase_ ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def lowercase ( self : Optional[int] ) -> Dict: pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def lowercase ( self : Optional[Any] ) -> Dict: pass @unittest.skip(reason='UperNet does not have a base model' ) def lowercase ( self : Optional[int] ) -> List[Any]: pass @unittest.skip(reason='UperNet does not have a base model' ) def lowercase ( self : str ) -> Dict: pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowercase ( self : Optional[Any] ) -> Optional[int]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : Tuple ) -> List[Any]: pass def lowercase ( self : Union[str, Any] ) -> Tuple: def check_hidden_states_output(lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Any ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = _config_zero_init(lowerCAmelCase_ ) __lowerCAmelCase = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __lowerCAmelCase = model_class(config=lowerCAmelCase_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='UperNet does not have tied weights' ) def lowercase ( self : Any ) -> int: pass @slow def lowercase ( self : Optional[int] ) -> Optional[int]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def a_ ( ): __lowerCAmelCase = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k', repo_type='dataset', filename='ADE_val_00000001.jpg' ) __lowerCAmelCase = Image.open(lowerCAmelCase_ ).convert('RGB' ) return image @require_torch @require_vision @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Dict ) -> Union[str, Any]: __lowerCAmelCase = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(lowerCAmelCase_ ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(lowerCAmelCase_ ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
1
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy _snake_case : Optional[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def __init__( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : float , **lowerCAmelCase_ : List[str] ) -> Any: __lowerCAmelCase = feature_size __lowerCAmelCase = sampling_rate __lowerCAmelCase = padding_value __lowerCAmelCase = kwargs.pop('padding_side' , 'right' ) __lowerCAmelCase = kwargs.pop('return_attention_mask' , lowerCAmelCase_ ) super().__init__(**lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , lowerCAmelCase_ : Union[bool, str, PaddingStrategy] = True , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , ) -> BatchFeature: # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(lowerCAmelCase_ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __lowerCAmelCase = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( 'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`' f""" to this method that includes {self.model_input_names[0]}, but you provided""" f""" {list(processed_features.keys() )}""" ) __lowerCAmelCase = processed_features[self.model_input_names[0]] __lowerCAmelCase = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowerCAmelCase_ ) == 0: if return_attention_mask: __lowerCAmelCase = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __lowerCAmelCase = required_input[0] if isinstance(lowerCAmelCase_ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __lowerCAmelCase = 0 while len(required_input[index] ) == 0: index += 1 if index < len(lowerCAmelCase_ ): __lowerCAmelCase = required_input[index][0] if return_tensors is None: if is_tf_tensor(lowerCAmelCase_ ): __lowerCAmelCase = 'tf' elif is_torch_tensor(lowerCAmelCase_ ): __lowerCAmelCase = 'pt' elif isinstance(lowerCAmelCase_ , (int, float, list, tuple, np.ndarray) ): __lowerCAmelCase = 'np' else: raise ValueError( f"""type of {first_element} unknown: {type(lowerCAmelCase_ )}. """ 'Should be one of a python, numpy, pytorch or tensorflow object.' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __lowerCAmelCase = to_numpy(lowerCAmelCase_ ) else: __lowerCAmelCase = [to_numpy(lowerCAmelCase_ ) for v in value] # Convert padding_strategy in PaddingStrategy __lowerCAmelCase = self._get_padding_strategies(padding=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) __lowerCAmelCase = processed_features[self.model_input_names[0]] __lowerCAmelCase = len(lowerCAmelCase_ ) if not all(len(lowerCAmelCase_ ) == batch_size for v in processed_features.values() ): raise ValueError('Some items in the output dictionary have a different batch size than others.' ) __lowerCAmelCase = [] for i in range(lowerCAmelCase_ ): __lowerCAmelCase = {k: v[i] for k, v in processed_features.items()} # truncation __lowerCAmelCase = self._truncate( lowerCAmelCase_ , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , truncation=lowerCAmelCase_ , ) truncated_inputs.append(lowerCAmelCase_ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __lowerCAmelCase = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __lowerCAmelCase = PaddingStrategy.MAX_LENGTH __lowerCAmelCase = {} for i in range(lowerCAmelCase_ ): # padding __lowerCAmelCase = self._pad( truncated_inputs[i] , max_length=lowerCAmelCase_ , padding_strategy=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) for key, value in outputs.items(): if key not in batch_outputs: __lowerCAmelCase = [] if value.dtype is np.dtype(np.floataa ): __lowerCAmelCase = value.astype(np.floataa ) batch_outputs[key].append(lowerCAmelCase_ ) return BatchFeature(lowerCAmelCase_ , tensor_type=lowerCAmelCase_ ) def lowercase ( self : Tuple , lowerCAmelCase_ : Union[Dict[str, np.ndarray], BatchFeature] , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , ) -> dict: __lowerCAmelCase = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __lowerCAmelCase = len(lowerCAmelCase_ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __lowerCAmelCase = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __lowerCAmelCase = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowerCAmelCase_ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __lowerCAmelCase = np.ones(len(lowerCAmelCase_ ) , dtype=np.intaa ) if needs_to_be_padded: __lowerCAmelCase = max_length - len(lowerCAmelCase_ ) if self.padding_side == "right": if return_attention_mask: __lowerCAmelCase = np.pad( processed_features['attention_mask'] , (0, difference) ) __lowerCAmelCase = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __lowerCAmelCase = np.pad( lowerCAmelCase_ , lowerCAmelCase_ , 'constant' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __lowerCAmelCase = np.pad( processed_features['attention_mask'] , (difference, 0) ) __lowerCAmelCase = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __lowerCAmelCase = np.pad( lowerCAmelCase_ , lowerCAmelCase_ , 'constant' , constant_values=self.padding_value ) else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return processed_features def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Union[Dict[str, np.ndarray], BatchFeature] , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , ) -> Any: if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' ) __lowerCAmelCase = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __lowerCAmelCase = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __lowerCAmelCase = len(lowerCAmelCase_ ) > max_length if needs_to_be_truncated: __lowerCAmelCase = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __lowerCAmelCase = processed_features['attention_mask'][:max_length] return processed_features def lowercase ( self : Tuple , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Optional[Any]=None ) -> List[str]: # Get padding strategy if padding is not False: if padding is True: __lowerCAmelCase = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowerCAmelCase = PaddingStrategy(lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowerCAmelCase = padding else: __lowerCAmelCase = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( 'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use' ' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' ) return padding_strategy
53
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Optional[Any] ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : int ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_, keep_in_memory=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Dict, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, features=lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Any ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_, split=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type', [str, list] ) def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : Any, lowerCAmelCase_ : Dict ): if issubclass(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = text_path elif issubclass(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = [text_path] __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : int, lowerCAmelCase_ : Tuple=("train",) ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) for split in splits: __lowerCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def a_ ( lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Dict ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = TextDatasetReader({'train': text_path}, cache_dir=lowerCAmelCase_, keep_in_memory=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = TextDatasetReader({'train': text_path}, features=lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : Optional[int] ): if split: __lowerCAmelCase = {split: text_path} else: __lowerCAmelCase = 'train' __lowerCAmelCase = {'train': text_path, 'test': text_path} __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
53
1
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Tuple ): # Initialise PyTorch model __lowerCAmelCase = LxmertConfig.from_json_file(lowerCAmelCase_ ) print(F"""Building PyTorch model from configuration: {config}""" ) __lowerCAmelCase = LxmertForPreTraining(lowerCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict(), lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
53
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case : Union[str, Any] = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : int=False ): __lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Optional[int]=False ): for i in range(config.num_hidden_layers ): if base_model: __lowerCAmelCase = '' else: __lowerCAmelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] __lowerCAmelCase = in_proj_bias[: config.hidden_size] __lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase = in_proj_bias[-config.hidden_size :] def a_ ( lowerCAmelCase_ : List[str] ): __lowerCAmelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Optional[Any]=True ): __lowerCAmelCase = ViTConfig() # patch_size if model_name[-1] == "8": __lowerCAmelCase = 8 # set labels if required if not base_model: __lowerCAmelCase = 1000 __lowerCAmelCase = 'huggingface/label-files' __lowerCAmelCase = 'imagenet-1k-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 6 # load original model from torch hub __lowerCAmelCase = torch.hub.load('facebookresearch/dino:main', lowerCAmelCase_ ) original_model.eval() # load state_dict of original model, remove and rename some keys __lowerCAmelCase = original_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase_ ) __lowerCAmelCase = create_rename_keys(lowerCAmelCase_, base_model=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # load HuggingFace model if base_model: __lowerCAmelCase = ViTModel(lowerCAmelCase_, add_pooling_layer=lowerCAmelCase_ ).eval() else: __lowerCAmelCase = ViTForImageClassification(lowerCAmelCase_ ).eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor __lowerCAmelCase = ViTImageProcessor() __lowerCAmelCase = image_processor(images=prepare_img(), return_tensors='pt' ) __lowerCAmelCase = encoding['pixel_values'] __lowerCAmelCase = model(lowerCAmelCase_ ) if base_model: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_, outputs.last_hidden_state[:, 0, :], atol=1E-1 ) else: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase_, outputs.logits, atol=1E-3 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) _snake_case : List[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
53
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _snake_case : Any = logging.get_logger(__name__) _snake_case : int = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _snake_case : Optional[Any] = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } _snake_case : str = { 'yjernite/retribert-base-uncased': 512, } _snake_case : Optional[int] = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = PRETRAINED_INIT_CONFIGURATION a_ = RetriBertTokenizer a_ = ["""input_ids""", """attention_mask"""] def __init__( self : Dict , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : str="[UNK]" , lowerCAmelCase_ : Optional[Any]="[SEP]" , lowerCAmelCase_ : List[str]="[PAD]" , lowerCAmelCase_ : Optional[int]="[CLS]" , lowerCAmelCase_ : List[Any]="[MASK]" , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : List[Any] , ) -> Dict: super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(lowerCAmelCase_ , normalizer_state.pop('type' ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**lowerCAmelCase_ ) __lowerCAmelCase = do_lower_case def lowercase ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int]=None ) -> Optional[int]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
53
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : str ) -> Any: __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : Tuple ) -> Optional[int]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : List[Any] ) -> int: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : str ) -> str: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[str]: # pass variant but use the non-variant filenames __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> Union[str, Any]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : List[str] ) -> List[Any]: # pass variant but use the non-variant filenames __lowerCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) )
53
1
import os import re import shutil import sys import tempfile import unittest import black _snake_case : Union[str, Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. _snake_case : Union[str, Any] = ' def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n' class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : List[str] ) -> Tuple: __lowerCAmelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , 'models/bert/' ) ) __lowerCAmelCase = self.transformer_dir shutil.copy( os.path.join(lowerCAmelCase_ , 'src/transformers/models/bert/modeling_bert.py' ) , os.path.join(self.transformer_dir , 'models/bert/modeling_bert.py' ) , ) def lowercase ( self : Optional[Any] ) -> Optional[int]: __lowerCAmelCase = 'src/transformers' shutil.rmtree(self.transformer_dir ) def lowercase ( self : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int=None ) -> Dict: __lowerCAmelCase = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: __lowerCAmelCase = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result __lowerCAmelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 ) __lowerCAmelCase = black.format_str(lowerCAmelCase_ , mode=lowerCAmelCase_ ) __lowerCAmelCase = os.path.join(self.transformer_dir , 'new_code.py' ) with open(lowerCAmelCase_ , 'w' , newline='\n' ) as f: f.write(lowerCAmelCase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCAmelCase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowerCAmelCase_ ) with open(lowerCAmelCase_ , 'r' ) as f: self.assertTrue(f.read() , lowerCAmelCase_ ) def lowercase ( self : int ) -> List[str]: __lowerCAmelCase = check_copies.find_code_in_transformers('models.bert.modeling_bert.BertLMPredictionHead' ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> List[Any]: # Base copy consistency self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , lowerCAmelCase_ , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , re.sub('Bert' , 'TestModel' , lowerCAmelCase_ ) , ) # Copy consistency with a really long name __lowerCAmelCase = 'TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" , f"""{long_class_name}LMPredictionHead""" , re.sub('Bert' , lowerCAmelCase_ , lowerCAmelCase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , lowerCAmelCase_ , overwrite_result=re.sub('Bert' , 'TestModel' , lowerCAmelCase_ ) , ) def lowercase ( self : List[str] ) -> Any: __lowerCAmelCase = check_copies.LOCALIZED_READMES['README_zh-hans.md'] __lowerCAmelCase = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),' ' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**' ' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders' ' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang' ' Luong, Quoc V. Le, Christopher D. Manning.' ) __lowerCAmelCase = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) __lowerCAmelCase = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文' ' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自' ' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather' ' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,' ' Christopher D. Manning 发布。\n' ) __lowerCAmelCase , __lowerCAmelCase = check_copies.convert_to_localized_md( lowerCAmelCase_ , lowerCAmelCase_ , localized_readme['format_model_list'] ) self.assertFalse(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase , __lowerCAmelCase = check_copies.convert_to_localized_md( lowerCAmelCase_ , lowerCAmelCase_ , localized_readme['format_model_list'] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowerCAmelCase_ ) __lowerCAmelCase = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.' ) __lowerCAmelCase = ( '1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and' ' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) __lowerCAmelCase = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) __lowerCAmelCase , __lowerCAmelCase = check_copies.convert_to_localized_md( lowerCAmelCase_ , lowerCAmelCase_ , localized_readme['format_model_list'] ) # Check if the model link is synchronized. self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
53
import math def a_ ( lowerCAmelCase_ : list, lowerCAmelCase_ : int ): __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) __lowerCAmelCase = 0 while arr[min(lowerCAmelCase_, lowerCAmelCase_ ) - 1] < x: __lowerCAmelCase = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: __lowerCAmelCase = prev + 1 if prev == min(lowerCAmelCase_, lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": _snake_case : List[str] = input('Enter numbers separated by a comma:\n').strip() _snake_case : Optional[Any] = [int(item) for item in user_input.split(',')] _snake_case : List[str] = int(input('Enter the number to be searched:\n')) _snake_case : Optional[int] = jump_search(arr, x) if res == -1: print('Number not found!') else: print(F"""Number {x} is at index {res}""")
53
1
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def a_ ( ): __lowerCAmelCase = 10 __lowerCAmelCase = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) __lowerCAmelCase = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(lowerCAmelCase_ ) ), }, features=lowerCAmelCase_, ) return dataset @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : int ): __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=lowerCAmelCase_ ) return filename # FILE_CONTENT + files _snake_case : str = '\\n Text data.\n Second line of data.' @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'file.txt' __lowerCAmelCase = FILE_CONTENT with open(lowerCAmelCase_, 'w' ) as f: f.write(lowerCAmelCase_ ) return filename @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Optional[Any] ): import bza __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' __lowerCAmelCase = bytes(lowerCAmelCase_, 'utf-8' ) with bza.open(lowerCAmelCase_, 'wb' ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : List[Any] ): import gzip __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) __lowerCAmelCase = bytes(lowerCAmelCase_, 'utf-8' ) with gzip.open(lowerCAmelCase_, 'wb' ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : int ): if datasets.config.LZ4_AVAILABLE: import lza.frame __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' __lowerCAmelCase = bytes(lowerCAmelCase_, 'utf-8' ) with lza.frame.open(lowerCAmelCase_, 'wb' ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : List[str] ): if datasets.config.PY7ZR_AVAILABLE: import pyazr __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(lowerCAmelCase_, 'w' ) as archive: archive.write(lowerCAmelCase_, arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Optional[Any] ): import tarfile __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(lowerCAmelCase_, 'w' ) as f: f.add(lowerCAmelCase_, arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Any ): import lzma __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' __lowerCAmelCase = bytes(lowerCAmelCase_, 'utf-8' ) with lzma.open(lowerCAmelCase_, 'wb' ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : int ): import zipfile __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(lowerCAmelCase_, 'w' ) as f: f.write(lowerCAmelCase_, arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : int ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' __lowerCAmelCase = bytes(lowerCAmelCase_, 'utf-8' ) with zstd.open(lowerCAmelCase_, 'wb' ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'file.xml' __lowerCAmelCase = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(lowerCAmelCase_, 'w' ) as f: f.write(lowerCAmelCase_ ) return filename _snake_case : Dict = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] _snake_case : Union[str, Any] = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] _snake_case : Dict = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } _snake_case : Tuple = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] _snake_case : Tuple = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope='session' ) def a_ ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : int ): __lowerCAmelCase = datasets.Dataset.from_dict(lowerCAmelCase_ ) __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Dict ): __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(lowerCAmelCase_ ) ) as con: __lowerCAmelCase = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)', tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Dict ): __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(lowerCAmelCase_, 'w', newline='' ) as f: __lowerCAmelCase = csv.DictWriter(lowerCAmelCase_, fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : int ): __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(lowerCAmelCase_, 'w', newline='' ) as f: __lowerCAmelCase = csv.DictWriter(lowerCAmelCase_, fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : List[Any] ): import bza __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(lowerCAmelCase_, 'rb' ) as f: __lowerCAmelCase = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowerCAmelCase_, 'wb' ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : int ): __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowerCAmelCase_, 'w' ) as f: f.write(lowerCAmelCase_, arcname=os.path.basename(lowerCAmelCase_ ) ) f.write(lowerCAmelCase_, arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : int, lowerCAmelCase_ : Any ): __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowerCAmelCase_, 'w' ) as f: f.write(lowerCAmelCase_, arcname=os.path.basename(csv_path.replace('.csv', '.CSV' ) ) ) f.write(lowerCAmelCase_, arcname=os.path.basename(csva_path.replace('.csv', '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : List[str], lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(lowerCAmelCase_, 'w' ) as f: f.write(lowerCAmelCase_, arcname=os.path.join('main_dir', os.path.basename(lowerCAmelCase_ ) ) ) f.write(lowerCAmelCase_, arcname=os.path.join('main_dir', os.path.basename(lowerCAmelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : int ): __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) __lowerCAmelCase = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(lowerCAmelCase_, 'wb' ) as f: __lowerCAmelCase = pq.ParquetWriter(lowerCAmelCase_, schema=lowerCAmelCase_ ) __lowerCAmelCase = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowerCAmelCase_ ) )] for k in DATA[0]}, schema=lowerCAmelCase_ ) writer.write_table(lowerCAmelCase_ ) writer.close() return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __lowerCAmelCase = {'data': DATA} with open(lowerCAmelCase_, 'w' ) as f: json.dump(lowerCAmelCase_, lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) __lowerCAmelCase = {'data': DATA_DICT_OF_LISTS} with open(lowerCAmelCase_, 'w' ) as f: json.dump(lowerCAmelCase_, lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : List[str] ): __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(lowerCAmelCase_, 'w' ) as f: for item in DATA: f.write(json.dumps(lowerCAmelCase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : int ): __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(lowerCAmelCase_, 'w' ) as f: for item in DATA: f.write(json.dumps(lowerCAmelCase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : List[str] ): __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(lowerCAmelCase_, 'w' ) as f: for item in DATA_312: f.write(json.dumps(lowerCAmelCase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Any ): __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(lowerCAmelCase_, 'w' ) as f: for item in DATA_STR: f.write(json.dumps(lowerCAmelCase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Optional[Any] ): import gzip __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(lowerCAmelCase_, 'rb' ) as orig_file: with gzip.open(lowerCAmelCase_, 'wb' ) as zipped_file: zipped_file.writelines(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : Tuple ): import gzip __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(lowerCAmelCase_, 'rb' ) as orig_file: with gzip.open(lowerCAmelCase_, 'wb' ) as zipped_file: zipped_file.writelines(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Dict, lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(lowerCAmelCase_, 'w' ) as f: f.write(lowerCAmelCase_, arcname=os.path.basename(lowerCAmelCase_ ) ) f.write(lowerCAmelCase_, arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[Any], lowerCAmelCase_ : Any, lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(lowerCAmelCase_, 'w' ) as f: f.write(lowerCAmelCase_, arcname=os.path.join('nested', os.path.basename(lowerCAmelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(lowerCAmelCase_, 'w' ) as f: f.write(lowerCAmelCase_, arcname=os.path.join('main_dir', os.path.basename(lowerCAmelCase_ ) ) ) f.write(lowerCAmelCase_, arcname=os.path.join('main_dir', os.path.basename(lowerCAmelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : List[str] ): __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(lowerCAmelCase_, 'w' ) as f: f.add(lowerCAmelCase_, arcname=os.path.basename(lowerCAmelCase_ ) ) f.add(lowerCAmelCase_, arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Dict, lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(lowerCAmelCase_, 'w' ) as f: f.add(lowerCAmelCase_, arcname=os.path.join('nested', os.path.basename(lowerCAmelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = ['0', '1', '2', '3'] __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(lowerCAmelCase_, 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = ['0', '1', '2', '3'] __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(lowerCAmelCase_, 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = ['0', '1', '2', '3'] __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(lowerCAmelCase_, 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(lowerCAmelCase_, 'w' ) as f: f.write(lowerCAmelCase_, arcname=os.path.basename(lowerCAmelCase_ ) ) f.write(lowerCAmelCase_, arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Any, lowerCAmelCase_ : Any ): __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(lowerCAmelCase_, 'w' ) as f: f.write(lowerCAmelCase_, arcname=os.path.join('main_dir', os.path.basename(lowerCAmelCase_ ) ) ) f.write(lowerCAmelCase_, arcname=os.path.join('main_dir', os.path.basename(lowerCAmelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : List[str], lowerCAmelCase_ : List[str] ): __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(lowerCAmelCase_, 'w' ) as f: f.write(lowerCAmelCase_, arcname=os.path.basename('unsupported.ext' ) ) f.write(lowerCAmelCase_, arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) __lowerCAmelCase = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope='session' ) def a_ ( ): return os.path.join('tests', 'features', 'data', 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def a_ ( ): return os.path.join('tests', 'features', 'data', 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(lowerCAmelCase_, 'w' ) as f: f.write(lowerCAmelCase_, arcname=os.path.basename(lowerCAmelCase_ ) ) f.write(lowerCAmelCase_, arcname=os.path.basename(lowerCAmelCase_ ).replace('.jpg', '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def a_ ( lowerCAmelCase_ : Dict ): __lowerCAmelCase = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt', 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt', 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt', 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt', 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt', 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
53
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[Any], lowerCAmelCase_ : str ): # Initialise PyTorch model __lowerCAmelCase = RemBertConfig.from_json_file(lowerCAmelCase_ ) print('Building PyTorch model from configuration: {}'.format(str(lowerCAmelCase_ ) ) ) __lowerCAmelCase = RemBertModel(lowerCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Save pytorch-model print('Save PyTorch model to {}'.format(lowerCAmelCase_ ) ) torch.save(model.state_dict(), lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : int = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
53
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case : List[Any] = logging.get_logger(__name__) _snake_case : str = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = """camembert""" def __init__( self : Optional[Any] , lowerCAmelCase_ : Dict=3_0_5_2_2 , lowerCAmelCase_ : Optional[Any]=7_6_8 , lowerCAmelCase_ : Optional[int]=1_2 , lowerCAmelCase_ : Dict=1_2 , lowerCAmelCase_ : Dict=3_0_7_2 , lowerCAmelCase_ : Optional[int]="gelu" , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Union[str, Any]=5_1_2 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : List[str]=1e-12 , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : str="absolute" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : List[str] , ) -> Dict: super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache __lowerCAmelCase = classifier_dropout class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" @property def lowercase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __lowerCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __lowerCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
53
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _snake_case : Any = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224', out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) __lowerCAmelCase = MaskFormerConfig(backbone_config=lowerCAmelCase_ ) __lowerCAmelCase = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok __lowerCAmelCase = 847 __lowerCAmelCase = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok __lowerCAmelCase = 150 __lowerCAmelCase = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok __lowerCAmelCase = 171 __lowerCAmelCase = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO __lowerCAmelCase = 133 __lowerCAmelCase = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok __lowerCAmelCase = 19 __lowerCAmelCase = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok __lowerCAmelCase = 65 __lowerCAmelCase = 'mapillary-vistas-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} return config def a_ ( lowerCAmelCase_ : Tuple ): __lowerCAmelCase = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') ) for source_index, target_index in zip(range(3, 0, -1 ), range(0, 3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') ) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') ) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') ) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') ) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Tuple ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int ): __lowerCAmelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowerCAmelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[:dim, :] __lowerCAmelCase = in_proj_bias[: dim] __lowerCAmelCase = in_proj_weight[ dim : dim * 2, : ] __lowerCAmelCase = in_proj_bias[ dim : dim * 2 ] __lowerCAmelCase = in_proj_weight[ -dim :, : ] __lowerCAmelCase = in_proj_bias[-dim :] # fmt: on def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : Dict ): # fmt: off __lowerCAmelCase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: hidden_size, :] __lowerCAmelCase = in_proj_bias[:config.hidden_size] __lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCAmelCase = in_proj_weight[-hidden_size :, :] __lowerCAmelCase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: hidden_size, :] __lowerCAmelCase = in_proj_bias[:config.hidden_size] __lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCAmelCase = in_proj_weight[-hidden_size :, :] __lowerCAmelCase = in_proj_bias[-hidden_size :] # fmt: on def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : bool = False ): __lowerCAmelCase = get_maskformer_config(lowerCAmelCase_ ) # load original state_dict with open(lowerCAmelCase_, 'rb' ) as f: __lowerCAmelCase = pickle.load(lowerCAmelCase_ ) __lowerCAmelCase = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowerCAmelCase = create_rename_keys(lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_swin_q_k_v(lowerCAmelCase_, config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase_, lowerCAmelCase_ ) # update to torch tensors for key, value in state_dict.items(): __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ) # load 🤗 model __lowerCAmelCase = MaskFormerForInstanceSegmentation(lowerCAmelCase_ ) model.eval() for name, param in model.named_parameters(): print(lowerCAmelCase_, param.shape ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowerCAmelCase_, strict=lowerCAmelCase_ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCAmelCase_ ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results __lowerCAmelCase = prepare_img() if "vistas" in model_name: __lowerCAmelCase = 65 elif "cityscapes" in model_name: __lowerCAmelCase = 6_5535 else: __lowerCAmelCase = 255 __lowerCAmelCase = True if 'ade' in model_name else False __lowerCAmelCase = MaskFormerImageProcessor(ignore_index=lowerCAmelCase_, reduce_labels=lowerCAmelCase_ ) __lowerCAmelCase = image_processor(lowerCAmelCase_, return_tensors='pt' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) print('Logits:', outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowerCAmelCase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], lowerCAmelCase_, atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print('Pushing model and image processor to the hub...' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _snake_case : List[str] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
53
1
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = ["""image_processor""", """tokenizer"""] a_ = """OwlViTImageProcessor""" a_ = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : Optional[int] , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[int]=None , **lowerCAmelCase_ : Optional[Any] ) -> Optional[int]: __lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowerCAmelCase_ , ) __lowerCAmelCase = kwargs.pop('feature_extractor' ) __lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) def __call__( self : List[Any] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Union[str, Any]="max_length" , lowerCAmelCase_ : int="np" , **lowerCAmelCase_ : str ) -> Tuple: if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or (isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and not isinstance(text[0] , lowerCAmelCase_ )): __lowerCAmelCase = [self.tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ )] elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(text[0] , lowerCAmelCase_ ): __lowerCAmelCase = [] # Maximum number of queries across batch __lowerCAmelCase = max([len(lowerCAmelCase_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(lowerCAmelCase_ ) != max_num_queries: __lowerCAmelCase = t + [' '] * (max_num_queries - len(lowerCAmelCase_ )) __lowerCAmelCase = self.tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) encodings.append(lowerCAmelCase_ ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __lowerCAmelCase = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __lowerCAmelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __lowerCAmelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __lowerCAmelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __lowerCAmelCase = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) __lowerCAmelCase = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __lowerCAmelCase = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) __lowerCAmelCase = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __lowerCAmelCase = BatchEncoding() __lowerCAmelCase = input_ids __lowerCAmelCase = attention_mask if query_images is not None: __lowerCAmelCase = BatchEncoding() __lowerCAmelCase = self.image_processor( lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ).pixel_values __lowerCAmelCase = query_pixel_values if images is not None: __lowerCAmelCase = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if text is not None and images is not None: __lowerCAmelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __lowerCAmelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase_ ) , tensor_type=lowerCAmelCase_ ) def lowercase ( self : str , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : List[str] ) -> List[str]: return self.image_processor.post_process(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Tuple ) -> Optional[Any]: return self.image_processor.post_process_object_detection(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : List[str] ) -> Dict: return self.image_processor.post_process_image_guided_detection(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : str , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Optional[Any] ) -> Optional[Any]: return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : List[str] ) -> Dict: return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def lowercase ( self : Dict ) -> int: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowerCAmelCase_ , ) return self.image_processor_class @property def lowercase ( self : Union[str, Any] ) -> List[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowerCAmelCase_ , ) return self.image_processor
53
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): _snake_case : List[Any] = True from torch.cuda.amp import autocast _snake_case : Dict = logging.getLogger(__name__) def a_ ( lowerCAmelCase_ : str=None, lowerCAmelCase_ : str=None ): return field(default_factory=lambda: default, metadata=lowerCAmelCase_ ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) a_ = field( default=0.1 , metadata={"""help""": """The dropout ratio for the attention probabilities."""} ) a_ = field( default=0.1 , metadata={"""help""": """The dropout ratio for activations inside the fully connected layer."""} ) a_ = field( default=0.1 , metadata={ """help""": """The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.""" } , ) a_ = field( default=0.1 , metadata={"""help""": """The dropout probabilitiy for all 1D convolutional layers in feature extractor."""} , ) a_ = field( default=0.05 , metadata={ """help""": ( """Propability of each feature vector along the time axis to be chosen as the start of the vector""" """span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature""" """vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.""" ) } , ) a_ = field(default=0.0 , metadata={"""help""": """The LayerDrop probability."""} ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ = field( default="""train+validation""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of validation examples to this """ """value if set.""" ) } , ) a_ = list_field( default=[""",""", """?""", """.""", """!""", """-""", """;""", """:""", """\"\"""", """%""", """'""", """\"""", """�"""] , metadata={"""help""": """A list of characters to remove from the transcripts."""} , ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = 42 a_ = True a_ = None a_ = None a_ = None a_ = None def __call__( self : int , lowerCAmelCase_ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods __lowerCAmelCase = [{'input_values': feature['input_values']} for feature in features] __lowerCAmelCase = [{'input_ids': feature['labels']} for feature in features] __lowerCAmelCase = self.processor.pad( lowerCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) __lowerCAmelCase = self.processor.pad( labels=lowerCAmelCase_ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='pt' , ) # replace padding with -100 to ignore loss correctly __lowerCAmelCase = labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_0_0 ) __lowerCAmelCase = labels return batch class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Tuple , lowerCAmelCase_ : nn.Module , lowerCAmelCase_ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: model.train() __lowerCAmelCase = self._prepare_inputs(lowerCAmelCase_ ) if self.use_amp: with autocast(): __lowerCAmelCase = self.compute_loss(lowerCAmelCase_ , lowerCAmelCase_ ) else: __lowerCAmelCase = self.compute_loss(lowerCAmelCase_ , lowerCAmelCase_ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": __lowerCAmelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __lowerCAmelCase = loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: __lowerCAmelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowerCAmelCase_ ).backward() elif self.use_apex: with amp.scale_loss(lowerCAmelCase_ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowerCAmelCase_ ) else: loss.backward() return loss.detach() def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s', lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: __lowerCAmelCase = datasets.load_dataset( 'common_voice', data_args.dataset_config_name, split=data_args.train_split_name ) __lowerCAmelCase = datasets.load_dataset('common_voice', data_args.dataset_config_name, split='test' ) # Create and save tokenizer __lowerCAmelCase = F"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(lowerCAmelCase_ : Any ): __lowerCAmelCase = re.sub(lowerCAmelCase_, '', batch['sentence'] ).lower() + ' ' return batch __lowerCAmelCase = train_dataset.map(lowerCAmelCase_, remove_columns=['sentence'] ) __lowerCAmelCase = eval_dataset.map(lowerCAmelCase_, remove_columns=['sentence'] ) def extract_all_chars(lowerCAmelCase_ : Tuple ): __lowerCAmelCase = ' '.join(batch['text'] ) __lowerCAmelCase = list(set(lowerCAmelCase_ ) ) return {"vocab": [vocab], "all_text": [all_text]} __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, batched=lowerCAmelCase_, batch_size=-1, keep_in_memory=lowerCAmelCase_, remove_columns=train_dataset.column_names, ) __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, batched=lowerCAmelCase_, batch_size=-1, keep_in_memory=lowerCAmelCase_, remove_columns=eval_dataset.column_names, ) __lowerCAmelCase = list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) ) __lowerCAmelCase = {v: k for k, v in enumerate(lowerCAmelCase_ )} __lowerCAmelCase = vocab_dict[' '] del vocab_dict[" "] __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = len(lowerCAmelCase_ ) with open('vocab.json', 'w' ) as vocab_file: json.dump(lowerCAmelCase_, lowerCAmelCase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = WavaVecaCTCTokenizer( 'vocab.json', unk_token='[UNK]', pad_token='[PAD]', word_delimiter_token='|', ) __lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_6000, padding_value=0.0, do_normalize=lowerCAmelCase_, return_attention_mask=lowerCAmelCase_ ) __lowerCAmelCase = WavaVecaProcessor(feature_extractor=lowerCAmelCase_, tokenizer=lowerCAmelCase_ ) __lowerCAmelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, activation_dropout=model_args.activation_dropout, attention_dropout=model_args.attention_dropout, hidden_dropout=model_args.hidden_dropout, feat_proj_dropout=model_args.feat_proj_dropout, mask_time_prob=model_args.mask_time_prob, gradient_checkpointing=training_args.gradient_checkpointing, layerdrop=model_args.layerdrop, ctc_loss_reduction='mean', pad_token_id=processor.tokenizer.pad_token_id, vocab_size=len(processor.tokenizer ), ) if data_args.max_train_samples is not None: __lowerCAmelCase = min(len(lowerCAmelCase_ ), data_args.max_train_samples ) __lowerCAmelCase = train_dataset.select(range(lowerCAmelCase_ ) ) if data_args.max_val_samples is not None: __lowerCAmelCase = eval_dataset.select(range(data_args.max_val_samples ) ) __lowerCAmelCase = torchaudio.transforms.Resample(4_8000, 1_6000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(lowerCAmelCase_ : int ): __lowerCAmelCase , __lowerCAmelCase = torchaudio.load(batch['path'] ) __lowerCAmelCase = resampler(lowerCAmelCase_ ).squeeze().numpy() __lowerCAmelCase = 1_6000 __lowerCAmelCase = batch['text'] return batch __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, remove_columns=train_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) __lowerCAmelCase = eval_dataset.map( lowerCAmelCase_, remove_columns=eval_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) def prepare_dataset(lowerCAmelCase_ : Union[str, Any] ): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'] ) ) == 1 ), F"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" __lowerCAmelCase = processor( audio=batch['speech'], text=batch['target_text'], sampling_rate=batch['sampling_rate'][0] ) batch.update(lowerCAmelCase_ ) return batch __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, remove_columns=train_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, ) __lowerCAmelCase = eval_dataset.map( lowerCAmelCase_, remove_columns=eval_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, ) # Metric __lowerCAmelCase = datasets.load_metric('wer' ) def compute_metrics(lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = pred.predictions __lowerCAmelCase = np.argmax(lowerCAmelCase_, axis=-1 ) __lowerCAmelCase = processor.tokenizer.pad_token_id __lowerCAmelCase = processor.batch_decode(lowerCAmelCase_ ) # we do not want to group tokens when computing the metrics __lowerCAmelCase = processor.batch_decode(pred.label_ids, group_tokens=lowerCAmelCase_ ) __lowerCAmelCase = wer_metric.compute(predictions=lowerCAmelCase_, references=lowerCAmelCase_ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator __lowerCAmelCase = DataCollatorCTCWithPadding(processor=lowerCAmelCase_, padding=lowerCAmelCase_ ) # Initialize our Trainer __lowerCAmelCase = CTCTrainer( model=lowerCAmelCase_, data_collator=lowerCAmelCase_, args=lowerCAmelCase_, compute_metrics=lowerCAmelCase_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=processor.feature_extractor, ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() __lowerCAmelCase = train_result.metrics __lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase_ ) ) __lowerCAmelCase = min(lowerCAmelCase_, len(lowerCAmelCase_ ) ) trainer.log_metrics('train', lowerCAmelCase_ ) trainer.save_metrics('train', lowerCAmelCase_ ) trainer.save_state() # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(lowerCAmelCase_ ) __lowerCAmelCase = min(lowerCAmelCase_, len(lowerCAmelCase_ ) ) trainer.log_metrics('eval', lowerCAmelCase_ ) trainer.save_metrics('eval', lowerCAmelCase_ ) return results if __name__ == "__main__": main()
53
1
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def a_ ( lowerCAmelCase_ : int ): __lowerCAmelCase = int(number**0.5 ) return number == sq * sq def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : int, lowerCAmelCase_ : int, lowerCAmelCase_ : int, lowerCAmelCase_ : int, lowerCAmelCase_ : int ): __lowerCAmelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den __lowerCAmelCase = x_den * y_den * z_den __lowerCAmelCase = gcd(lowerCAmelCase_, lowerCAmelCase_ ) top //= hcf bottom //= hcf return top, bottom def a_ ( lowerCAmelCase_ : int = 35 ): __lowerCAmelCase = set() __lowerCAmelCase = 42 __lowerCAmelCase = Fraction(0 ) __lowerCAmelCase = 42 for x_num in range(1, order + 1 ): for x_den in range(x_num + 1, order + 1 ): for y_num in range(1, order + 1 ): for y_den in range(y_num + 1, order + 1 ): # n=1 __lowerCAmelCase = x_num * y_den + x_den * y_num __lowerCAmelCase = x_den * y_den __lowerCAmelCase = gcd(lowerCAmelCase_, lowerCAmelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __lowerCAmelCase = add_three( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) unique_s.add(lowerCAmelCase_ ) # n=2 __lowerCAmelCase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) __lowerCAmelCase = x_den * x_den * y_den * y_den if is_sq(lowerCAmelCase_ ) and is_sq(lowerCAmelCase_ ): __lowerCAmelCase = int(sqrt(lowerCAmelCase_ ) ) __lowerCAmelCase = int(sqrt(lowerCAmelCase_ ) ) __lowerCAmelCase = gcd(lowerCAmelCase_, lowerCAmelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __lowerCAmelCase = add_three( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) unique_s.add(lowerCAmelCase_ ) # n=-1 __lowerCAmelCase = x_num * y_num __lowerCAmelCase = x_den * y_num + x_num * y_den __lowerCAmelCase = gcd(lowerCAmelCase_, lowerCAmelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __lowerCAmelCase = add_three( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) unique_s.add(lowerCAmelCase_ ) # n=2 __lowerCAmelCase = x_num * x_num * y_num * y_num __lowerCAmelCase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowerCAmelCase_ ) and is_sq(lowerCAmelCase_ ): __lowerCAmelCase = int(sqrt(lowerCAmelCase_ ) ) __lowerCAmelCase = int(sqrt(lowerCAmelCase_ ) ) __lowerCAmelCase = gcd(lowerCAmelCase_, lowerCAmelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __lowerCAmelCase = add_three( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) unique_s.add(lowerCAmelCase_ ) for num, den in unique_s: total += Fraction(lowerCAmelCase_, lowerCAmelCase_ ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
53
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _snake_case : Any = logging.get_logger(__name__) _snake_case : int = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _snake_case : Optional[Any] = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } _snake_case : str = { 'yjernite/retribert-base-uncased': 512, } _snake_case : Optional[int] = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = PRETRAINED_INIT_CONFIGURATION a_ = RetriBertTokenizer a_ = ["""input_ids""", """attention_mask"""] def __init__( self : Dict , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : str="[UNK]" , lowerCAmelCase_ : Optional[Any]="[SEP]" , lowerCAmelCase_ : List[str]="[PAD]" , lowerCAmelCase_ : Optional[int]="[CLS]" , lowerCAmelCase_ : List[Any]="[MASK]" , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : List[Any] , ) -> Dict: super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(lowerCAmelCase_ , normalizer_state.pop('type' ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**lowerCAmelCase_ ) __lowerCAmelCase = do_lower_case def lowercase ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int]=None ) -> Optional[int]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
53
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : Union[str, Any] = logging.get_logger(__name__) _snake_case : Union[str, Any] = { 'edbeeching/decision-transformer-gym-hopper-medium': ( 'https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = """decision_transformer""" a_ = ["""past_key_values"""] a_ = { """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any , lowerCAmelCase_ : int=1_7 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : List[Any]=1_2_8 , lowerCAmelCase_ : Dict=4_0_9_6 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : Union[str, Any]=1_0_2_4 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Tuple="relu" , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : int=1e-5 , lowerCAmelCase_ : List[Any]=0.02 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Union[str, Any]=5_0_2_5_6 , lowerCAmelCase_ : Any=5_0_2_5_6 , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Dict=False , **lowerCAmelCase_ : Union[str, Any] , ) -> Optional[Any]: __lowerCAmelCase = state_dim __lowerCAmelCase = act_dim __lowerCAmelCase = hidden_size __lowerCAmelCase = max_ep_len __lowerCAmelCase = action_tanh __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_inner __lowerCAmelCase = activation_function __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = scale_attn_weights __lowerCAmelCase = use_cache __lowerCAmelCase = scale_attn_by_inverse_layer_idx __lowerCAmelCase = reorder_and_upcast_attn __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id super().__init__(bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ )
53
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _snake_case : Union[str, Any] = imread(R'digital_image_processing/image_data/lena_small.jpg') _snake_case : Optional[int] = cvtColor(img, COLOR_BGR2GRAY) def a_ ( ): __lowerCAmelCase = cn.convert_to_negative(lowerCAmelCase_ ) # assert negative_img array for at least one True assert negative_img.any() def a_ ( ): with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowerCAmelCase_, 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def a_ ( ): __lowerCAmelCase = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def a_ ( ): __lowerCAmelCase = imread('digital_image_processing/image_data/lena_small.jpg', 0 ) # assert ambiguous array for all == True assert canny_img.all() __lowerCAmelCase = canny.canny(lowerCAmelCase_ ) # assert canny array for at least one True assert canny_array.any() def a_ ( ): assert gg.gaussian_filter(lowerCAmelCase_, 5, sigma=0.9 ).all() def a_ ( ): # laplace diagonals __lowerCAmelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __lowerCAmelCase = conv.img_convolve(lowerCAmelCase_, lowerCAmelCase_ ).astype(lowerCAmelCase_ ) assert res.any() def a_ ( ): assert med.median_filter(lowerCAmelCase_, 3 ).any() def a_ ( ): __lowerCAmelCase , __lowerCAmelCase = sob.sobel_filter(lowerCAmelCase_ ) assert grad.any() and theta.any() def a_ ( ): __lowerCAmelCase = sp.make_sepia(lowerCAmelCase_, 20 ) assert sepia.all() def a_ ( lowerCAmelCase_ : str = "digital_image_processing/image_data/lena_small.jpg" ): __lowerCAmelCase = bs.Burkes(imread(lowerCAmelCase_, 1 ), 120 ) burkes.process() assert burkes.output_img.any() def a_ ( lowerCAmelCase_ : str = "digital_image_processing/image_data/lena_small.jpg", ): __lowerCAmelCase = rs.NearestNeighbour(imread(lowerCAmelCase_, 1 ), 400, 200 ) nn.process() assert nn.output.any() def a_ ( ): __lowerCAmelCase = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. __lowerCAmelCase = imread(lowerCAmelCase_, 0 ) # Test for get_neighbors_pixel function() return not None __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = image[x_coordinate][y_coordinate] __lowerCAmelCase = lbp.get_neighbors_pixel( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __lowerCAmelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): __lowerCAmelCase = lbp.local_binary_value(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) assert lbp_image.any()
53
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch _snake_case : Dict = logging.get_logger(__name__) @dataclass class _UpperCAmelCase : """simple docstring""" def __init__( self : Dict , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : Optional[int]=6.0 , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Tuple="fp4" , lowerCAmelCase_ : Dict=False , **lowerCAmelCase_ : int , ) -> Optional[int]: __lowerCAmelCase = load_in_abit __lowerCAmelCase = load_in_abit __lowerCAmelCase = llm_inta_threshold __lowerCAmelCase = llm_inta_skip_modules __lowerCAmelCase = llm_inta_enable_fpaa_cpu_offload __lowerCAmelCase = llm_inta_has_fpaa_weight __lowerCAmelCase = bnb_abit_quant_type __lowerCAmelCase = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: __lowerCAmelCase = torch.floataa elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowerCAmelCase = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , torch.dtype ): __lowerCAmelCase = bnb_abit_compute_dtype else: raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype' ) self.post_init() def lowercase ( self : List[str] ) -> int: if not isinstance(self.llm_inta_threshold , lowerCAmelCase_ ): raise ValueError('llm_int8_threshold must be a float' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , lowerCAmelCase_ ): raise ValueError('llm_int8_skip_modules must be a list of strings' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , lowerCAmelCase_ ): raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean' ) if not isinstance(self.llm_inta_has_fpaa_weight , lowerCAmelCase_ ): raise ValueError('llm_int8_has_fp16_weight must be a boolean' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('bnb_4bit_compute_dtype must be torch.dtype' ) if not isinstance(self.bnb_abit_quant_type , lowerCAmelCase_ ): raise ValueError('bnb_4bit_quant_type must be a string' ) if not isinstance(self.bnb_abit_use_double_quant , lowerCAmelCase_ ): raise ValueError('bnb_4bit_use_double_quant must be a boolean' ) if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes' ) ) >= version.parse( '0.39.0' ): raise ValueError( '4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version' ) def lowercase ( self : int ) -> int: return self.load_in_abit or self.load_in_abit def lowercase ( self : Optional[Any] ) -> Any: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def lowercase ( cls : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , **lowerCAmelCase_ : Optional[Any] ) -> Any: __lowerCAmelCase = cls(**lowerCAmelCase_ ) __lowerCAmelCase = [] for key, value in kwargs.items(): if hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) to_remove.append(lowerCAmelCase_ ) for key in to_remove: kwargs.pop(lowerCAmelCase_ , lowerCAmelCase_ ) if return_unused_kwargs: return config, kwargs else: return config def lowercase ( self : str , lowerCAmelCase_ : Union[str, os.PathLike] ) -> Any: with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as writer: __lowerCAmelCase = self.to_dict() __lowerCAmelCase = json.dumps(lowerCAmelCase_ , indent=2 , sort_keys=lowerCAmelCase_ ) + '\n' writer.write(lowerCAmelCase_ ) def lowercase ( self : Any ) -> Dict[str, Any]: __lowerCAmelCase = copy.deepcopy(self.__dict__ ) __lowerCAmelCase = str(output['bnb_4bit_compute_dtype'] ).split('.' )[1] return output def __repr__( self : Optional[int] ) -> Union[str, Any]: return f"""{self.__class__.__name__} {self.to_json_string()}""" def lowercase ( self : int , lowerCAmelCase_ : bool = True ) -> str: if use_diff is True: __lowerCAmelCase = self.to_diff_dict() else: __lowerCAmelCase = self.to_dict() return json.dumps(lowerCAmelCase_ , indent=2 , sort_keys=lowerCAmelCase_ ) + "\n" def lowercase ( self : Any ) -> Dict[str, Any]: __lowerCAmelCase = self.to_dict() # get the default config dict __lowerCAmelCase = BitsAndBytesConfig().to_dict() __lowerCAmelCase = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: __lowerCAmelCase = value return serializable_config_dict
53
