code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
def a_ ( lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = sum(lowerCAmelCase_ ) __lowerCAmelCase = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1, n + 1 ): __lowerCAmelCase = True for i in range(1, s + 1 ): __lowerCAmelCase = False for i in range(1, n + 1 ): for j in range(1, s + 1 ): __lowerCAmelCase = dp[i][j - 1] if arr[i - 1] <= j: __lowerCAmelCase = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ), -1, -1 ): if dp[n][j] is True: __lowerCAmelCase = s - 2 * j break return diff
53
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _snake_case : Any = logging.get_logger(__name__) _snake_case : int = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _snake_case : Optional[Any] = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } _snake_case : str = { 'yjernite/retribert-base-uncased': 512, } _snake_case : Optional[int] = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = PRETRAINED_INIT_CONFIGURATION a_ = RetriBertTokenizer a_ = ["""input_ids""", """attention_mask"""] def __init__( self : Dict , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : str="[UNK]" , lowerCAmelCase_ : Optional[Any]="[SEP]" , lowerCAmelCase_ : List[str]="[PAD]" , lowerCAmelCase_ : Optional[int]="[CLS]" , lowerCAmelCase_ : List[Any]="[MASK]" , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : List[Any] , ) -> Dict: super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(lowerCAmelCase_ , normalizer_state.pop('type' ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**lowerCAmelCase_ ) __lowerCAmelCase = do_lower_case def lowercase ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int]=None ) -> Optional[int]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
53
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : int = logging.get_logger(__name__) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = """timm_backbone""" def __init__( self : Union[str, Any] , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Any=None , **lowerCAmelCase_ : Union[str, Any] , ) -> Dict: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = backbone __lowerCAmelCase = num_channels __lowerCAmelCase = features_only __lowerCAmelCase = use_pretrained_backbone __lowerCAmelCase = True __lowerCAmelCase = out_indices if out_indices is not None else (-1,)
53
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _snake_case : Union[str, Any] = imread(R'digital_image_processing/image_data/lena_small.jpg') _snake_case : Optional[int] = cvtColor(img, COLOR_BGR2GRAY) def a_ ( ): __lowerCAmelCase = cn.convert_to_negative(lowerCAmelCase_ ) # assert negative_img array for at least one True assert negative_img.any() def a_ ( ): with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowerCAmelCase_, 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def a_ ( ): __lowerCAmelCase = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def a_ ( ): __lowerCAmelCase = imread('digital_image_processing/image_data/lena_small.jpg', 0 ) # assert ambiguous array for all == True assert canny_img.all() __lowerCAmelCase = canny.canny(lowerCAmelCase_ ) # assert canny array for at least one True assert canny_array.any() def a_ ( ): assert gg.gaussian_filter(lowerCAmelCase_, 5, sigma=0.9 ).all() def a_ ( ): # laplace diagonals __lowerCAmelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __lowerCAmelCase = conv.img_convolve(lowerCAmelCase_, lowerCAmelCase_ ).astype(lowerCAmelCase_ ) assert res.any() def a_ ( ): assert med.median_filter(lowerCAmelCase_, 3 ).any() def a_ ( ): __lowerCAmelCase , __lowerCAmelCase = sob.sobel_filter(lowerCAmelCase_ ) assert grad.any() and theta.any() def a_ ( ): __lowerCAmelCase = sp.make_sepia(lowerCAmelCase_, 20 ) assert sepia.all() def a_ ( lowerCAmelCase_ : str = "digital_image_processing/image_data/lena_small.jpg" ): __lowerCAmelCase = bs.Burkes(imread(lowerCAmelCase_, 1 ), 120 ) burkes.process() assert burkes.output_img.any() def a_ ( lowerCAmelCase_ : str = "digital_image_processing/image_data/lena_small.jpg", ): __lowerCAmelCase = rs.NearestNeighbour(imread(lowerCAmelCase_, 1 ), 400, 200 ) nn.process() assert nn.output.any() def a_ ( ): __lowerCAmelCase = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. __lowerCAmelCase = imread(lowerCAmelCase_, 0 ) # Test for get_neighbors_pixel function() return not None __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = image[x_coordinate][y_coordinate] __lowerCAmelCase = lbp.get_neighbors_pixel( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __lowerCAmelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): __lowerCAmelCase = lbp.local_binary_value(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) assert lbp_image.any()
53
1
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : Tuple ): # Load checkpoint __lowerCAmelCase = torch.load(lowerCAmelCase_, map_location='cpu' ) __lowerCAmelCase = chkpt['model'] # We have the base model one level deeper than the original XLM repository __lowerCAmelCase = {} for k, v in state_dict.items(): if "pred_layer" in k: __lowerCAmelCase = v else: __lowerCAmelCase = v __lowerCAmelCase = chkpt['params'] __lowerCAmelCase = {n: v for n, v in config.items() if not isinstance(lowerCAmelCase_, (torch.FloatTensor, numpy.ndarray) )} __lowerCAmelCase = chkpt['dico_word2id'] __lowerCAmelCase = {s + '</w>' if s.find('@@' ) == -1 and i > 13 else s.replace('@@', '' ): i for s, i in vocab.items()} # Save pytorch-model __lowerCAmelCase = pytorch_dump_folder_path + '/' + WEIGHTS_NAME __lowerCAmelCase = pytorch_dump_folder_path + '/' + CONFIG_NAME __lowerCAmelCase = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(lowerCAmelCase_, lowerCAmelCase_ ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, indent=2 ) + '\n' ) print(F"""Save vocab file to {pytorch_config_dump_path}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, indent=2 ) + '\n' ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : Any = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
53
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case : List[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = ["""pixel_values"""] def __init__( self : Optional[int] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **lowerCAmelCase_ : Any , ) -> None: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = size if size is not None else {'shortest_edge': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = do_center_crop __lowerCAmelCase = crop_size __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[int] , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __lowerCAmelCase = int((2_5_6 / 2_2_4) * size['shortest_edge'] ) __lowerCAmelCase = get_resize_output_image_size(lowerCAmelCase_ , size=lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( lowerCAmelCase_ , size=(size_dict['height'], size_dict['width']) , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : str , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : str , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(lowerCAmelCase_ , size=(size['height'], size['width']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[int, float] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray: return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[str] , ) -> np.ndarray: return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase_ : str , ) -> BatchFeature: __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase = image_std if image_std is not None else self.image_std __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: __lowerCAmelCase = [self.resize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_center_crop: __lowerCAmelCase = [self.center_crop(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_rescale: __lowerCAmelCase = [self.rescale(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_normalize: __lowerCAmelCase = [self.normalize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
53
1
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration _snake_case : int = HfArgumentParser(InitializationArguments) _snake_case : str = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization _snake_case : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks _snake_case : int = { 'vocab_size': len(tokenizer), 'scale_attn_by_inverse_layer_idx': True, 'reorder_and_upcast_attn': True, } # Load model config (GPT-2 large in this case) _snake_case : Dict = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config _snake_case : Union[str, Any] = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
53
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Optional[int]=8 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]=9_9 , lowerCAmelCase_ : List[Any]=1_6 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=3_6 , lowerCAmelCase_ : Optional[int]="gelu" , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : str=5_1_2 , lowerCAmelCase_ : List[str]=1_6 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Tuple=0.02 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : List[Any]=4 , lowerCAmelCase_ : List[str]=None , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope def lowercase ( self : Optional[int] ) -> Dict: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self : Any ) -> Union[str, Any]: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def lowercase ( self : Dict ) -> List[Any]: __lowerCAmelCase = self.get_config() __lowerCAmelCase = 3_0_0 return config def lowercase ( self : Optional[int] ) -> Union[str, Any]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = self.prepare_config_and_inputs() __lowerCAmelCase = True __lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = MraModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , ) -> Tuple: __lowerCAmelCase = True __lowerCAmelCase = MraModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , ) __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = MraForMaskedLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> str: __lowerCAmelCase = MraForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict ) -> Optional[Any]: __lowerCAmelCase = self.num_labels __lowerCAmelCase = MraForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict ) -> Any: __lowerCAmelCase = self.num_labels __lowerCAmelCase = MraForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] ) -> List[Any]: __lowerCAmelCase = self.num_choices __lowerCAmelCase = MraForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self : Tuple ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) a_ = False a_ = False a_ = False a_ = False a_ = () def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = MraModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : Tuple ) -> List[str]: self.config_tester.run_common_tests() def lowercase ( self : Optional[int] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase = type self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase_ ) def lowercase ( self : List[str] ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase_ ) def lowercase ( self : Tuple ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase_ ) @slow def lowercase ( self : Optional[int] ) -> Optional[int]: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = MraModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @unittest.skip(reason='MRA does not output attentions' ) def lowercase ( self : Optional[int] ) -> Tuple: return @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase ( self : Optional[Any] ) -> List[str]: __lowerCAmelCase = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) __lowerCAmelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : int ) -> Optional[int]: __lowerCAmelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) __lowerCAmelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = 5_0_2_6_5 __lowerCAmelCase = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : Any ) -> List[str]: __lowerCAmelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) __lowerCAmelCase = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = 5_0_2_6_5 __lowerCAmelCase = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
1
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case : Tuple = logging.get_logger(__name__) _snake_case : int = {'vocab_file': 'vocab.json'} _snake_case : List[str] = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } _snake_case : Optional[int] = {'mgp-str': 27} class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict="[GO]" , lowerCAmelCase_ : List[Any]="[GO]" , lowerCAmelCase_ : List[str]="[s]" , lowerCAmelCase_ : Dict="[GO]" , **lowerCAmelCase_ : Optional[Any] ) -> List[Any]: super().__init__( unk_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , **lowerCAmelCase_ , ) with open(lowerCAmelCase_ , encoding='utf-8' ) as vocab_handle: __lowerCAmelCase = json.load(lowerCAmelCase_ ) __lowerCAmelCase = {v: k for k, v in self.vocab.items()} @property def lowercase ( self : str ) -> Any: return len(self.vocab ) def lowercase ( self : Optional[Any] ) -> List[Any]: return dict(self.vocab , **self.added_tokens_encoder ) def lowercase ( self : Dict , lowerCAmelCase_ : Optional[int] ) -> str: __lowerCAmelCase = [] for s in text: char_tokens.extend(lowerCAmelCase_ ) return char_tokens def lowercase ( self : str , lowerCAmelCase_ : str ) -> Optional[int]: return self.vocab.get(lowerCAmelCase_ , self.vocab.get(self.unk_token ) ) def lowercase ( self : Dict , lowerCAmelCase_ : Any ) -> Dict: return self.decoder.get(lowerCAmelCase_ ) def lowercase ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error('Vocabulary path ({}) should be a directory'.format(lowerCAmelCase_ ) ) return __lowerCAmelCase = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '\n' ) return (vocab_file,)
53
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _snake_case : Union[str, Any] = 2 class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , *, # begin keyword-only arguments lowerCAmelCase_ : str="<s>" , lowerCAmelCase_ : Dict="<pad>" , lowerCAmelCase_ : Any="</s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Optional[Any]=None , ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = bos, unk, pad, eos __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = {} __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = len(self.symbols ) def __eq__( self : Dict , lowerCAmelCase_ : Dict ) -> str: return self.indices == other.indices def __getitem__( self : List[Any] , lowerCAmelCase_ : int ) -> Union[str, Any]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : Tuple ) -> List[Any]: return len(self.symbols ) def __contains__( self : Optional[Any] , lowerCAmelCase_ : Dict ) -> Optional[int]: return sym in self.indices @classmethod def lowercase ( cls : Dict , lowerCAmelCase_ : str ) -> str: __lowerCAmelCase = cls() d.add_from_file(lowerCAmelCase_ ) return d def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : Any=False ) -> Optional[Any]: if word in self.indices and not overwrite: __lowerCAmelCase = self.indices[word] __lowerCAmelCase = self.count[idx] + n return idx else: __lowerCAmelCase = len(self.symbols ) __lowerCAmelCase = idx self.symbols.append(lowerCAmelCase_ ) self.count.append(lowerCAmelCase_ ) return idx def lowercase ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> Dict: return 0 def lowercase ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> int: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: with open(lowerCAmelCase_ , 'r' , encoding='utf-8' ) as fd: self.add_from_file(lowerCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(lowerCAmelCase_ ) ) return __lowerCAmelCase = f.readlines() __lowerCAmelCase = self._load_meta(lowerCAmelCase_ ) for line in lines[indices_start_line:]: try: __lowerCAmelCase , __lowerCAmelCase = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": __lowerCAmelCase = True __lowerCAmelCase , __lowerCAmelCase = line.rsplit(' ' , 1 ) else: __lowerCAmelCase = False __lowerCAmelCase = int(lowerCAmelCase_ ) __lowerCAmelCase = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(lowerCAmelCase_ ) ) self.add_symbol(lowerCAmelCase_ , n=lowerCAmelCase_ , overwrite=lowerCAmelCase_ ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def a_ ( lowerCAmelCase_ : List[str] ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} __lowerCAmelCase = dict((re.sub(R'@@$', '', lowerCAmelCase_ ), v) if k.endswith('@@' ) else (re.sub(R'$', '</w>', lowerCAmelCase_ ), v) for k, v in d.items() ) __lowerCAmelCase = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowerCAmelCase = d[k] # restore return da def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str] ): # prep if not os.path.exists(lowerCAmelCase_ ): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(lowerCAmelCase_, exist_ok=lowerCAmelCase_ ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'checkpoint.pt' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""" ) __lowerCAmelCase = torch.load(lowerCAmelCase_, map_location='cpu' ) __lowerCAmelCase = chkpt['cfg']['model'] # dicts __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'dict.txt' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {dict_file} does not exist!""" ) __lowerCAmelCase = Dictionary.load(lowerCAmelCase_ ) __lowerCAmelCase = rewrite_dict_keys(src_dict.indices ) __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, VOCAB_FILES_NAMES['vocab_file'] ) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # merges_file (bpecodes) __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'bpecodes' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""" ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(lowerCAmelCase_, lowerCAmelCase_ ) # model config __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'config.json' ) __lowerCAmelCase = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1E-12, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # tokenizer config __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F"""Generating {biogpt_tokenizer_config_file}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # model __lowerCAmelCase = chkpt['model'] # remove unneeded keys __lowerCAmelCase = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): __lowerCAmelCase = model_state_dict.pop(lowerCAmelCase_ ) else: __lowerCAmelCase = model_state_dict.pop(lowerCAmelCase_ ) __lowerCAmelCase = BioGptConfig.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = BioGptForCausalLM(lowerCAmelCase_ ) # check that it loads ok model_new.load_state_dict(lowerCAmelCase_ ) # save __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(lowerCAmelCase_, lowerCAmelCase_ ) print('Conversion is done!' ) if __name__ == "__main__": _snake_case : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : int = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
1
def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : str ): def get_matched_characters(lowerCAmelCase_ : str, lowerCAmelCase_ : str ) -> str: __lowerCAmelCase = [] __lowerCAmelCase = min(len(_stra ), len(_stra ) ) // 2 for i, l in enumerate(_stra ): __lowerCAmelCase = int(max(0, i - limit ) ) __lowerCAmelCase = int(min(i + limit + 1, len(_stra ) ) ) if l in _stra[left:right]: matched.append(lowerCAmelCase_ ) __lowerCAmelCase = F"""{_stra[0:_stra.index(lowerCAmelCase_ )]} {_stra[_stra.index(lowerCAmelCase_ ) + 1:]}""" return "".join(lowerCAmelCase_ ) # matching characters __lowerCAmelCase = get_matched_characters(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = get_matched_characters(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = len(lowerCAmelCase_ ) # transposition __lowerCAmelCase = ( len([(ca, ca) for ca, ca in zip(lowerCAmelCase_, lowerCAmelCase_ ) if ca != ca] ) // 2 ) if not match_count: __lowerCAmelCase = 0.0 else: __lowerCAmelCase = ( 1 / 3 * ( match_count / len(lowerCAmelCase_ ) + match_count / len(lowerCAmelCase_ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __lowerCAmelCase = 0 for ca, ca in zip(stra[:4], stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
53
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" a_ = """pixel_values""" a_ = False a_ = TimmBackboneConfig def __init__( self : Tuple , lowerCAmelCase_ : Any , **lowerCAmelCase_ : Optional[int] ) -> Optional[Any]: requires_backends(self , 'timm' ) super().__init__(lowerCAmelCase_ ) __lowerCAmelCase = config if config.backbone is None: raise ValueError('backbone is not set in the config. Please set it to a timm model name.' ) if config.backbone not in timm.list_models(): raise ValueError(f"""backbone {config.backbone} is not supported by timm.""" ) if hasattr(lowerCAmelCase_ , 'out_features' ) and config.out_features is not None: raise ValueError('out_features is not supported by TimmBackbone. Please use out_indices instead.' ) __lowerCAmelCase = getattr(lowerCAmelCase_ , 'use_pretrained_backbone' , lowerCAmelCase_ ) if pretrained is None: raise ValueError('use_pretrained_backbone is not set in the config. Please set it to True or False.' ) # We just take the final layer by default. This matches the default for the transformers models. __lowerCAmelCase = config.out_indices if getattr(lowerCAmelCase_ , 'out_indices' , lowerCAmelCase_ ) is not None else (-1,) __lowerCAmelCase = timm.create_model( config.backbone , pretrained=lowerCAmelCase_ , features_only=config.features_only , in_chans=config.num_channels , out_indices=lowerCAmelCase_ , **lowerCAmelCase_ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. __lowerCAmelCase = self._backbone.return_layers __lowerCAmelCase = {layer['module']: str(lowerCAmelCase_ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(lowerCAmelCase_ ) @classmethod def lowercase ( cls : int , lowerCAmelCase_ : Dict , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['vision', 'timm'] ) from ...models.timm_backbone import TimmBackboneConfig __lowerCAmelCase = kwargs.pop('config' , TimmBackboneConfig() ) __lowerCAmelCase = kwargs.pop('use_timm_backbone' , lowerCAmelCase_ ) if not use_timm: raise ValueError('use_timm_backbone must be True for timm backbones' ) __lowerCAmelCase = kwargs.pop('num_channels' , config.num_channels ) __lowerCAmelCase = kwargs.pop('features_only' , config.features_only ) __lowerCAmelCase = kwargs.pop('use_pretrained_backbone' , config.use_pretrained_backbone ) __lowerCAmelCase = kwargs.pop('out_indices' , config.out_indices ) __lowerCAmelCase = TimmBackboneConfig( backbone=lowerCAmelCase_ , num_channels=lowerCAmelCase_ , features_only=lowerCAmelCase_ , use_pretrained_backbone=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , ) return super()._from_config(lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Tuple , lowerCAmelCase_ : int ) -> Dict: pass def lowercase ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Any=None , **lowerCAmelCase_ : Dict ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('Cannot output attentions for timm backbones at the moment' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone __lowerCAmelCase = self._all_layers __lowerCAmelCase = self._backbone(lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = self._return_layers __lowerCAmelCase = tuple(hidden_states[i] for i in self.out_indices ) else: __lowerCAmelCase = self._backbone(lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = None __lowerCAmelCase = tuple(lowerCAmelCase_ ) __lowerCAmelCase = tuple(lowerCAmelCase_ ) if hidden_states is not None else None if not return_dict: __lowerCAmelCase = (feature_maps,) if output_hidden_states: __lowerCAmelCase = output + (hidden_states,) return output return BackboneOutput(feature_maps=lowerCAmelCase_ , hidden_states=lowerCAmelCase_ , attentions=lowerCAmelCase_ )
53
1
import heapq import sys import numpy as np _snake_case : Any = tuple[int, int] class _UpperCAmelCase : """simple docstring""" def __init__( self : str ) -> str: __lowerCAmelCase = [] __lowerCAmelCase = set() def lowercase ( self : Optional[Any] ) -> Tuple: if not self.empty(): return self.elements[0][0] else: return float('inf' ) def lowercase ( self : Optional[int] ) -> List[str]: return len(self.elements ) == 0 def lowercase ( self : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] ) -> Dict: if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(lowerCAmelCase_ ) else: # update # print("update", item) __lowerCAmelCase = [] ((__lowerCAmelCase) , (__lowerCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def lowercase ( self : int , lowerCAmelCase_ : List[Any] ) -> Dict: if item in self.set: self.set.remove(lowerCAmelCase_ ) __lowerCAmelCase = [] ((__lowerCAmelCase) , (__lowerCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def lowercase ( self : Optional[Any] ) -> str: return self.elements[0][1] def lowercase ( self : str ) -> Dict: ((__lowerCAmelCase) , (__lowerCAmelCase)) = heapq.heappop(self.elements ) self.set.remove(lowerCAmelCase_ ) return (priority, item) def a_ ( lowerCAmelCase_ : TPos, lowerCAmelCase_ : TPos ): # euclidean distance __lowerCAmelCase = np.array(lowerCAmelCase_ ) __lowerCAmelCase = np.array(lowerCAmelCase_ ) return np.linalg.norm(a - b ) def a_ ( lowerCAmelCase_ : TPos, lowerCAmelCase_ : TPos ): # integer division by time variable return consistent_heuristic(lowerCAmelCase_, lowerCAmelCase_ ) // t def a_ ( lowerCAmelCase_ : TPos, lowerCAmelCase_ : TPos ): # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def a_ ( lowerCAmelCase_ : TPos, lowerCAmelCase_ : int, lowerCAmelCase_ : TPos, lowerCAmelCase_ : dict[TPos, float] ): __lowerCAmelCase = g_function[start] + Wa * heuristics[i](lowerCAmelCase_, lowerCAmelCase_ ) return ans def a_ ( lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = np.chararray((n, n) ) for i in range(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ ): __lowerCAmelCase = '*' for i in range(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ ): if (j, (n - 1) - i) in blocks: __lowerCAmelCase = '#' __lowerCAmelCase = '-' __lowerCAmelCase = back_pointer[goal] while x != start: ((__lowerCAmelCase) , (__lowerCAmelCase)) = x # print(x) __lowerCAmelCase = '-' __lowerCAmelCase = back_pointer[x] __lowerCAmelCase = '-' for i in range(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ ): if (i, j) == (0, n - 1): print(grid[i][j], end=' ' ) print('<-- End position', end=' ' ) else: print(grid[i][j], end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) __lowerCAmelCase = back_pointer[goal] while x != start: print(lowerCAmelCase_, end=' ' ) __lowerCAmelCase = back_pointer[x] print(lowerCAmelCase_ ) sys.exit() def a_ ( lowerCAmelCase_ : TPos ): if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : List[Any], lowerCAmelCase_ : Any, lowerCAmelCase_ : str, lowerCAmelCase_ : int, lowerCAmelCase_ : Any, lowerCAmelCase_ : str, ): for itera in range(lowerCAmelCase_ ): open_list[itera].remove_element(lowerCAmelCase_ ) # print("s", s) # print("j", j) ((__lowerCAmelCase) , (__lowerCAmelCase)) = s __lowerCAmelCase = (x - 1, y) __lowerCAmelCase = (x + 1, y) __lowerCAmelCase = (x, y + 1) __lowerCAmelCase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowerCAmelCase_ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowerCAmelCase_ ) __lowerCAmelCase = -1 __lowerCAmelCase = float('inf' ) if valid(lowerCAmelCase_ ) and g_function[neighbours] > g_function[s] + 1: __lowerCAmelCase = g_function[s] + 1 __lowerCAmelCase = s if neighbours not in close_list_anchor: open_list[0].put(lowerCAmelCase_, key(lowerCAmelCase_, 0, lowerCAmelCase_, lowerCAmelCase_ ) ) if neighbours not in close_list_inad: for var in range(1, lowerCAmelCase_ ): if key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) <= Wa * key( lowerCAmelCase_, 0, lowerCAmelCase_, lowerCAmelCase_ ): open_list[j].put( lowerCAmelCase_, key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) ) def a_ ( ): __lowerCAmelCase = [] for x in range(1, 5 ): for y in range(1, 6 ): some_list.append((x, y) ) for x in range(15, 20 ): some_list.append((x, 17) ) for x in range(10, 19 ): for y in range(1, 15 ): some_list.append((x, y) ) # L block for x in range(1, 4 ): for y in range(12, 19 ): some_list.append((x, y) ) for x in range(3, 13 ): for y in range(16, 19 ): some_list.append((x, y) ) return some_list _snake_case : Dict = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} _snake_case : int = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] _snake_case : Tuple = make_common_ground() _snake_case : str = blocks_blk # hyper parameters _snake_case : Union[str, Any] = 1 _snake_case : Optional[Any] = 1 _snake_case : Dict = 20 _snake_case : List[Any] = 3 # one consistent and two other inconsistent # start and end destination _snake_case : int = (0, 0) _snake_case : List[Any] = (n - 1, n - 1) _snake_case : List[str] = 1 def a_ ( lowerCAmelCase_ : TPos, lowerCAmelCase_ : TPos, lowerCAmelCase_ : int ): __lowerCAmelCase = {start: 0, goal: float('inf' )} __lowerCAmelCase = {start: -1, goal: -1} __lowerCAmelCase = [] __lowerCAmelCase = set() for i in range(lowerCAmelCase_ ): open_list.append(PriorityQueue() ) open_list[i].put(lowerCAmelCase_, key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) ) __lowerCAmelCase = [] __lowerCAmelCase = [] while open_list[0].minkey() < float('inf' ): for i in range(1, lowerCAmelCase_ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) else: __lowerCAmelCase , __lowerCAmelCase = open_list[i].top_show() visited.add(lowerCAmelCase_ ) expand_state( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ) close_list_inad.append(lowerCAmelCase_ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) else: __lowerCAmelCase = open_list[0].top_show() visited.add(lowerCAmelCase_ ) expand_state( lowerCAmelCase_, 0, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, ) close_list_anchor.append(lowerCAmelCase_ ) print('No path found to goal' ) print() for i in range(n - 1, -1, -1 ): for j in range(lowerCAmelCase_ ): if (j, i) in blocks: print('#', end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*', end=' ' ) else: print('-', end=' ' ) else: print('*', end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position', end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
53
from __future__ import annotations def a_ ( lowerCAmelCase_ : list[float] ): if len(lowerCAmelCase_ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) __lowerCAmelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case : Union[str, Any] = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : int=False ): __lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Optional[int]=False ): for i in range(config.num_hidden_layers ): if base_model: __lowerCAmelCase = '' else: __lowerCAmelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] __lowerCAmelCase = in_proj_bias[: config.hidden_size] __lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase = in_proj_bias[-config.hidden_size :] def a_ ( lowerCAmelCase_ : List[str] ): __lowerCAmelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Optional[Any]=True ): __lowerCAmelCase = ViTConfig() # patch_size if model_name[-1] == "8": __lowerCAmelCase = 8 # set labels if required if not base_model: __lowerCAmelCase = 1000 __lowerCAmelCase = 'huggingface/label-files' __lowerCAmelCase = 'imagenet-1k-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 6 # load original model from torch hub __lowerCAmelCase = torch.hub.load('facebookresearch/dino:main', lowerCAmelCase_ ) original_model.eval() # load state_dict of original model, remove and rename some keys __lowerCAmelCase = original_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase_ ) __lowerCAmelCase = create_rename_keys(lowerCAmelCase_, base_model=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # load HuggingFace model if base_model: __lowerCAmelCase = ViTModel(lowerCAmelCase_, add_pooling_layer=lowerCAmelCase_ ).eval() else: __lowerCAmelCase = ViTForImageClassification(lowerCAmelCase_ ).eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor __lowerCAmelCase = ViTImageProcessor() __lowerCAmelCase = image_processor(images=prepare_img(), return_tensors='pt' ) __lowerCAmelCase = encoding['pixel_values'] __lowerCAmelCase = model(lowerCAmelCase_ ) if base_model: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_, outputs.last_hidden_state[:, 0, :], atol=1E-1 ) else: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase_, outputs.logits, atol=1E-3 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) _snake_case : List[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
53
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Union[str, Any]=1_0 , lowerCAmelCase_ : List[str]=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple="relu" , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : Optional[int]=None , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = embeddings_size __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_act __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = len(lowerCAmelCase_ ) def lowercase ( self : Optional[int] ) -> List[Any]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def lowercase ( self : Tuple ) -> List[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] ) -> str: __lowerCAmelCase = FlaxRegNetModel(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowercase ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int ) -> Tuple: __lowerCAmelCase = self.num_labels __lowerCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () a_ = False a_ = False a_ = False def lowercase ( self : Dict ) -> None: __lowerCAmelCase = FlaxRegNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : int ) -> Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : str ) -> Union[str, Any]: return def lowercase ( self : Dict ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def lowercase ( self : Union[str, Any] ) -> Any: pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def lowercase ( self : Tuple ) -> Tuple: pass def lowercase ( self : Optional[Any] ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: def check_hidden_states_output(lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : str ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Dict ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('JIT Enabled' ): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def a_ ( ): __lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : Union[str, Any] ) -> Optional[Any]: return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def lowercase ( self : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCAmelCase_ , return_tensors='np' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) # verify the logits __lowerCAmelCase = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
1
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _snake_case : Tuple = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = DebertaVaTokenizer a_ = DebertaVaTokenizerFast a_ = True a_ = True def lowercase ( self : List[Any] ) -> int: super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase = DebertaVaTokenizer(lowerCAmelCase_ , unk_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self : Any , lowerCAmelCase_ : Union[str, Any] ) -> Dict: __lowerCAmelCase = 'this is a test' __lowerCAmelCase = 'this is a test' return input_text, output_text def lowercase ( self : List[Any] ) -> Union[str, Any]: __lowerCAmelCase = '<pad>' __lowerCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowercase ( self : Optional[int] ) -> int: __lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '[PAD]' ) self.assertEqual(len(lowerCAmelCase_ ) , 3_0_0_0_1 ) def lowercase ( self : Tuple ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size , 3_0_0_0_0 ) def lowercase ( self : Dict ) -> Optional[Any]: # fmt: off __lowerCAmelCase = ' \tHeLLo!how \n Are yoU? ' __lowerCAmelCase = ['▁hello', '!', 'how', '▁are', '▁you', '?'] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = DebertaVaTokenizerFast(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def lowercase ( self : str ) -> List[str]: pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def lowercase ( self : Optional[Any] ) -> Tuple: pass def lowercase ( self : Tuple ) -> List[Any]: # fmt: off __lowerCAmelCase = 'I was born in 92000, and this is falsé.' __lowerCAmelCase = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(lowerCAmelCase_ , split_by_punct=lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = DebertaVaTokenizerFast(lowerCAmelCase_ , split_by_punct=lowerCAmelCase_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Optional[Any] ) -> int: # fmt: off __lowerCAmelCase = 'I was born in 92000, and this is falsé.' __lowerCAmelCase = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , split_by_punct=lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = DebertaVaTokenizerFast(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , split_by_punct=lowerCAmelCase_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Dict ) -> str: # fmt: off __lowerCAmelCase = 'I was born in 92000, and this is falsé.' __lowerCAmelCase = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , split_by_punct=lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = DebertaVaTokenizerFast(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , split_by_punct=lowerCAmelCase_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Tuple: # fmt: off __lowerCAmelCase = 'I was born in 92000, and this is falsé.' __lowerCAmelCase = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , split_by_punct=lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = DebertaVaTokenizerFast(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , split_by_punct=lowerCAmelCase_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Tuple ) -> int: # fmt: off __lowerCAmelCase = ' \tHeLLo!how \n Are yoU? ' __lowerCAmelCase = ['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?'] # fmt: on __lowerCAmelCase = DebertaVaTokenizer(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , split_by_punct=lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = DebertaVaTokenizerFast(lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , split_by_punct=lowerCAmelCase_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Dict: __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = 'I was born in 92000, and this is falsé.' __lowerCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) __lowerCAmelCase = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = tokenizer.encode(lowerCAmelCase_ ) __lowerCAmelCase = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Optional[int] ) -> str: __lowerCAmelCase = 'This is a test' __lowerCAmelCase = [1_3, 1, 4_3_9_8, 2_5, 2_1, 1_2_8_9] __lowerCAmelCase = ['▁', 'T', 'his', '▁is', '▁a', '▁test'] __lowerCAmelCase = ['▁', '<unk>', 'his', '▁is', '▁a', '▁test'] __lowerCAmelCase = DebertaVaTokenizer(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) __lowerCAmelCase = DebertaVaTokenizerFast(lowerCAmelCase_ , keep_accents=lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # fmt: off __lowerCAmelCase = 'I was born in 92000, and this is falsé.' __lowerCAmelCase = [1_3, 1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] __lowerCAmelCase = ['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ] __lowerCAmelCase = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on __lowerCAmelCase = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase = DebertaVaTokenizer(lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.encode('sequence builders' ) __lowerCAmelCase = tokenizer.encode('multi-sequence build' ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , lowerCAmelCase_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , lowerCAmelCase_ , ) @slow def lowercase ( self : Any ) -> Optional[int]: # fmt: off __lowerCAmelCase = {'input_ids': [[1, 3_9_8_6_7, 3_6, 1_9_3_9_0, 4_8_6, 2_7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 6_0_6_8_5, 1_2_2_5, 7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 9_3_6_7, 1_6_8_9_9, 1_8, 1_5_9_3_7, 5_3, 5_9_4, 7_7_3, 1_8, 1_6_2_8_7, 3_0_4_6_5, 3_6, 1_5_9_3_7, 6, 4_1_1_3_9, 3_8, 3_6_9_7_9, 6_0_7_6_3, 1_9_1, 6, 3_4_1_3_2, 9_9, 6, 5_0_5_3_8, 3_9_0, 4_3_2_3_0, 6, 3_4_1_3_2, 2_7_7_9, 2_0_8_5_0, 1_4, 6_9_9, 1_0_7_2, 1_1_9_4, 3_6, 3_8_2, 1_0_9_0_1, 5_3, 7, 6_9_9, 1_0_7_2, 2_0_8_4, 3_6, 2_0_4_2_2, 6_3_0, 5_3, 1_9, 1_0_5, 3_0_4_9, 1_8_9_6, 1_0_5_3, 1_6_8_9_9, 1_5_0_6, 1_1, 3_7_9_7_8, 4_2_4_3, 7, 1_2_3_7, 3_1_8_6_9, 2_0_0, 1_6_5_6_6, 6_5_4, 6, 3_5_0_5_2, 8_1_4_3_6, 7, 5_5_6_3_0, 1_3_5_9_3, 4, 2], [1, 2_6, 1_5_0_1_1, 1_3, 6_6_7, 8, 1_0_5_3, 1_8, 2_3_6_1_1, 1_2_3_7, 7_2_3_5_6, 1_2_8_2_0, 3_4, 1_0_4_1_3_4, 1_2_0_9, 3_5, 1_3_3_1_3, 6_6_2_7, 2_1, 2_0_2, 3_4_7, 7, 1_6_4, 2_3_9_9, 1_1, 4_6, 4_4_8_5, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_2_3_2, 2_8_6_4, 1_5_7_8_5, 1_4_9_5_1, 1_0_5, 5, 8_5_8_1, 1_2_5_0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name='microsoft/deberta-v2-xlarge' , revision='ad6e42c1532ddf3a15c39246b63f5559d558b670' , )
53
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process _snake_case : Optional[int] = logging.getLogger(__name__) _snake_case : Dict = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) _snake_case : List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(_UpperCamelCase )} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a_ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def lowercase ( self : List[Any] ) -> List[Any]: if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path' ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ = field(default=_UpperCamelCase , metadata={"""help""": """The input training data file (a text file)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a_ = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a_ = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def lowercase ( self : int ) -> int: if self.train_file is not None: __lowerCAmelCase = self.train_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __lowerCAmelCase = self.validation_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Union[str, Any] ): with open(lowerCAmelCase_, 'r', encoding='utf-8' ) as f: __lowerCAmelCase = [json.loads(lowerCAmelCase_ ) for line in f.read().splitlines() if (len(lowerCAmelCase_ ) > 0 and not line.isspace())] assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) __lowerCAmelCase = {c: dataset[c] for c in dataset.column_names} __lowerCAmelCase = refs return Dataset.from_dict(lowerCAmelCase_ ) def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s', lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset(data_args.dataset_name, data_args.dataset_config_name ) if "validation" not in datasets.keys(): __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[:{data_args.validation_split_percentage}%]""", ) __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[{data_args.validation_split_percentage}%:]""", ) else: __lowerCAmelCase = {} if data_args.train_file is not None: __lowerCAmelCase = data_args.train_file if data_args.validation_file is not None: __lowerCAmelCase = data_args.validation_file __lowerCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": __lowerCAmelCase = 'text' __lowerCAmelCase = load_dataset(lowerCAmelCase_, data_files=lowerCAmelCase_ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.config_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: __lowerCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: __lowerCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path, from_tf=bool('.ckpt' in model_args.model_name_or_path ), config=lowerCAmelCase_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info('Training new model from scratch' ) __lowerCAmelCase = AutoModelForMaskedLM.from_config(lowerCAmelCase_ ) model.resize_token_embeddings(len(lowerCAmelCase_ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __lowerCAmelCase = datasets['train'].column_names else: __lowerCAmelCase = datasets['validation'].column_names __lowerCAmelCase = 'text' if 'text' in column_names else column_names[0] __lowerCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(lowerCAmelCase_ : str ): # Remove empty lines __lowerCAmelCase = [line for line in examples['text'] if len(lowerCAmelCase_ ) > 0 and not line.isspace()] return tokenizer(examples['text'], padding=lowerCAmelCase_, truncation=lowerCAmelCase_, max_length=data_args.max_seq_length ) __lowerCAmelCase = datasets.map( lowerCAmelCase_, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, remove_columns=[text_column_name], load_from_cache_file=not data_args.overwrite_cache, ) # Add the chinese references if provided if data_args.train_ref_file is not None: __lowerCAmelCase = add_chinese_references(tokenized_datasets['train'], data_args.train_ref_file ) if data_args.validation_ref_file is not None: __lowerCAmelCase = add_chinese_references( tokenized_datasets['validation'], data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __lowerCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: __lowerCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. __lowerCAmelCase = DataCollatorForWholeWordMask(tokenizer=lowerCAmelCase_, mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowerCAmelCase = Trainer( model=lowerCAmelCase_, args=lowerCAmelCase_, train_dataset=tokenized_datasets['train'] if training_args.do_train else None, eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None, tokenizer=lowerCAmelCase_, data_collator=lowerCAmelCase_, ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload __lowerCAmelCase = os.path.join(training_args.output_dir, 'train_results.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir, 'trainer_state.json' ) ) # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = math.exp(eval_output['eval_loss'] ) __lowerCAmelCase = perplexity __lowerCAmelCase = os.path.join(training_args.output_dir, 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def a_ ( lowerCAmelCase_ : Tuple ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