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case : List[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = ["""pixel_values"""] def __init__( self : Optional[int] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **lowerCAmelCase_ : Any , ) -> None: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = size if size is not None else {'shortest_edge': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = do_center_crop __lowerCAmelCase = crop_size __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[int] , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __lowerCAmelCase = int((2_5_6 / 2_2_4) * size['shortest_edge'] ) __lowerCAmelCase = get_resize_output_image_size(lowerCAmelCase_ , size=lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( lowerCAmelCase_ , size=(size_dict['height'], size_dict['width']) , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : str , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : str , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(lowerCAmelCase_ , size=(size['height'], size['width']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[int, float] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray: return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[str] , ) -> np.ndarray: return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase_ : str , ) -> BatchFeature: __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase = image_std if image_std is not None else self.image_std __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: __lowerCAmelCase = [self.resize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_center_crop: __lowerCAmelCase = [self.center_crop(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_rescale: __lowerCAmelCase = [self.rescale(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_normalize: __lowerCAmelCase = [self.normalize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
53
1
from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Tuple ) -> Optional[Any]: __lowerCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase_ , 'embed_dim' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase_ , 'num_heads' ) ) class _UpperCAmelCase : """simple docstring""" def __init__( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any]=1_3 , lowerCAmelCase_ : List[Any]=6_4 , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : int=[1_6, 4_8, 9_6] , lowerCAmelCase_ : Optional[Any]=[1, 3, 6] , lowerCAmelCase_ : Dict=[1, 2, 1_0] , lowerCAmelCase_ : str=[7, 3, 3] , lowerCAmelCase_ : int=[4, 2, 2] , lowerCAmelCase_ : Union[str, Any]=[2, 1, 1] , lowerCAmelCase_ : Union[str, Any]=[2, 2, 2] , lowerCAmelCase_ : Dict=[False, False, True] , lowerCAmelCase_ : Union[str, Any]=[0.0, 0.0, 0.0] , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : Optional[int]=1e-12 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : str=2 , ) -> str: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = patch_sizes __lowerCAmelCase = patch_stride __lowerCAmelCase = patch_padding __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = num_labels __lowerCAmelCase = num_channels __lowerCAmelCase = embed_dim __lowerCAmelCase = num_heads __lowerCAmelCase = stride_kv __lowerCAmelCase = depth __lowerCAmelCase = cls_token __lowerCAmelCase = attention_drop_rate __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps def lowercase ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: # create a random int32 tensor of given shape __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase ( self : Tuple ) -> List[str]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def lowercase ( self : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict ) -> str: __lowerCAmelCase = TFCvtModel(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ , training=lowerCAmelCase_ ) __lowerCAmelCase = (self.image_size, self.image_size) __lowerCAmelCase , __lowerCAmelCase = image_size[0], image_size[1] for i in range(len(self.depth ) ): __lowerCAmelCase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __lowerCAmelCase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] ) -> int: __lowerCAmelCase = self.num_labels __lowerCAmelCase = TFCvtForImageClassification(lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : Optional[int] ) -> int: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () a_ = ( {"""feature-extraction""": TFCvtModel, """image-classification""": TFCvtForImageClassification} if is_tf_available() else {} ) a_ = False a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Optional[int] ) -> Optional[int]: __lowerCAmelCase = TFCvtModelTester(self ) __lowerCAmelCase = TFCvtConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : Dict ) -> str: self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason='Cvt does not output attentions' ) def lowercase ( self : Tuple ) -> Optional[Any]: pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def lowercase ( self : List[Any] ) -> Any: pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def lowercase ( self : Optional[Any] ) -> List[Any]: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('GPU' ) ) == 0 , reason='TF does not support backprop for grouped convolutions on CPU.' , ) def lowercase ( self : List[str] ) -> Optional[int]: super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('GPU' ) ) == 0 , reason='TF does not support backprop for grouped convolutions on CPU.' , ) @slow def lowercase ( self : Optional[Any] ) -> List[str]: super().test_keras_fit() @unittest.skip(reason='Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8' ) def lowercase ( self : List[Any] ) -> List[Any]: __lowerCAmelCase = tf.keras.mixed_precision.Policy('mixed_float16' ) tf.keras.mixed_precision.set_global_policy(lowerCAmelCase_ ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy('float32' ) def lowercase ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : str ) -> str: def check_hidden_states_output(lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : int ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.hidden_states __lowerCAmelCase = len(self.model_tester.depth ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : List[str] ) -> Dict: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Optional[int] ) -> Optional[int]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @slow def lowercase ( self : Dict ) -> Any: for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = TFCvtModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def a_ ( ): __lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : str ) -> Any: return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowercase ( self : List[Any] ) -> Union[str, Any]: __lowerCAmelCase = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCAmelCase_ , return_tensors='tf' ) # forward pass __lowerCAmelCase = model(**lowerCAmelCase_ ) # verify the logits __lowerCAmelCase = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = tf.constant([0.92_85, 0.90_15, -0.31_50] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowerCAmelCase_ , atol=1e-4 ) )
53
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Optional[int]=8 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]=9_9 , lowerCAmelCase_ : List[Any]=1_6 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=3_6 , lowerCAmelCase_ : Optional[int]="gelu" , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : str=5_1_2 , lowerCAmelCase_ : List[str]=1_6 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Tuple=0.02 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : List[Any]=4 , lowerCAmelCase_ : List[str]=None , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope def lowercase ( self : Optional[int] ) -> Dict: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self : Any ) -> Union[str, Any]: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def lowercase ( self : Dict ) -> List[Any]: __lowerCAmelCase = self.get_config() __lowerCAmelCase = 3_0_0 return config def lowercase ( self : Optional[int] ) -> Union[str, Any]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = self.prepare_config_and_inputs() __lowerCAmelCase = True __lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = MraModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , ) -> Tuple: __lowerCAmelCase = True __lowerCAmelCase = MraModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , ) __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = MraForMaskedLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> str: __lowerCAmelCase = MraForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict ) -> Optional[Any]: __lowerCAmelCase = self.num_labels __lowerCAmelCase = MraForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict ) -> Any: __lowerCAmelCase = self.num_labels __lowerCAmelCase = MraForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] ) -> List[Any]: __lowerCAmelCase = self.num_choices __lowerCAmelCase = MraForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self : Tuple ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) a_ = False a_ = False a_ = False a_ = False a_ = () def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = MraModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : Tuple ) -> List[str]: self.config_tester.run_common_tests() def lowercase ( self : Optional[int] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase = type self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase_ ) def lowercase ( self : List[str] ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase_ ) def lowercase ( self : Tuple ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase_ ) @slow def lowercase ( self : Optional[int] ) -> Optional[int]: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = MraModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @unittest.skip(reason='MRA does not output attentions' ) def lowercase ( self : Optional[int] ) -> Tuple: return @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase ( self : Optional[Any] ) -> List[str]: __lowerCAmelCase = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) __lowerCAmelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : int ) -> Optional[int]: __lowerCAmelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) __lowerCAmelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = 5_0_2_6_5 __lowerCAmelCase = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : Any ) -> List[str]: __lowerCAmelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) __lowerCAmelCase = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = 5_0_2_6_5 __lowerCAmelCase = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
1
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = BioGptTokenizer a_ = False def lowercase ( self : Union[str, Any] ) -> Union[str, Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __lowerCAmelCase = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) __lowerCAmelCase = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(lowerCAmelCase_ ) ) def lowercase ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ) -> int: __lowerCAmelCase = 'lower newer' __lowerCAmelCase = 'lower newer' return input_text, output_text def lowercase ( self : Optional[Any] ) -> int: __lowerCAmelCase = BioGptTokenizer(self.vocab_file , self.merges_file ) __lowerCAmelCase = 'lower' __lowerCAmelCase = ['low', 'er</w>'] __lowerCAmelCase = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = tokens + ['<unk>'] __lowerCAmelCase = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , lowerCAmelCase_ ) @slow def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) __lowerCAmelCase = tokenizer.encode('sequence builders' , add_special_tokens=lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.encode('multi-sequence build' , add_special_tokens=lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
53
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _snake_case : Union[str, Any] = 2 class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , *, # begin keyword-only arguments lowerCAmelCase_ : str="<s>" , lowerCAmelCase_ : Dict="<pad>" , lowerCAmelCase_ : Any="</s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Optional[Any]=None , ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = bos, unk, pad, eos __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = {} __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = len(self.symbols ) def __eq__( self : Dict , lowerCAmelCase_ : Dict ) -> str: return self.indices == other.indices def __getitem__( self : List[Any] , lowerCAmelCase_ : int ) -> Union[str, Any]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : Tuple ) -> List[Any]: return len(self.symbols ) def __contains__( self : Optional[Any] , lowerCAmelCase_ : Dict ) -> Optional[int]: return sym in self.indices @classmethod def lowercase ( cls : Dict , lowerCAmelCase_ : str ) -> str: __lowerCAmelCase = cls() d.add_from_file(lowerCAmelCase_ ) return d def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : Any=False ) -> Optional[Any]: if word in self.indices and not overwrite: __lowerCAmelCase = self.indices[word] __lowerCAmelCase = self.count[idx] + n return idx else: __lowerCAmelCase = len(self.symbols ) __lowerCAmelCase = idx self.symbols.append(lowerCAmelCase_ ) self.count.append(lowerCAmelCase_ ) return idx def lowercase ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> Dict: return 0 def lowercase ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> int: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: with open(lowerCAmelCase_ , 'r' , encoding='utf-8' ) as fd: self.add_from_file(lowerCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(lowerCAmelCase_ ) ) return __lowerCAmelCase = f.readlines() __lowerCAmelCase = self._load_meta(lowerCAmelCase_ ) for line in lines[indices_start_line:]: try: __lowerCAmelCase , __lowerCAmelCase = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": __lowerCAmelCase = True __lowerCAmelCase , __lowerCAmelCase = line.rsplit(' ' , 1 ) else: __lowerCAmelCase = False __lowerCAmelCase = int(lowerCAmelCase_ ) __lowerCAmelCase = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(lowerCAmelCase_ ) ) self.add_symbol(lowerCAmelCase_ , n=lowerCAmelCase_ , overwrite=lowerCAmelCase_ ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def a_ ( lowerCAmelCase_ : List[str] ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} __lowerCAmelCase = dict((re.sub(R'@@$', '', lowerCAmelCase_ ), v) if k.endswith('@@' ) else (re.sub(R'$', '</w>', lowerCAmelCase_ ), v) for k, v in d.items() ) __lowerCAmelCase = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowerCAmelCase = d[k] # restore return da def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str] ): # prep if not os.path.exists(lowerCAmelCase_ ): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(lowerCAmelCase_, exist_ok=lowerCAmelCase_ ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'checkpoint.pt' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""" ) __lowerCAmelCase = torch.load(lowerCAmelCase_, map_location='cpu' ) __lowerCAmelCase = chkpt['cfg']['model'] # dicts __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'dict.txt' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {dict_file} does not exist!""" ) __lowerCAmelCase = Dictionary.load(lowerCAmelCase_ ) __lowerCAmelCase = rewrite_dict_keys(src_dict.indices ) __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, VOCAB_FILES_NAMES['vocab_file'] ) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # merges_file (bpecodes) __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'bpecodes' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""" ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(lowerCAmelCase_, lowerCAmelCase_ ) # model config __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'config.json' ) __lowerCAmelCase = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1E-12, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # tokenizer config __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F"""Generating {biogpt_tokenizer_config_file}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # model __lowerCAmelCase = chkpt['model'] # remove unneeded keys __lowerCAmelCase = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): __lowerCAmelCase = model_state_dict.pop(lowerCAmelCase_ ) else: __lowerCAmelCase = model_state_dict.pop(lowerCAmelCase_ ) __lowerCAmelCase = BioGptConfig.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = BioGptForCausalLM(lowerCAmelCase_ ) # check that it loads ok model_new.load_state_dict(lowerCAmelCase_ ) # save __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(lowerCAmelCase_, lowerCAmelCase_ ) print('Conversion is done!' ) if __name__ == "__main__": _snake_case : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : int = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict=1_3 , lowerCAmelCase_ : str=3_2 , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : str=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Tuple=[2, 2, 3, 2] , lowerCAmelCase_ : str=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[int]=3_7 , lowerCAmelCase_ : Dict="gelu" , lowerCAmelCase_ : List[Any]=1_0 , lowerCAmelCase_ : str=0.02 , lowerCAmelCase_ : Dict=["stage2", "stage3", "stage4"] , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : List[Any]=None , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = num_stages __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = out_features __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = num_stages def lowercase ( self : Dict ) -> List[str]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase ( self : List[str] ) -> Union[str, Any]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowercase ( self : Dict ) -> List[str]: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_1_2 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=lowerCAmelCase_ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=4_0 , auxiliary_channels=2_5_6 , auxiliary_num_convs=1 , auxiliary_concat_input=lowerCAmelCase_ , loss_ignore_index=2_5_5 , num_labels=self.num_labels , ) def lowercase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int ) -> Optional[Any]: __lowerCAmelCase = UperNetForSemanticSegmentation(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase ( self : Union[str, Any] ) -> Union[str, Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (UperNetForSemanticSegmentation,) if is_torch_available() else () a_ = {"""image-segmentation""": UperNetForSemanticSegmentation} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Optional[int] ) -> Dict: __lowerCAmelCase = UperNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : List[str] ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Tuple ) -> Union[str, Any]: return def lowercase ( self : Optional[int] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase_ ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def lowercase ( self : Optional[int] ) -> Dict: pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def lowercase ( self : Optional[Any] ) -> Dict: pass @unittest.skip(reason='UperNet does not have a base model' ) def lowercase ( self : Optional[int] ) -> List[Any]: pass @unittest.skip(reason='UperNet does not have a base model' ) def lowercase ( self : str ) -> Dict: pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowercase ( self : Optional[Any] ) -> Optional[int]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : Tuple ) -> List[Any]: pass def lowercase ( self : Union[str, Any] ) -> Tuple: def check_hidden_states_output(lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Any ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = _config_zero_init(lowerCAmelCase_ ) __lowerCAmelCase = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __lowerCAmelCase = model_class(config=lowerCAmelCase_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='UperNet does not have tied weights' ) def lowercase ( self : Any ) -> int: pass @slow def lowercase ( self : Optional[int] ) -> Optional[int]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def a_ ( ): __lowerCAmelCase = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k', repo_type='dataset', filename='ADE_val_00000001.jpg' ) __lowerCAmelCase = Image.open(lowerCAmelCase_ ).convert('RGB' ) return image @require_torch @require_vision @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Dict ) -> Union[str, Any]: __lowerCAmelCase = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(lowerCAmelCase_ ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(lowerCAmelCase_ ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" a_ = """pixel_values""" a_ = False a_ = TimmBackboneConfig def __init__( self : Tuple , lowerCAmelCase_ : Any , **lowerCAmelCase_ : Optional[int] ) -> Optional[Any]: requires_backends(self , 'timm' ) super().__init__(lowerCAmelCase_ ) __lowerCAmelCase = config if config.backbone is None: raise ValueError('backbone is not set in the config. Please set it to a timm model name.' ) if config.backbone not in timm.list_models(): raise ValueError(f"""backbone {config.backbone} is not supported by timm.""" ) if hasattr(lowerCAmelCase_ , 'out_features' ) and config.out_features is not None: raise ValueError('out_features is not supported by TimmBackbone. Please use out_indices instead.' ) __lowerCAmelCase = getattr(lowerCAmelCase_ , 'use_pretrained_backbone' , lowerCAmelCase_ ) if pretrained is None: raise ValueError('use_pretrained_backbone is not set in the config. Please set it to True or False.' ) # We just take the final layer by default. This matches the default for the transformers models. __lowerCAmelCase = config.out_indices if getattr(lowerCAmelCase_ , 'out_indices' , lowerCAmelCase_ ) is not None else (-1,) __lowerCAmelCase = timm.create_model( config.backbone , pretrained=lowerCAmelCase_ , features_only=config.features_only , in_chans=config.num_channels , out_indices=lowerCAmelCase_ , **lowerCAmelCase_ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. __lowerCAmelCase = self._backbone.return_layers __lowerCAmelCase = {layer['module']: str(lowerCAmelCase_ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(lowerCAmelCase_ ) @classmethod def lowercase ( cls : int , lowerCAmelCase_ : Dict , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['vision', 'timm'] ) from ...models.timm_backbone import TimmBackboneConfig __lowerCAmelCase = kwargs.pop('config' , TimmBackboneConfig() ) __lowerCAmelCase = kwargs.pop('use_timm_backbone' , lowerCAmelCase_ ) if not use_timm: raise ValueError('use_timm_backbone must be True for timm backbones' ) __lowerCAmelCase = kwargs.pop('num_channels' , config.num_channels ) __lowerCAmelCase = kwargs.pop('features_only' , config.features_only ) __lowerCAmelCase = kwargs.pop('use_pretrained_backbone' , config.use_pretrained_backbone ) __lowerCAmelCase = kwargs.pop('out_indices' , config.out_indices ) __lowerCAmelCase = TimmBackboneConfig( backbone=lowerCAmelCase_ , num_channels=lowerCAmelCase_ , features_only=lowerCAmelCase_ , use_pretrained_backbone=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , ) return super()._from_config(lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Tuple , lowerCAmelCase_ : int ) -> Dict: pass def lowercase ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Any=None , **lowerCAmelCase_ : Dict ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('Cannot output attentions for timm backbones at the moment' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone __lowerCAmelCase = self._all_layers __lowerCAmelCase = self._backbone(lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = self._return_layers __lowerCAmelCase = tuple(hidden_states[i] for i in self.out_indices ) else: __lowerCAmelCase = self._backbone(lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = None __lowerCAmelCase = tuple(lowerCAmelCase_ ) __lowerCAmelCase = tuple(lowerCAmelCase_ ) if hidden_states is not None else None if not return_dict: __lowerCAmelCase = (feature_maps,) if output_hidden_states: __lowerCAmelCase = output + (hidden_states,) return output return BackboneOutput(feature_maps=lowerCAmelCase_ , hidden_states=lowerCAmelCase_ , attentions=lowerCAmelCase_ )
53
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple=1_3 , lowerCAmelCase_ : Union[str, Any]=1_0 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : List[Any]=3_2 , lowerCAmelCase_ : str=5 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Dict=3_7 , lowerCAmelCase_ : int="gelu" , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : Union[str, Any]=1_0 , lowerCAmelCase_ : Dict=0.02 , lowerCAmelCase_ : Any=0.9 , lowerCAmelCase_ : Union[str, Any]=None , ) -> Optional[int]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = patch_size __lowerCAmelCase = tubelet_size __lowerCAmelCase = num_frames __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = mask_ratio __lowerCAmelCase = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame __lowerCAmelCase = (image_size // patch_size) ** 2 __lowerCAmelCase = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos __lowerCAmelCase = int(mask_ratio * self.seq_length ) def lowercase ( self : Tuple ) -> List[str]: __lowerCAmelCase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase ( self : List[Any] ) -> List[str]: return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def lowercase ( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int ) -> Any: __lowerCAmelCase = VideoMAEModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] ) -> int: __lowerCAmelCase = VideoMAEForPreTraining(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __lowerCAmelCase = torch.ones((self.num_masks,) ) __lowerCAmelCase = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) __lowerCAmelCase = mask.expand(self.batch_size , -1 ).bool() __lowerCAmelCase = model(lowerCAmelCase_ , lowerCAmelCase_ ) # model only returns predictions for masked patches __lowerCAmelCase = mask.sum().item() __lowerCAmelCase = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def lowercase ( self : Optional[int] ) -> Optional[int]: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) a_ = ( {"""feature-extraction""": VideoMAEModel, """video-classification""": VideoMAEForVideoClassification} if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False def lowercase ( self : List[Any] ) -> Any: __lowerCAmelCase = VideoMAEModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any]=False ) -> Any: __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __lowerCAmelCase = torch.ones((self.model_tester.num_masks,) ) __lowerCAmelCase = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) __lowerCAmelCase = mask.expand(self.model_tester.batch_size , -1 ).bool() __lowerCAmelCase = bool_masked_pos.to(lowerCAmelCase_ ) if return_labels: if model_class in [ *get_values(lowerCAmelCase_ ), ]: __lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def lowercase ( self : Any ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds' ) def lowercase ( self : Union[str, Any] ) -> str: pass def lowercase ( self : Optional[int] ) -> List[str]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear ) ) def lowercase ( self : Optional[int] ) -> List[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : Optional[Any] ) -> Any: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Any ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase_ ) @slow def lowercase ( self : Any ) -> Tuple: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = VideoMAEModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> Dict: if not self.has_attentions: pass else: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True for model_class in self.all_model_classes: __lowerCAmelCase = self.model_tester.seq_length - self.model_tester.num_masks __lowerCAmelCase = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase = True __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __lowerCAmelCase = len(lowerCAmelCase_ ) # Check attention is always last and order is fine __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowercase ( self : List[Any] ) -> str: def check_hidden_states_output(lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.hidden_states __lowerCAmelCase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) __lowerCAmelCase = self.model_tester.seq_length - self.model_tester.num_masks __lowerCAmelCase = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : Tuple ) -> Optional[Any]: pass def a_ ( ): __lowerCAmelCase = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video', filename='eating_spaghetti.npy', repo_type='dataset' ) __lowerCAmelCase = np.load(lowerCAmelCase_ ) return list(lowerCAmelCase_ ) @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : str ) -> int: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowercase ( self : str ) -> int: __lowerCAmelCase = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to( lowerCAmelCase_ ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_video() __lowerCAmelCase = image_processor(lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) # verify the logits __lowerCAmelCase = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor([0.36_69, -0.06_88, -0.24_21] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : List[Any] ) -> Optional[int]: __lowerCAmelCase = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(lowerCAmelCase_ ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_video() __lowerCAmelCase = image_processor(lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) # add boolean mask, indicating which patches to mask __lowerCAmelCase = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) __lowerCAmelCase = torch.load(lowerCAmelCase_ ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) # verify the logits __lowerCAmelCase = torch.Size([1, 1_4_0_8, 1_5_3_6] ) __lowerCAmelCase = torch.tensor( [[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] , device=lowerCAmelCase_ ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) __lowerCAmelCase = torch.tensor([0.51_42] , device=lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.loss , lowerCAmelCase_ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) __lowerCAmelCase = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' , norm_pix_loss=lowerCAmelCase_ ).to( lowerCAmelCase_ ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor(torch.tensor([0.64_69] ) , device=lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.loss , lowerCAmelCase_ , atol=1e-4 ) )
53
from __future__ import annotations def a_ ( lowerCAmelCase_ : list[float] ): if len(lowerCAmelCase_ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) __lowerCAmelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _snake_case : Optional[int] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Union[str, Any] = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _snake_case : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
53
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Union[str, Any]=1_0 , lowerCAmelCase_ : List[str]=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple="relu" , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : Optional[int]=None , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = embeddings_size __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_act __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = len(lowerCAmelCase_ ) def lowercase ( self : Optional[int] ) -> List[Any]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def lowercase ( self : Tuple ) -> List[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] ) -> str: __lowerCAmelCase = FlaxRegNetModel(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowercase ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int ) -> Tuple: __lowerCAmelCase = self.num_labels __lowerCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () a_ = False a_ = False a_ = False def lowercase ( self : Dict ) -> None: __lowerCAmelCase = FlaxRegNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : int ) -> Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : str ) -> Union[str, Any]: return def lowercase ( self : Dict ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def lowercase ( self : Union[str, Any] ) -> Any: pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def lowercase ( self : Tuple ) -> Tuple: pass def lowercase ( self : Optional[Any] ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: def check_hidden_states_output(lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : str ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Dict ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('JIT Enabled' ): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def a_ ( ): __lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : Union[str, Any] ) -> Optional[Any]: return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def lowercase ( self : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCAmelCase_ , return_tensors='np' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) # verify the logits __lowerCAmelCase = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
1
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _snake_case : Dict = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def a_ ( lowerCAmelCase_ : List[Any] ): if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : str ): return max(metric_fn(lowerCAmelCase_, lowerCAmelCase_ ) for gt in ground_truths ) def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = [line.strip() for line in open(lowerCAmelCase_, 'r' ).readlines()] __lowerCAmelCase = [] if args.gold_data_mode == "qa": __lowerCAmelCase = pd.read_csv(lowerCAmelCase_, sep='\t', header=lowerCAmelCase_ ) for answer_list in data[1]: __lowerCAmelCase = ast.literal_eval(lowerCAmelCase_ ) answers.append(lowerCAmelCase_ ) else: __lowerCAmelCase = [line.strip() for line in open(lowerCAmelCase_, 'r' ).readlines()] __lowerCAmelCase = [[reference] for reference in references] __lowerCAmelCase = __lowerCAmelCase = __lowerCAmelCase = 0 for prediction, ground_truths in zip(lowerCAmelCase_, lowerCAmelCase_ ): total += 1 em += metric_max_over_ground_truths(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) fa += metric_max_over_ground_truths(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = 100.0 * em / total __lowerCAmelCase = 100.0 * fa / total logger.info(F"""F1: {fa:.2f}""" ) logger.info(F"""EM: {em:.2f}""" ) def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Tuple ): __lowerCAmelCase = args.k __lowerCAmelCase = [line.strip() for line in open(lowerCAmelCase_, 'r' ).readlines()] __lowerCAmelCase = [line.strip() for line in open(lowerCAmelCase_, 'r' ).readlines()] __lowerCAmelCase = __lowerCAmelCase = 0 for hypo, reference in zip(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = set(hypo.split('\t' )[:k] ) __lowerCAmelCase = set(reference.split('\t' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k __lowerCAmelCase = 100.0 * em / total logger.info(F"""Precision@{k}: {em: .2f}""" ) def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : str, lowerCAmelCase_ : Optional[int] ): def strip_title(lowerCAmelCase_ : Union[str, Any] ): if title.startswith('"' ): __lowerCAmelCase = title[1:] if title.endswith('"' ): __lowerCAmelCase = title[:-1] return title __lowerCAmelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase_, return_tensors='pt', padding=lowerCAmelCase_, truncation=lowerCAmelCase_, )['input_ids'].to(args.device ) __lowerCAmelCase = rag_model.rag.question_encoder(lowerCAmelCase_ ) __lowerCAmelCase = question_enc_outputs[0] __lowerCAmelCase = rag_model.retriever( lowerCAmelCase_, question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy(), prefix=rag_model.rag.generator.config.prefix, n_docs=rag_model.config.n_docs, return_tensors='pt', ) __lowerCAmelCase = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) __lowerCAmelCase = [] for docs in all_docs: __lowerCAmelCase = [strip_title(lowerCAmelCase_ ) for title in docs['title']] provenance_strings.append('\t'.join(lowerCAmelCase_ ) ) return provenance_strings def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[Any] ): with torch.no_grad(): __lowerCAmelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase_, return_tensors='pt', padding=lowerCAmelCase_, truncation=lowerCAmelCase_ ) __lowerCAmelCase = inputs_dict.input_ids.to(args.device ) __lowerCAmelCase = inputs_dict.attention_mask.to(args.device ) __lowerCAmelCase = rag_model.generate( # rag_model overwrites generate lowerCAmelCase_, attention_mask=lowerCAmelCase_, num_beams=args.num_beams, min_length=args.min_length, max_length=args.max_length, early_stopping=lowerCAmelCase_, num_return_sequences=1, bad_words_ids=[[0, 0]], ) __lowerCAmelCase = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase_, skip_special_tokens=lowerCAmelCase_ ) if args.print_predictions: for q, a in zip(lowerCAmelCase_, lowerCAmelCase_ ): logger.info('Q: {} - A: {}'.format(lowerCAmelCase_, lowerCAmelCase_ ) ) return answers def a_ ( ): __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_type', choices=['rag_sequence', 'rag_token', 'bart'], type=lowerCAmelCase_, help=( 'RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the' ' model_name_or_path' ), ) parser.add_argument( '--index_name', default=lowerCAmelCase_, choices=['exact', 'compressed', 'legacy'], type=lowerCAmelCase_, help='RAG model retriever type', ) parser.add_argument( '--index_path', default=lowerCAmelCase_, type=lowerCAmelCase_, help='Path to the retrieval index', ) parser.add_argument('--n_docs', default=5, type=lowerCAmelCase_, help='Number of retrieved docs' ) parser.add_argument( '--model_name_or_path', default=lowerCAmelCase_, type=lowerCAmelCase_, required=lowerCAmelCase_, help='Path to pretrained checkpoints or model identifier from huggingface.co/models', ) parser.add_argument( '--eval_mode', choices=['e2e', 'retrieval'], default='e2e', type=lowerCAmelCase_, help=( 'Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates' ' precision@k.' ), ) parser.add_argument('--k', default=1, type=lowerCAmelCase_, help='k for the precision@k calculation' ) parser.add_argument( '--evaluation_set', default=lowerCAmelCase_, type=lowerCAmelCase_, required=lowerCAmelCase_, help='Path to a file containing evaluation samples', ) parser.add_argument( '--gold_data_path', default=lowerCAmelCase_, type=lowerCAmelCase_, required=lowerCAmelCase_, help='Path to a tab-separated file with gold samples', ) parser.add_argument( '--gold_data_mode', default='qa', type=lowerCAmelCase_, choices=['qa', 'ans'], help=( 'Format of the gold data file' 'qa - a single line in the following format: question [tab] answer_list' 'ans - a single line of the gold file contains the expected answer string' ), ) parser.add_argument( '--predictions_path', type=lowerCAmelCase_, default='predictions.txt', help='Name of the predictions file, to be stored in the checkpoints directory', ) parser.add_argument( '--eval_all_checkpoints', action='store_true', help='Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number', ) parser.add_argument( '--eval_batch_size', default=8, type=lowerCAmelCase_, help='Batch size per GPU/CPU for evaluation.', ) parser.add_argument( '--recalculate', help='Recalculate predictions even if the prediction file exists', action='store_true', ) parser.add_argument( '--num_beams', default=4, type=lowerCAmelCase_, help='Number of beams to be used when generating answers', ) parser.add_argument('--min_length', default=1, type=lowerCAmelCase_, help='Min length of the generated answers' ) parser.add_argument('--max_length', default=50, type=lowerCAmelCase_, help='Max length of the generated answers' ) parser.add_argument( '--print_predictions', action='store_true', help='If True, prints predictions while evaluating.', ) parser.add_argument( '--print_docs', action='store_true', help='If True, prints docs retried while generating.', ) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) return args def a_ ( lowerCAmelCase_ : Tuple ): __lowerCAmelCase = {} if args.model_type is None: __lowerCAmelCase = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('rag' ): __lowerCAmelCase = RagTokenForGeneration if args.model_type == 'rag_token' else RagSequenceForGeneration __lowerCAmelCase = args.n_docs if args.index_name is not None: __lowerCAmelCase = args.index_name if args.index_path is not None: __lowerCAmelCase = args.index_path else: __lowerCAmelCase = BartForConditionalGeneration __lowerCAmelCase = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('Evaluate the following checkpoints: %s', lowerCAmelCase_ ) __lowerCAmelCase = get_scores if args.eval_mode == 'e2e' else get_precision_at_k __lowerCAmelCase = evaluate_batch_eae if args.eval_mode == 'e2e' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('Calculating metrics based on an existing predictions file: {}'.format(args.predictions_path ) ) score_fn(lowerCAmelCase_, args.predictions_path, args.gold_data_path ) continue logger.info('***** Running evaluation for {} *****'.format(lowerCAmelCase_ ) ) logger.info(' Batch size = %d', args.eval_batch_size ) logger.info(' Predictions will be stored under {}'.format(args.predictions_path ) ) if args.model_type.startswith('rag' ): __lowerCAmelCase = RagRetriever.from_pretrained(lowerCAmelCase_, **lowerCAmelCase_ ) __lowerCAmelCase = model_class.from_pretrained(lowerCAmelCase_, retriever=lowerCAmelCase_, **lowerCAmelCase_ ) model.retriever.init_retrieval() else: __lowerCAmelCase = model_class.from_pretrained(lowerCAmelCase_, **lowerCAmelCase_ ) model.to(args.device ) with open(args.evaluation_set, 'r' ) as eval_file, open(args.predictions_path, 'w' ) as preds_file: __lowerCAmelCase = [] for line in tqdm(lowerCAmelCase_ ): questions.append(line.strip() ) if len(lowerCAmelCase_ ) == args.eval_batch_size: __lowerCAmelCase = evaluate_batch_fn(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) preds_file.write('\n'.join(lowerCAmelCase_ ) + '\n' ) preds_file.flush() __lowerCAmelCase = [] if len(lowerCAmelCase_ ) > 0: __lowerCAmelCase = evaluate_batch_fn(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) preds_file.write('\n'.join(lowerCAmelCase_ ) ) preds_file.flush() score_fn(lowerCAmelCase_, args.predictions_path, args.gold_data_path ) if __name__ == "__main__": _snake_case : int = get_args() main(args)
53
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process _snake_case : Optional[int] = logging.getLogger(__name__) _snake_case : Dict = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) _snake_case : List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(_UpperCamelCase )} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a_ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def lowercase ( self : List[Any] ) -> List[Any]: if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path' ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ = field(default=_UpperCamelCase , metadata={"""help""": """The input training data file (a text file)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a_ = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a_ = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def lowercase ( self : int ) -> int: if self.train_file is not None: __lowerCAmelCase = self.train_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __lowerCAmelCase = self.validation_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Union[str, Any] ): with open(lowerCAmelCase_, 'r', encoding='utf-8' ) as f: __lowerCAmelCase = [json.loads(lowerCAmelCase_ ) for line in f.read().splitlines() if (len(lowerCAmelCase_ ) > 0 and not line.isspace())] assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) __lowerCAmelCase = {c: dataset[c] for c in dataset.column_names} __lowerCAmelCase = refs return Dataset.from_dict(lowerCAmelCase_ ) def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s', lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset(data_args.dataset_name, data_args.dataset_config_name ) if "validation" not in datasets.keys(): __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[:{data_args.validation_split_percentage}%]""", ) __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[{data_args.validation_split_percentage}%:]""", ) else: __lowerCAmelCase = {} if data_args.train_file is not None: __lowerCAmelCase = data_args.train_file if data_args.validation_file is not None: __lowerCAmelCase = data_args.validation_file __lowerCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": __lowerCAmelCase = 'text' __lowerCAmelCase = load_dataset(lowerCAmelCase_, data_files=lowerCAmelCase_ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.config_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: __lowerCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: __lowerCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path, from_tf=bool('.ckpt' in model_args.model_name_or_path ), config=lowerCAmelCase_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info('Training new model from scratch' ) __lowerCAmelCase = AutoModelForMaskedLM.from_config(lowerCAmelCase_ ) model.resize_token_embeddings(len(lowerCAmelCase_ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __lowerCAmelCase = datasets['train'].column_names else: __lowerCAmelCase = datasets['validation'].column_names __lowerCAmelCase = 'text' if 'text' in column_names else column_names[0] __lowerCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(lowerCAmelCase_ : str ): # Remove empty lines __lowerCAmelCase = [line for line in examples['text'] if len(lowerCAmelCase_ ) > 0 and not line.isspace()] return tokenizer(examples['text'], padding=lowerCAmelCase_, truncation=lowerCAmelCase_, max_length=data_args.max_seq_length ) __lowerCAmelCase = datasets.map( lowerCAmelCase_, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, remove_columns=[text_column_name], load_from_cache_file=not data_args.overwrite_cache, ) # Add the chinese references if provided if data_args.train_ref_file is not None: __lowerCAmelCase = add_chinese_references(tokenized_datasets['train'], data_args.train_ref_file ) if data_args.validation_ref_file is not None: __lowerCAmelCase = add_chinese_references( tokenized_datasets['validation'], data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __lowerCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: __lowerCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. __lowerCAmelCase = DataCollatorForWholeWordMask(tokenizer=lowerCAmelCase_, mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowerCAmelCase = Trainer( model=lowerCAmelCase_, args=lowerCAmelCase_, train_dataset=tokenized_datasets['train'] if training_args.do_train else None, eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None, tokenizer=lowerCAmelCase_, data_collator=lowerCAmelCase_, ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload __lowerCAmelCase = os.path.join(training_args.output_dir, 'train_results.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir, 'trainer_state.json' ) ) # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = math.exp(eval_output['eval_loss'] ) __lowerCAmelCase = perplexity __lowerCAmelCase = os.path.join(training_args.output_dir, 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def a_ ( lowerCAmelCase_ : Tuple ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
53
1
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process _snake_case : Optional[int] = logging.getLogger(__name__) _snake_case : Dict = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) _snake_case : List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(_UpperCamelCase )} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a_ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def lowercase ( self : List[Any] ) -> List[Any]: if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path' ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ = field(default=_UpperCamelCase , metadata={"""help""": """The input training data file (a text file)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a_ = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a_ = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def lowercase ( self : int ) -> int: if self.train_file is not None: __lowerCAmelCase = self.train_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __lowerCAmelCase = self.validation_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Union[str, Any] ): with open(lowerCAmelCase_, 'r', encoding='utf-8' ) as f: __lowerCAmelCase = [json.loads(lowerCAmelCase_ ) for line in f.read().splitlines() if (len(lowerCAmelCase_ ) > 0 and not line.isspace())] assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) __lowerCAmelCase = {c: dataset[c] for c in dataset.column_names} __lowerCAmelCase = refs return Dataset.from_dict(lowerCAmelCase_ ) def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s', lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset(data_args.dataset_name, data_args.dataset_config_name ) if "validation" not in datasets.keys(): __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[:{data_args.validation_split_percentage}%]""", ) __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[{data_args.validation_split_percentage}%:]""", ) else: __lowerCAmelCase = {} if data_args.train_file is not None: __lowerCAmelCase = data_args.train_file if data_args.validation_file is not None: __lowerCAmelCase = data_args.validation_file __lowerCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": __lowerCAmelCase = 'text' __lowerCAmelCase = load_dataset(lowerCAmelCase_, data_files=lowerCAmelCase_ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.config_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: __lowerCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: __lowerCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path, from_tf=bool('.ckpt' in model_args.model_name_or_path ), config=lowerCAmelCase_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info('Training new model from scratch' ) __lowerCAmelCase = AutoModelForMaskedLM.from_config(lowerCAmelCase_ ) model.resize_token_embeddings(len(lowerCAmelCase_ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __lowerCAmelCase = datasets['train'].column_names else: __lowerCAmelCase = datasets['validation'].column_names __lowerCAmelCase = 'text' if 'text' in column_names else column_names[0] __lowerCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(lowerCAmelCase_ : str ): # Remove empty lines __lowerCAmelCase = [line for line in examples['text'] if len(lowerCAmelCase_ ) > 0 and not line.isspace()] return tokenizer(examples['text'], padding=lowerCAmelCase_, truncation=lowerCAmelCase_, max_length=data_args.max_seq_length ) __lowerCAmelCase = datasets.map( lowerCAmelCase_, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, remove_columns=[text_column_name], load_from_cache_file=not data_args.overwrite_cache, ) # Add the chinese references if provided if data_args.train_ref_file is not None: __lowerCAmelCase = add_chinese_references(tokenized_datasets['train'], data_args.train_ref_file ) if data_args.validation_ref_file is not None: __lowerCAmelCase = add_chinese_references( tokenized_datasets['validation'], data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __lowerCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: __lowerCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. __lowerCAmelCase = DataCollatorForWholeWordMask(tokenizer=lowerCAmelCase_, mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowerCAmelCase = Trainer( model=lowerCAmelCase_, args=lowerCAmelCase_, train_dataset=tokenized_datasets['train'] if training_args.do_train else None, eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None, tokenizer=lowerCAmelCase_, data_collator=lowerCAmelCase_, ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload __lowerCAmelCase = os.path.join(training_args.output_dir, 'train_results.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir, 'trainer_state.json' ) ) # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = math.exp(eval_output['eval_loss'] ) __lowerCAmelCase = perplexity __lowerCAmelCase = os.path.join(training_args.output_dir, 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def a_ ( lowerCAmelCase_ : Tuple ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
53
def a_ ( lowerCAmelCase_ : int = 200_0000 ): __lowerCAmelCase = [0 for i in range(n + 1 )] __lowerCAmelCase = 1 __lowerCAmelCase = 1 for i in range(2, int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i, n + 1, lowerCAmelCase_ ): __lowerCAmelCase = 1 __lowerCAmelCase = 0 for i in range(lowerCAmelCase_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"""{solution() = }""")
53
1
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor _snake_case : Optional[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def __init__( self : Any , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : List[Any] ) -> None: warnings.warn( 'The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use DeformableDetrImageProcessor instead.' , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
53
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _snake_case : Tuple = logging.getLogger() _snake_case : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Any , lowerCAmelCase_ : Dict ) -> Optional[int]: os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowerCAmelCase = {'source': 'What is love ?', 'target': 'life'} __lowerCAmelCase = {'train': 1_2, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: __lowerCAmelCase = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(lowerCAmelCase_ , f"""{split}.{field}""" ) , 'w' ) as f: f.write(lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : str = "pytorch" ) -> List[str]: __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'output' ) __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'data' ) self._create_dummy_data(data_dir=lowerCAmelCase_ ) __lowerCAmelCase = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) __lowerCAmelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowerCAmelCase_ , env=self.get_env() ) __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'metrics.json' ) with open(lowerCAmelCase_ ) as f: __lowerCAmelCase = json.load(lowerCAmelCase_ ) return result @require_torch_gpu def lowercase ( self : str ) -> int: __lowerCAmelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def lowercase ( self : List[str] ) -> Dict: __lowerCAmelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def lowercase ( self : int ) -> Tuple: __lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def lowercase ( self : List[Any] ) -> str: __lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
53
1
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) a_ = ( { """feature-extraction""": TFMobileBertModel, """fill-mask""": TFMobileBertForMaskedLM, """question-answering""": TFMobileBertForQuestionAnswering, """text-classification""": TFMobileBertForSequenceClassification, """token-classification""": TFMobileBertForTokenClassification, """zero-shot""": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) a_ = False a_ = False def lowercase ( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict=False ) -> Optional[int]: __lowerCAmelCase = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class in get_values(lowerCAmelCase_ ): __lowerCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def __init__( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : str=7 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : List[Any]=9_9 , lowerCAmelCase_ : Optional[Any]=3_2 , lowerCAmelCase_ : Any=3_2 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Any=3_7 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : List[Any]=5_1_2 , lowerCAmelCase_ : Optional[Any]=1_6 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=0.02 , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : str=None , ) -> Union[str, Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope __lowerCAmelCase = embedding_size def lowercase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any ) -> Union[str, Any]: __lowerCAmelCase = TFMobileBertModel(config=lowerCAmelCase_ ) __lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowerCAmelCase = model(lowerCAmelCase_ ) __lowerCAmelCase = [input_ids, input_mask] __lowerCAmelCase = model(lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase ( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] ) -> Tuple: __lowerCAmelCase = TFMobileBertForMaskedLM(config=lowerCAmelCase_ ) __lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] ) -> Union[str, Any]: __lowerCAmelCase = TFMobileBertForNextSentencePrediction(config=lowerCAmelCase_ ) __lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] ) -> int: __lowerCAmelCase = TFMobileBertForPreTraining(config=lowerCAmelCase_ ) __lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase ( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] ) -> List[Any]: __lowerCAmelCase = self.num_labels __lowerCAmelCase = TFMobileBertForSequenceClassification(config=lowerCAmelCase_ ) __lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] ) -> int: __lowerCAmelCase = self.num_choices __lowerCAmelCase = TFMobileBertForMultipleChoice(config=lowerCAmelCase_ ) __lowerCAmelCase = tf.tile(tf.expand_dims(lowerCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) __lowerCAmelCase = tf.tile(tf.expand_dims(lowerCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) __lowerCAmelCase = tf.tile(tf.expand_dims(lowerCAmelCase_ , 1 ) , (1, self.num_choices, 1) ) __lowerCAmelCase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] ) -> List[str]: __lowerCAmelCase = self.num_labels __lowerCAmelCase = TFMobileBertForTokenClassification(config=lowerCAmelCase_ ) __lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] ) -> Dict: __lowerCAmelCase = TFMobileBertForQuestionAnswering(config=lowerCAmelCase_ ) __lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict def lowercase ( self : Tuple ) -> List[str]: __lowerCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : Union[str, Any] ) -> Dict: self.config_tester.run_common_tests() def lowercase ( self : Tuple ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCAmelCase_ ) def lowercase ( self : str ) -> int: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCAmelCase_ ) def lowercase ( self : Optional[Any] ) -> int: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCAmelCase_ ) def lowercase ( self : Optional[int] ) -> List[str]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCAmelCase_ ) @slow def lowercase ( self : int ) -> Optional[int]: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: __lowerCAmelCase = TFMobileBertModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_tf class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase ( self : Any ) -> Dict: __lowerCAmelCase = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased' ) __lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = tf.constant( [ [ [-4.5_91_95_47, -9.24_82_95, -9.64_52_56], [-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37], [-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 )
53
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]="resnet50" , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Optional[Any]=True , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = out_indices if out_indices is not None else [4] __lowerCAmelCase = stage_names __lowerCAmelCase = out_features __lowerCAmelCase = backbone __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = use_pretrained_backbone __lowerCAmelCase = is_training def lowercase ( self : List[str] ) -> Any: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def lowercase ( self : List[Any] ) -> Union[str, Any]: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase ( self : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ) -> int: __lowerCAmelCase = TimmBackbone(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 1_4, 1_4) , ) def lowercase ( self : List[str] ) -> str: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (TimmBackbone,) if is_torch_available() else () a_ = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Tuple ) -> int: __lowerCAmelCase = TimmBackboneModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : Dict ) -> List[str]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Union[str, Any] ) -> Optional[int]: __lowerCAmelCase = 'resnet18' __lowerCAmelCase = 'microsoft/resnet-18' __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ , out_indices=[1, 2, 3] ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def lowercase ( self : List[str] ) -> Tuple: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def lowercase ( self : Dict ) -> int: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def lowercase ( self : str ) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase ( self : Any ) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase ( self : Optional[int] ) -> Optional[Any]: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def lowercase ( self : Dict ) -> Any: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Any ) -> Optional[int]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase ( self : Union[str, Any] ) -> Tuple: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase ( self : List[str] ) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Dict ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Tuple ) -> List[str]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def lowercase ( self : int ) -> Optional[int]: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def lowercase ( self : Union[str, Any] ) -> str: pass @unittest.skip('Safetensors is not supported by timm.' ) def lowercase ( self : Dict ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : List[str] ) -> Optional[Any]: pass def lowercase ( self : Union[str, Any] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = self.has_attentions # no need to test all models as different heads yield the same functionality __lowerCAmelCase = self.all_model_classes[0] __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = outputs[0][-1] # Encoder-/Decoder-only models __lowerCAmelCase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowerCAmelCase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowerCAmelCase_ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) __lowerCAmelCase = None __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) __lowerCAmelCase = False __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ )
53
1
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" @register_to_config def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : float , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : bool = False , ) -> Optional[int]: super().__init__() __lowerCAmelCase = nn.Embedding(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = nn.Embedding(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = False __lowerCAmelCase = nn.Dropout(p=lowerCAmelCase_ ) __lowerCAmelCase = TaConfig( vocab_size=lowerCAmelCase_ , d_model=lowerCAmelCase_ , num_heads=lowerCAmelCase_ , d_kv=lowerCAmelCase_ , d_ff=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ , feed_forward_proj=lowerCAmelCase_ , is_decoder=lowerCAmelCase_ , is_encoder_decoder=lowerCAmelCase_ , ) __lowerCAmelCase = nn.ModuleList() for lyr_num in range(lowerCAmelCase_ ): __lowerCAmelCase = TaBlock(lowerCAmelCase_ ) self.encoders.append(lowerCAmelCase_ ) __lowerCAmelCase = TaLayerNorm(lowerCAmelCase_ ) __lowerCAmelCase = nn.Dropout(p=lowerCAmelCase_ ) def lowercase ( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> Tuple: __lowerCAmelCase = self.token_embedder(lowerCAmelCase_ ) __lowerCAmelCase = encoder_input_tokens.shape[1] __lowerCAmelCase = torch.arange(lowerCAmelCase_ , device=encoder_input_tokens.device ) x += self.position_encoding(lowerCAmelCase_ ) __lowerCAmelCase = self.dropout_pre(lowerCAmelCase_ ) # inverted the attention mask __lowerCAmelCase = encoder_input_tokens.size() __lowerCAmelCase = self.get_extended_attention_mask(lowerCAmelCase_ , lowerCAmelCase_ ) for lyr in self.encoders: __lowerCAmelCase = lyr(lowerCAmelCase_ , lowerCAmelCase_ )[0] __lowerCAmelCase = self.layer_norm(lowerCAmelCase_ ) return self.dropout_post(lowerCAmelCase_ ), encoder_inputs_mask
53
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def a_ ( lowerCAmelCase_ : str=None ): if subparsers is not None: __lowerCAmelCase = subparsers.add_parser('env' ) else: __lowerCAmelCase = argparse.ArgumentParser('Accelerate env command' ) parser.add_argument( '--config_file', default=lowerCAmelCase_, help='The config file to use for the default values in the launching script.' ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def a_ ( lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = torch.__version__ __lowerCAmelCase = torch.cuda.is_available() __lowerCAmelCase = is_xpu_available() __lowerCAmelCase = is_npu_available() __lowerCAmelCase = 'Not found' # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowerCAmelCase_ ): __lowerCAmelCase = load_config_from_file(args.config_file ).to_dict() __lowerCAmelCase = { '`Accelerate` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Numpy version': np.__version__, 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'PyTorch XPU available': str(lowerCAmelCase_ ), 'PyTorch NPU available': str(lowerCAmelCase_ ), 'System RAM': F"""{psutil.virtual_memory().total / 1024 ** 3:.2f} GB""", } if pt_cuda_available: __lowerCAmelCase = torch.cuda.get_device_name() print('\nCopy-and-paste the text below in your GitHub issue\n' ) print('\n'.join([F"""- {prop}: {val}""" for prop, val in info.items()] ) ) print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:' ) __lowerCAmelCase = ( '\n'.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else F"""\t{accelerate_config}""" ) print(lowerCAmelCase_ ) __lowerCAmelCase = accelerate_config return info def a_ ( ): __lowerCAmelCase = env_command_parser() __lowerCAmelCase = parser.parse_args() env_command(lowerCAmelCase_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
53
1
from __future__ import annotations def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : list[str] | None = None, lowerCAmelCase_ : dict[str, float] | None = None, lowerCAmelCase_ : bool = False, ): __lowerCAmelCase = cipher_alphabet or [chr(lowerCAmelCase_ ) for i in range(97, 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) __lowerCAmelCase = { 'a': 0.0_8497, 'b': 0.0_1492, 'c': 0.0_2202, 'd': 0.0_4253, 'e': 0.1_1162, 'f': 0.0_2228, 'g': 0.0_2015, 'h': 0.0_6094, 'i': 0.0_7546, 'j': 0.0_0153, 'k': 0.0_1292, 'l': 0.0_4025, 'm': 0.0_2406, 'n': 0.0_6749, 'o': 0.0_7507, 'p': 0.0_1929, 'q': 0.0_0095, 'r': 0.0_7587, 's': 0.0_6327, 't': 0.0_9356, 'u': 0.0_2758, 'v': 0.0_0978, 'w': 0.0_2560, 'x': 0.0_0150, 'y': 0.0_1994, 'z': 0.0_0077, } else: # Custom frequencies dictionary __lowerCAmelCase = frequencies_dict if not case_sensitive: __lowerCAmelCase = ciphertext.lower() # Chi squared statistic values __lowerCAmelCase = {} # cycle through all of the shifts for shift in range(len(lowerCAmelCase_ ) ): __lowerCAmelCase = '' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet __lowerCAmelCase = (alphabet_letters.index(letter.lower() ) - shift) % len( lowerCAmelCase_ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter __lowerCAmelCase = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: __lowerCAmelCase = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message __lowerCAmelCase = decrypted_with_shift.lower().count(lowerCAmelCase_ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies __lowerCAmelCase = frequencies[letter] * occurrences # Complete the chi squared statistic formula __lowerCAmelCase = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message __lowerCAmelCase = decrypted_with_shift.count(lowerCAmelCase_ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies __lowerCAmelCase = frequencies[letter] * occurrences # Complete the chi squared statistic formula __lowerCAmelCase = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary __lowerCAmelCase = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(lowerCAmelCase_ : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] __lowerCAmelCase = min( lowerCAmelCase_, key=lowerCAmelCase_, ) # Get all the data from the most likely cipher (key, decoded message) ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
53
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a_ ( ): __lowerCAmelCase = ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores', type=lowerCAmelCase_, default=1, help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script', type=lowerCAmelCase_, help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ), ) # rest from the training program parser.add_argument('training_script_args', nargs=lowerCAmelCase_ ) return parser.parse_args() def a_ ( ): __lowerCAmelCase = parse_args() # Import training_script as a module. __lowerCAmelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __lowerCAmelCase = script_fpath.stem __lowerCAmelCase = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv __lowerCAmelCase = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores ) if __name__ == "__main__": main()
53
1
class _UpperCAmelCase : """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase_ : Tuple ) -> Tuple: # we need a list not a string, so do something to change the type __lowerCAmelCase = arr.split(',' ) def lowercase ( self : Any ) -> List[str]: __lowerCAmelCase = [int(self.array[0] )] * len(self.array ) __lowerCAmelCase = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): __lowerCAmelCase = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) __lowerCAmelCase = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": _snake_case : List[str] = input('please input some numbers:') _snake_case : Tuple = SubArray(whole_array) _snake_case : List[str] = array.solve_sub_array() print(('the results is:', re))
53
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict=1_3 , lowerCAmelCase_ : str=3_2 , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : str=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Tuple=[2, 2, 3, 2] , lowerCAmelCase_ : str=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[int]=3_7 , lowerCAmelCase_ : Dict="gelu" , lowerCAmelCase_ : List[Any]=1_0 , lowerCAmelCase_ : str=0.02 , lowerCAmelCase_ : Dict=["stage2", "stage3", "stage4"] , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : List[Any]=None , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = num_stages __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = out_features __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = num_stages def lowercase ( self : Dict ) -> List[str]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase ( self : List[str] ) -> Union[str, Any]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowercase ( self : Dict ) -> List[str]: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_1_2 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=lowerCAmelCase_ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=4_0 , auxiliary_channels=2_5_6 , auxiliary_num_convs=1 , auxiliary_concat_input=lowerCAmelCase_ , loss_ignore_index=2_5_5 , num_labels=self.num_labels , ) def lowercase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int ) -> Optional[Any]: __lowerCAmelCase = UperNetForSemanticSegmentation(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase ( self : Union[str, Any] ) -> Union[str, Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (UperNetForSemanticSegmentation,) if is_torch_available() else () a_ = {"""image-segmentation""": UperNetForSemanticSegmentation} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Optional[int] ) -> Dict: __lowerCAmelCase = UperNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : List[str] ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Tuple ) -> Union[str, Any]: return def lowercase ( self : Optional[int] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase_ ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def lowercase ( self : Optional[int] ) -> Dict: pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def lowercase ( self : Optional[Any] ) -> Dict: pass @unittest.skip(reason='UperNet does not have a base model' ) def lowercase ( self : Optional[int] ) -> List[Any]: pass @unittest.skip(reason='UperNet does not have a base model' ) def lowercase ( self : str ) -> Dict: pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowercase ( self : Optional[Any] ) -> Optional[int]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : Tuple ) -> List[Any]: pass def lowercase ( self : Union[str, Any] ) -> Tuple: def check_hidden_states_output(lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Any ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = _config_zero_init(lowerCAmelCase_ ) __lowerCAmelCase = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __lowerCAmelCase = model_class(config=lowerCAmelCase_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='UperNet does not have tied weights' ) def lowercase ( self : Any ) -> int: pass @slow def lowercase ( self : Optional[int] ) -> Optional[int]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def a_ ( ): __lowerCAmelCase = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k', repo_type='dataset', filename='ADE_val_00000001.jpg' ) __lowerCAmelCase = Image.open(lowerCAmelCase_ ).convert('RGB' ) return image @require_torch @require_vision @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Dict ) -> Union[str, Any]: __lowerCAmelCase = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(lowerCAmelCase_ ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(lowerCAmelCase_ ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case : Optional[Any] = logging.get_logger(__name__) _snake_case : str = { 'xlm-mlm-en-2048': 'https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json', 'xlm-mlm-ende-1024': 'https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json', 'xlm-mlm-enfr-1024': 'https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json', 'xlm-mlm-enro-1024': 'https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json', 'xlm-mlm-tlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json', 'xlm-mlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json', 'xlm-clm-enfr-1024': 'https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json', 'xlm-clm-ende-1024': 'https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json', 'xlm-mlm-17-1280': 'https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json', 'xlm-mlm-100-1280': 'https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json', } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = """xlm""" a_ = { """hidden_size""": """emb_dim""", """num_attention_heads""": """n_heads""", """num_hidden_layers""": """n_layers""", """n_words""": """vocab_size""", # For backward compatibility } def __init__( self : Tuple , lowerCAmelCase_ : Optional[int]=3_0_1_4_5 , lowerCAmelCase_ : Any=2_0_4_8 , lowerCAmelCase_ : Optional[Any]=1_2 , lowerCAmelCase_ : List[str]=1_6 , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[Any]=5_1_2 , lowerCAmelCase_ : List[str]=2_0_4_8**-0.5 , lowerCAmelCase_ : List[str]=1e-12 , lowerCAmelCase_ : Tuple=0.02 , lowerCAmelCase_ : Dict=0 , lowerCAmelCase_ : List[Any]=1 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : Tuple=5 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Optional[Any]="first" , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : str=None , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : Dict=5 , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : Dict=0 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Tuple=0 , **lowerCAmelCase_ : Optional[int] , ) -> int: __lowerCAmelCase = vocab_size __lowerCAmelCase = emb_dim __lowerCAmelCase = n_layers __lowerCAmelCase = n_heads __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = gelu_activation __lowerCAmelCase = sinusoidal_embeddings __lowerCAmelCase = causal __lowerCAmelCase = asm __lowerCAmelCase = n_langs __lowerCAmelCase = use_lang_emb __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = bos_index __lowerCAmelCase = eos_index __lowerCAmelCase = pad_index __lowerCAmelCase = unk_index __lowerCAmelCase = mask_index __lowerCAmelCase = is_encoder __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = embed_init_std __lowerCAmelCase = init_std __lowerCAmelCase = summary_type __lowerCAmelCase = summary_use_proj __lowerCAmelCase = summary_activation __lowerCAmelCase = summary_proj_to_labels __lowerCAmelCase = summary_first_dropout __lowerCAmelCase = start_n_top __lowerCAmelCase = end_n_top __lowerCAmelCase = mask_token_id __lowerCAmelCase = lang_id if "n_words" in kwargs: __lowerCAmelCase = kwargs['n_words'] super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" @property def lowercase ( self : int ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __lowerCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __lowerCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
53
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Optional[Any] ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : int ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_, keep_in_memory=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Dict, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, features=lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Any ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_, split=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type', [str, list] ) def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : Any, lowerCAmelCase_ : Dict ): if issubclass(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = text_path elif issubclass(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = [text_path] __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : int, lowerCAmelCase_ : Tuple=("train",) ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) for split in splits: __lowerCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def a_ ( lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Dict ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = TextDatasetReader({'train': text_path}, cache_dir=lowerCAmelCase_, keep_in_memory=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = TextDatasetReader({'train': text_path}, features=lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : Optional[int] ): if split: __lowerCAmelCase = {split: text_path} else: __lowerCAmelCase = 'train' __lowerCAmelCase = {'train': text_path, 'test': text_path} __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
53
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: _snake_case : Dict = None _snake_case : Optional[Any] = logging.get_logger(__name__) _snake_case : str = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} _snake_case : List[Any] = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', }, 'tokenizer_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json', }, } _snake_case : Dict = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } _snake_case : Dict = '▁' # Segments (not really needed) _snake_case : Any = 0 _snake_case : Union[str, Any] = 1 _snake_case : Union[str, Any] = 2 _snake_case : Dict = 3 _snake_case : int = 4 class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = """left""" a_ = XLNetTokenizer def __init__( self : Optional[Any] , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Dict=False , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : int="<s>" , lowerCAmelCase_ : Optional[Any]="</s>" , lowerCAmelCase_ : Any="<unk>" , lowerCAmelCase_ : Tuple="<sep>" , lowerCAmelCase_ : str="<pad>" , lowerCAmelCase_ : Optional[int]="<cls>" , lowerCAmelCase_ : List[str]="<mask>" , lowerCAmelCase_ : List[str]=["<eop>", "<eod>"] , **lowerCAmelCase_ : str , ) -> Optional[Any]: # Mask token behave like a normal word, i.e. include the space before it __lowerCAmelCase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token super().__init__( vocab_file=lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , remove_space=lowerCAmelCase_ , keep_accents=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , additional_special_tokens=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowerCAmelCase = 3 __lowerCAmelCase = do_lower_case __lowerCAmelCase = remove_space __lowerCAmelCase = keep_accents __lowerCAmelCase = vocab_file __lowerCAmelCase = False if not self.vocab_file else True def lowercase ( self : Optional[Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowercase ( self : Optional[Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowercase ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.vocab_file , lowerCAmelCase_ ) return (out_vocab_file,)
53
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case : Union[str, Any] = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : int=False ): __lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Optional[int]=False ): for i in range(config.num_hidden_layers ): if base_model: __lowerCAmelCase = '' else: __lowerCAmelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] __lowerCAmelCase = in_proj_bias[: config.hidden_size] __lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase = in_proj_bias[-config.hidden_size :] def a_ ( lowerCAmelCase_ : List[str] ): __lowerCAmelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Optional[Any]=True ): __lowerCAmelCase = ViTConfig() # patch_size if model_name[-1] == "8": __lowerCAmelCase = 8 # set labels if required if not base_model: __lowerCAmelCase = 1000 __lowerCAmelCase = 'huggingface/label-files' __lowerCAmelCase = 'imagenet-1k-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 6 # load original model from torch hub __lowerCAmelCase = torch.hub.load('facebookresearch/dino:main', lowerCAmelCase_ ) original_model.eval() # load state_dict of original model, remove and rename some keys __lowerCAmelCase = original_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase_ ) __lowerCAmelCase = create_rename_keys(lowerCAmelCase_, base_model=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # load HuggingFace model if base_model: __lowerCAmelCase = ViTModel(lowerCAmelCase_, add_pooling_layer=lowerCAmelCase_ ).eval() else: __lowerCAmelCase = ViTForImageClassification(lowerCAmelCase_ ).eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor __lowerCAmelCase = ViTImageProcessor() __lowerCAmelCase = image_processor(images=prepare_img(), return_tensors='pt' ) __lowerCAmelCase = encoding['pixel_values'] __lowerCAmelCase = model(lowerCAmelCase_ ) if base_model: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_, outputs.last_hidden_state[:, 0, :], atol=1E-1 ) else: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase_, outputs.logits, atol=1E-3 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) _snake_case : List[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
53
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = ["""image_processor""", """tokenizer"""] a_ = """BlipImageProcessor""" a_ = """AutoTokenizer""" def __init__( self : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str ) -> Optional[Any]: __lowerCAmelCase = False super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = self.image_processor def __call__( self : List[str] , lowerCAmelCase_ : ImageInput = None , lowerCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase_ : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase_ : Optional[Any] , ) -> BatchEncoding: if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: __lowerCAmelCase = self.tokenizer __lowerCAmelCase = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) return text_encoding # add pixel_values __lowerCAmelCase = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) if text is not None: __lowerCAmelCase = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) else: __lowerCAmelCase = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase_ ) return encoding_image_processor def lowercase ( self : Dict , *lowerCAmelCase_ : str , **lowerCAmelCase_ : Any ) -> Optional[Any]: return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Optional[Any] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Dict ) -> int: return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowercase ( self : int ) -> Optional[int]: __lowerCAmelCase = self.tokenizer.model_input_names __lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
53
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : str ) -> Any: __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : Tuple ) -> Optional[int]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : List[Any] ) -> int: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : str ) -> str: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[str]: # pass variant but use the non-variant filenames __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> Union[str, Any]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : List[str] ) -> List[Any]: # pass variant but use the non-variant filenames __lowerCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) )
53
1
def a_ ( lowerCAmelCase_ : int ): if not isinstance(lowerCAmelCase_, lowerCAmelCase_ ) or number < 0: raise ValueError('Input must be a non-negative integer' ) __lowerCAmelCase = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
53
import math def a_ ( lowerCAmelCase_ : list, lowerCAmelCase_ : int ): __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) __lowerCAmelCase = 0 while arr[min(lowerCAmelCase_, lowerCAmelCase_ ) - 1] < x: __lowerCAmelCase = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: __lowerCAmelCase = prev + 1 if prev == min(lowerCAmelCase_, lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": _snake_case : List[str] = input('Enter numbers separated by a comma:\n').strip() _snake_case : Optional[Any] = [int(item) for item in user_input.split(',')] _snake_case : List[str] = int(input('Enter the number to be searched:\n')) _snake_case : Optional[int] = jump_search(arr, x) if res == -1: print('Number not found!') else: print(F"""Number {x} is at index {res}""")
53
1
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets _snake_case : Dict = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' _snake_case : Tuple = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' _snake_case : List[str] = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): """simple docstring""" def lowercase ( self : Optional[Any] ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/krishnap25/mauve' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/krishnap25/mauve'] , reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] , ) def lowercase ( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Any="auto" , lowerCAmelCase_ : List[Any]=-1 , lowerCAmelCase_ : int=0.9 , lowerCAmelCase_ : Any=5 , lowerCAmelCase_ : Union[str, Any]=5_0_0 , lowerCAmelCase_ : Union[str, Any]="gpt2-large" , lowerCAmelCase_ : Dict=-1 , lowerCAmelCase_ : str=1_0_2_4 , lowerCAmelCase_ : int=2_5 , lowerCAmelCase_ : List[str]=5 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : str=2_5 , ) -> Optional[Any]: __lowerCAmelCase = compute_mauve( p_text=lowerCAmelCase_ , q_text=lowerCAmelCase_ , p_features=lowerCAmelCase_ , q_features=lowerCAmelCase_ , p_tokens=lowerCAmelCase_ , q_tokens=lowerCAmelCase_ , num_buckets=lowerCAmelCase_ , pca_max_data=lowerCAmelCase_ , kmeans_explained_var=lowerCAmelCase_ , kmeans_num_redo=lowerCAmelCase_ , kmeans_max_iter=lowerCAmelCase_ , featurize_model_name=lowerCAmelCase_ , device_id=lowerCAmelCase_ , max_text_length=lowerCAmelCase_ , divergence_curve_discretization_size=lowerCAmelCase_ , mauve_scaling_factor=lowerCAmelCase_ , verbose=lowerCAmelCase_ , seed=lowerCAmelCase_ , ) return out
53
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[Any], lowerCAmelCase_ : str ): # Initialise PyTorch model __lowerCAmelCase = RemBertConfig.from_json_file(lowerCAmelCase_ ) print('Building PyTorch model from configuration: {}'.format(str(lowerCAmelCase_ ) ) ) __lowerCAmelCase = RemBertModel(lowerCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Save pytorch-model print('Save PyTorch model to {}'.format(lowerCAmelCase_ ) ) torch.save(model.state_dict(), lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : int = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
53
1
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = 42 class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" @register_to_config def __init__( self : int , lowerCAmelCase_ : int = 1_6 , lowerCAmelCase_ : int = 8_8 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 3_2 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : str = "geglu" , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = True , ) -> str: super().__init__() __lowerCAmelCase = num_attention_heads __lowerCAmelCase = attention_head_dim __lowerCAmelCase = num_attention_heads * attention_head_dim __lowerCAmelCase = in_channels __lowerCAmelCase = torch.nn.GroupNorm(num_groups=lowerCAmelCase_ , num_channels=lowerCAmelCase_ , eps=1e-6 , affine=lowerCAmelCase_ ) __lowerCAmelCase = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ ) # 3. Define transformers blocks __lowerCAmelCase = nn.ModuleList( [ BasicTransformerBlock( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , dropout=lowerCAmelCase_ , cross_attention_dim=lowerCAmelCase_ , activation_fn=lowerCAmelCase_ , attention_bias=lowerCAmelCase_ , double_self_attention=lowerCAmelCase_ , norm_elementwise_affine=lowerCAmelCase_ , ) for d in range(lowerCAmelCase_ ) ] ) __lowerCAmelCase = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Union[str, Any]=1 , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : bool = True , ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = hidden_states.shape __lowerCAmelCase = batch_frames // num_frames __lowerCAmelCase = hidden_states __lowerCAmelCase = hidden_states[None, :].reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) __lowerCAmelCase = self.norm(lowerCAmelCase_ ) __lowerCAmelCase = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = self.proj_in(lowerCAmelCase_ ) # 2. Blocks for block in self.transformer_blocks: __lowerCAmelCase = block( lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , timestep=lowerCAmelCase_ , cross_attention_kwargs=lowerCAmelCase_ , class_labels=lowerCAmelCase_ , ) # 3. Output __lowerCAmelCase = self.proj_out(lowerCAmelCase_ ) __lowerCAmelCase = ( hidden_states[None, None, :] .reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) __lowerCAmelCase = hidden_states.reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=lowerCAmelCase_ )
53
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _snake_case : Any = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224', out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) __lowerCAmelCase = MaskFormerConfig(backbone_config=lowerCAmelCase_ ) __lowerCAmelCase = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok __lowerCAmelCase = 847 __lowerCAmelCase = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok __lowerCAmelCase = 150 __lowerCAmelCase = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok __lowerCAmelCase = 171 __lowerCAmelCase = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO __lowerCAmelCase = 133 __lowerCAmelCase = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok __lowerCAmelCase = 19 __lowerCAmelCase = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok __lowerCAmelCase = 65 __lowerCAmelCase = 'mapillary-vistas-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} return config def a_ ( lowerCAmelCase_ : Tuple ): __lowerCAmelCase = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') ) for source_index, target_index in zip(range(3, 0, -1 ), range(0, 3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') ) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') ) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') ) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') ) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Tuple ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int ): __lowerCAmelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowerCAmelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[:dim, :] __lowerCAmelCase = in_proj_bias[: dim] __lowerCAmelCase = in_proj_weight[ dim : dim * 2, : ] __lowerCAmelCase = in_proj_bias[ dim : dim * 2 ] __lowerCAmelCase = in_proj_weight[ -dim :, : ] __lowerCAmelCase = in_proj_bias[-dim :] # fmt: on def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : Dict ): # fmt: off __lowerCAmelCase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: hidden_size, :] __lowerCAmelCase = in_proj_bias[:config.hidden_size] __lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCAmelCase = in_proj_weight[-hidden_size :, :] __lowerCAmelCase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: hidden_size, :] __lowerCAmelCase = in_proj_bias[:config.hidden_size] __lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCAmelCase = in_proj_weight[-hidden_size :, :] __lowerCAmelCase = in_proj_bias[-hidden_size :] # fmt: on def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : bool = False ): __lowerCAmelCase = get_maskformer_config(lowerCAmelCase_ ) # load original state_dict with open(lowerCAmelCase_, 'rb' ) as f: __lowerCAmelCase = pickle.load(lowerCAmelCase_ ) __lowerCAmelCase = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowerCAmelCase = create_rename_keys(lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_swin_q_k_v(lowerCAmelCase_, config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase_, lowerCAmelCase_ ) # update to torch tensors for key, value in state_dict.items(): __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ) # load 🤗 model __lowerCAmelCase = MaskFormerForInstanceSegmentation(lowerCAmelCase_ ) model.eval() for name, param in model.named_parameters(): print(lowerCAmelCase_, param.shape ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowerCAmelCase_, strict=lowerCAmelCase_ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCAmelCase_ ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results __lowerCAmelCase = prepare_img() if "vistas" in model_name: __lowerCAmelCase = 65 elif "cityscapes" in model_name: __lowerCAmelCase = 6_5535 else: __lowerCAmelCase = 255 __lowerCAmelCase = True if 'ade' in model_name else False __lowerCAmelCase = MaskFormerImageProcessor(ignore_index=lowerCAmelCase_, reduce_labels=lowerCAmelCase_ ) __lowerCAmelCase = image_processor(lowerCAmelCase_, return_tensors='pt' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) print('Logits:', outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowerCAmelCase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], lowerCAmelCase_, atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print('Pushing model and image processor to the hub...' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _snake_case : List[str] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
53
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: _snake_case : List[str] = None _snake_case : List[Any] = logging.get_logger(__name__) _snake_case : List[Any] = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _snake_case : int = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json' ), }, } _snake_case : List[str] = { 'moussaKam/mbarthez': 1024, 'moussaKam/barthez': 1024, 'moussaKam/barthez-orangesum-title': 1024, } _snake_case : str = '▁' class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["""input_ids""", """attention_mask"""] a_ = BarthezTokenizer def __init__( self : Any , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : List[str]="<s>" , lowerCAmelCase_ : str="</s>" , lowerCAmelCase_ : Union[str, Any]="</s>" , lowerCAmelCase_ : Dict="<s>" , lowerCAmelCase_ : int="<unk>" , lowerCAmelCase_ : Any="<pad>" , lowerCAmelCase_ : int="<mask>" , **lowerCAmelCase_ : Union[str, Any] , ) -> Optional[Any]: # Mask token behave like a normal word, i.e. include the space before it __lowerCAmelCase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowerCAmelCase = vocab_file __lowerCAmelCase = False if not self.vocab_file else True def lowercase ( self : Optional[int] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] __lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase ( self : Tuple , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase ( self : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.vocab_file , lowerCAmelCase_ ) return (out_vocab_file,)
53
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): _snake_case : List[Any] = True from torch.cuda.amp import autocast _snake_case : Dict = logging.getLogger(__name__) def a_ ( lowerCAmelCase_ : str=None, lowerCAmelCase_ : str=None ): return field(default_factory=lambda: default, metadata=lowerCAmelCase_ ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) a_ = field( default=0.1 , metadata={"""help""": """The dropout ratio for the attention probabilities."""} ) a_ = field( default=0.1 , metadata={"""help""": """The dropout ratio for activations inside the fully connected layer."""} ) a_ = field( default=0.1 , metadata={ """help""": """The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.""" } , ) a_ = field( default=0.1 , metadata={"""help""": """The dropout probabilitiy for all 1D convolutional layers in feature extractor."""} , ) a_ = field( default=0.05 , metadata={ """help""": ( """Propability of each feature vector along the time axis to be chosen as the start of the vector""" """span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature""" """vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.""" ) } , ) a_ = field(default=0.0 , metadata={"""help""": """The LayerDrop probability."""} ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ = field( default="""train+validation""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of validation examples to this """ """value if set.""" ) } , ) a_ = list_field( default=[""",""", """?""", """.""", """!""", """-""", """;""", """:""", """\"\"""", """%""", """'""", """\"""", """�"""] , metadata={"""help""": """A list of characters to remove from the transcripts."""} , ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = 42 a_ = True a_ = None a_ = None a_ = None a_ = None def __call__( self : int , lowerCAmelCase_ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods __lowerCAmelCase = [{'input_values': feature['input_values']} for feature in features] __lowerCAmelCase = [{'input_ids': feature['labels']} for feature in features] __lowerCAmelCase = self.processor.pad( lowerCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) __lowerCAmelCase = self.processor.pad( labels=lowerCAmelCase_ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='pt' , ) # replace padding with -100 to ignore loss correctly __lowerCAmelCase = labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_0_0 ) __lowerCAmelCase = labels return batch class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Tuple , lowerCAmelCase_ : nn.Module , lowerCAmelCase_ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: model.train() __lowerCAmelCase = self._prepare_inputs(lowerCAmelCase_ ) if self.use_amp: with autocast(): __lowerCAmelCase = self.compute_loss(lowerCAmelCase_ , lowerCAmelCase_ ) else: __lowerCAmelCase = self.compute_loss(lowerCAmelCase_ , lowerCAmelCase_ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": __lowerCAmelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __lowerCAmelCase = loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: __lowerCAmelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowerCAmelCase_ ).backward() elif self.use_apex: with amp.scale_loss(lowerCAmelCase_ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowerCAmelCase_ ) else: loss.backward() return loss.detach() def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s', lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: __lowerCAmelCase = datasets.load_dataset( 'common_voice', data_args.dataset_config_name, split=data_args.train_split_name ) __lowerCAmelCase = datasets.load_dataset('common_voice', data_args.dataset_config_name, split='test' ) # Create and save tokenizer __lowerCAmelCase = F"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(lowerCAmelCase_ : Any ): __lowerCAmelCase = re.sub(lowerCAmelCase_, '', batch['sentence'] ).lower() + ' ' return batch __lowerCAmelCase = train_dataset.map(lowerCAmelCase_, remove_columns=['sentence'] ) __lowerCAmelCase = eval_dataset.map(lowerCAmelCase_, remove_columns=['sentence'] ) def extract_all_chars(lowerCAmelCase_ : Tuple ): __lowerCAmelCase = ' '.join(batch['text'] ) __lowerCAmelCase = list(set(lowerCAmelCase_ ) ) return {"vocab": [vocab], "all_text": [all_text]} __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, batched=lowerCAmelCase_, batch_size=-1, keep_in_memory=lowerCAmelCase_, remove_columns=train_dataset.column_names, ) __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, batched=lowerCAmelCase_, batch_size=-1, keep_in_memory=lowerCAmelCase_, remove_columns=eval_dataset.column_names, ) __lowerCAmelCase = list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) ) __lowerCAmelCase = {v: k for k, v in enumerate(lowerCAmelCase_ )} __lowerCAmelCase = vocab_dict[' '] del vocab_dict[" "] __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = len(lowerCAmelCase_ ) with open('vocab.json', 'w' ) as vocab_file: json.dump(lowerCAmelCase_, lowerCAmelCase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = WavaVecaCTCTokenizer( 'vocab.json', unk_token='[UNK]', pad_token='[PAD]', word_delimiter_token='|', ) __lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_6000, padding_value=0.0, do_normalize=lowerCAmelCase_, return_attention_mask=lowerCAmelCase_ ) __lowerCAmelCase = WavaVecaProcessor(feature_extractor=lowerCAmelCase_, tokenizer=lowerCAmelCase_ ) __lowerCAmelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, activation_dropout=model_args.activation_dropout, attention_dropout=model_args.attention_dropout, hidden_dropout=model_args.hidden_dropout, feat_proj_dropout=model_args.feat_proj_dropout, mask_time_prob=model_args.mask_time_prob, gradient_checkpointing=training_args.gradient_checkpointing, layerdrop=model_args.layerdrop, ctc_loss_reduction='mean', pad_token_id=processor.tokenizer.pad_token_id, vocab_size=len(processor.tokenizer ), ) if data_args.max_train_samples is not None: __lowerCAmelCase = min(len(lowerCAmelCase_ ), data_args.max_train_samples ) __lowerCAmelCase = train_dataset.select(range(lowerCAmelCase_ ) ) if data_args.max_val_samples is not None: __lowerCAmelCase = eval_dataset.select(range(data_args.max_val_samples ) ) __lowerCAmelCase = torchaudio.transforms.Resample(4_8000, 1_6000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(lowerCAmelCase_ : int ): __lowerCAmelCase , __lowerCAmelCase = torchaudio.load(batch['path'] ) __lowerCAmelCase = resampler(lowerCAmelCase_ ).squeeze().numpy() __lowerCAmelCase = 1_6000 __lowerCAmelCase = batch['text'] return batch __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, remove_columns=train_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) __lowerCAmelCase = eval_dataset.map( lowerCAmelCase_, remove_columns=eval_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) def prepare_dataset(lowerCAmelCase_ : Union[str, Any] ): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'] ) ) == 1 ), F"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" __lowerCAmelCase = processor( audio=batch['speech'], text=batch['target_text'], sampling_rate=batch['sampling_rate'][0] ) batch.update(lowerCAmelCase_ ) return batch __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, remove_columns=train_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, ) __lowerCAmelCase = eval_dataset.map( lowerCAmelCase_, remove_columns=eval_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, ) # Metric __lowerCAmelCase = datasets.load_metric('wer' ) def compute_metrics(lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = pred.predictions __lowerCAmelCase = np.argmax(lowerCAmelCase_, axis=-1 ) __lowerCAmelCase = processor.tokenizer.pad_token_id __lowerCAmelCase = processor.batch_decode(lowerCAmelCase_ ) # we do not want to group tokens when computing the metrics __lowerCAmelCase = processor.batch_decode(pred.label_ids, group_tokens=lowerCAmelCase_ ) __lowerCAmelCase = wer_metric.compute(predictions=lowerCAmelCase_, references=lowerCAmelCase_ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator __lowerCAmelCase = DataCollatorCTCWithPadding(processor=lowerCAmelCase_, padding=lowerCAmelCase_ ) # Initialize our Trainer __lowerCAmelCase = CTCTrainer( model=lowerCAmelCase_, data_collator=lowerCAmelCase_, args=lowerCAmelCase_, compute_metrics=lowerCAmelCase_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=processor.feature_extractor, ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() __lowerCAmelCase = train_result.metrics __lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase_ ) ) __lowerCAmelCase = min(lowerCAmelCase_, len(lowerCAmelCase_ ) ) trainer.log_metrics('train', lowerCAmelCase_ ) trainer.save_metrics('train', lowerCAmelCase_ ) trainer.save_state() # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(lowerCAmelCase_ ) __lowerCAmelCase = min(lowerCAmelCase_, len(lowerCAmelCase_ ) ) trainer.log_metrics('eval', lowerCAmelCase_ ) trainer.save_metrics('eval', lowerCAmelCase_ ) return results if __name__ == "__main__": main()
53
1
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig _snake_case : Optional[int] = logging.get_logger(__name__) # General docstring _snake_case : int = 'RegNetConfig' # Base docstring _snake_case : List[str] = 'facebook/regnet-y-040' _snake_case : List[Any] = [1, 1088, 7, 7] # Image classification docstring _snake_case : List[Any] = 'facebook/regnet-y-040' _snake_case : Union[str, Any] = 'tabby, tabby cat' _snake_case : str = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class _UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : Optional[str] = "relu" , **lowerCAmelCase_ : Any , ) -> Tuple: super().__init__(**lowerCAmelCase_ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __lowerCAmelCase = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __lowerCAmelCase = tf.keras.layers.ConvaD( filters=lowerCAmelCase_ , kernel_size=lowerCAmelCase_ , strides=lowerCAmelCase_ , padding='VALID' , groups=lowerCAmelCase_ , use_bias=lowerCAmelCase_ , name='convolution' , ) __lowerCAmelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' ) __lowerCAmelCase = ACTaFN[activation] if activation is not None else tf.identity def lowercase ( self : Optional[Any] , lowerCAmelCase_ : List[str] ) -> Any: __lowerCAmelCase = self.convolution(self.padding(lowerCAmelCase_ ) ) __lowerCAmelCase = self.normalization(lowerCAmelCase_ ) __lowerCAmelCase = self.activation(lowerCAmelCase_ ) return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase_ : RegNetConfig , **lowerCAmelCase_ : Optional[Any] ) -> List[Any]: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = config.num_channels __lowerCAmelCase = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] ) -> List[Any]: __lowerCAmelCase = shape_list(lowerCAmelCase_ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __lowerCAmelCase = tf.transpose(lowerCAmelCase_ , perm=(0, 2, 3, 1) ) __lowerCAmelCase = self.embedder(lowerCAmelCase_ ) return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : int = 2 , **lowerCAmelCase_ : Tuple ) -> List[str]: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = tf.keras.layers.ConvaD( filters=lowerCAmelCase_ , kernel_size=1 , strides=lowerCAmelCase_ , use_bias=lowerCAmelCase_ , name='convolution' ) __lowerCAmelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' ) def lowercase ( self : List[Any] , lowerCAmelCase_ : tf.Tensor , lowerCAmelCase_ : bool = False ) -> tf.Tensor: return self.normalization(self.convolution(lowerCAmelCase_ ) , training=lowerCAmelCase_ ) class _UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[int] ) -> str: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCAmelCase_ , name='pooler' ) __lowerCAmelCase = [ tf.keras.layers.ConvaD(filters=lowerCAmelCase_ , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=lowerCAmelCase_ , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def lowercase ( self : Optional[int] , lowerCAmelCase_ : List[str] ) -> Optional[int]: # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] __lowerCAmelCase = self.pooler(lowerCAmelCase_ ) for layer_module in self.attention: __lowerCAmelCase = layer_module(lowerCAmelCase_ ) __lowerCAmelCase = hidden_state * pooled return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase_ : RegNetConfig , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int = 1 , **lowerCAmelCase_ : Optional[int] ) -> List[str]: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = in_channels != out_channels or stride != 1 __lowerCAmelCase = max(1 , out_channels // config.groups_width ) __lowerCAmelCase = ( TFRegNetShortCut(lowerCAmelCase_ , stride=lowerCAmelCase_ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __lowerCAmelCase = [ TFRegNetConvLayer(lowerCAmelCase_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( lowerCAmelCase_ , stride=lowerCAmelCase_ , groups=lowerCAmelCase_ , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(lowerCAmelCase_ , kernel_size=1 , activation=lowerCAmelCase_ , name='layer.2' ), ] __lowerCAmelCase = ACTaFN[config.hidden_act] def lowercase ( self : List[str] , lowerCAmelCase_ : str ) -> Union[str, Any]: __lowerCAmelCase = hidden_state for layer_module in self.layers: __lowerCAmelCase = layer_module(lowerCAmelCase_ ) __lowerCAmelCase = self.shortcut(lowerCAmelCase_ ) hidden_state += residual __lowerCAmelCase = self.activation(lowerCAmelCase_ ) return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase_ : RegNetConfig , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int = 1 , **lowerCAmelCase_ : List[str] ) -> str: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = in_channels != out_channels or stride != 1 __lowerCAmelCase = max(1 , out_channels // config.groups_width ) __lowerCAmelCase = ( TFRegNetShortCut(lowerCAmelCase_ , stride=lowerCAmelCase_ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) __lowerCAmelCase = [ TFRegNetConvLayer(lowerCAmelCase_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( lowerCAmelCase_ , stride=lowerCAmelCase_ , groups=lowerCAmelCase_ , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(lowerCAmelCase_ , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(lowerCAmelCase_ , kernel_size=1 , activation=lowerCAmelCase_ , name='layer.3' ), ] __lowerCAmelCase = ACTaFN[config.hidden_act] def lowercase ( self : Tuple , lowerCAmelCase_ : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase = hidden_state for layer_module in self.layers: __lowerCAmelCase = layer_module(lowerCAmelCase_ ) __lowerCAmelCase = self.shortcut(lowerCAmelCase_ ) hidden_state += residual __lowerCAmelCase = self.activation(lowerCAmelCase_ ) return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Any , lowerCAmelCase_ : RegNetConfig , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , **lowerCAmelCase_ : Optional[int] ) -> Optional[Any]: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer __lowerCAmelCase = [ # downsampling is done in the first layer with stride of 2 layer(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ , name='layers.0' ), *[layer(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , name=f"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def lowercase ( self : int , lowerCAmelCase_ : int ) -> str: for layer_module in self.layers: __lowerCAmelCase = layer_module(lowerCAmelCase_ ) return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase_ : RegNetConfig , **lowerCAmelCase_ : str ) -> List[str]: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCAmelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) __lowerCAmelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCAmelCase_ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , depth=lowerCAmelCase_ , name=f"""stages.{i+1}""" ) ) def lowercase ( self : Any , lowerCAmelCase_ : tf.Tensor , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True ) -> TFBaseModelOutputWithNoAttention: __lowerCAmelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __lowerCAmelCase = hidden_states + (hidden_state,) __lowerCAmelCase = stage_module(lowerCAmelCase_ ) if output_hidden_states: __lowerCAmelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase_ , hidden_states=lowerCAmelCase_ ) @keras_serializable class _UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" a_ = RegNetConfig def __init__( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Optional[Any] ) -> str: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = config __lowerCAmelCase = TFRegNetEmbeddings(lowerCAmelCase_ , name='embedder' ) __lowerCAmelCase = TFRegNetEncoder(lowerCAmelCase_ , name='encoder' ) __lowerCAmelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCAmelCase_ , name='pooler' ) @unpack_inputs def lowercase ( self : str , lowerCAmelCase_ : tf.Tensor , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : bool = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: __lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = self.embedder(lowerCAmelCase_ , training=lowerCAmelCase_ ) __lowerCAmelCase = self.encoder( lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , training=lowerCAmelCase_ ) __lowerCAmelCase = encoder_outputs[0] __lowerCAmelCase = self.pooler(lowerCAmelCase_ ) # Change to NCHW output format have uniformity in the modules __lowerCAmelCase = tf.transpose(lowerCAmelCase_ , perm=(0, 3, 1, 2) ) __lowerCAmelCase = tf.transpose(lowerCAmelCase_ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __lowerCAmelCase = tuple([tf.transpose(lowerCAmelCase_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase_ , pooler_output=lowerCAmelCase_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = RegNetConfig a_ = """regnet""" a_ = """pixel_values""" @property def lowercase ( self : Tuple ) -> List[str]: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) , dtype=tf.floataa )} _snake_case : List[str] = R'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' _snake_case : Union[str, Any] = R'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" , _UpperCamelCase , ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase_ : RegNetConfig , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : List[str] ) -> int: super().__init__(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = TFRegNetMainLayer(lowerCAmelCase_ , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowercase ( self : int , lowerCAmelCase_ : tf.Tensor , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : List[Any]=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: __lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = self.regnet( pixel_values=lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , training=lowerCAmelCase_ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , _UpperCamelCase , ) class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" def __init__( self : str , lowerCAmelCase_ : RegNetConfig , *lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Tuple ) -> Dict: super().__init__(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = config.num_labels __lowerCAmelCase = TFRegNetMainLayer(lowerCAmelCase_ , name='regnet' ) # classification head __lowerCAmelCase = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : tf.Tensor = None , lowerCAmelCase_ : tf.Tensor = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : str=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: __lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = self.regnet( lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , training=lowerCAmelCase_ ) __lowerCAmelCase = outputs.pooler_output if return_dict else outputs[1] __lowerCAmelCase = self.classifier[0](lowerCAmelCase_ ) __lowerCAmelCase = self.classifier[1](lowerCAmelCase_ ) __lowerCAmelCase = None if labels is None else self.hf_compute_loss(labels=lowerCAmelCase_ , logits=lowerCAmelCase_ ) if not return_dict: __lowerCAmelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCAmelCase_ , logits=lowerCAmelCase_ , hidden_states=outputs.hidden_states )
53
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _snake_case : Any = logging.get_logger(__name__) _snake_case : int = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _snake_case : Optional[Any] = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } _snake_case : str = { 'yjernite/retribert-base-uncased': 512, } _snake_case : Optional[int] = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = PRETRAINED_INIT_CONFIGURATION a_ = RetriBertTokenizer a_ = ["""input_ids""", """attention_mask"""] def __init__( self : Dict , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : str="[UNK]" , lowerCAmelCase_ : Optional[Any]="[SEP]" , lowerCAmelCase_ : List[str]="[PAD]" , lowerCAmelCase_ : Optional[int]="[CLS]" , lowerCAmelCase_ : List[Any]="[MASK]" , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : List[Any] , ) -> Dict: super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(lowerCAmelCase_ , normalizer_state.pop('type' ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**lowerCAmelCase_ ) __lowerCAmelCase = do_lower_case def lowercase ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int]=None ) -> Optional[int]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
53
1
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : List[str] ) -> str: __lowerCAmelCase = 'hf-internal-testing/tiny-random-t5' __lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = tokenizer('This is me' , return_tensors='pt' ) __lowerCAmelCase = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) __lowerCAmelCase = model.generate(**lowerCAmelCase_ ) __lowerCAmelCase = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) __lowerCAmelCase = model_reloaded.generate(**lowerCAmelCase_ ) self.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ ) ) def lowercase ( self : int ) -> Dict: __lowerCAmelCase = 'hf-internal-testing/tiny-random-t5' __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(lowerCAmelCase_ ): model.save_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = model.reverse_bettertransformer() model.save_pretrained(lowerCAmelCase_ )
53
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _snake_case : Union[str, Any] = imread(R'digital_image_processing/image_data/lena_small.jpg') _snake_case : Optional[int] = cvtColor(img, COLOR_BGR2GRAY) def a_ ( ): __lowerCAmelCase = cn.convert_to_negative(lowerCAmelCase_ ) # assert negative_img array for at least one True assert negative_img.any() def a_ ( ): with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowerCAmelCase_, 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def a_ ( ): __lowerCAmelCase = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def a_ ( ): __lowerCAmelCase = imread('digital_image_processing/image_data/lena_small.jpg', 0 ) # assert ambiguous array for all == True assert canny_img.all() __lowerCAmelCase = canny.canny(lowerCAmelCase_ ) # assert canny array for at least one True assert canny_array.any() def a_ ( ): assert gg.gaussian_filter(lowerCAmelCase_, 5, sigma=0.9 ).all() def a_ ( ): # laplace diagonals __lowerCAmelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __lowerCAmelCase = conv.img_convolve(lowerCAmelCase_, lowerCAmelCase_ ).astype(lowerCAmelCase_ ) assert res.any() def a_ ( ): assert med.median_filter(lowerCAmelCase_, 3 ).any() def a_ ( ): __lowerCAmelCase , __lowerCAmelCase = sob.sobel_filter(lowerCAmelCase_ ) assert grad.any() and theta.any() def a_ ( ): __lowerCAmelCase = sp.make_sepia(lowerCAmelCase_, 20 ) assert sepia.all() def a_ ( lowerCAmelCase_ : str = "digital_image_processing/image_data/lena_small.jpg" ): __lowerCAmelCase = bs.Burkes(imread(lowerCAmelCase_, 1 ), 120 ) burkes.process() assert burkes.output_img.any() def a_ ( lowerCAmelCase_ : str = "digital_image_processing/image_data/lena_small.jpg", ): __lowerCAmelCase = rs.NearestNeighbour(imread(lowerCAmelCase_, 1 ), 400, 200 ) nn.process() assert nn.output.any() def a_ ( ): __lowerCAmelCase = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. __lowerCAmelCase = imread(lowerCAmelCase_, 0 ) # Test for get_neighbors_pixel function() return not None __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = image[x_coordinate][y_coordinate] __lowerCAmelCase = lbp.get_neighbors_pixel( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __lowerCAmelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): __lowerCAmelCase = lbp.local_binary_value(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) assert lbp_image.any()
53
1
from math import factorial def a_ ( lowerCAmelCase_ : int = 100 ): return sum(int(lowerCAmelCase_ ) for x in str(factorial(lowerCAmelCase_ ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
53
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case : List[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = ["""pixel_values"""] def __init__( self : Optional[int] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **lowerCAmelCase_ : Any , ) -> None: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = size if size is not None else {'shortest_edge': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = do_center_crop __lowerCAmelCase = crop_size __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[int] , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __lowerCAmelCase = int((2_5_6 / 2_2_4) * size['shortest_edge'] ) __lowerCAmelCase = get_resize_output_image_size(lowerCAmelCase_ , size=lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( lowerCAmelCase_ , size=(size_dict['height'], size_dict['width']) , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : str , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : str , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(lowerCAmelCase_ , size=(size['height'], size['width']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[int, float] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray: return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[str] , ) -> np.ndarray: return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase_ : str , ) -> BatchFeature: __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase = image_std if image_std is not None else self.image_std __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: __lowerCAmelCase = [self.resize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_center_crop: __lowerCAmelCase = [self.center_crop(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_rescale: __lowerCAmelCase = [self.rescale(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_normalize: __lowerCAmelCase = [self.normalize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
53
1
class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" pass class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" pass class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase = [ [], [], [], ] def lowercase ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> None: try: if len(self.queues[priority] ) >= 1_0_0: raise OverflowError('Maximum queue size is 100' ) self.queues[priority].append(lowerCAmelCase_ ) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2' ) def lowercase ( self : Tuple ) -> int: for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('All queues are empty' ) def __str__( self : List[str] ) -> str: return "\n".join(f"""Priority {i}: {q}""" for i, q in enumerate(self.queues ) ) class _UpperCAmelCase : """simple docstring""" def __init__( self : Union[str, Any] ) -> Dict: __lowerCAmelCase = [] def lowercase ( self : Tuple , lowerCAmelCase_ : int ) -> None: if len(self.queue ) == 1_0_0: raise OverFlowError('Maximum queue size is 100' ) self.queue.append(lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> int: if not self.queue: raise UnderFlowError('The queue is empty' ) else: __lowerCAmelCase = min(self.queue ) self.queue.remove(lowerCAmelCase_ ) return data def __str__( self : Optional[int] ) -> str: return str(self.queue ) def a_ ( ): __lowerCAmelCase = FixedPriorityQueue() fpq.enqueue(0, 10 ) fpq.enqueue(1, 70 ) fpq.enqueue(0, 100 ) fpq.enqueue(2, 1 ) fpq.enqueue(2, 5 ) fpq.enqueue(1, 7 ) fpq.enqueue(2, 4 ) fpq.enqueue(1, 64 ) fpq.enqueue(0, 128 ) print(lowerCAmelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(lowerCAmelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def a_ ( ): __lowerCAmelCase = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(lowerCAmelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(lowerCAmelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
53
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Optional[int]=8 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]=9_9 , lowerCAmelCase_ : List[Any]=1_6 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=3_6 , lowerCAmelCase_ : Optional[int]="gelu" , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : str=5_1_2 , lowerCAmelCase_ : List[str]=1_6 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Tuple=0.02 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : List[Any]=4 , lowerCAmelCase_ : List[str]=None , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope def lowercase ( self : Optional[int] ) -> Dict: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self : Any ) -> Union[str, Any]: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def lowercase ( self : Dict ) -> List[Any]: __lowerCAmelCase = self.get_config() __lowerCAmelCase = 3_0_0 return config def lowercase ( self : Optional[int] ) -> Union[str, Any]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = self.prepare_config_and_inputs() __lowerCAmelCase = True __lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = MraModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , ) -> Tuple: __lowerCAmelCase = True __lowerCAmelCase = MraModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , ) __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = MraForMaskedLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> str: __lowerCAmelCase = MraForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict ) -> Optional[Any]: __lowerCAmelCase = self.num_labels __lowerCAmelCase = MraForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict ) -> Any: __lowerCAmelCase = self.num_labels __lowerCAmelCase = MraForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] ) -> List[Any]: __lowerCAmelCase = self.num_choices __lowerCAmelCase = MraForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self : Tuple ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) a_ = False a_ = False a_ = False a_ = False a_ = () def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = MraModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : Tuple ) -> List[str]: self.config_tester.run_common_tests() def lowercase ( self : Optional[int] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase = type self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase_ ) def lowercase ( self : List[str] ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase_ ) def lowercase ( self : Tuple ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase_ ) @slow def lowercase ( self : Optional[int] ) -> Optional[int]: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = MraModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @unittest.skip(reason='MRA does not output attentions' ) def lowercase ( self : Optional[int] ) -> Tuple: return @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase ( self : Optional[Any] ) -> List[str]: __lowerCAmelCase = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) __lowerCAmelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : int ) -> Optional[int]: __lowerCAmelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) __lowerCAmelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = 5_0_2_6_5 __lowerCAmelCase = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : Any ) -> List[str]: __lowerCAmelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) __lowerCAmelCase = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = 5_0_2_6_5 __lowerCAmelCase = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
1
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @require_torch def lowercase ( self : Tuple ) -> Optional[int]: __lowerCAmelCase = pipeline( task='zero-shot-audio-classification' , model='hf-internal-testing/tiny-clap-htsat-unfused' ) __lowerCAmelCase = load_dataset('ashraq/esc50' ) __lowerCAmelCase = dataset['train']['audio'][-1]['array'] __lowerCAmelCase = audio_classifier(lowerCAmelCase_ , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(lowerCAmelCase_ ) , [{'score': 0.5_01, 'label': 'Sound of a dog'}, {'score': 0.4_99, 'label': 'Sound of vaccum cleaner'}] , ) @unittest.skip('No models are available in TF' ) def lowercase ( self : Optional[Any] ) -> Optional[Any]: pass @slow @require_torch def lowercase ( self : str ) -> str: __lowerCAmelCase = pipeline( task='zero-shot-audio-classification' , model='laion/clap-htsat-unfused' , ) # This is an audio of a dog __lowerCAmelCase = load_dataset('ashraq/esc50' ) __lowerCAmelCase = dataset['train']['audio'][-1]['array'] __lowerCAmelCase = audio_classifier(lowerCAmelCase_ , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(lowerCAmelCase_ ) , [ {'score': 0.9_99, 'label': 'Sound of a dog'}, {'score': 0.0_01, 'label': 'Sound of vaccum cleaner'}, ] , ) __lowerCAmelCase = audio_classifier([audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(lowerCAmelCase_ ) , [ [ {'score': 0.9_99, 'label': 'Sound of a dog'}, {'score': 0.0_01, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) __lowerCAmelCase = audio_classifier( [audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] , batch_size=5 ) self.assertEqual( nested_simplify(lowerCAmelCase_ ) , [ [ {'score': 0.9_99, 'label': 'Sound of a dog'}, {'score': 0.0_01, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) @unittest.skip('No models are available in TF' ) def lowercase ( self : List[Any] ) -> Union[str, Any]: pass
53
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _snake_case : Union[str, Any] = 2 class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , *, # begin keyword-only arguments lowerCAmelCase_ : str="<s>" , lowerCAmelCase_ : Dict="<pad>" , lowerCAmelCase_ : Any="</s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Optional[Any]=None , ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = bos, unk, pad, eos __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = {} __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = len(self.symbols ) def __eq__( self : Dict , lowerCAmelCase_ : Dict ) -> str: return self.indices == other.indices def __getitem__( self : List[Any] , lowerCAmelCase_ : int ) -> Union[str, Any]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : Tuple ) -> List[Any]: return len(self.symbols ) def __contains__( self : Optional[Any] , lowerCAmelCase_ : Dict ) -> Optional[int]: return sym in self.indices @classmethod def lowercase ( cls : Dict , lowerCAmelCase_ : str ) -> str: __lowerCAmelCase = cls() d.add_from_file(lowerCAmelCase_ ) return d def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : Any=False ) -> Optional[Any]: if word in self.indices and not overwrite: __lowerCAmelCase = self.indices[word] __lowerCAmelCase = self.count[idx] + n return idx else: __lowerCAmelCase = len(self.symbols ) __lowerCAmelCase = idx self.symbols.append(lowerCAmelCase_ ) self.count.append(lowerCAmelCase_ ) return idx def lowercase ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> Dict: return 0 def lowercase ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> int: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: with open(lowerCAmelCase_ , 'r' , encoding='utf-8' ) as fd: self.add_from_file(lowerCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(lowerCAmelCase_ ) ) return __lowerCAmelCase = f.readlines() __lowerCAmelCase = self._load_meta(lowerCAmelCase_ ) for line in lines[indices_start_line:]: try: __lowerCAmelCase , __lowerCAmelCase = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": __lowerCAmelCase = True __lowerCAmelCase , __lowerCAmelCase = line.rsplit(' ' , 1 ) else: __lowerCAmelCase = False __lowerCAmelCase = int(lowerCAmelCase_ ) __lowerCAmelCase = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(lowerCAmelCase_ ) ) self.add_symbol(lowerCAmelCase_ , n=lowerCAmelCase_ , overwrite=lowerCAmelCase_ ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def a_ ( lowerCAmelCase_ : List[str] ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} __lowerCAmelCase = dict((re.sub(R'@@$', '', lowerCAmelCase_ ), v) if k.endswith('@@' ) else (re.sub(R'$', '</w>', lowerCAmelCase_ ), v) for k, v in d.items() ) __lowerCAmelCase = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowerCAmelCase = d[k] # restore return da def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str] ): # prep if not os.path.exists(lowerCAmelCase_ ): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(lowerCAmelCase_, exist_ok=lowerCAmelCase_ ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'checkpoint.pt' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""" ) __lowerCAmelCase = torch.load(lowerCAmelCase_, map_location='cpu' ) __lowerCAmelCase = chkpt['cfg']['model'] # dicts __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'dict.txt' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {dict_file} does not exist!""" ) __lowerCAmelCase = Dictionary.load(lowerCAmelCase_ ) __lowerCAmelCase = rewrite_dict_keys(src_dict.indices ) __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, VOCAB_FILES_NAMES['vocab_file'] ) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # merges_file (bpecodes) __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'bpecodes' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""" ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(lowerCAmelCase_, lowerCAmelCase_ ) # model config __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'config.json' ) __lowerCAmelCase = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1E-12, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # tokenizer config __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F"""Generating {biogpt_tokenizer_config_file}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # model __lowerCAmelCase = chkpt['model'] # remove unneeded keys __lowerCAmelCase = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): __lowerCAmelCase = model_state_dict.pop(lowerCAmelCase_ ) else: __lowerCAmelCase = model_state_dict.pop(lowerCAmelCase_ ) __lowerCAmelCase = BioGptConfig.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = BioGptForCausalLM(lowerCAmelCase_ ) # check that it loads ok model_new.load_state_dict(lowerCAmelCase_ ) # save __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(lowerCAmelCase_, lowerCAmelCase_ ) print('Conversion is done!' ) if __name__ == "__main__": _snake_case : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : int = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
1
def a_ ( lowerCAmelCase_ : str ): return "".join(chr(ord(lowerCAmelCase_ ) - 32 ) if 'a' <= char <= 'z' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
53
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" a_ = """pixel_values""" a_ = False a_ = TimmBackboneConfig def __init__( self : Tuple , lowerCAmelCase_ : Any , **lowerCAmelCase_ : Optional[int] ) -> Optional[Any]: requires_backends(self , 'timm' ) super().__init__(lowerCAmelCase_ ) __lowerCAmelCase = config if config.backbone is None: raise ValueError('backbone is not set in the config. Please set it to a timm model name.' ) if config.backbone not in timm.list_models(): raise ValueError(f"""backbone {config.backbone} is not supported by timm.""" ) if hasattr(lowerCAmelCase_ , 'out_features' ) and config.out_features is not None: raise ValueError('out_features is not supported by TimmBackbone. Please use out_indices instead.' ) __lowerCAmelCase = getattr(lowerCAmelCase_ , 'use_pretrained_backbone' , lowerCAmelCase_ ) if pretrained is None: raise ValueError('use_pretrained_backbone is not set in the config. Please set it to True or False.' ) # We just take the final layer by default. This matches the default for the transformers models. __lowerCAmelCase = config.out_indices if getattr(lowerCAmelCase_ , 'out_indices' , lowerCAmelCase_ ) is not None else (-1,) __lowerCAmelCase = timm.create_model( config.backbone , pretrained=lowerCAmelCase_ , features_only=config.features_only , in_chans=config.num_channels , out_indices=lowerCAmelCase_ , **lowerCAmelCase_ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. __lowerCAmelCase = self._backbone.return_layers __lowerCAmelCase = {layer['module']: str(lowerCAmelCase_ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(lowerCAmelCase_ ) @classmethod def lowercase ( cls : int , lowerCAmelCase_ : Dict , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['vision', 'timm'] ) from ...models.timm_backbone import TimmBackboneConfig __lowerCAmelCase = kwargs.pop('config' , TimmBackboneConfig() ) __lowerCAmelCase = kwargs.pop('use_timm_backbone' , lowerCAmelCase_ ) if not use_timm: raise ValueError('use_timm_backbone must be True for timm backbones' ) __lowerCAmelCase = kwargs.pop('num_channels' , config.num_channels ) __lowerCAmelCase = kwargs.pop('features_only' , config.features_only ) __lowerCAmelCase = kwargs.pop('use_pretrained_backbone' , config.use_pretrained_backbone ) __lowerCAmelCase = kwargs.pop('out_indices' , config.out_indices ) __lowerCAmelCase = TimmBackboneConfig( backbone=lowerCAmelCase_ , num_channels=lowerCAmelCase_ , features_only=lowerCAmelCase_ , use_pretrained_backbone=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , ) return super()._from_config(lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Tuple , lowerCAmelCase_ : int ) -> Dict: pass def lowercase ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Any=None , **lowerCAmelCase_ : Dict ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('Cannot output attentions for timm backbones at the moment' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone __lowerCAmelCase = self._all_layers __lowerCAmelCase = self._backbone(lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = self._return_layers __lowerCAmelCase = tuple(hidden_states[i] for i in self.out_indices ) else: __lowerCAmelCase = self._backbone(lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = None __lowerCAmelCase = tuple(lowerCAmelCase_ ) __lowerCAmelCase = tuple(lowerCAmelCase_ ) if hidden_states is not None else None if not return_dict: __lowerCAmelCase = (feature_maps,) if output_hidden_states: __lowerCAmelCase = output + (hidden_states,) return output return BackboneOutput(feature_maps=lowerCAmelCase_ , hidden_states=lowerCAmelCase_ , attentions=lowerCAmelCase_ )
53
1
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]="resnet50" , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Optional[Any]=True , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = out_indices if out_indices is not None else [4] __lowerCAmelCase = stage_names __lowerCAmelCase = out_features __lowerCAmelCase = backbone __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = use_pretrained_backbone __lowerCAmelCase = is_training def lowercase ( self : List[str] ) -> Any: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def lowercase ( self : List[Any] ) -> Union[str, Any]: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase ( self : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ) -> int: __lowerCAmelCase = TimmBackbone(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 1_4, 1_4) , ) def lowercase ( self : List[str] ) -> str: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (TimmBackbone,) if is_torch_available() else () a_ = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Tuple ) -> int: __lowerCAmelCase = TimmBackboneModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : Dict ) -> List[str]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Union[str, Any] ) -> Optional[int]: __lowerCAmelCase = 'resnet18' __lowerCAmelCase = 'microsoft/resnet-18' __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ , out_indices=[1, 2, 3] ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def lowercase ( self : List[str] ) -> Tuple: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def lowercase ( self : Dict ) -> int: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def lowercase ( self : str ) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase ( self : Any ) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase ( self : Optional[int] ) -> Optional[Any]: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def lowercase ( self : Dict ) -> Any: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Any ) -> Optional[int]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase ( self : Union[str, Any] ) -> Tuple: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase ( self : List[str] ) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Dict ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Tuple ) -> List[str]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def lowercase ( self : int ) -> Optional[int]: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def lowercase ( self : Union[str, Any] ) -> str: pass @unittest.skip('Safetensors is not supported by timm.' ) def lowercase ( self : Dict ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : List[str] ) -> Optional[Any]: pass def lowercase ( self : Union[str, Any] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = self.has_attentions # no need to test all models as different heads yield the same functionality __lowerCAmelCase = self.all_model_classes[0] __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = outputs[0][-1] # Encoder-/Decoder-only models __lowerCAmelCase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowerCAmelCase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowerCAmelCase_ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) __lowerCAmelCase = None __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) __lowerCAmelCase = False __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ )
53
from __future__ import annotations def a_ ( lowerCAmelCase_ : list[float] ): if len(lowerCAmelCase_ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) __lowerCAmelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer _snake_case : Dict = logging.get_logger(__name__) _snake_case : List[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _snake_case : List[Any] = { 'vocab_file': {'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'}, 'tokenizer_file': { 'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json' }, } _snake_case : List[Any] = {'mobilebert-uncased': 512} _snake_case : Optional[int] = {} class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_INIT_CONFIGURATION a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = MobileBertTokenizer def __init__( self : Any , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Tuple="[UNK]" , lowerCAmelCase_ : Optional[int]="[SEP]" , lowerCAmelCase_ : Optional[int]="[PAD]" , lowerCAmelCase_ : Tuple="[CLS]" , lowerCAmelCase_ : List[Any]="[MASK]" , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : int , ) -> Optional[Any]: super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(lowerCAmelCase_ , normalizer_state.pop('type' ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**lowerCAmelCase_ ) __lowerCAmelCase = do_lower_case def lowercase ( self : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any=None ) -> List[str]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
53
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Union[str, Any]=1_0 , lowerCAmelCase_ : List[str]=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple="relu" , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : Optional[int]=None , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = embeddings_size __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_act __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = len(lowerCAmelCase_ ) def lowercase ( self : Optional[int] ) -> List[Any]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def lowercase ( self : Tuple ) -> List[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] ) -> str: __lowerCAmelCase = FlaxRegNetModel(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowercase ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int ) -> Tuple: __lowerCAmelCase = self.num_labels __lowerCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () a_ = False a_ = False a_ = False def lowercase ( self : Dict ) -> None: __lowerCAmelCase = FlaxRegNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : int ) -> Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : str ) -> Union[str, Any]: return def lowercase ( self : Dict ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def lowercase ( self : Union[str, Any] ) -> Any: pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def lowercase ( self : Tuple ) -> Tuple: pass def lowercase ( self : Optional[Any] ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: def check_hidden_states_output(lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : str ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Dict ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('JIT Enabled' ): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def a_ ( ): __lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : Union[str, Any] ) -> Optional[Any]: return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def lowercase ( self : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCAmelCase_ , return_tensors='np' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) # verify the logits __lowerCAmelCase = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
1
def __lowercase ( snake_case, snake_case ): """simple docstring""" __magic_name__ :Tuple = (boundary[1] - boundary[0]) / steps __magic_name__ :Optional[int] = boundary[0] __magic_name__ :Tuple = boundary[1] __magic_name__ :Union[str, Any] = make_points(snake_case, snake_case, snake_case ) __magic_name__ :Union[str, Any] = 0.0 y += (h / 2.0) * f(snake_case ) for i in x_i: # print(i) y += h * f(snake_case ) y += (h / 2.0) * f(snake_case ) return y def __lowercase ( snake_case, snake_case, snake_case ): """simple docstring""" __magic_name__ :List[Any] = a + h while x < (b - h): yield x __magic_name__ :Union[str, Any] = x + h def __lowercase ( snake_case ): # enter your function here """simple docstring""" __magic_name__ :Dict = (x - 0) * (x - 0) return y def __lowercase ( ): """simple docstring""" __magic_name__ :str = 0.0 # Lower bound of integration __magic_name__ :Dict = 1.0 # Upper bound of integration __magic_name__ :List[Any] = 10.0 # define number of steps or resolution __magic_name__ :Union[str, Any] = [a, b] # define boundary of integration __magic_name__ :Dict = method_a(snake_case, snake_case ) print(f'''y = {y}''' ) if __name__ == "__main__": main()
0
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process _snake_case : Optional[int] = logging.getLogger(__name__) _snake_case : Dict = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) _snake_case : List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(_UpperCamelCase )} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a_ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def lowercase ( self : List[Any] ) -> List[Any]: if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path' ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ = field(default=_UpperCamelCase , metadata={"""help""": """The input training data file (a text file)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a_ = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a_ = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def lowercase ( self : int ) -> int: if self.train_file is not None: __lowerCAmelCase = self.train_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __lowerCAmelCase = self.validation_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Union[str, Any] ): with open(lowerCAmelCase_, 'r', encoding='utf-8' ) as f: __lowerCAmelCase = [json.loads(lowerCAmelCase_ ) for line in f.read().splitlines() if (len(lowerCAmelCase_ ) > 0 and not line.isspace())] assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) __lowerCAmelCase = {c: dataset[c] for c in dataset.column_names} __lowerCAmelCase = refs return Dataset.from_dict(lowerCAmelCase_ ) def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s', lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset(data_args.dataset_name, data_args.dataset_config_name ) if "validation" not in datasets.keys(): __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[:{data_args.validation_split_percentage}%]""", ) __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[{data_args.validation_split_percentage}%:]""", ) else: __lowerCAmelCase = {} if data_args.train_file is not None: __lowerCAmelCase = data_args.train_file if data_args.validation_file is not None: __lowerCAmelCase = data_args.validation_file __lowerCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": __lowerCAmelCase = 'text' __lowerCAmelCase = load_dataset(lowerCAmelCase_, data_files=lowerCAmelCase_ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.config_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: __lowerCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: __lowerCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path, from_tf=bool('.ckpt' in model_args.model_name_or_path ), config=lowerCAmelCase_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info('Training new model from scratch' ) __lowerCAmelCase = AutoModelForMaskedLM.from_config(lowerCAmelCase_ ) model.resize_token_embeddings(len(lowerCAmelCase_ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __lowerCAmelCase = datasets['train'].column_names else: __lowerCAmelCase = datasets['validation'].column_names __lowerCAmelCase = 'text' if 'text' in column_names else column_names[0] __lowerCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(lowerCAmelCase_ : str ): # Remove empty lines __lowerCAmelCase = [line for line in examples['text'] if len(lowerCAmelCase_ ) > 0 and not line.isspace()] return tokenizer(examples['text'], padding=lowerCAmelCase_, truncation=lowerCAmelCase_, max_length=data_args.max_seq_length ) __lowerCAmelCase = datasets.map( lowerCAmelCase_, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, remove_columns=[text_column_name], load_from_cache_file=not data_args.overwrite_cache, ) # Add the chinese references if provided if data_args.train_ref_file is not None: __lowerCAmelCase = add_chinese_references(tokenized_datasets['train'], data_args.train_ref_file ) if data_args.validation_ref_file is not None: __lowerCAmelCase = add_chinese_references( tokenized_datasets['validation'], data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __lowerCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: __lowerCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. __lowerCAmelCase = DataCollatorForWholeWordMask(tokenizer=lowerCAmelCase_, mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowerCAmelCase = Trainer( model=lowerCAmelCase_, args=lowerCAmelCase_, train_dataset=tokenized_datasets['train'] if training_args.do_train else None, eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None, tokenizer=lowerCAmelCase_, data_collator=lowerCAmelCase_, ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload __lowerCAmelCase = os.path.join(training_args.output_dir, 'train_results.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir, 'trainer_state.json' ) ) # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = math.exp(eval_output['eval_loss'] ) __lowerCAmelCase = perplexity __lowerCAmelCase = os.path.join(training_args.output_dir, 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def a_ ( lowerCAmelCase_ : Tuple ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
53
0
def _A ( _lowercase ) -> bool: """simple docstring""" return credit_card_number.startswith(('34', '35', '37', '4', '5', '6') ) def _A ( _lowercase ) -> bool: """simple docstring""" __UpperCamelCase = credit_card_number __UpperCamelCase = 0 __UpperCamelCase = len(_lowercase ) - 2 for i in range(_lowercase , -1 , -2 ): # double the value of every second digit __UpperCamelCase = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 __UpperCamelCase = cc_number[:i] + str(_lowercase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_lowercase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def _A ( _lowercase ) -> bool: """simple docstring""" __UpperCamelCase = f'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(f'''{error_message} it has nonnumerical characters.''' ) return False if not 13 <= len(_lowercase ) <= 16: print(f'''{error_message} of its length.''' ) return False if not validate_initial_digits(_lowercase ): print(f'''{error_message} of its first two digits.''' ) return False if not luhn_validation(_lowercase ): print(f'''{error_message} it fails the Luhn check.''' ) return False print(f'''{credit_card_number} is a valid credit card number.''' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('''4111111111111111''') validate_credit_card_number('''32323''')
1
def a_ ( lowerCAmelCase_ : int = 200_0000 ): __lowerCAmelCase = [0 for i in range(n + 1 )] __lowerCAmelCase = 1 __lowerCAmelCase = 1 for i in range(2, int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i, n + 1, lowerCAmelCase_ ): __lowerCAmelCase = 1 __lowerCAmelCase = 0 for i in range(lowerCAmelCase_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"""{solution() = }""")
53
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def snake_case_ ( self : Optional[Any] ) -> Optional[Any]: _A = tempfile.mkdtemp() _A = BlipImageProcessor() _A = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-BertModel''' ) _A = BlipProcessor(__lowerCAmelCase , __lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def snake_case_ ( self : Tuple , **__lowerCAmelCase : Tuple ) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ).tokenizer def snake_case_ ( self : List[Any] , **__lowerCAmelCase : int ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ).image_processor def snake_case_ ( self : Any ) -> List[str]: shutil.rmtree(self.tmpdirname ) def snake_case_ ( self : List[Any] ) -> str: _A = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _A = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case_ ( self : Any ) -> Union[str, Any]: _A = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _A = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _A = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0 ) _A = BlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def snake_case_ ( self : Dict ) -> Optional[Any]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = BlipProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = self.prepare_image_inputs() _A = image_processor(__lowerCAmelCase , return_tensors='''np''' ) _A = processor(images=__lowerCAmelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def snake_case_ ( self : Union[str, Any] ) -> Union[str, Any]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = BlipProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = processor(text=__lowerCAmelCase ) _A = tokenizer(__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case_ ( self : Union[str, Any] ) -> Union[str, Any]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = BlipProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = self.prepare_image_inputs() _A = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase ): processor() def snake_case_ ( self : Any ) -> List[str]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = BlipProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _A = processor.batch_decode(__lowerCAmelCase ) _A = tokenizer.batch_decode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : List[str] ) -> List[Any]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = BlipProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = self.prepare_image_inputs() _A = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
2
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _snake_case : Tuple = logging.getLogger() _snake_case : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Any , lowerCAmelCase_ : Dict ) -> Optional[int]: os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowerCAmelCase = {'source': 'What is love ?', 'target': 'life'} __lowerCAmelCase = {'train': 1_2, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: __lowerCAmelCase = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(lowerCAmelCase_ , f"""{split}.{field}""" ) , 'w' ) as f: f.write(lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : str = "pytorch" ) -> List[str]: __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'output' ) __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'data' ) self._create_dummy_data(data_dir=lowerCAmelCase_ ) __lowerCAmelCase = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) __lowerCAmelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowerCAmelCase_ , env=self.get_env() ) __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'metrics.json' ) with open(lowerCAmelCase_ ) as f: __lowerCAmelCase = json.load(lowerCAmelCase_ ) return result @require_torch_gpu def lowercase ( self : str ) -> int: __lowerCAmelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def lowercase ( self : List[str] ) -> Dict: __lowerCAmelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def lowercase ( self : int ) -> Tuple: __lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def lowercase ( self : List[Any] ) -> str: __lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
53
0
'''simple docstring''' import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : Optional[int] = True lowerCAmelCase : Union[str, Any] = False if __name__ == "__main__": lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') lowerCAmelCase : Tuple = parser.parse_args() lowerCAmelCase : Dict = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } lowerCAmelCase : str = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } lowerCAmelCase : Optional[int] = '' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: lowerCAmelCase : Any = reader.read() lowerCAmelCase : Dict = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): lowerCAmelCase : List[Any] = UNetaDModel(**config) else: lowerCAmelCase : Any = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel lowerCAmelCase : Tuple = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) lowerCAmelCase : List[Any] = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: lowerCAmelCase : str = config[key] del config[key] lowerCAmelCase : int = [k.replace('UNetRes', '') for k in config['down_block_types']] lowerCAmelCase : List[Any] = [k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: lowerCAmelCase : List[str] = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) lowerCAmelCase : Any = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue lowerCAmelCase : Tuple = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: lowerCAmelCase : Optional[int] = param_value lowerCAmelCase : Tuple = True if not has_changed: lowerCAmelCase : Dict = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
3
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]="resnet50" , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Optional[Any]=True , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = out_indices if out_indices is not None else [4] __lowerCAmelCase = stage_names __lowerCAmelCase = out_features __lowerCAmelCase = backbone __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = use_pretrained_backbone __lowerCAmelCase = is_training def lowercase ( self : List[str] ) -> Any: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def lowercase ( self : List[Any] ) -> Union[str, Any]: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase ( self : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ) -> int: __lowerCAmelCase = TimmBackbone(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 1_4, 1_4) , ) def lowercase ( self : List[str] ) -> str: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (TimmBackbone,) if is_torch_available() else () a_ = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Tuple ) -> int: __lowerCAmelCase = TimmBackboneModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : Dict ) -> List[str]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Union[str, Any] ) -> Optional[int]: __lowerCAmelCase = 'resnet18' __lowerCAmelCase = 'microsoft/resnet-18' __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ , out_indices=[1, 2, 3] ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def lowercase ( self : List[str] ) -> Tuple: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def lowercase ( self : Dict ) -> int: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def lowercase ( self : str ) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase ( self : Any ) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase ( self : Optional[int] ) -> Optional[Any]: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def lowercase ( self : Dict ) -> Any: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Any ) -> Optional[int]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase ( self : Union[str, Any] ) -> Tuple: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase ( self : List[str] ) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Dict ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Tuple ) -> List[str]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def lowercase ( self : int ) -> Optional[int]: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def lowercase ( self : Union[str, Any] ) -> str: pass @unittest.skip('Safetensors is not supported by timm.' ) def lowercase ( self : Dict ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : List[str] ) -> Optional[Any]: pass def lowercase ( self : Union[str, Any] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = self.has_attentions # no need to test all models as different heads yield the same functionality __lowerCAmelCase = self.all_model_classes[0] __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = outputs[0][-1] # Encoder-/Decoder-only models __lowerCAmelCase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowerCAmelCase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowerCAmelCase_ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) __lowerCAmelCase = None __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) __lowerCAmelCase = False __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ )
53
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Optional[Any] = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class a ( a__ ): snake_case__ = '''dpt''' def __init__( self , _snake_case=7_68 , _snake_case=12 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=3_84 , _snake_case=16 , _snake_case=3 , _snake_case=False , _snake_case=True , _snake_case=[2, 5, 8, 11] , _snake_case="project" , _snake_case=[4, 2, 1, 0.5] , _snake_case=[96, 1_92, 3_84, 7_68] , _snake_case=2_56 , _snake_case=-1 , _snake_case=False , _snake_case=True , _snake_case=0.4 , _snake_case=2_55 , _snake_case=0.1 , _snake_case=[1, 10_24, 24, 24] , _snake_case=[0, 1] , _snake_case=None , **_snake_case , ): """simple docstring""" super().__init__(**_snake_case ) lowerCAmelCase = hidden_size lowerCAmelCase = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('Initializing the config with a `BiT` backbone.' ) lowerCAmelCase = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, } lowerCAmelCase = BitConfig(**_snake_case ) elif isinstance(_snake_case , _snake_case ): logger.info('Initializing the config with a `BiT` backbone.' ) lowerCAmelCase = BitConfig(**_snake_case ) elif isinstance(_snake_case , _snake_case ): lowerCAmelCase = backbone_config else: raise ValueError( F'backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.' ) lowerCAmelCase = backbone_featmap_shape lowerCAmelCase = neck_ignore_stages if readout_type != "project": raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.' ) else: lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = [] lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = qkv_bias lowerCAmelCase = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']' ) lowerCAmelCase = readout_type lowerCAmelCase = reassemble_factors lowerCAmelCase = neck_hidden_sizes lowerCAmelCase = fusion_hidden_size lowerCAmelCase = head_in_index lowerCAmelCase = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) lowerCAmelCase = use_auxiliary_head lowerCAmelCase = auxiliary_loss_weight lowerCAmelCase = semantic_loss_ignore_index lowerCAmelCase = semantic_classifier_dropout def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase = self.backbone_config.to_dict() lowerCAmelCase = self.__class__.model_type return output
4
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def a_ ( lowerCAmelCase_ : str=None ): if subparsers is not None: __lowerCAmelCase = subparsers.add_parser('env' ) else: __lowerCAmelCase = argparse.ArgumentParser('Accelerate env command' ) parser.add_argument( '--config_file', default=lowerCAmelCase_, help='The config file to use for the default values in the launching script.' ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def a_ ( lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = torch.__version__ __lowerCAmelCase = torch.cuda.is_available() __lowerCAmelCase = is_xpu_available() __lowerCAmelCase = is_npu_available() __lowerCAmelCase = 'Not found' # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowerCAmelCase_ ): __lowerCAmelCase = load_config_from_file(args.config_file ).to_dict() __lowerCAmelCase = { '`Accelerate` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Numpy version': np.__version__, 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'PyTorch XPU available': str(lowerCAmelCase_ ), 'PyTorch NPU available': str(lowerCAmelCase_ ), 'System RAM': F"""{psutil.virtual_memory().total / 1024 ** 3:.2f} GB""", } if pt_cuda_available: __lowerCAmelCase = torch.cuda.get_device_name() print('\nCopy-and-paste the text below in your GitHub issue\n' ) print('\n'.join([F"""- {prop}: {val}""" for prop, val in info.items()] ) ) print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:' ) __lowerCAmelCase = ( '\n'.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else F"""\t{accelerate_config}""" ) print(lowerCAmelCase_ ) __lowerCAmelCase = accelerate_config return info def a_ ( ): __lowerCAmelCase = env_command_parser() __lowerCAmelCase = parser.parse_args() env_command(lowerCAmelCase_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
53
0
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def A (__lowerCamelCase :Optional[int] ): return x + 2 class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """x = 3""" _lowerCAmelCase = {} _lowerCAmelCase = evaluate(_lowercase , {} , state=_lowercase ) assert result == 3 self.assertDictEqual(_lowercase , {"""x""": 3} ) _lowerCAmelCase = """x = y""" _lowerCAmelCase = {"""y""": 5} _lowerCAmelCase = evaluate(_lowercase , {} , state=_lowercase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_lowercase , {"""x""": 5, """y""": 5} ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """y = add_two(x)""" _lowerCAmelCase = {"""x""": 3} _lowerCAmelCase = evaluate(_lowercase , {"""add_two""": add_two} , state=_lowercase ) assert result == 5 self.assertDictEqual(_lowercase , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: _lowerCAmelCase = evaluate(_lowercase , {} , state=_lowercase ) assert result is None assert "tried to execute add_two" in out.out def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """x = 3""" _lowerCAmelCase = {} _lowerCAmelCase = evaluate(_lowercase , {} , state=_lowercase ) assert result == 3 self.assertDictEqual(_lowercase , {"""x""": 3} ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """test_dict = {'x': x, 'y': add_two(x)}""" _lowerCAmelCase = {"""x""": 3} _lowerCAmelCase = evaluate(_lowercase , {"""add_two""": add_two} , state=_lowercase ) self.assertDictEqual(_lowercase , {"""x""": 3, """y""": 5} ) self.assertDictEqual(_lowercase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """x = 3\ny = 5""" _lowerCAmelCase = {} _lowerCAmelCase = evaluate(_lowercase , {} , state=_lowercase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_lowercase , {"""x""": 3, """y""": 5} ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """text = f'This is x: {x}.'""" _lowerCAmelCase = {"""x""": 3} _lowerCAmelCase = evaluate(_lowercase , {} , state=_lowercase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_lowercase , {"""x""": 3, """text""": """This is x: 3."""} ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """if x <= 3:\n y = 2\nelse:\n y = 5""" _lowerCAmelCase = {"""x""": 3} _lowerCAmelCase = evaluate(_lowercase , {} , state=_lowercase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_lowercase , {"""x""": 3, """y""": 2} ) _lowerCAmelCase = {"""x""": 8} _lowerCAmelCase = evaluate(_lowercase , {} , state=_lowercase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_lowercase , {"""x""": 8, """y""": 5} ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """test_list = [x, add_two(x)]""" _lowerCAmelCase = {"""x""": 3} _lowerCAmelCase = evaluate(_lowercase , {"""add_two""": add_two} , state=_lowercase ) self.assertListEqual(_lowercase , [3, 5] ) self.assertDictEqual(_lowercase , {"""x""": 3, """test_list""": [3, 5]} ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """y = x""" _lowerCAmelCase = {"""x""": 3} _lowerCAmelCase = evaluate(_lowercase , {} , state=_lowercase ) assert result == 3 self.assertDictEqual(_lowercase , {"""x""": 3, """y""": 3} ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """test_list = [x, add_two(x)]\ntest_list[1]""" _lowerCAmelCase = {"""x""": 3} _lowerCAmelCase = evaluate(_lowercase , {"""add_two""": add_two} , state=_lowercase ) assert result == 5 self.assertDictEqual(_lowercase , {"""x""": 3, """test_list""": [3, 5]} ) _lowerCAmelCase = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" _lowerCAmelCase = {"""x""": 3} _lowerCAmelCase = evaluate(_lowercase , {"""add_two""": add_two} , state=_lowercase ) assert result == 5 self.assertDictEqual(_lowercase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = """x = 0\nfor i in range(3):\n x = i""" _lowerCAmelCase = {} _lowerCAmelCase = evaluate(_lowercase , {"""range""": range} , state=_lowercase ) assert result == 2 self.assertDictEqual(_lowercase , {"""x""": 2, """i""": 2} )
5
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a_ ( ): __lowerCAmelCase = ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores', type=lowerCAmelCase_, default=1, help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script', type=lowerCAmelCase_, help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ), ) # rest from the training program parser.add_argument('training_script_args', nargs=lowerCAmelCase_ ) return parser.parse_args() def a_ ( ): __lowerCAmelCase = parse_args() # Import training_script as a module. __lowerCAmelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __lowerCAmelCase = script_fpath.stem __lowerCAmelCase = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv __lowerCAmelCase = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores ) if __name__ == "__main__": main()
53
0
from __future__ import annotations from typing import Any def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list[Any] ): create_state_space_tree(UpperCamelCase__ , [] , 0 ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list[Any] , UpperCamelCase__: list[Any] , UpperCamelCase__: int ): if index == len(UpperCamelCase__ ): print(UpperCamelCase__ ) return create_state_space_tree(UpperCamelCase__ , UpperCamelCase__ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(UpperCamelCase__ , UpperCamelCase__ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": _lowerCamelCase = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['A', 'B', 'C']) generate_all_subsequences(seq)
6
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict=1_3 , lowerCAmelCase_ : str=3_2 , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : str=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Tuple=[2, 2, 3, 2] , lowerCAmelCase_ : str=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[int]=3_7 , lowerCAmelCase_ : Dict="gelu" , lowerCAmelCase_ : List[Any]=1_0 , lowerCAmelCase_ : str=0.02 , lowerCAmelCase_ : Dict=["stage2", "stage3", "stage4"] , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : List[Any]=None , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = num_stages __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = out_features __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = num_stages def lowercase ( self : Dict ) -> List[str]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase ( self : List[str] ) -> Union[str, Any]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowercase ( self : Dict ) -> List[str]: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_1_2 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=lowerCAmelCase_ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=4_0 , auxiliary_channels=2_5_6 , auxiliary_num_convs=1 , auxiliary_concat_input=lowerCAmelCase_ , loss_ignore_index=2_5_5 , num_labels=self.num_labels , ) def lowercase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int ) -> Optional[Any]: __lowerCAmelCase = UperNetForSemanticSegmentation(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase ( self : Union[str, Any] ) -> Union[str, Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (UperNetForSemanticSegmentation,) if is_torch_available() else () a_ = {"""image-segmentation""": UperNetForSemanticSegmentation} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Optional[int] ) -> Dict: __lowerCAmelCase = UperNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : List[str] ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Tuple ) -> Union[str, Any]: return def lowercase ( self : Optional[int] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase_ ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def lowercase ( self : Optional[int] ) -> Dict: pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def lowercase ( self : Optional[Any] ) -> Dict: pass @unittest.skip(reason='UperNet does not have a base model' ) def lowercase ( self : Optional[int] ) -> List[Any]: pass @unittest.skip(reason='UperNet does not have a base model' ) def lowercase ( self : str ) -> Dict: pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowercase ( self : Optional[Any] ) -> Optional[int]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : Tuple ) -> List[Any]: pass def lowercase ( self : Union[str, Any] ) -> Tuple: def check_hidden_states_output(lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Any ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = _config_zero_init(lowerCAmelCase_ ) __lowerCAmelCase = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __lowerCAmelCase = model_class(config=lowerCAmelCase_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='UperNet does not have tied weights' ) def lowercase ( self : Any ) -> int: pass @slow def lowercase ( self : Optional[int] ) -> Optional[int]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def a_ ( ): __lowerCAmelCase = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k', repo_type='dataset', filename='ADE_val_00000001.jpg' ) __lowerCAmelCase = Image.open(lowerCAmelCase_ ).convert('RGB' ) return image @require_torch @require_vision @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Dict ) -> Union[str, Any]: __lowerCAmelCase = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(lowerCAmelCase_ ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(lowerCAmelCase_ ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class lowercase_ : '''simple docstring''' UpperCAmelCase : List[Any] = XGLMConfig UpperCAmelCase : List[str] = {} UpperCAmelCase : Dict = '''gelu''' def __init__( self : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int=14 , _UpperCAmelCase : List[Any]=7 , _UpperCAmelCase : str=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any=99 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : int=4 , _UpperCAmelCase : List[str]=37 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : int=512 , _UpperCAmelCase : List[str]=0.02 , ): _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_labels _A = vocab_size _A = d_model _A = num_hidden_layers _A = num_attention_heads _A = ffn_dim _A = activation_function _A = activation_dropout _A = attention_dropout _A = max_position_embeddings _A = initializer_range _A = None _A = 0 _A = 2 _A = 1 def lowerCAmelCase_ ( self : Any ): return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def lowerCAmelCase_ ( self : str ): _A = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = self.get_config() _A = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def lowerCAmelCase_ ( self : Dict ): return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=_UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=_UpperCAmelCase , ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) = config_and_inputs _A = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Any = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCAmelCase : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCAmelCase : str = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCAmelCase : Optional[Any] = False UpperCAmelCase : Tuple = False UpperCAmelCase : int = False def lowerCAmelCase_ ( self : List[Any] ): _A = TFXGLMModelTester(self ) _A = ConfigTester(self , config_class=_UpperCAmelCase , n_embd=37 ) def lowerCAmelCase_ ( self : List[str] ): self.config_tester.run_common_tests() @slow def lowerCAmelCase_ ( self : List[Any] ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = TFXGLMModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def lowerCAmelCase_ ( self : List[str] ): super().test_resize_token_embeddings() @require_tf class lowercase_ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : str=True ): _A = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) _A = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _A = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on _A = model.generate(_UpperCAmelCase , do_sample=_UpperCAmelCase , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , _UpperCAmelCase ) @slow def lowerCAmelCase_ ( self : List[Any] ): _A = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) _A = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) _A = tokenizer('Today is a nice day and' , return_tensors='tf' ) _A = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): _A = model.generate(_UpperCAmelCase , do_sample=_UpperCAmelCase , seed=[7, 0] ) _A = tokenizer.decode(output_ids[0] , skip_special_tokens=_UpperCAmelCase ) _A = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def lowerCAmelCase_ ( self : Union[str, Any] ): _A = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) _A = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) _A = 'left' # use different length sentences to test batching _A = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] _A = tokenizer(_UpperCAmelCase , return_tensors='tf' , padding=_UpperCAmelCase ) _A = inputs['input_ids'] _A = model.generate(input_ids=_UpperCAmelCase , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) _A = tokenizer(sentences[0] , return_tensors='tf' ).input_ids _A = model.generate(input_ids=_UpperCAmelCase , max_new_tokens=12 ) _A = tokenizer(sentences[1] , return_tensors='tf' ).input_ids _A = model.generate(input_ids=_UpperCAmelCase , max_new_tokens=12 ) _A = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) _A = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCAmelCase ) _A = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCAmelCase ) _A = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [non_padded_sentence, padded_sentence] )
7
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Optional[Any] ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : int ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_, keep_in_memory=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Dict, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, features=lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Any ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_, split=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type', [str, list] ) def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : Any, lowerCAmelCase_ : Dict ): if issubclass(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = text_path elif issubclass(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = [text_path] __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : int, lowerCAmelCase_ : Tuple=("train",) ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) for split in splits: __lowerCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def a_ ( lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Dict ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = TextDatasetReader({'train': text_path}, cache_dir=lowerCAmelCase_, keep_in_memory=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = TextDatasetReader({'train': text_path}, features=lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : Optional[int] ): if split: __lowerCAmelCase = {split: text_path} else: __lowerCAmelCase = 'train' __lowerCAmelCase = {'train': text_path, 'test': text_path} __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
53
0