53
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=_UpperCamelCase ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = field(default="""question-answering-extractive""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) a_ = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) a_ = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) a_ = "question" a_ = "context" a_ = "answers" @property def lowercase ( self : Any ) -> Dict[str, str]: return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
53
def a_ ( lowerCAmelCase_ : int = 200_0000 ): __lowerCAmelCase = [0 for i in range(n + 1 )] __lowerCAmelCase = 1 __lowerCAmelCase = 1 for i in range(2, int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i, n + 1, lowerCAmelCase_ ): __lowerCAmelCase = 1 __lowerCAmelCase = 0 for i in range(lowerCAmelCase_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"""{solution() = }""")
53
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _snake_case : Tuple = 16 _snake_case : int = 32 def a_ ( lowerCAmelCase_ : Accelerator, lowerCAmelCase_ : int = 16 ): __lowerCAmelCase = AutoTokenizer.from_pretrained('bert-base-cased' ) __lowerCAmelCase = load_dataset('glue', 'mrpc' ) def tokenize_function(lowerCAmelCase_ : str ): # max_length=None => use the model max length (it's actually the default) __lowerCAmelCase = tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowerCAmelCase_, max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCAmelCase = datasets.map( lowerCAmelCase_, batched=lowerCAmelCase_, remove_columns=['idx', 'sentence1', 'sentence2'], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCAmelCase = tokenized_datasets.rename_column('label', 'labels' ) def collate_fn(lowerCAmelCase_ : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCAmelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCAmelCase = 16 elif accelerator.mixed_precision != "no": __lowerCAmelCase = 8 else: __lowerCAmelCase = None return tokenizer.pad( lowerCAmelCase_, padding='longest', max_length=lowerCAmelCase_, pad_to_multiple_of=lowerCAmelCase_, return_tensors='pt', ) # Instantiate dataloaders. __lowerCAmelCase = DataLoader( tokenized_datasets['train'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) __lowerCAmelCase = DataLoader( tokenized_datasets['validation'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _snake_case : Optional[Any] = mocked_dataloaders # noqa: F811 def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : List[Any] ): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', lowerCAmelCase_ ) == "1": __lowerCAmelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: __lowerCAmelCase = Accelerator( cpu=args.cpu, mixed_precision=args.mixed_precision, log_with='all', project_dir=args.project_dir ) else: __lowerCAmelCase = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCAmelCase = config['lr'] __lowerCAmelCase = int(config['num_epochs'] ) __lowerCAmelCase = int(config['seed'] ) __lowerCAmelCase = int(config['batch_size'] ) set_seed(lowerCAmelCase_ ) __lowerCAmelCase , __lowerCAmelCase = get_dataloaders(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = evaluate.load('glue', 'mrpc' ) # If the batch size is too big we use gradient accumulation __lowerCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __lowerCAmelCase = batch_size // MAX_GPU_BATCH_SIZE __lowerCAmelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained('bert-base-cased', return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCAmelCase = model.to(accelerator.device ) # Instantiate optimizer __lowerCAmelCase = AdamW(params=model.parameters(), lr=lowerCAmelCase_ ) # Instantiate scheduler __lowerCAmelCase = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_, num_warmup_steps=100, num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: __lowerCAmelCase = os.path.split(lowerCAmelCase_ )[-1].split('.' )[0] accelerator.init_trackers(lowerCAmelCase_, lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: __lowerCAmelCase = 0 for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() __lowerCAmelCase = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = outputs.logits.argmax(dim=-1 ) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowerCAmelCase_, references=lowerCAmelCase_, ) __lowerCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""", lowerCAmelCase_ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { 'accuracy': eval_metric['accuracy'], 'f1': eval_metric['f1'], 'train_loss': total_loss.item() / len(lowerCAmelCase_ ), 'epoch': epoch, }, step=lowerCAmelCase_, ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def a_ ( ): __lowerCAmelCase = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision', type=lowerCAmelCase_, default=lowerCAmelCase_, choices=['no', 'fp16', 'bf16', 'fp8'], help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.', ) parser.add_argument('--cpu', action='store_true', help='If passed, will train on the CPU.' ) parser.add_argument( '--with_tracking', action='store_true', help='Whether to load in all available experiment trackers from the environment and use them for logging.', ) parser.add_argument( '--project_dir', type=lowerCAmelCase_, default='logs', help='Location on where to store experiment tracking logs` and relevent project information', ) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowerCAmelCase_, lowerCAmelCase_ ) if __name__ == "__main__": main()
53
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _snake_case : Tuple = logging.getLogger() _snake_case : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Any , lowerCAmelCase_ : Dict ) -> Optional[int]: os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowerCAmelCase = {'source': 'What is love ?', 'target': 'life'} __lowerCAmelCase = {'train': 1_2, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: __lowerCAmelCase = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(lowerCAmelCase_ , f"""{split}.{field}""" ) , 'w' ) as f: f.write(lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : str = "pytorch" ) -> List[str]: __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'output' ) __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'data' ) self._create_dummy_data(data_dir=lowerCAmelCase_ ) __lowerCAmelCase = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) __lowerCAmelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowerCAmelCase_ , env=self.get_env() ) __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'metrics.json' ) with open(lowerCAmelCase_ ) as f: __lowerCAmelCase = json.load(lowerCAmelCase_ ) return result @require_torch_gpu def lowercase ( self : str ) -> int: __lowerCAmelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def lowercase ( self : List[str] ) -> Dict: __lowerCAmelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def lowercase ( self : int ) -> Tuple: __lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def lowercase ( self : List[Any] ) -> str: __lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
53
1
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _snake_case : Dict = logging.get_logger() def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : LevitConfig, lowerCAmelCase_ : Path, lowerCAmelCase_ : bool = True ): print(F"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": __lowerCAmelCase = timm.create_model('levit_128s', pretrained=lowerCAmelCase_ ) else: __lowerCAmelCase = timm.create_model('levit_128', pretrained=lowerCAmelCase_ ) if hidden_sizes == 192: __lowerCAmelCase = timm.create_model('levit_192', pretrained=lowerCAmelCase_ ) if hidden_sizes == 256: __lowerCAmelCase = timm.create_model('levit_256', pretrained=lowerCAmelCase_ ) if hidden_sizes == 384: __lowerCAmelCase = timm.create_model('levit_384', pretrained=lowerCAmelCase_ ) from_model.eval() __lowerCAmelCase = LevitForImageClassificationWithTeacher(lowerCAmelCase_ ).eval() __lowerCAmelCase = OrderedDict() __lowerCAmelCase = from_model.state_dict() __lowerCAmelCase = list(from_model.state_dict().keys() ) __lowerCAmelCase = list(our_model.state_dict().keys() ) print(len(lowerCAmelCase_ ), len(lowerCAmelCase_ ) ) for i in range(len(lowerCAmelCase_ ) ): __lowerCAmelCase = weights[og_keys[i]] our_model.load_state_dict(lowerCAmelCase_ ) __lowerCAmelCase = torch.randn((2, 3, 224, 224) ) __lowerCAmelCase = from_model(lowerCAmelCase_ ) __lowerCAmelCase = our_model(lowerCAmelCase_ ).logits assert torch.allclose(lowerCAmelCase_, lowerCAmelCase_ ), "The model logits don't match the original one." __lowerCAmelCase = name print(lowerCAmelCase_ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) __lowerCAmelCase = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F"""Pushed {checkpoint_name}""" ) def a_ ( lowerCAmelCase_ : Path, lowerCAmelCase_ : str = None, lowerCAmelCase_ : bool = True ): __lowerCAmelCase = 'imagenet-1k-id2label.json' __lowerCAmelCase = 1000 __lowerCAmelCase = (1, num_labels) __lowerCAmelCase = 'huggingface/label-files' __lowerCAmelCase = num_labels __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} __lowerCAmelCase = partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ ) __lowerCAmelCase = { 'levit-128S': 128, 'levit-128': 128, 'levit-192': 192, 'levit-256': 256, 'levit-384': 384, } __lowerCAmelCase = { 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384], num_attention_heads=[4, 6, 8], depths=[2, 3, 4], key_dim=[16, 16, 16], drop_path_rate=0, ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384], num_attention_heads=[4, 8, 12], depths=[4, 4, 4], key_dim=[16, 16, 16], drop_path_rate=0, ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384], num_attention_heads=[3, 5, 6], depths=[4, 4, 4], key_dim=[32, 32, 32], drop_path_rate=0, ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512], num_attention_heads=[4, 6, 8], depths=[4, 4, 4], key_dim=[32, 32, 32], drop_path_rate=0, ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768], num_attention_heads=[6, 9, 12], depths=[4, 4, 4], key_dim=[32, 32, 32], drop_path_rate=0.1, ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name], lowerCAmelCase_, names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name], lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) return config, expected_shape if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) _snake_case : List[Any] = parser.parse_args() _snake_case : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
53
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]="resnet50" , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Optional[Any]=True , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = out_indices if out_indices is not None else [4] __lowerCAmelCase = stage_names __lowerCAmelCase = out_features __lowerCAmelCase = backbone __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = use_pretrained_backbone __lowerCAmelCase = is_training def lowercase ( self : List[str] ) -> Any: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def lowercase ( self : List[Any] ) -> Union[str, Any]: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase ( self : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ) -> int: __lowerCAmelCase = TimmBackbone(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 1_4, 1_4) , ) def lowercase ( self : List[str] ) -> str: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (TimmBackbone,) if is_torch_available() else () a_ = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Tuple ) -> int: __lowerCAmelCase = TimmBackboneModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : Dict ) -> List[str]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Union[str, Any] ) -> Optional[int]: __lowerCAmelCase = 'resnet18' __lowerCAmelCase = 'microsoft/resnet-18' __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ , out_indices=[1, 2, 3] ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def lowercase ( self : List[str] ) -> Tuple: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def lowercase ( self : Dict ) -> int: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def lowercase ( self : str ) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase ( self : Any ) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase ( self : Optional[int] ) -> Optional[Any]: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def lowercase ( self : Dict ) -> Any: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Any ) -> Optional[int]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase ( self : Union[str, Any] ) -> Tuple: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase ( self : List[str] ) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Dict ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Tuple ) -> List[str]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def lowercase ( self : int ) -> Optional[int]: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def lowercase ( self : Union[str, Any] ) -> str: pass @unittest.skip('Safetensors is not supported by timm.' ) def lowercase ( self : Dict ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : List[str] ) -> Optional[Any]: pass def lowercase ( self : Union[str, Any] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = self.has_attentions # no need to test all models as different heads yield the same functionality __lowerCAmelCase = self.all_model_classes[0] __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = outputs[0][-1] # Encoder-/Decoder-only models __lowerCAmelCase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowerCAmelCase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowerCAmelCase_ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) __lowerCAmelCase = None __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) __lowerCAmelCase = False __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ )
53
1
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = (UnCLIPScheduler,) def lowercase ( self : str , **lowerCAmelCase_ : str ) -> str: __lowerCAmelCase = { 'num_train_timesteps': 1_0_0_0, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**lowerCAmelCase_ ) return config def lowercase ( self : Optional[Any] ) -> Optional[int]: for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> List[Any]: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase_ ) def lowercase ( self : Tuple ) -> List[Any]: for clip_sample_range in [1, 5, 1_0, 2_0]: self.check_over_configs(clip_sample_range=lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Any: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def lowercase ( self : int ) -> Tuple: for time_step in [0, 5_0_0, 9_9_9]: for prev_timestep in [None, 5, 1_0_0, 2_5_0, 5_0_0, 7_5_0]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowerCAmelCase_ , prev_timestep=lowerCAmelCase_ ) def lowercase ( self : Any ) -> Dict: __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config(variance_type='fixed_small_log' ) __lowerCAmelCase = scheduler_class(**lowerCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.00_00e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_54_96_25 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.9_99_49_87 ) ) < 1e-5 def lowercase ( self : List[Any] ) -> int: __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config(variance_type='learned_range' ) __lowerCAmelCase = scheduler_class(**lowerCAmelCase_ ) __lowerCAmelCase = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowerCAmelCase_ ) - -10.1_71_27_90 < 1e-5 assert scheduler._get_variance(4_8_7 , predicted_variance=lowerCAmelCase_ ) - -5.7_99_80_52 < 1e-5 assert scheduler._get_variance(9_9_9 , predicted_variance=lowerCAmelCase_ ) - -0.0_01_00_11 < 1e-5 def lowercase ( self : Dict ) -> Optional[int]: __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**lowerCAmelCase_ ) __lowerCAmelCase = scheduler.timesteps __lowerCAmelCase = self.dummy_model() __lowerCAmelCase = self.dummy_sample_deter __lowerCAmelCase = torch.manual_seed(0 ) for i, t in enumerate(lowerCAmelCase_ ): # 1. predict noise residual __lowerCAmelCase = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 __lowerCAmelCase = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample __lowerCAmelCase = pred_prev_sample __lowerCAmelCase = torch.sum(torch.abs(lowerCAmelCase_ ) ) __lowerCAmelCase = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1e-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1e-3 def lowercase ( self : List[str] ) -> Optional[int]: __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**lowerCAmelCase_ ) scheduler.set_timesteps(2_5 ) __lowerCAmelCase = scheduler.timesteps __lowerCAmelCase = self.dummy_model() __lowerCAmelCase = self.dummy_sample_deter __lowerCAmelCase = torch.manual_seed(0 ) for i, t in enumerate(lowerCAmelCase_ ): # 1. predict noise residual __lowerCAmelCase = model(lowerCAmelCase_ , lowerCAmelCase_ ) if i + 1 == timesteps.shape[0]: __lowerCAmelCase = None else: __lowerCAmelCase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowerCAmelCase = scheduler.step( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , prev_timestep=lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample __lowerCAmelCase = pred_prev_sample __lowerCAmelCase = torch.sum(torch.abs(lowerCAmelCase_ ) ) __lowerCAmelCase = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1e-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1e-3 def lowercase ( self : Union[str, Any] ) -> Optional[Any]: pass def lowercase ( self : Tuple ) -> Tuple: pass
53
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def a_ ( lowerCAmelCase_ : str=None ): if subparsers is not None: __lowerCAmelCase = subparsers.add_parser('env' ) else: __lowerCAmelCase = argparse.ArgumentParser('Accelerate env command' ) parser.add_argument( '--config_file', default=lowerCAmelCase_, help='The config file to use for the default values in the launching script.' ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def a_ ( lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = torch.__version__ __lowerCAmelCase = torch.cuda.is_available() __lowerCAmelCase = is_xpu_available() __lowerCAmelCase = is_npu_available() __lowerCAmelCase = 'Not found' # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowerCAmelCase_ ): __lowerCAmelCase = load_config_from_file(args.config_file ).to_dict() __lowerCAmelCase = { '`Accelerate` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Numpy version': np.__version__, 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'PyTorch XPU available': str(lowerCAmelCase_ ), 'PyTorch NPU available': str(lowerCAmelCase_ ), 'System RAM': F"""{psutil.virtual_memory().total / 1024 ** 3:.2f} GB""", } if pt_cuda_available: __lowerCAmelCase = torch.cuda.get_device_name() print('\nCopy-and-paste the text below in your GitHub issue\n' ) print('\n'.join([F"""- {prop}: {val}""" for prop, val in info.items()] ) ) print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:' ) __lowerCAmelCase = ( '\n'.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else F"""\t{accelerate_config}""" ) print(lowerCAmelCase_ ) __lowerCAmelCase = accelerate_config return info def a_ ( ): __lowerCAmelCase = env_command_parser() __lowerCAmelCase = parser.parse_args() env_command(lowerCAmelCase_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
53
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = ShapEPipeline a_ = ["""prompt"""] a_ = ["""prompt"""] a_ = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] a_ = False @property def lowercase ( self : int ) -> Any: return 3_2 @property def lowercase ( self : int ) -> Optional[int]: return 3_2 @property def lowercase ( self : Union[str, Any] ) -> Optional[int]: return self.time_input_dim * 4 @property def lowercase ( self : Union[str, Any] ) -> List[str]: return 8 @property def lowercase ( self : Optional[int] ) -> List[str]: __lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowercase ( self : Optional[Any] ) -> Optional[int]: torch.manual_seed(0 ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(lowerCAmelCase_ ) @property def lowercase ( self : str ) -> Optional[Any]: torch.manual_seed(0 ) __lowerCAmelCase = { 'num_attention_heads': 2, 'attention_head_dim': 1_6, 'embedding_dim': self.time_input_dim, 'num_embeddings': 3_2, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __lowerCAmelCase = PriorTransformer(**lowerCAmelCase_ ) return model @property def lowercase ( self : Union[str, Any] ) -> List[Any]: torch.manual_seed(0 ) __lowerCAmelCase = { 'param_shapes': ( (self.renderer_dim, 9_3), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 1_2, 'background': ( 0.1, 0.1, 0.1, ), } __lowerCAmelCase = ShapERenderer(**lowerCAmelCase_ ) return model def lowercase ( self : Tuple ) -> Dict: __lowerCAmelCase = self.dummy_prior __lowerCAmelCase = self.dummy_text_encoder __lowerCAmelCase = self.dummy_tokenizer __lowerCAmelCase = self.dummy_renderer __lowerCAmelCase = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_0_2_4 , prediction_type='sample' , use_karras_sigmas=lowerCAmelCase_ , clip_sample=lowerCAmelCase_ , clip_sample_range=1.0 , ) __lowerCAmelCase = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def lowercase ( self : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int]=0 ) -> int: if str(lowerCAmelCase_ ).startswith('mps' ): __lowerCAmelCase = torch.manual_seed(lowerCAmelCase_ ) else: __lowerCAmelCase = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) __lowerCAmelCase = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 3_2, 'output_type': 'np', } return inputs def lowercase ( self : List[str] ) -> str: __lowerCAmelCase = 'cpu' __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**lowerCAmelCase_ ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = pipe(**self.get_dummy_inputs(lowerCAmelCase_ ) ) __lowerCAmelCase = output.images[0] __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (2_0, 3_2, 3_2, 3) __lowerCAmelCase = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self : int ) -> List[str]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase ( self : Any ) -> str: __lowerCAmelCase = torch_device == 'cpu' __lowerCAmelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase_ , relax_max_difference=lowerCAmelCase_ , ) def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**lowerCAmelCase_ ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = 1 __lowerCAmelCase = 2 __lowerCAmelCase = self.get_dummy_inputs(lowerCAmelCase_ ) for key in inputs.keys(): if key in self.batch_params: __lowerCAmelCase = batch_size * [inputs[key]] __lowerCAmelCase = pipe(**lowerCAmelCase_ , num_images_per_prompt=lowerCAmelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Dict ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self : int ) -> Dict: __lowerCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __lowerCAmelCase = ShapEPipeline.from_pretrained('openai/shap-e' ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = torch.Generator(device=lowerCAmelCase_ ).manual_seed(0 ) __lowerCAmelCase = pipe( 'a shark' , generator=lowerCAmelCase_ , guidance_scale=15.0 , num_inference_steps=6_4 , frame_size=6_4 , output_type='np' , ).images[0] assert images.shape == (2_0, 6_4, 6_4, 3) assert_mean_pixel_difference(lowerCAmelCase_ , lowerCAmelCase_ )
53
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a_ ( ): __lowerCAmelCase = ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores', type=lowerCAmelCase_, default=1, help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script', type=lowerCAmelCase_, help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ), ) # rest from the training program parser.add_argument('training_script_args', nargs=lowerCAmelCase_ ) return parser.parse_args() def a_ ( ): __lowerCAmelCase = parse_args() # Import training_script as a module. __lowerCAmelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __lowerCAmelCase = script_fpath.stem __lowerCAmelCase = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv __lowerCAmelCase = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores ) if __name__ == "__main__": main()
53
1
from math import sqrt def a_ ( lowerCAmelCase_ : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(sqrt(lowerCAmelCase_ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a_ ( lowerCAmelCase_ : int = 1_0001 ): __lowerCAmelCase = 0 __lowerCAmelCase = 1 while count != nth and number < 3: number += 1 if is_prime(lowerCAmelCase_ ): count += 1 while count != nth: number += 2 if is_prime(lowerCAmelCase_ ): count += 1 return number if __name__ == "__main__": print(F"""{solution() = }""")
53
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict=1_3 , lowerCAmelCase_ : str=3_2 , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : str=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Tuple=[2, 2, 3, 2] , lowerCAmelCase_ : str=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[int]=3_7 , lowerCAmelCase_ : Dict="gelu" , lowerCAmelCase_ : List[Any]=1_0 , lowerCAmelCase_ : str=0.02 , lowerCAmelCase_ : Dict=["stage2", "stage3", "stage4"] , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : List[Any]=None , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = num_stages __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = out_features __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = num_stages def lowercase ( self : Dict ) -> List[str]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase ( self : List[str] ) -> Union[str, Any]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowercase ( self : Dict ) -> List[str]: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_1_2 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=lowerCAmelCase_ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=4_0 , auxiliary_channels=2_5_6 , auxiliary_num_convs=1 , auxiliary_concat_input=lowerCAmelCase_ , loss_ignore_index=2_5_5 , num_labels=self.num_labels , ) def lowercase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int ) -> Optional[Any]: __lowerCAmelCase = UperNetForSemanticSegmentation(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase ( self : Union[str, Any] ) -> Union[str, Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (UperNetForSemanticSegmentation,) if is_torch_available() else () a_ = {"""image-segmentation""": UperNetForSemanticSegmentation} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Optional[int] ) -> Dict: __lowerCAmelCase = UperNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : List[str] ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Tuple ) -> Union[str, Any]: return def lowercase ( self : Optional[int] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase_ ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def lowercase ( self : Optional[int] ) -> Dict: pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def lowercase ( self : Optional[Any] ) -> Dict: pass @unittest.skip(reason='UperNet does not have a base model' ) def lowercase ( self : Optional[int] ) -> List[Any]: pass @unittest.skip(reason='UperNet does not have a base model' ) def lowercase ( self : str ) -> Dict: pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowercase ( self : Optional[Any] ) -> Optional[int]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : Tuple ) -> List[Any]: pass def lowercase ( self : Union[str, Any] ) -> Tuple: def check_hidden_states_output(lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Any ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = _config_zero_init(lowerCAmelCase_ ) __lowerCAmelCase = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __lowerCAmelCase = model_class(config=lowerCAmelCase_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='UperNet does not have tied weights' ) def lowercase ( self : Any ) -> int: pass @slow def lowercase ( self : Optional[int] ) -> Optional[int]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def a_ ( ): __lowerCAmelCase = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k', repo_type='dataset', filename='ADE_val_00000001.jpg' ) __lowerCAmelCase = Image.open(lowerCAmelCase_ ).convert('RGB' ) return image @require_torch @require_vision @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Dict ) -> Union[str, Any]: __lowerCAmelCase = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(lowerCAmelCase_ ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(lowerCAmelCase_ ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
1
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class _UpperCAmelCase : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str=1_3 , lowerCAmelCase_ : Union[str, Any]=3_2 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : Union[str, Any]=1_6 , lowerCAmelCase_ : Any=[1, 2, 1] , lowerCAmelCase_ : Optional[Any]=[2, 2, 4] , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : str=2.0 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : List[str]=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Optional[int]=0.02 , lowerCAmelCase_ : int=1e-5 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : int=True , lowerCAmelCase_ : List[Any]=1_0 , lowerCAmelCase_ : Tuple=8 , lowerCAmelCase_ : Optional[Any]=["stage1", "stage2", "stage3"] , lowerCAmelCase_ : Dict=[1, 2, 3] , ) -> Optional[int]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = embed_dim __lowerCAmelCase = depths __lowerCAmelCase = num_heads __lowerCAmelCase = window_size __lowerCAmelCase = mlp_ratio __lowerCAmelCase = qkv_bias __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = drop_path_rate __lowerCAmelCase = hidden_act __lowerCAmelCase = use_absolute_embeddings __lowerCAmelCase = patch_norm __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = initializer_range __lowerCAmelCase = is_training __lowerCAmelCase = scope __lowerCAmelCase = use_labels __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = encoder_stride __lowerCAmelCase = out_features __lowerCAmelCase = out_indices def lowercase ( self : Dict ) -> List[Any]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase ( self : Dict ) -> Optional[int]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]: __lowerCAmelCase = MaskFormerSwinModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ ) __lowerCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowerCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase ( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] ) -> Optional[int]: __lowerCAmelCase = MaskFormerSwinBackbone(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [1_3, 1_6, 1_6, 1_6] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4] ) # verify ValueError with self.parent.assertRaises(lowerCAmelCase_ ): __lowerCAmelCase = ['stem'] __lowerCAmelCase = MaskFormerSwinBackbone(config=lowerCAmelCase_ ) def lowercase ( self : str ) -> List[str]: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) a_ = {"""feature-extraction""": MaskFormerSwinModel} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False a_ = False def lowercase ( self : List[Any] ) -> List[Any]: __lowerCAmelCase = MaskFormerSwinModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , embed_dim=3_7 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def lowercase ( self : Optional[Any] ) -> List[Any]: pass def lowercase ( self : Any ) -> Optional[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : List[Any] ) -> List[str]: return def lowercase ( self : List[Any] ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase_ ) @unittest.skip('Swin does not use inputs_embeds' ) def lowercase ( self : Optional[Any] ) -> str: pass @unittest.skip('Swin does not support feedforward chunking' ) def lowercase ( self : Optional[int] ) -> List[Any]: pass def lowercase ( self : Any ) -> List[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear ) ) def lowercase ( self : str ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def lowercase ( self : List[Any] ) -> Optional[int]: pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def lowercase ( self : Dict ) -> Any: pass def lowercase ( self : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any ) -> Union[str, Any]: __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.hidden_states __lowerCAmelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) # Swin has a different seq_length __lowerCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase ( self : int ) -> Any: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __lowerCAmelCase = True self.check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True self.check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = 3 __lowerCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowerCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowerCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __lowerCAmelCase = True self.check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True self.check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def lowercase ( self : Optional[int] ) -> Optional[Any]: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def lowercase ( self : Optional[Any] ) -> Dict: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def lowercase ( self : Tuple ) -> List[str]: pass def lowercase ( self : Union[str, Any] ) -> Dict: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(lowerCAmelCase_ : Dict ): __lowerCAmelCase = 0 return t def check_equivalence(lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any={} ): with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ , return_dict=lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = model(**lowerCAmelCase_ , return_dict=lowerCAmelCase_ , **lowerCAmelCase_ ).to_tuple() def recursive_check(lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] ): if isinstance(lowerCAmelCase_ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(lowerCAmelCase_ , lowerCAmelCase_ ): recursive_check(lowerCAmelCase_ , lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(lowerCAmelCase_ , lowerCAmelCase_ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(lowerCAmelCase_ ) , set_nan_tensor_to_zero(lowerCAmelCase_ ) , atol=1e-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" f""" {torch.isnan(lowerCAmelCase_ ).any()} and `inf`: {torch.isinf(lowerCAmelCase_ )}. Dict has""" f""" `nan`: {torch.isnan(lowerCAmelCase_ ).any()} and `inf`: {torch.isinf(lowerCAmelCase_ )}.""" ) , ) recursive_check(lowerCAmelCase_ , lowerCAmelCase_ ) for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) check_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) check_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) check_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , {'output_hidden_states': True} ) __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) check_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , {'output_hidden_states': True} ) @require_torch class _UpperCAmelCase ( unittest.TestCase , _UpperCamelCase ): """simple docstring""" a_ = (MaskFormerSwinBackbone,) if is_torch_available() else () a_ = MaskFormerSwinConfig def lowercase ( self : List[str] ) -> Dict: __lowerCAmelCase = MaskFormerSwinModelTester(self ) def lowercase ( self : Tuple ) -> List[str]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: __lowerCAmelCase = backbone_class(lowerCAmelCase_ ) backbone.to(lowerCAmelCase_ ) backbone.eval() __lowerCAmelCase = backbone(**lowerCAmelCase_ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , lowerCAmelCase_ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __lowerCAmelCase = backbone(**lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __lowerCAmelCase = backbone(**lowerCAmelCase_ , output_attentions=lowerCAmelCase_ ) self.assertIsNotNone(outputs.attentions )
53
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Optional[Any] ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : int ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_, keep_in_memory=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Dict, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, features=lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Any ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_, split=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type', [str, list] ) def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : Any, lowerCAmelCase_ : Dict ): if issubclass(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = text_path elif issubclass(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = [text_path] __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : int, lowerCAmelCase_ : Tuple=("train",) ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) for split in splits: __lowerCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def a_ ( lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Dict ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = TextDatasetReader({'train': text_path}, cache_dir=lowerCAmelCase_, keep_in_memory=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = TextDatasetReader({'train': text_path}, features=lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : Optional[int] ): if split: __lowerCAmelCase = {split: text_path} else: __lowerCAmelCase = 'train' __lowerCAmelCase = {'train': text_path, 'test': text_path} __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
53
1
from functools import lru_cache def a_ ( lowerCAmelCase_ : int ): __lowerCAmelCase = 2 __lowerCAmelCase = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(lowerCAmelCase_ ) if n > 1: factors.add(lowerCAmelCase_ ) return factors @lru_cache def a_ ( lowerCAmelCase_ : int ): return len(unique_prime_factors(lowerCAmelCase_ ) ) def a_ ( lowerCAmelCase_ : list ): return len(set(lowerCAmelCase_ ) ) in (0, 1) def a_ ( lowerCAmelCase_ : int ): __lowerCAmelCase = 2 while True: # Increment each value of a generated range __lowerCAmelCase = [base + i for i in range(lowerCAmelCase_ )] # Run elements through out unique_prime_factors function # Append our target number to the end. __lowerCAmelCase = [upf_len(lowerCAmelCase_ ) for x in group] checker.append(lowerCAmelCase_ ) # If all numbers in the list are equal, return the group variable. if equality(lowerCAmelCase_ ): return group # Increment our base variable by 1 base += 1 def a_ ( lowerCAmelCase_ : int = 4 ): __lowerCAmelCase = run(lowerCAmelCase_ ) return results[0] if len(lowerCAmelCase_ ) else None if __name__ == "__main__": print(solution())
53
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case : Union[str, Any] = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : int=False ): __lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Optional[int]=False ): for i in range(config.num_hidden_layers ): if base_model: __lowerCAmelCase = '' else: __lowerCAmelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] __lowerCAmelCase = in_proj_bias[: config.hidden_size] __lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase = in_proj_bias[-config.hidden_size :] def a_ ( lowerCAmelCase_ : List[str] ): __lowerCAmelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Optional[Any]=True ): __lowerCAmelCase = ViTConfig() # patch_size if model_name[-1] == "8": __lowerCAmelCase = 8 # set labels if required if not base_model: __lowerCAmelCase = 1000 __lowerCAmelCase = 'huggingface/label-files' __lowerCAmelCase = 'imagenet-1k-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 6 # load original model from torch hub __lowerCAmelCase = torch.hub.load('facebookresearch/dino:main', lowerCAmelCase_ ) original_model.eval() # load state_dict of original model, remove and rename some keys __lowerCAmelCase = original_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase_ ) __lowerCAmelCase = create_rename_keys(lowerCAmelCase_, base_model=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # load HuggingFace model if base_model: __lowerCAmelCase = ViTModel(lowerCAmelCase_, add_pooling_layer=lowerCAmelCase_ ).eval() else: __lowerCAmelCase = ViTForImageClassification(lowerCAmelCase_ ).eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor __lowerCAmelCase = ViTImageProcessor() __lowerCAmelCase = image_processor(images=prepare_img(), return_tensors='pt' ) __lowerCAmelCase = encoding['pixel_values'] __lowerCAmelCase = model(lowerCAmelCase_ ) if base_model: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_, outputs.last_hidden_state[:, 0, :], atol=1E-1 ) else: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase_, outputs.logits, atol=1E-3 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) _snake_case : List[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
53
1