'''simple docstring''' # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar lowercase__ : List[str] = TypeVar('''T''') class SCREAMING_SNAKE_CASE (Generic[T] ): def __init__( self , _UpperCAmelCase = True): '''simple docstring''' __A : dict[T, list[T]] = {} # dictionary of lists __A : Any = directed def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_UpperCAmelCase) self.adj_list[destination_vertex].append(_UpperCAmelCase) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_UpperCAmelCase) __A : str = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(_UpperCAmelCase) __A : Any = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: __A : int = [destination_vertex] __A : int = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_UpperCAmelCase) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_UpperCAmelCase) __A : Tuple = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: __A : str = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: __A : Any = [destination_vertex] __A : List[Any] = [] return self def __repr__( self): '''simple docstring''' return pformat(self.adj_list)
8
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case : Union[str, Any] = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : int=False ): __lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Optional[int]=False ): for i in range(config.num_hidden_layers ): if base_model: __lowerCAmelCase = '' else: __lowerCAmelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] __lowerCAmelCase = in_proj_bias[: config.hidden_size] __lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase = in_proj_bias[-config.hidden_size :] def a_ ( lowerCAmelCase_ : List[str] ): __lowerCAmelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Optional[Any]=True ): __lowerCAmelCase = ViTConfig() # patch_size if model_name[-1] == "8": __lowerCAmelCase = 8 # set labels if required if not base_model: __lowerCAmelCase = 1000 __lowerCAmelCase = 'huggingface/label-files' __lowerCAmelCase = 'imagenet-1k-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 6 # load original model from torch hub __lowerCAmelCase = torch.hub.load('facebookresearch/dino:main', lowerCAmelCase_ ) original_model.eval() # load state_dict of original model, remove and rename some keys __lowerCAmelCase = original_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase_ ) __lowerCAmelCase = create_rename_keys(lowerCAmelCase_, base_model=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # load HuggingFace model if base_model: __lowerCAmelCase = ViTModel(lowerCAmelCase_, add_pooling_layer=lowerCAmelCase_ ).eval() else: __lowerCAmelCase = ViTForImageClassification(lowerCAmelCase_ ).eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor __lowerCAmelCase = ViTImageProcessor() __lowerCAmelCase = image_processor(images=prepare_img(), return_tensors='pt' ) __lowerCAmelCase = encoding['pixel_values'] __lowerCAmelCase = model(lowerCAmelCase_ ) if base_model: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_, outputs.last_hidden_state[:, 0, :], atol=1E-1 ) else: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase_, outputs.logits, atol=1E-3 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) _snake_case : List[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
53
0
SCREAMING_SNAKE_CASE__ = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> list[str]: A__ = set() # keep track of all the paths to be checked A__ = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue A__ = queue.pop(0 ) # get the last node from the path A__ = path[-1] if node not in explored: A__ = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: A__ = list(__UpperCamelCase ) new_path.append(__UpperCamelCase ) queue.append(__UpperCamelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(__UpperCamelCase ) # in case there's no path between the 2 nodes return [] def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 A__ = [start] A__ = set(__UpperCamelCase ) # Keep tab on distances from `start` node. A__ = {start: 0, target: -1} while queue: A__ = queue.pop(0 ) if node == target: A__ = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(__UpperCamelCase ) queue.append(__UpperCamelCase ) A__ = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
9
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : str ) -> Any: __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : Tuple ) -> Optional[int]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : List[Any] ) -> int: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : str ) -> str: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[str]: # pass variant but use the non-variant filenames __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> Union[str, Any]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : List[str] ) -> List[Any]: # pass variant but use the non-variant filenames __lowerCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) )
53
0
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = 0 def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(_A , _A ) def UpperCamelCase_ ( self : str ): with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = Path(_A ) / '''preprocessor_config.json''' _UpperCamelCase = Path(_A ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_A , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_A , '''w''' ) ) _UpperCamelCase = AutoImageProcessor.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def UpperCamelCase_ ( self : Tuple ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = Path(_A ) / '''preprocessor_config.json''' _UpperCamelCase = Path(_A ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_A , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_A , '''w''' ) ) _UpperCamelCase = AutoImageProcessor.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def UpperCamelCase_ ( self : List[str] ): with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = CLIPConfig() # Create a dummy config file with image_proceesor_type _UpperCamelCase = Path(_A ) / '''preprocessor_config.json''' _UpperCamelCase = Path(_A ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_A , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_A , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally _UpperCamelCase = AutoImageProcessor.from_pretrained(_A ).to_dict() config_dict.pop('''image_processor_type''' ) _UpperCamelCase = CLIPImageProcessor(**_A ) # save in new folder model_config.save_pretrained(_A ) config.save_pretrained(_A ) _UpperCamelCase = AutoImageProcessor.from_pretrained(_A ) # make sure private variable is not incorrectly saved _UpperCamelCase = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(_A , _A ) def UpperCamelCase_ ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = Path(_A ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_A , '''w''' ) , ) _UpperCamelCase = AutoImageProcessor.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def UpperCamelCase_ ( self : List[Any] ): with self.assertRaisesRegex( _A , '''clip-base is not a local folder and is not a valid model identifier''' ): _UpperCamelCase = AutoImageProcessor.from_pretrained('''clip-base''' ) def UpperCamelCase_ ( self : Dict ): with self.assertRaisesRegex( _A , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): _UpperCamelCase = AutoImageProcessor.from_pretrained(_A , revision='''aaaaaa''' ) def UpperCamelCase_ ( self : Union[str, Any] ): with self.assertRaisesRegex( _A , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): _UpperCamelCase = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def UpperCamelCase_ ( self : List[Any] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_A ): _UpperCamelCase = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_A ): _UpperCamelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_A ) _UpperCamelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_A ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_A ) _UpperCamelCase = AutoImageProcessor.from_pretrained(_A , trust_remote_code=_A ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def UpperCamelCase_ ( self : List[Any] ): try: AutoConfig.register('''custom''' , _A ) AutoImageProcessor.register(_A , _A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoImageProcessor.register(_A , _A ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = Path(_A ) / '''preprocessor_config.json''' _UpperCamelCase = Path(_A ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_A , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(_A , '''w''' ) ) _UpperCamelCase = CustomImageProcessor.from_pretrained(_A ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_A ) _UpperCamelCase = AutoImageProcessor.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase_ ( self : Optional[Any] ): class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = True try: AutoConfig.register('''custom''' , _A ) AutoImageProcessor.register(_A , _A ) # If remote code is not set, the default is to use local _UpperCamelCase = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. _UpperCamelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_A ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub _UpperCamelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_A ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(_A , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
10
import math def a_ ( lowerCAmelCase_ : list, lowerCAmelCase_ : int ): __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) __lowerCAmelCase = 0 while arr[min(lowerCAmelCase_, lowerCAmelCase_ ) - 1] < x: __lowerCAmelCase = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: __lowerCAmelCase = prev + 1 if prev == min(lowerCAmelCase_, lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": _snake_case : List[str] = input('Enter numbers separated by a comma:\n').strip() _snake_case : Optional[Any] = [int(item) for item in user_input.split(',')] _snake_case : List[str] = int(input('Enter the number to be searched:\n')) _snake_case : Optional[int] = jump_search(arr, x) if res == -1: print('Number not found!') else: print(F"""Number {x} is at index {res}""")
53
0
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class __A : '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=False , A=True , A=False , A=False , A=19 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> str: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope def a__ (self ) -> List[str]: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ (self ) -> Tuple: """simple docstring""" _a = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=A , esmfold_config={'''trunk''': {'''num_blocks''': 2}, '''fp16_esm''': False} , ) return config def a__ (self , A , A , A , A , A , A ) -> Dict: """simple docstring""" _a = EsmForProteinFolding(config=A ).float() model.to(A ) model.eval() _a = model(A , attention_mask=A ) _a = model(A ) _a = model(A ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def a__ (self ) -> int: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Tuple = False __lowerCamelCase : Union[str, Any] = (EsmForProteinFolding,) if is_torch_available() else () __lowerCamelCase : Union[str, Any] = () __lowerCamelCase : Union[str, Any] = {} if is_torch_available() else {} __lowerCamelCase : List[str] = False def a__ (self ) -> List[str]: """simple docstring""" _a = EsmFoldModelTester(self ) _a = ConfigTester(self , config_class=A , hidden_size=37 ) def a__ (self ) -> int: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> int: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) @unittest.skip('''Does not support attention outputs''' ) def a__ (self ) -> Tuple: """simple docstring""" pass @unittest.skip def a__ (self ) -> Tuple: """simple docstring""" pass @unittest.skip('''Esm does not support embedding resizing''' ) def a__ (self ) -> Optional[int]: """simple docstring""" pass @unittest.skip('''Esm does not support embedding resizing''' ) def a__ (self ) -> List[str]: """simple docstring""" pass @unittest.skip('''ESMFold does not support passing input embeds!''' ) def a__ (self ) -> Tuple: """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def a__ (self ) -> int: """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def a__ (self ) -> str: """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def a__ (self ) -> Optional[int]: """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def a__ (self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def a__ (self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('''ESMFold does not output hidden states in the normal way.''' ) def a__ (self ) -> Tuple: """simple docstring""" pass @unittest.skip('''ESMfold does not output hidden states in the normal way.''' ) def a__ (self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('''ESMFold only has one output format.''' ) def a__ (self ) -> Dict: """simple docstring""" pass @unittest.skip('''This test doesn\'t work for ESMFold and doesn\'t test core functionality''' ) def a__ (self ) -> List[str]: """simple docstring""" pass @unittest.skip('''ESMFold does not support input chunking.''' ) def a__ (self ) -> str: """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.''' ) def a__ (self ) -> List[str]: """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def a__ (self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def a__ (self ) -> str: """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def a__ (self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t support data parallel.''' ) def a__ (self ) -> List[Any]: """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def a__ (self ) -> Optional[Any]: """simple docstring""" pass @require_torch class __A ( A ): '''simple docstring''' @slow def a__ (self ) -> Optional[Any]: """simple docstring""" _a = EsmForProteinFolding.from_pretrained('''facebook/esmfold_v1''' ).float() model.eval() _a = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _a = model(A )['''positions'''] _a = torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , A , atol=1E-4 ) )
11
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[Any], lowerCAmelCase_ : str ): # Initialise PyTorch model __lowerCAmelCase = RemBertConfig.from_json_file(lowerCAmelCase_ ) print('Building PyTorch model from configuration: {}'.format(str(lowerCAmelCase_ ) ) ) __lowerCAmelCase = RemBertModel(lowerCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Save pytorch-model print('Save PyTorch model to {}'.format(lowerCAmelCase_ ) ) torch.save(model.state_dict(), lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : int = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
53
0
from __future__ import annotations def UpperCamelCase ( lowercase_ , lowercase_ = None , lowercase_ = None ) -> None: '''simple docstring''' if start is None: lowercase__ : Optional[int] = 0 if end is None: lowercase__ : int = len(lowercase_ ) - 1 if start >= end: return lowercase__ : Any = (start + end) // 2 slowsort(lowercase_ , lowercase_ , lowercase_ ) slowsort(lowercase_ , mid + 1 , lowercase_ ) if sequence[end] < sequence[mid]: lowercase__ , lowercase__ : List[Any] = sequence[mid], sequence[end] slowsort(lowercase_ , lowercase_ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
12
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _snake_case : Any = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224', out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) __lowerCAmelCase = MaskFormerConfig(backbone_config=lowerCAmelCase_ ) __lowerCAmelCase = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok __lowerCAmelCase = 847 __lowerCAmelCase = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok __lowerCAmelCase = 150 __lowerCAmelCase = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok __lowerCAmelCase = 171 __lowerCAmelCase = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO __lowerCAmelCase = 133 __lowerCAmelCase = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok __lowerCAmelCase = 19 __lowerCAmelCase = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok __lowerCAmelCase = 65 __lowerCAmelCase = 'mapillary-vistas-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} return config def a_ ( lowerCAmelCase_ : Tuple ): __lowerCAmelCase = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') ) for source_index, target_index in zip(range(3, 0, -1 ), range(0, 3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') ) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') ) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') ) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') ) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Tuple ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int ): __lowerCAmelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowerCAmelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[:dim, :] __lowerCAmelCase = in_proj_bias[: dim] __lowerCAmelCase = in_proj_weight[ dim : dim * 2, : ] __lowerCAmelCase = in_proj_bias[ dim : dim * 2 ] __lowerCAmelCase = in_proj_weight[ -dim :, : ] __lowerCAmelCase = in_proj_bias[-dim :] # fmt: on def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : Dict ): # fmt: off __lowerCAmelCase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: hidden_size, :] __lowerCAmelCase = in_proj_bias[:config.hidden_size] __lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCAmelCase = in_proj_weight[-hidden_size :, :] __lowerCAmelCase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: hidden_size, :] __lowerCAmelCase = in_proj_bias[:config.hidden_size] __lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCAmelCase = in_proj_weight[-hidden_size :, :] __lowerCAmelCase = in_proj_bias[-hidden_size :] # fmt: on def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : bool = False ): __lowerCAmelCase = get_maskformer_config(lowerCAmelCase_ ) # load original state_dict with open(lowerCAmelCase_, 'rb' ) as f: __lowerCAmelCase = pickle.load(lowerCAmelCase_ ) __lowerCAmelCase = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowerCAmelCase = create_rename_keys(lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_swin_q_k_v(lowerCAmelCase_, config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase_, lowerCAmelCase_ ) # update to torch tensors for key, value in state_dict.items(): __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ) # load 🤗 model __lowerCAmelCase = MaskFormerForInstanceSegmentation(lowerCAmelCase_ ) model.eval() for name, param in model.named_parameters(): print(lowerCAmelCase_, param.shape ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowerCAmelCase_, strict=lowerCAmelCase_ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCAmelCase_ ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results __lowerCAmelCase = prepare_img() if "vistas" in model_name: __lowerCAmelCase = 65 elif "cityscapes" in model_name: __lowerCAmelCase = 6_5535 else: __lowerCAmelCase = 255 __lowerCAmelCase = True if 'ade' in model_name else False __lowerCAmelCase = MaskFormerImageProcessor(ignore_index=lowerCAmelCase_, reduce_labels=lowerCAmelCase_ ) __lowerCAmelCase = image_processor(lowerCAmelCase_, return_tensors='pt' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) print('Logits:', outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowerCAmelCase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], lowerCAmelCase_, atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print('Pushing model and image processor to the hub...' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _snake_case : List[str] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
53
0
'''simple docstring''' from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int ) -> List[Any]: # ===== initialization ===== __lowerCamelCase : Dict = Mock() __lowerCamelCase : Union[str, Any] = conn, Mock() __lowerCamelCase : Dict = iter([1, None] ) __lowerCamelCase : Tuple = lambda UpperCAmelCase_ : next(UpperCAmelCase_ ) # ===== invoke ===== send_file(filename='mytext.txt' , testing=UpperCAmelCase_ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
13
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): _snake_case : List[Any] = True from torch.cuda.amp import autocast _snake_case : Dict = logging.getLogger(__name__) def a_ ( lowerCAmelCase_ : str=None, lowerCAmelCase_ : str=None ): return field(default_factory=lambda: default, metadata=lowerCAmelCase_ ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) a_ = field( default=0.1 , metadata={"""help""": """The dropout ratio for the attention probabilities."""} ) a_ = field( default=0.1 , metadata={"""help""": """The dropout ratio for activations inside the fully connected layer."""} ) a_ = field( default=0.1 , metadata={ """help""": """The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.""" } , ) a_ = field( default=0.1 , metadata={"""help""": """The dropout probabilitiy for all 1D convolutional layers in feature extractor."""} , ) a_ = field( default=0.05 , metadata={ """help""": ( """Propability of each feature vector along the time axis to be chosen as the start of the vector""" """span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature""" """vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.""" ) } , ) a_ = field(default=0.0 , metadata={"""help""": """The LayerDrop probability."""} ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ = field( default="""train+validation""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of validation examples to this """ """value if set.""" ) } , ) a_ = list_field( default=[""",""", """?""", """.""", """!""", """-""", """;""", """:""", """\"\"""", """%""", """'""", """\"""", """�"""] , metadata={"""help""": """A list of characters to remove from the transcripts."""} , ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = 42 a_ = True a_ = None a_ = None a_ = None a_ = None def __call__( self : int , lowerCAmelCase_ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods __lowerCAmelCase = [{'input_values': feature['input_values']} for feature in features] __lowerCAmelCase = [{'input_ids': feature['labels']} for feature in features] __lowerCAmelCase = self.processor.pad( lowerCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) __lowerCAmelCase = self.processor.pad( labels=lowerCAmelCase_ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='pt' , ) # replace padding with -100 to ignore loss correctly __lowerCAmelCase = labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_0_0 ) __lowerCAmelCase = labels return batch class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Tuple , lowerCAmelCase_ : nn.Module , lowerCAmelCase_ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: model.train() __lowerCAmelCase = self._prepare_inputs(lowerCAmelCase_ ) if self.use_amp: with autocast(): __lowerCAmelCase = self.compute_loss(lowerCAmelCase_ , lowerCAmelCase_ ) else: __lowerCAmelCase = self.compute_loss(lowerCAmelCase_ , lowerCAmelCase_ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": __lowerCAmelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __lowerCAmelCase = loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: __lowerCAmelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowerCAmelCase_ ).backward() elif self.use_apex: with amp.scale_loss(lowerCAmelCase_ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowerCAmelCase_ ) else: loss.backward() return loss.detach() def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s', lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: __lowerCAmelCase = datasets.load_dataset( 'common_voice', data_args.dataset_config_name, split=data_args.train_split_name ) __lowerCAmelCase = datasets.load_dataset('common_voice', data_args.dataset_config_name, split='test' ) # Create and save tokenizer __lowerCAmelCase = F"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(lowerCAmelCase_ : Any ): __lowerCAmelCase = re.sub(lowerCAmelCase_, '', batch['sentence'] ).lower() + ' ' return batch __lowerCAmelCase = train_dataset.map(lowerCAmelCase_, remove_columns=['sentence'] ) __lowerCAmelCase = eval_dataset.map(lowerCAmelCase_, remove_columns=['sentence'] ) def extract_all_chars(lowerCAmelCase_ : Tuple ): __lowerCAmelCase = ' '.join(batch['text'] ) __lowerCAmelCase = list(set(lowerCAmelCase_ ) ) return {"vocab": [vocab], "all_text": [all_text]} __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, batched=lowerCAmelCase_, batch_size=-1, keep_in_memory=lowerCAmelCase_, remove_columns=train_dataset.column_names, ) __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, batched=lowerCAmelCase_, batch_size=-1, keep_in_memory=lowerCAmelCase_, remove_columns=eval_dataset.column_names, ) __lowerCAmelCase = list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) ) __lowerCAmelCase = {v: k for k, v in enumerate(lowerCAmelCase_ )} __lowerCAmelCase = vocab_dict[' '] del vocab_dict[" "] __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = len(lowerCAmelCase_ ) with open('vocab.json', 'w' ) as vocab_file: json.dump(lowerCAmelCase_, lowerCAmelCase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = WavaVecaCTCTokenizer( 'vocab.json', unk_token='[UNK]', pad_token='[PAD]', word_delimiter_token='|', ) __lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_6000, padding_value=0.0, do_normalize=lowerCAmelCase_, return_attention_mask=lowerCAmelCase_ ) __lowerCAmelCase = WavaVecaProcessor(feature_extractor=lowerCAmelCase_, tokenizer=lowerCAmelCase_ ) __lowerCAmelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, activation_dropout=model_args.activation_dropout, attention_dropout=model_args.attention_dropout, hidden_dropout=model_args.hidden_dropout, feat_proj_dropout=model_args.feat_proj_dropout, mask_time_prob=model_args.mask_time_prob, gradient_checkpointing=training_args.gradient_checkpointing, layerdrop=model_args.layerdrop, ctc_loss_reduction='mean', pad_token_id=processor.tokenizer.pad_token_id, vocab_size=len(processor.tokenizer ), ) if data_args.max_train_samples is not None: __lowerCAmelCase = min(len(lowerCAmelCase_ ), data_args.max_train_samples ) __lowerCAmelCase = train_dataset.select(range(lowerCAmelCase_ ) ) if data_args.max_val_samples is not None: __lowerCAmelCase = eval_dataset.select(range(data_args.max_val_samples ) ) __lowerCAmelCase = torchaudio.transforms.Resample(4_8000, 1_6000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(lowerCAmelCase_ : int ): __lowerCAmelCase , __lowerCAmelCase = torchaudio.load(batch['path'] ) __lowerCAmelCase = resampler(lowerCAmelCase_ ).squeeze().numpy() __lowerCAmelCase = 1_6000 __lowerCAmelCase = batch['text'] return batch __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, remove_columns=train_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) __lowerCAmelCase = eval_dataset.map( lowerCAmelCase_, remove_columns=eval_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) def prepare_dataset(lowerCAmelCase_ : Union[str, Any] ): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'] ) ) == 1 ), F"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" __lowerCAmelCase = processor( audio=batch['speech'], text=batch['target_text'], sampling_rate=batch['sampling_rate'][0] ) batch.update(lowerCAmelCase_ ) return batch __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, remove_columns=train_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, ) __lowerCAmelCase = eval_dataset.map( lowerCAmelCase_, remove_columns=eval_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, ) # Metric __lowerCAmelCase = datasets.load_metric('wer' ) def compute_metrics(lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = pred.predictions __lowerCAmelCase = np.argmax(lowerCAmelCase_, axis=-1 ) __lowerCAmelCase = processor.tokenizer.pad_token_id __lowerCAmelCase = processor.batch_decode(lowerCAmelCase_ ) # we do not want to group tokens when computing the metrics __lowerCAmelCase = processor.batch_decode(pred.label_ids, group_tokens=lowerCAmelCase_ ) __lowerCAmelCase = wer_metric.compute(predictions=lowerCAmelCase_, references=lowerCAmelCase_ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator __lowerCAmelCase = DataCollatorCTCWithPadding(processor=lowerCAmelCase_, padding=lowerCAmelCase_ ) # Initialize our Trainer __lowerCAmelCase = CTCTrainer( model=lowerCAmelCase_, data_collator=lowerCAmelCase_, args=lowerCAmelCase_, compute_metrics=lowerCAmelCase_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=processor.feature_extractor, ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() __lowerCAmelCase = train_result.metrics __lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase_ ) ) __lowerCAmelCase = min(lowerCAmelCase_, len(lowerCAmelCase_ ) ) trainer.log_metrics('train', lowerCAmelCase_ ) trainer.save_metrics('train', lowerCAmelCase_ ) trainer.save_state() # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(lowerCAmelCase_ ) __lowerCAmelCase = min(lowerCAmelCase_, len(lowerCAmelCase_ ) ) trainer.log_metrics('eval', lowerCAmelCase_ ) trainer.save_metrics('eval', lowerCAmelCase_ ) return results if __name__ == "__main__": main()
53
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = { '''configuration_swinv2''': ['''SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Swinv2Config'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Swinv2ForImageClassification''', '''Swinv2ForMaskedImageModeling''', '''Swinv2Model''', '''Swinv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
14
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _snake_case : Any = logging.get_logger(__name__) _snake_case : int = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _snake_case : Optional[Any] = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } _snake_case : str = { 'yjernite/retribert-base-uncased': 512, } _snake_case : Optional[int] = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = PRETRAINED_INIT_CONFIGURATION a_ = RetriBertTokenizer a_ = ["""input_ids""", """attention_mask"""] def __init__( self : Dict , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : str="[UNK]" , lowerCAmelCase_ : Optional[Any]="[SEP]" , lowerCAmelCase_ : List[str]="[PAD]" , lowerCAmelCase_ : Optional[int]="[CLS]" , lowerCAmelCase_ : List[Any]="[MASK]" , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : List[Any] , ) -> Dict: super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(lowerCAmelCase_ , normalizer_state.pop('type' ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**lowerCAmelCase_ ) __lowerCAmelCase = do_lower_case def lowercase ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int]=None ) -> Optional[int]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
53
0
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL A : str = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : tuple , __magic_name__ : Path , __magic_name__ : Tuple , __magic_name__ : Tuple , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : Tuple=False , ) -> str: """simple docstring""" output_path.parent.mkdir(parents=__magic_name__ , exist_ok=__magic_name__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __magic_name__ , __magic_name__ , f=output_path.as_posix() , input_names=__magic_name__ , output_names=__magic_name__ , dynamic_axes=__magic_name__ , do_constant_folding=__magic_name__ , use_external_data_format=__magic_name__ , enable_onnx_checker=__magic_name__ , opset_version=__magic_name__ , ) else: export( __magic_name__ , __magic_name__ , f=output_path.as_posix() , input_names=__magic_name__ , output_names=__magic_name__ , dynamic_axes=__magic_name__ , do_constant_folding=__magic_name__ , opset_version=__magic_name__ , ) @torch.no_grad() def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str , __magic_name__ : int , __magic_name__ : bool = False ) -> int: """simple docstring""" lowercase__ = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowercase__ = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: lowercase__ = """cpu""" lowercase__ = Path(__magic_name__ ) # VAE DECODER lowercase__ = AutoencoderKL.from_pretrained(model_path + """/vae""" ) lowercase__ = vae_decoder.config.latent_channels # forward only through the decoder part lowercase__ = vae_decoder.decode onnx_export( __magic_name__ , model_args=( torch.randn(1 , __magic_name__ , 25 , 25 ).to(device=__magic_name__ , dtype=__magic_name__ ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=__magic_name__ , ) del vae_decoder if __name__ == "__main__": A : Any = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=1_4, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') A : Dict = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('SD: Done: ONNX')
15
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _snake_case : Union[str, Any] = imread(R'digital_image_processing/image_data/lena_small.jpg') _snake_case : Optional[int] = cvtColor(img, COLOR_BGR2GRAY) def a_ ( ): __lowerCAmelCase = cn.convert_to_negative(lowerCAmelCase_ ) # assert negative_img array for at least one True assert negative_img.any() def a_ ( ): with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowerCAmelCase_, 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def a_ ( ): __lowerCAmelCase = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def a_ ( ): __lowerCAmelCase = imread('digital_image_processing/image_data/lena_small.jpg', 0 ) # assert ambiguous array for all == True assert canny_img.all() __lowerCAmelCase = canny.canny(lowerCAmelCase_ ) # assert canny array for at least one True assert canny_array.any() def a_ ( ): assert gg.gaussian_filter(lowerCAmelCase_, 5, sigma=0.9 ).all() def a_ ( ): # laplace diagonals __lowerCAmelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __lowerCAmelCase = conv.img_convolve(lowerCAmelCase_, lowerCAmelCase_ ).astype(lowerCAmelCase_ ) assert res.any() def a_ ( ): assert med.median_filter(lowerCAmelCase_, 3 ).any() def a_ ( ): __lowerCAmelCase , __lowerCAmelCase = sob.sobel_filter(lowerCAmelCase_ ) assert grad.any() and theta.any() def a_ ( ): __lowerCAmelCase = sp.make_sepia(lowerCAmelCase_, 20 ) assert sepia.all() def a_ ( lowerCAmelCase_ : str = "digital_image_processing/image_data/lena_small.jpg" ): __lowerCAmelCase = bs.Burkes(imread(lowerCAmelCase_, 1 ), 120 ) burkes.process() assert burkes.output_img.any() def a_ ( lowerCAmelCase_ : str = "digital_image_processing/image_data/lena_small.jpg", ): __lowerCAmelCase = rs.NearestNeighbour(imread(lowerCAmelCase_, 1 ), 400, 200 ) nn.process() assert nn.output.any() def a_ ( ): __lowerCAmelCase = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. __lowerCAmelCase = imread(lowerCAmelCase_, 0 ) # Test for get_neighbors_pixel function() return not None __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = image[x_coordinate][y_coordinate] __lowerCAmelCase = lbp.get_neighbors_pixel( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __lowerCAmelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): __lowerCAmelCase = lbp.local_binary_value(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) assert lbp_image.any()
53
0
def __a ( ): return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(A__ , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(f'{solution() = }')
16
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case : List[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = ["""pixel_values"""] def __init__( self : Optional[int] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **lowerCAmelCase_ : Any , ) -> None: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = size if size is not None else {'shortest_edge': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = do_center_crop __lowerCAmelCase = crop_size __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[int] , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __lowerCAmelCase = int((2_5_6 / 2_2_4) * size['shortest_edge'] ) __lowerCAmelCase = get_resize_output_image_size(lowerCAmelCase_ , size=lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( lowerCAmelCase_ , size=(size_dict['height'], size_dict['width']) , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : str , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : str , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(lowerCAmelCase_ , size=(size['height'], size['width']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[int, float] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray: return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[str] , ) -> np.ndarray: return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase_ : str , ) -> BatchFeature: __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase = image_std if image_std is not None else self.image_std __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: __lowerCAmelCase = [self.resize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_center_crop: __lowerCAmelCase = [self.center_crop(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_rescale: __lowerCAmelCase = [self.rescale(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_normalize: __lowerCAmelCase = [self.normalize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
53
0
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( a__ : list[list[int]] ) -> int: # preprocessing the first row for i in range(1 ,len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 ,len(a__ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 ,len(a__ ) ): for j in range(1 ,len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] ,matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
17
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Optional[int]=8 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]=9_9 , lowerCAmelCase_ : List[Any]=1_6 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=3_6 , lowerCAmelCase_ : Optional[int]="gelu" , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : str=5_1_2 , lowerCAmelCase_ : List[str]=1_6 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Tuple=0.02 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : List[Any]=4 , lowerCAmelCase_ : List[str]=None , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope def lowercase ( self : Optional[int] ) -> Dict: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self : Any ) -> Union[str, Any]: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def lowercase ( self : Dict ) -> List[Any]: __lowerCAmelCase = self.get_config() __lowerCAmelCase = 3_0_0 return config def lowercase ( self : Optional[int] ) -> Union[str, Any]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = self.prepare_config_and_inputs() __lowerCAmelCase = True __lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = MraModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , ) -> Tuple: __lowerCAmelCase = True __lowerCAmelCase = MraModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , ) __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = MraForMaskedLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> str: __lowerCAmelCase = MraForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict ) -> Optional[Any]: __lowerCAmelCase = self.num_labels __lowerCAmelCase = MraForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict ) -> Any: __lowerCAmelCase = self.num_labels __lowerCAmelCase = MraForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] ) -> List[Any]: __lowerCAmelCase = self.num_choices __lowerCAmelCase = MraForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self : Tuple ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) a_ = False a_ = False a_ = False a_ = False a_ = () def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = MraModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : Tuple ) -> List[str]: self.config_tester.run_common_tests() def lowercase ( self : Optional[int] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase = type self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase_ ) def lowercase ( self : List[str] ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase_ ) def lowercase ( self : Tuple ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase_ ) @slow def lowercase ( self : Optional[int] ) -> Optional[int]: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = MraModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @unittest.skip(reason='MRA does not output attentions' ) def lowercase ( self : Optional[int] ) -> Tuple: return @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase ( self : Optional[Any] ) -> List[str]: __lowerCAmelCase = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) __lowerCAmelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : int ) -> Optional[int]: __lowerCAmelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) __lowerCAmelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = 5_0_2_6_5 __lowerCAmelCase = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : Any ) -> List[str]: __lowerCAmelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) __lowerCAmelCase = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = 5_0_2_6_5 __lowerCAmelCase = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
0
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _SCREAMING_SNAKE_CASE = "\\n Text data.\n Second line of data." _SCREAMING_SNAKE_CASE = "file" @pytest.fixture(scope="session" ) def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _lowerCAmelCase = bytes(SCREAMING_SNAKE_CASE_ , "utf-8" ) with zstd.open(SCREAMING_SNAKE_CASE_ , "wb" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) return path @pytest.fixture def __a(SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , SCREAMING_SNAKE_CASE_ ) , "w" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def __a(SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' _lowerCAmelCase = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _lowerCAmelCase = input_paths[compression_format] _lowerCAmelCase = tmp_path / "cache" _lowerCAmelCase = DownloadConfig(cache_dir=SCREAMING_SNAKE_CASE_ , extract_compressed_file=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = cached_path(SCREAMING_SNAKE_CASE_ , download_config=SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ ) as f: _lowerCAmelCase = f.read() with open(SCREAMING_SNAKE_CASE_ ) as f: _lowerCAmelCase = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' _lowerCAmelCase = "custom_cache" _lowerCAmelCase = "custom_extracted_dir" _lowerCAmelCase = tmp_path / "custom_extracted_path" if default_extracted: _lowerCAmelCase = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , SCREAMING_SNAKE_CASE_ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(SCREAMING_SNAKE_CASE_ ) ) _lowerCAmelCase = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _lowerCAmelCase = xz_file _lowerCAmelCase = ( DownloadConfig(extract_compressed_file=SCREAMING_SNAKE_CASE_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=SCREAMING_SNAKE_CASE_ ) ) _lowerCAmelCase = cached_path(SCREAMING_SNAKE_CASE_ , download_config=SCREAMING_SNAKE_CASE_ ) assert Path(SCREAMING_SNAKE_CASE_ ).parent.parts[-2:] == expected def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase = str(Path(SCREAMING_SNAKE_CASE_ ).resolve() ) assert cached_path(SCREAMING_SNAKE_CASE_ ) == text_file # relative path _lowerCAmelCase = str(Path(SCREAMING_SNAKE_CASE_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(SCREAMING_SNAKE_CASE_ ) == text_file def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' _lowerCAmelCase = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): cached_path(SCREAMING_SNAKE_CASE_ ) # relative path _lowerCAmelCase = "./__missing_file__.txt" with pytest.raises(SCREAMING_SNAKE_CASE_ ): cached_path(SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : Any ): '''simple docstring''' _lowerCAmelCase = get_from_cache(F'''tmp://{tmpfs_file}''' ) with open(SCREAMING_SNAKE_CASE_ ) as f: _lowerCAmelCase = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , SCREAMING_SNAKE_CASE_ ) def __a(): '''simple docstring''' with pytest.raises(SCREAMING_SNAKE_CASE_ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(SCREAMING_SNAKE_CASE_ ): http_get("https://huggingface.co" , temp_file=SCREAMING_SNAKE_CASE_ ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(SCREAMING_SNAKE_CASE_ ): ftp_get("ftp://huggingface.co" , temp_file=SCREAMING_SNAKE_CASE_ ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(SCREAMING_SNAKE_CASE_ ): fsspec_get("s3://huggingface.co" , temp_file=SCREAMING_SNAKE_CASE_ ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): fsspec_head("s3://huggingface.co" )
18
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _snake_case : Union[str, Any] = 2 class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , *, # begin keyword-only arguments lowerCAmelCase_ : str="<s>" , lowerCAmelCase_ : Dict="<pad>" , lowerCAmelCase_ : Any="</s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Optional[Any]=None , ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = bos, unk, pad, eos __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = {} __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = len(self.symbols ) def __eq__( self : Dict , lowerCAmelCase_ : Dict ) -> str: return self.indices == other.indices def __getitem__( self : List[Any] , lowerCAmelCase_ : int ) -> Union[str, Any]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : Tuple ) -> List[Any]: return len(self.symbols ) def __contains__( self : Optional[Any] , lowerCAmelCase_ : Dict ) -> Optional[int]: return sym in self.indices @classmethod def lowercase ( cls : Dict , lowerCAmelCase_ : str ) -> str: __lowerCAmelCase = cls() d.add_from_file(lowerCAmelCase_ ) return d def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : Any=False ) -> Optional[Any]: if word in self.indices and not overwrite: __lowerCAmelCase = self.indices[word] __lowerCAmelCase = self.count[idx] + n return idx else: __lowerCAmelCase = len(self.symbols ) __lowerCAmelCase = idx self.symbols.append(lowerCAmelCase_ ) self.count.append(lowerCAmelCase_ ) return idx def lowercase ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> Dict: return 0 def lowercase ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> int: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: with open(lowerCAmelCase_ , 'r' , encoding='utf-8' ) as fd: self.add_from_file(lowerCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(lowerCAmelCase_ ) ) return __lowerCAmelCase = f.readlines() __lowerCAmelCase = self._load_meta(lowerCAmelCase_ ) for line in lines[indices_start_line:]: try: __lowerCAmelCase , __lowerCAmelCase = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": __lowerCAmelCase = True __lowerCAmelCase , __lowerCAmelCase = line.rsplit(' ' , 1 ) else: __lowerCAmelCase = False __lowerCAmelCase = int(lowerCAmelCase_ ) __lowerCAmelCase = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(lowerCAmelCase_ ) ) self.add_symbol(lowerCAmelCase_ , n=lowerCAmelCase_ , overwrite=lowerCAmelCase_ ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def a_ ( lowerCAmelCase_ : List[str] ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} __lowerCAmelCase = dict((re.sub(R'@@$', '', lowerCAmelCase_ ), v) if k.endswith('@@' ) else (re.sub(R'$', '</w>', lowerCAmelCase_ ), v) for k, v in d.items() ) __lowerCAmelCase = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowerCAmelCase = d[k] # restore return da def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str] ): # prep if not os.path.exists(lowerCAmelCase_ ): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(lowerCAmelCase_, exist_ok=lowerCAmelCase_ ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'checkpoint.pt' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""" ) __lowerCAmelCase = torch.load(lowerCAmelCase_, map_location='cpu' ) __lowerCAmelCase = chkpt['cfg']['model'] # dicts __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'dict.txt' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {dict_file} does not exist!""" ) __lowerCAmelCase = Dictionary.load(lowerCAmelCase_ ) __lowerCAmelCase = rewrite_dict_keys(src_dict.indices ) __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, VOCAB_FILES_NAMES['vocab_file'] ) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # merges_file (bpecodes) __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'bpecodes' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""" ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(lowerCAmelCase_, lowerCAmelCase_ ) # model config __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'config.json' ) __lowerCAmelCase = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1E-12, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # tokenizer config __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F"""Generating {biogpt_tokenizer_config_file}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # model __lowerCAmelCase = chkpt['model'] # remove unneeded keys __lowerCAmelCase = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): __lowerCAmelCase = model_state_dict.pop(lowerCAmelCase_ ) else: __lowerCAmelCase = model_state_dict.pop(lowerCAmelCase_ ) __lowerCAmelCase = BioGptConfig.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = BioGptForCausalLM(lowerCAmelCase_ ) # check that it loads ok model_new.load_state_dict(lowerCAmelCase_ ) # save __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(lowerCAmelCase_, lowerCAmelCase_ ) print('Conversion is done!' ) if __name__ == "__main__": _snake_case : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : int = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
0
"""simple docstring""" import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=10 , __a=3 , __a=2 , __a=2 , __a=True , __a=True , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=10 , __a=0.02 , __a="divided_space_time" , __a=None , ) -> List[str]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = num_channels _UpperCamelCase = patch_size _UpperCamelCase = num_frames _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = attention_type _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token _UpperCamelCase = (image_size // patch_size) ** 2 _UpperCamelCase = (num_frames) * self.num_patches_per_frame + 1 def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) _UpperCamelCase = self.num_labels return config def UpperCAmelCase ( self , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = TimesformerModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a) -> Dict: '''simple docstring''' _UpperCamelCase = TimesformerForVideoClassification(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) # verify the logits shape _UpperCamelCase = torch.Size((self.batch_size, self.num_labels)) self.parent.assertEqual(result.logits.shape , __a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase__ = ( {'feature-extraction': TimesformerModel, 'video-classification': TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = TimesformerModelTester(self) _UpperCamelCase = ConfigTester( self , config_class=__a , has_text_modality=__a , hidden_size=37) def UpperCAmelCase ( self , __a , __a , __a=False) -> List[str]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(__a) if return_labels: if model_class in get_values(__a): _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a) return inputs_dict def UpperCAmelCase ( self) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''TimeSformer does not use inputs_embeds''') def UpperCAmelCase ( self) -> Any: '''simple docstring''' pass def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear)) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__a) @slow def UpperCAmelCase ( self) -> int: '''simple docstring''' for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TimesformerModel.from_pretrained(__a) self.assertIsNotNone(__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' if not self.has_attentions: pass else: _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = True for model_class in self.all_model_classes: _UpperCamelCase = self.model_tester.seq_length _UpperCamelCase = self.model_tester.num_frames _UpperCamelCase = True _UpperCamelCase = False _UpperCamelCase = True _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) _UpperCamelCase = outputs.attentions self.assertEqual(len(__a) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCamelCase = True _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) _UpperCamelCase = outputs.attentions self.assertEqual(len(__a) , self.model_tester.num_hidden_layers) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) _UpperCamelCase = len(__a) # Check attention is always last and order is fine _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) self.assertEqual(out_len + 1 , len(__a)) _UpperCamelCase = outputs.attentions self.assertEqual(len(__a) , self.model_tester.num_hidden_layers) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def UpperCAmelCase ( self) -> int: '''simple docstring''' def check_hidden_states_output(__a , __a , __a): _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) _UpperCamelCase = outputs.hidden_states _UpperCamelCase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__a) , __a) _UpperCamelCase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = True check_hidden_states_output(__a , __a , __a) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase = True check_hidden_states_output(__a , __a , __a) def lowerCamelCase__ ( ) -> List[Any]: """simple docstring""" _UpperCamelCase = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''', filename='''eating_spaghetti.npy''', repo_type='''dataset''' ) _UpperCamelCase = np.load(__snake_case ) return list(__snake_case ) @require_torch @require_vision class _UpperCAmelCase( unittest.TestCase ): @cached_property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5]) if is_vision_available() else None ) @slow def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''').to( __a) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_video() _UpperCamelCase = image_processor(video[:8] , return_tensors='''pt''').to(__a) # forward pass with torch.no_grad(): _UpperCamelCase = model(**__a) # verify the logits _UpperCamelCase = torch.Size((1, 4_00)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor([-0.3016, -0.7713, -0.4205]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4))
19
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" a_ = """pixel_values""" a_ = False a_ = TimmBackboneConfig def __init__( self : Tuple , lowerCAmelCase_ : Any , **lowerCAmelCase_ : Optional[int] ) -> Optional[Any]: requires_backends(self , 'timm' ) super().__init__(lowerCAmelCase_ ) __lowerCAmelCase = config if config.backbone is None: raise ValueError('backbone is not set in the config. Please set it to a timm model name.' ) if config.backbone not in timm.list_models(): raise ValueError(f"""backbone {config.backbone} is not supported by timm.""" ) if hasattr(lowerCAmelCase_ , 'out_features' ) and config.out_features is not None: raise ValueError('out_features is not supported by TimmBackbone. Please use out_indices instead.' ) __lowerCAmelCase = getattr(lowerCAmelCase_ , 'use_pretrained_backbone' , lowerCAmelCase_ ) if pretrained is None: raise ValueError('use_pretrained_backbone is not set in the config. Please set it to True or False.' ) # We just take the final layer by default. This matches the default for the transformers models. __lowerCAmelCase = config.out_indices if getattr(lowerCAmelCase_ , 'out_indices' , lowerCAmelCase_ ) is not None else (-1,) __lowerCAmelCase = timm.create_model( config.backbone , pretrained=lowerCAmelCase_ , features_only=config.features_only , in_chans=config.num_channels , out_indices=lowerCAmelCase_ , **lowerCAmelCase_ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. __lowerCAmelCase = self._backbone.return_layers __lowerCAmelCase = {layer['module']: str(lowerCAmelCase_ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(lowerCAmelCase_ ) @classmethod def lowercase ( cls : int , lowerCAmelCase_ : Dict , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['vision', 'timm'] ) from ...models.timm_backbone import TimmBackboneConfig __lowerCAmelCase = kwargs.pop('config' , TimmBackboneConfig() ) __lowerCAmelCase = kwargs.pop('use_timm_backbone' , lowerCAmelCase_ ) if not use_timm: raise ValueError('use_timm_backbone must be True for timm backbones' ) __lowerCAmelCase = kwargs.pop('num_channels' , config.num_channels ) __lowerCAmelCase = kwargs.pop('features_only' , config.features_only ) __lowerCAmelCase = kwargs.pop('use_pretrained_backbone' , config.use_pretrained_backbone ) __lowerCAmelCase = kwargs.pop('out_indices' , config.out_indices ) __lowerCAmelCase = TimmBackboneConfig( backbone=lowerCAmelCase_ , num_channels=lowerCAmelCase_ , features_only=lowerCAmelCase_ , use_pretrained_backbone=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , ) return super()._from_config(lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Tuple , lowerCAmelCase_ : int ) -> Dict: pass def lowercase ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Any=None , **lowerCAmelCase_ : Dict ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('Cannot output attentions for timm backbones at the moment' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone __lowerCAmelCase = self._all_layers __lowerCAmelCase = self._backbone(lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = self._return_layers __lowerCAmelCase = tuple(hidden_states[i] for i in self.out_indices ) else: __lowerCAmelCase = self._backbone(lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = None __lowerCAmelCase = tuple(lowerCAmelCase_ ) __lowerCAmelCase = tuple(lowerCAmelCase_ ) if hidden_states is not None else None if not return_dict: __lowerCAmelCase = (feature_maps,) if output_hidden_states: __lowerCAmelCase = output + (hidden_states,) return output return BackboneOutput(feature_maps=lowerCAmelCase_ , hidden_states=lowerCAmelCase_ , attentions=lowerCAmelCase_ )
53
0
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() _lowerCAmelCase: int = logging.get_logger(__name__) def _lowercase( __a : List[str] , __a : List[Any] , __a : Tuple ): a__ =WavaVecaForSequenceClassification.from_pretrained(__a , config=__a ) a__ =downstream_dict['projector.weight'] a__ =downstream_dict['projector.bias'] a__ =downstream_dict['model.post_net.linear.weight'] a__ =downstream_dict['model.post_net.linear.bias'] return model def _lowercase( __a : str , __a : List[Any] , __a : Tuple ): a__ =WavaVecaForAudioFrameClassification.from_pretrained(__a , config=__a ) a__ =downstream_dict['model.linear.weight'] a__ =downstream_dict['model.linear.bias'] return model def _lowercase( __a : List[Any] , __a : Union[str, Any] , __a : Union[str, Any] ): a__ =WavaVecaForXVector.from_pretrained(__a , config=__a ) a__ =downstream_dict['connector.weight'] a__ =downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): a__ =downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] a__ =downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] a__ =downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] a__ =downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] a__ =downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] a__ =downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] a__ =downstream_dict['objective.W'] return model @torch.no_grad() def _lowercase( __a : Tuple , __a : Optional[int] , __a : List[Any] , __a : List[Any] ): a__ =torch.load(__a , map_location='cpu' ) a__ =checkpoint['Downstream'] a__ =WavaVecaConfig.from_pretrained(__a ) a__ =WavaVecaFeatureExtractor.from_pretrained( __a , return_attention_mask=__a , do_normalize=__a ) a__ =hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): a__ =convert_classification(__a , __a , __a ) elif arch.endswith('ForAudioFrameClassification' ): a__ =convert_diarization(__a , __a , __a ) elif arch.endswith('ForXVector' ): a__ =convert_xvector(__a , __a , __a ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: a__ =checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(__a ) hf_model.save_pretrained(__a ) if __name__ == "__main__": _lowerCAmelCase: Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') _lowerCAmelCase: Dict = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
20
from __future__ import annotations def a_ ( lowerCAmelCase_ : list[float] ): if len(lowerCAmelCase_ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) __lowerCAmelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
0
import requests UpperCAmelCase_ : List[str] = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=" def lowerCAmelCase_ ( lowerCamelCase ): # fetching a list of articles in json format __magic_name__ : List[Any] =requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page["""articles"""] , 1 ): print(F"{i}.) {article['title']}" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