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger _snake_case : Union[str, Any] = get_logger(__name__) class _UpperCAmelCase : """simple docstring""" def __init__( self : int , lowerCAmelCase_ : Optional[str] = None ) -> Optional[Any]: __lowerCAmelCase = ( os.path.join(lowerCAmelCase_ , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) __lowerCAmelCase = Extractor def lowercase ( self : List[Any] , lowerCAmelCase_ : str ) -> str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" __lowerCAmelCase = os.path.abspath(lowerCAmelCase_ ) return os.path.join(self.extract_dir , hash_url_to_filename(lowerCAmelCase_ ) ) def lowercase ( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : bool ) -> bool: return force_extract or ( not os.path.isfile(lowerCAmelCase_ ) and not (os.path.isdir(lowerCAmelCase_ ) and os.listdir(lowerCAmelCase_ )) ) def lowercase ( self : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : bool = False ) -> str: __lowerCAmelCase = self.extractor.infer_extractor_format(lowerCAmelCase_ ) if not extractor_format: return input_path __lowerCAmelCase = self._get_output_path(lowerCAmelCase_ ) if self._do_extract(lowerCAmelCase_ , lowerCAmelCase_ ): self.extractor.extract(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return output_path class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" @classmethod @abstractmethod def lowercase ( cls : Optional[Any] , lowerCAmelCase_ : Union[Path, str] , **lowerCAmelCase_ : List[str] ) -> bool: ... @staticmethod @abstractmethod def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None: ... class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" a_ = [] @staticmethod def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : int ) -> List[Any]: with open(lowerCAmelCase_ , 'rb' ) as f: return f.read(lowerCAmelCase_ ) @classmethod def lowercase ( cls : str , lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : bytes = b"" ) -> bool: if not magic_number: __lowerCAmelCase = max(len(lowerCAmelCase_ ) for cls_magic_number in cls.magic_numbers ) try: __lowerCAmelCase = cls.read_magic_number(lowerCAmelCase_ , lowerCAmelCase_ ) except OSError: return False return any(magic_number.startswith(lowerCAmelCase_ ) for cls_magic_number in cls.magic_numbers ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" @classmethod def lowercase ( cls : Tuple , lowerCAmelCase_ : Union[Path, str] , **lowerCAmelCase_ : str ) -> bool: return tarfile.is_tarfile(lowerCAmelCase_ ) @staticmethod def lowercase ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] ) -> str: def resolved(lowerCAmelCase_ : str ) -> str: return os.path.realpath(os.path.abspath(lowerCAmelCase_ ) ) def badpath(lowerCAmelCase_ : str , lowerCAmelCase_ : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ).startswith(lowerCAmelCase_ ) def badlink(lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str ) -> bool: # Links are interpreted relative to the directory containing the link __lowerCAmelCase = resolved(os.path.join(lowerCAmelCase_ , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=lowerCAmelCase_ ) __lowerCAmelCase = resolved(lowerCAmelCase_ ) for finfo in members: if badpath(finfo.name , lowerCAmelCase_ ): logger.error(f"""Extraction of {finfo.name} is blocked (illegal path)""" ) elif finfo.issym() and badlink(lowerCAmelCase_ , lowerCAmelCase_ ): logger.error(f"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" ) elif finfo.islnk() and badlink(lowerCAmelCase_ , lowerCAmelCase_ ): logger.error(f"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" ) else: yield finfo @staticmethod def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None: os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowerCAmelCase = tarfile.open(lowerCAmelCase_ ) tar_file.extractall(lowerCAmelCase_ , members=TarExtractor.safemembers(lowerCAmelCase_ , lowerCAmelCase_ ) ) tar_file.close() class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = [b"""\x1F\x8B"""] @staticmethod def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None: with gzip.open(lowerCAmelCase_ , 'rb' ) as gzip_file: with open(lowerCAmelCase_ , 'wb' ) as extracted_file: shutil.copyfileobj(lowerCAmelCase_ , lowerCAmelCase_ ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = [ b"""PK\x03\x04""", b"""PK\x05\x06""", # empty archive b"""PK\x07\x08""", # spanned archive ] @classmethod def lowercase ( cls : List[str] , lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : bytes = b"" ) -> bool: if super().is_extractable(lowerCAmelCase_ , magic_number=lowerCAmelCase_ ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(lowerCAmelCase_ , 'rb' ) as fp: __lowerCAmelCase = _EndRecData(lowerCAmelCase_ ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: __lowerCAmelCase = fp.read(lowerCAmelCase_ ) # CD is where we expect it to be if len(lowerCAmelCase_ ) == sizeCentralDir: __lowerCAmelCase = struct.unpack(lowerCAmelCase_ , lowerCAmelCase_ ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None: os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) with zipfile.ZipFile(lowerCAmelCase_ , 'r' ) as zip_file: zip_file.extractall(lowerCAmelCase_ ) zip_file.close() class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = [b"""\xFD\x37\x7A\x58\x5A\x00"""] @staticmethod def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None: with lzma.open(lowerCAmelCase_ ) as compressed_file: with open(lowerCAmelCase_ , 'wb' ) as extracted_file: shutil.copyfileobj(lowerCAmelCase_ , lowerCAmelCase_ ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = [b"""Rar!\x1a\x07\x00""", b"""Rar!\x1a\x07\x01\x00"""] # RAR_ID # RAR5_ID @staticmethod def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None: if not config.RARFILE_AVAILABLE: raise ImportError('Please pip install rarfile' ) import rarfile os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowerCAmelCase = rarfile.RarFile(lowerCAmelCase_ ) rf.extractall(lowerCAmelCase_ ) rf.close() class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = [b"""\x28\xb5\x2F\xFD"""] @staticmethod def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None: if not config.ZSTANDARD_AVAILABLE: raise ImportError('Please pip install zstandard' ) import zstandard as zstd __lowerCAmelCase = zstd.ZstdDecompressor() with open(lowerCAmelCase_ , 'rb' ) as ifh, open(lowerCAmelCase_ , 'wb' ) as ofh: dctx.copy_stream(lowerCAmelCase_ , lowerCAmelCase_ ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = [b"""\x42\x5A\x68"""] @staticmethod def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None: with bza.open(lowerCAmelCase_ , 'rb' ) as compressed_file: with open(lowerCAmelCase_ , 'wb' ) as extracted_file: shutil.copyfileobj(lowerCAmelCase_ , lowerCAmelCase_ ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = [b"""\x37\x7A\xBC\xAF\x27\x1C"""] @staticmethod def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None: if not config.PY7ZR_AVAILABLE: raise ImportError('Please pip install py7zr' ) import pyazr os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) with pyazr.SevenZipFile(lowerCAmelCase_ , 'r' ) as archive: archive.extractall(lowerCAmelCase_ ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = [b"""\x04\x22\x4D\x18"""] @staticmethod def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None: if not config.LZ4_AVAILABLE: raise ImportError('Please pip install lz4' ) import lza.frame with lza.frame.open(lowerCAmelCase_ , 'rb' ) as compressed_file: with open(lowerCAmelCase_ , 'wb' ) as extracted_file: shutil.copyfileobj(lowerCAmelCase_ , lowerCAmelCase_ ) class _UpperCAmelCase : """simple docstring""" a_ = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def lowercase ( cls : int ) -> Any: return max( len(lowerCAmelCase_ ) for extractor in cls.extractors.values() if issubclass(lowerCAmelCase_ , lowerCAmelCase_ ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : int ) -> Optional[Any]: try: return MagicNumberBaseExtractor.read_magic_number(lowerCAmelCase_ , magic_number_length=lowerCAmelCase_ ) except OSError: return b"" @classmethod def lowercase ( cls : Dict , lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : bool = False ) -> bool: warnings.warn( 'Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ' 'Use \'infer_extractor_format\' instead.' , category=lowerCAmelCase_ , ) __lowerCAmelCase = cls.infer_extractor_format(lowerCAmelCase_ ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def lowercase ( cls : str , lowerCAmelCase_ : Union[Path, str] ) -> str: # <Added version="2.4.0"/> __lowerCAmelCase = cls._get_magic_number_max_length() __lowerCAmelCase = cls._read_magic_number(lowerCAmelCase_ , lowerCAmelCase_ ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(lowerCAmelCase_ , magic_number=lowerCAmelCase_ ): return extractor_format @classmethod def lowercase ( cls : Union[str, Any] , lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[BaseExtractor] = "deprecated" , ) -> None: os.makedirs(os.path.dirname(lowerCAmelCase_ ) , exist_ok=lowerCAmelCase_ ) # Prevent parallel extractions __lowerCAmelCase = str(Path(lowerCAmelCase_ ).with_suffix('.lock' ) ) with FileLock(lowerCAmelCase_ ): shutil.rmtree(lowerCAmelCase_ , ignore_errors=lowerCAmelCase_ ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): # passed as positional arg warnings.warn( 'Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ' 'Use \'extractor_format\' instead.' , category=lowerCAmelCase_ , ) __lowerCAmelCase = extractor if extractor != 'deprecated' else extractor_format else: __lowerCAmelCase = cls.extractors[extractor_format] return extractor.extract(lowerCAmelCase_ , lowerCAmelCase_ ) else: warnings.warn( 'Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ' 'exception in 3.0.0.' , category=lowerCAmelCase_ , ) for extractor in cls.extractors.values(): if extractor.is_extractable(lowerCAmelCase_ ): return extractor.extract(lowerCAmelCase_ , lowerCAmelCase_ )
53
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : str ) -> Any: __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : Tuple ) -> Optional[int]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : List[Any] ) -> int: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : str ) -> str: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[str]: # pass variant but use the non-variant filenames __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> Union[str, Any]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : List[str] ) -> List[Any]: # pass variant but use the non-variant filenames __lowerCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) )
53
1
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _snake_case : Tuple = logging.getLogger() _snake_case : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Any , lowerCAmelCase_ : Dict ) -> Optional[int]: os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowerCAmelCase = {'source': 'What is love ?', 'target': 'life'} __lowerCAmelCase = {'train': 1_2, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: __lowerCAmelCase = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(lowerCAmelCase_ , f"""{split}.{field}""" ) , 'w' ) as f: f.write(lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : str = "pytorch" ) -> List[str]: __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'output' ) __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'data' ) self._create_dummy_data(data_dir=lowerCAmelCase_ ) __lowerCAmelCase = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) __lowerCAmelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowerCAmelCase_ , env=self.get_env() ) __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'metrics.json' ) with open(lowerCAmelCase_ ) as f: __lowerCAmelCase = json.load(lowerCAmelCase_ ) return result @require_torch_gpu def lowercase ( self : str ) -> int: __lowerCAmelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def lowercase ( self : List[str] ) -> Dict: __lowerCAmelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def lowercase ( self : int ) -> Tuple: __lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def lowercase ( self : List[Any] ) -> str: __lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
53
import math def a_ ( lowerCAmelCase_ : list, lowerCAmelCase_ : int ): __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) __lowerCAmelCase = 0 while arr[min(lowerCAmelCase_, lowerCAmelCase_ ) - 1] < x: __lowerCAmelCase = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: __lowerCAmelCase = prev + 1 if prev == min(lowerCAmelCase_, lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": _snake_case : List[str] = input('Enter numbers separated by a comma:\n').strip() _snake_case : Optional[Any] = [int(item) for item in user_input.split(',')] _snake_case : List[str] = int(input('Enter the number to be searched:\n')) _snake_case : Optional[int] = jump_search(arr, x) if res == -1: print('Number not found!') else: print(F"""Number {x} is at index {res}""")
53
1
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def a_ ( lowerCAmelCase_ : int ): # A local function to see if a dot lands in the circle. def is_in_circle(lowerCAmelCase_ : float, lowerCAmelCase_ : float ) -> bool: __lowerCAmelCase = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __lowerCAmelCase = mean( int(is_in_circle(uniform(-1.0, 1.0 ), uniform(-1.0, 1.0 ) ) ) for _ in range(lowerCAmelCase_ ) ) # The ratio of the area for circle to square is pi/4. __lowerCAmelCase = proportion * 4 print(F"""The estimated value of pi is {pi_estimate}""" ) print(F"""The numpy value of pi is {pi}""" ) print(F"""The total error is {abs(pi - pi_estimate )}""" ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : Callable[[float], float], lowerCAmelCase_ : float = 0.0, lowerCAmelCase_ : float = 1.0, ): return mean( function_to_integrate(uniform(lowerCAmelCase_, lowerCAmelCase_ ) ) for _ in range(lowerCAmelCase_ ) ) * (max_value - min_value) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : float = 0.0, lowerCAmelCase_ : float = 1.0 ): def identity_function(lowerCAmelCase_ : float ) -> float: return x __lowerCAmelCase = area_under_curve_estimator( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(F"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(F"""Estimated value is {estimated_value}""" ) print(F"""Expected value is {expected_value}""" ) print(F"""Total error is {abs(estimated_value - expected_value )}""" ) print('******************' ) def a_ ( lowerCAmelCase_ : int ): def function_to_integrate(lowerCAmelCase_ : float ) -> float: return sqrt(4.0 - x * x ) __lowerCAmelCase = area_under_curve_estimator( lowerCAmelCase_, lowerCAmelCase_, 0.0, 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(F"""Estimated value is {estimated_value}""" ) print(F"""Expected value is {pi}""" ) print(F"""Total error is {abs(estimated_value - pi )}""" ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
53
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[Any], lowerCAmelCase_ : str ): # Initialise PyTorch model __lowerCAmelCase = RemBertConfig.from_json_file(lowerCAmelCase_ ) print('Building PyTorch model from configuration: {}'.format(str(lowerCAmelCase_ ) ) ) __lowerCAmelCase = RemBertModel(lowerCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Save pytorch-model print('Save PyTorch model to {}'.format(lowerCAmelCase_ ) ) torch.save(model.state_dict(), lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : int = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
53
1
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Union[str, Any]=1_0 , lowerCAmelCase_ : List[str]=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple="relu" , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : Optional[int]=None , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = embeddings_size __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_act __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = len(lowerCAmelCase_ ) def lowercase ( self : Optional[int] ) -> List[Any]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def lowercase ( self : Tuple ) -> List[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] ) -> str: __lowerCAmelCase = FlaxRegNetModel(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowercase ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int ) -> Tuple: __lowerCAmelCase = self.num_labels __lowerCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () a_ = False a_ = False a_ = False def lowercase ( self : Dict ) -> None: __lowerCAmelCase = FlaxRegNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : int ) -> Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : str ) -> Union[str, Any]: return def lowercase ( self : Dict ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def lowercase ( self : Union[str, Any] ) -> Any: pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def lowercase ( self : Tuple ) -> Tuple: pass def lowercase ( self : Optional[Any] ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: def check_hidden_states_output(lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : str ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Dict ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('JIT Enabled' ): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def a_ ( ): __lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : Union[str, Any] ) -> Optional[Any]: return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def lowercase ( self : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCAmelCase_ , return_tensors='np' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) # verify the logits __lowerCAmelCase = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _snake_case : Any = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224', out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) __lowerCAmelCase = MaskFormerConfig(backbone_config=lowerCAmelCase_ ) __lowerCAmelCase = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok __lowerCAmelCase = 847 __lowerCAmelCase = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok __lowerCAmelCase = 150 __lowerCAmelCase = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok __lowerCAmelCase = 171 __lowerCAmelCase = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO __lowerCAmelCase = 133 __lowerCAmelCase = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok __lowerCAmelCase = 19 __lowerCAmelCase = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok __lowerCAmelCase = 65 __lowerCAmelCase = 'mapillary-vistas-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} return config def a_ ( lowerCAmelCase_ : Tuple ): __lowerCAmelCase = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') ) for source_index, target_index in zip(range(3, 0, -1 ), range(0, 3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') ) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') ) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') ) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') ) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Tuple ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int ): __lowerCAmelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowerCAmelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[:dim, :] __lowerCAmelCase = in_proj_bias[: dim] __lowerCAmelCase = in_proj_weight[ dim : dim * 2, : ] __lowerCAmelCase = in_proj_bias[ dim : dim * 2 ] __lowerCAmelCase = in_proj_weight[ -dim :, : ] __lowerCAmelCase = in_proj_bias[-dim :] # fmt: on def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : Dict ): # fmt: off __lowerCAmelCase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: hidden_size, :] __lowerCAmelCase = in_proj_bias[:config.hidden_size] __lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCAmelCase = in_proj_weight[-hidden_size :, :] __lowerCAmelCase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: hidden_size, :] __lowerCAmelCase = in_proj_bias[:config.hidden_size] __lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCAmelCase = in_proj_weight[-hidden_size :, :] __lowerCAmelCase = in_proj_bias[-hidden_size :] # fmt: on def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : bool = False ): __lowerCAmelCase = get_maskformer_config(lowerCAmelCase_ ) # load original state_dict with open(lowerCAmelCase_, 'rb' ) as f: __lowerCAmelCase = pickle.load(lowerCAmelCase_ ) __lowerCAmelCase = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowerCAmelCase = create_rename_keys(lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_swin_q_k_v(lowerCAmelCase_, config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase_, lowerCAmelCase_ ) # update to torch tensors for key, value in state_dict.items(): __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ) # load 🤗 model __lowerCAmelCase = MaskFormerForInstanceSegmentation(lowerCAmelCase_ ) model.eval() for name, param in model.named_parameters(): print(lowerCAmelCase_, param.shape ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowerCAmelCase_, strict=lowerCAmelCase_ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCAmelCase_ ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results __lowerCAmelCase = prepare_img() if "vistas" in model_name: __lowerCAmelCase = 65 elif "cityscapes" in model_name: __lowerCAmelCase = 6_5535 else: __lowerCAmelCase = 255 __lowerCAmelCase = True if 'ade' in model_name else False __lowerCAmelCase = MaskFormerImageProcessor(ignore_index=lowerCAmelCase_, reduce_labels=lowerCAmelCase_ ) __lowerCAmelCase = image_processor(lowerCAmelCase_, return_tensors='pt' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) print('Logits:', outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowerCAmelCase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], lowerCAmelCase_, atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print('Pushing model and image processor to the hub...' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _snake_case : List[str] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
53
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def a_ ( lowerCAmelCase_ : str=None ): if subparsers is not None: __lowerCAmelCase = subparsers.add_parser('env' ) else: __lowerCAmelCase = argparse.ArgumentParser('Accelerate env command' ) parser.add_argument( '--config_file', default=lowerCAmelCase_, help='The config file to use for the default values in the launching script.' ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def a_ ( lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = torch.__version__ __lowerCAmelCase = torch.cuda.is_available() __lowerCAmelCase = is_xpu_available() __lowerCAmelCase = is_npu_available() __lowerCAmelCase = 'Not found' # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowerCAmelCase_ ): __lowerCAmelCase = load_config_from_file(args.config_file ).to_dict() __lowerCAmelCase = { '`Accelerate` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Numpy version': np.__version__, 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'PyTorch XPU available': str(lowerCAmelCase_ ), 'PyTorch NPU available': str(lowerCAmelCase_ ), 'System RAM': F"""{psutil.virtual_memory().total / 1024 ** 3:.2f} GB""", } if pt_cuda_available: __lowerCAmelCase = torch.cuda.get_device_name() print('\nCopy-and-paste the text below in your GitHub issue\n' ) print('\n'.join([F"""- {prop}: {val}""" for prop, val in info.items()] ) ) print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:' ) __lowerCAmelCase = ( '\n'.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else F"""\t{accelerate_config}""" ) print(lowerCAmelCase_ ) __lowerCAmelCase = accelerate_config return info def a_ ( ): __lowerCAmelCase = env_command_parser() __lowerCAmelCase = parser.parse_args() env_command(lowerCAmelCase_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
53
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): _snake_case : List[Any] = True from torch.cuda.amp import autocast _snake_case : Dict = logging.getLogger(__name__) def a_ ( lowerCAmelCase_ : str=None, lowerCAmelCase_ : str=None ): return field(default_factory=lambda: default, metadata=lowerCAmelCase_ ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) a_ = field( default=0.1 , metadata={"""help""": """The dropout ratio for the attention probabilities."""} ) a_ = field( default=0.1 , metadata={"""help""": """The dropout ratio for activations inside the fully connected layer."""} ) a_ = field( default=0.1 , metadata={ """help""": """The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.""" } , ) a_ = field( default=0.1 , metadata={"""help""": """The dropout probabilitiy for all 1D convolutional layers in feature extractor."""} , ) a_ = field( default=0.05 , metadata={ """help""": ( """Propability of each feature vector along the time axis to be chosen as the start of the vector""" """span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature""" """vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.""" ) } , ) a_ = field(default=0.0 , metadata={"""help""": """The LayerDrop probability."""} ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ = field( default="""train+validation""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of validation examples to this """ """value if set.""" ) } , ) a_ = list_field( default=[""",""", """?""", """.""", """!""", """-""", """;""", """:""", """\"\"""", """%""", """'""", """\"""", """�"""] , metadata={"""help""": """A list of characters to remove from the transcripts."""} , ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = 42 a_ = True a_ = None a_ = None a_ = None a_ = None def __call__( self : int , lowerCAmelCase_ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods __lowerCAmelCase = [{'input_values': feature['input_values']} for feature in features] __lowerCAmelCase = [{'input_ids': feature['labels']} for feature in features] __lowerCAmelCase = self.processor.pad( lowerCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) __lowerCAmelCase = self.processor.pad( labels=lowerCAmelCase_ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='pt' , ) # replace padding with -100 to ignore loss correctly __lowerCAmelCase = labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_0_0 ) __lowerCAmelCase = labels return batch class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Tuple , lowerCAmelCase_ : nn.Module , lowerCAmelCase_ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: model.train() __lowerCAmelCase = self._prepare_inputs(lowerCAmelCase_ ) if self.use_amp: with autocast(): __lowerCAmelCase = self.compute_loss(lowerCAmelCase_ , lowerCAmelCase_ ) else: __lowerCAmelCase = self.compute_loss(lowerCAmelCase_ , lowerCAmelCase_ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": __lowerCAmelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __lowerCAmelCase = loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: __lowerCAmelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowerCAmelCase_ ).backward() elif self.use_apex: with amp.scale_loss(lowerCAmelCase_ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowerCAmelCase_ ) else: loss.backward() return loss.detach() def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s', lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: __lowerCAmelCase = datasets.load_dataset( 'common_voice', data_args.dataset_config_name, split=data_args.train_split_name ) __lowerCAmelCase = datasets.load_dataset('common_voice', data_args.dataset_config_name, split='test' ) # Create and save tokenizer __lowerCAmelCase = F"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(lowerCAmelCase_ : Any ): __lowerCAmelCase = re.sub(lowerCAmelCase_, '', batch['sentence'] ).lower() + ' ' return batch __lowerCAmelCase = train_dataset.map(lowerCAmelCase_, remove_columns=['sentence'] ) __lowerCAmelCase = eval_dataset.map(lowerCAmelCase_, remove_columns=['sentence'] ) def extract_all_chars(lowerCAmelCase_ : Tuple ): __lowerCAmelCase = ' '.join(batch['text'] ) __lowerCAmelCase = list(set(lowerCAmelCase_ ) ) return {"vocab": [vocab], "all_text": [all_text]} __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, batched=lowerCAmelCase_, batch_size=-1, keep_in_memory=lowerCAmelCase_, remove_columns=train_dataset.column_names, ) __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, batched=lowerCAmelCase_, batch_size=-1, keep_in_memory=lowerCAmelCase_, remove_columns=eval_dataset.column_names, ) __lowerCAmelCase = list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) ) __lowerCAmelCase = {v: k for k, v in enumerate(lowerCAmelCase_ )} __lowerCAmelCase = vocab_dict[' '] del vocab_dict[" "] __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = len(lowerCAmelCase_ ) with open('vocab.json', 'w' ) as vocab_file: json.dump(lowerCAmelCase_, lowerCAmelCase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = WavaVecaCTCTokenizer( 'vocab.json', unk_token='[UNK]', pad_token='[PAD]', word_delimiter_token='|', ) __lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_6000, padding_value=0.0, do_normalize=lowerCAmelCase_, return_attention_mask=lowerCAmelCase_ ) __lowerCAmelCase = WavaVecaProcessor(feature_extractor=lowerCAmelCase_, tokenizer=lowerCAmelCase_ ) __lowerCAmelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, activation_dropout=model_args.activation_dropout, attention_dropout=model_args.attention_dropout, hidden_dropout=model_args.hidden_dropout, feat_proj_dropout=model_args.feat_proj_dropout, mask_time_prob=model_args.mask_time_prob, gradient_checkpointing=training_args.gradient_checkpointing, layerdrop=model_args.layerdrop, ctc_loss_reduction='mean', pad_token_id=processor.tokenizer.pad_token_id, vocab_size=len(processor.tokenizer ), ) if data_args.max_train_samples is not None: __lowerCAmelCase = min(len(lowerCAmelCase_ ), data_args.max_train_samples ) __lowerCAmelCase = train_dataset.select(range(lowerCAmelCase_ ) ) if data_args.max_val_samples is not None: __lowerCAmelCase = eval_dataset.select(range(data_args.max_val_samples ) ) __lowerCAmelCase = torchaudio.transforms.Resample(4_8000, 1_6000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(lowerCAmelCase_ : int ): __lowerCAmelCase , __lowerCAmelCase = torchaudio.load(batch['path'] ) __lowerCAmelCase = resampler(lowerCAmelCase_ ).squeeze().numpy() __lowerCAmelCase = 1_6000 __lowerCAmelCase = batch['text'] return batch __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, remove_columns=train_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) __lowerCAmelCase = eval_dataset.map( lowerCAmelCase_, remove_columns=eval_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) def prepare_dataset(lowerCAmelCase_ : Union[str, Any] ): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'] ) ) == 1 ), F"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" __lowerCAmelCase = processor( audio=batch['speech'], text=batch['target_text'], sampling_rate=batch['sampling_rate'][0] ) batch.update(lowerCAmelCase_ ) return batch __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, remove_columns=train_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, ) __lowerCAmelCase = eval_dataset.map( lowerCAmelCase_, remove_columns=eval_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, ) # Metric __lowerCAmelCase = datasets.load_metric('wer' ) def compute_metrics(lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = pred.predictions __lowerCAmelCase = np.argmax(lowerCAmelCase_, axis=-1 ) __lowerCAmelCase = processor.tokenizer.pad_token_id __lowerCAmelCase = processor.batch_decode(lowerCAmelCase_ ) # we do not want to group tokens when computing the metrics __lowerCAmelCase = processor.batch_decode(pred.label_ids, group_tokens=lowerCAmelCase_ ) __lowerCAmelCase = wer_metric.compute(predictions=lowerCAmelCase_, references=lowerCAmelCase_ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator __lowerCAmelCase = DataCollatorCTCWithPadding(processor=lowerCAmelCase_, padding=lowerCAmelCase_ ) # Initialize our Trainer __lowerCAmelCase = CTCTrainer( model=lowerCAmelCase_, data_collator=lowerCAmelCase_, args=lowerCAmelCase_, compute_metrics=lowerCAmelCase_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=processor.feature_extractor, ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() __lowerCAmelCase = train_result.metrics __lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase_ ) ) __lowerCAmelCase = min(lowerCAmelCase_, len(lowerCAmelCase_ ) ) trainer.log_metrics('train', lowerCAmelCase_ ) trainer.save_metrics('train', lowerCAmelCase_ ) trainer.save_state() # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(lowerCAmelCase_ ) __lowerCAmelCase = min(lowerCAmelCase_, len(lowerCAmelCase_ ) ) trainer.log_metrics('eval', lowerCAmelCase_ ) trainer.save_metrics('eval', lowerCAmelCase_ ) return results if __name__ == "__main__": main()
53
1
import os def a_ ( ): __lowerCAmelCase = os.path.dirname(os.path.realpath(lowerCAmelCase_ ) ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'triangle.txt' ) with open(lowerCAmelCase_ ) as f: __lowerCAmelCase = f.readlines() __lowerCAmelCase = [] for line in triangle: __lowerCAmelCase = [] for number in line.strip().split(' ' ): numbers_from_line.append(int(lowerCAmelCase_ ) ) a.append(lowerCAmelCase_ ) for i in range(1, len(lowerCAmelCase_ ) ): for j in range(len(a[i] ) ): __lowerCAmelCase = a[i - 1][j] if j != len(a[i - 1] ) else 0 __lowerCAmelCase = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(lowerCAmelCase_, lowerCAmelCase_ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
53
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _snake_case : Any = logging.get_logger(__name__) _snake_case : int = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _snake_case : Optional[Any] = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } _snake_case : str = { 'yjernite/retribert-base-uncased': 512, } _snake_case : Optional[int] = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = PRETRAINED_INIT_CONFIGURATION a_ = RetriBertTokenizer a_ = ["""input_ids""", """attention_mask"""] def __init__( self : Dict , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : str="[UNK]" , lowerCAmelCase_ : Optional[Any]="[SEP]" , lowerCAmelCase_ : List[str]="[PAD]" , lowerCAmelCase_ : Optional[int]="[CLS]" , lowerCAmelCase_ : List[Any]="[MASK]" , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : List[Any] , ) -> Dict: super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(lowerCAmelCase_ , normalizer_state.pop('type' ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**lowerCAmelCase_ ) __lowerCAmelCase = do_lower_case def lowercase ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int]=None ) -> Optional[int]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
53
1
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _snake_case : Tuple = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') _snake_case : List[Any] = ( subprocess.check_output(F"""git diff --diff-filter=d --name-only {fork_point_sha}""".split()).decode('utf-8').split() ) _snake_case : Optional[int] = '|'.join(sys.argv[1:]) _snake_case : str = re.compile(RF"""^({joined_dirs}).*?\.py$""") _snake_case : List[Any] = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
53
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _snake_case : Union[str, Any] = imread(R'digital_image_processing/image_data/lena_small.jpg') _snake_case : Optional[int] = cvtColor(img, COLOR_BGR2GRAY) def a_ ( ): __lowerCAmelCase = cn.convert_to_negative(lowerCAmelCase_ ) # assert negative_img array for at least one True assert negative_img.any() def a_ ( ): with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowerCAmelCase_, 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def a_ ( ): __lowerCAmelCase = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def a_ ( ): __lowerCAmelCase = imread('digital_image_processing/image_data/lena_small.jpg', 0 ) # assert ambiguous array for all == True assert canny_img.all() __lowerCAmelCase = canny.canny(lowerCAmelCase_ ) # assert canny array for at least one True assert canny_array.any() def a_ ( ): assert gg.gaussian_filter(lowerCAmelCase_, 5, sigma=0.9 ).all() def a_ ( ): # laplace diagonals __lowerCAmelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __lowerCAmelCase = conv.img_convolve(lowerCAmelCase_, lowerCAmelCase_ ).astype(lowerCAmelCase_ ) assert res.any() def a_ ( ): assert med.median_filter(lowerCAmelCase_, 3 ).any() def a_ ( ): __lowerCAmelCase , __lowerCAmelCase = sob.sobel_filter(lowerCAmelCase_ ) assert grad.any() and theta.any() def a_ ( ): __lowerCAmelCase = sp.make_sepia(lowerCAmelCase_, 20 ) assert sepia.all() def a_ ( lowerCAmelCase_ : str = "digital_image_processing/image_data/lena_small.jpg" ): __lowerCAmelCase = bs.Burkes(imread(lowerCAmelCase_, 1 ), 120 ) burkes.process() assert burkes.output_img.any() def a_ ( lowerCAmelCase_ : str = "digital_image_processing/image_data/lena_small.jpg", ): __lowerCAmelCase = rs.NearestNeighbour(imread(lowerCAmelCase_, 1 ), 400, 200 ) nn.process() assert nn.output.any() def a_ ( ): __lowerCAmelCase = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. __lowerCAmelCase = imread(lowerCAmelCase_, 0 ) # Test for get_neighbors_pixel function() return not None __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = image[x_coordinate][y_coordinate] __lowerCAmelCase = lbp.get_neighbors_pixel( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __lowerCAmelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): __lowerCAmelCase = lbp.local_binary_value(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) assert lbp_image.any()
53
1
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch _snake_case : List[str] = logging.get_logger(__name__) @add_end_docstrings( _UpperCamelCase , R""" top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). """ , ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : List[str] , lowerCAmelCase_ : GenericTensor ) -> np.ndarray: if self.framework == "tf": __lowerCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": __lowerCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=lowerCAmelCase_ ) else: raise ValueError('Unsupported framework' ) return masked_index def lowercase ( self : Tuple , lowerCAmelCase_ : GenericTensor ) -> np.ndarray: __lowerCAmelCase = self.get_masked_index(lowerCAmelCase_ ) __lowerCAmelCase = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , f"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : GenericTensor ) -> List[Any]: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['input_ids'][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : List[Any] ) -> Dict[str, GenericTensor]: if return_tensors is None: __lowerCAmelCase = self.framework __lowerCAmelCase = self.tokenizer(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) self.ensure_exactly_one_mask_token(lowerCAmelCase_ ) return model_inputs def lowercase ( self : Optional[Any] , lowerCAmelCase_ : str ) -> List[Any]: __lowerCAmelCase = self.model(**lowerCAmelCase_ ) __lowerCAmelCase = model_inputs['input_ids'] return model_outputs def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any]=5 , lowerCAmelCase_ : int=None ) -> List[Any]: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: __lowerCAmelCase = target_ids.shape[0] __lowerCAmelCase = model_outputs['input_ids'][0] __lowerCAmelCase = model_outputs['logits'] if self.framework == "tf": __lowerCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] __lowerCAmelCase = outputs.numpy() __lowerCAmelCase = outputs[0, masked_index, :] __lowerCAmelCase = stable_softmax(lowerCAmelCase_ , axis=-1 ) if target_ids is not None: __lowerCAmelCase = tf.gather_nd(tf.squeeze(lowerCAmelCase_ , 0 ) , target_ids.reshape(-1 , 1 ) ) __lowerCAmelCase = tf.expand_dims(lowerCAmelCase_ , 0 ) __lowerCAmelCase = tf.math.top_k(lowerCAmelCase_ , k=lowerCAmelCase_ ) __lowerCAmelCase , __lowerCAmelCase = topk.values.numpy(), topk.indices.numpy() else: __lowerCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=lowerCAmelCase_ ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample __lowerCAmelCase = outputs[0, masked_index, :] __lowerCAmelCase = logits.softmax(dim=-1 ) if target_ids is not None: __lowerCAmelCase = probs[..., target_ids] __lowerCAmelCase , __lowerCAmelCase = probs.topk(lowerCAmelCase_ ) __lowerCAmelCase = [] __lowerCAmelCase = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): __lowerCAmelCase = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place __lowerCAmelCase = input_ids.numpy().copy() if target_ids is not None: __lowerCAmelCase = target_ids[p].tolist() __lowerCAmelCase = p # Filter padding out: __lowerCAmelCase = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back __lowerCAmelCase = self.tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) __lowerCAmelCase = {'score': v, 'token': p, 'token_str': self.tokenizer.decode([p] ), 'sequence': sequence} row.append(lowerCAmelCase_ ) result.append(lowerCAmelCase_ ) if single_mask: return result[0] return result def lowercase ( self : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]=None ) -> List[str]: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowerCAmelCase = [targets] try: __lowerCAmelCase = self.tokenizer.get_vocab() except Exception: __lowerCAmelCase = {} __lowerCAmelCase = [] for target in targets: __lowerCAmelCase = vocab.get(lowerCAmelCase_ , lowerCAmelCase_ ) if id_ is None: __lowerCAmelCase = self.tokenizer( lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , max_length=1 , truncation=lowerCAmelCase_ , )['input_ids'] if len(lowerCAmelCase_ ) == 0: logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ 'We cannot replace it with anything meaningful, ignoring it' ) continue __lowerCAmelCase = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ f"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) __lowerCAmelCase = list(set(lowerCAmelCase_ ) ) if len(lowerCAmelCase_ ) == 0: raise ValueError('At least one target must be provided when passed.' ) __lowerCAmelCase = np.array(lowerCAmelCase_ ) return target_ids def lowercase ( self : int , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Any=None ) -> Tuple: __lowerCAmelCase = {} if targets is not None: __lowerCAmelCase = self.get_target_ids(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = target_ids if top_k is not None: __lowerCAmelCase = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , 'The tokenizer does not define a `mask_token`.' ) return {}, {}, postprocess_params def __call__( self : List[Any] , lowerCAmelCase_ : Optional[Any] , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: __lowerCAmelCase = super().__call__(lowerCAmelCase_ , **lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) == 1: return outputs[0] return outputs
53
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case : List[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = ["""pixel_values"""] def __init__( self : Optional[int] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **lowerCAmelCase_ : Any , ) -> None: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = size if size is not None else {'shortest_edge': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = do_center_crop __lowerCAmelCase = crop_size __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[int] , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __lowerCAmelCase = int((2_5_6 / 2_2_4) * size['shortest_edge'] ) __lowerCAmelCase = get_resize_output_image_size(lowerCAmelCase_ , size=lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( lowerCAmelCase_ , size=(size_dict['height'], size_dict['width']) , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : str , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : str , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(lowerCAmelCase_ , size=(size['height'], size['width']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[int, float] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray: return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[str] , ) -> np.ndarray: return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase_ : str , ) -> BatchFeature: __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase = image_std if image_std is not None else self.image_std __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: __lowerCAmelCase = [self.resize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_center_crop: __lowerCAmelCase = [self.center_crop(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_rescale: __lowerCAmelCase = [self.rescale(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_normalize: __lowerCAmelCase = [self.normalize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