21
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Union[str, Any]=1_0 , lowerCAmelCase_ : List[str]=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple="relu" , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : Optional[int]=None , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = embeddings_size __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_act __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = len(lowerCAmelCase_ ) def lowercase ( self : Optional[int] ) -> List[Any]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def lowercase ( self : Tuple ) -> List[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] ) -> str: __lowerCAmelCase = FlaxRegNetModel(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowercase ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int ) -> Tuple: __lowerCAmelCase = self.num_labels __lowerCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () a_ = False a_ = False a_ = False def lowercase ( self : Dict ) -> None: __lowerCAmelCase = FlaxRegNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : int ) -> Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : str ) -> Union[str, Any]: return def lowercase ( self : Dict ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def lowercase ( self : Union[str, Any] ) -> Any: pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def lowercase ( self : Tuple ) -> Tuple: pass def lowercase ( self : Optional[Any] ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: def check_hidden_states_output(lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : str ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Dict ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('JIT Enabled' ): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def a_ ( ): __lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : Union[str, Any] ) -> Optional[Any]: return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def lowercase ( self : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCAmelCase_ , return_tensors='np' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) # verify the logits __lowerCAmelCase = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
0
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class A ( _a ,unittest.TestCase ): lowercase_ = PegasusTokenizer lowercase_ = PegasusTokenizerFast lowercase_ = True lowercase_ = True def __lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _a = PegasusTokenizer(lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def __lowerCAmelCase ( self : Dict , **lowerCAmelCase_ : Optional[int] ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : int ) -> List[Any]: """simple docstring""" return ("This is a test", "This is a test") def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" _a = '''</s>''' _a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(lowerCAmelCase_ ) , 11_03 ) def __lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 11_03 ) def __lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" _a = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _a = self.tokenizer_class.from_pretrained(self.tmpdirname ) _a = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) _a = rust_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ).input_ids[0] _a = py_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ).input_ids[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" _a = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _a = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' _a = [2, 4_13, 6_15, 1_14, 3, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] _a = tokenizer([raw_input_str] , return_tensors=lowerCAmelCase_ ).input_ids[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" _a = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_61_03 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_03 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_05 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 10_24 _a = '''To ensure a smooth flow of bank resolutions.''' _a = [4_13, 6_15, 1_14, 22_91, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] _a = tokenizer([raw_input_str] , return_tensors=lowerCAmelCase_ ).input_ids[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def __lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" _a = ['''This is going to be way too long.''' * 1_50, '''short example'''] _a = ['''not super long but more than 5 tokens''', '''tiny'''] _a = self._large_tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='''pt''' ) _a = self._large_tokenizer( text_target=lowerCAmelCase_ , max_length=5 , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 10_24) assert batch.attention_mask.shape == (2, 10_24) assert targets["input_ids"].shape == (2, 5) assert len(lowerCAmelCase_ ) == 2 # input_ids, attention_mask. @slow def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" _a = {'''input_ids''': [[3_89_79, 1_43, 1_84_85, 6_06, 1_30, 2_66_69, 8_76_86, 1_21, 5_41_89, 11_29, 1_11, 2_66_69, 8_76_86, 1_21, 91_14, 1_47_87, 1_21, 1_32_49, 1_58, 5_92, 9_56, 1_21, 1_46_21, 3_15_76, 1_43, 6_26_13, 1_08, 96_88, 9_30, 4_34_30, 1_15_62, 6_26_13, 3_04, 1_08, 1_14_43, 8_97, 1_08, 93_14, 1_74_15, 6_33_99, 1_08, 1_14_43, 76_14, 1_83_16, 1_18, 42_84, 71_48, 1_24_30, 1_43, 14_00, 2_57_03, 1_58, 1_11, 42_84, 71_48, 1_17_72, 1_43, 2_12_97, 10_64, 1_58, 1_22, 2_04, 35_06, 17_54, 11_33, 1_47_87, 15_81, 1_15, 3_32_24, 44_82, 1_11, 13_55, 1_10, 2_91_73, 3_17, 5_08_33, 1_08, 2_01_47, 9_46_65, 1_11, 7_71_98, 1_07, 1], [1_10, 6_26_13, 1_17, 6_38, 1_12, 11_33, 1_21, 2_00_98, 13_55, 7_90_50, 1_38_72, 1_35, 15_96, 5_35_41, 13_52, 1_41, 1_30_39, 55_42, 1_24, 3_02, 5_18, 1_11, 2_68, 29_56, 1_15, 1_49, 44_27, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_39, 12_35, 27_99, 1_82_89, 1_77_80, 2_04, 1_09, 94_74, 12_96, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class A ( _a ,unittest.TestCase ): lowercase_ = PegasusTokenizer lowercase_ = PegasusTokenizerFast lowercase_ = True lowercase_ = True def __lowerCAmelCase ( self : Any ) -> str: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _a = PegasusTokenizer(lowerCAmelCase_ , offset=0 , mask_token_sent=lowerCAmelCase_ , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def __lowerCAmelCase ( self : Tuple , **lowerCAmelCase_ : List[str] ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Tuple ) -> Dict: """simple docstring""" return ("This is a test", "This is a test") def __lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" _a = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _a = self.tokenizer_class.from_pretrained(self.tmpdirname ) _a = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) _a = rust_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ).input_ids[0] _a = py_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ).input_ids[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @require_torch def __lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _a = ['''This is going to be way too long.''' * 10_00, '''short example'''] _a = ['''not super long but more than 5 tokens''', '''tiny'''] _a = self._large_tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='''pt''' ) _a = self._large_tokenizer( text_target=lowerCAmelCase_ , max_length=5 , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 40_96) assert batch.attention_mask.shape == (2, 40_96) assert targets["input_ids"].shape == (2, 5) assert len(lowerCAmelCase_ ) == 2 # input_ids, attention_mask. def __lowerCAmelCase ( self : int ) -> int: """simple docstring""" _a = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) _a = self._large_tokenizer(lowerCAmelCase_ ).input_ids self.assertListEqual( lowerCAmelCase_ , [1_82, 1_17, 1_42, 5_87, 42_11, 1_20, 1_17, 2_63, 1_12, 8_04, 1_09, 8_56, 2_50_16, 31_37, 4_64, 1_09, 2_69_55, 31_37, 1] , )
22
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process _snake_case : Optional[int] = logging.getLogger(__name__) _snake_case : Dict = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) _snake_case : List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(_UpperCamelCase )} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a_ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def lowercase ( self : List[Any] ) -> List[Any]: if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path' ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ = field(default=_UpperCamelCase , metadata={"""help""": """The input training data file (a text file)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a_ = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a_ = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def lowercase ( self : int ) -> int: if self.train_file is not None: __lowerCAmelCase = self.train_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __lowerCAmelCase = self.validation_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Union[str, Any] ): with open(lowerCAmelCase_, 'r', encoding='utf-8' ) as f: __lowerCAmelCase = [json.loads(lowerCAmelCase_ ) for line in f.read().splitlines() if (len(lowerCAmelCase_ ) > 0 and not line.isspace())] assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) __lowerCAmelCase = {c: dataset[c] for c in dataset.column_names} __lowerCAmelCase = refs return Dataset.from_dict(lowerCAmelCase_ ) def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s', lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset(data_args.dataset_name, data_args.dataset_config_name ) if "validation" not in datasets.keys(): __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[:{data_args.validation_split_percentage}%]""", ) __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[{data_args.validation_split_percentage}%:]""", ) else: __lowerCAmelCase = {} if data_args.train_file is not None: __lowerCAmelCase = data_args.train_file if data_args.validation_file is not None: __lowerCAmelCase = data_args.validation_file __lowerCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": __lowerCAmelCase = 'text' __lowerCAmelCase = load_dataset(lowerCAmelCase_, data_files=lowerCAmelCase_ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.config_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: __lowerCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: __lowerCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path, from_tf=bool('.ckpt' in model_args.model_name_or_path ), config=lowerCAmelCase_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info('Training new model from scratch' ) __lowerCAmelCase = AutoModelForMaskedLM.from_config(lowerCAmelCase_ ) model.resize_token_embeddings(len(lowerCAmelCase_ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __lowerCAmelCase = datasets['train'].column_names else: __lowerCAmelCase = datasets['validation'].column_names __lowerCAmelCase = 'text' if 'text' in column_names else column_names[0] __lowerCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(lowerCAmelCase_ : str ): # Remove empty lines __lowerCAmelCase = [line for line in examples['text'] if len(lowerCAmelCase_ ) > 0 and not line.isspace()] return tokenizer(examples['text'], padding=lowerCAmelCase_, truncation=lowerCAmelCase_, max_length=data_args.max_seq_length ) __lowerCAmelCase = datasets.map( lowerCAmelCase_, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, remove_columns=[text_column_name], load_from_cache_file=not data_args.overwrite_cache, ) # Add the chinese references if provided if data_args.train_ref_file is not None: __lowerCAmelCase = add_chinese_references(tokenized_datasets['train'], data_args.train_ref_file ) if data_args.validation_ref_file is not None: __lowerCAmelCase = add_chinese_references( tokenized_datasets['validation'], data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __lowerCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: __lowerCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. __lowerCAmelCase = DataCollatorForWholeWordMask(tokenizer=lowerCAmelCase_, mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowerCAmelCase = Trainer( model=lowerCAmelCase_, args=lowerCAmelCase_, train_dataset=tokenized_datasets['train'] if training_args.do_train else None, eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None, tokenizer=lowerCAmelCase_, data_collator=lowerCAmelCase_, ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload __lowerCAmelCase = os.path.join(training_args.output_dir, 'train_results.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir, 'trainer_state.json' ) ) # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = math.exp(eval_output['eval_loss'] ) __lowerCAmelCase = perplexity __lowerCAmelCase = os.path.join(training_args.output_dir, 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def a_ ( lowerCAmelCase_ : Tuple ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
53
0
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py snake_case__ : int = """src/transformers""" snake_case__ : Dict = """docs/source/en/tasks""" def _snake_case (__lowercase , __lowercase , __lowercase): with open(__lowercase , 'r' , encoding='utf-8' , newline='\n') as f: UpperCamelCase_ = f.readlines() # Find the start prompt. UpperCamelCase_ = 0 while not lines[start_index].startswith(__lowercase): start_index += 1 start_index += 1 UpperCamelCase_ = start_index while not lines[end_index].startswith(__lowercase): end_index += 1 end_index -= 1 while len(lines[start_index]) <= 1: start_index += 1 while len(lines[end_index]) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index]), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. snake_case__ : int = direct_transformers_import(TRANSFORMERS_PATH) snake_case__ : Any = { """asr.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, """audio_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, """language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, """image_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, """masked_language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, """multiple_choice.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, """object_detection.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, """question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, """semantic_segmentation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, """sequence_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, """summarization.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """token_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, """translation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """video_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, """document_question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, """monocular_depth_estimation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). snake_case__ : Any = { """summarization.md""": ("""nllb""",), """translation.md""": ("""nllb""",), } def _snake_case (__lowercase): UpperCamelCase_ = TASK_GUIDE_TO_MODELS[task_guide] UpperCamelCase_ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(__lowercase , set()) UpperCamelCase_ = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f"""[{name}](../model_doc/{code})""" for code, name in model_names.items()]) + "\n" def _snake_case (__lowercase , __lowercase=False): UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = _find_text_in_file( filename=os.path.join(__lowercase , __lowercase) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) UpperCamelCase_ = get_model_list_for_task(__lowercase) if current_list != new_list: if overwrite: with open(os.path.join(__lowercase , __lowercase) , 'w' , encoding='utf-8' , newline='\n') as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:]) else: raise ValueError( f"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" ' to fix this.') if __name__ == "__main__": snake_case__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") snake_case__ : str = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
23
def a_ ( lowerCAmelCase_ : int = 200_0000 ): __lowerCAmelCase = [0 for i in range(n + 1 )] __lowerCAmelCase = 1 __lowerCAmelCase = 1 for i in range(2, int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i, n + 1, lowerCAmelCase_ ): __lowerCAmelCase = 1 __lowerCAmelCase = 0 for i in range(lowerCAmelCase_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"""{solution() = }""")
53
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : List[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Any = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class lowerCAmelCase ( __lowerCAmelCase): __lowercase : Optional[Any] = '''beit''' def __init__( self , __SCREAMING_SNAKE_CASE=8192 , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3072 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1E-12 , __SCREAMING_SNAKE_CASE=224 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=[3, 5, 7, 11] , __SCREAMING_SNAKE_CASE=[1, 2, 3, 6] , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0.4 , __SCREAMING_SNAKE_CASE=256 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=255 , **__SCREAMING_SNAKE_CASE , ) -> str: '''simple docstring''' super().__init__(**__SCREAMING_SNAKE_CASE ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = use_mask_token __snake_case = use_absolute_position_embeddings __snake_case = use_relative_position_bias __snake_case = use_shared_relative_position_bias __snake_case = layer_scale_init_value __snake_case = drop_path_rate __snake_case = use_mean_pooling # decode head attributes (semantic segmentation) __snake_case = out_indices __snake_case = pool_scales # auxiliary head attributes (semantic segmentation) __snake_case = use_auxiliary_head __snake_case = auxiliary_loss_weight __snake_case = auxiliary_channels __snake_case = auxiliary_num_convs __snake_case = auxiliary_concat_input __snake_case = semantic_loss_ignore_index class lowerCAmelCase ( __lowerCAmelCase): __lowercase : Optional[int] = version.parse('''1.11''') @property def lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowerCAmelCase ( self ) -> float: '''simple docstring''' return 1E-4
24
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _snake_case : Tuple = logging.getLogger() _snake_case : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Any , lowerCAmelCase_ : Dict ) -> Optional[int]: os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowerCAmelCase = {'source': 'What is love ?', 'target': 'life'} __lowerCAmelCase = {'train': 1_2, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: __lowerCAmelCase = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(lowerCAmelCase_ , f"""{split}.{field}""" ) , 'w' ) as f: f.write(lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : str = "pytorch" ) -> List[str]: __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'output' ) __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'data' ) self._create_dummy_data(data_dir=lowerCAmelCase_ ) __lowerCAmelCase = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) __lowerCAmelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowerCAmelCase_ , env=self.get_env() ) __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'metrics.json' ) with open(lowerCAmelCase_ ) as f: __lowerCAmelCase = json.load(lowerCAmelCase_ ) return result @require_torch_gpu def lowercase ( self : str ) -> int: __lowerCAmelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def lowercase ( self : List[str] ) -> Dict: __lowerCAmelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def lowercase ( self : int ) -> Tuple: __lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def lowercase ( self : List[Any] ) -> str: __lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
53
0
from ..utils import DummyObject, requires_backends class _UpperCamelCase ( metaclass=__A ): '''simple docstring''' lowerCamelCase__ =['torch', 'torchsde'] def __init__( self : Optional[int] , *a : Optional[Any] , **a : Any ) -> List[Any]: """simple docstring""" requires_backends(self , ["torch", "torchsde"] ) @classmethod def __UpperCamelCase ( cls : List[str] , *a : int , **a : Tuple ) -> int: """simple docstring""" requires_backends(cls , ["torch", "torchsde"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *a : Dict , **a : Optional[int] ) -> Tuple: """simple docstring""" requires_backends(cls , ["torch", "torchsde"] )
25
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]="resnet50" , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Optional[Any]=True , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = out_indices if out_indices is not None else [4] __lowerCAmelCase = stage_names __lowerCAmelCase = out_features __lowerCAmelCase = backbone __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = use_pretrained_backbone __lowerCAmelCase = is_training def lowercase ( self : List[str] ) -> Any: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def lowercase ( self : List[Any] ) -> Union[str, Any]: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase ( self : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ) -> int: __lowerCAmelCase = TimmBackbone(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 1_4, 1_4) , ) def lowercase ( self : List[str] ) -> str: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (TimmBackbone,) if is_torch_available() else () a_ = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Tuple ) -> int: __lowerCAmelCase = TimmBackboneModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : Dict ) -> List[str]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Union[str, Any] ) -> Optional[int]: __lowerCAmelCase = 'resnet18' __lowerCAmelCase = 'microsoft/resnet-18' __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ , out_indices=[1, 2, 3] ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def lowercase ( self : List[str] ) -> Tuple: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def lowercase ( self : Dict ) -> int: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def lowercase ( self : str ) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase ( self : Any ) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase ( self : Optional[int] ) -> Optional[Any]: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def lowercase ( self : Dict ) -> Any: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Any ) -> Optional[int]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase ( self : Union[str, Any] ) -> Tuple: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase ( self : List[str] ) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Dict ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Tuple ) -> List[str]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def lowercase ( self : int ) -> Optional[int]: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def lowercase ( self : Union[str, Any] ) -> str: pass @unittest.skip('Safetensors is not supported by timm.' ) def lowercase ( self : Dict ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : List[str] ) -> Optional[Any]: pass def lowercase ( self : Union[str, Any] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = self.has_attentions # no need to test all models as different heads yield the same functionality __lowerCAmelCase = self.all_model_classes[0] __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = outputs[0][-1] # Encoder-/Decoder-only models __lowerCAmelCase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowerCAmelCase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowerCAmelCase_ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) __lowerCAmelCase = None __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) __lowerCAmelCase = False __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ )
53
0
'''simple docstring''' __UpperCamelCase = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" __UpperCamelCase = [{"type": "code", "content": INSTALL_CONTENT}] __UpperCamelCase = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
26
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def a_ ( lowerCAmelCase_ : str=None ): if subparsers is not None: __lowerCAmelCase = subparsers.add_parser('env' ) else: __lowerCAmelCase = argparse.ArgumentParser('Accelerate env command' ) parser.add_argument( '--config_file', default=lowerCAmelCase_, help='The config file to use for the default values in the launching script.' ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def a_ ( lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = torch.__version__ __lowerCAmelCase = torch.cuda.is_available() __lowerCAmelCase = is_xpu_available() __lowerCAmelCase = is_npu_available() __lowerCAmelCase = 'Not found' # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowerCAmelCase_ ): __lowerCAmelCase = load_config_from_file(args.config_file ).to_dict() __lowerCAmelCase = { '`Accelerate` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Numpy version': np.__version__, 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'PyTorch XPU available': str(lowerCAmelCase_ ), 'PyTorch NPU available': str(lowerCAmelCase_ ), 'System RAM': F"""{psutil.virtual_memory().total / 1024 ** 3:.2f} GB""", } if pt_cuda_available: __lowerCAmelCase = torch.cuda.get_device_name() print('\nCopy-and-paste the text below in your GitHub issue\n' ) print('\n'.join([F"""- {prop}: {val}""" for prop, val in info.items()] ) ) print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:' ) __lowerCAmelCase = ( '\n'.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else F"""\t{accelerate_config}""" ) print(lowerCAmelCase_ ) __lowerCAmelCase = accelerate_config return info def a_ ( ): __lowerCAmelCase = env_command_parser() __lowerCAmelCase = parser.parse_args() env_command(lowerCAmelCase_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
53
0
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __A : Tuple = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" _A = {} state_dict.pop('pixel_mean' , _SCREAMING_SNAKE_CASE ) state_dict.pop('pixel_std' , _SCREAMING_SNAKE_CASE ) _A = R'.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _A = key.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if re.match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _A = int(re.match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).group(2 ) ) if layer_nb == 0: _A = key.replace('layers.0' , 'proj_in' ) elif layer_nb == 1: _A = key.replace('layers.1' , 'layers.0' ) elif layer_nb == 2: _A = key.replace('layers.2' , 'proj_out' ) _A = value _A = model_state_dict[ 'prompt_encoder.shared_embedding.positional_embedding' ] return model_state_dict def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="ybelkada/segment-anything" ) -> Optional[int]: """simple docstring""" _A = hf_hub_download(_SCREAMING_SNAKE_CASE , F"checkpoints/{model_name}.pth" ) if "sam_vit_b" in model_name: _A = SamConfig() elif "sam_vit_l" in model_name: _A = SamVisionConfig( hidden_size=1_024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) _A = SamConfig( vision_config=_SCREAMING_SNAKE_CASE , ) elif "sam_vit_h" in model_name: _A = SamVisionConfig( hidden_size=1_280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) _A = SamConfig( vision_config=_SCREAMING_SNAKE_CASE , ) _A = torch.load(_SCREAMING_SNAKE_CASE , map_location='cpu' ) _A = replace_keys(_SCREAMING_SNAKE_CASE ) _A = SamImageProcessor() _A = SamProcessor(image_processor=_SCREAMING_SNAKE_CASE ) _A = SamModel(_SCREAMING_SNAKE_CASE ) hf_model.load_state_dict(_SCREAMING_SNAKE_CASE ) _A = hf_model.to('cuda' ) _A = 'https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png' _A = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ).convert('RGB' ) _A = [[[400, 650]]] _A = [[1]] _A = processor(images=np.array(_SCREAMING_SNAKE_CASE ) , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): _A = hf_model(**_SCREAMING_SNAKE_CASE ) _A = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_8902_5115_9668 _A = processor( images=np.array(_SCREAMING_SNAKE_CASE ) , input_points=_SCREAMING_SNAKE_CASE , input_labels=_SCREAMING_SNAKE_CASE , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): _A = hf_model(**_SCREAMING_SNAKE_CASE ) _A = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712_6030_9219_3604 _A = ((75, 275, 1_725, 850),) _A = processor(images=np.array(_SCREAMING_SNAKE_CASE ) , input_boxes=_SCREAMING_SNAKE_CASE , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): _A = hf_model(**_SCREAMING_SNAKE_CASE ) _A = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686_0156_0592_6514 # Test with 2 points and 1 image. _A = [[[400, 650], [800, 650]]] _A = [[1, 1]] _A = processor( images=np.array(_SCREAMING_SNAKE_CASE ) , input_points=_SCREAMING_SNAKE_CASE , input_labels=_SCREAMING_SNAKE_CASE , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): _A = hf_model(**_SCREAMING_SNAKE_CASE ) _A = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936_0477_9243_4692 if __name__ == "__main__": __A : Tuple = argparse.ArgumentParser() __A : List[str] = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( "--model_name", default="sam_vit_h_4b8939", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) parser.add_argument( "--model_hub_id", default="ybelkada/segment-anything", choices=choices, type=str, help="Path to hf config.json of model to convert", ) __A : Union[str, Any] = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
27
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a_ ( ): __lowerCAmelCase = ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores', type=lowerCAmelCase_, default=1, help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script', type=lowerCAmelCase_, help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ), ) # rest from the training program parser.add_argument('training_script_args', nargs=lowerCAmelCase_ ) return parser.parse_args() def a_ ( ): __lowerCAmelCase = parse_args() # Import training_script as a module. __lowerCAmelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __lowerCAmelCase = script_fpath.stem __lowerCAmelCase = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv __lowerCAmelCase = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores ) if __name__ == "__main__": main()
53
0
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed UpperCamelCase_ = "true" def lowercase__( __UpperCamelCase: Dict ,__UpperCamelCase: Any=82 ,__UpperCamelCase: Union[str, Any]=16 ): """simple docstring""" set_seed(42 ) SCREAMING_SNAKE_CASE : List[Any] = RegressionModel() SCREAMING_SNAKE_CASE : List[str] = deepcopy(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = RegressionDataset(length=__UpperCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = DataLoader(__UpperCamelCase ,batch_size=__UpperCamelCase ) model.to(accelerator.device ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = accelerator.prepare(__UpperCamelCase ,__UpperCamelCase ) return model, ddp_model, dataloader def lowercase__( __UpperCamelCase: Accelerator ,__UpperCamelCase: Tuple=False ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) SCREAMING_SNAKE_CASE : Union[str, Any] = load_dataset('glue' ,'mrpc' ,split='validation' ) def tokenize_function(__UpperCamelCase: str ): SCREAMING_SNAKE_CASE : Optional[int] = tokenizer(examples['sentence1'] ,examples['sentence2'] ,truncation=__UpperCamelCase ,max_length=__UpperCamelCase ) return outputs with accelerator.main_process_first(): SCREAMING_SNAKE_CASE : Union[str, Any] = dataset.map( __UpperCamelCase ,batched=__UpperCamelCase ,remove_columns=['idx', 'sentence1', 'sentence2'] ,) SCREAMING_SNAKE_CASE : Any = tokenized_datasets.rename_column('label' ,'labels' ) def collate_fn(__UpperCamelCase: List[Any] ): if use_longest: return tokenizer.pad(__UpperCamelCase ,padding='longest' ,return_tensors='pt' ) return tokenizer.pad(__UpperCamelCase ,padding='max_length' ,max_length=1_28 ,return_tensors='pt' ) return DataLoader(__UpperCamelCase ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=16 ) def lowercase__( __UpperCamelCase: Optional[Any] ,__UpperCamelCase: Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : int = Accelerator(dispatch_batches=__UpperCamelCase ,split_batches=__UpperCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = get_dataloader(__UpperCamelCase ,not dispatch_batches ) SCREAMING_SNAKE_CASE : Optional[Any] = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' ,return_dict=__UpperCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = accelerator.prepare(__UpperCamelCase ,__UpperCamelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def lowercase__( __UpperCamelCase: Tuple ,__UpperCamelCase: Optional[Any] ,__UpperCamelCase: int ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = [] for batch in dataloader: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = batch.values() with torch.no_grad(): SCREAMING_SNAKE_CASE : int = model(__UpperCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = [], [] for logit, targ in logits_and_targets: logits.append(__UpperCamelCase ) targs.append(__UpperCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = torch.cat(__UpperCamelCase ), torch.cat(__UpperCamelCase ) return logits, targs def lowercase__( __UpperCamelCase: Accelerator ,__UpperCamelCase: int=82 ,__UpperCamelCase: List[Any]=False ,__UpperCamelCase: Optional[Any]=False ,__UpperCamelCase: str=16 ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = get_basic_setup(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = generate_predictions(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) assert ( len(__UpperCamelCase ) == num_samples ), f"Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__UpperCamelCase )}" def lowercase__( __UpperCamelCase: bool = False ,__UpperCamelCase: bool = False ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = evaluate.load('glue' ,'mrpc' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = get_mrpc_setup(__UpperCamelCase ,__UpperCamelCase ) # First do baseline SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = setup['no'] model.to(__UpperCamelCase ) model.eval() for batch in dataloader: batch.to(__UpperCamelCase ) with torch.inference_mode(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__UpperCamelCase ,references=batch['labels'] ) SCREAMING_SNAKE_CASE : List[Any] = metric.compute() # Then do distributed SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): SCREAMING_SNAKE_CASE : List[str] = model(**__UpperCamelCase ) SCREAMING_SNAKE_CASE : str = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE : Tuple = batch['labels'] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__UpperCamelCase ,references=__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] ,distributed[key] ), f"Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n" def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = Accelerator(split_batches=__UpperCamelCase ,dispatch_batches=__UpperCamelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`" ) test_mrpc(__UpperCamelCase ,__UpperCamelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: SCREAMING_SNAKE_CASE : Dict = Accelerator(split_batches=__UpperCamelCase ,dispatch_batches=__UpperCamelCase ) if accelerator.is_local_main_process: print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99" ) test_torch_metrics(__UpperCamelCase ,99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) SCREAMING_SNAKE_CASE : Union[str, Any] = Accelerator() test_torch_metrics(__UpperCamelCase ,5_12 ) accelerator.state._reset_state() def lowercase__( __UpperCamelCase: Union[str, Any] ): """simple docstring""" main() if __name__ == "__main__": main()
28
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict=1_3 , lowerCAmelCase_ : str=3_2 , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : str=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Tuple=[2, 2, 3, 2] , lowerCAmelCase_ : str=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[int]=3_7 , lowerCAmelCase_ : Dict="gelu" , lowerCAmelCase_ : List[Any]=1_0 , lowerCAmelCase_ : str=0.02 , lowerCAmelCase_ : Dict=["stage2", "stage3", "stage4"] , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : List[Any]=None , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = num_stages __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = out_features __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = num_stages def lowercase ( self : Dict ) -> List[str]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase ( self : List[str] ) -> Union[str, Any]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowercase ( self : Dict ) -> List[str]: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_1_2 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=lowerCAmelCase_ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=4_0 , auxiliary_channels=2_5_6 , auxiliary_num_convs=1 , auxiliary_concat_input=lowerCAmelCase_ , loss_ignore_index=2_5_5 , num_labels=self.num_labels , ) def lowercase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int ) -> Optional[Any]: __lowerCAmelCase = UperNetForSemanticSegmentation(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase ( self : Union[str, Any] ) -> Union[str, Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (UperNetForSemanticSegmentation,) if is_torch_available() else () a_ = {"""image-segmentation""": UperNetForSemanticSegmentation} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Optional[int] ) -> Dict: __lowerCAmelCase = UperNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : List[str] ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Tuple ) -> Union[str, Any]: return def lowercase ( self : Optional[int] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase_ ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def lowercase ( self : Optional[int] ) -> Dict: pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def lowercase ( self : Optional[Any] ) -> Dict: pass @unittest.skip(reason='UperNet does not have a base model' ) def lowercase ( self : Optional[int] ) -> List[Any]: pass @unittest.skip(reason='UperNet does not have a base model' ) def lowercase ( self : str ) -> Dict: pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowercase ( self : Optional[Any] ) -> Optional[int]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : Tuple ) -> List[Any]: pass def lowercase ( self : Union[str, Any] ) -> Tuple: def check_hidden_states_output(lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Any ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = _config_zero_init(lowerCAmelCase_ ) __lowerCAmelCase = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __lowerCAmelCase = model_class(config=lowerCAmelCase_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='UperNet does not have tied weights' ) def lowercase ( self : Any ) -> int: pass @slow def lowercase ( self : Optional[int] ) -> Optional[int]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def a_ ( ): __lowerCAmelCase = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k', repo_type='dataset', filename='ADE_val_00000001.jpg' ) __lowerCAmelCase = Image.open(lowerCAmelCase_ ).convert('RGB' ) return image @require_torch @require_vision @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Dict ) -> Union[str, Any]: __lowerCAmelCase = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(lowerCAmelCase_ ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(lowerCAmelCase_ ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
0
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,): if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,): if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( lowerCAmelCase__ ,nominal_annual_percentage_rate / 365 ,number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
29
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Optional[Any] ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : int ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_, keep_in_memory=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Dict, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, features=lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Any ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_, split=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type', [str, list] ) def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : Any, lowerCAmelCase_ : Dict ): if issubclass(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = text_path elif issubclass(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = [text_path] __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : int, lowerCAmelCase_ : Tuple=("train",) ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) for split in splits: __lowerCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def a_ ( lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Dict ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = TextDatasetReader({'train': text_path}, cache_dir=lowerCAmelCase_, keep_in_memory=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = TextDatasetReader({'train': text_path}, features=lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : Optional[int] ): if split: __lowerCAmelCase = {split: text_path} else: __lowerCAmelCase = 'train' __lowerCAmelCase = {'train': text_path, 'test': text_path} __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
53
0
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase = None ): '''simple docstring''' if version.parse(hfh.__version__ ).release < version.parse('''0.11.0''' ).release: # old versions of hfh don't url-encode the file path UpperCAmelCase_ : int = quote(_lowercase ) return hfh.hf_hub_url(_lowercase , _lowercase , repo_type='''dataset''' , revision=_lowercase )
30
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case : Union[str, Any] = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : int=False ): __lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Optional[int]=False ): for i in range(config.num_hidden_layers ): if base_model: __lowerCAmelCase = '' else: __lowerCAmelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] __lowerCAmelCase = in_proj_bias[: config.hidden_size] __lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase = in_proj_bias[-config.hidden_size :] def a_ ( lowerCAmelCase_ : List[str] ): __lowerCAmelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Optional[Any]=True ): __lowerCAmelCase = ViTConfig() # patch_size if model_name[-1] == "8": __lowerCAmelCase = 8 # set labels if required if not base_model: __lowerCAmelCase = 1000 __lowerCAmelCase = 'huggingface/label-files' __lowerCAmelCase = 'imagenet-1k-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 6 # load original model from torch hub __lowerCAmelCase = torch.hub.load('facebookresearch/dino:main', lowerCAmelCase_ ) original_model.eval() # load state_dict of original model, remove and rename some keys __lowerCAmelCase = original_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase_ ) __lowerCAmelCase = create_rename_keys(lowerCAmelCase_, base_model=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # load HuggingFace model if base_model: __lowerCAmelCase = ViTModel(lowerCAmelCase_, add_pooling_layer=lowerCAmelCase_ ).eval() else: __lowerCAmelCase = ViTForImageClassification(lowerCAmelCase_ ).eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor __lowerCAmelCase = ViTImageProcessor() __lowerCAmelCase = image_processor(images=prepare_img(), return_tensors='pt' ) __lowerCAmelCase = encoding['pixel_values'] __lowerCAmelCase = model(lowerCAmelCase_ ) if base_model: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_, outputs.last_hidden_state[:, 0, :], atol=1E-1 ) else: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase_, outputs.logits, atol=1E-3 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) _snake_case : List[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
53
0
import random def UpperCAmelCase_ ( __UpperCAmelCase : list , __UpperCAmelCase : Dict ) -> tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = [], [], [] for element in data: if element < pivot: less.append(__UpperCAmelCase ) elif element > pivot: greater.append(__UpperCAmelCase ) else: equal.append(__UpperCAmelCase ) return less, equal, greater def UpperCAmelCase_ ( __UpperCAmelCase : list , __UpperCAmelCase : int ) -> List[str]: # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(__UpperCAmelCase ) or index < 0: return None SCREAMING_SNAKE_CASE_ = items[random.randint(0 , len(__UpperCAmelCase ) - 1 )] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = _partition(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = len(__UpperCAmelCase ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(__UpperCAmelCase , __UpperCAmelCase ) # must be in larger else: return quick_select(__UpperCAmelCase , index - (m + count) )
31
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : str ) -> Any: __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : Tuple ) -> Optional[int]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : List[Any] ) -> int: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : str ) -> str: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[str]: # pass variant but use the non-variant filenames __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> Union[str, Any]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : List[str] ) -> List[Any]: # pass variant but use the non-variant filenames __lowerCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) )
53
0
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL UpperCAmelCase_ = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : tuple , SCREAMING_SNAKE_CASE_ : Path , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int=False , ) -> Union[str, Any]: """simple docstring""" output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE_ , output_names=SCREAMING_SNAKE_CASE_ , dynamic_axes=SCREAMING_SNAKE_CASE_ , do_constant_folding=SCREAMING_SNAKE_CASE_ , use_external_data_format=SCREAMING_SNAKE_CASE_ , enable_onnx_checker=SCREAMING_SNAKE_CASE_ , opset_version=SCREAMING_SNAKE_CASE_ , ) else: export( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE_ , output_names=SCREAMING_SNAKE_CASE_ , dynamic_axes=SCREAMING_SNAKE_CASE_ , do_constant_folding=SCREAMING_SNAKE_CASE_ , opset_version=SCREAMING_SNAKE_CASE_ , ) @torch.no_grad() def A__ ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : bool = False ) -> Any: """simple docstring""" _UpperCAmelCase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _UpperCAmelCase = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: _UpperCAmelCase = '''cpu''' _UpperCAmelCase = Path(SCREAMING_SNAKE_CASE_ ) # VAE DECODER _UpperCAmelCase = AutoencoderKL.from_pretrained(model_path + '''/vae''' ) _UpperCAmelCase = vae_decoder.config.latent_channels # forward only through the decoder part _UpperCAmelCase = vae_decoder.decode onnx_export( SCREAMING_SNAKE_CASE_ , model_args=( torch.randn(1 , SCREAMING_SNAKE_CASE_ , 25 , 25 ).to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=SCREAMING_SNAKE_CASE_ , ) del vae_decoder if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCAmelCase_ = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
32
import math def a_ ( lowerCAmelCase_ : list, lowerCAmelCase_ : int ): __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) __lowerCAmelCase = 0 while arr[min(lowerCAmelCase_, lowerCAmelCase_ ) - 1] < x: __lowerCAmelCase = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: __lowerCAmelCase = prev + 1 if prev == min(lowerCAmelCase_, lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": _snake_case : List[str] = input('Enter numbers separated by a comma:\n').strip() _snake_case : Optional[Any] = [int(item) for item in user_input.split(',')] _snake_case : List[str] = int(input('Enter the number to be searched:\n')) _snake_case : Optional[int] = jump_search(arr, x) if res == -1: print('Number not found!') else: print(F"""Number {x} is at index {res}""")
53
0
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = "" ) -> dict[str, float]: snake_case__ = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250''' snake_case__ = BeautifulSoup(requests.get(__lowerCAmelCase ).text , '''html.parser''' ) snake_case__ = soup.find_all('''td''' , attrs='''titleColumn''' ) snake_case__ = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(__lowerCAmelCase , __lowerCAmelCase ) } def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = "IMDb_Top_250_Movies.csv" ) -> None: snake_case__ = get_imdb_top_aaa_movies() with open(__lowerCAmelCase , '''w''' , newline='''''' ) as out_file: snake_case__ = csv.writer(__lowerCAmelCase ) writer.writerow(['''Movie title''', '''IMDb rating'''] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
33
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[Any], lowerCAmelCase_ : str ): # Initialise PyTorch model __lowerCAmelCase = RemBertConfig.from_json_file(lowerCAmelCase_ ) print('Building PyTorch model from configuration: {}'.format(str(lowerCAmelCase_ ) ) ) __lowerCAmelCase = RemBertModel(lowerCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Save pytorch-model print('Save PyTorch model to {}'.format(lowerCAmelCase_ ) ) torch.save(model.state_dict(), lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : int = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
53
0
"""simple docstring""" import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class snake_case_ : """simple docstring""" A_ = None def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict) UpperCamelCase = json.loads(feat_extract.to_json_string()) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , lowerCamelCase_) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = os.path.join(lowerCamelCase_ , '''feat_extract.json''') feat_extract_first.to_json_file(lowerCamelCase_) UpperCamelCase = self.feature_extraction_class.from_json_file(lowerCamelCase_) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict()) def UpperCAmelCase__ ( self) -> int: UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = feat_extract_first.save_pretrained(lowerCamelCase_)[0] check_json_file_has_correct_format(lowerCamelCase_) UpperCamelCase = self.feature_extraction_class.from_pretrained(lowerCamelCase_) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict()) def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = self.feature_extraction_class() self.assertIsNotNone(lowerCamelCase_)
34
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _snake_case : Any = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224', out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) __lowerCAmelCase = MaskFormerConfig(backbone_config=lowerCAmelCase_ ) __lowerCAmelCase = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok __lowerCAmelCase = 847 __lowerCAmelCase = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok __lowerCAmelCase = 150 __lowerCAmelCase = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok __lowerCAmelCase = 171 __lowerCAmelCase = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO __lowerCAmelCase = 133 __lowerCAmelCase = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok __lowerCAmelCase = 19 __lowerCAmelCase = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok __lowerCAmelCase = 65 __lowerCAmelCase = 'mapillary-vistas-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} return config def a_ ( lowerCAmelCase_ : Tuple ): __lowerCAmelCase = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') ) for source_index, target_index in zip(range(3, 0, -1 ), range(0, 3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') ) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') ) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') ) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') ) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Tuple ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int ): __lowerCAmelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowerCAmelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[:dim, :] __lowerCAmelCase = in_proj_bias[: dim] __lowerCAmelCase = in_proj_weight[ dim : dim * 2, : ] __lowerCAmelCase = in_proj_bias[ dim : dim * 2 ] __lowerCAmelCase = in_proj_weight[ -dim :, : ] __lowerCAmelCase = in_proj_bias[-dim :] # fmt: on def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : Dict ): # fmt: off __lowerCAmelCase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: hidden_size, :] __lowerCAmelCase = in_proj_bias[:config.hidden_size] __lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCAmelCase = in_proj_weight[-hidden_size :, :] __lowerCAmelCase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: hidden_size, :] __lowerCAmelCase = in_proj_bias[:config.hidden_size] __lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCAmelCase = in_proj_weight[-hidden_size :, :] __lowerCAmelCase = in_proj_bias[-hidden_size :] # fmt: on def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : bool = False ): __lowerCAmelCase = get_maskformer_config(lowerCAmelCase_ ) # load original state_dict with open(lowerCAmelCase_, 'rb' ) as f: __lowerCAmelCase = pickle.load(lowerCAmelCase_ ) __lowerCAmelCase = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowerCAmelCase = create_rename_keys(lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_swin_q_k_v(lowerCAmelCase_, config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase_, lowerCAmelCase_ ) # update to torch tensors for key, value in state_dict.items(): __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ) # load 🤗 model __lowerCAmelCase = MaskFormerForInstanceSegmentation(lowerCAmelCase_ ) model.eval() for name, param in model.named_parameters(): print(lowerCAmelCase_, param.shape ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowerCAmelCase_, strict=lowerCAmelCase_ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCAmelCase_ ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results __lowerCAmelCase = prepare_img() if "vistas" in model_name: __lowerCAmelCase = 65 elif "cityscapes" in model_name: __lowerCAmelCase = 6_5535 else: __lowerCAmelCase = 255 __lowerCAmelCase = True if 'ade' in model_name else False __lowerCAmelCase = MaskFormerImageProcessor(ignore_index=lowerCAmelCase_, reduce_labels=lowerCAmelCase_ ) __lowerCAmelCase = image_processor(lowerCAmelCase_, return_tensors='pt' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) print('Logits:', outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowerCAmelCase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], lowerCAmelCase_, atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print('Pushing model and image processor to the hub...' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _snake_case : List[str] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
53
0
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters a_ :Dict = logging.get_logger(__name__) def a ( A__ , A__ , A__ , A__=None , A__=None ) -> Dict: '''simple docstring''' if "." in tensor_name: SCREAMING_SNAKE_CASE__ : str = tensor_name.split('''.''' ) for split in splits[:-1]: SCREAMING_SNAKE_CASE__ : Union[str, Any] = getattr(A__ , A__ ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) SCREAMING_SNAKE_CASE__ : List[str] = new_module SCREAMING_SNAKE_CASE__ : Any = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) SCREAMING_SNAKE_CASE__ : Dict = tensor_name in module._buffers SCREAMING_SNAKE_CASE__ : Dict = getattr(A__ , A__ ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) SCREAMING_SNAKE_CASE__ : Dict = False SCREAMING_SNAKE_CASE__ : List[str] = False if is_buffer or not is_bitsandbytes_available(): SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : List[Any] = False else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = hasattr(bnb.nn , '''Params4bit''' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) SCREAMING_SNAKE_CASE__ : Any = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: SCREAMING_SNAKE_CASE__ : str = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: SCREAMING_SNAKE_CASE__ : Dict = old_value.to(A__ ) elif isinstance(A__ , torch.Tensor ): SCREAMING_SNAKE_CASE__ : int = value.to('''cpu''' ) if value.dtype == torch.inta: SCREAMING_SNAKE_CASE__ : Optional[int] = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: SCREAMING_SNAKE_CASE__ : List[Any] = torch.tensor(A__ , device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , A__ ) and fpaa_statistics is None: SCREAMING_SNAKE_CASE__ : Optional[int] = new_value.T SCREAMING_SNAKE_CASE__ : int = old_value.__dict__ if is_abit: SCREAMING_SNAKE_CASE__ : int = bnb.nn.IntaParams(A__ , requires_grad=A__ , **A__ ).to(A__ ) elif is_abit: SCREAMING_SNAKE_CASE__ : Optional[int] = bnb.nn.Paramsabit(A__ , requires_grad=A__ , **A__ ).to(A__ ) SCREAMING_SNAKE_CASE__ : Dict = new_value if fpaa_statistics is not None: setattr(module.weight , '''SCB''' , fpaa_statistics.to(A__ ) ) else: if value is None: SCREAMING_SNAKE_CASE__ : Tuple = old_value.to(A__ ) elif isinstance(A__ , torch.Tensor ): SCREAMING_SNAKE_CASE__ : Tuple = value.to(A__ ) else: SCREAMING_SNAKE_CASE__ : Tuple = torch.tensor(A__ , device=A__ ) if is_buffer: SCREAMING_SNAKE_CASE__ : Dict = new_value else: SCREAMING_SNAKE_CASE__ : int = nn.Parameter(A__ , requires_grad=old_value.requires_grad ) SCREAMING_SNAKE_CASE__ : List[Any] = new_value def a ( A__ , A__=None , A__=None , A__=None , A__=False ) -> Tuple: '''simple docstring''' for name, module in model.named_children(): if current_key_name is None: SCREAMING_SNAKE_CASE__ : Any = [] current_key_name.append(A__ ) if (isinstance(A__ , nn.Linear ) or isinstance(A__ , A__ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(A__ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(A__ , A__ ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = module.weight.shape else: SCREAMING_SNAKE_CASE__ : Dict = module.in_features SCREAMING_SNAKE_CASE__ : Union[str, Any] = module.out_features if quantization_config.quantization_method() == "llm_int8": SCREAMING_SNAKE_CASE__ : str = bnb.nn.LinearabitLt( A__ , A__ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) SCREAMING_SNAKE_CASE__ : Dict = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: SCREAMING_SNAKE_CASE__ : str = bnb.nn.Linearabit( A__ , A__ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) SCREAMING_SNAKE_CASE__ : Optional[int] = True # Store the module class in case we need to transpose the weight later SCREAMING_SNAKE_CASE__ : Optional[Any] = type(A__ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(A__ ) if len(list(module.children() ) ) > 0: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = _replace_with_bnb_linear( A__ , A__ , A__ , A__ , has_been_replaced=A__ , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def a ( A__ , A__=None , A__=None , A__=None ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = _replace_with_bnb_linear( A__ , A__ , A__ , A__ ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def a ( *A__ , **A__ ) -> Optional[int]: '''simple docstring''' warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' , A__ , ) return replace_with_bnb_linear(*A__ , **A__ ) def a ( *A__ , **A__ ) -> Union[str, Any]: '''simple docstring''' warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' , A__ , ) return set_module_quantized_tensor_to_device(*A__ , **A__ ) def a ( A__ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = deepcopy(A__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() SCREAMING_SNAKE_CASE__ : Union[str, Any] = find_tied_parameters(A__ ) # For compatibility with Accelerate < 0.18 if isinstance(A__ , A__ ): SCREAMING_SNAKE_CASE__ : Optional[Any] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: SCREAMING_SNAKE_CASE__ : str = sum(A__ , [] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = len(A__ ) > 0 # Check if it is a base model SCREAMING_SNAKE_CASE__ : Union[str, Any] = not hasattr(A__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head SCREAMING_SNAKE_CASE__ : Tuple = list(model.named_children() ) SCREAMING_SNAKE_CASE__ : int = [list_modules[-1][0]] # add last module together with tied weights SCREAMING_SNAKE_CASE__ : str = set(A__ ) - set(A__ ) SCREAMING_SNAKE_CASE__ : Tuple = list(set(A__ ) ) + list(A__ ) # remove ".weight" from the keys SCREAMING_SNAKE_CASE__ : Tuple = ['''.weight''', '''.bias'''] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: SCREAMING_SNAKE_CASE__ : Optional[int] = name.replace(A__ , '''''' ) filtered_module_names.append(A__ ) return filtered_module_names
35
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): _snake_case : List[Any] = True from torch.cuda.amp import autocast _snake_case : Dict = logging.getLogger(__name__) def a_ ( lowerCAmelCase_ : str=None, lowerCAmelCase_ : str=None ): return field(default_factory=lambda: default, metadata=lowerCAmelCase_ ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) a_ = field( default=0.1 , metadata={"""help""": """The dropout ratio for the attention probabilities."""} ) a_ = field( default=0.1 , metadata={"""help""": """The dropout ratio for activations inside the fully connected layer."""} ) a_ = field( default=0.1 , metadata={ """help""": """The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.""" } , ) a_ = field( default=0.1 , metadata={"""help""": """The dropout probabilitiy for all 1D convolutional layers in feature extractor."""} , ) a_ = field( default=0.05 , metadata={ """help""": ( """Propability of each feature vector along the time axis to be chosen as the start of the vector""" """span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature""" """vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.""" ) } , ) a_ = field(default=0.0 , metadata={"""help""": """The LayerDrop probability."""} ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ = field( default="""train+validation""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of validation examples to this """ """value if set.""" ) } , ) a_ = list_field( default=[""",""", """?""", """.""", """!""", """-""", """;""", """:""", """\"\"""", """%""", """'""", """\"""", """�"""] , metadata={"""help""": """A list of characters to remove from the transcripts."""} , ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = 42 a_ = True a_ = None a_ = None a_ = None a_ = None def __call__( self : int , lowerCAmelCase_ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods __lowerCAmelCase = [{'input_values': feature['input_values']} for feature in features] __lowerCAmelCase = [{'input_ids': feature['labels']} for feature in features] __lowerCAmelCase = self.processor.pad( lowerCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) __lowerCAmelCase = self.processor.pad( labels=lowerCAmelCase_ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='pt' , ) # replace padding with -100 to ignore loss correctly __lowerCAmelCase = labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_0_0 ) __lowerCAmelCase = labels return batch class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Tuple , lowerCAmelCase_ : nn.Module , lowerCAmelCase_ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: model.train() __lowerCAmelCase = self._prepare_inputs(lowerCAmelCase_ ) if self.use_amp: with autocast(): __lowerCAmelCase = self.compute_loss(lowerCAmelCase_ , lowerCAmelCase_ ) else: __lowerCAmelCase = self.compute_loss(lowerCAmelCase_ , lowerCAmelCase_ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": __lowerCAmelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __lowerCAmelCase = loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: __lowerCAmelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowerCAmelCase_ ).backward() elif self.use_apex: with amp.scale_loss(lowerCAmelCase_ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowerCAmelCase_ ) else: loss.backward() return loss.detach() def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s', lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: __lowerCAmelCase = datasets.load_dataset( 'common_voice', data_args.dataset_config_name, split=data_args.train_split_name ) __lowerCAmelCase = datasets.load_dataset('common_voice', data_args.dataset_config_name, split='test' ) # Create and save tokenizer __lowerCAmelCase = F"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(lowerCAmelCase_ : Any ): __lowerCAmelCase = re.sub(lowerCAmelCase_, '', batch['sentence'] ).lower() + ' ' return batch __lowerCAmelCase = train_dataset.map(lowerCAmelCase_, remove_columns=['sentence'] ) __lowerCAmelCase = eval_dataset.map(lowerCAmelCase_, remove_columns=['sentence'] ) def extract_all_chars(lowerCAmelCase_ : Tuple ): __lowerCAmelCase = ' '.join(batch['text'] ) __lowerCAmelCase = list(set(lowerCAmelCase_ ) ) return {"vocab": [vocab], "all_text": [all_text]} __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, batched=lowerCAmelCase_, batch_size=-1, keep_in_memory=lowerCAmelCase_, remove_columns=train_dataset.column_names, ) __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, batched=lowerCAmelCase_, batch_size=-1, keep_in_memory=lowerCAmelCase_, remove_columns=eval_dataset.column_names, ) __lowerCAmelCase = list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) ) __lowerCAmelCase = {v: k for k, v in enumerate(lowerCAmelCase_ )} __lowerCAmelCase = vocab_dict[' '] del vocab_dict[" "] __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = len(lowerCAmelCase_ ) with open('vocab.json', 'w' ) as vocab_file: json.dump(lowerCAmelCase_, lowerCAmelCase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = WavaVecaCTCTokenizer( 'vocab.json', unk_token='[UNK]', pad_token='[PAD]', word_delimiter_token='|', ) __lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_6000, padding_value=0.0, do_normalize=lowerCAmelCase_, return_attention_mask=lowerCAmelCase_ ) __lowerCAmelCase = WavaVecaProcessor(feature_extractor=lowerCAmelCase_, tokenizer=lowerCAmelCase_ ) __lowerCAmelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, activation_dropout=model_args.activation_dropout, attention_dropout=model_args.attention_dropout, hidden_dropout=model_args.hidden_dropout, feat_proj_dropout=model_args.feat_proj_dropout, mask_time_prob=model_args.mask_time_prob, gradient_checkpointing=training_args.gradient_checkpointing, layerdrop=model_args.layerdrop, ctc_loss_reduction='mean', pad_token_id=processor.tokenizer.pad_token_id, vocab_size=len(processor.tokenizer ), ) if data_args.max_train_samples is not None: __lowerCAmelCase = min(len(lowerCAmelCase_ ), data_args.max_train_samples ) __lowerCAmelCase = train_dataset.select(range(lowerCAmelCase_ ) ) if data_args.max_val_samples is not None: __lowerCAmelCase = eval_dataset.select(range(data_args.max_val_samples ) ) __lowerCAmelCase = torchaudio.transforms.Resample(4_8000, 1_6000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(lowerCAmelCase_ : int ): __lowerCAmelCase , __lowerCAmelCase = torchaudio.load(batch['path'] ) __lowerCAmelCase = resampler(lowerCAmelCase_ ).squeeze().numpy() __lowerCAmelCase = 1_6000 __lowerCAmelCase = batch['text'] return batch __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, remove_columns=train_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) __lowerCAmelCase = eval_dataset.map( lowerCAmelCase_, remove_columns=eval_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) def prepare_dataset(lowerCAmelCase_ : Union[str, Any] ): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'] ) ) == 1 ), F"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" __lowerCAmelCase = processor( audio=batch['speech'], text=batch['target_text'], sampling_rate=batch['sampling_rate'][0] ) batch.update(lowerCAmelCase_ ) return batch __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, remove_columns=train_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, ) __lowerCAmelCase = eval_dataset.map( lowerCAmelCase_, remove_columns=eval_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, ) # Metric __lowerCAmelCase = datasets.load_metric('wer' ) def compute_metrics(lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = pred.predictions __lowerCAmelCase = np.argmax(lowerCAmelCase_, axis=-1 ) __lowerCAmelCase = processor.tokenizer.pad_token_id __lowerCAmelCase = processor.batch_decode(lowerCAmelCase_ ) # we do not want to group tokens when computing the metrics __lowerCAmelCase = processor.batch_decode(pred.label_ids, group_tokens=lowerCAmelCase_ ) __lowerCAmelCase = wer_metric.compute(predictions=lowerCAmelCase_, references=lowerCAmelCase_ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator __lowerCAmelCase = DataCollatorCTCWithPadding(processor=lowerCAmelCase_, padding=lowerCAmelCase_ ) # Initialize our Trainer __lowerCAmelCase = CTCTrainer( model=lowerCAmelCase_, data_collator=lowerCAmelCase_, args=lowerCAmelCase_, compute_metrics=lowerCAmelCase_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=processor.feature_extractor, ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() __lowerCAmelCase = train_result.metrics __lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase_ ) ) __lowerCAmelCase = min(lowerCAmelCase_, len(lowerCAmelCase_ ) ) trainer.log_metrics('train', lowerCAmelCase_ ) trainer.save_metrics('train', lowerCAmelCase_ ) trainer.save_state() # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(lowerCAmelCase_ ) __lowerCAmelCase = min(lowerCAmelCase_, len(lowerCAmelCase_ ) ) trainer.log_metrics('eval', lowerCAmelCase_ ) trainer.save_metrics('eval', lowerCAmelCase_ ) return results if __name__ == "__main__": main()
53
0
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _A : '''simple docstring''' @staticmethod def snake_case_ ( *SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class _A ( unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Tuple = MODEL_FOR_OBJECT_DETECTION_MAPPING def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Any = ObjectDetectionPipeline(model=SCREAMING_SNAKE_CASE_ ,image_processor=SCREAMING_SNAKE_CASE_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Dict = object_detector("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ,threshold=0.0 ) self.assertGreater(len(SCREAMING_SNAKE_CASE_ ) ,0 ) for detected_object in outputs: self.assertEqual( SCREAMING_SNAKE_CASE_ ,{ """score""": ANY(SCREAMING_SNAKE_CASE_ ), """label""": ANY(SCREAMING_SNAKE_CASE_ ), """box""": {"""xmin""": ANY(SCREAMING_SNAKE_CASE_ ), """ymin""": ANY(SCREAMING_SNAKE_CASE_ ), """xmax""": ANY(SCREAMING_SNAKE_CASE_ ), """ymax""": ANY(SCREAMING_SNAKE_CASE_ )}, } ,) import datasets snake_case : Any = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" ,"""image""" ,split="""test""" ) snake_case : Any = [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] snake_case : Union[str, Any] = object_detector(SCREAMING_SNAKE_CASE_ ,threshold=0.0 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) ,len(SCREAMING_SNAKE_CASE_ ) ) for outputs in batch_outputs: self.assertGreater(len(SCREAMING_SNAKE_CASE_ ) ,0 ) for detected_object in outputs: self.assertEqual( SCREAMING_SNAKE_CASE_ ,{ """score""": ANY(SCREAMING_SNAKE_CASE_ ), """label""": ANY(SCREAMING_SNAKE_CASE_ ), """box""": {"""xmin""": ANY(SCREAMING_SNAKE_CASE_ ), """ymin""": ANY(SCREAMING_SNAKE_CASE_ ), """xmax""": ANY(SCREAMING_SNAKE_CASE_ ), """ymax""": ANY(SCREAMING_SNAKE_CASE_ )}, } ,) @require_tf @unittest.skip("""Object detection not implemented in TF""" ) def snake_case_ ( self ): '''simple docstring''' pass @require_torch def snake_case_ ( self ): '''simple docstring''' snake_case : Optional[int] = """hf-internal-testing/tiny-detr-mobilenetsv3""" snake_case : Optional[int] = AutoModelForObjectDetection.from_pretrained(SCREAMING_SNAKE_CASE_ ) snake_case : Optional[Any] = AutoFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ ) snake_case : str = ObjectDetectionPipeline(model=SCREAMING_SNAKE_CASE_ ,feature_extractor=SCREAMING_SNAKE_CASE_ ) snake_case : List[str] = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ,threshold=0.0 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ,decimals=4 ) ,[ {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ] ,) snake_case : Optional[Any] = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ,threshold=0.0 ,) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ,decimals=4 ) ,[ [ {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ], [ {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ], ] ,) @require_torch @slow def snake_case_ ( self ): '''simple docstring''' snake_case : Optional[int] = """facebook/detr-resnet-50""" snake_case : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(SCREAMING_SNAKE_CASE_ ) snake_case : Any = AutoFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ ) snake_case : Union[str, Any] = ObjectDetectionPipeline(model=SCREAMING_SNAKE_CASE_ ,feature_extractor=SCREAMING_SNAKE_CASE_ ) snake_case : Optional[Any] = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ,decimals=4 ) ,[ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] ,) snake_case : str = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ,decimals=4 ) ,[ [ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], [ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], ] ,) @require_torch @slow def snake_case_ ( self ): '''simple docstring''' snake_case : str = """facebook/detr-resnet-50""" snake_case : str = pipeline("""object-detection""" ,model=SCREAMING_SNAKE_CASE_ ) snake_case : Any = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ,decimals=4 ) ,[ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] ,) snake_case : List[Any] = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ,decimals=4 ) ,[ [ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], [ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], ] ,) @require_torch @slow def snake_case_ ( self ): '''simple docstring''' snake_case : Optional[Any] = 0.99_85 snake_case : List[Any] = """facebook/detr-resnet-50""" snake_case : Any = pipeline("""object-detection""" ,model=SCREAMING_SNAKE_CASE_ ) snake_case : Tuple = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ,threshold=SCREAMING_SNAKE_CASE_ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ,decimals=4 ) ,[ {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] ,) @require_torch @require_pytesseract @slow def snake_case_ ( self ): '''simple docstring''' snake_case : int = """Narsil/layoutlmv3-finetuned-funsd""" snake_case : Dict = 0.99_93 snake_case : Any = pipeline("""object-detection""" ,model=SCREAMING_SNAKE_CASE_ ,threshold=SCREAMING_SNAKE_CASE_ ) snake_case : Dict = object_detector( """https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png""" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ,decimals=4 ) ,[ {"""score""": 0.99_93, """label""": """I-ANSWER""", """box""": {"""xmin""": 294, """ymin""": 254, """xmax""": 343, """ymax""": 264}}, {"""score""": 0.99_93, """label""": """I-ANSWER""", """box""": {"""xmin""": 294, """ymin""": 254, """xmax""": 343, """ymax""": 264}}, ] ,)
36
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _snake_case : Any = logging.get_logger(__name__) _snake_case : int = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _snake_case : Optional[Any] = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } _snake_case : str = { 'yjernite/retribert-base-uncased': 512, } _snake_case : Optional[int] = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = PRETRAINED_INIT_CONFIGURATION a_ = RetriBertTokenizer a_ = ["""input_ids""", """attention_mask"""] def __init__( self : Dict , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : str="[UNK]" , lowerCAmelCase_ : Optional[Any]="[SEP]" , lowerCAmelCase_ : List[str]="[PAD]" , lowerCAmelCase_ : Optional[int]="[CLS]" , lowerCAmelCase_ : List[Any]="[MASK]" , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : List[Any] , ) -> Dict: super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(lowerCAmelCase_ , normalizer_state.pop('type' ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**lowerCAmelCase_ ) __lowerCAmelCase = do_lower_case def lowercase ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int]=None ) -> Optional[int]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
53
0
from __future__ import annotations def UpperCamelCase_ ( __a , __a ) -> float: a__ : Tuple = sorted(numsa + numsa ) a__, a__ : str = divmod(len(__a ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase : Dict = [float(x) for x in input("""Enter the elements of first array: """).split()] UpperCamelCase : Tuple = [float(x) for x in input("""Enter the elements of second array: """).split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
37
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _snake_case : Union[str, Any] = imread(R'digital_image_processing/image_data/lena_small.jpg') _snake_case : Optional[int] = cvtColor(img, COLOR_BGR2GRAY) def a_ ( ): __lowerCAmelCase = cn.convert_to_negative(lowerCAmelCase_ ) # assert negative_img array for at least one True assert negative_img.any() def a_ ( ): with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowerCAmelCase_, 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def a_ ( ): __lowerCAmelCase = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def a_ ( ): __lowerCAmelCase = imread('digital_image_processing/image_data/lena_small.jpg', 0 ) # assert ambiguous array for all == True assert canny_img.all() __lowerCAmelCase = canny.canny(lowerCAmelCase_ ) # assert canny array for at least one True assert canny_array.any() def a_ ( ): assert gg.gaussian_filter(lowerCAmelCase_, 5, sigma=0.9 ).all() def a_ ( ): # laplace diagonals __lowerCAmelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __lowerCAmelCase = conv.img_convolve(lowerCAmelCase_, lowerCAmelCase_ ).astype(lowerCAmelCase_ ) assert res.any() def a_ ( ): assert med.median_filter(lowerCAmelCase_, 3 ).any() def a_ ( ): __lowerCAmelCase , __lowerCAmelCase = sob.sobel_filter(lowerCAmelCase_ ) assert grad.any() and theta.any() def a_ ( ): __lowerCAmelCase = sp.make_sepia(lowerCAmelCase_, 20 ) assert sepia.all() def a_ ( lowerCAmelCase_ : str = "digital_image_processing/image_data/lena_small.jpg" ): __lowerCAmelCase = bs.Burkes(imread(lowerCAmelCase_, 1 ), 120 ) burkes.process() assert burkes.output_img.any() def a_ ( lowerCAmelCase_ : str = "digital_image_processing/image_data/lena_small.jpg", ): __lowerCAmelCase = rs.NearestNeighbour(imread(lowerCAmelCase_, 1 ), 400, 200 ) nn.process() assert nn.output.any() def a_ ( ): __lowerCAmelCase = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. __lowerCAmelCase = imread(lowerCAmelCase_, 0 ) # Test for get_neighbors_pixel function() return not None __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = image[x_coordinate][y_coordinate] __lowerCAmelCase = lbp.get_neighbors_pixel( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __lowerCAmelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): __lowerCAmelCase = lbp.local_binary_value(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) assert lbp_image.any()
53
0
'''simple docstring''' import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : List[Any]=None ) -> Union[str, Any]: '''simple docstring''' snake_case__ : str = None if token is not None: snake_case__ : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"} snake_case__ : List[Any] = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" snake_case__ : str = requests.get(__magic_name__ , headers=__magic_name__ ).json() snake_case__ : str = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) snake_case__ : List[Any] = math.ceil((result["""total_count"""] - 1_00) / 1_00 ) for i in range(__magic_name__ ): snake_case__ : Tuple = requests.get(url + f"&page={i + 2}" , headers=__magic_name__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def UpperCamelCase__ ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any]=None ) -> List[str]: '''simple docstring''' snake_case__ : Optional[Any] = None if token is not None: snake_case__ : Any = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"} snake_case__ : Dict = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100" snake_case__ : Union[str, Any] = requests.get(__magic_name__ , headers=__magic_name__ ).json() snake_case__ : Dict = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) snake_case__ : List[Any] = math.ceil((result["""total_count"""] - 1_00) / 1_00 ) for i in range(__magic_name__ ): snake_case__ : Dict = requests.get(url + f"&page={i + 2}" , headers=__magic_name__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def UpperCamelCase__ ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> Dict: '''simple docstring''' snake_case__ : Optional[Any] = None if token is not None: snake_case__ : Dict = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"} snake_case__ : str = requests.get(__magic_name__ , headers=__magic_name__ , allow_redirects=__magic_name__ ) snake_case__ : Any = result.headers["""Location"""] snake_case__ : Tuple = requests.get(__magic_name__ , allow_redirects=__magic_name__ ) snake_case__ : int = os.path.join(__magic_name__ , f"{artifact_name}.zip" ) with open(__magic_name__ , """wb""" ) as fp: fp.write(response.content ) def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : str=None ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Any = [] snake_case__ : Union[str, Any] = [] snake_case__ : Any = None with zipfile.ZipFile(__magic_name__ ) as z: for filename in z.namelist(): if not os.path.isdir(__magic_name__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(__magic_name__ ) as f: for line in f: snake_case__ : Any = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs snake_case__ : str = line[: line.index(""": """ )] snake_case__ : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed snake_case__ : Dict = line[len("""FAILED """ ) :] failed_tests.append(__magic_name__ ) elif filename == "job_name.txt": snake_case__ : Optional[Any] = line if len(__magic_name__ ) != len(__magic_name__ ): raise ValueError( f"`errors` and `failed_tests` should have the same number of elements. Got {len(__magic_name__ )} for `errors` " f"and {len(__magic_name__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some" """ problem.""" ) snake_case__ : Optional[Any] = None if job_name and job_links: snake_case__ : Optional[Any] = job_links.get(__magic_name__ , __magic_name__ ) # A list with elements of the form (line of error, error, failed test) snake_case__ : List[Any] = [x + [y] + [job_link] for x, y in zip(__magic_name__ , __magic_name__ )] return result def UpperCamelCase__ ( __magic_name__ : int , __magic_name__ : Union[str, Any]=None ) -> Union[str, Any]: '''simple docstring''' snake_case__ : str = [] snake_case__ : Dict = [os.path.join(__magic_name__ , __magic_name__ ) for p in os.listdir(__magic_name__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(__magic_name__ , job_links=__magic_name__ ) ) return errors def UpperCamelCase__ ( __magic_name__ : Optional[Any] , __magic_name__ : str=None ) -> List[Any]: '''simple docstring''' snake_case__ : Any = Counter() counter.update([x[1] for x in logs] ) snake_case__ : Dict = counter.most_common() snake_case__ : Any = {} for error, count in counts: if error_filter is None or error not in error_filter: snake_case__ : int = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} snake_case__ : Union[str, Any] = dict(sorted(r.items() , key=lambda __magic_name__ : item[1]["count"] , reverse=__magic_name__ ) ) return r def UpperCamelCase__ ( __magic_name__ : List[Any] ) -> List[Any]: '''simple docstring''' snake_case__ : str = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): snake_case__ : Tuple = test.split("""/""" )[2] else: snake_case__ : Any = None return test def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : Union[str, Any]=None ) -> List[str]: '''simple docstring''' snake_case__ : List[str] = [(x[0], x[1], get_model(x[2] )) for x in logs] snake_case__ : List[Any] = [x for x in logs if x[2] is not None] snake_case__ : Any = {x[2] for x in logs} snake_case__ : Optional[Any] = {} for test in tests: snake_case__ : str = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) snake_case__ : Optional[int] = counter.most_common() snake_case__ : Optional[int] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} snake_case__ : int = sum(error_counts.values() ) if n_errors > 0: snake_case__ : str = {"""count""": n_errors, """errors""": error_counts} snake_case__ : Union[str, Any] = dict(sorted(r.items() , key=lambda __magic_name__ : item[1]["count"] , reverse=__magic_name__ ) ) return r def UpperCamelCase__ ( __magic_name__ : int ) -> Optional[int]: '''simple docstring''' snake_case__ : Optional[Any] = """| no. | error | status |""" snake_case__ : int = """|-:|:-|:-|""" snake_case__ : int = [header, sep] for error in reduced_by_error: snake_case__ : Union[str, Any] = reduced_by_error[error]["""count"""] snake_case__ : Dict = f"| {count} | {error[:1_00]} | |" lines.append(__magic_name__ ) return "\n".join(__magic_name__ ) def UpperCamelCase__ ( __magic_name__ : Dict ) -> List[Any]: '''simple docstring''' snake_case__ : List[Any] = """| model | no. of errors | major error | count |""" snake_case__ : Optional[int] = """|-:|-:|-:|-:|""" snake_case__ : Dict = [header, sep] for model in reduced_by_model: snake_case__ : Tuple = reduced_by_model[model]["""count"""] snake_case__ , snake_case__ : Tuple = list(reduced_by_model[model]["""errors"""].items() )[0] snake_case__ : Optional[int] = f"| {model} | {count} | {error[:60]} | {_count} |" lines.append(__magic_name__ ) return "\n".join(__magic_name__ ) if __name__ == "__main__": A_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") A_ : int = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) A_ : Optional[int] = get_job_links(args.workflow_run_id, token=args.token) A_ : Optional[Any] = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: A_ : int = k.find(" / ") A_ : List[Any] = k[index + len(" / ") :] A_ : List[str] = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) A_ : int = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) A_ : str = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error A_ : List[str] = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors A_ : Any = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) A_ : Any = reduce_by_error(errors) A_ : Union[str, Any] = reduce_by_model(errors) A_ : Any = make_github_table(reduced_by_error) A_ : Optional[Any] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
38
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case : List[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = ["""pixel_values"""] def __init__( self : Optional[int] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **lowerCAmelCase_ : Any , ) -> None: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = size if size is not None else {'shortest_edge': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = do_center_crop __lowerCAmelCase = crop_size __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[int] , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __lowerCAmelCase = int((2_5_6 / 2_2_4) * size['shortest_edge'] ) __lowerCAmelCase = get_resize_output_image_size(lowerCAmelCase_ , size=lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( lowerCAmelCase_ , size=(size_dict['height'], size_dict['width']) , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : str , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : str , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(lowerCAmelCase_ , size=(size['height'], size['width']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[int, float] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray: return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[str] , ) -> np.ndarray: return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase_ : str , ) -> BatchFeature: __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase = image_std if image_std is not None else self.image_std __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: __lowerCAmelCase = [self.resize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_center_crop: __lowerCAmelCase = [self.center_crop(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_rescale: __lowerCAmelCase = [self.rescale(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_normalize: __lowerCAmelCase = [self.normalize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
53
0
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCAmelCase_ = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] lowerCAmelCase_ = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] lowerCAmelCase_ = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) lowerCAmelCase_ = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) lowerCAmelCase_ = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for tf_name, hf_name in patterns: snake_case_ = k.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return k def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = BigBirdPegasusConfig(**SCREAMING_SNAKE_CASE__ ) snake_case_ = BigBirdPegasusForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) snake_case_ = torch_model.state_dict() snake_case_ = {} # separating decoder weights snake_case_ = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} snake_case_ = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() , '''tf -> hf conversion''' ): snake_case_ = [k.endswith(SCREAMING_SNAKE_CASE__ ) for ending in KEYS_TO_IGNORE] if any(SCREAMING_SNAKE_CASE__ ): continue snake_case_ = DECODER_PATTERNS snake_case_ = rename_state_dict_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if new_k not in state_dict: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): snake_case_ = v.T snake_case_ = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items() , '''tf -> hf conversion''' ): snake_case_ = [k.endswith(SCREAMING_SNAKE_CASE__ ) for ending in KEYS_TO_IGNORE] if any(SCREAMING_SNAKE_CASE__ ): continue snake_case_ = REMAINING_PATTERNS snake_case_ = rename_state_dict_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): snake_case_ = v.T snake_case_ = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' snake_case_ = mapping['''model.embed_positions.weight'''] snake_case_ = mapping.pop('''model.embed_positions.weight''' ) snake_case_, snake_case_ = torch_model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) snake_case_ = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = tf.train.list_variables(SCREAMING_SNAKE_CASE__ ) snake_case_ = {} snake_case_ = ['''global_step'''] for name, shape in tqdm(SCREAMING_SNAKE_CASE__ , desc='''converting tf checkpoint to dict''' ): snake_case_ = any(pat in name for pat in ignore_name ) if skip_key: continue snake_case_ = tf.train.load_variable(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = array return tf_weights def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = get_tf_weights_as_numpy(SCREAMING_SNAKE_CASE__ ) snake_case_ = convert_bigbird_pegasus(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) torch_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
39
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Optional[int]=8 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]=9_9 , lowerCAmelCase_ : List[Any]=1_6 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=3_6 , lowerCAmelCase_ : Optional[int]="gelu" , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : str=5_1_2 , lowerCAmelCase_ : List[str]=1_6 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Tuple=0.02 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : List[Any]=4 , lowerCAmelCase_ : List[str]=None , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope def lowercase ( self : Optional[int] ) -> Dict: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self : Any ) -> Union[str, Any]: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def lowercase ( self : Dict ) -> List[Any]: __lowerCAmelCase = self.get_config() __lowerCAmelCase = 3_0_0 return config def lowercase ( self : Optional[int] ) -> Union[str, Any]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = self.prepare_config_and_inputs() __lowerCAmelCase = True __lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = MraModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , ) -> Tuple: __lowerCAmelCase = True __lowerCAmelCase = MraModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , ) __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = MraForMaskedLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> str: __lowerCAmelCase = MraForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict ) -> Optional[Any]: __lowerCAmelCase = self.num_labels __lowerCAmelCase = MraForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict ) -> Any: __lowerCAmelCase = self.num_labels __lowerCAmelCase = MraForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] ) -> List[Any]: __lowerCAmelCase = self.num_choices __lowerCAmelCase = MraForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self : Tuple ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) a_ = False a_ = False a_ = False a_ = False a_ = () def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = MraModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : Tuple ) -> List[str]: self.config_tester.run_common_tests() def lowercase ( self : Optional[int] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase = type self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase_ ) def lowercase ( self : List[str] ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase_ ) def lowercase ( self : Tuple ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase_ ) @slow def lowercase ( self : Optional[int] ) -> Optional[int]: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = MraModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @unittest.skip(reason='MRA does not output attentions' ) def lowercase ( self : Optional[int] ) -> Tuple: return @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase ( self : Optional[Any] ) -> List[str]: __lowerCAmelCase = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) __lowerCAmelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : int ) -> Optional[int]: __lowerCAmelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) __lowerCAmelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = 5_0_2_6_5 __lowerCAmelCase = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : Any ) -> List[str]: __lowerCAmelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) __lowerCAmelCase = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = 5_0_2_6_5 __lowerCAmelCase = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
0
def UpperCamelCase ( snake_case__ : str ) -> list: UpperCamelCase : Optional[int] = [0] * len(snake_case__ ) for i in range(1 , len(snake_case__ ) ): # use last results for better performance - dynamic programming UpperCamelCase : str = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: UpperCamelCase : List[Any] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 UpperCamelCase : List[Any] = j return prefix_result def UpperCamelCase ( snake_case__ : str ) -> int: return max(prefix_function(snake_case__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
40
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _snake_case : Union[str, Any] = 2 class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , *, # begin keyword-only arguments lowerCAmelCase_ : str="<s>" , lowerCAmelCase_ : Dict="<pad>" , lowerCAmelCase_ : Any="</s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Optional[Any]=None , ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = bos, unk, pad, eos __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = {} __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = len(self.symbols ) def __eq__( self : Dict , lowerCAmelCase_ : Dict ) -> str: return self.indices == other.indices def __getitem__( self : List[Any] , lowerCAmelCase_ : int ) -> Union[str, Any]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : Tuple ) -> List[Any]: return len(self.symbols ) def __contains__( self : Optional[Any] , lowerCAmelCase_ : Dict ) -> Optional[int]: return sym in self.indices @classmethod def lowercase ( cls : Dict , lowerCAmelCase_ : str ) -> str: __lowerCAmelCase = cls() d.add_from_file(lowerCAmelCase_ ) return d def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : Any=False ) -> Optional[Any]: if word in self.indices and not overwrite: __lowerCAmelCase = self.indices[word] __lowerCAmelCase = self.count[idx] + n return idx else: __lowerCAmelCase = len(self.symbols ) __lowerCAmelCase = idx self.symbols.append(lowerCAmelCase_ ) self.count.append(lowerCAmelCase_ ) return idx def lowercase ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> Dict: return 0 def lowercase ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> int: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: with open(lowerCAmelCase_ , 'r' , encoding='utf-8' ) as fd: self.add_from_file(lowerCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(lowerCAmelCase_ ) ) return __lowerCAmelCase = f.readlines() __lowerCAmelCase = self._load_meta(lowerCAmelCase_ ) for line in lines[indices_start_line:]: try: __lowerCAmelCase , __lowerCAmelCase = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": __lowerCAmelCase = True __lowerCAmelCase , __lowerCAmelCase = line.rsplit(' ' , 1 ) else: __lowerCAmelCase = False __lowerCAmelCase = int(lowerCAmelCase_ ) __lowerCAmelCase = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(lowerCAmelCase_ ) ) self.add_symbol(lowerCAmelCase_ , n=lowerCAmelCase_ , overwrite=lowerCAmelCase_ ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def a_ ( lowerCAmelCase_ : List[str] ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} __lowerCAmelCase = dict((re.sub(R'@@$', '', lowerCAmelCase_ ), v) if k.endswith('@@' ) else (re.sub(R'$', '</w>', lowerCAmelCase_ ), v) for k, v in d.items() ) __lowerCAmelCase = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowerCAmelCase = d[k] # restore return da def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str] ): # prep if not os.path.exists(lowerCAmelCase_ ): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(lowerCAmelCase_, exist_ok=lowerCAmelCase_ ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'checkpoint.pt' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""" ) __lowerCAmelCase = torch.load(lowerCAmelCase_, map_location='cpu' ) __lowerCAmelCase = chkpt['cfg']['model'] # dicts __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'dict.txt' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {dict_file} does not exist!""" ) __lowerCAmelCase = Dictionary.load(lowerCAmelCase_ ) __lowerCAmelCase = rewrite_dict_keys(src_dict.indices ) __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, VOCAB_FILES_NAMES['vocab_file'] ) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # merges_file (bpecodes) __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'bpecodes' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""" ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(lowerCAmelCase_, lowerCAmelCase_ ) # model config __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'config.json' ) __lowerCAmelCase = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1E-12, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # tokenizer config __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F"""Generating {biogpt_tokenizer_config_file}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # model __lowerCAmelCase = chkpt['model'] # remove unneeded keys __lowerCAmelCase = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): __lowerCAmelCase = model_state_dict.pop(lowerCAmelCase_ ) else: __lowerCAmelCase = model_state_dict.pop(lowerCAmelCase_ ) __lowerCAmelCase = BioGptConfig.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = BioGptForCausalLM(lowerCAmelCase_ ) # check that it loads ok model_new.load_state_dict(lowerCAmelCase_ ) # save __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(lowerCAmelCase_, lowerCAmelCase_ ) print('Conversion is done!' ) if __name__ == "__main__": _snake_case : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : int = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
0
'''simple docstring''' import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = ['''a''', '''b''', '''c'''] # Defaults to last layer if both are None __lowercase , __lowercase = get_aligned_output_features_output_indices(lowercase__ ,lowercase__ ,lowercase__ ) self.assertEqual(lowercase__ ,['''c'''] ) self.assertEqual(lowercase__ ,[2] ) # Out indices set to match out features __lowercase , __lowercase = get_aligned_output_features_output_indices(['''a''', '''c'''] ,lowercase__ ,lowercase__ ) self.assertEqual(lowercase__ ,['''a''', '''c'''] ) self.assertEqual(lowercase__ ,[0, 2] ) # Out features set to match out indices __lowercase , __lowercase = get_aligned_output_features_output_indices(lowercase__ ,[0, 2] ,lowercase__ ) self.assertEqual(lowercase__ ,['''a''', '''c'''] ) self.assertEqual(lowercase__ ,[0, 2] ) # Out features selected from negative indices __lowercase , __lowercase = get_aligned_output_features_output_indices(lowercase__ ,[-3, -1] ,lowercase__ ) self.assertEqual(lowercase__ ,['''a''', '''c'''] ) self.assertEqual(lowercase__ ,[-3, -1] ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): # Stage names must be set with self.assertRaises(lowercase__ ): verify_out_features_out_indices(['''a''', '''b'''] ,(0, 1) ,lowercase__ ) # Out features must be a list with self.assertRaises(lowercase__ ): verify_out_features_out_indices(('''a''', '''b''') ,(0, 1) ,['''a''', '''b'''] ) # Out features must be a subset of stage names with self.assertRaises(lowercase__ ): verify_out_features_out_indices(['''a''', '''b'''] ,(0, 1) ,['''a'''] ) # Out indices must be a list or tuple with self.assertRaises(lowercase__ ): verify_out_features_out_indices(lowercase__ ,0 ,['''a''', '''b'''] ) # Out indices must be a subset of stage names with self.assertRaises(lowercase__ ): verify_out_features_out_indices(lowercase__ ,(0, 1) ,['''a'''] ) # Out features and out indices must be the same length with self.assertRaises(lowercase__ ): verify_out_features_out_indices(['''a''', '''b'''] ,(0,) ,['''a''', '''b''', '''c'''] ) # Out features should match out indices with self.assertRaises(lowercase__ ): verify_out_features_out_indices(['''a''', '''b'''] ,(0, 2) ,['''a''', '''b''', '''c'''] ) # Out features and out indices should be in order with self.assertRaises(lowercase__ ): verify_out_features_out_indices(['''b''', '''a'''] ,(0, 1) ,['''a''', '''b'''] ) # Check passes with valid inputs verify_out_features_out_indices(['''a''', '''b''', '''d'''] ,(0, 1, -1) ,['''a''', '''b''', '''c''', '''d'''] ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = BackboneMixin() __lowercase = ['''a''', '''b''', '''c'''] __lowercase = ['''a''', '''c'''] __lowercase = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features ,['''a''', '''c'''] ) self.assertEqual(backbone.out_indices ,[0, 2] ) # Check out features and indices are updated correctly __lowercase = ['''a''', '''b'''] self.assertEqual(backbone.out_features ,['''a''', '''b'''] ) self.assertEqual(backbone.out_indices ,[0, 1] ) __lowercase = [-3, -1] self.assertEqual(backbone.out_features ,['''a''', '''c'''] ) self.assertEqual(backbone.out_indices ,[-3, -1] )
41
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" a_ = """pixel_values""" a_ = False a_ = TimmBackboneConfig def __init__( self : Tuple , lowerCAmelCase_ : Any , **lowerCAmelCase_ : Optional[int] ) -> Optional[Any]: requires_backends(self , 'timm' ) super().__init__(lowerCAmelCase_ ) __lowerCAmelCase = config if config.backbone is None: raise ValueError('backbone is not set in the config. Please set it to a timm model name.' ) if config.backbone not in timm.list_models(): raise ValueError(f"""backbone {config.backbone} is not supported by timm.""" ) if hasattr(lowerCAmelCase_ , 'out_features' ) and config.out_features is not None: raise ValueError('out_features is not supported by TimmBackbone. Please use out_indices instead.' ) __lowerCAmelCase = getattr(lowerCAmelCase_ , 'use_pretrained_backbone' , lowerCAmelCase_ ) if pretrained is None: raise ValueError('use_pretrained_backbone is not set in the config. Please set it to True or False.' ) # We just take the final layer by default. This matches the default for the transformers models. __lowerCAmelCase = config.out_indices if getattr(lowerCAmelCase_ , 'out_indices' , lowerCAmelCase_ ) is not None else (-1,) __lowerCAmelCase = timm.create_model( config.backbone , pretrained=lowerCAmelCase_ , features_only=config.features_only , in_chans=config.num_channels , out_indices=lowerCAmelCase_ , **lowerCAmelCase_ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. __lowerCAmelCase = self._backbone.return_layers __lowerCAmelCase = {layer['module']: str(lowerCAmelCase_ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(lowerCAmelCase_ ) @classmethod def lowercase ( cls : int , lowerCAmelCase_ : Dict , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['vision', 'timm'] ) from ...models.timm_backbone import TimmBackboneConfig __lowerCAmelCase = kwargs.pop('config' , TimmBackboneConfig() ) __lowerCAmelCase = kwargs.pop('use_timm_backbone' , lowerCAmelCase_ ) if not use_timm: raise ValueError('use_timm_backbone must be True for timm backbones' ) __lowerCAmelCase = kwargs.pop('num_channels' , config.num_channels ) __lowerCAmelCase = kwargs.pop('features_only' , config.features_only ) __lowerCAmelCase = kwargs.pop('use_pretrained_backbone' , config.use_pretrained_backbone ) __lowerCAmelCase = kwargs.pop('out_indices' , config.out_indices ) __lowerCAmelCase = TimmBackboneConfig( backbone=lowerCAmelCase_ , num_channels=lowerCAmelCase_ , features_only=lowerCAmelCase_ , use_pretrained_backbone=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , ) return super()._from_config(lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Tuple , lowerCAmelCase_ : int ) -> Dict: pass def lowercase ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Any=None , **lowerCAmelCase_ : Dict ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('Cannot output attentions for timm backbones at the moment' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone __lowerCAmelCase = self._all_layers __lowerCAmelCase = self._backbone(lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = self._return_layers __lowerCAmelCase = tuple(hidden_states[i] for i in self.out_indices ) else: __lowerCAmelCase = self._backbone(lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = None __lowerCAmelCase = tuple(lowerCAmelCase_ ) __lowerCAmelCase = tuple(lowerCAmelCase_ ) if hidden_states is not None else None if not return_dict: __lowerCAmelCase = (feature_maps,) if output_hidden_states: __lowerCAmelCase = output + (hidden_states,) return output return BackboneOutput(feature_maps=lowerCAmelCase_ , hidden_states=lowerCAmelCase_ , attentions=lowerCAmelCase_ )
53
0
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ) -> Dict: # set parameter of one layer assert torch_layer.weight.shape == weight.shape, f'''{torch_layer} layer.weight does not match''' lowerCamelCase_ = nn.Parameter(__UpperCamelCase ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'''{torch_layer} layer.bias does not match''' lowerCamelCase_ = nn.Parameter(__UpperCamelCase ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[Any]: # set torch weights for 1-to-1 comparison lowerCamelCase_ = np.asarray(weights[0] ) lowerCamelCase_ = np.asarray(weights[1] ) lowerCamelCase_ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key ,torch.tensor(__UpperCamelCase ).transpose(1 ,2 ).contiguous().view(-1 ,__UpperCamelCase ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(__UpperCamelCase ).transpose(1 ,2 ).contiguous().view(-1 ,__UpperCamelCase ) ,) set_param( torch_layer.output.dense ,torch.tensor(__UpperCamelCase ).view(-1 ,__UpperCamelCase ).contiguous().transpose(0 ,1 ) ,) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> List[str]: # set torch weights for 1-to-1 comparison lowerCamelCase_ = np.asarray(weights[0] ) lowerCamelCase_ = np.asarray(weights[1] ) lowerCamelCase_ = np.asarray(weights[2] ) lowerCamelCase_ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query ,torch.tensor(__UpperCamelCase ).transpose(1 ,2 ).contiguous().view(-1 ,__UpperCamelCase ) ,) set_param( torch_layer.self_attention.key ,torch.tensor(__UpperCamelCase ).transpose(1 ,2 ).contiguous().view(-1 ,__UpperCamelCase ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(__UpperCamelCase ).transpose(1 ,2 ).contiguous().view(-1 ,__UpperCamelCase ) ,) set_param( torch_layer.output.dense ,torch.tensor(__UpperCamelCase ).view(-1 ,__UpperCamelCase ).contiguous().transpose(0 ,1 ) ,) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[int]: # layernorm 1 lowerCamelCase_ = weights[0][0][0] lowerCamelCase_ = np.asarray(layer_norm_a[0] ) lowerCamelCase_ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm ,torch.tensor(__UpperCamelCase ) ,torch.tensor(__UpperCamelCase ) ,) # lsh weights + output lowerCamelCase_ = weights[0][1] if len(__UpperCamelCase ) < 4: set_layer_weights_in_torch_lsh(__UpperCamelCase ,torch_block.attention ,__UpperCamelCase ) else: set_layer_weights_in_torch_local(__UpperCamelCase ,torch_block.attention ,__UpperCamelCase ) # intermediate weighs lowerCamelCase_ = weights[2][0][1][2] # Chunked Feed Forward if len(__UpperCamelCase ) == 4: lowerCamelCase_ = intermediate_weights[2] # layernorm 2 lowerCamelCase_ = np.asarray(intermediate_weights[0][0] ) lowerCamelCase_ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm ,torch.tensor(__UpperCamelCase ) ,torch.tensor(__UpperCamelCase ) ,) # intermediate dense lowerCamelCase_ = np.asarray(intermediate_weights[1][0] ) lowerCamelCase_ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense ,torch.tensor(__UpperCamelCase ).transpose(0 ,1 ).contiguous() ,torch.tensor(__UpperCamelCase ) ,) # intermediate out lowerCamelCase_ = np.asarray(intermediate_weights[4][0] ) lowerCamelCase_ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense ,torch.tensor(__UpperCamelCase ).transpose(0 ,1 ).contiguous() ,torch.tensor(__UpperCamelCase ) ,) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict: # reformer model lowerCamelCase_ = torch_model.reformer # word embeds lowerCamelCase_ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings ,torch.tensor(__UpperCamelCase ) ,) if isinstance(weights[3] ,__UpperCamelCase ): lowerCamelCase_ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): lowerCamelCase_ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'''{position_embeddings[emb_idx]} emb does not match''' lowerCamelCase_ = nn.Parameter(torch.tensor(__UpperCamelCase ) ) lowerCamelCase_ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( __UpperCamelCase ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): lowerCamelCase_ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # output layer norm lowerCamelCase_ = np.asarray(weights[7][0] ) lowerCamelCase_ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm ,torch.tensor(__UpperCamelCase ) ,torch.tensor(__UpperCamelCase ) ,) # output embeddings lowerCamelCase_ = np.asarray(weights[9][0] ) lowerCamelCase_ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder ,torch.tensor(__UpperCamelCase ).transpose(0 ,1 ).contiguous() ,torch.tensor(__UpperCamelCase ) ,) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int: # Initialise PyTorch model lowerCamelCase_ = ReformerConfig.from_json_file(__UpperCamelCase ) print(f'''Building PyTorch model from configuration: {config}''' ) lowerCamelCase_ = ReformerModelWithLMHead(__UpperCamelCase ) with open(__UpperCamelCase ,'rb' ) as f: lowerCamelCase_ = pickle.load(__UpperCamelCase )['weights'] set_model_weights_in_torch(__UpperCamelCase ,__UpperCamelCase ,config.hidden_size ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() ,__UpperCamelCase ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
42
from __future__ import annotations def a_ ( lowerCAmelCase_ : list[float] ): if len(lowerCAmelCase_ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) __lowerCAmelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
0
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _a ( unittest.TestCase ): def __init__( self: List[str] , UpperCamelCase_: Tuple , UpperCamelCase_: bool = True , UpperCamelCase_: Dict[str, int] = None , UpperCamelCase_: int = 32 , UpperCamelCase_: bool = True , UpperCamelCase_: Union[int, float] = 1 / 255 , UpperCamelCase_: bool = True , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[Union[float, List[float]]] = [0.48145466, 0.4578275, 0.40821073] , UpperCamelCase_: Optional[Union[float, List[float]]] = [0.26862954, 0.26130258, 0.27577711] , UpperCamelCase_: bool = True , UpperCamelCase_: Tuple=7 , UpperCamelCase_: Union[str, Any]=30 , UpperCamelCase_: Optional[int]=400 , UpperCamelCase_: List[str]=3 , ) -> Tuple: """simple docstring""" lowercase__ = parent lowercase__ = do_resize lowercase__ = size if size is not None else {'''shortest_edge''': 288} lowercase__ = size_divisor lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = do_normalize lowercase__ = do_center_crop lowercase__ = image_mean lowercase__ = image_std lowercase__ = do_pad lowercase__ = batch_size lowercase__ = num_channels lowercase__ = min_resolution lowercase__ = max_resolution def lowerCamelCase_ ( self: Tuple ) -> str: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Union[str, Any]=False ) -> str: """simple docstring""" if not batched: lowercase__ = self.size['''shortest_edge'''] lowercase__ = image_inputs[0] if isinstance(UpperCamelCase_ , Image.Image ): lowercase__ , lowercase__ = image.size else: lowercase__ , lowercase__ = image.shape[1], image.shape[2] lowercase__ = size / min(UpperCamelCase_ , UpperCamelCase_ ) if h < w: lowercase__ , lowercase__ = size, scale * w else: lowercase__ , lowercase__ = scale * h, size lowercase__ = int((1_333 / 800) * size ) if max(UpperCamelCase_ , UpperCamelCase_ ) > max_size: lowercase__ = max_size / max(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = newh * scale lowercase__ = neww * scale lowercase__ , lowercase__ = int(newh + 0.5 ), int(neww + 0.5 ) lowercase__ , lowercase__ = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: lowercase__ = [] for image in image_inputs: lowercase__ , lowercase__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase__ = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[0] )[0] lowercase__ = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[Any] = BridgeTowerImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self: int ) -> Tuple: """simple docstring""" lowercase__ = BridgeTowerImageProcessingTester(self ) @property def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size_divisor''' ) ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" pass def lowerCamelCase_ ( self: Union[str, Any] ) -> Tuple: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase__ = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
43
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Union[str, Any]=1_0 , lowerCAmelCase_ : List[str]=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple="relu" , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : Optional[int]=None , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = embeddings_size __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_act __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = len(lowerCAmelCase_ ) def lowercase ( self : Optional[int] ) -> List[Any]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def lowercase ( self : Tuple ) -> List[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] ) -> str: __lowerCAmelCase = FlaxRegNetModel(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowercase ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int ) -> Tuple: __lowerCAmelCase = self.num_labels __lowerCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () a_ = False a_ = False a_ = False def lowercase ( self : Dict ) -> None: __lowerCAmelCase = FlaxRegNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : int ) -> Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : str ) -> Union[str, Any]: return def lowercase ( self : Dict ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def lowercase ( self : Union[str, Any] ) -> Any: pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def lowercase ( self : Tuple ) -> Tuple: pass def lowercase ( self : Optional[Any] ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: def check_hidden_states_output(lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : str ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Dict ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('JIT Enabled' ): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def a_ ( ): __lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : Union[str, Any] ) -> Optional[Any]: return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def lowercase ( self : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCAmelCase_ , return_tensors='np' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) # verify the logits __lowerCAmelCase = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
0
'''simple docstring''' import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class UpperCAmelCase__ ( A ): def lowerCamelCase_ ( self : Optional[int],__A : str ): with open(__A,encoding="utf-8" ) as input_file: _lowerCamelCase : List[str] = re.compile(r"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) _lowerCamelCase : List[str] = input_file.read() _lowerCamelCase : Union[str, Any] = regexp.search(__A ) return match def lowerCamelCase_ ( self : List[str],__A : str ): with open(__A,encoding="utf-8" ) as input_file: _lowerCamelCase : List[Any] = re.compile(r"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()",re.DOTALL ) _lowerCamelCase : int = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` _lowerCamelCase : Optional[Any] = regexp.finditer(__A ) _lowerCamelCase : Optional[Any] = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def lowerCamelCase_ ( self : Tuple ): _lowerCamelCase : str = Path("./datasets" ) _lowerCamelCase : Optional[Any] = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__A ) ): raise AssertionError(f'open(...) must use utf-8 encoding in {dataset}' ) def lowerCamelCase_ ( self : List[Any] ): _lowerCamelCase : Any = Path("./datasets" ) _lowerCamelCase : Union[str, Any] = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(__A ) ): raise AssertionError(f'print statement found in {dataset}. Use datasets.logger/logging instead.' )
44