53
1
from __future__ import annotations import requests _snake_case : Any = set( 'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split() ) def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : int = 1, lowerCAmelCase_ : str = "new", lowerCAmelCase_ : list | None = None ): __lowerCAmelCase = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(lowerCAmelCase_ ) - valid_terms ) ): __lowerCAmelCase = F"""Invalid search term: {invalid_search_terms}""" raise ValueError(lowerCAmelCase_ ) __lowerCAmelCase = requests.get( F"""https://reddit.com/r/{subreddit}/{age}.json?limit={limit}""", headers={'User-agent': 'A random string'}, ) if response.status_code == 429: raise requests.HTTPError __lowerCAmelCase = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(lowerCAmelCase_ )} __lowerCAmelCase = {} for id_ in range(lowerCAmelCase_ ): __lowerCAmelCase = { item: data['data']['children'][id_]['data'][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
53
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Optional[int]=8 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]=9_9 , lowerCAmelCase_ : List[Any]=1_6 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=3_6 , lowerCAmelCase_ : Optional[int]="gelu" , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : str=5_1_2 , lowerCAmelCase_ : List[str]=1_6 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Tuple=0.02 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : List[Any]=4 , lowerCAmelCase_ : List[str]=None , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope def lowercase ( self : Optional[int] ) -> Dict: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self : Any ) -> Union[str, Any]: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def lowercase ( self : Dict ) -> List[Any]: __lowerCAmelCase = self.get_config() __lowerCAmelCase = 3_0_0 return config def lowercase ( self : Optional[int] ) -> Union[str, Any]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = self.prepare_config_and_inputs() __lowerCAmelCase = True __lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = MraModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , ) -> Tuple: __lowerCAmelCase = True __lowerCAmelCase = MraModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , ) __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = MraForMaskedLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> str: __lowerCAmelCase = MraForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict ) -> Optional[Any]: __lowerCAmelCase = self.num_labels __lowerCAmelCase = MraForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict ) -> Any: __lowerCAmelCase = self.num_labels __lowerCAmelCase = MraForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] ) -> List[Any]: __lowerCAmelCase = self.num_choices __lowerCAmelCase = MraForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self : Tuple ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) a_ = False a_ = False a_ = False a_ = False a_ = () def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = MraModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : Tuple ) -> List[str]: self.config_tester.run_common_tests() def lowercase ( self : Optional[int] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase = type self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase_ ) def lowercase ( self : List[str] ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase_ ) def lowercase ( self : Tuple ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase_ ) @slow def lowercase ( self : Optional[int] ) -> Optional[int]: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = MraModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @unittest.skip(reason='MRA does not output attentions' ) def lowercase ( self : Optional[int] ) -> Tuple: return @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase ( self : Optional[Any] ) -> List[str]: __lowerCAmelCase = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) __lowerCAmelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : int ) -> Optional[int]: __lowerCAmelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) __lowerCAmelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = 5_0_2_6_5 __lowerCAmelCase = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : Any ) -> List[str]: __lowerCAmelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) __lowerCAmelCase = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = 5_0_2_6_5 __lowerCAmelCase = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
1
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Union[str, Any] ) -> Any: __lowerCAmelCase = 'laion/clap-htsat-unfused' __lowerCAmelCase = tempfile.mkdtemp() def lowercase ( self : Optional[int] , **lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: return RobertaTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase_ ) def lowercase ( self : str , **lowerCAmelCase_ : Optional[int] ) -> List[str]: return ClapFeatureExtractor.from_pretrained(self.checkpoint , **lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def lowercase ( self : Union[str, Any] ) -> Dict: __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_feature_extractor() __lowerCAmelCase = ClapProcessor(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowerCAmelCase_ ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __lowerCAmelCase = self.get_feature_extractor(do_normalize=lowerCAmelCase_ , padding_value=1.0 ) __lowerCAmelCase = ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowerCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowerCAmelCase_ ) def lowercase ( self : Any ) -> Dict: __lowerCAmelCase = self.get_feature_extractor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = ClapProcessor(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ ) __lowerCAmelCase = floats_list((3, 1_0_0_0) ) __lowerCAmelCase = feature_extractor(lowerCAmelCase_ , return_tensors='np' ) __lowerCAmelCase = processor(audios=lowerCAmelCase_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase ( self : Dict ) -> Optional[int]: __lowerCAmelCase = self.get_feature_extractor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = ClapProcessor(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ ) __lowerCAmelCase = 'This is a test string' __lowerCAmelCase = processor(text=lowerCAmelCase_ ) __lowerCAmelCase = tokenizer(lowerCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase ( self : Union[str, Any] ) -> str: __lowerCAmelCase = self.get_feature_extractor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = ClapProcessor(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.batch_decode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : int ) -> Dict: __lowerCAmelCase = self.get_feature_extractor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = ClapProcessor(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
53
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _snake_case : Union[str, Any] = 2 class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , *, # begin keyword-only arguments lowerCAmelCase_ : str="<s>" , lowerCAmelCase_ : Dict="<pad>" , lowerCAmelCase_ : Any="</s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Optional[Any]=None , ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = bos, unk, pad, eos __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = {} __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = len(self.symbols ) def __eq__( self : Dict , lowerCAmelCase_ : Dict ) -> str: return self.indices == other.indices def __getitem__( self : List[Any] , lowerCAmelCase_ : int ) -> Union[str, Any]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : Tuple ) -> List[Any]: return len(self.symbols ) def __contains__( self : Optional[Any] , lowerCAmelCase_ : Dict ) -> Optional[int]: return sym in self.indices @classmethod def lowercase ( cls : Dict , lowerCAmelCase_ : str ) -> str: __lowerCAmelCase = cls() d.add_from_file(lowerCAmelCase_ ) return d def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : Any=False ) -> Optional[Any]: if word in self.indices and not overwrite: __lowerCAmelCase = self.indices[word] __lowerCAmelCase = self.count[idx] + n return idx else: __lowerCAmelCase = len(self.symbols ) __lowerCAmelCase = idx self.symbols.append(lowerCAmelCase_ ) self.count.append(lowerCAmelCase_ ) return idx def lowercase ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> Dict: return 0 def lowercase ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> int: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: with open(lowerCAmelCase_ , 'r' , encoding='utf-8' ) as fd: self.add_from_file(lowerCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(lowerCAmelCase_ ) ) return __lowerCAmelCase = f.readlines() __lowerCAmelCase = self._load_meta(lowerCAmelCase_ ) for line in lines[indices_start_line:]: try: __lowerCAmelCase , __lowerCAmelCase = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": __lowerCAmelCase = True __lowerCAmelCase , __lowerCAmelCase = line.rsplit(' ' , 1 ) else: __lowerCAmelCase = False __lowerCAmelCase = int(lowerCAmelCase_ ) __lowerCAmelCase = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(lowerCAmelCase_ ) ) self.add_symbol(lowerCAmelCase_ , n=lowerCAmelCase_ , overwrite=lowerCAmelCase_ ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def a_ ( lowerCAmelCase_ : List[str] ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} __lowerCAmelCase = dict((re.sub(R'@@$', '', lowerCAmelCase_ ), v) if k.endswith('@@' ) else (re.sub(R'$', '</w>', lowerCAmelCase_ ), v) for k, v in d.items() ) __lowerCAmelCase = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowerCAmelCase = d[k] # restore return da def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str] ): # prep if not os.path.exists(lowerCAmelCase_ ): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(lowerCAmelCase_, exist_ok=lowerCAmelCase_ ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'checkpoint.pt' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""" ) __lowerCAmelCase = torch.load(lowerCAmelCase_, map_location='cpu' ) __lowerCAmelCase = chkpt['cfg']['model'] # dicts __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'dict.txt' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {dict_file} does not exist!""" ) __lowerCAmelCase = Dictionary.load(lowerCAmelCase_ ) __lowerCAmelCase = rewrite_dict_keys(src_dict.indices ) __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, VOCAB_FILES_NAMES['vocab_file'] ) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # merges_file (bpecodes) __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'bpecodes' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""" ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(lowerCAmelCase_, lowerCAmelCase_ ) # model config __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'config.json' ) __lowerCAmelCase = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1E-12, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # tokenizer config __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F"""Generating {biogpt_tokenizer_config_file}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # model __lowerCAmelCase = chkpt['model'] # remove unneeded keys __lowerCAmelCase = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): __lowerCAmelCase = model_state_dict.pop(lowerCAmelCase_ ) else: __lowerCAmelCase = model_state_dict.pop(lowerCAmelCase_ ) __lowerCAmelCase = BioGptConfig.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = BioGptForCausalLM(lowerCAmelCase_ ) # check that it loads ok model_new.load_state_dict(lowerCAmelCase_ ) # save __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(lowerCAmelCase_, lowerCAmelCase_ ) print('Conversion is done!' ) if __name__ == "__main__": _snake_case : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : int = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
1
import unittest from knapsack import greedy_knapsack as kp class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase = [1_0, 2_0, 3_0, 4_0, 5_0, 6_0] __lowerCAmelCase = [2, 4, 6, 8, 1_0, 1_2] __lowerCAmelCase = 1_0_0 self.assertEqual(kp.calc_profit(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , 2_1_0 ) def lowercase ( self : Tuple ) -> Dict: self.assertRaisesRegex(lowerCAmelCase_ , 'max_weight must greater than zero.' ) def lowercase ( self : str ) -> Tuple: self.assertRaisesRegex(lowerCAmelCase_ , 'Weight can not be negative.' ) def lowercase ( self : int ) -> Optional[Any]: self.assertRaisesRegex(lowerCAmelCase_ , 'Profit can not be negative.' ) def lowercase ( self : int ) -> Tuple: self.assertRaisesRegex(lowerCAmelCase_ , 'max_weight must greater than zero.' ) def lowercase ( self : Optional[Any] ) -> int: self.assertRaisesRegex( lowerCAmelCase_ , 'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
53
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" a_ = """pixel_values""" a_ = False a_ = TimmBackboneConfig def __init__( self : Tuple , lowerCAmelCase_ : Any , **lowerCAmelCase_ : Optional[int] ) -> Optional[Any]: requires_backends(self , 'timm' ) super().__init__(lowerCAmelCase_ ) __lowerCAmelCase = config if config.backbone is None: raise ValueError('backbone is not set in the config. Please set it to a timm model name.' ) if config.backbone not in timm.list_models(): raise ValueError(f"""backbone {config.backbone} is not supported by timm.""" ) if hasattr(lowerCAmelCase_ , 'out_features' ) and config.out_features is not None: raise ValueError('out_features is not supported by TimmBackbone. Please use out_indices instead.' ) __lowerCAmelCase = getattr(lowerCAmelCase_ , 'use_pretrained_backbone' , lowerCAmelCase_ ) if pretrained is None: raise ValueError('use_pretrained_backbone is not set in the config. Please set it to True or False.' ) # We just take the final layer by default. This matches the default for the transformers models. __lowerCAmelCase = config.out_indices if getattr(lowerCAmelCase_ , 'out_indices' , lowerCAmelCase_ ) is not None else (-1,) __lowerCAmelCase = timm.create_model( config.backbone , pretrained=lowerCAmelCase_ , features_only=config.features_only , in_chans=config.num_channels , out_indices=lowerCAmelCase_ , **lowerCAmelCase_ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. __lowerCAmelCase = self._backbone.return_layers __lowerCAmelCase = {layer['module']: str(lowerCAmelCase_ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(lowerCAmelCase_ ) @classmethod def lowercase ( cls : int , lowerCAmelCase_ : Dict , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['vision', 'timm'] ) from ...models.timm_backbone import TimmBackboneConfig __lowerCAmelCase = kwargs.pop('config' , TimmBackboneConfig() ) __lowerCAmelCase = kwargs.pop('use_timm_backbone' , lowerCAmelCase_ ) if not use_timm: raise ValueError('use_timm_backbone must be True for timm backbones' ) __lowerCAmelCase = kwargs.pop('num_channels' , config.num_channels ) __lowerCAmelCase = kwargs.pop('features_only' , config.features_only ) __lowerCAmelCase = kwargs.pop('use_pretrained_backbone' , config.use_pretrained_backbone ) __lowerCAmelCase = kwargs.pop('out_indices' , config.out_indices ) __lowerCAmelCase = TimmBackboneConfig( backbone=lowerCAmelCase_ , num_channels=lowerCAmelCase_ , features_only=lowerCAmelCase_ , use_pretrained_backbone=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , ) return super()._from_config(lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Tuple , lowerCAmelCase_ : int ) -> Dict: pass def lowercase ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Any=None , **lowerCAmelCase_ : Dict ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('Cannot output attentions for timm backbones at the moment' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone __lowerCAmelCase = self._all_layers __lowerCAmelCase = self._backbone(lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = self._return_layers __lowerCAmelCase = tuple(hidden_states[i] for i in self.out_indices ) else: __lowerCAmelCase = self._backbone(lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = None __lowerCAmelCase = tuple(lowerCAmelCase_ ) __lowerCAmelCase = tuple(lowerCAmelCase_ ) if hidden_states is not None else None if not return_dict: __lowerCAmelCase = (feature_maps,) if output_hidden_states: __lowerCAmelCase = output + (hidden_states,) return output return BackboneOutput(feature_maps=lowerCAmelCase_ , hidden_states=lowerCAmelCase_ , attentions=lowerCAmelCase_ )
53
1
import qiskit def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : int ): __lowerCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register __lowerCAmelCase = qiskit.QuantumCircuit(lowerCAmelCase_, lowerCAmelCase_ ) # Map the quantum measurement to the classical bits circuit.measure([0], [0] ) # Execute the circuit on the simulator __lowerCAmelCase = qiskit.execute(lowerCAmelCase_, lowerCAmelCase_, shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowerCAmelCase_ ) if __name__ == "__main__": print(F"""Total count for various states are: {single_qubit_measure(1, 1)}""")
53
from __future__ import annotations def a_ ( lowerCAmelCase_ : list[float] ): if len(lowerCAmelCase_ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) __lowerCAmelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
1
from __future__ import annotations import math from collections.abc import Callable def a_ ( lowerCAmelCase_ : Callable[[int | float], int | float], lowerCAmelCase_ : int | float, lowerCAmelCase_ : int | float, lowerCAmelCase_ : int = 100, ): __lowerCAmelCase = x_start __lowerCAmelCase = fnc(lowerCAmelCase_ ) __lowerCAmelCase = 0.0 for _ in range(lowerCAmelCase_ ): # Approximates curve as a sequence of linear lines and sums their length __lowerCAmelCase = (x_end - x_start) / steps + xa __lowerCAmelCase = fnc(lowerCAmelCase_ ) length += math.hypot(xa - xa, fxa - fxa ) # Increment step __lowerCAmelCase = xa __lowerCAmelCase = fxa return length if __name__ == "__main__": def a_ ( lowerCAmelCase_ : Optional[Any] ): return math.sin(10 * x ) print('f(x) = sin(10 * x)') print('The length of the curve from x = -10 to x = 10 is:') _snake_case : Union[str, Any] = 10 while i <= 100000: print(F"""With {i} steps: {line_length(f, -10, 10, i)}""") i *= 10
53
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Union[str, Any]=1_0 , lowerCAmelCase_ : List[str]=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple="relu" , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : Optional[int]=None , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = embeddings_size __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_act __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = len(lowerCAmelCase_ ) def lowercase ( self : Optional[int] ) -> List[Any]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def lowercase ( self : Tuple ) -> List[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] ) -> str: __lowerCAmelCase = FlaxRegNetModel(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowercase ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int ) -> Tuple: __lowerCAmelCase = self.num_labels __lowerCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () a_ = False a_ = False a_ = False def lowercase ( self : Dict ) -> None: __lowerCAmelCase = FlaxRegNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : int ) -> Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : str ) -> Union[str, Any]: return def lowercase ( self : Dict ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def lowercase ( self : Union[str, Any] ) -> Any: pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def lowercase ( self : Tuple ) -> Tuple: pass def lowercase ( self : Optional[Any] ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: def check_hidden_states_output(lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : str ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Dict ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('JIT Enabled' ): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def a_ ( ): __lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : Union[str, Any] ) -> Optional[Any]: return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def lowercase ( self : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCAmelCase_ , return_tensors='np' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) # verify the logits __lowerCAmelCase = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
1
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _snake_case : str = logging.get_logger(__name__) _snake_case : Tuple = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _snake_case : Union[str, Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={"""help""": """Model type selected in the list: """ + """, """.join(_UpperCamelCase )} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) a_ = field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a_ = field( default=1_28 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) a_ = field( default=64 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) a_ = field( default=30 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) a_ = field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a_ = field( default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) a_ = field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) a_ = field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = """train""" a_ = """dev""" class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = 42 a_ = 42 a_ = 42 a_ = 42 def __init__( self : int , lowerCAmelCase_ : SquadDataTrainingArguments , lowerCAmelCase_ : PreTrainedTokenizer , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Union[str, Split] = Split.train , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[str] = "pt" , ) -> Tuple: __lowerCAmelCase = args __lowerCAmelCase = is_language_sensitive __lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: __lowerCAmelCase = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) __lowerCAmelCase = mode # Load data features from cache or dataset file __lowerCAmelCase = 'v2' if args.version_2_with_negative else 'v1' __lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}""" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCAmelCase = cached_features_file + '.lock' with FileLock(lowerCAmelCase_ ): if os.path.exists(lowerCAmelCase_ ) and not args.overwrite_cache: __lowerCAmelCase = time.time() __lowerCAmelCase = torch.load(lowerCAmelCase_ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __lowerCAmelCase = self.old_features['features'] __lowerCAmelCase = self.old_features.get('dataset' , lowerCAmelCase_ ) __lowerCAmelCase = self.old_features.get('examples' , lowerCAmelCase_ ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"""Deleting cached file {cached_features_file} will allow dataset and examples to be cached in""" ' future run' ) else: if mode == Split.dev: __lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: __lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) __lowerCAmelCase , __lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples , tokenizer=lowerCAmelCase_ , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=lowerCAmelCase_ , ) __lowerCAmelCase = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples} , lowerCAmelCase_ , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self : Tuple ) -> List[str]: return len(self.features ) def __getitem__( self : Dict , lowerCAmelCase_ : Optional[int] ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset __lowerCAmelCase = self.features[i] __lowerCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float ) __lowerCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float ) __lowerCAmelCase = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __lowerCAmelCase = torch.tensor(feature.start_position , dtype=torch.long ) __lowerCAmelCase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
53
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process _snake_case : Optional[int] = logging.getLogger(__name__) _snake_case : Dict = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) _snake_case : List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(_UpperCamelCase )} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a_ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def lowercase ( self : List[Any] ) -> List[Any]: if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path' ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ = field(default=_UpperCamelCase , metadata={"""help""": """The input training data file (a text file)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a_ = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a_ = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def lowercase ( self : int ) -> int: if self.train_file is not None: __lowerCAmelCase = self.train_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __lowerCAmelCase = self.validation_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Union[str, Any] ): with open(lowerCAmelCase_, 'r', encoding='utf-8' ) as f: __lowerCAmelCase = [json.loads(lowerCAmelCase_ ) for line in f.read().splitlines() if (len(lowerCAmelCase_ ) > 0 and not line.isspace())] assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) __lowerCAmelCase = {c: dataset[c] for c in dataset.column_names} __lowerCAmelCase = refs return Dataset.from_dict(lowerCAmelCase_ ) def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s', lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset(data_args.dataset_name, data_args.dataset_config_name ) if "validation" not in datasets.keys(): __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[:{data_args.validation_split_percentage}%]""", ) __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[{data_args.validation_split_percentage}%:]""", ) else: __lowerCAmelCase = {} if data_args.train_file is not None: __lowerCAmelCase = data_args.train_file if data_args.validation_file is not None: __lowerCAmelCase = data_args.validation_file __lowerCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": __lowerCAmelCase = 'text' __lowerCAmelCase = load_dataset(lowerCAmelCase_, data_files=lowerCAmelCase_ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.config_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: __lowerCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: __lowerCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path, from_tf=bool('.ckpt' in model_args.model_name_or_path ), config=lowerCAmelCase_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info('Training new model from scratch' ) __lowerCAmelCase = AutoModelForMaskedLM.from_config(lowerCAmelCase_ ) model.resize_token_embeddings(len(lowerCAmelCase_ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __lowerCAmelCase = datasets['train'].column_names else: __lowerCAmelCase = datasets['validation'].column_names __lowerCAmelCase = 'text' if 'text' in column_names else column_names[0] __lowerCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(lowerCAmelCase_ : str ): # Remove empty lines __lowerCAmelCase = [line for line in examples['text'] if len(lowerCAmelCase_ ) > 0 and not line.isspace()] return tokenizer(examples['text'], padding=lowerCAmelCase_, truncation=lowerCAmelCase_, max_length=data_args.max_seq_length ) __lowerCAmelCase = datasets.map( lowerCAmelCase_, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, remove_columns=[text_column_name], load_from_cache_file=not data_args.overwrite_cache, ) # Add the chinese references if provided if data_args.train_ref_file is not None: __lowerCAmelCase = add_chinese_references(tokenized_datasets['train'], data_args.train_ref_file ) if data_args.validation_ref_file is not None: __lowerCAmelCase = add_chinese_references( tokenized_datasets['validation'], data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __lowerCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: __lowerCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. __lowerCAmelCase = DataCollatorForWholeWordMask(tokenizer=lowerCAmelCase_, mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowerCAmelCase = Trainer( model=lowerCAmelCase_, args=lowerCAmelCase_, train_dataset=tokenized_datasets['train'] if training_args.do_train else None, eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None, tokenizer=lowerCAmelCase_, data_collator=lowerCAmelCase_, ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload __lowerCAmelCase = os.path.join(training_args.output_dir, 'train_results.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir, 'trainer_state.json' ) ) # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = math.exp(eval_output['eval_loss'] ) __lowerCAmelCase = perplexity __lowerCAmelCase = os.path.join(training_args.output_dir, 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def a_ ( lowerCAmelCase_ : Tuple ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
53
1
import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def a_ ( lowerCAmelCase_ : int ): return 1.0 / (1.0 + np.exp(-_outputs )) def a_ ( lowerCAmelCase_ : List[str] ): __lowerCAmelCase = np.max(_outputs, axis=-1, keepdims=lowerCAmelCase_ ) __lowerCAmelCase = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1, keepdims=lowerCAmelCase_ ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = """sigmoid""" a_ = """softmax""" a_ = """none""" @add_end_docstrings( _UpperCamelCase , R""" return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `\"default\"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `\"sigmoid\"`: Applies the sigmoid function on the output. - `\"softmax\"`: Applies the softmax function on the output. - `\"none\"`: Does not apply any function on the output. """ , ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = False a_ = ClassificationFunction.NONE def __init__( self : str , **lowerCAmelCase_ : Any ) -> Any: super().__init__(**lowerCAmelCase_ ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def lowercase ( self : Any , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Any="" , **lowerCAmelCase_ : List[Any] ) -> Union[str, Any]: # Using "" as default argument because we're going to use `top_k=None` in user code to declare # "No top_k" __lowerCAmelCase = tokenizer_kwargs __lowerCAmelCase = {} if hasattr(self.model.config , 'return_all_scores' ) and return_all_scores is None: __lowerCAmelCase = self.model.config.return_all_scores if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or top_k is None: __lowerCAmelCase = top_k __lowerCAmelCase = False elif return_all_scores is not None: warnings.warn( '`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of' ' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.' , lowerCAmelCase_ , ) if return_all_scores: __lowerCAmelCase = None else: __lowerCAmelCase = 1 if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowerCAmelCase = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: __lowerCAmelCase = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self : Union[str, Any] , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : Any ) -> List[Any]: __lowerCAmelCase = super().__call__(*lowerCAmelCase_ , **lowerCAmelCase_ ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. __lowerCAmelCase = 'top_k' not in kwargs if isinstance(args[0] , lowerCAmelCase_ ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def lowercase ( self : List[str] , lowerCAmelCase_ : Any , **lowerCAmelCase_ : Optional[Any] ) -> Dict[str, GenericTensor]: __lowerCAmelCase = self.framework if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return self.tokenizer(**lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) == 1 and isinstance(inputs[0] , lowerCAmelCase_ ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( 'The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a' ' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.' ) return self.tokenizer(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Any ) -> Union[str, Any]: return self.model(**lowerCAmelCase_ ) def lowercase ( self : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : List[str]=True ) -> Optional[Any]: # `_legacy` is used to determine if we're running the naked pipeline and in backward # compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running # the more natural result containing the list. # Default value before `set_parameters` if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: __lowerCAmelCase = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: __lowerCAmelCase = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , 'function_to_apply' ) and function_to_apply is None: __lowerCAmelCase = self.model.config.function_to_apply else: __lowerCAmelCase = ClassificationFunction.NONE __lowerCAmelCase = model_outputs['logits'][0] __lowerCAmelCase = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: __lowerCAmelCase = sigmoid(lowerCAmelCase_ ) elif function_to_apply == ClassificationFunction.SOFTMAX: __lowerCAmelCase = softmax(lowerCAmelCase_ ) elif function_to_apply == ClassificationFunction.NONE: __lowerCAmelCase = outputs else: raise ValueError(f"""Unrecognized `function_to_apply` argument: {function_to_apply}""" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} __lowerCAmelCase = [ {'label': self.model.config.idalabel[i], 'score': score.item()} for i, score in enumerate(lowerCAmelCase_ ) ] if not _legacy: dict_scores.sort(key=lambda lowerCAmelCase_ : x["score"] , reverse=lowerCAmelCase_ ) if top_k is not None: __lowerCAmelCase = dict_scores[:top_k] return dict_scores
53
def a_ ( lowerCAmelCase_ : int = 200_0000 ): __lowerCAmelCase = [0 for i in range(n + 1 )] __lowerCAmelCase = 1 __lowerCAmelCase = 1 for i in range(2, int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i, n + 1, lowerCAmelCase_ ): __lowerCAmelCase = 1 __lowerCAmelCase = 0 for i in range(lowerCAmelCase_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"""{solution() = }""")
53
1
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values _snake_case : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--user', type=str, default='ubuntu') parser.add_argument('--host', type=str, default='localhost') parser.add_argument('--key_path', type=str, default=None) parser.add_argument('--instance', type=str, default='V100:1') parser.add_argument('--provider', type=str, default='cheapest') parser.add_argument('--use_spot', type=bool, default=False) parser.add_argument('--example', type=str, default='pytorch/text-generation/run_generation.py') _snake_case , _snake_case : str = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('Cannot specify both BYO and on-demand cluster args') _snake_case : int = rh.cluster( name='rh-cluster', ips=[args.host], ssh_creds={'ssh_user': args.user, 'ssh_private_key': args.key_path} ) else: _snake_case : Optional[Any] = rh.cluster( name='rh-cluster', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) _snake_case : Optional[Any] = args.example.rsplit('/', 1)[0] # Set up remote environment cluster.install_packages(['pip:./']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F"""pip install -r transformers/examples/{example_dir}/requirements.txt"""]) cluster.run(['pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F"""python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}"""]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
53
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _snake_case : Tuple = logging.getLogger() _snake_case : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Any , lowerCAmelCase_ : Dict ) -> Optional[int]: os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowerCAmelCase = {'source': 'What is love ?', 'target': 'life'} __lowerCAmelCase = {'train': 1_2, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: __lowerCAmelCase = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(lowerCAmelCase_ , f"""{split}.{field}""" ) , 'w' ) as f: f.write(lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : str = "pytorch" ) -> List[str]: __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'output' ) __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'data' ) self._create_dummy_data(data_dir=lowerCAmelCase_ ) __lowerCAmelCase = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) __lowerCAmelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowerCAmelCase_ , env=self.get_env() ) __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'metrics.json' ) with open(lowerCAmelCase_ ) as f: __lowerCAmelCase = json.load(lowerCAmelCase_ ) return result @require_torch_gpu def lowercase ( self : str ) -> int: __lowerCAmelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def lowercase ( self : List[str] ) -> Dict: __lowerCAmelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def lowercase ( self : int ) -> Tuple: __lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def lowercase ( self : List[Any] ) -> str: __lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
53
1
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : str ) -> Any: __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : Tuple ) -> Optional[int]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : List[Any] ) -> int: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : str ) -> str: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[str]: # pass variant but use the non-variant filenames __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> Union[str, Any]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : List[str] ) -> List[Any]: # pass variant but use the non-variant filenames __lowerCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) )
53
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]="resnet50" , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Optional[Any]=True , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = out_indices if out_indices is not None else [4] __lowerCAmelCase = stage_names __lowerCAmelCase = out_features __lowerCAmelCase = backbone __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = use_pretrained_backbone __lowerCAmelCase = is_training def lowercase ( self : List[str] ) -> Any: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def lowercase ( self : List[Any] ) -> Union[str, Any]: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase ( self : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ) -> int: __lowerCAmelCase = TimmBackbone(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 1_4, 1_4) , ) def lowercase ( self : List[str] ) -> str: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (TimmBackbone,) if is_torch_available() else () a_ = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Tuple ) -> int: __lowerCAmelCase = TimmBackboneModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : Dict ) -> List[str]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Union[str, Any] ) -> Optional[int]: __lowerCAmelCase = 'resnet18' __lowerCAmelCase = 'microsoft/resnet-18' __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ , out_indices=[1, 2, 3] ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def lowercase ( self : List[str] ) -> Tuple: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def lowercase ( self : Dict ) -> int: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def lowercase ( self : str ) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase ( self : Any ) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase ( self : Optional[int] ) -> Optional[Any]: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def lowercase ( self : Dict ) -> Any: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Any ) -> Optional[int]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase ( self : Union[str, Any] ) -> Tuple: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase ( self : List[str] ) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Dict ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Tuple ) -> List[str]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def lowercase ( self : int ) -> Optional[int]: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def lowercase ( self : Union[str, Any] ) -> str: pass @unittest.skip('Safetensors is not supported by timm.' ) def lowercase ( self : Dict ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : List[str] ) -> Optional[Any]: pass def lowercase ( self : Union[str, Any] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = self.has_attentions # no need to test all models as different heads yield the same functionality __lowerCAmelCase = self.all_model_classes[0] __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = outputs[0][-1] # Encoder-/Decoder-only models __lowerCAmelCase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowerCAmelCase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowerCAmelCase_ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) __lowerCAmelCase = None __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) __lowerCAmelCase = False __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ )
53
1
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = tmp_path / 'file.csv' __lowerCAmelCase = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20\n ' ) with open(lowerCAmelCase_, 'w' ) as f: f.write(lowerCAmelCase_ ) return str(lowerCAmelCase_ ) @pytest.fixture def a_ ( lowerCAmelCase_ : Dict ): __lowerCAmelCase = tmp_path / 'malformed_file.csv' __lowerCAmelCase = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20,\n ' ) with open(lowerCAmelCase_, 'w' ) as f: f.write(lowerCAmelCase_ ) return str(lowerCAmelCase_ ) @pytest.fixture def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : str ): __lowerCAmelCase = tmp_path / 'csv_with_image.csv' __lowerCAmelCase = textwrap.dedent( F"""\ image {image_file} """ ) with open(lowerCAmelCase_, 'w' ) as f: f.write(lowerCAmelCase_ ) return str(lowerCAmelCase_ ) @pytest.fixture def a_ ( lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = tmp_path / 'csv_with_label.csv' __lowerCAmelCase = textwrap.dedent( '\\n label\n good\n bad\n good\n ' ) with open(lowerCAmelCase_, 'w' ) as f: f.write(lowerCAmelCase_ ) return str(lowerCAmelCase_ ) @pytest.fixture def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = tmp_path / 'csv_with_int_list.csv' __lowerCAmelCase = textwrap.dedent( '\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' ) with open(lowerCAmelCase_, 'w' ) as f: f.write(lowerCAmelCase_ ) return str(lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : List[Any], lowerCAmelCase_ : Any ): __lowerCAmelCase = Csv() __lowerCAmelCase = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(lowerCAmelCase_, match='Error tokenizing data' ): for _ in generator: pass assert any( record.levelname == 'ERROR' and 'Failed to read file' in record.message and os.path.basename(lowerCAmelCase_ ) in record.message for record in caplog.records ) @require_pil def a_ ( lowerCAmelCase_ : List[str] ): with open(lowerCAmelCase_, encoding='utf-8' ) as f: __lowerCAmelCase = f.read().splitlines()[1] __lowerCAmelCase = Csv(encoding='utf-8', features=Features({'image': Image()} ) ) __lowerCAmelCase = csv._generate_tables([[csv_file_with_image]] ) __lowerCAmelCase = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('image' ).type == Image()() __lowerCAmelCase = pa_table.to_pydict()['image'] assert generated_content == [{"path": image_file, "bytes": None}] def a_ ( lowerCAmelCase_ : Dict ): with open(lowerCAmelCase_, encoding='utf-8' ) as f: __lowerCAmelCase = f.read().splitlines()[1:] __lowerCAmelCase = Csv(encoding='utf-8', features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) ) __lowerCAmelCase = csv._generate_tables([[csv_file_with_label]] ) __lowerCAmelCase = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )() __lowerCAmelCase = pa_table.to_pydict()['label'] assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(lowerCAmelCase_ ) for label in labels] def a_ ( lowerCAmelCase_ : List[str] ): __lowerCAmelCase = Csv(encoding='utf-8', sep=',', converters={'int_list': lambda lowerCAmelCase_ : [int(lowerCAmelCase_ ) for i in x.split()]} ) __lowerCAmelCase = csv._generate_tables([[csv_file_with_int_list]] ) __lowerCAmelCase = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('int_list' ).type ) __lowerCAmelCase = pa_table.to_pydict()['int_list'] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
53
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def a_ ( lowerCAmelCase_ : str=None ): if subparsers is not None: __lowerCAmelCase = subparsers.add_parser('env' ) else: __lowerCAmelCase = argparse.ArgumentParser('Accelerate env command' ) parser.add_argument( '--config_file', default=lowerCAmelCase_, help='The config file to use for the default values in the launching script.' ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def a_ ( lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = torch.__version__ __lowerCAmelCase = torch.cuda.is_available() __lowerCAmelCase = is_xpu_available() __lowerCAmelCase = is_npu_available() __lowerCAmelCase = 'Not found' # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowerCAmelCase_ ): __lowerCAmelCase = load_config_from_file(args.config_file ).to_dict() __lowerCAmelCase = { '`Accelerate` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Numpy version': np.__version__, 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'PyTorch XPU available': str(lowerCAmelCase_ ), 'PyTorch NPU available': str(lowerCAmelCase_ ), 'System RAM': F"""{psutil.virtual_memory().total / 1024 ** 3:.2f} GB""", } if pt_cuda_available: __lowerCAmelCase = torch.cuda.get_device_name() print('\nCopy-and-paste the text below in your GitHub issue\n' ) print('\n'.join([F"""- {prop}: {val}""" for prop, val in info.items()] ) ) print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:' ) __lowerCAmelCase = ( '\n'.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else F"""\t{accelerate_config}""" ) print(lowerCAmelCase_ ) __lowerCAmelCase = accelerate_config return info def a_ ( ): __lowerCAmelCase = env_command_parser() __lowerCAmelCase = parser.parse_args() env_command(lowerCAmelCase_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
53
1
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml _snake_case : List[str] = NewType('DataClass', Any) _snake_case : str = NewType('DataClassType', Any) def a_ ( lowerCAmelCase_ : Any ): if isinstance(lowerCAmelCase_, lowerCAmelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def a_ ( lowerCAmelCase_ : list ): __lowerCAmelCase = {str(lowerCAmelCase_ ): choice for choice in choices} return lambda lowerCAmelCase_ : str_to_choice.get(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( *, lowerCAmelCase_ : Union[str, List[str]] = None, lowerCAmelCase_ : str = None, lowerCAmelCase_ : Any = dataclasses.MISSING, lowerCAmelCase_ : Callable[[], Any] = dataclasses.MISSING, lowerCAmelCase_ : dict = None, **lowerCAmelCase_ : str, ): if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __lowerCAmelCase = {} if aliases is not None: __lowerCAmelCase = aliases if help is not None: __lowerCAmelCase = help return dataclasses.field(metadata=lowerCAmelCase_, default=lowerCAmelCase_, default_factory=lowerCAmelCase_, **lowerCAmelCase_ ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = 42 def __init__( self : Union[str, Any] , lowerCAmelCase_ : Union[DataClassType, Iterable[DataClassType]] , **lowerCAmelCase_ : Optional[Any] ) -> List[str]: # To make the default appear when using --help if "formatter_class" not in kwargs: __lowerCAmelCase = ArgumentDefaultsHelpFormatter super().__init__(**lowerCAmelCase_ ) if dataclasses.is_dataclass(lowerCAmelCase_ ): __lowerCAmelCase = [dataclass_types] __lowerCAmelCase = list(lowerCAmelCase_ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(lowerCAmelCase_ ) @staticmethod def lowercase ( lowerCAmelCase_ : ArgumentParser , lowerCAmelCase_ : dataclasses.Field ) -> List[Any]: __lowerCAmelCase = f"""--{field.name}""" __lowerCAmelCase = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , lowerCAmelCase_ ): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default' ) __lowerCAmelCase = kwargs.pop('aliases' , [] ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowerCAmelCase = [aliases] __lowerCAmelCase = getattr(field.type , '__origin__' , field.type ) if origin_type is Union or (hasattr(lowerCAmelCase_ , 'UnionType' ) and isinstance(lowerCAmelCase_ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(lowerCAmelCase_ ) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' f""" Problem encountered in field '{field.name}'.""" ) if type(lowerCAmelCase_ ) not in field.type.__args__: # filter `str` in Union __lowerCAmelCase = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __lowerCAmelCase = getattr(field.type , '__origin__' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __lowerCAmelCase = ( field.type.__args__[0] if isinstance(lowerCAmelCase_ , field.type.__args__[1] ) else field.type.__args__[1] ) __lowerCAmelCase = getattr(field.type , '__origin__' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __lowerCAmelCase = {} if origin_type is Literal or (isinstance(field.type , lowerCAmelCase_ ) and issubclass(field.type , lowerCAmelCase_ )): if origin_type is Literal: __lowerCAmelCase = field.type.__args__ else: __lowerCAmelCase = [x.value for x in field.type] __lowerCAmelCase = make_choice_type_function(kwargs['choices'] ) if field.default is not dataclasses.MISSING: __lowerCAmelCase = field.default else: __lowerCAmelCase = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __lowerCAmelCase = copy(lowerCAmelCase_ ) # Hack because type=bool in argparse does not behave as we want. __lowerCAmelCase = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __lowerCAmelCase = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __lowerCAmelCase = default # This tells argparse we accept 0 or 1 value after --field_name __lowerCAmelCase = '?' # This is the value that will get picked if we do --field_name (without value) __lowerCAmelCase = True elif isclass(lowerCAmelCase_ ) and issubclass(lowerCAmelCase_ , lowerCAmelCase_ ): __lowerCAmelCase = field.type.__args__[0] __lowerCAmelCase = '+' if field.default_factory is not dataclasses.MISSING: __lowerCAmelCase = field.default_factory() elif field.default is dataclasses.MISSING: __lowerCAmelCase = True else: __lowerCAmelCase = field.type if field.default is not dataclasses.MISSING: __lowerCAmelCase = field.default elif field.default_factory is not dataclasses.MISSING: __lowerCAmelCase = field.default_factory() else: __lowerCAmelCase = True parser.add_argument(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __lowerCAmelCase = False parser.add_argument(f"""--no_{field.name}""" , action='store_false' , dest=field.name , **lowerCAmelCase_ ) def lowercase ( self : int , lowerCAmelCase_ : DataClassType ) -> List[Any]: if hasattr(lowerCAmelCase_ , '_argument_group_name' ): __lowerCAmelCase = self.add_argument_group(dtype._argument_group_name ) else: __lowerCAmelCase = self try: __lowerCAmelCase = get_type_hints(lowerCAmelCase_ ) except NameError: raise RuntimeError( f"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 1_0) and "unsupported operand type(s) for |" in str(lowerCAmelCase_ ): __lowerCAmelCase = '.'.join(map(lowerCAmelCase_ , sys.version_info[:3] ) ) raise RuntimeError( f"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.' ) from ex raise for field in dataclasses.fields(lowerCAmelCase_ ): if not field.init: continue __lowerCAmelCase = type_hints[field.name] self._parse_dataclass_field(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : str=None , ) -> Tuple[DataClass, ...]: if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __lowerCAmelCase = [] if args_filename: args_files.append(Path(lowerCAmelCase_ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('.args' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __lowerCAmelCase = ArgumentParser() args_file_parser.add_argument(lowerCAmelCase_ , type=lowerCAmelCase_ , action='append' ) # Use only remaining args for further parsing (remove the args_file_flag) __lowerCAmelCase , __lowerCAmelCase = args_file_parser.parse_known_args(args=lowerCAmelCase_ ) __lowerCAmelCase = vars(lowerCAmelCase_ ).get(args_file_flag.lstrip('-' ) , lowerCAmelCase_ ) if cmd_args_file_paths: args_files.extend([Path(lowerCAmelCase_ ) for p in cmd_args_file_paths] ) __lowerCAmelCase = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __lowerCAmelCase = file_args + args if args is not None else file_args + sys.argv[1:] __lowerCAmelCase , __lowerCAmelCase = self.parse_known_args(args=lowerCAmelCase_ ) __lowerCAmelCase = [] for dtype in self.dataclass_types: __lowerCAmelCase = {f.name for f in dataclasses.fields(lowerCAmelCase_ ) if f.init} __lowerCAmelCase = {k: v for k, v in vars(lowerCAmelCase_ ).items() if k in keys} for k in keys: delattr(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = dtype(**lowerCAmelCase_ ) outputs.append(lowerCAmelCase_ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(lowerCAmelCase_ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def lowercase ( self : Dict , lowerCAmelCase_ : Dict[str, Any] , lowerCAmelCase_ : bool = False ) -> Tuple[DataClass, ...]: __lowerCAmelCase = set(args.keys() ) __lowerCAmelCase = [] for dtype in self.dataclass_types: __lowerCAmelCase = {f.name for f in dataclasses.fields(lowerCAmelCase_ ) if f.init} __lowerCAmelCase = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __lowerCAmelCase = dtype(**lowerCAmelCase_ ) outputs.append(lowerCAmelCase_ ) if not allow_extra_keys and unused_keys: raise ValueError(f"""Some keys are not used by the HfArgumentParser: {sorted(lowerCAmelCase_ )}""" ) return tuple(lowerCAmelCase_ ) def lowercase ( self : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : bool = False ) -> Tuple[DataClass, ...]: with open(Path(lowerCAmelCase_ ) , encoding='utf-8' ) as open_json_file: __lowerCAmelCase = json.loads(open_json_file.read() ) __lowerCAmelCase = self.parse_dict(lowerCAmelCase_ , allow_extra_keys=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : bool = False ) -> Tuple[DataClass, ...]: __lowerCAmelCase = self.parse_dict(yaml.safe_load(Path(lowerCAmelCase_ ).read_text() ) , allow_extra_keys=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
53
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a_ ( ): __lowerCAmelCase = ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores', type=lowerCAmelCase_, default=1, help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script', type=lowerCAmelCase_, help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ), ) # rest from the training program parser.add_argument('training_script_args', nargs=lowerCAmelCase_ ) return parser.parse_args() def a_ ( ): __lowerCAmelCase = parse_args() # Import training_script as a module. __lowerCAmelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __lowerCAmelCase = script_fpath.stem __lowerCAmelCase = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv __lowerCAmelCase = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores ) if __name__ == "__main__": main()
53
1
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def a_ ( lowerCAmelCase_ : str=None, lowerCAmelCase_ : Any=None ): return field(default_factory=lambda: default, metadata=lowerCAmelCase_ ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( metadata={"""help""": """The csv file to plot."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to plot along batch size or sequence length. Defaults to sequence length."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether the csv file has time results or memory results. Defaults to memory results."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Disable logarithmic scale when plotting"""} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": """Whether the csv file has training results or inference results. Defaults to inference results.""" } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Filename under which the plot will be saved. If unused no plot is saved."""} , ) a_ = list_field( default=_UpperCamelCase , metadata={"""help""": """List of model names that are used instead of the ones in the csv file."""} ) def a_ ( lowerCAmelCase_ : Tuple ): try: int(lowerCAmelCase_ ) return True except ValueError: return False def a_ ( lowerCAmelCase_ : Dict ): try: float(lowerCAmelCase_ ) return True except ValueError: return False class _UpperCAmelCase : """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase_ : List[Any] ) -> Union[str, Any]: __lowerCAmelCase = args __lowerCAmelCase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='' ) as csv_file: __lowerCAmelCase = csv.DictReader(lowerCAmelCase_ ) for row in reader: __lowerCAmelCase = row['model'] self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) ) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) ) if can_convert_to_int(row['result'] ): # value is not None __lowerCAmelCase = int(row['result'] ) elif can_convert_to_float(row['result'] ): # value is not None __lowerCAmelCase = float(row['result'] ) def lowercase ( self : List[Any] ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase = plt.subplots() __lowerCAmelCase = 'Time usage' if self.args.is_time else 'Memory usage' __lowerCAmelCase = title_str + ' for training' if self.args.is_train else title_str + ' for inference' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log' ) ax.set_yscale('log' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): __lowerCAmelCase = sorted(set(self.result_dict[model_name]['bsz'] ) ) __lowerCAmelCase = sorted(set(self.result_dict[model_name]['seq_len'] ) ) __lowerCAmelCase = self.result_dict[model_name]['result'] ((__lowerCAmelCase) , (__lowerCAmelCase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) __lowerCAmelCase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: __lowerCAmelCase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=lowerCAmelCase_ , ) else: __lowerCAmelCase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = ( ('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz') ) __lowerCAmelCase = np.asarray(lowerCAmelCase_ , lowerCAmelCase_ )[: len(lowerCAmelCase_ )] plt.scatter( lowerCAmelCase_ , lowerCAmelCase_ , label=f"""{label_model_name} - {inner_loop_label}: {inner_loop_value}""" ) plt.plot(lowerCAmelCase_ , lowerCAmelCase_ , '--' ) title_str += f""" {label_model_name} vs.""" __lowerCAmelCase = title_str[:-4] __lowerCAmelCase = 'Time in s' if self.args.is_time else 'Memory in MB' # plot plt.title(lowerCAmelCase_ ) plt.xlabel(lowerCAmelCase_ ) plt.ylabel(lowerCAmelCase_ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def a_ ( ): __lowerCAmelCase = HfArgumentParser(lowerCAmelCase_ ) __lowerCAmelCase = parser.parse_args_into_dataclasses()[0] __lowerCAmelCase = Plot(args=lowerCAmelCase_ ) plot.plot() if __name__ == "__main__": main()
53
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict=1_3 , lowerCAmelCase_ : str=3_2 , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : str=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Tuple=[2, 2, 3, 2] , lowerCAmelCase_ : str=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[int]=3_7 , lowerCAmelCase_ : Dict="gelu" , lowerCAmelCase_ : List[Any]=1_0 , lowerCAmelCase_ : str=0.02 , lowerCAmelCase_ : Dict=["stage2", "stage3", "stage4"] , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : List[Any]=None , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = num_stages __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = out_features __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = num_stages def lowercase ( self : Dict ) -> List[str]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase ( self : List[str] ) -> Union[str, Any]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowercase ( self : Dict ) -> List[str]: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_1_2 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=lowerCAmelCase_ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=4_0 , auxiliary_channels=2_5_6 , auxiliary_num_convs=1 , auxiliary_concat_input=lowerCAmelCase_ , loss_ignore_index=2_5_5 , num_labels=self.num_labels , ) def lowercase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int ) -> Optional[Any]: __lowerCAmelCase = UperNetForSemanticSegmentation(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase ( self : Union[str, Any] ) -> Union[str, Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (UperNetForSemanticSegmentation,) if is_torch_available() else () a_ = {"""image-segmentation""": UperNetForSemanticSegmentation} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Optional[int] ) -> Dict: __lowerCAmelCase = UperNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : List[str] ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Tuple ) -> Union[str, Any]: return def lowercase ( self : Optional[int] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase_ ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def lowercase ( self : Optional[int] ) -> Dict: pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def lowercase ( self : Optional[Any] ) -> Dict: pass @unittest.skip(reason='UperNet does not have a base model' ) def lowercase ( self : Optional[int] ) -> List[Any]: pass @unittest.skip(reason='UperNet does not have a base model' ) def lowercase ( self : str ) -> Dict: pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowercase ( self : Optional[Any] ) -> Optional[int]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : Tuple ) -> List[Any]: pass def lowercase ( self : Union[str, Any] ) -> Tuple: def check_hidden_states_output(lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Any ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = _config_zero_init(lowerCAmelCase_ ) __lowerCAmelCase = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __lowerCAmelCase = model_class(config=lowerCAmelCase_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='UperNet does not have tied weights' ) def lowercase ( self : Any ) -> int: pass @slow def lowercase ( self : Optional[int] ) -> Optional[int]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def a_ ( ): __lowerCAmelCase = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k', repo_type='dataset', filename='ADE_val_00000001.jpg' ) __lowerCAmelCase = Image.open(lowerCAmelCase_ ).convert('RGB' ) return image @require_torch @require_vision @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Dict ) -> Union[str, Any]: __lowerCAmelCase = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(lowerCAmelCase_ ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(lowerCAmelCase_ ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
1
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Optional[int]=8 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]=9_9 , lowerCAmelCase_ : List[Any]=1_6 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=3_6 , lowerCAmelCase_ : Optional[int]="gelu" , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : str=5_1_2 , lowerCAmelCase_ : List[str]=1_6 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Tuple=0.02 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : List[Any]=4 , lowerCAmelCase_ : List[str]=None , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope def lowercase ( self : Optional[int] ) -> Dict: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self : Any ) -> Union[str, Any]: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def lowercase ( self : Dict ) -> List[Any]: __lowerCAmelCase = self.get_config() __lowerCAmelCase = 3_0_0 return config def lowercase ( self : Optional[int] ) -> Union[str, Any]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = self.prepare_config_and_inputs() __lowerCAmelCase = True __lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = MraModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , ) -> Tuple: __lowerCAmelCase = True __lowerCAmelCase = MraModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , ) __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = MraForMaskedLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> str: __lowerCAmelCase = MraForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict ) -> Optional[Any]: __lowerCAmelCase = self.num_labels __lowerCAmelCase = MraForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict ) -> Any: __lowerCAmelCase = self.num_labels __lowerCAmelCase = MraForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] ) -> List[Any]: __lowerCAmelCase = self.num_choices __lowerCAmelCase = MraForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self : Tuple ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) a_ = False a_ = False a_ = False a_ = False a_ = () def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = MraModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : Tuple ) -> List[str]: self.config_tester.run_common_tests() def lowercase ( self : Optional[int] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase = type self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase_ ) def lowercase ( self : List[str] ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase_ ) def lowercase ( self : Tuple ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase_ ) @slow def lowercase ( self : Optional[int] ) -> Optional[int]: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = MraModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @unittest.skip(reason='MRA does not output attentions' ) def lowercase ( self : Optional[int] ) -> Tuple: return @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase ( self : Optional[Any] ) -> List[str]: __lowerCAmelCase = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) __lowerCAmelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : int ) -> Optional[int]: __lowerCAmelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) __lowerCAmelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = 5_0_2_6_5 __lowerCAmelCase = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : Any ) -> List[str]: __lowerCAmelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) __lowerCAmelCase = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = 5_0_2_6_5 __lowerCAmelCase = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Optional[Any] ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : int ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_, keep_in_memory=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Dict, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, features=lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Any ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_, split=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type', [str, list] ) def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : Any, lowerCAmelCase_ : Dict ): if issubclass(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = text_path elif issubclass(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = [text_path] __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : int, lowerCAmelCase_ : Tuple=("train",) ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) for split in splits: __lowerCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def a_ ( lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Dict ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = TextDatasetReader({'train': text_path}, cache_dir=lowerCAmelCase_, keep_in_memory=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = TextDatasetReader({'train': text_path}, features=lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : Optional[int] ): if split: __lowerCAmelCase = {split: text_path} else: __lowerCAmelCase = 'train' __lowerCAmelCase = {'train': text_path, 'test': text_path} __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
53
1
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = ProphetNetTokenizer a_ = False def lowercase ( self : Union[str, Any] ) -> List[Any]: super().setUp() __lowerCAmelCase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowercase ( self : Tuple , lowerCAmelCase_ : str ) -> List[str]: __lowerCAmelCase = 'UNwant\u00E9d,running' __lowerCAmelCase = 'unwanted, running' return input_text, output_text def lowercase ( self : str ) -> Optional[Any]: __lowerCAmelCase = self.tokenizer_class(self.vocab_file ) __lowerCAmelCase = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(lowerCAmelCase_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def lowercase ( self : Optional[Any] ) -> Any: __lowerCAmelCase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def lowercase ( self : List[Any] ) -> List[Any]: __lowerCAmelCase = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowercase ( self : Tuple ) -> Any: __lowerCAmelCase = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def lowercase ( self : Tuple ) -> Dict: __lowerCAmelCase = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowercase ( self : Union[str, Any] ) -> Dict: __lowerCAmelCase = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowercase ( self : Optional[Any] ) -> int: __lowerCAmelCase = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowercase ( self : Optional[int] ) -> List[Any]: __lowerCAmelCase = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowercase ( self : Tuple ) -> List[Any]: __lowerCAmelCase = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowercase ( self : str ) -> Optional[int]: __lowerCAmelCase = BasicTokenizer(do_lower_case=lowerCAmelCase_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def lowercase ( self : List[str] ) -> Tuple: __lowerCAmelCase = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __lowerCAmelCase = {} for i, token in enumerate(lowerCAmelCase_ ): __lowerCAmelCase = i __lowerCAmelCase = WordpieceTokenizer(vocab=lowerCAmelCase_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) @require_torch def lowercase ( self : str ) -> Any: __lowerCAmelCase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowerCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __lowerCAmelCase = [1_0_3_7, 2_1_4_6, 2_0_4_2_3, 2_0_0_5, 7_6_8_0, 7_8_4_9, 3_9_8_9, 1_0_1_2, 1_0_2] __lowerCAmelCase = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='pt' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = list(batch.input_ids.numpy()[0] ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def lowercase ( self : Dict ) -> int: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def lowercase ( self : Optional[int] ) -> Optional[Any]: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def lowercase ( self : int ) -> Any: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def lowercase ( self : Tuple ) -> Optional[int]: __lowerCAmelCase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowerCAmelCase = tokenizer.encode('sequence builders' , add_special_tokens=lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.encode('multi-sequence build' , add_special_tokens=lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) assert encoded_sentence == text + [1_0_2] assert encoded_pair == text + [1_0_2] + text_a + [1_0_2]
53
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case : Union[str, Any] = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : int=False ): __lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Optional[int]=False ): for i in range(config.num_hidden_layers ): if base_model: __lowerCAmelCase = '' else: __lowerCAmelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] __lowerCAmelCase = in_proj_bias[: config.hidden_size] __lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase = in_proj_bias[-config.hidden_size :] def a_ ( lowerCAmelCase_ : List[str] ): __lowerCAmelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Optional[Any]=True ): __lowerCAmelCase = ViTConfig() # patch_size if model_name[-1] == "8": __lowerCAmelCase = 8 # set labels if required if not base_model: __lowerCAmelCase = 1000 __lowerCAmelCase = 'huggingface/label-files' __lowerCAmelCase = 'imagenet-1k-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 6 # load original model from torch hub __lowerCAmelCase = torch.hub.load('facebookresearch/dino:main', lowerCAmelCase_ ) original_model.eval() # load state_dict of original model, remove and rename some keys __lowerCAmelCase = original_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase_ ) __lowerCAmelCase = create_rename_keys(lowerCAmelCase_, base_model=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # load HuggingFace model if base_model: __lowerCAmelCase = ViTModel(lowerCAmelCase_, add_pooling_layer=lowerCAmelCase_ ).eval() else: __lowerCAmelCase = ViTForImageClassification(lowerCAmelCase_ ).eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor __lowerCAmelCase = ViTImageProcessor() __lowerCAmelCase = image_processor(images=prepare_img(), return_tensors='pt' ) __lowerCAmelCase = encoding['pixel_values'] __lowerCAmelCase = model(lowerCAmelCase_ ) if base_model: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_, outputs.last_hidden_state[:, 0, :], atol=1E-1 ) else: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase_, outputs.logits, atol=1E-3 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) _snake_case : List[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
53
1
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = None a_ = BloomTokenizerFast a_ = BloomTokenizerFast a_ = True a_ = False a_ = """tokenizer_file""" a_ = {"""bos_token""": """<s>""", """eos_token""": """</s>""", """unk_token""": """<unk>""", """pad_token""": """<pad>"""} def lowercase ( self : List[Any] ) -> List[str]: super().setUp() __lowerCAmelCase = BloomTokenizerFast.from_pretrained('bigscience/tokenizer' ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self : Dict , **lowerCAmelCase_ : Optional[Any] ) -> List[Any]: kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowercase ( self : str ) -> Dict: __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = ['The quick brown fox</s>', 'jumps over the lazy dog</s>'] __lowerCAmelCase = [[2_1_7_5, 2_3_7_1_4, 7_3_1_7_3, 1_4_4_2_5_2, 2], [7_7, 1_3_2_6_1_9, 3_4_7_8, 3_6_8, 1_0_9_5_8_6, 3_5_4_3_3, 2]] __lowerCAmelCase = tokenizer.batch_encode_plus(lowerCAmelCase_ )['input_ids'] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.batch_decode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : List[Any]=6 ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input __lowerCAmelCase = 'This is a simple input' __lowerCAmelCase = ['This is a simple input 1', 'This is a simple input 2'] __lowerCAmelCase = ('This is a simple input', 'This is a pair') __lowerCAmelCase = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests try: tokenizer_r.encode(lowerCAmelCase_ , max_length=lowerCAmelCase_ ) tokenizer_r.encode_plus(lowerCAmelCase_ , max_length=lowerCAmelCase_ ) tokenizer_r.batch_encode_plus(lowerCAmelCase_ , max_length=lowerCAmelCase_ ) tokenizer_r.encode(lowerCAmelCase_ , max_length=lowerCAmelCase_ ) tokenizer_r.batch_encode_plus(lowerCAmelCase_ , max_length=lowerCAmelCase_ ) except ValueError: self.fail('Bloom Tokenizer should be able to deal with padding' ) __lowerCAmelCase = None # Hotfixing padding = None self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding='max_length' ) # Simple input self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding='max_length' ) # Simple input self.assertRaises( lowerCAmelCase_ , tokenizer_r.batch_encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding='max_length' , ) # Pair input self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding='max_length' ) # Pair input self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding='max_length' ) # Pair input self.assertRaises( lowerCAmelCase_ , tokenizer_r.batch_encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding='max_length' , ) def lowercase ( self : List[str] ) -> Optional[int]: __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = load_dataset('xnli' , 'all_languages' , split='test' , streaming=lowerCAmelCase_ ) __lowerCAmelCase = next(iter(lowerCAmelCase_ ) )['premise'] # pick up one data __lowerCAmelCase = list(sample_data.values() ) __lowerCAmelCase = list(map(tokenizer.encode , lowerCAmelCase_ ) ) __lowerCAmelCase = [tokenizer.decode(lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) for x in output_tokens] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
53
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : str ) -> Any: __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : Tuple ) -> Optional[int]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : List[Any] ) -> int: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : str ) -> str: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[str]: # pass variant but use the non-variant filenames __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> Union[str, Any]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : List[str] ) -> List[Any]: # pass variant but use the non-variant filenames __lowerCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) )
53
1
def a_ ( lowerCAmelCase_ : list[int] ): __lowerCAmelCase = len(lowerCAmelCase_ ) for i in range(lowerCAmelCase_ ): for j in range(i + 1, lowerCAmelCase_ ): if numbers[j] < numbers[i]: __lowerCAmelCase , __lowerCAmelCase = numbers[j], numbers[i] return numbers if __name__ == "__main__": _snake_case : Any = input('Enter numbers separated by a comma:\n').strip() _snake_case : Dict = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
53
import math def a_ ( lowerCAmelCase_ : list, lowerCAmelCase_ : int ): __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) __lowerCAmelCase = 0 while arr[min(lowerCAmelCase_, lowerCAmelCase_ ) - 1] < x: __lowerCAmelCase = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: __lowerCAmelCase = prev + 1 if prev == min(lowerCAmelCase_, lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": _snake_case : List[str] = input('Enter numbers separated by a comma:\n').strip() _snake_case : Optional[Any] = [int(item) for item in user_input.split(',')] _snake_case : List[str] = int(input('Enter the number to be searched:\n')) _snake_case : Optional[int] = jump_search(arr, x) if res == -1: print('Number not found!') else: print(F"""Number {x} is at index {res}""")
53
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _snake_case : int = { 'configuration_clip': [ 'CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPConfig', 'CLIPOnnxConfig', 'CLIPTextConfig', 'CLIPVisionConfig', ], 'processing_clip': ['CLIPProcessor'], 'tokenization_clip': ['CLIPTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[int] = ['CLIPTokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[int] = ['CLIPFeatureExtractor'] _snake_case : Optional[Any] = ['CLIPImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : str = [ 'CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPModel', 'CLIPPreTrainedModel', 'CLIPTextModel', 'CLIPTextModelWithProjection', 'CLIPVisionModel', 'CLIPVisionModelWithProjection', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[Any] = [ 'TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFCLIPModel', 'TFCLIPPreTrainedModel', 'TFCLIPTextModel', 'TFCLIPVisionModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[int] = [ 'FlaxCLIPModel', 'FlaxCLIPPreTrainedModel', 'FlaxCLIPTextModel', 'FlaxCLIPTextPreTrainedModel', 'FlaxCLIPVisionModel', 'FlaxCLIPVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys _snake_case : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
53
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[Any], lowerCAmelCase_ : str ): # Initialise PyTorch model __lowerCAmelCase = RemBertConfig.from_json_file(lowerCAmelCase_ ) print('Building PyTorch model from configuration: {}'.format(str(lowerCAmelCase_ ) ) ) __lowerCAmelCase = RemBertModel(lowerCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Save pytorch-model print('Save PyTorch model to {}'.format(lowerCAmelCase_ ) ) torch.save(model.state_dict(), lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : int = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
53
1
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = 42 class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" a_ = True @register_to_config def __init__( self : Tuple , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : Tuple[str] = ("DownEncoderBlock2D",) , lowerCAmelCase_ : Tuple[str] = ("UpDecoderBlock2D",) , lowerCAmelCase_ : Tuple[int] = (6_4,) , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : str = "silu" , lowerCAmelCase_ : int = 4 , lowerCAmelCase_ : int = 3_2 , lowerCAmelCase_ : int = 3_2 , lowerCAmelCase_ : float = 0.1_82_15 , ) -> Union[str, Any]: super().__init__() # pass init params to Encoder __lowerCAmelCase = Encoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , down_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , double_z=lowerCAmelCase_ , ) # pass init params to Decoder __lowerCAmelCase = Decoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , up_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , ) __lowerCAmelCase = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) __lowerCAmelCase = nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) __lowerCAmelCase = False __lowerCAmelCase = False # only relevant if vae tiling is enabled __lowerCAmelCase = self.config.sample_size __lowerCAmelCase = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) __lowerCAmelCase = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) __lowerCAmelCase = 0.25 def lowercase ( self : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any]=False ) -> int: if isinstance(lowerCAmelCase_ , (Encoder, Decoder) ): __lowerCAmelCase = value def lowercase ( self : Dict , lowerCAmelCase_ : bool = True ) -> Optional[int]: __lowerCAmelCase = use_tiling def lowercase ( self : Optional[Any] ) -> Any: self.enable_tiling(lowerCAmelCase_ ) def lowercase ( self : List[str] ) -> Optional[int]: __lowerCAmelCase = True def lowercase ( self : Dict ) -> Optional[int]: __lowerCAmelCase = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowercase ( self : List[str] ) -> Dict[str, AttentionProcessor]: __lowerCAmelCase = {} def fn_recursive_add_processors(lowerCAmelCase_ : str , lowerCAmelCase_ : torch.nn.Module , lowerCAmelCase_ : Dict[str, AttentionProcessor] ): if hasattr(lowerCAmelCase_ , 'set_processor' ): __lowerCAmelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , lowerCAmelCase_ , lowerCAmelCase_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return processors def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> str: __lowerCAmelCase = len(self.attn_processors.keys() ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(lowerCAmelCase_ )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(lowerCAmelCase_ : str , lowerCAmelCase_ : torch.nn.Module , lowerCAmelCase_ : Optional[int] ): if hasattr(lowerCAmelCase_ , 'set_processor' ): if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): module.set_processor(lowerCAmelCase_ ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , lowerCAmelCase_ , lowerCAmelCase_ ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Optional[Any]: self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> AutoencoderKLOutput: if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) if self.use_slicing and x.shape[0] > 1: __lowerCAmelCase = [self.encoder(lowerCAmelCase_ ) for x_slice in x.split(1 )] __lowerCAmelCase = torch.cat(lowerCAmelCase_ ) else: __lowerCAmelCase = self.encoder(lowerCAmelCase_ ) __lowerCAmelCase = self.quant_conv(lowerCAmelCase_ ) __lowerCAmelCase = DiagonalGaussianDistribution(lowerCAmelCase_ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=lowerCAmelCase_ ) def lowercase ( self : str , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) __lowerCAmelCase = self.post_quant_conv(lowerCAmelCase_ ) __lowerCAmelCase = self.decoder(lowerCAmelCase_ ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ ) @apply_forward_hook def lowercase ( self : str , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_slicing and z.shape[0] > 1: __lowerCAmelCase = [self._decode(lowerCAmelCase_ ).sample for z_slice in z.split(1 )] __lowerCAmelCase = torch.cat(lowerCAmelCase_ ) else: __lowerCAmelCase = self._decode(lowerCAmelCase_ ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=lowerCAmelCase_ ) def lowercase ( self : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] ) -> Any: __lowerCAmelCase = min(a.shape[2] , b.shape[2] , lowerCAmelCase_ ) for y in range(lowerCAmelCase_ ): __lowerCAmelCase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def lowercase ( self : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple ) -> Tuple: __lowerCAmelCase = min(a.shape[3] , b.shape[3] , lowerCAmelCase_ ) for x in range(lowerCAmelCase_ ): __lowerCAmelCase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def lowercase ( self : int , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> AutoencoderKLOutput: __lowerCAmelCase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) __lowerCAmelCase = int(self.tile_latent_min_size * self.tile_overlap_factor ) __lowerCAmelCase = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __lowerCAmelCase = [] for i in range(0 , x.shape[2] , lowerCAmelCase_ ): __lowerCAmelCase = [] for j in range(0 , x.shape[3] , lowerCAmelCase_ ): __lowerCAmelCase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __lowerCAmelCase = self.encoder(lowerCAmelCase_ ) __lowerCAmelCase = self.quant_conv(lowerCAmelCase_ ) row.append(lowerCAmelCase_ ) rows.append(lowerCAmelCase_ ) __lowerCAmelCase = [] for i, row in enumerate(lowerCAmelCase_ ): __lowerCAmelCase = [] for j, tile in enumerate(lowerCAmelCase_ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCAmelCase = self.blend_v(rows[i - 1][j] , lowerCAmelCase_ , lowerCAmelCase_ ) if j > 0: __lowerCAmelCase = self.blend_h(row[j - 1] , lowerCAmelCase_ , lowerCAmelCase_ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(lowerCAmelCase_ , dim=3 ) ) __lowerCAmelCase = torch.cat(lowerCAmelCase_ , dim=2 ) __lowerCAmelCase = DiagonalGaussianDistribution(lowerCAmelCase_ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=lowerCAmelCase_ ) def lowercase ( self : List[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: __lowerCAmelCase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) __lowerCAmelCase = int(self.tile_sample_min_size * self.tile_overlap_factor ) __lowerCAmelCase = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __lowerCAmelCase = [] for i in range(0 , z.shape[2] , lowerCAmelCase_ ): __lowerCAmelCase = [] for j in range(0 , z.shape[3] , lowerCAmelCase_ ): __lowerCAmelCase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __lowerCAmelCase = self.post_quant_conv(lowerCAmelCase_ ) __lowerCAmelCase = self.decoder(lowerCAmelCase_ ) row.append(lowerCAmelCase_ ) rows.append(lowerCAmelCase_ ) __lowerCAmelCase = [] for i, row in enumerate(lowerCAmelCase_ ): __lowerCAmelCase = [] for j, tile in enumerate(lowerCAmelCase_ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCAmelCase = self.blend_v(rows[i - 1][j] , lowerCAmelCase_ , lowerCAmelCase_ ) if j > 0: __lowerCAmelCase = self.blend_h(row[j - 1] , lowerCAmelCase_ , lowerCAmelCase_ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(lowerCAmelCase_ , dim=3 ) ) __lowerCAmelCase = torch.cat(lowerCAmelCase_ , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ ) def lowercase ( self : Tuple , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[torch.Generator] = None , ) -> Union[DecoderOutput, torch.FloatTensor]: __lowerCAmelCase = sample __lowerCAmelCase = self.encode(lowerCAmelCase_ ).latent_dist if sample_posterior: __lowerCAmelCase = posterior.sample(generator=lowerCAmelCase_ ) else: __lowerCAmelCase = posterior.mode() __lowerCAmelCase = self.decode(lowerCAmelCase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ )