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process _snake_case : Optional[int] = logging.getLogger(__name__) _snake_case : Dict = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) _snake_case : List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(_UpperCamelCase )} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a_ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def lowercase ( self : List[Any] ) -> List[Any]: if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path' ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ = field(default=_UpperCamelCase , metadata={"""help""": """The input training data file (a text file)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a_ = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a_ = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def lowercase ( self : int ) -> int: if self.train_file is not None: __lowerCAmelCase = self.train_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __lowerCAmelCase = self.validation_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Union[str, Any] ): with open(lowerCAmelCase_, 'r', encoding='utf-8' ) as f: __lowerCAmelCase = [json.loads(lowerCAmelCase_ ) for line in f.read().splitlines() if (len(lowerCAmelCase_ ) > 0 and not line.isspace())] assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) __lowerCAmelCase = {c: dataset[c] for c in dataset.column_names} __lowerCAmelCase = refs return Dataset.from_dict(lowerCAmelCase_ ) def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s', lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset(data_args.dataset_name, data_args.dataset_config_name ) if "validation" not in datasets.keys(): __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[:{data_args.validation_split_percentage}%]""", ) __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[{data_args.validation_split_percentage}%:]""", ) else: __lowerCAmelCase = {} if data_args.train_file is not None: __lowerCAmelCase = data_args.train_file if data_args.validation_file is not None: __lowerCAmelCase = data_args.validation_file __lowerCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": __lowerCAmelCase = 'text' __lowerCAmelCase = load_dataset(lowerCAmelCase_, data_files=lowerCAmelCase_ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.config_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: __lowerCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: __lowerCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path, from_tf=bool('.ckpt' in model_args.model_name_or_path ), config=lowerCAmelCase_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info('Training new model from scratch' ) __lowerCAmelCase = AutoModelForMaskedLM.from_config(lowerCAmelCase_ ) model.resize_token_embeddings(len(lowerCAmelCase_ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __lowerCAmelCase = datasets['train'].column_names else: __lowerCAmelCase = datasets['validation'].column_names __lowerCAmelCase = 'text' if 'text' in column_names else column_names[0] __lowerCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(lowerCAmelCase_ : str ): # Remove empty lines __lowerCAmelCase = [line for line in examples['text'] if len(lowerCAmelCase_ ) > 0 and not line.isspace()] return tokenizer(examples['text'], padding=lowerCAmelCase_, truncation=lowerCAmelCase_, max_length=data_args.max_seq_length ) __lowerCAmelCase = datasets.map( lowerCAmelCase_, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, remove_columns=[text_column_name], load_from_cache_file=not data_args.overwrite_cache, ) # Add the chinese references if provided if data_args.train_ref_file is not None: __lowerCAmelCase = add_chinese_references(tokenized_datasets['train'], data_args.train_ref_file ) if data_args.validation_ref_file is not None: __lowerCAmelCase = add_chinese_references( tokenized_datasets['validation'], data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __lowerCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: __lowerCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. __lowerCAmelCase = DataCollatorForWholeWordMask(tokenizer=lowerCAmelCase_, mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowerCAmelCase = Trainer( model=lowerCAmelCase_, args=lowerCAmelCase_, train_dataset=tokenized_datasets['train'] if training_args.do_train else None, eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None, tokenizer=lowerCAmelCase_, data_collator=lowerCAmelCase_, ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload __lowerCAmelCase = os.path.join(training_args.output_dir, 'train_results.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir, 'trainer_state.json' ) ) # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = math.exp(eval_output['eval_loss'] ) __lowerCAmelCase = perplexity __lowerCAmelCase = os.path.join(training_args.output_dir, 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def a_ ( lowerCAmelCase_ : Tuple ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
53
0
from PIL import Image def A ( lowercase__ : Image , lowercase__ : float ) -> Image: def brightness(lowercase__ : int ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(lowercase__ ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change brightness to 100 UpperCamelCase = change_brightness(img, 100) brigt_img.save("image_data/lena_brightness.png", format="png")
45
def a_ ( lowerCAmelCase_ : int = 200_0000 ): __lowerCAmelCase = [0 for i in range(n + 1 )] __lowerCAmelCase = 1 __lowerCAmelCase = 1 for i in range(2, int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i, n + 1, lowerCAmelCase_ ): __lowerCAmelCase = 1 __lowerCAmelCase = 0 for i in range(lowerCAmelCase_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"""{solution() = }""")
53
0
"""simple docstring""" import string from math import logaa def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Tuple = document.translate( str.maketrans("" , "" , string.punctuation ) ).replace("\n" , "" ) _lowerCamelCase : Optional[Any] = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> tuple[int, int]: '''simple docstring''' _lowerCamelCase : Dict = corpus.lower().translate( str.maketrans("" , "" , string.punctuation ) ) # strip all punctuation and replace it with '' _lowerCamelCase : Optional[Any] = corpus_without_punctuation.split("\n" ) _lowerCamelCase : Any = term.lower() return (len([doc for doc in docs if term in doc] ), len(_lowerCamelCase )) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) -> float: '''simple docstring''' if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) , 3 ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' return round(tf * idf , 3 )
46
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _snake_case : Tuple = logging.getLogger() _snake_case : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Any , lowerCAmelCase_ : Dict ) -> Optional[int]: os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowerCAmelCase = {'source': 'What is love ?', 'target': 'life'} __lowerCAmelCase = {'train': 1_2, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: __lowerCAmelCase = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(lowerCAmelCase_ , f"""{split}.{field}""" ) , 'w' ) as f: f.write(lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : str = "pytorch" ) -> List[str]: __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'output' ) __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'data' ) self._create_dummy_data(data_dir=lowerCAmelCase_ ) __lowerCAmelCase = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) __lowerCAmelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowerCAmelCase_ , env=self.get_env() ) __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'metrics.json' ) with open(lowerCAmelCase_ ) as f: __lowerCAmelCase = json.load(lowerCAmelCase_ ) return result @require_torch_gpu def lowercase ( self : str ) -> int: __lowerCAmelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def lowercase ( self : List[str] ) -> Dict: __lowerCAmelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def lowercase ( self : int ) -> Tuple: __lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def lowercase ( self : List[Any] ) -> str: __lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
53
0
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = {} def UpperCAmelCase__ ( lowerCamelCase_ : type , lowerCamelCase_ : Optional[str] , lowerCamelCase_ : Optional[List[str]] = None , ): __a : str = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' ) __a : Tuple = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' ) __a : Dict = format_type def UpperCAmelCase__ ( lowerCamelCase_ : Exception , lowerCamelCase_ : Optional[str] , lowerCamelCase_ : Optional[List[str]] = None ): __a : List[Any] = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): __a : int = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['''python''']) _register_formatter(ArrowFormatter, '''arrow''', aliases=['''pa''', '''pyarrow''']) _register_formatter(NumpyFormatter, '''numpy''', aliases=['''np''']) _register_formatter(PandasFormatter, '''pandas''', aliases=['''pd''']) _register_formatter(CustomFormatter, '''custom''') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, '''torch''', aliases=['''pt''', '''pytorch''']) else: SCREAMING_SNAKE_CASE__ = ValueError('''PyTorch needs to be installed to be able to return PyTorch tensors.''') _register_unavailable_formatter(_torch_error, '''torch''', aliases=['''pt''', '''pytorch''']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, '''tensorflow''', aliases=['''tf''']) else: SCREAMING_SNAKE_CASE__ = ValueError('''Tensorflow needs to be installed to be able to return Tensorflow tensors.''') _register_unavailable_formatter(_tf_error, '''tensorflow''', aliases=['''tf''']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, '''jax''', aliases=[]) else: SCREAMING_SNAKE_CASE__ = ValueError('''JAX needs to be installed to be able to return JAX arrays.''') _register_unavailable_formatter(_jax_error, '''jax''', aliases=[]) def UpperCAmelCase__ ( lowerCamelCase_ : Optional[str] ): if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def UpperCAmelCase__ ( lowerCamelCase_ : Optional[str] , **lowerCamelCase_ : Union[str, Any] ): __a : Optional[int] = get_format_type_from_alias(lowerCamelCase_ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**lowerCamelCase_ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
47
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]="resnet50" , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Optional[Any]=True , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = out_indices if out_indices is not None else [4] __lowerCAmelCase = stage_names __lowerCAmelCase = out_features __lowerCAmelCase = backbone __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = use_pretrained_backbone __lowerCAmelCase = is_training def lowercase ( self : List[str] ) -> Any: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def lowercase ( self : List[Any] ) -> Union[str, Any]: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase ( self : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ) -> int: __lowerCAmelCase = TimmBackbone(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 1_4, 1_4) , ) def lowercase ( self : List[str] ) -> str: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (TimmBackbone,) if is_torch_available() else () a_ = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Tuple ) -> int: __lowerCAmelCase = TimmBackboneModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : Dict ) -> List[str]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Union[str, Any] ) -> Optional[int]: __lowerCAmelCase = 'resnet18' __lowerCAmelCase = 'microsoft/resnet-18' __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ , out_indices=[1, 2, 3] ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def lowercase ( self : List[str] ) -> Tuple: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def lowercase ( self : Dict ) -> int: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def lowercase ( self : str ) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase ( self : Any ) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase ( self : Optional[int] ) -> Optional[Any]: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def lowercase ( self : Dict ) -> Any: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Any ) -> Optional[int]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase ( self : Union[str, Any] ) -> Tuple: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase ( self : List[str] ) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Dict ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Tuple ) -> List[str]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def lowercase ( self : int ) -> Optional[int]: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def lowercase ( self : Union[str, Any] ) -> str: pass @unittest.skip('Safetensors is not supported by timm.' ) def lowercase ( self : Dict ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : List[str] ) -> Optional[Any]: pass def lowercase ( self : Union[str, Any] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = self.has_attentions # no need to test all models as different heads yield the same functionality __lowerCAmelCase = self.all_model_classes[0] __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = outputs[0][-1] # Encoder-/Decoder-only models __lowerCAmelCase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowerCAmelCase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowerCAmelCase_ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) __lowerCAmelCase = None __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) __lowerCAmelCase = False __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ )
53
0
'''simple docstring''' import colorsys from PIL import Image # type: ignore def A ( UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : int ) -> float: '''simple docstring''' lowerCAmelCase__ = x lowerCAmelCase__ = y for step in range(UpperCamelCase_ ): # noqa: B007 lowerCAmelCase__ = a * a - b * b + x lowerCAmelCase__ = 2 * a * b + y lowerCAmelCase__ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def A ( UpperCamelCase_ : float ) -> tuple: '''simple docstring''' if distance == 1: return (0, 0, 0) else: return (2_55, 2_55, 2_55) def A ( UpperCamelCase_ : float ) -> tuple: '''simple docstring''' if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_55 ) for i in colorsys.hsv_to_rgb(UpperCamelCase_ , 1 , 1 ) ) def A ( UpperCamelCase_ : int = 8_00 , UpperCamelCase_ : int = 6_00 , UpperCamelCase_ : float = -0.6 , UpperCamelCase_ : float = 0 , UpperCamelCase_ : float = 3.2 , UpperCamelCase_ : int = 50 , UpperCamelCase_ : bool = True , ) -> Image.Image: '''simple docstring''' lowerCAmelCase__ = Image.new("RGB" , (image_width, image_height) ) lowerCAmelCase__ = img.load() # loop through the image-coordinates for image_x in range(UpperCamelCase_ ): for image_y in range(UpperCamelCase_ ): # determine the figure-coordinates based on the image-coordinates lowerCAmelCase__ = figure_width / image_width * image_height lowerCAmelCase__ = figure_center_x + (image_x / image_width - 0.5) * figure_width lowerCAmelCase__ = figure_center_y + (image_y / image_height - 0.5) * figure_height lowerCAmelCase__ = get_distance(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: lowerCAmelCase__ = get_color_coded_rgb(UpperCamelCase_ ) else: lowerCAmelCase__ = get_black_and_white_rgb(UpperCamelCase_ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure UpperCAmelCase__ : List[str] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
48
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def a_ ( lowerCAmelCase_ : str=None ): if subparsers is not None: __lowerCAmelCase = subparsers.add_parser('env' ) else: __lowerCAmelCase = argparse.ArgumentParser('Accelerate env command' ) parser.add_argument( '--config_file', default=lowerCAmelCase_, help='The config file to use for the default values in the launching script.' ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def a_ ( lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = torch.__version__ __lowerCAmelCase = torch.cuda.is_available() __lowerCAmelCase = is_xpu_available() __lowerCAmelCase = is_npu_available() __lowerCAmelCase = 'Not found' # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowerCAmelCase_ ): __lowerCAmelCase = load_config_from_file(args.config_file ).to_dict() __lowerCAmelCase = { '`Accelerate` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Numpy version': np.__version__, 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'PyTorch XPU available': str(lowerCAmelCase_ ), 'PyTorch NPU available': str(lowerCAmelCase_ ), 'System RAM': F"""{psutil.virtual_memory().total / 1024 ** 3:.2f} GB""", } if pt_cuda_available: __lowerCAmelCase = torch.cuda.get_device_name() print('\nCopy-and-paste the text below in your GitHub issue\n' ) print('\n'.join([F"""- {prop}: {val}""" for prop, val in info.items()] ) ) print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:' ) __lowerCAmelCase = ( '\n'.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else F"""\t{accelerate_config}""" ) print(lowerCAmelCase_ ) __lowerCAmelCase = accelerate_config return info def a_ ( ): __lowerCAmelCase = env_command_parser() __lowerCAmelCase = parser.parse_args() env_command(lowerCAmelCase_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
53
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = ['PoolFormerFeatureExtractor'] _lowercase : Any = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
49
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a_ ( ): __lowerCAmelCase = ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores', type=lowerCAmelCase_, default=1, help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script', type=lowerCAmelCase_, help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ), ) # rest from the training program parser.add_argument('training_script_args', nargs=lowerCAmelCase_ ) return parser.parse_args() def a_ ( ): __lowerCAmelCase = parse_args() # Import training_script as a module. __lowerCAmelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __lowerCAmelCase = script_fpath.stem __lowerCAmelCase = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv __lowerCAmelCase = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores ) if __name__ == "__main__": main()
53
0
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=3 ,_lowerCAmelCase=32 ,_lowerCAmelCase=3 ,_lowerCAmelCase=10 ,_lowerCAmelCase=[8, 16, 32, 64] ,_lowerCAmelCase=[1, 1, 2, 1] ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase="relu" ,_lowerCAmelCase=3 ,_lowerCAmelCase=None ,_lowerCAmelCase=["stage2", "stage3", "stage4"] ,_lowerCAmelCase=[2, 3, 4] ,_lowerCAmelCase=1 ,): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = image_size lowerCamelCase__ = num_channels lowerCamelCase__ = embeddings_size lowerCamelCase__ = hidden_sizes lowerCamelCase__ = depths lowerCamelCase__ = is_training lowerCamelCase__ = use_labels lowerCamelCase__ = hidden_act lowerCamelCase__ = num_labels lowerCamelCase__ = scope lowerCamelCase__ = len(_lowerCAmelCase ) lowerCamelCase__ = out_features lowerCamelCase__ = out_indices lowerCamelCase__ = num_groups def UpperCamelCase_ ( self ): lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] ,self.num_labels ) lowerCamelCase__ = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self ): return BitConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,out_features=self.out_features ,out_indices=self.out_indices ,num_groups=self.num_groups ,) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = BitModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = self.num_labels lowerCamelCase__ = BitForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = model(_lowerCAmelCase ,labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = BitBackbone(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = model(_lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCamelCase__ = None lowerCamelCase__ = BitBackbone(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = model(_lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = config_and_inputs lowerCamelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ (a ,a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () _UpperCamelCase = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def UpperCamelCase_ ( self ): lowerCamelCase__ = BitModelTester(self ) lowerCamelCase__ = ConfigTester(self ,config_class=_lowerCAmelCase ,has_text_modality=_lowerCAmelCase ) def UpperCamelCase_ ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self ): return @unittest.skip(reason="""Bit does not output attentions""" ) def UpperCamelCase_ ( self ): pass @unittest.skip(reason="""Bit does not use inputs_embeds""" ) def UpperCamelCase_ ( self ): pass @unittest.skip(reason="""Bit does not support input and output embeddings""" ) def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ = [*signature.parameters.keys()] lowerCamelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(config=_lowerCAmelCase ) for name, module in model.named_modules(): if isinstance(_lowerCAmelCase ,(nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) ,msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' ,) self.assertTrue( torch.all(module.bias == 0 ) ,msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' ,) def UpperCamelCase_ ( self ): def check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowerCamelCase__ = model(**self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) ) lowerCamelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase__ = self.model_tester.num_stages self.assertEqual(len(_lowerCAmelCase ) ,expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = ["""preactivation""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCamelCase__ = layer_type lowerCamelCase__ = True check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ = True check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) @unittest.skip(reason="""Bit does not use feedforward chunking""" ) def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def UpperCamelCase_ ( self ): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = BitModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self ): lowerCamelCase__ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_lowerCAmelCase ) lowerCamelCase__ = self.default_image_processor lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(images=_lowerCAmelCase ,return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowerCamelCase__ = model(**_lowerCAmelCase ) # verify the logits lowerCamelCase__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape ,_lowerCAmelCase ) lowerCamelCase__ = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_lowerCAmelCase ,atol=1E-4 ) ) @require_torch class UpperCamelCase__ (a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = (BitBackbone,) if is_torch_available() else () _UpperCamelCase = BitConfig _UpperCamelCase = False def UpperCamelCase_ ( self ): lowerCamelCase__ = BitModelTester(self )
50
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict=1_3 , lowerCAmelCase_ : str=3_2 , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : str=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Tuple=[2, 2, 3, 2] , lowerCAmelCase_ : str=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[int]=3_7 , lowerCAmelCase_ : Dict="gelu" , lowerCAmelCase_ : List[Any]=1_0 , lowerCAmelCase_ : str=0.02 , lowerCAmelCase_ : Dict=["stage2", "stage3", "stage4"] , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : List[Any]=None , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = num_stages __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = out_features __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = num_stages def lowercase ( self : Dict ) -> List[str]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase ( self : List[str] ) -> Union[str, Any]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowercase ( self : Dict ) -> List[str]: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_1_2 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=lowerCAmelCase_ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=4_0 , auxiliary_channels=2_5_6 , auxiliary_num_convs=1 , auxiliary_concat_input=lowerCAmelCase_ , loss_ignore_index=2_5_5 , num_labels=self.num_labels , ) def lowercase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int ) -> Optional[Any]: __lowerCAmelCase = UperNetForSemanticSegmentation(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase ( self : Union[str, Any] ) -> Union[str, Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (UperNetForSemanticSegmentation,) if is_torch_available() else () a_ = {"""image-segmentation""": UperNetForSemanticSegmentation} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Optional[int] ) -> Dict: __lowerCAmelCase = UperNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : List[str] ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Tuple ) -> Union[str, Any]: return def lowercase ( self : Optional[int] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase_ ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def lowercase ( self : Optional[int] ) -> Dict: pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def lowercase ( self : Optional[Any] ) -> Dict: pass @unittest.skip(reason='UperNet does not have a base model' ) def lowercase ( self : Optional[int] ) -> List[Any]: pass @unittest.skip(reason='UperNet does not have a base model' ) def lowercase ( self : str ) -> Dict: pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowercase ( self : Optional[Any] ) -> Optional[int]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : Tuple ) -> List[Any]: pass def lowercase ( self : Union[str, Any] ) -> Tuple: def check_hidden_states_output(lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Any ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = _config_zero_init(lowerCAmelCase_ ) __lowerCAmelCase = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __lowerCAmelCase = model_class(config=lowerCAmelCase_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='UperNet does not have tied weights' ) def lowercase ( self : Any ) -> int: pass @slow def lowercase ( self : Optional[int] ) -> Optional[int]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def a_ ( ): __lowerCAmelCase = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k', repo_type='dataset', filename='ADE_val_00000001.jpg' ) __lowerCAmelCase = Image.open(lowerCAmelCase_ ).convert('RGB' ) return image @require_torch @require_vision @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Dict ) -> Union[str, Any]: __lowerCAmelCase = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(lowerCAmelCase_ ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(lowerCAmelCase_ ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
0
'''simple docstring''' def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Dict: """simple docstring""" if not head: return True # split the list to two parts UpperCAmelCase, UpperCAmelCase = head.next, head while fast and fast.next: UpperCAmelCase = fast.next.next UpperCAmelCase = slow.next UpperCAmelCase = slow.next UpperCAmelCase = None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase = None while second: UpperCAmelCase = second.next UpperCAmelCase = node UpperCAmelCase = second UpperCAmelCase = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase = node.next UpperCAmelCase = head.next return True def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Union[str, Any]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase = UpperCAmelCase = UpperCAmelCase = head while fast and fast.next: UpperCAmelCase, UpperCAmelCase = fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase = [slow.val] while slow.next: UpperCAmelCase = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase = cur.next return True def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple: """simple docstring""" if not head or not head.next: return True UpperCAmelCase = {} UpperCAmelCase = 0 while head: if head.val in d: d[head.val].append(SCREAMING_SNAKE_CASE_ ) else: UpperCAmelCase = [pos] UpperCAmelCase = head.next pos += 1 UpperCAmelCase = pos - 1 UpperCAmelCase = 0 for v in d.values(): if len(SCREAMING_SNAKE_CASE_ ) % 2 != 0: middle += 1 else: UpperCAmelCase = 0 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): if v[i] + v[len(SCREAMING_SNAKE_CASE_ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
51
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Optional[Any] ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : int ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_, keep_in_memory=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Dict, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, features=lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Any ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_, split=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type', [str, list] ) def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : Any, lowerCAmelCase_ : Dict ): if issubclass(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = text_path elif issubclass(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = [text_path] __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : int, lowerCAmelCase_ : Tuple=("train",) ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) for split in splits: __lowerCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def a_ ( lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Dict ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = TextDatasetReader({'train': text_path}, cache_dir=lowerCAmelCase_, keep_in_memory=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = TextDatasetReader({'train': text_path}, features=lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : Optional[int] ): if split: __lowerCAmelCase = {split: text_path} else: __lowerCAmelCase = 'train' __lowerCAmelCase = {'train': text_path, 'test': text_path} __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
53
0
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": A = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') A = F'https://www.google.com/search?q={query}&num=100' A = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: A = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: A = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
52
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case : Union[str, Any] = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : int=False ): __lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Optional[int]=False ): for i in range(config.num_hidden_layers ): if base_model: __lowerCAmelCase = '' else: __lowerCAmelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] __lowerCAmelCase = in_proj_bias[: config.hidden_size] __lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase = in_proj_bias[-config.hidden_size :] def a_ ( lowerCAmelCase_ : List[str] ): __lowerCAmelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Optional[Any]=True ): __lowerCAmelCase = ViTConfig() # patch_size if model_name[-1] == "8": __lowerCAmelCase = 8 # set labels if required if not base_model: __lowerCAmelCase = 1000 __lowerCAmelCase = 'huggingface/label-files' __lowerCAmelCase = 'imagenet-1k-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 6 # load original model from torch hub __lowerCAmelCase = torch.hub.load('facebookresearch/dino:main', lowerCAmelCase_ ) original_model.eval() # load state_dict of original model, remove and rename some keys __lowerCAmelCase = original_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase_ ) __lowerCAmelCase = create_rename_keys(lowerCAmelCase_, base_model=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # load HuggingFace model if base_model: __lowerCAmelCase = ViTModel(lowerCAmelCase_, add_pooling_layer=lowerCAmelCase_ ).eval() else: __lowerCAmelCase = ViTForImageClassification(lowerCAmelCase_ ).eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor __lowerCAmelCase = ViTImageProcessor() __lowerCAmelCase = image_processor(images=prepare_img(), return_tensors='pt' ) __lowerCAmelCase = encoding['pixel_values'] __lowerCAmelCase = model(lowerCAmelCase_ ) if base_model: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_, outputs.last_hidden_state[:, 0, :], atol=1E-1 ) else: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase_, outputs.logits, atol=1E-3 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) _snake_case : List[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
53
0
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __lowercase : List[Any] =logging.get_logger(__name__) class A ( __lowercase ): def __init__( self: List[Any] , *_lowerCAmelCase: Optional[Any] , **_lowerCAmelCase: List[str] ) -> None: '''simple docstring''' warnings.warn( "The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use GLPNImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
54
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : str ) -> Any: __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : Tuple ) -> Optional[int]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : List[Any] ) -> int: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : str ) -> str: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[str]: # pass variant but use the non-variant filenames __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> Union[str, Any]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : List[str] ) -> List[Any]: # pass variant but use the non-variant filenames __lowerCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) )
53
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = 1 @register_to_config def __init__( self : List[Any] ,A : str=20_00 ,A : str=0.1 ,A : List[str]=20 ,A : int=1E-3 ): __A = None __A = None __A = None def UpperCamelCase_ ( self : List[str] ,A : List[str] ,A : Union[str, torch.device] = None ): __A = torch.linspace(1 ,self.config.sampling_eps ,A ,device=A ) def UpperCamelCase_ ( self : Dict ,A : List[Any] ,A : Optional[Any] ,A : Union[str, Any] ,A : Union[str, Any]=None ): if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __A = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __A = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __A = std.flatten() while len(std.shape ) < len(score.shape ): __A = std.unsqueeze(-1 ) __A = -score / std # compute __A = -1.0 / len(self.timesteps ) __A = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __A = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __A = beta_t.unsqueeze(-1 ) __A = -0.5 * beta_t * x __A = torch.sqrt(A ) __A = drift - diffusion**2 * score __A = x + drift * dt # add noise __A = randn_tensor(x.shape ,layout=x.layout ,generator=A ,device=x.device ,dtype=x.dtype ) __A = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Optional[Any] ): return self.config.num_train_timesteps
55
import math def a_ ( lowerCAmelCase_ : list, lowerCAmelCase_ : int ): __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) __lowerCAmelCase = 0 while arr[min(lowerCAmelCase_, lowerCAmelCase_ ) - 1] < x: __lowerCAmelCase = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: __lowerCAmelCase = prev + 1 if prev == min(lowerCAmelCase_, lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": _snake_case : List[str] = input('Enter numbers separated by a comma:\n').strip() _snake_case : Optional[Any] = [int(item) for item in user_input.split(',')] _snake_case : List[str] = int(input('Enter the number to be searched:\n')) _snake_case : Optional[int] = jump_search(arr, x) if res == -1: print('Number not found!') else: print(F"""Number {x} is at index {res}""")
53
0
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def _a (lowercase__ : Dict="ro" , lowercase__ : Any="en" , lowercase__ : Dict="wmt16" , lowercase__ : str=None ) -> None: """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('run pip install datasets' ) __snake_case = f'{src_lang}-{tgt_lang}' print(f'Converting {dataset}-{pair}' ) __snake_case = datasets.load_dataset(lowercase__ , lowercase__ ) if save_dir is None: __snake_case = f'{dataset}-{pair}' __snake_case = Path(lowercase__ ) save_dir.mkdir(exist_ok=lowercase__ ) for split in ds.keys(): print(f'Splitting {split} with {ds[split].num_rows} records' ) # to save to val.source, val.target like summary datasets __snake_case = 'val' if split == 'validation' else split __snake_case = save_dir.joinpath(f'{fn}.source' ) __snake_case = save_dir.joinpath(f'{fn}.target' ) __snake_case = src_path.open('w+' ) __snake_case = tgt_path.open('w+' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __snake_case = x['translation'] src_fp.write(ex[src_lang] + '\n' ) tgt_fp.write(ex[tgt_lang] + '\n' ) print(f'Saved {dataset} dataset to {save_dir}' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
56
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[Any], lowerCAmelCase_ : str ): # Initialise PyTorch model __lowerCAmelCase = RemBertConfig.from_json_file(lowerCAmelCase_ ) print('Building PyTorch model from configuration: {}'.format(str(lowerCAmelCase_ ) ) ) __lowerCAmelCase = RemBertModel(lowerCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Save pytorch-model print('Save PyTorch model to {}'.format(lowerCAmelCase_ ) ) torch.save(model.state_dict(), lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : int = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
53
0
from __future__ import annotations def snake_case (UpperCAmelCase__ = 4 ) -> list[list[int]]: UpperCamelCase_: int = abs(UpperCAmelCase__ ) or 4 return [[1 + x + y * row_size for x in range(UpperCAmelCase__ )] for y in range(UpperCAmelCase__ )] def snake_case (UpperCAmelCase__ ) -> list[list[int]]: return reverse_row(transpose(UpperCAmelCase__ ) ) # OR.. transpose(reverse_column(matrix)) def snake_case (UpperCAmelCase__ ) -> list[list[int]]: return reverse_row(reverse_column(UpperCAmelCase__ ) ) # OR.. reverse_column(reverse_row(matrix)) def snake_case (UpperCAmelCase__ ) -> list[list[int]]: return reverse_column(transpose(UpperCAmelCase__ ) ) # OR.. transpose(reverse_row(matrix)) def snake_case (UpperCAmelCase__ ) -> list[list[int]]: UpperCamelCase_: Dict = [list(UpperCAmelCase__ ) for x in zip(*UpperCAmelCase__ )] return matrix def snake_case (UpperCAmelCase__ ) -> list[list[int]]: UpperCamelCase_: int = matrix[::-1] return matrix def snake_case (UpperCAmelCase__ ) -> list[list[int]]: UpperCamelCase_: Union[str, Any] = [x[::-1] for x in matrix] return matrix def snake_case (UpperCAmelCase__ ) -> None: for i in matrix: print(*UpperCAmelCase__ ) if __name__ == "__main__": A_ : Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) A_ : Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) A_ : int = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
57
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _snake_case : Any = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224', out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) __lowerCAmelCase = MaskFormerConfig(backbone_config=lowerCAmelCase_ ) __lowerCAmelCase = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok __lowerCAmelCase = 847 __lowerCAmelCase = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok __lowerCAmelCase = 150 __lowerCAmelCase = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok __lowerCAmelCase = 171 __lowerCAmelCase = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO __lowerCAmelCase = 133 __lowerCAmelCase = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok __lowerCAmelCase = 19 __lowerCAmelCase = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok __lowerCAmelCase = 65 __lowerCAmelCase = 'mapillary-vistas-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} return config def a_ ( lowerCAmelCase_ : Tuple ): __lowerCAmelCase = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') ) for source_index, target_index in zip(range(3, 0, -1 ), range(0, 3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') ) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') ) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') ) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') ) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Tuple ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int ): __lowerCAmelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowerCAmelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[:dim, :] __lowerCAmelCase = in_proj_bias[: dim] __lowerCAmelCase = in_proj_weight[ dim : dim * 2, : ] __lowerCAmelCase = in_proj_bias[ dim : dim * 2 ] __lowerCAmelCase = in_proj_weight[ -dim :, : ] __lowerCAmelCase = in_proj_bias[-dim :] # fmt: on def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : Dict ): # fmt: off __lowerCAmelCase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: hidden_size, :] __lowerCAmelCase = in_proj_bias[:config.hidden_size] __lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCAmelCase = in_proj_weight[-hidden_size :, :] __lowerCAmelCase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: hidden_size, :] __lowerCAmelCase = in_proj_bias[:config.hidden_size] __lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCAmelCase = in_proj_weight[-hidden_size :, :] __lowerCAmelCase = in_proj_bias[-hidden_size :] # fmt: on def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : bool = False ): __lowerCAmelCase = get_maskformer_config(lowerCAmelCase_ ) # load original state_dict with open(lowerCAmelCase_, 'rb' ) as f: __lowerCAmelCase = pickle.load(lowerCAmelCase_ ) __lowerCAmelCase = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowerCAmelCase = create_rename_keys(lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_swin_q_k_v(lowerCAmelCase_, config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase_, lowerCAmelCase_ ) # update to torch tensors for key, value in state_dict.items(): __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ) # load 🤗 model __lowerCAmelCase = MaskFormerForInstanceSegmentation(lowerCAmelCase_ ) model.eval() for name, param in model.named_parameters(): print(lowerCAmelCase_, param.shape ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowerCAmelCase_, strict=lowerCAmelCase_ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCAmelCase_ ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results __lowerCAmelCase = prepare_img() if "vistas" in model_name: __lowerCAmelCase = 65 elif "cityscapes" in model_name: __lowerCAmelCase = 6_5535 else: __lowerCAmelCase = 255 __lowerCAmelCase = True if 'ade' in model_name else False __lowerCAmelCase = MaskFormerImageProcessor(ignore_index=lowerCAmelCase_, reduce_labels=lowerCAmelCase_ ) __lowerCAmelCase = image_processor(lowerCAmelCase_, return_tensors='pt' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) print('Logits:', outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowerCAmelCase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], lowerCAmelCase_, atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print('Pushing model and image processor to the hub...' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _snake_case : List[str] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
53
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = ShapEPipeline _lowerCamelCase = ['''prompt'''] _lowerCamelCase = ['''prompt'''] _lowerCamelCase = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] _lowerCamelCase = False @property def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return 3_2 @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return 3_2 @property def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return 8 @property def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(_lowercase ) @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Any = { """num_attention_heads""": 2, """attention_head_dim""": 1_6, """embedding_dim""": self.time_input_dim, """num_embeddings""": 3_2, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } snake_case_ : Dict = PriorTransformer(**_lowercase ) return model @property def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Tuple = { """param_shapes""": ( (self.renderer_dim, 9_3), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 1_2, """background""": ( 0.1, 0.1, 0.1, ), } snake_case_ : str = ShapERenderer(**_lowercase ) return model def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : List[str] = self.dummy_prior snake_case_ : Dict = self.dummy_text_encoder snake_case_ : str = self.dummy_tokenizer snake_case_ : List[Any] = self.dummy_renderer snake_case_ : Optional[int] = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1_0_2_4 , prediction_type="""sample""" , use_karras_sigmas=_lowercase , clip_sample=_lowercase , clip_sample_range=1.0 , ) snake_case_ : Optional[int] = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def UpperCAmelCase__ ( self , _lowercase , _lowercase=0 ) -> List[Any]: '''simple docstring''' if str(_lowercase ).startswith("""mps""" ): snake_case_ : Tuple = torch.manual_seed(_lowercase ) else: snake_case_ : str = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) snake_case_ : List[Any] = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 3_2, """output_type""": """np""", } return inputs def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : int = """cpu""" snake_case_ : Union[str, Any] = self.get_dummy_components() snake_case_ : List[str] = self.pipeline_class(**_lowercase ) snake_case_ : Any = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : str = pipe(**self.get_dummy_inputs(_lowercase ) ) snake_case_ : List[Any] = output.images[0] snake_case_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (2_0, 3_2, 3_2, 3) snake_case_ : List[Any] = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : Dict = torch_device == """cpu""" snake_case_ : Optional[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_lowercase , relax_max_difference=_lowercase , ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Dict = self.get_dummy_components() snake_case_ : Optional[Any] = self.pipeline_class(**_lowercase ) snake_case_ : Dict = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : Optional[Any] = 1 snake_case_ : str = 2 snake_case_ : int = self.get_dummy_inputs(_lowercase ) for key in inputs.keys(): if key in self.batch_params: snake_case_ : int = batch_size * [inputs[key]] snake_case_ : List[Any] = pipe(**_lowercase , num_images_per_prompt=_lowercase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) snake_case_ : Union[str, Any] = ShapEPipeline.from_pretrained("""openai/shap-e""" ) snake_case_ : str = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : Tuple = torch.Generator(device=_lowercase ).manual_seed(0 ) snake_case_ : List[Any] = pipe( """a shark""" , generator=_lowercase , guidance_scale=15.0 , num_inference_steps=6_4 , frame_size=6_4 , output_type="""np""" , ).images[0] assert images.shape == (2_0, 6_4, 6_4, 3) assert_mean_pixel_difference(_lowercase , _lowercase )
58
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): _snake_case : List[Any] = True from torch.cuda.amp import autocast _snake_case : Dict = logging.getLogger(__name__) def a_ ( lowerCAmelCase_ : str=None, lowerCAmelCase_ : str=None ): return field(default_factory=lambda: default, metadata=lowerCAmelCase_ ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) a_ = field( default=0.1 , metadata={"""help""": """The dropout ratio for the attention probabilities."""} ) a_ = field( default=0.1 , metadata={"""help""": """The dropout ratio for activations inside the fully connected layer."""} ) a_ = field( default=0.1 , metadata={ """help""": """The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.""" } , ) a_ = field( default=0.1 , metadata={"""help""": """The dropout probabilitiy for all 1D convolutional layers in feature extractor."""} , ) a_ = field( default=0.05 , metadata={ """help""": ( """Propability of each feature vector along the time axis to be chosen as the start of the vector""" """span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature""" """vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.""" ) } , ) a_ = field(default=0.0 , metadata={"""help""": """The LayerDrop probability."""} ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ = field( default="""train+validation""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of validation examples to this """ """value if set.""" ) } , ) a_ = list_field( default=[""",""", """?""", """.""", """!""", """-""", """;""", """:""", """\"\"""", """%""", """'""", """\"""", """�"""] , metadata={"""help""": """A list of characters to remove from the transcripts."""} , ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = 42 a_ = True a_ = None a_ = None a_ = None a_ = None def __call__( self : int , lowerCAmelCase_ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods __lowerCAmelCase = [{'input_values': feature['input_values']} for feature in features] __lowerCAmelCase = [{'input_ids': feature['labels']} for feature in features] __lowerCAmelCase = self.processor.pad( lowerCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) __lowerCAmelCase = self.processor.pad( labels=lowerCAmelCase_ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='pt' , ) # replace padding with -100 to ignore loss correctly __lowerCAmelCase = labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_0_0 ) __lowerCAmelCase = labels return batch class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Tuple , lowerCAmelCase_ : nn.Module , lowerCAmelCase_ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: model.train() __lowerCAmelCase = self._prepare_inputs(lowerCAmelCase_ ) if self.use_amp: with autocast(): __lowerCAmelCase = self.compute_loss(lowerCAmelCase_ , lowerCAmelCase_ ) else: __lowerCAmelCase = self.compute_loss(lowerCAmelCase_ , lowerCAmelCase_ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": __lowerCAmelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __lowerCAmelCase = loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: __lowerCAmelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowerCAmelCase_ ).backward() elif self.use_apex: with amp.scale_loss(lowerCAmelCase_ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowerCAmelCase_ ) else: loss.backward() return loss.detach() def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s', lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: __lowerCAmelCase = datasets.load_dataset( 'common_voice', data_args.dataset_config_name, split=data_args.train_split_name ) __lowerCAmelCase = datasets.load_dataset('common_voice', data_args.dataset_config_name, split='test' ) # Create and save tokenizer __lowerCAmelCase = F"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(lowerCAmelCase_ : Any ): __lowerCAmelCase = re.sub(lowerCAmelCase_, '', batch['sentence'] ).lower() + ' ' return batch __lowerCAmelCase = train_dataset.map(lowerCAmelCase_, remove_columns=['sentence'] ) __lowerCAmelCase = eval_dataset.map(lowerCAmelCase_, remove_columns=['sentence'] ) def extract_all_chars(lowerCAmelCase_ : Tuple ): __lowerCAmelCase = ' '.join(batch['text'] ) __lowerCAmelCase = list(set(lowerCAmelCase_ ) ) return {"vocab": [vocab], "all_text": [all_text]} __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, batched=lowerCAmelCase_, batch_size=-1, keep_in_memory=lowerCAmelCase_, remove_columns=train_dataset.column_names, ) __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, batched=lowerCAmelCase_, batch_size=-1, keep_in_memory=lowerCAmelCase_, remove_columns=eval_dataset.column_names, ) __lowerCAmelCase = list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) ) __lowerCAmelCase = {v: k for k, v in enumerate(lowerCAmelCase_ )} __lowerCAmelCase = vocab_dict[' '] del vocab_dict[" "] __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = len(lowerCAmelCase_ ) with open('vocab.json', 'w' ) as vocab_file: json.dump(lowerCAmelCase_, lowerCAmelCase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = WavaVecaCTCTokenizer( 'vocab.json', unk_token='[UNK]', pad_token='[PAD]', word_delimiter_token='|', ) __lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_6000, padding_value=0.0, do_normalize=lowerCAmelCase_, return_attention_mask=lowerCAmelCase_ ) __lowerCAmelCase = WavaVecaProcessor(feature_extractor=lowerCAmelCase_, tokenizer=lowerCAmelCase_ ) __lowerCAmelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, activation_dropout=model_args.activation_dropout, attention_dropout=model_args.attention_dropout, hidden_dropout=model_args.hidden_dropout, feat_proj_dropout=model_args.feat_proj_dropout, mask_time_prob=model_args.mask_time_prob, gradient_checkpointing=training_args.gradient_checkpointing, layerdrop=model_args.layerdrop, ctc_loss_reduction='mean', pad_token_id=processor.tokenizer.pad_token_id, vocab_size=len(processor.tokenizer ), ) if data_args.max_train_samples is not None: __lowerCAmelCase = min(len(lowerCAmelCase_ ), data_args.max_train_samples ) __lowerCAmelCase = train_dataset.select(range(lowerCAmelCase_ ) ) if data_args.max_val_samples is not None: __lowerCAmelCase = eval_dataset.select(range(data_args.max_val_samples ) ) __lowerCAmelCase = torchaudio.transforms.Resample(4_8000, 1_6000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(lowerCAmelCase_ : int ): __lowerCAmelCase , __lowerCAmelCase = torchaudio.load(batch['path'] ) __lowerCAmelCase = resampler(lowerCAmelCase_ ).squeeze().numpy() __lowerCAmelCase = 1_6000 __lowerCAmelCase = batch['text'] return batch __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, remove_columns=train_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) __lowerCAmelCase = eval_dataset.map( lowerCAmelCase_, remove_columns=eval_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) def prepare_dataset(lowerCAmelCase_ : Union[str, Any] ): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'] ) ) == 1 ), F"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" __lowerCAmelCase = processor( audio=batch['speech'], text=batch['target_text'], sampling_rate=batch['sampling_rate'][0] ) batch.update(lowerCAmelCase_ ) return batch __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, remove_columns=train_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, ) __lowerCAmelCase = eval_dataset.map( lowerCAmelCase_, remove_columns=eval_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, ) # Metric __lowerCAmelCase = datasets.load_metric('wer' ) def compute_metrics(lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = pred.predictions __lowerCAmelCase = np.argmax(lowerCAmelCase_, axis=-1 ) __lowerCAmelCase = processor.tokenizer.pad_token_id __lowerCAmelCase = processor.batch_decode(lowerCAmelCase_ ) # we do not want to group tokens when computing the metrics __lowerCAmelCase = processor.batch_decode(pred.label_ids, group_tokens=lowerCAmelCase_ ) __lowerCAmelCase = wer_metric.compute(predictions=lowerCAmelCase_, references=lowerCAmelCase_ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator __lowerCAmelCase = DataCollatorCTCWithPadding(processor=lowerCAmelCase_, padding=lowerCAmelCase_ ) # Initialize our Trainer __lowerCAmelCase = CTCTrainer( model=lowerCAmelCase_, data_collator=lowerCAmelCase_, args=lowerCAmelCase_, compute_metrics=lowerCAmelCase_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=processor.feature_extractor, ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() __lowerCAmelCase = train_result.metrics __lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase_ ) ) __lowerCAmelCase = min(lowerCAmelCase_, len(lowerCAmelCase_ ) ) trainer.log_metrics('train', lowerCAmelCase_ ) trainer.save_metrics('train', lowerCAmelCase_ ) trainer.save_state() # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(lowerCAmelCase_ ) __lowerCAmelCase = min(lowerCAmelCase_, len(lowerCAmelCase_ ) ) trainer.log_metrics('eval', lowerCAmelCase_ ) trainer.save_metrics('eval', lowerCAmelCase_ ) return results if __name__ == "__main__": main()
53
0
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Optional[int] , UpperCAmelCase_ : NestedDataStructureLike[PathLike] , UpperCAmelCase_ : Optional[NamedSplit] = None , UpperCAmelCase_ : Optional[Features] = None , UpperCAmelCase_ : str = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[int] = None , **UpperCAmelCase_ : Optional[Any] , ) ->Any: '''simple docstring''' super().__init__( UpperCAmelCase_ , split=UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ , streaming=UpperCAmelCase_ , num_proc=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase__: Tuple =path_or_paths if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else {self.split: path_or_paths} lowerCamelCase__: Optional[int] =Text( cache_dir=UpperCAmelCase_ , data_files=UpperCAmelCase_ , features=UpperCAmelCase_ , **UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Tuple: '''simple docstring''' if self.streaming: lowerCamelCase__: int =self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: lowerCamelCase__: Optional[int] =None lowerCamelCase__: Optional[Any] =None lowerCamelCase__: List[str] =None lowerCamelCase__: str =None self.builder.download_and_prepare( download_config=UpperCAmelCase_ , download_mode=UpperCAmelCase_ , verification_mode=UpperCAmelCase_ , base_path=UpperCAmelCase_ , num_proc=self.num_proc , ) lowerCamelCase__: Any =self.builder.as_dataset( split=self.split , verification_mode=UpperCAmelCase_ , in_memory=self.keep_in_memory) return dataset
59
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _snake_case : Any = logging.get_logger(__name__) _snake_case : int = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _snake_case : Optional[Any] = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } _snake_case : str = { 'yjernite/retribert-base-uncased': 512, } _snake_case : Optional[int] = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = PRETRAINED_INIT_CONFIGURATION a_ = RetriBertTokenizer a_ = ["""input_ids""", """attention_mask"""] def __init__( self : Dict , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : str="[UNK]" , lowerCAmelCase_ : Optional[Any]="[SEP]" , lowerCAmelCase_ : List[str]="[PAD]" , lowerCAmelCase_ : Optional[int]="[CLS]" , lowerCAmelCase_ : List[Any]="[MASK]" , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : List[Any] , ) -> Dict: super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(lowerCAmelCase_ , normalizer_state.pop('type' ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**lowerCAmelCase_ ) __lowerCAmelCase = do_lower_case def lowercase ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int]=None ) -> Optional[int]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
53
0
def lowerCamelCase_ ( _UpperCamelCase ) -> str: """simple docstring""" snake_case_ : str = '''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def lowerCamelCase_ ( _UpperCamelCase ) -> dict[str, str]: """simple docstring""" snake_case_ : Tuple = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key snake_case_ : Optional[Any] = remove_duplicates(key.upper() ) snake_case_ : str = len(_UpperCamelCase ) # First fill cipher with key characters snake_case_ : Any = {alphabet[i]: char for i, char in enumerate(_UpperCamelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(_UpperCamelCase ) , 26 ): snake_case_ : str = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 snake_case_ : Union[str, Any] = alphabet[i - offset] snake_case_ : Optional[Any] = char return cipher_alphabet def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> str: """simple docstring""" return "".join(cipher_map.get(_UpperCamelCase , _UpperCamelCase ) for ch in message.upper() ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> str: """simple docstring""" snake_case_ : List[Any] = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(_UpperCamelCase , _UpperCamelCase ) for ch in message.upper() ) def lowerCamelCase_ ( ) -> None: """simple docstring""" snake_case_ : str = input('''Enter message to encode or decode: ''' ).strip() snake_case_ : int = input('''Enter keyword: ''' ).strip() snake_case_ : Optional[Any] = input('''Encipher or decipher? E/D:''' ).strip()[0].lower() try: snake_case_ : Optional[int] = {'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError('''invalid input option''' ) snake_case_ : Optional[int] = create_cipher_map(_UpperCamelCase ) print(func(_UpperCamelCase , _UpperCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
60
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _snake_case : Union[str, Any] = imread(R'digital_image_processing/image_data/lena_small.jpg') _snake_case : Optional[int] = cvtColor(img, COLOR_BGR2GRAY) def a_ ( ): __lowerCAmelCase = cn.convert_to_negative(lowerCAmelCase_ ) # assert negative_img array for at least one True assert negative_img.any() def a_ ( ): with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowerCAmelCase_, 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def a_ ( ): __lowerCAmelCase = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def a_ ( ): __lowerCAmelCase = imread('digital_image_processing/image_data/lena_small.jpg', 0 ) # assert ambiguous array for all == True assert canny_img.all() __lowerCAmelCase = canny.canny(lowerCAmelCase_ ) # assert canny array for at least one True assert canny_array.any() def a_ ( ): assert gg.gaussian_filter(lowerCAmelCase_, 5, sigma=0.9 ).all() def a_ ( ): # laplace diagonals __lowerCAmelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __lowerCAmelCase = conv.img_convolve(lowerCAmelCase_, lowerCAmelCase_ ).astype(lowerCAmelCase_ ) assert res.any() def a_ ( ): assert med.median_filter(lowerCAmelCase_, 3 ).any() def a_ ( ): __lowerCAmelCase , __lowerCAmelCase = sob.sobel_filter(lowerCAmelCase_ ) assert grad.any() and theta.any() def a_ ( ): __lowerCAmelCase = sp.make_sepia(lowerCAmelCase_, 20 ) assert sepia.all() def a_ ( lowerCAmelCase_ : str = "digital_image_processing/image_data/lena_small.jpg" ): __lowerCAmelCase = bs.Burkes(imread(lowerCAmelCase_, 1 ), 120 ) burkes.process() assert burkes.output_img.any() def a_ ( lowerCAmelCase_ : str = "digital_image_processing/image_data/lena_small.jpg", ): __lowerCAmelCase = rs.NearestNeighbour(imread(lowerCAmelCase_, 1 ), 400, 200 ) nn.process() assert nn.output.any() def a_ ( ): __lowerCAmelCase = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. __lowerCAmelCase = imread(lowerCAmelCase_, 0 ) # Test for get_neighbors_pixel function() return not None __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = image[x_coordinate][y_coordinate] __lowerCAmelCase = lbp.get_neighbors_pixel( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __lowerCAmelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): __lowerCAmelCase = lbp.local_binary_value(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) assert lbp_image.any()
53
0