53
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _snake_case : Any = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224', out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) __lowerCAmelCase = MaskFormerConfig(backbone_config=lowerCAmelCase_ ) __lowerCAmelCase = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok __lowerCAmelCase = 847 __lowerCAmelCase = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok __lowerCAmelCase = 150 __lowerCAmelCase = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok __lowerCAmelCase = 171 __lowerCAmelCase = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO __lowerCAmelCase = 133 __lowerCAmelCase = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok __lowerCAmelCase = 19 __lowerCAmelCase = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok __lowerCAmelCase = 65 __lowerCAmelCase = 'mapillary-vistas-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} return config def a_ ( lowerCAmelCase_ : Tuple ): __lowerCAmelCase = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') ) for source_index, target_index in zip(range(3, 0, -1 ), range(0, 3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') ) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') ) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') ) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') ) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Tuple ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int ): __lowerCAmelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowerCAmelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[:dim, :] __lowerCAmelCase = in_proj_bias[: dim] __lowerCAmelCase = in_proj_weight[ dim : dim * 2, : ] __lowerCAmelCase = in_proj_bias[ dim : dim * 2 ] __lowerCAmelCase = in_proj_weight[ -dim :, : ] __lowerCAmelCase = in_proj_bias[-dim :] # fmt: on def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : Dict ): # fmt: off __lowerCAmelCase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: hidden_size, :] __lowerCAmelCase = in_proj_bias[:config.hidden_size] __lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCAmelCase = in_proj_weight[-hidden_size :, :] __lowerCAmelCase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: hidden_size, :] __lowerCAmelCase = in_proj_bias[:config.hidden_size] __lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCAmelCase = in_proj_weight[-hidden_size :, :] __lowerCAmelCase = in_proj_bias[-hidden_size :] # fmt: on def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : bool = False ): __lowerCAmelCase = get_maskformer_config(lowerCAmelCase_ ) # load original state_dict with open(lowerCAmelCase_, 'rb' ) as f: __lowerCAmelCase = pickle.load(lowerCAmelCase_ ) __lowerCAmelCase = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowerCAmelCase = create_rename_keys(lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_swin_q_k_v(lowerCAmelCase_, config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase_, lowerCAmelCase_ ) # update to torch tensors for key, value in state_dict.items(): __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ) # load 🤗 model __lowerCAmelCase = MaskFormerForInstanceSegmentation(lowerCAmelCase_ ) model.eval() for name, param in model.named_parameters(): print(lowerCAmelCase_, param.shape ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowerCAmelCase_, strict=lowerCAmelCase_ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCAmelCase_ ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results __lowerCAmelCase = prepare_img() if "vistas" in model_name: __lowerCAmelCase = 65 elif "cityscapes" in model_name: __lowerCAmelCase = 6_5535 else: __lowerCAmelCase = 255 __lowerCAmelCase = True if 'ade' in model_name else False __lowerCAmelCase = MaskFormerImageProcessor(ignore_index=lowerCAmelCase_, reduce_labels=lowerCAmelCase_ ) __lowerCAmelCase = image_processor(lowerCAmelCase_, return_tensors='pt' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) print('Logits:', outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowerCAmelCase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], lowerCAmelCase_, atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print('Pushing model and image processor to the hub...' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _snake_case : List[str] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
53
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : Optional[int] = logging.get_logger(__name__) _snake_case : Union[str, Any] = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = """audio-spectrogram-transformer""" def __init__( self : Union[str, Any] , lowerCAmelCase_ : int=7_6_8 , lowerCAmelCase_ : List[Any]=1_2 , lowerCAmelCase_ : int=1_2 , lowerCAmelCase_ : Union[str, Any]=3_0_7_2 , lowerCAmelCase_ : Union[str, Any]="gelu" , lowerCAmelCase_ : Dict=0.0 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : List[Any]=0.02 , lowerCAmelCase_ : Optional[Any]=1e-12 , lowerCAmelCase_ : Union[str, Any]=1_6 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : str=1_0 , lowerCAmelCase_ : List[Any]=1_0 , lowerCAmelCase_ : Dict=1_0_2_4 , lowerCAmelCase_ : Union[str, Any]=1_2_8 , **lowerCAmelCase_ : str , ) -> Any: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = patch_size __lowerCAmelCase = qkv_bias __lowerCAmelCase = frequency_stride __lowerCAmelCase = time_stride __lowerCAmelCase = max_length __lowerCAmelCase = num_mel_bins
53
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): _snake_case : List[Any] = True from torch.cuda.amp import autocast _snake_case : Dict = logging.getLogger(__name__) def a_ ( lowerCAmelCase_ : str=None, lowerCAmelCase_ : str=None ): return field(default_factory=lambda: default, metadata=lowerCAmelCase_ ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) a_ = field( default=0.1 , metadata={"""help""": """The dropout ratio for the attention probabilities."""} ) a_ = field( default=0.1 , metadata={"""help""": """The dropout ratio for activations inside the fully connected layer."""} ) a_ = field( default=0.1 , metadata={ """help""": """The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.""" } , ) a_ = field( default=0.1 , metadata={"""help""": """The dropout probabilitiy for all 1D convolutional layers in feature extractor."""} , ) a_ = field( default=0.05 , metadata={ """help""": ( """Propability of each feature vector along the time axis to be chosen as the start of the vector""" """span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature""" """vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.""" ) } , ) a_ = field(default=0.0 , metadata={"""help""": """The LayerDrop probability."""} ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ = field( default="""train+validation""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of validation examples to this """ """value if set.""" ) } , ) a_ = list_field( default=[""",""", """?""", """.""", """!""", """-""", """;""", """:""", """\"\"""", """%""", """'""", """\"""", """�"""] , metadata={"""help""": """A list of characters to remove from the transcripts."""} , ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = 42 a_ = True a_ = None a_ = None a_ = None a_ = None def __call__( self : int , lowerCAmelCase_ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods __lowerCAmelCase = [{'input_values': feature['input_values']} for feature in features] __lowerCAmelCase = [{'input_ids': feature['labels']} for feature in features] __lowerCAmelCase = self.processor.pad( lowerCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) __lowerCAmelCase = self.processor.pad( labels=lowerCAmelCase_ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='pt' , ) # replace padding with -100 to ignore loss correctly __lowerCAmelCase = labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_0_0 ) __lowerCAmelCase = labels return batch class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Tuple , lowerCAmelCase_ : nn.Module , lowerCAmelCase_ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: model.train() __lowerCAmelCase = self._prepare_inputs(lowerCAmelCase_ ) if self.use_amp: with autocast(): __lowerCAmelCase = self.compute_loss(lowerCAmelCase_ , lowerCAmelCase_ ) else: __lowerCAmelCase = self.compute_loss(lowerCAmelCase_ , lowerCAmelCase_ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": __lowerCAmelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __lowerCAmelCase = loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: __lowerCAmelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowerCAmelCase_ ).backward() elif self.use_apex: with amp.scale_loss(lowerCAmelCase_ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowerCAmelCase_ ) else: loss.backward() return loss.detach() def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s', lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: __lowerCAmelCase = datasets.load_dataset( 'common_voice', data_args.dataset_config_name, split=data_args.train_split_name ) __lowerCAmelCase = datasets.load_dataset('common_voice', data_args.dataset_config_name, split='test' ) # Create and save tokenizer __lowerCAmelCase = F"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(lowerCAmelCase_ : Any ): __lowerCAmelCase = re.sub(lowerCAmelCase_, '', batch['sentence'] ).lower() + ' ' return batch __lowerCAmelCase = train_dataset.map(lowerCAmelCase_, remove_columns=['sentence'] ) __lowerCAmelCase = eval_dataset.map(lowerCAmelCase_, remove_columns=['sentence'] ) def extract_all_chars(lowerCAmelCase_ : Tuple ): __lowerCAmelCase = ' '.join(batch['text'] ) __lowerCAmelCase = list(set(lowerCAmelCase_ ) ) return {"vocab": [vocab], "all_text": [all_text]} __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, batched=lowerCAmelCase_, batch_size=-1, keep_in_memory=lowerCAmelCase_, remove_columns=train_dataset.column_names, ) __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, batched=lowerCAmelCase_, batch_size=-1, keep_in_memory=lowerCAmelCase_, remove_columns=eval_dataset.column_names, ) __lowerCAmelCase = list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) ) __lowerCAmelCase = {v: k for k, v in enumerate(lowerCAmelCase_ )} __lowerCAmelCase = vocab_dict[' '] del vocab_dict[" "] __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = len(lowerCAmelCase_ ) with open('vocab.json', 'w' ) as vocab_file: json.dump(lowerCAmelCase_, lowerCAmelCase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = WavaVecaCTCTokenizer( 'vocab.json', unk_token='[UNK]', pad_token='[PAD]', word_delimiter_token='|', ) __lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_6000, padding_value=0.0, do_normalize=lowerCAmelCase_, return_attention_mask=lowerCAmelCase_ ) __lowerCAmelCase = WavaVecaProcessor(feature_extractor=lowerCAmelCase_, tokenizer=lowerCAmelCase_ ) __lowerCAmelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, activation_dropout=model_args.activation_dropout, attention_dropout=model_args.attention_dropout, hidden_dropout=model_args.hidden_dropout, feat_proj_dropout=model_args.feat_proj_dropout, mask_time_prob=model_args.mask_time_prob, gradient_checkpointing=training_args.gradient_checkpointing, layerdrop=model_args.layerdrop, ctc_loss_reduction='mean', pad_token_id=processor.tokenizer.pad_token_id, vocab_size=len(processor.tokenizer ), ) if data_args.max_train_samples is not None: __lowerCAmelCase = min(len(lowerCAmelCase_ ), data_args.max_train_samples ) __lowerCAmelCase = train_dataset.select(range(lowerCAmelCase_ ) ) if data_args.max_val_samples is not None: __lowerCAmelCase = eval_dataset.select(range(data_args.max_val_samples ) ) __lowerCAmelCase = torchaudio.transforms.Resample(4_8000, 1_6000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(lowerCAmelCase_ : int ): __lowerCAmelCase , __lowerCAmelCase = torchaudio.load(batch['path'] ) __lowerCAmelCase = resampler(lowerCAmelCase_ ).squeeze().numpy() __lowerCAmelCase = 1_6000 __lowerCAmelCase = batch['text'] return batch __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, remove_columns=train_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) __lowerCAmelCase = eval_dataset.map( lowerCAmelCase_, remove_columns=eval_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) def prepare_dataset(lowerCAmelCase_ : Union[str, Any] ): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'] ) ) == 1 ), F"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" __lowerCAmelCase = processor( audio=batch['speech'], text=batch['target_text'], sampling_rate=batch['sampling_rate'][0] ) batch.update(lowerCAmelCase_ ) return batch __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, remove_columns=train_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, ) __lowerCAmelCase = eval_dataset.map( lowerCAmelCase_, remove_columns=eval_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, ) # Metric __lowerCAmelCase = datasets.load_metric('wer' ) def compute_metrics(lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = pred.predictions __lowerCAmelCase = np.argmax(lowerCAmelCase_, axis=-1 ) __lowerCAmelCase = processor.tokenizer.pad_token_id __lowerCAmelCase = processor.batch_decode(lowerCAmelCase_ ) # we do not want to group tokens when computing the metrics __lowerCAmelCase = processor.batch_decode(pred.label_ids, group_tokens=lowerCAmelCase_ ) __lowerCAmelCase = wer_metric.compute(predictions=lowerCAmelCase_, references=lowerCAmelCase_ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator __lowerCAmelCase = DataCollatorCTCWithPadding(processor=lowerCAmelCase_, padding=lowerCAmelCase_ ) # Initialize our Trainer __lowerCAmelCase = CTCTrainer( model=lowerCAmelCase_, data_collator=lowerCAmelCase_, args=lowerCAmelCase_, compute_metrics=lowerCAmelCase_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=processor.feature_extractor, ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() __lowerCAmelCase = train_result.metrics __lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase_ ) ) __lowerCAmelCase = min(lowerCAmelCase_, len(lowerCAmelCase_ ) ) trainer.log_metrics('train', lowerCAmelCase_ ) trainer.save_metrics('train', lowerCAmelCase_ ) trainer.save_state() # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(lowerCAmelCase_ ) __lowerCAmelCase = min(lowerCAmelCase_, len(lowerCAmelCase_ ) ) trainer.log_metrics('eval', lowerCAmelCase_ ) trainer.save_metrics('eval', lowerCAmelCase_ ) return results if __name__ == "__main__": main()
53
1
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case : List[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = ["""pixel_values"""] def __init__( self : Optional[int] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **lowerCAmelCase_ : Any , ) -> None: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = size if size is not None else {'shortest_edge': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = do_center_crop __lowerCAmelCase = crop_size __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[int] , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __lowerCAmelCase = int((2_5_6 / 2_2_4) * size['shortest_edge'] ) __lowerCAmelCase = get_resize_output_image_size(lowerCAmelCase_ , size=lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( lowerCAmelCase_ , size=(size_dict['height'], size_dict['width']) , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : str , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : str , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(lowerCAmelCase_ , size=(size['height'], size['width']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[int, float] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray: return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[str] , ) -> np.ndarray: return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase_ : str , ) -> BatchFeature: __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase = image_std if image_std is not None else self.image_std __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: __lowerCAmelCase = [self.resize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_center_crop: __lowerCAmelCase = [self.center_crop(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_rescale: __lowerCAmelCase = [self.rescale(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_normalize: __lowerCAmelCase = [self.normalize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
53
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _snake_case : Any = logging.get_logger(__name__) _snake_case : int = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _snake_case : Optional[Any] = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } _snake_case : str = { 'yjernite/retribert-base-uncased': 512, } _snake_case : Optional[int] = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = PRETRAINED_INIT_CONFIGURATION a_ = RetriBertTokenizer a_ = ["""input_ids""", """attention_mask"""] def __init__( self : Dict , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : str="[UNK]" , lowerCAmelCase_ : Optional[Any]="[SEP]" , lowerCAmelCase_ : List[str]="[PAD]" , lowerCAmelCase_ : Optional[int]="[CLS]" , lowerCAmelCase_ : List[Any]="[MASK]" , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : List[Any] , ) -> Dict: super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(lowerCAmelCase_ , normalizer_state.pop('type' ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**lowerCAmelCase_ ) __lowerCAmelCase = do_lower_case def lowercase ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int]=None ) -> Optional[int]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
53
1
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any=1_3 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Union[str, Any]=2_2_4 , lowerCAmelCase_ : List[str]=1_0_0_0 , lowerCAmelCase_ : Union[str, Any]=[3, 3, 6, 4] , lowerCAmelCase_ : List[str]=[4_8, 5_6, 1_1_2, 2_2_0] , ) -> Any: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = num_labels __lowerCAmelCase = image_size __lowerCAmelCase = layer_depths __lowerCAmelCase = embed_dims def lowercase ( self : Tuple ) -> Optional[int]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase ( self : Optional[Any] ) -> Optional[int]: return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='gelu' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowerCAmelCase_ , layer_scale_init_value=1e-5 , ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple ) -> int: __lowerCAmelCase = SwiftFormerModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] ) -> Optional[int]: __lowerCAmelCase = self.num_labels __lowerCAmelCase = SwiftFormerForImageClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) __lowerCAmelCase = SwiftFormerForImageClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : str ) -> Any: ((__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase)) = self.prepare_config_and_inputs() __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () a_ = ( {"""feature-extraction""": SwiftFormerModel, """image-classification""": SwiftFormerForImageClassification} if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Optional[int] ) -> List[Any]: __lowerCAmelCase = SwiftFormerModelTester(self ) __lowerCAmelCase = ConfigTester( self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7 , num_attention_heads=1_2 , num_hidden_layers=1_2 , ) def lowercase ( self : Optional[Any] ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason='SwiftFormer does not use inputs_embeds' ) def lowercase ( self : List[str] ) -> Tuple: pass def lowercase ( self : int ) -> Dict: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear ) ) def lowercase ( self : str ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Dict: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @slow def lowercase ( self : Union[str, Any] ) -> int: for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = SwiftFormerModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @unittest.skip(reason='SwiftFormer does not output attentions' ) def lowercase ( self : List[Any] ) -> Union[str, Any]: pass def lowercase ( self : Any ) -> int: def check_hidden_states_output(lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.hidden_states __lowerCAmelCase = 8 self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowerCAmelCase_ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : List[str] ) -> List[str]: def _config_zero_init(lowerCAmelCase_ : List[str] ): __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowerCAmelCase_ , lowerCAmelCase_ , 1e-10 ) if isinstance(getattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ ): __lowerCAmelCase = _config_zero_init(getattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return configs_no_init __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = _config_zero_init(lowerCAmelCase_ ) for model_class in self.all_model_classes: __lowerCAmelCase = model_class(config=lowerCAmelCase_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : Any ) -> List[str]: pass def a_ ( ): __lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : Dict ) -> Tuple: return ViTImageProcessor.from_pretrained('MBZUAI/swiftformer-xs' ) if is_vision_available() else None @slow def lowercase ( self : str ) -> List[str]: __lowerCAmelCase = SwiftFormerForImageClassification.from_pretrained('MBZUAI/swiftformer-xs' ).to(lowerCAmelCase_ ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) # verify the logits __lowerCAmelCase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor([[-2.17_03e00, 2.11_07e00, -2.08_11e00]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _snake_case : Union[str, Any] = imread(R'digital_image_processing/image_data/lena_small.jpg') _snake_case : Optional[int] = cvtColor(img, COLOR_BGR2GRAY) def a_ ( ): __lowerCAmelCase = cn.convert_to_negative(lowerCAmelCase_ ) # assert negative_img array for at least one True assert negative_img.any() def a_ ( ): with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowerCAmelCase_, 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def a_ ( ): __lowerCAmelCase = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def a_ ( ): __lowerCAmelCase = imread('digital_image_processing/image_data/lena_small.jpg', 0 ) # assert ambiguous array for all == True assert canny_img.all() __lowerCAmelCase = canny.canny(lowerCAmelCase_ ) # assert canny array for at least one True assert canny_array.any() def a_ ( ): assert gg.gaussian_filter(lowerCAmelCase_, 5, sigma=0.9 ).all() def a_ ( ): # laplace diagonals __lowerCAmelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __lowerCAmelCase = conv.img_convolve(lowerCAmelCase_, lowerCAmelCase_ ).astype(lowerCAmelCase_ ) assert res.any() def a_ ( ): assert med.median_filter(lowerCAmelCase_, 3 ).any() def a_ ( ): __lowerCAmelCase , __lowerCAmelCase = sob.sobel_filter(lowerCAmelCase_ ) assert grad.any() and theta.any() def a_ ( ): __lowerCAmelCase = sp.make_sepia(lowerCAmelCase_, 20 ) assert sepia.all() def a_ ( lowerCAmelCase_ : str = "digital_image_processing/image_data/lena_small.jpg" ): __lowerCAmelCase = bs.Burkes(imread(lowerCAmelCase_, 1 ), 120 ) burkes.process() assert burkes.output_img.any() def a_ ( lowerCAmelCase_ : str = "digital_image_processing/image_data/lena_small.jpg", ): __lowerCAmelCase = rs.NearestNeighbour(imread(lowerCAmelCase_, 1 ), 400, 200 ) nn.process() assert nn.output.any() def a_ ( ): __lowerCAmelCase = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. __lowerCAmelCase = imread(lowerCAmelCase_, 0 ) # Test for get_neighbors_pixel function() return not None __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = image[x_coordinate][y_coordinate] __lowerCAmelCase = lbp.get_neighbors_pixel( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __lowerCAmelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): __lowerCAmelCase = lbp.local_binary_value(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) assert lbp_image.any()
53
1
import argparse from collections import defaultdict def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : str, lowerCAmelCase_ : int, lowerCAmelCase_ : List[str] ): __lowerCAmelCase = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(lowerCAmelCase_, 'r' ) as f: __lowerCAmelCase = f.readlines() __lowerCAmelCase = F"""class {class_name}(""" __lowerCAmelCase = F"""{4 * " "}def {test_name}(""" __lowerCAmelCase = F"""{8 * " "}{correct_line.split()[0]}""" __lowerCAmelCase = F"""{16 * " "}{correct_line.split()[0]}""" __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = [] for line in lines: if line.startswith(lowerCAmelCase_ ): __lowerCAmelCase = True elif in_class and line.startswith(lowerCAmelCase_ ): __lowerCAmelCase = True elif in_class and in_func and (line.startswith(lowerCAmelCase_ ) or line.startswith(lowerCAmelCase_ )): __lowerCAmelCase = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: __lowerCAmelCase = True if in_class and in_func and in_line: if ")" not in line: continue else: __lowerCAmelCase = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * " "}{correct_line}""" ) __lowerCAmelCase = __lowerCAmelCase = __lowerCAmelCase = __lowerCAmelCase = False else: new_lines.append(lowerCAmelCase_ ) with open(lowerCAmelCase_, 'w' ) as f: for line in new_lines: f.write(lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Any=None ): if fail is not None: with open(lowerCAmelCase_, 'r' ) as f: __lowerCAmelCase = {l.strip() for l in f.readlines()} else: __lowerCAmelCase = None with open(lowerCAmelCase_, 'r' ) as f: __lowerCAmelCase = f.readlines() __lowerCAmelCase = defaultdict(lowerCAmelCase_ ) for line in correct_lines: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = line.split(';' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) _snake_case : str = parser.parse_args() main(args.correct_filename, args.fail_filename)
53
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case : List[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = ["""pixel_values"""] def __init__( self : Optional[int] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **lowerCAmelCase_ : Any , ) -> None: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = size if size is not None else {'shortest_edge': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = do_center_crop __lowerCAmelCase = crop_size __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[int] , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __lowerCAmelCase = int((2_5_6 / 2_2_4) * size['shortest_edge'] ) __lowerCAmelCase = get_resize_output_image_size(lowerCAmelCase_ , size=lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( lowerCAmelCase_ , size=(size_dict['height'], size_dict['width']) , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : str , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : str , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(lowerCAmelCase_ , size=(size['height'], size['width']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[int, float] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray: return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[str] , ) -> np.ndarray: return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase_ : str , ) -> BatchFeature: __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase = image_std if image_std is not None else self.image_std __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: __lowerCAmelCase = [self.resize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_center_crop: __lowerCAmelCase = [self.center_crop(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_rescale: __lowerCAmelCase = [self.rescale(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_normalize: __lowerCAmelCase = [self.normalize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
53
1
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser _snake_case : List[Any] = logging.getLogger(__name__) torch.set_grad_enabled(False) _snake_case : Any = 'cuda' if torch.cuda.is_available() else 'cpu' def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : Dict=100, lowerCAmelCase_ : Optional[Any]=" " ): __lowerCAmelCase = text.split(lowerCAmelCase_ ) return [character.join(text[i : i + n] ).strip() for i in range(0, len(lowerCAmelCase_ ), lowerCAmelCase_ )] def a_ ( lowerCAmelCase_ : dict ): __lowerCAmelCase , __lowerCAmelCase = [], [] for title, text in zip(documents['title'], documents['text'] ): if text is not None: for passage in split_text(lowerCAmelCase_ ): titles.append(title if title is not None else '' ) texts.append(lowerCAmelCase_ ) return {"title": titles, "text": texts} def a_ ( lowerCAmelCase_ : dict, lowerCAmelCase_ : DPRContextEncoder, lowerCAmelCase_ : DPRContextEncoderTokenizerFast ): __lowerCAmelCase = ctx_tokenizer( documents['title'], documents['text'], truncation=lowerCAmelCase_, padding='longest', return_tensors='pt' )['input_ids'] __lowerCAmelCase = ctx_encoder(input_ids.to(device=lowerCAmelCase_ ), return_dict=lowerCAmelCase_ ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def a_ ( lowerCAmelCase_ : "RagExampleArguments", lowerCAmelCase_ : "ProcessingArguments", lowerCAmelCase_ : "IndexHnswArguments", ): ###################################### logger.info('Step 1 - Create the dataset' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way __lowerCAmelCase = load_dataset( 'csv', data_files=[rag_example_args.csv_path], split='train', delimiter='\t', column_names=['title', 'text'] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words __lowerCAmelCase = dataset.map(lowerCAmelCase_, batched=lowerCAmelCase_, num_proc=processing_args.num_proc ) # And compute the embeddings __lowerCAmelCase = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=lowerCAmelCase_ ) __lowerCAmelCase = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) __lowerCAmelCase = Features( {'text': Value('string' ), 'title': Value('string' ), 'embeddings': Sequence(Value('float32' ) )} ) # optional, save as float32 instead of float64 to save space __lowerCAmelCase = dataset.map( partial(lowerCAmelCase_, ctx_encoder=lowerCAmelCase_, ctx_tokenizer=lowerCAmelCase_ ), batched=lowerCAmelCase_, batch_size=processing_args.batch_size, features=lowerCAmelCase_, ) # And finally save your dataset __lowerCAmelCase = os.path.join(rag_example_args.output_dir, 'my_knowledge_dataset' ) dataset.save_to_disk(lowerCAmelCase_ ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('Step 2 - Index the dataset' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search __lowerCAmelCase = faiss.IndexHNSWFlat(index_hnsw_args.d, index_hnsw_args.m, faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('embeddings', custom_index=lowerCAmelCase_ ) # And save the index __lowerCAmelCase = os.path.join(rag_example_args.output_dir, 'my_knowledge_dataset_hnsw_index.faiss' ) dataset.get_index('embeddings' ).save(lowerCAmelCase_ ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=str(Path(_UpperCamelCase ).parent / """test_run""" / """dummy-kb""" / """my_knowledge_dataset.csv""" ) , metadata={"""help""": """Path to a tab-separated csv file with columns 'title' and 'text'"""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."""} , ) a_ = field( default="""facebook/rag-sequence-nq""" , metadata={"""help""": """The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"""} , ) a_ = field( default="""facebook/dpr-ctx_encoder-multiset-base""" , metadata={ """help""": ( """The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or""" """ 'facebook/dpr-ctx_encoder-multiset-base'""" ) } , ) a_ = field( default=str(Path(_UpperCamelCase ).parent / """test_run""" / """dummy-kb""" ) , metadata={"""help""": """Path to a directory where the dataset passages and the index will be saved"""} , ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={ """help""": """The number of processes to use to split the documents into passages. Default is single process.""" } , ) a_ = field( default=16 , metadata={ """help""": """The batch size to use when computing the passages embeddings using the DPR context encoder.""" } , ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=7_68 , metadata={"""help""": """The dimension of the embeddings to pass to the HNSW Faiss index."""} , ) a_ = field( default=1_28 , metadata={ """help""": ( """The number of bi-directional links created for every new element during the HNSW index construction.""" ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) _snake_case : Tuple = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) _snake_case , _snake_case , _snake_case : Union[str, Any] = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: _snake_case : Tuple = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
53
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Optional[int]=8 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]=9_9 , lowerCAmelCase_ : List[Any]=1_6 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=3_6 , lowerCAmelCase_ : Optional[int]="gelu" , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : str=5_1_2 , lowerCAmelCase_ : List[str]=1_6 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Tuple=0.02 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : List[Any]=4 , lowerCAmelCase_ : List[str]=None , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope def lowercase ( self : Optional[int] ) -> Dict: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self : Any ) -> Union[str, Any]: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def lowercase ( self : Dict ) -> List[Any]: __lowerCAmelCase = self.get_config() __lowerCAmelCase = 3_0_0 return config def lowercase ( self : Optional[int] ) -> Union[str, Any]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = self.prepare_config_and_inputs() __lowerCAmelCase = True __lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = MraModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , ) -> Tuple: __lowerCAmelCase = True __lowerCAmelCase = MraModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , ) __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = MraForMaskedLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> str: __lowerCAmelCase = MraForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict ) -> Optional[Any]: __lowerCAmelCase = self.num_labels __lowerCAmelCase = MraForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict ) -> Any: __lowerCAmelCase = self.num_labels __lowerCAmelCase = MraForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] ) -> List[Any]: __lowerCAmelCase = self.num_choices __lowerCAmelCase = MraForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self : Tuple ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) a_ = False a_ = False a_ = False a_ = False a_ = () def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = MraModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : Tuple ) -> List[str]: self.config_tester.run_common_tests() def lowercase ( self : Optional[int] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase = type self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase_ ) def lowercase ( self : List[str] ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase_ ) def lowercase ( self : Tuple ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase_ ) @slow def lowercase ( self : Optional[int] ) -> Optional[int]: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = MraModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @unittest.skip(reason='MRA does not output attentions' ) def lowercase ( self : Optional[int] ) -> Tuple: return @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase ( self : Optional[Any] ) -> List[str]: __lowerCAmelCase = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) __lowerCAmelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : int ) -> Optional[int]: __lowerCAmelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) __lowerCAmelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = 5_0_2_6_5 __lowerCAmelCase = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : Any ) -> List[str]: __lowerCAmelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) __lowerCAmelCase = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = 5_0_2_6_5 __lowerCAmelCase = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
1
def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = '' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __lowerCAmelCase = remove_duplicates(key.upper() ) __lowerCAmelCase = len(lowerCAmelCase_ ) # First fill cipher with key characters __lowerCAmelCase = {alphabet[i]: char for i, char in enumerate(lowerCAmelCase_ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(lowerCAmelCase_ ), 26 ): __lowerCAmelCase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __lowerCAmelCase = alphabet[i - offset] __lowerCAmelCase = char return cipher_alphabet def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : dict[str, str] ): return "".join(cipher_map.get(lowerCAmelCase_, lowerCAmelCase_ ) for ch in message.upper() ) def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : dict[str, str] ): __lowerCAmelCase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(lowerCAmelCase_, lowerCAmelCase_ ) for ch in message.upper() ) def a_ ( ): __lowerCAmelCase = input('Enter message to encode or decode: ' ).strip() __lowerCAmelCase = input('Enter keyword: ' ).strip() __lowerCAmelCase = input('Encipher or decipher? E/D:' ).strip()[0].lower() try: __lowerCAmelCase = {'e': encipher, 'd': decipher}[option] except KeyError: raise KeyError('invalid input option' ) __lowerCAmelCase = create_cipher_map(lowerCAmelCase_ ) print(func(lowerCAmelCase_, lowerCAmelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
53
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _snake_case : Union[str, Any] = 2 class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , *, # begin keyword-only arguments lowerCAmelCase_ : str="<s>" , lowerCAmelCase_ : Dict="<pad>" , lowerCAmelCase_ : Any="</s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Optional[Any]=None , ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = bos, unk, pad, eos __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = {} __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = len(self.symbols ) def __eq__( self : Dict , lowerCAmelCase_ : Dict ) -> str: return self.indices == other.indices def __getitem__( self : List[Any] , lowerCAmelCase_ : int ) -> Union[str, Any]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : Tuple ) -> List[Any]: return len(self.symbols ) def __contains__( self : Optional[Any] , lowerCAmelCase_ : Dict ) -> Optional[int]: return sym in self.indices @classmethod def lowercase ( cls : Dict , lowerCAmelCase_ : str ) -> str: __lowerCAmelCase = cls() d.add_from_file(lowerCAmelCase_ ) return d def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : Any=False ) -> Optional[Any]: if word in self.indices and not overwrite: __lowerCAmelCase = self.indices[word] __lowerCAmelCase = self.count[idx] + n return idx else: __lowerCAmelCase = len(self.symbols ) __lowerCAmelCase = idx self.symbols.append(lowerCAmelCase_ ) self.count.append(lowerCAmelCase_ ) return idx def lowercase ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> Dict: return 0 def lowercase ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> int: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: with open(lowerCAmelCase_ , 'r' , encoding='utf-8' ) as fd: self.add_from_file(lowerCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(lowerCAmelCase_ ) ) return __lowerCAmelCase = f.readlines() __lowerCAmelCase = self._load_meta(lowerCAmelCase_ ) for line in lines[indices_start_line:]: try: __lowerCAmelCase , __lowerCAmelCase = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": __lowerCAmelCase = True __lowerCAmelCase , __lowerCAmelCase = line.rsplit(' ' , 1 ) else: __lowerCAmelCase = False __lowerCAmelCase = int(lowerCAmelCase_ ) __lowerCAmelCase = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(lowerCAmelCase_ ) ) self.add_symbol(lowerCAmelCase_ , n=lowerCAmelCase_ , overwrite=lowerCAmelCase_ ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def a_ ( lowerCAmelCase_ : List[str] ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} __lowerCAmelCase = dict((re.sub(R'@@$', '', lowerCAmelCase_ ), v) if k.endswith('@@' ) else (re.sub(R'$', '</w>', lowerCAmelCase_ ), v) for k, v in d.items() ) __lowerCAmelCase = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowerCAmelCase = d[k] # restore return da def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str] ): # prep if not os.path.exists(lowerCAmelCase_ ): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(lowerCAmelCase_, exist_ok=lowerCAmelCase_ ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'checkpoint.pt' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""" ) __lowerCAmelCase = torch.load(lowerCAmelCase_, map_location='cpu' ) __lowerCAmelCase = chkpt['cfg']['model'] # dicts __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'dict.txt' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {dict_file} does not exist!""" ) __lowerCAmelCase = Dictionary.load(lowerCAmelCase_ ) __lowerCAmelCase = rewrite_dict_keys(src_dict.indices ) __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, VOCAB_FILES_NAMES['vocab_file'] ) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # merges_file (bpecodes) __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'bpecodes' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""" ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(lowerCAmelCase_, lowerCAmelCase_ ) # model config __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'config.json' ) __lowerCAmelCase = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1E-12, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # tokenizer config __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F"""Generating {biogpt_tokenizer_config_file}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # model __lowerCAmelCase = chkpt['model'] # remove unneeded keys __lowerCAmelCase = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): __lowerCAmelCase = model_state_dict.pop(lowerCAmelCase_ ) else: __lowerCAmelCase = model_state_dict.pop(lowerCAmelCase_ ) __lowerCAmelCase = BioGptConfig.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = BioGptForCausalLM(lowerCAmelCase_ ) # check that it loads ok model_new.load_state_dict(lowerCAmelCase_ ) # save __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(lowerCAmelCase_, lowerCAmelCase_ ) print('Conversion is done!' ) if __name__ == "__main__": _snake_case : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : int = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
1
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Tuple=0 ) -> str: __lowerCAmelCase = np.random.RandomState(lowerCAmelCase_ ) __lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowercase ( self : Tuple ) -> List[str]: __lowerCAmelCase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = self.get_dummy_inputs() __lowerCAmelCase = pipe(**lowerCAmelCase_ ).images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __lowerCAmelCase = np.array([0.6_50_72, 0.5_84_92, 0.4_82_19, 0.5_55_21, 0.5_31_80, 0.5_59_39, 0.5_06_97, 0.3_98_00, 0.4_64_55] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCAmelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = self.get_dummy_inputs() __lowerCAmelCase = pipe(**lowerCAmelCase_ ).images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __lowerCAmelCase = np.array([0.6_58_63, 0.5_94_25, 0.4_93_26, 0.5_63_13, 0.5_38_75, 0.5_66_27, 0.5_10_65, 0.3_97_77, 0.4_63_30] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self : Optional[int] ) -> Optional[Any]: __lowerCAmelCase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCAmelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = self.get_dummy_inputs() __lowerCAmelCase = pipe(**lowerCAmelCase_ ).images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __lowerCAmelCase = np.array([0.5_37_55, 0.6_07_86, 0.4_74_02, 0.4_94_88, 0.5_18_69, 0.4_98_19, 0.4_79_85, 0.3_89_57, 0.4_42_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self : str ) -> Union[str, Any]: __lowerCAmelCase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCAmelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = self.get_dummy_inputs() __lowerCAmelCase = pipe(**lowerCAmelCase_ ).images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __lowerCAmelCase = np.array([0.5_37_55, 0.6_07_86, 0.4_74_02, 0.4_94_88, 0.5_18_69, 0.4_98_19, 0.4_79_85, 0.3_89_57, 0.4_42_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self : Any ) -> int: __lowerCAmelCase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCAmelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = self.get_dummy_inputs() __lowerCAmelCase = pipe(**lowerCAmelCase_ ).images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __lowerCAmelCase = np.array([0.5_38_17, 0.6_08_12, 0.4_73_84, 0.4_95_30, 0.5_18_94, 0.4_98_14, 0.4_79_84, 0.3_89_58, 0.4_42_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self : List[str] ) -> Optional[Any]: __lowerCAmelCase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = self.get_dummy_inputs() __lowerCAmelCase = pipe(**lowerCAmelCase_ ).images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __lowerCAmelCase = np.array([0.5_38_95, 0.6_08_08, 0.4_79_33, 0.4_96_08, 0.5_18_86, 0.4_99_50, 0.4_80_53, 0.3_89_57, 0.4_42_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self : Optional[int] ) -> int: __lowerCAmelCase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = self.get_dummy_inputs() __lowerCAmelCase = 3 * [inputs['prompt']] # forward __lowerCAmelCase = pipe(**lowerCAmelCase_ ) __lowerCAmelCase = output.images[0, -3:, -3:, -1] __lowerCAmelCase = self.get_dummy_inputs() __lowerCAmelCase = 3 * [inputs.pop('prompt' )] __lowerCAmelCase = pipe.tokenizer( lowerCAmelCase_ , padding='max_length' , max_length=pipe.tokenizer.model_max_length , truncation=lowerCAmelCase_ , return_tensors='np' , ) __lowerCAmelCase = text_inputs['input_ids'] __lowerCAmelCase = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] __lowerCAmelCase = prompt_embeds # forward __lowerCAmelCase = pipe(**lowerCAmelCase_ ) __lowerCAmelCase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def lowercase ( self : List[str] ) -> Optional[Any]: __lowerCAmelCase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = self.get_dummy_inputs() __lowerCAmelCase = 3 * ['this is a negative prompt'] __lowerCAmelCase = negative_prompt __lowerCAmelCase = 3 * [inputs['prompt']] # forward __lowerCAmelCase = pipe(**lowerCAmelCase_ ) __lowerCAmelCase = output.images[0, -3:, -3:, -1] __lowerCAmelCase = self.get_dummy_inputs() __lowerCAmelCase = 3 * [inputs.pop('prompt' )] __lowerCAmelCase = [] for p in [prompt, negative_prompt]: __lowerCAmelCase = pipe.tokenizer( lowerCAmelCase_ , padding='max_length' , max_length=pipe.tokenizer.model_max_length , truncation=lowerCAmelCase_ , return_tensors='np' , ) __lowerCAmelCase = text_inputs['input_ids'] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) __lowerCAmelCase , __lowerCAmelCase = embeds # forward __lowerCAmelCase = pipe(**lowerCAmelCase_ ) __lowerCAmelCase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @property def lowercase ( self : Any ) -> Optional[int]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase ( self : List[Any] ) -> str: __lowerCAmelCase = ort.SessionOptions() __lowerCAmelCase = False return options def lowercase ( self : int ) -> Dict: # using the PNDM scheduler by default __lowerCAmelCase = OnnxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = 'A painting of a squirrel eating a burger' np.random.seed(0 ) __lowerCAmelCase = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=1_0 , output_type='np' ) __lowerCAmelCase = output.images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowerCAmelCase = np.array([0.04_52, 0.03_90, 0.00_87, 0.03_50, 0.06_17, 0.03_64, 0.05_44, 0.05_23, 0.07_20] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase ( self : Optional[int] ) -> Tuple: __lowerCAmelCase = DDIMScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) __lowerCAmelCase = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = 'open neural network exchange' __lowerCAmelCase = np.random.RandomState(0 ) __lowerCAmelCase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=1_0 , generator=lowerCAmelCase_ , output_type='np' ) __lowerCAmelCase = output.images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowerCAmelCase = np.array([0.28_67, 0.19_74, 0.14_81, 0.72_94, 0.72_51, 0.66_67, 0.41_94, 0.56_42, 0.64_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase ( self : List[str] ) -> int: __lowerCAmelCase = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) __lowerCAmelCase = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = 'open neural network exchange' __lowerCAmelCase = np.random.RandomState(0 ) __lowerCAmelCase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=1_0 , generator=lowerCAmelCase_ , output_type='np' ) __lowerCAmelCase = output.images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowerCAmelCase = np.array([0.23_06, 0.19_59, 0.15_93, 0.65_49, 0.63_94, 0.54_08, 0.50_65, 0.60_10, 0.61_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase ( self : List[str] ) -> List[Any]: __lowerCAmelCase = 0 def test_callback_fn(lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : np.ndarray ) -> None: __lowerCAmelCase = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 6_4, 6_4) __lowerCAmelCase = latents[0, -3:, -3:, -1] __lowerCAmelCase = np.array( [-0.67_72, -0.38_35, -1.24_56, 0.19_05, -1.09_74, 0.69_67, -1.93_53, 0.01_78, 1.01_67] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 6_4, 6_4) __lowerCAmelCase = latents[0, -3:, -3:, -1] __lowerCAmelCase = np.array( [-0.33_51, 0.22_41, -0.18_37, -0.23_25, -0.65_77, 0.33_93, -0.02_41, 0.58_99, 1.38_75] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 __lowerCAmelCase = False __lowerCAmelCase = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , safety_checker=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = 'Andromeda galaxy in a bottle' __lowerCAmelCase = np.random.RandomState(0 ) pipe( prompt=lowerCAmelCase_ , num_inference_steps=5 , guidance_scale=7.5 , generator=lowerCAmelCase_ , callback=lowerCAmelCase_ , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def lowercase ( self : Optional[int] ) -> Optional[Any]: __lowerCAmelCase = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , safety_checker=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) assert pipe.safety_checker is None __lowerCAmelCase = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = OnnxStableDiffusionPipeline.from_pretrained(lowerCAmelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None __lowerCAmelCase = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None
53
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" a_ = """pixel_values""" a_ = False a_ = TimmBackboneConfig def __init__( self : Tuple , lowerCAmelCase_ : Any , **lowerCAmelCase_ : Optional[int] ) -> Optional[Any]: requires_backends(self , 'timm' ) super().__init__(lowerCAmelCase_ ) __lowerCAmelCase = config if config.backbone is None: raise ValueError('backbone is not set in the config. Please set it to a timm model name.' ) if config.backbone not in timm.list_models(): raise ValueError(f"""backbone {config.backbone} is not supported by timm.""" ) if hasattr(lowerCAmelCase_ , 'out_features' ) and config.out_features is not None: raise ValueError('out_features is not supported by TimmBackbone. Please use out_indices instead.' ) __lowerCAmelCase = getattr(lowerCAmelCase_ , 'use_pretrained_backbone' , lowerCAmelCase_ ) if pretrained is None: raise ValueError('use_pretrained_backbone is not set in the config. Please set it to True or False.' ) # We just take the final layer by default. This matches the default for the transformers models. __lowerCAmelCase = config.out_indices if getattr(lowerCAmelCase_ , 'out_indices' , lowerCAmelCase_ ) is not None else (-1,) __lowerCAmelCase = timm.create_model( config.backbone , pretrained=lowerCAmelCase_ , features_only=config.features_only , in_chans=config.num_channels , out_indices=lowerCAmelCase_ , **lowerCAmelCase_ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. __lowerCAmelCase = self._backbone.return_layers __lowerCAmelCase = {layer['module']: str(lowerCAmelCase_ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(lowerCAmelCase_ ) @classmethod def lowercase ( cls : int , lowerCAmelCase_ : Dict , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['vision', 'timm'] ) from ...models.timm_backbone import TimmBackboneConfig __lowerCAmelCase = kwargs.pop('config' , TimmBackboneConfig() ) __lowerCAmelCase = kwargs.pop('use_timm_backbone' , lowerCAmelCase_ ) if not use_timm: raise ValueError('use_timm_backbone must be True for timm backbones' ) __lowerCAmelCase = kwargs.pop('num_channels' , config.num_channels ) __lowerCAmelCase = kwargs.pop('features_only' , config.features_only ) __lowerCAmelCase = kwargs.pop('use_pretrained_backbone' , config.use_pretrained_backbone ) __lowerCAmelCase = kwargs.pop('out_indices' , config.out_indices ) __lowerCAmelCase = TimmBackboneConfig( backbone=lowerCAmelCase_ , num_channels=lowerCAmelCase_ , features_only=lowerCAmelCase_ , use_pretrained_backbone=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , ) return super()._from_config(lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Tuple , lowerCAmelCase_ : int ) -> Dict: pass def lowercase ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Any=None , **lowerCAmelCase_ : Dict ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('Cannot output attentions for timm backbones at the moment' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone __lowerCAmelCase = self._all_layers __lowerCAmelCase = self._backbone(lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = self._return_layers __lowerCAmelCase = tuple(hidden_states[i] for i in self.out_indices ) else: __lowerCAmelCase = self._backbone(lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = None __lowerCAmelCase = tuple(lowerCAmelCase_ ) __lowerCAmelCase = tuple(lowerCAmelCase_ ) if hidden_states is not None else None if not return_dict: __lowerCAmelCase = (feature_maps,) if output_hidden_states: __lowerCAmelCase = output + (hidden_states,) return output return BackboneOutput(feature_maps=lowerCAmelCase_ , hidden_states=lowerCAmelCase_ , attentions=lowerCAmelCase_ )
53
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : List[Any]=0.999, lowerCAmelCase_ : List[str]="cosine", ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCAmelCase_ : int ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCAmelCase_ : str ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) __lowerCAmelCase = [] for i in range(lowerCAmelCase_ ): __lowerCAmelCase = i / num_diffusion_timesteps __lowerCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCAmelCase_ ) / alpha_bar_fn(lowerCAmelCase_ ), lowerCAmelCase_ ) ) return torch.tensor(lowerCAmelCase_, dtype=torch.floataa ) class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" a_ = [e.name for e in KarrasDiffusionSchedulers] a_ = 2 @register_to_config def __init__( self : int , lowerCAmelCase_ : int = 1_0_0_0 , lowerCAmelCase_ : float = 0.0_00_85 , lowerCAmelCase_ : float = 0.0_12 , lowerCAmelCase_ : str = "linear" , lowerCAmelCase_ : Optional[Union[np.ndarray, List[float]]] = None , lowerCAmelCase_ : str = "epsilon" , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : float = 1.0 , lowerCAmelCase_ : str = "linspace" , lowerCAmelCase_ : int = 0 , ) -> List[Any]: if trained_betas is not None: __lowerCAmelCase = torch.tensor(lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": __lowerCAmelCase = torch.linspace(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCAmelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCAmelCase = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type='cosine' ) elif beta_schedule == "exp": __lowerCAmelCase = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type='exp' ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) __lowerCAmelCase = 1.0 - self.betas __lowerCAmelCase = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = use_karras_sigmas def lowercase ( self : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any]=None ) -> str: if schedule_timesteps is None: __lowerCAmelCase = self.timesteps __lowerCAmelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __lowerCAmelCase = 1 if len(lowerCAmelCase_ ) > 1 else 0 else: __lowerCAmelCase = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep __lowerCAmelCase = self._index_counter[timestep_int] return indices[pos].item() @property def lowercase ( self : Any ) -> List[Any]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowercase ( self : Optional[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Union[float, torch.FloatTensor] , ) -> torch.FloatTensor: __lowerCAmelCase = self.index_for_timestep(lowerCAmelCase_ ) __lowerCAmelCase = self.sigmas[step_index] __lowerCAmelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def lowercase ( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, torch.device] = None , lowerCAmelCase_ : Optional[int] = None , ) -> Union[str, Any]: __lowerCAmelCase = num_inference_steps __lowerCAmelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __lowerCAmelCase = np.linspace(0 , num_train_timesteps - 1 , lowerCAmelCase_ , dtype=lowerCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": __lowerCAmelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCAmelCase = (np.arange(0 , lowerCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(lowerCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __lowerCAmelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCAmelCase = (np.arange(lowerCAmelCase_ , 0 , -step_ratio )).round().copy().astype(lowerCAmelCase_ ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) __lowerCAmelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __lowerCAmelCase = np.log(lowerCAmelCase_ ) __lowerCAmelCase = np.interp(lowerCAmelCase_ , np.arange(0 , len(lowerCAmelCase_ ) ) , lowerCAmelCase_ ) if self.config.use_karras_sigmas: __lowerCAmelCase = self._convert_to_karras(in_sigmas=lowerCAmelCase_ , num_inference_steps=self.num_inference_steps ) __lowerCAmelCase = np.array([self._sigma_to_t(lowerCAmelCase_ , lowerCAmelCase_ ) for sigma in sigmas] ) __lowerCAmelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ ) __lowerCAmelCase = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ) __lowerCAmelCase = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(lowerCAmelCase_ ).startswith('mps' ): # mps does not support float64 __lowerCAmelCase = timesteps.to(lowerCAmelCase_ , dtype=torch.floataa ) else: __lowerCAmelCase = timesteps.to(device=lowerCAmelCase_ ) # empty dt and derivative __lowerCAmelCase = None __lowerCAmelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __lowerCAmelCase = defaultdict(lowerCAmelCase_ ) def lowercase ( self : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] ) -> int: # get log sigma __lowerCAmelCase = np.log(lowerCAmelCase_ ) # get distribution __lowerCAmelCase = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range __lowerCAmelCase = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) __lowerCAmelCase = low_idx + 1 __lowerCAmelCase = log_sigmas[low_idx] __lowerCAmelCase = log_sigmas[high_idx] # interpolate sigmas __lowerCAmelCase = (low - log_sigma) / (low - high) __lowerCAmelCase = np.clip(lowerCAmelCase_ , 0 , 1 ) # transform interpolation to time range __lowerCAmelCase = (1 - w) * low_idx + w * high_idx __lowerCAmelCase = t.reshape(sigma.shape ) return t def lowercase ( self : Tuple , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Optional[Any] ) -> torch.FloatTensor: __lowerCAmelCase = in_sigmas[-1].item() __lowerCAmelCase = in_sigmas[0].item() __lowerCAmelCase = 7.0 # 7.0 is the value used in the paper __lowerCAmelCase = np.linspace(0 , 1 , lowerCAmelCase_ ) __lowerCAmelCase = sigma_min ** (1 / rho) __lowerCAmelCase = sigma_max ** (1 / rho) __lowerCAmelCase = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def lowercase ( self : List[str] ) -> Any: return self.dt is None def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase_ : Union[float, torch.FloatTensor] , lowerCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase_ : bool = True , ) -> Union[SchedulerOutput, Tuple]: __lowerCAmelCase = self.index_for_timestep(lowerCAmelCase_ ) # advance index counter by 1 __lowerCAmelCase = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __lowerCAmelCase = self.sigmas[step_index] __lowerCAmelCase = self.sigmas[step_index + 1] else: # 2nd order / Heun's method __lowerCAmelCase = self.sigmas[step_index - 1] __lowerCAmelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __lowerCAmelCase = 0 __lowerCAmelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __lowerCAmelCase = sigma_hat if self.state_in_first_order else sigma_next __lowerCAmelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __lowerCAmelCase = sigma_hat if self.state_in_first_order else sigma_next __lowerCAmelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": __lowerCAmelCase = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: __lowerCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __lowerCAmelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __lowerCAmelCase = sigma_next - sigma_hat # store for 2nd order step __lowerCAmelCase = derivative __lowerCAmelCase = dt __lowerCAmelCase = sample else: # 2. 2nd order / Heun's method __lowerCAmelCase = (sample - pred_original_sample) / sigma_next __lowerCAmelCase = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample __lowerCAmelCase = self.dt __lowerCAmelCase = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase_ ) def lowercase ( self : List[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples __lowerCAmelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCAmelCase_ ): # mps does not support float64 __lowerCAmelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __lowerCAmelCase = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __lowerCAmelCase = self.timesteps.to(original_samples.device ) __lowerCAmelCase = timesteps.to(original_samples.device ) __lowerCAmelCase = [self.index_for_timestep(lowerCAmelCase_ , lowerCAmelCase_ ) for t in timesteps] __lowerCAmelCase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __lowerCAmelCase = sigma.unsqueeze(-1 ) __lowerCAmelCase = original_samples + noise * sigma return noisy_samples def __len__( self : Union[str, Any] ) -> Union[str, Any]: return self.config.num_train_timesteps
53
from __future__ import annotations def a_ ( lowerCAmelCase_ : list[float] ): if len(lowerCAmelCase_ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) __lowerCAmelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
1
from math import ceil def a_ ( lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Dict ): __lowerCAmelCase = list(range(0, lowerCAmelCase_ ) ) __lowerCAmelCase = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check __lowerCAmelCase = [] for i in device_map_blocks: if device_map_blocks.count(lowerCAmelCase_ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(lowerCAmelCase_ ) # Missing blocks __lowerCAmelCase = [i for i in blocks if i not in device_map_blocks] __lowerCAmelCase = [i for i in device_map_blocks if i not in blocks] if len(lowerCAmelCase_ ) != 0: raise ValueError( 'Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.' ' These attention blocks were specified more than once: ' + str(lowerCAmelCase_ ) ) if len(lowerCAmelCase_ ) != 0: raise ValueError( 'There are attention blocks for this model that are not specified in the device_map. Add these attention ' 'blocks to a device on the device_map: ' + str(lowerCAmelCase_ ) ) if len(lowerCAmelCase_ ) != 0: raise ValueError( 'The device_map contains more attention blocks than this model has. Remove these from the device_map:' + str(lowerCAmelCase_ ) ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = list(range(lowerCAmelCase_ ) ) __lowerCAmelCase = int(ceil(n_layers / len(lowerCAmelCase_ ) ) ) __lowerCAmelCase = [layers[i : i + n_blocks] for i in range(0, lowerCAmelCase_, lowerCAmelCase_ )] return dict(zip(lowerCAmelCase_, lowerCAmelCase_ ) )
53
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Union[str, Any]=1_0 , lowerCAmelCase_ : List[str]=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple="relu" , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : Optional[int]=None , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = embeddings_size __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_act __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = len(lowerCAmelCase_ ) def lowercase ( self : Optional[int] ) -> List[Any]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def lowercase ( self : Tuple ) -> List[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] ) -> str: __lowerCAmelCase = FlaxRegNetModel(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowercase ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int ) -> Tuple: __lowerCAmelCase = self.num_labels __lowerCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () a_ = False a_ = False a_ = False def lowercase ( self : Dict ) -> None: __lowerCAmelCase = FlaxRegNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : int ) -> Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : str ) -> Union[str, Any]: return def lowercase ( self : Dict ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def lowercase ( self : Union[str, Any] ) -> Any: pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def lowercase ( self : Tuple ) -> Tuple: pass def lowercase ( self : Optional[Any] ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: def check_hidden_states_output(lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : str ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Dict ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('JIT Enabled' ): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def a_ ( ): __lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : Union[str, Any] ) -> Optional[Any]: return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def lowercase ( self : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCAmelCase_ , return_tensors='np' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) # verify the logits __lowerCAmelCase = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
1
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _snake_case : Any = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224', out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) __lowerCAmelCase = MaskFormerConfig(backbone_config=lowerCAmelCase_ ) __lowerCAmelCase = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok __lowerCAmelCase = 847 __lowerCAmelCase = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok __lowerCAmelCase = 150 __lowerCAmelCase = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok __lowerCAmelCase = 171 __lowerCAmelCase = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO __lowerCAmelCase = 133 __lowerCAmelCase = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok __lowerCAmelCase = 19 __lowerCAmelCase = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok __lowerCAmelCase = 65 __lowerCAmelCase = 'mapillary-vistas-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} return config def a_ ( lowerCAmelCase_ : Tuple ): __lowerCAmelCase = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') ) for source_index, target_index in zip(range(3, 0, -1 ), range(0, 3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') ) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') ) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') ) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') ) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Tuple ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int ): __lowerCAmelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowerCAmelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[:dim, :] __lowerCAmelCase = in_proj_bias[: dim] __lowerCAmelCase = in_proj_weight[ dim : dim * 2, : ] __lowerCAmelCase = in_proj_bias[ dim : dim * 2 ] __lowerCAmelCase = in_proj_weight[ -dim :, : ] __lowerCAmelCase = in_proj_bias[-dim :] # fmt: on def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : Dict ): # fmt: off __lowerCAmelCase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: hidden_size, :] __lowerCAmelCase = in_proj_bias[:config.hidden_size] __lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCAmelCase = in_proj_weight[-hidden_size :, :] __lowerCAmelCase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: hidden_size, :] __lowerCAmelCase = in_proj_bias[:config.hidden_size] __lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCAmelCase = in_proj_weight[-hidden_size :, :] __lowerCAmelCase = in_proj_bias[-hidden_size :] # fmt: on def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : bool = False ): __lowerCAmelCase = get_maskformer_config(lowerCAmelCase_ ) # load original state_dict with open(lowerCAmelCase_, 'rb' ) as f: __lowerCAmelCase = pickle.load(lowerCAmelCase_ ) __lowerCAmelCase = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowerCAmelCase = create_rename_keys(lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_swin_q_k_v(lowerCAmelCase_, config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase_, lowerCAmelCase_ ) # update to torch tensors for key, value in state_dict.items(): __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ) # load 🤗 model __lowerCAmelCase = MaskFormerForInstanceSegmentation(lowerCAmelCase_ ) model.eval() for name, param in model.named_parameters(): print(lowerCAmelCase_, param.shape ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowerCAmelCase_, strict=lowerCAmelCase_ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCAmelCase_ ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results __lowerCAmelCase = prepare_img() if "vistas" in model_name: __lowerCAmelCase = 65 elif "cityscapes" in model_name: __lowerCAmelCase = 6_5535 else: __lowerCAmelCase = 255 __lowerCAmelCase = True if 'ade' in model_name else False __lowerCAmelCase = MaskFormerImageProcessor(ignore_index=lowerCAmelCase_, reduce_labels=lowerCAmelCase_ ) __lowerCAmelCase = image_processor(lowerCAmelCase_, return_tensors='pt' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) print('Logits:', outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowerCAmelCase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], lowerCAmelCase_, atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print('Pushing model and image processor to the hub...' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _snake_case : List[str] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
53
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process _snake_case : Optional[int] = logging.getLogger(__name__) _snake_case : Dict = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) _snake_case : List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(_UpperCamelCase )} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a_ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def lowercase ( self : List[Any] ) -> List[Any]: if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path' ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ = field(default=_UpperCamelCase , metadata={"""help""": """The input training data file (a text file)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a_ = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a_ = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def lowercase ( self : int ) -> int: if self.train_file is not None: __lowerCAmelCase = self.train_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __lowerCAmelCase = self.validation_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Union[str, Any] ): with open(lowerCAmelCase_, 'r', encoding='utf-8' ) as f: __lowerCAmelCase = [json.loads(lowerCAmelCase_ ) for line in f.read().splitlines() if (len(lowerCAmelCase_ ) > 0 and not line.isspace())] assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) __lowerCAmelCase = {c: dataset[c] for c in dataset.column_names} __lowerCAmelCase = refs return Dataset.from_dict(lowerCAmelCase_ ) def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s', lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset(data_args.dataset_name, data_args.dataset_config_name ) if "validation" not in datasets.keys(): __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[:{data_args.validation_split_percentage}%]""", ) __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[{data_args.validation_split_percentage}%:]""", ) else: __lowerCAmelCase = {} if data_args.train_file is not None: __lowerCAmelCase = data_args.train_file if data_args.validation_file is not None: __lowerCAmelCase = data_args.validation_file __lowerCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": __lowerCAmelCase = 'text' __lowerCAmelCase = load_dataset(lowerCAmelCase_, data_files=lowerCAmelCase_ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.config_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: __lowerCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: __lowerCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path, from_tf=bool('.ckpt' in model_args.model_name_or_path ), config=lowerCAmelCase_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info('Training new model from scratch' ) __lowerCAmelCase = AutoModelForMaskedLM.from_config(lowerCAmelCase_ ) model.resize_token_embeddings(len(lowerCAmelCase_ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __lowerCAmelCase = datasets['train'].column_names else: __lowerCAmelCase = datasets['validation'].column_names __lowerCAmelCase = 'text' if 'text' in column_names else column_names[0] __lowerCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(lowerCAmelCase_ : str ): # Remove empty lines __lowerCAmelCase = [line for line in examples['text'] if len(lowerCAmelCase_ ) > 0 and not line.isspace()] return tokenizer(examples['text'], padding=lowerCAmelCase_, truncation=lowerCAmelCase_, max_length=data_args.max_seq_length ) __lowerCAmelCase = datasets.map( lowerCAmelCase_, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, remove_columns=[text_column_name], load_from_cache_file=not data_args.overwrite_cache, ) # Add the chinese references if provided if data_args.train_ref_file is not None: __lowerCAmelCase = add_chinese_references(tokenized_datasets['train'], data_args.train_ref_file ) if data_args.validation_ref_file is not None: __lowerCAmelCase = add_chinese_references( tokenized_datasets['validation'], data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __lowerCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: __lowerCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. __lowerCAmelCase = DataCollatorForWholeWordMask(tokenizer=lowerCAmelCase_, mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowerCAmelCase = Trainer( model=lowerCAmelCase_, args=lowerCAmelCase_, train_dataset=tokenized_datasets['train'] if training_args.do_train else None, eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None, tokenizer=lowerCAmelCase_, data_collator=lowerCAmelCase_, ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload __lowerCAmelCase = os.path.join(training_args.output_dir, 'train_results.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir, 'trainer_state.json' ) ) # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = math.exp(eval_output['eval_loss'] ) __lowerCAmelCase = perplexity __lowerCAmelCase = os.path.join(training_args.output_dir, 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def a_ ( lowerCAmelCase_ : Tuple ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
53
1
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class _UpperCAmelCase : """simple docstring""" def __init__( self : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any=1_3 , lowerCAmelCase_ : List[Any]=7 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Any=9_9 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : List[Any]=5 , lowerCAmelCase_ : List[Any]=4 , lowerCAmelCase_ : List[Any]=3_7 , lowerCAmelCase_ : Tuple="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : Any=5_1_2 , lowerCAmelCase_ : List[Any]=1_6 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : int=0.02 , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : List[Any]=4 , lowerCAmelCase_ : Dict=None , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope def lowercase ( self : List[Any] ) -> Dict: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self : Union[str, Any] ) -> Any: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def lowercase ( self : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] ) -> Dict: __lowerCAmelCase = LlamaModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , ) -> int: __lowerCAmelCase = True __lowerCAmelCase = LlamaModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , ) __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , ) -> Optional[Any]: __lowerCAmelCase = LlamaForCausalLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , ) -> Optional[int]: __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = LlamaForCausalLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() # first forward pass __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ , ) __lowerCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , )['hidden_states'][0] __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , )['hidden_states'][0] # select random slice __lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() __lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) ) def lowercase ( self : Optional[int] ) -> Union[str, Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () a_ = (LlamaForCausalLM,) if is_torch_available() else () a_ = ( { """feature-extraction""": LlamaModel, """text-classification""": LlamaForSequenceClassification, """text-generation""": LlamaForCausalLM, """zero-shot""": LlamaForSequenceClassification, } if is_torch_available() else {} ) a_ = False a_ = False def lowercase ( self : Union[str, Any] ) -> Optional[int]: __lowerCAmelCase = LlamaModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : Any ) -> Optional[Any]: self.config_tester.run_common_tests() def lowercase ( self : Any ) -> List[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : int ) -> Dict: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase = type self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Optional[Any] ) -> Any: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = 3 __lowerCAmelCase = input_dict['input_ids'] __lowerCAmelCase = input_ids.ne(1 ).to(lowerCAmelCase_ ) __lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __lowerCAmelCase = LlamaForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = 3 __lowerCAmelCase = 'single_label_classification' __lowerCAmelCase = input_dict['input_ids'] __lowerCAmelCase = input_ids.ne(1 ).to(lowerCAmelCase_ ) __lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __lowerCAmelCase = LlamaForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase ( self : Tuple ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = 3 __lowerCAmelCase = 'multi_label_classification' __lowerCAmelCase = input_dict['input_ids'] __lowerCAmelCase = input_ids.ne(1 ).to(lowerCAmelCase_ ) __lowerCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __lowerCAmelCase = LlamaForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def lowercase ( self : List[str] ) -> Optional[int]: pass @parameterized.expand([('linear',), ('dynamic',)] ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : List[str] ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = ids_tensor([1, 1_0] , config.vocab_size ) __lowerCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights __lowerCAmelCase = LlamaModel(lowerCAmelCase_ ) original_model.to(lowerCAmelCase_ ) original_model.eval() __lowerCAmelCase = original_model(lowerCAmelCase_ ).last_hidden_state __lowerCAmelCase = original_model(lowerCAmelCase_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights __lowerCAmelCase = {'type': scaling_type, 'factor': 10.0} __lowerCAmelCase = LlamaModel(lowerCAmelCase_ ) scaled_model.to(lowerCAmelCase_ ) scaled_model.eval() __lowerCAmelCase = scaled_model(lowerCAmelCase_ ).last_hidden_state __lowerCAmelCase = scaled_model(lowerCAmelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-5 ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowercase ( self : Any ) -> Optional[int]: __lowerCAmelCase = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] __lowerCAmelCase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) __lowerCAmelCase = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __lowerCAmelCase = torch.tensor([[-6.65_50, -4.12_27, -4.98_59, -3.24_06, 0.82_62, -3.00_33, 1.29_64, -3.36_99]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCAmelCase_ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off __lowerCAmelCase = torch.tensor([-12.82_81, -7.44_53, -0.46_39, -8.06_25, -7.25_00, -8.00_00, -6.48_83, -7.76_95, -7.84_38, -7.03_12, -6.21_88, -7.13_28, -1.84_96, 1.99_61, -8.62_50, -6.72_27, -12.82_81, -6.94_92, -7.07_42, -7.78_52, -7.58_20, -7.90_62, -6.93_75, -7.98_05, -8.34_38, -8.15_62, -8.04_69, -7.62_50, -7.74_22, -7.33_98,] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , lowerCAmelCase_ , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowercase ( self : List[str] ) -> List[str]: __lowerCAmelCase = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] __lowerCAmelCase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) __lowerCAmelCase = model(torch.tensor(lowerCAmelCase_ ) ) # Expected mean on dim = -1 __lowerCAmelCase = torch.tensor([[-2.06_22, -1.27_94, -1.16_38, -0.97_88, -1.46_03, -1.02_38, -1.78_93, -1.44_11]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCAmelCase_ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off __lowerCAmelCase = torch.tensor([-8.14_06, -8.05_47, 2.74_61, -1.23_44, -0.14_48, -1.82_62, -1.00_20, -1.81_54, -1.68_95, -1.85_16, -2.35_74, -0.92_77, 3.75_98, 6.57_42, -1.29_98, -0.11_77, -8.14_06, -2.96_88, -2.91_99, -3.16_99, -3.52_54, -2.35_55, -2.79_88, -3.41_41, -2.82_62, -4.51_95, -3.33_79, -3.31_64, -2.78_32, -3.02_73] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , lowerCAmelCase_ , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowercase ( self : int ) -> Tuple: __lowerCAmelCase = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] __lowerCAmelCase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) __lowerCAmelCase = model(torch.tensor(lowerCAmelCase_ ) ) # Expected mean on dim = -1 __lowerCAmelCase = torch.tensor([[-0.85_62, -1.85_20, -0.75_51, -0.41_62, -1.51_61, -1.20_38, -2.48_23, -2.32_54]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCAmelCase_ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off __lowerCAmelCase = torch.tensor([-2.22_27, 4.88_28, 0.90_23, -0.45_78, -0.78_71, -0.10_33, -0.62_21, -0.57_86, -0.78_03, -1.06_74, -1.29_20, -0.15_70, 0.80_08, 2.07_23, -0.94_97, 0.27_71, -2.22_27, -0.76_12, -1.43_46, -1.20_61, -1.64_26, -0.30_00, -0.71_39, -1.19_34, -1.86_91, -1.69_73, -1.59_47, -1.27_05, -0.35_23, -0.55_13] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , lowerCAmelCase_ , atol=1e-2 , rtol=1e-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def lowercase ( self : Optional[Any] ) -> Any: __lowerCAmelCase = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] __lowerCAmelCase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) __lowerCAmelCase = model(torch.tensor(lowerCAmelCase_ ) ) __lowerCAmelCase = torch.tensor( [[-4.23_27, -3.33_60, -4.66_65, -4.76_31, -1.81_80, -3.41_70, -1.42_11, -3.18_10]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , lowerCAmelCase_ , atol=1e-2 , rtol=1e-2 ) # fmt: off __lowerCAmelCase = torch.tensor([-9.49_22, -3.95_51, 1.79_98, -5.67_58, -5.10_55, -5.89_84, -4.83_20, -6.80_86, -6.53_91, -5.61_72, -5.58_20, -5.53_52, 1.78_81, 3.62_89, -6.51_17, -3.47_85, -9.50_00, -6.03_52, -6.81_25, -6.01_95, -6.68_36, -5.47_27, -6.28_12, -6.03_91, -7.33_98, -7.42_97, -7.48_44, -6.58_20, -5.87_89, -5.53_12] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , lowerCAmelCase_ , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Model is curently gated' ) @slow def lowercase ( self : Union[str, Any] ) -> Optional[Any]: __lowerCAmelCase = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' __lowerCAmelCase = 'Simply put, the theory of relativity states that ' __lowerCAmelCase = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) __lowerCAmelCase = tokenizer.encode(lowerCAmelCase_ , return_tensors='pt' ) __lowerCAmelCase = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=lowerCAmelCase_ ) # greedy generation outputs __lowerCAmelCase = model.generate(lowerCAmelCase_ , max_new_tokens=6_4 , top_p=lowerCAmelCase_ , temperature=1 , do_sample=lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.decode(generated_ids[0] , skip_special_tokens=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
53
def a_ ( lowerCAmelCase_ : int = 200_0000 ): __lowerCAmelCase = [0 for i in range(n + 1 )] __lowerCAmelCase = 1 __lowerCAmelCase = 1 for i in range(2, int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i, n + 1, lowerCAmelCase_ ): __lowerCAmelCase = 1 __lowerCAmelCase = 0 for i in range(lowerCAmelCase_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"""{solution() = }""")
53
1
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": _snake_case : List[Any] = input('Enter image url: ').strip() print(F"""Downloading image from {url} ...""") _snake_case : Union[str, Any] = BeautifulSoup(requests.get(url).content, 'html.parser') # The image URL is in the content field of the first meta tag with property og:image _snake_case : List[Any] = soup.find('meta', {'property': 'og:image'})['content'] _snake_case : str = requests.get(image_url).content _snake_case : Any = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, 'wb') as fp: fp.write(image_data) print(F"""Done. Image saved to disk as {file_name}.""")
53
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _snake_case : Tuple = logging.getLogger() _snake_case : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Any , lowerCAmelCase_ : Dict ) -> Optional[int]: os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowerCAmelCase = {'source': 'What is love ?', 'target': 'life'} __lowerCAmelCase = {'train': 1_2, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: __lowerCAmelCase = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(lowerCAmelCase_ , f"""{split}.{field}""" ) , 'w' ) as f: f.write(lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : str = "pytorch" ) -> List[str]: __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'output' ) __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'data' ) self._create_dummy_data(data_dir=lowerCAmelCase_ ) __lowerCAmelCase = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) __lowerCAmelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowerCAmelCase_ , env=self.get_env() ) __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'metrics.json' ) with open(lowerCAmelCase_ ) as f: __lowerCAmelCase = json.load(lowerCAmelCase_ ) return result @require_torch_gpu def lowercase ( self : str ) -> int: __lowerCAmelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def lowercase ( self : List[str] ) -> Dict: __lowerCAmelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def lowercase ( self : int ) -> Tuple: __lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def lowercase ( self : List[Any] ) -> str: __lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
53
1
from math import sqrt def a_ ( lowerCAmelCase_ : int ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" __lowerCAmelCase = True # 0 and 1 are none primes. if number <= 1: __lowerCAmelCase = False for divisor in range(2, int(round(sqrt(lowerCAmelCase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowerCAmelCase = False break # precondition assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ), "'status' must been from type bool" return status def a_ ( lowerCAmelCase_ : int ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowerCAmelCase = list(range(2, n + 1 ) ) __lowerCAmelCase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCAmelCase_ ) ): for j in range(i + 1, len(lowerCAmelCase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowerCAmelCase = 0 # filters actual prime numbers. __lowerCAmelCase = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ), "'ans' must been from type list" return ans def a_ ( lowerCAmelCase_ : int ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and (n > 2), "'N' must been an int and > 2" __lowerCAmelCase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2, n + 1 ): if is_prime(lowerCAmelCase_ ): ans.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ), "'ans' must been from type list" return ans def a_ ( lowerCAmelCase_ : Tuple ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and number >= 0, "'number' must been an int and >= 0" __lowerCAmelCase = [] # this list will be returns of the function. # potential prime number factors. __lowerCAmelCase = 2 __lowerCAmelCase = number if number == 0 or number == 1: ans.append(lowerCAmelCase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCAmelCase_ ): while quotient != 1: if is_prime(lowerCAmelCase_ ) and (quotient % factor == 0): ans.append(lowerCAmelCase_ ) quotient /= factor else: factor += 1 else: ans.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ), "'ans' must been from type list" return ans def a_ ( lowerCAmelCase_ : Dict ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCAmelCase_ ) __lowerCAmelCase = max(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ), "'ans' must been from type int" return ans def a_ ( lowerCAmelCase_ : Tuple ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowerCAmelCase = 0 # prime factorization of 'number' __lowerCAmelCase = prime_factorization(lowerCAmelCase_ ) __lowerCAmelCase = min(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ), "'ans' must been from type int" return ans def a_ ( lowerCAmelCase_ : Optional[Any] ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ), "'number' must been an int" assert isinstance(number % 2 == 0, lowerCAmelCase_ ), "compare bust been from type bool" return number % 2 == 0 def a_ ( lowerCAmelCase_ : str ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ), "'number' must been an int" assert isinstance(number % 2 != 0, lowerCAmelCase_ ), "compare bust been from type bool" return number % 2 != 0 def a_ ( lowerCAmelCase_ : Any ): assert ( isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and (number > 2) and is_even(lowerCAmelCase_ ) ), "'number' must been an int, even and > 2" __lowerCAmelCase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowerCAmelCase = get_prime_numbers(lowerCAmelCase_ ) __lowerCAmelCase = len(lowerCAmelCase_ ) # run variable for while-loops. __lowerCAmelCase = 0 __lowerCAmelCase = None # exit variable. for break up the loops __lowerCAmelCase = True while i < len_pn and loop: __lowerCAmelCase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowerCAmelCase = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and (len(lowerCAmelCase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : int ): assert ( isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 0 while numbera != 0: __lowerCAmelCase = numbera % numbera __lowerCAmelCase = numbera __lowerCAmelCase = rest # precondition assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : List[Any] ): assert ( isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowerCAmelCase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowerCAmelCase = prime_factorization(lowerCAmelCase_ ) __lowerCAmelCase = prime_factorization(lowerCAmelCase_ ) elif numbera == 1 or numbera == 1: __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = max(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowerCAmelCase = prime_fac_a.count(lowerCAmelCase_ ) __lowerCAmelCase = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(max(lowerCAmelCase_, lowerCAmelCase_ ) ): ans *= n else: __lowerCAmelCase = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ): ans *= n done.append(lowerCAmelCase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowerCAmelCase = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ): ans *= n done.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def a_ ( lowerCAmelCase_ : str ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and (n >= 0), "'number' must been a positive int" __lowerCAmelCase = 0 __lowerCAmelCase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCAmelCase_ ): ans += 1 # precondition assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and is_prime( lowerCAmelCase_ ), "'ans' must been a prime number and from type int" return ans def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : str ): assert ( is_prime(lowerCAmelCase_ ) and is_prime(lowerCAmelCase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowerCAmelCase = p_number_a + 1 # jump to the next number __lowerCAmelCase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCAmelCase_ ): number += 1 while number < p_number_a: ans.append(lowerCAmelCase_ ) number += 1 # fetch the next prime number. while not is_prime(lowerCAmelCase_ ): number += 1 # precondition assert ( isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and ans[0] != p_number_a and ans[len(lowerCAmelCase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def a_ ( lowerCAmelCase_ : Optional[Any] ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and (n >= 1), "'n' must been int and >= 1" __lowerCAmelCase = [] # will be returned. for divisor in range(1, n + 1 ): if n % divisor == 0: ans.append(lowerCAmelCase_ ) # precondition assert ans[0] == 1 and ans[len(lowerCAmelCase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def a_ ( lowerCAmelCase_ : int ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and ( number > 1 ), "'number' must been an int and >= 1" __lowerCAmelCase = get_divisors(lowerCAmelCase_ ) # precondition assert ( isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and (divisors[0] == 1) and (divisors[len(lowerCAmelCase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Any ): assert ( isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowerCAmelCase = gcd(abs(lowerCAmelCase_ ), abs(lowerCAmelCase_ ) ) # precondition assert ( isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def a_ ( lowerCAmelCase_ : Dict ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and (n >= 0), "'n' must been a int and >= 0" __lowerCAmelCase = 1 # this will be return. for factor in range(1, n + 1 ): ans *= factor return ans def a_ ( lowerCAmelCase_ : Dict ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and (n >= 0), "'n' must been an int and >= 0" __lowerCAmelCase = 0 __lowerCAmelCase = 1 __lowerCAmelCase = 1 # this will be return for _ in range(n - 1 ): __lowerCAmelCase = ans ans += fiba __lowerCAmelCase = tmp return ans
53
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]="resnet50" , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Optional[Any]=True , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = out_indices if out_indices is not None else [4] __lowerCAmelCase = stage_names __lowerCAmelCase = out_features __lowerCAmelCase = backbone __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = use_pretrained_backbone __lowerCAmelCase = is_training def lowercase ( self : List[str] ) -> Any: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def lowercase ( self : List[Any] ) -> Union[str, Any]: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase ( self : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ) -> int: __lowerCAmelCase = TimmBackbone(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 1_4, 1_4) , ) def lowercase ( self : List[str] ) -> str: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (TimmBackbone,) if is_torch_available() else () a_ = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Tuple ) -> int: __lowerCAmelCase = TimmBackboneModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : Dict ) -> List[str]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Union[str, Any] ) -> Optional[int]: __lowerCAmelCase = 'resnet18' __lowerCAmelCase = 'microsoft/resnet-18' __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ , out_indices=[1, 2, 3] ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def lowercase ( self : List[str] ) -> Tuple: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def lowercase ( self : Dict ) -> int: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def lowercase ( self : str ) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase ( self : Any ) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase ( self : Optional[int] ) -> Optional[Any]: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def lowercase ( self : Dict ) -> Any: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Any ) -> Optional[int]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase ( self : Union[str, Any] ) -> Tuple: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase ( self : List[str] ) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Dict ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Tuple ) -> List[str]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def lowercase ( self : int ) -> Optional[int]: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def lowercase ( self : Union[str, Any] ) -> str: pass @unittest.skip('Safetensors is not supported by timm.' ) def lowercase ( self : Dict ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : List[str] ) -> Optional[Any]: pass def lowercase ( self : Union[str, Any] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = self.has_attentions # no need to test all models as different heads yield the same functionality __lowerCAmelCase = self.all_model_classes[0] __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = outputs[0][-1] # Encoder-/Decoder-only models __lowerCAmelCase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowerCAmelCase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowerCAmelCase_ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) __lowerCAmelCase = None __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) __lowerCAmelCase = False __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ )
53
1
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = IFInpaintingPipeline a_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} a_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS a_ = PipelineTesterMixin.required_optional_params - {"""latents"""} def lowercase ( self : Union[str, Any] ) -> str: return self._get_dummy_components() def lowercase ( self : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any]=0 ) -> Any: if str(lowerCAmelCase_ ).startswith('mps' ): __lowerCAmelCase = torch.manual_seed(lowerCAmelCase_ ) else: __lowerCAmelCase = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) __lowerCAmelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) __lowerCAmelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) __lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowercase ( self : Any ) -> List[Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowercase ( self : str ) -> Tuple: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def lowercase ( self : str ) -> int: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowercase ( self : Tuple ) -> str: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowercase ( self : str ) -> Optional[Any]: self._test_save_load_local() def lowercase ( self : Optional[Any] ) -> List[Any]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
53
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def a_ ( lowerCAmelCase_ : str=None ): if subparsers is not None: __lowerCAmelCase = subparsers.add_parser('env' ) else: __lowerCAmelCase = argparse.ArgumentParser('Accelerate env command' ) parser.add_argument( '--config_file', default=lowerCAmelCase_, help='The config file to use for the default values in the launching script.' ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def a_ ( lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = torch.__version__ __lowerCAmelCase = torch.cuda.is_available() __lowerCAmelCase = is_xpu_available() __lowerCAmelCase = is_npu_available() __lowerCAmelCase = 'Not found' # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowerCAmelCase_ ): __lowerCAmelCase = load_config_from_file(args.config_file ).to_dict() __lowerCAmelCase = { '`Accelerate` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Numpy version': np.__version__, 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'PyTorch XPU available': str(lowerCAmelCase_ ), 'PyTorch NPU available': str(lowerCAmelCase_ ), 'System RAM': F"""{psutil.virtual_memory().total / 1024 ** 3:.2f} GB""", } if pt_cuda_available: __lowerCAmelCase = torch.cuda.get_device_name() print('\nCopy-and-paste the text below in your GitHub issue\n' ) print('\n'.join([F"""- {prop}: {val}""" for prop, val in info.items()] ) ) print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:' ) __lowerCAmelCase = ( '\n'.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else F"""\t{accelerate_config}""" ) print(lowerCAmelCase_ ) __lowerCAmelCase = accelerate_config return info def a_ ( ): __lowerCAmelCase = env_command_parser() __lowerCAmelCase = parser.parse_args() env_command(lowerCAmelCase_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
53
1
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _snake_case : Dict = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def a_ ( lowerCAmelCase_ : List[str] ): if isinstance(lowerCAmelCase_, torch.Tensor ): return image elif isinstance(lowerCAmelCase_, PIL.Image.Image ): __lowerCAmelCase = [image] __lowerCAmelCase = [trans(img.convert('RGB' ) ) for img in image] __lowerCAmelCase = torch.stack(lowerCAmelCase_ ) return image class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def __init__( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] ) -> Tuple: super().__init__() # make sure scheduler can always be converted to DDIM __lowerCAmelCase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) def lowercase ( self : List[Any] , lowerCAmelCase_ : Tuple ) -> Union[str, Any]: if strength < 0 or strength > 1: raise ValueError(f"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def lowercase ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] ) -> List[str]: # get the original timestep using init_timestep __lowerCAmelCase = min(int(num_inference_steps * strength ) , lowerCAmelCase_ ) __lowerCAmelCase = max(num_inference_steps - init_timestep , 0 ) __lowerCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any]=None ) -> Any: if not isinstance(lowerCAmelCase_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCAmelCase_ )}""" ) __lowerCAmelCase = image.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(lowerCAmelCase_ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) __lowerCAmelCase = init_latents.shape __lowerCAmelCase = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) # get latents print('add noise to latents at timestep' , lowerCAmelCase_ ) __lowerCAmelCase = self.scheduler.add_noise(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = init_latents return latents @torch.no_grad() def __call__( self : int , lowerCAmelCase_ : Union[torch.FloatTensor, PIL.Image.Image] = None , lowerCAmelCase_ : float = 0.8 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 5_0 , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: self.check_inputs(lowerCAmelCase_ ) # 2. Preprocess image __lowerCAmelCase = preprocess(lowerCAmelCase_ ) # 3. set timesteps self.scheduler.set_timesteps(lowerCAmelCase_ , device=self.device ) __lowerCAmelCase , __lowerCAmelCase = self.get_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , self.device ) __lowerCAmelCase = timesteps[:1].repeat(lowerCAmelCase_ ) # 4. Prepare latent variables __lowerCAmelCase = self.prepare_latents(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , self.unet.dtype , self.device , lowerCAmelCase_ ) __lowerCAmelCase = latents # 5. Denoising loop for t in self.progress_bar(lowerCAmelCase_ ): # 1. predict noise model_output __lowerCAmelCase = self.unet(lowerCAmelCase_ , lowerCAmelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __lowerCAmelCase = self.scheduler.step( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , eta=lowerCAmelCase_ , use_clipped_model_output=lowerCAmelCase_ , generator=lowerCAmelCase_ , ).prev_sample __lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCAmelCase = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowerCAmelCase_ )
53
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a_ ( ): __lowerCAmelCase = ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores', type=lowerCAmelCase_, default=1, help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script', type=lowerCAmelCase_, help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ), ) # rest from the training program parser.add_argument('training_script_args', nargs=lowerCAmelCase_ ) return parser.parse_args() def a_ ( ): __lowerCAmelCase = parse_args() # Import training_script as a module. __lowerCAmelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __lowerCAmelCase = script_fpath.stem __lowerCAmelCase = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv __lowerCAmelCase = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores ) if __name__ == "__main__": main()
53
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case : List[str] = logging.get_logger(__name__) _snake_case : Optional[int] = { 'facebook/convnextv2-tiny-1k-224': 'https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json', } class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" a_ = """convnextv2""" def __init__( self : List[str] , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : int="gelu" , lowerCAmelCase_ : Any=0.02 , lowerCAmelCase_ : Tuple=1e-12 , lowerCAmelCase_ : Dict=0.0 , lowerCAmelCase_ : Tuple=2_2_4 , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Any=None , **lowerCAmelCase_ : int , ) -> Union[str, Any]: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = num_channels __lowerCAmelCase = patch_size __lowerCAmelCase = num_stages __lowerCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes __lowerCAmelCase = [3, 3, 9, 3] if depths is None else depths __lowerCAmelCase = hidden_act __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = drop_path_rate __lowerCAmelCase = image_size __lowerCAmelCase = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] __lowerCAmelCase , __lowerCAmelCase = get_aligned_output_features_output_indices( out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names )
53
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict=1_3 , lowerCAmelCase_ : str=3_2 , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : str=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Tuple=[2, 2, 3, 2] , lowerCAmelCase_ : str=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[int]=3_7 , lowerCAmelCase_ : Dict="gelu" , lowerCAmelCase_ : List[Any]=1_0 , lowerCAmelCase_ : str=0.02 , lowerCAmelCase_ : Dict=["stage2", "stage3", "stage4"] , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : List[Any]=None , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = num_stages __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = out_features __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = num_stages def lowercase ( self : Dict ) -> List[str]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase ( self : List[str] ) -> Union[str, Any]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowercase ( self : Dict ) -> List[str]: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_1_2 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=lowerCAmelCase_ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=4_0 , auxiliary_channels=2_5_6 , auxiliary_num_convs=1 , auxiliary_concat_input=lowerCAmelCase_ , loss_ignore_index=2_5_5 , num_labels=self.num_labels , ) def lowercase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int ) -> Optional[Any]: __lowerCAmelCase = UperNetForSemanticSegmentation(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase ( self : Union[str, Any] ) -> Union[str, Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (UperNetForSemanticSegmentation,) if is_torch_available() else () a_ = {"""image-segmentation""": UperNetForSemanticSegmentation} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Optional[int] ) -> Dict: __lowerCAmelCase = UperNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : List[str] ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Tuple ) -> Union[str, Any]: return def lowercase ( self : Optional[int] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase_ ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def lowercase ( self : Optional[int] ) -> Dict: pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def lowercase ( self : Optional[Any] ) -> Dict: pass @unittest.skip(reason='UperNet does not have a base model' ) def lowercase ( self : Optional[int] ) -> List[Any]: pass @unittest.skip(reason='UperNet does not have a base model' ) def lowercase ( self : str ) -> Dict: pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowercase ( self : Optional[Any] ) -> Optional[int]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : Tuple ) -> List[Any]: pass def lowercase ( self : Union[str, Any] ) -> Tuple: def check_hidden_states_output(lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Any ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = _config_zero_init(lowerCAmelCase_ ) __lowerCAmelCase = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __lowerCAmelCase = model_class(config=lowerCAmelCase_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='UperNet does not have tied weights' ) def lowercase ( self : Any ) -> int: pass @slow def lowercase ( self : Optional[int] ) -> Optional[int]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def a_ ( ): __lowerCAmelCase = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k', repo_type='dataset', filename='ADE_val_00000001.jpg' ) __lowerCAmelCase = Image.open(lowerCAmelCase_ ).convert('RGB' ) return image @require_torch @require_vision @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Dict ) -> Union[str, Any]: __lowerCAmelCase = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(lowerCAmelCase_ ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(lowerCAmelCase_ ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case : Tuple = { 'configuration_bloom': ['BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BloomConfig', 'BloomOnnxConfig'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[str] = ['BloomTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[int] = [ 'BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST', 'BloomForCausalLM', 'BloomModel', 'BloomPreTrainedModel', 'BloomForSequenceClassification', 'BloomForTokenClassification', 'BloomForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys _snake_case : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
53
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Optional[Any] ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : int ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_, keep_in_memory=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Dict, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, features=lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Any ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_, split=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type', [str, list] ) def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : Any, lowerCAmelCase_ : Dict ): if issubclass(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = text_path elif issubclass(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = [text_path] __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : int, lowerCAmelCase_ : Tuple=("train",) ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) for split in splits: __lowerCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def a_ ( lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Dict ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = TextDatasetReader({'train': text_path}, cache_dir=lowerCAmelCase_, keep_in_memory=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = TextDatasetReader({'train': text_path}, features=lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : Optional[int] ): if split: __lowerCAmelCase = {split: text_path} else: __lowerCAmelCase = 'train' __lowerCAmelCase = {'train': text_path, 'test': text_path} __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
53
1
def a_ ( lowerCAmelCase_ : float, lowerCAmelCase_ : float, lowerCAmelCase_ : float, lowerCAmelCase_ : float, lowerCAmelCase_ : float, ): __lowerCAmelCase = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('All input parameters must be positive' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('Relative densities cannot be greater than one' ) else: __lowerCAmelCase = 1 - (matter_density + radiation_density + dark_energy) __lowerCAmelCase = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) __lowerCAmelCase = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation _snake_case : Dict = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
53
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case : Union[str, Any] = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : int=False ): __lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Optional[int]=False ): for i in range(config.num_hidden_layers ): if base_model: __lowerCAmelCase = '' else: __lowerCAmelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] __lowerCAmelCase = in_proj_bias[: config.hidden_size] __lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase = in_proj_bias[-config.hidden_size :] def a_ ( lowerCAmelCase_ : List[str] ): __lowerCAmelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Optional[Any]=True ): __lowerCAmelCase = ViTConfig() # patch_size if model_name[-1] == "8": __lowerCAmelCase = 8 # set labels if required if not base_model: __lowerCAmelCase = 1000 __lowerCAmelCase = 'huggingface/label-files' __lowerCAmelCase = 'imagenet-1k-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 6 # load original model from torch hub __lowerCAmelCase = torch.hub.load('facebookresearch/dino:main', lowerCAmelCase_ ) original_model.eval() # load state_dict of original model, remove and rename some keys __lowerCAmelCase = original_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase_ ) __lowerCAmelCase = create_rename_keys(lowerCAmelCase_, base_model=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # load HuggingFace model if base_model: __lowerCAmelCase = ViTModel(lowerCAmelCase_, add_pooling_layer=lowerCAmelCase_ ).eval() else: __lowerCAmelCase = ViTForImageClassification(lowerCAmelCase_ ).eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor __lowerCAmelCase = ViTImageProcessor() __lowerCAmelCase = image_processor(images=prepare_img(), return_tensors='pt' ) __lowerCAmelCase = encoding['pixel_values'] __lowerCAmelCase = model(lowerCAmelCase_ ) if base_model: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_, outputs.last_hidden_state[:, 0, :], atol=1E-1 ) else: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase_, outputs.logits, atol=1E-3 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) _snake_case : List[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
53
1
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging _snake_case : Optional[Any] = ( 'https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py' ) _snake_case : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name def a_ ( ): __lowerCAmelCase = 'https://pypi.org/pypi/diffusers/json' __lowerCAmelCase = json.loads(request.urlopen(lowerCAmelCase_ ).read() )['releases'].keys() return sorted(lowerCAmelCase_, key=lambda lowerCAmelCase_ : version.Version(lowerCAmelCase_ ) ) def a_ ( ): # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(lowerCAmelCase_ ) os.makedirs(lowerCAmelCase_, exist_ok=lowerCAmelCase_ ) __lowerCAmelCase = Path(lowerCAmelCase_ ) / '__init__.py' if not init_path.exists(): init_path.touch() def a_ ( lowerCAmelCase_ : Union[str, os.PathLike] ): init_hf_modules() __lowerCAmelCase = Path(lowerCAmelCase_ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(lowerCAmelCase_, exist_ok=lowerCAmelCase_ ) __lowerCAmelCase = dynamic_module_path / '__init__.py' if not init_path.exists(): init_path.touch() def a_ ( lowerCAmelCase_ : List[Any] ): with open(lowerCAmelCase_, 'r', encoding='utf-8' ) as f: __lowerCAmelCase = f.read() # Imports of the form `import .xxx` __lowerCAmelCase = re.findall('^\s*import\s+\.(\S+)\s*$', lowerCAmelCase_, flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('^\s*from\s+\.(\S+)\s+import', lowerCAmelCase_, flags=re.MULTILINE ) # Unique-ify return list(set(lowerCAmelCase_ ) ) def a_ ( lowerCAmelCase_ : List[str] ): __lowerCAmelCase = False __lowerCAmelCase = [module_file] __lowerCAmelCase = [] # Let's recurse through all relative imports while not no_change: __lowerCAmelCase = [] for f in files_to_check: new_imports.extend(get_relative_imports(lowerCAmelCase_ ) ) __lowerCAmelCase = Path(lowerCAmelCase_ ).parent __lowerCAmelCase = [str(module_path / m ) for m in new_imports] __lowerCAmelCase = [f for f in new_import_files if f not in all_relative_imports] __lowerCAmelCase = [F"""{f}.py""" for f in new_import_files] __lowerCAmelCase = len(lowerCAmelCase_ ) == 0 all_relative_imports.extend(lowerCAmelCase_ ) return all_relative_imports def a_ ( lowerCAmelCase_ : List[str] ): with open(lowerCAmelCase_, 'r', encoding='utf-8' ) as f: __lowerCAmelCase = f.read() # Imports of the form `import xxx` __lowerCAmelCase = re.findall('^\s*import\s+(\S+)\s*$', lowerCAmelCase_, flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('^\s*from\s+(\S+)\s+import', lowerCAmelCase_, flags=re.MULTILINE ) # Only keep the top-level module __lowerCAmelCase = [imp.split('.' )[0] for imp in imports if not imp.startswith('.' )] # Unique-ify and test we got them all __lowerCAmelCase = list(set(lowerCAmelCase_ ) ) __lowerCAmelCase = [] for imp in imports: try: importlib.import_module(lowerCAmelCase_ ) except ImportError: missing_packages.append(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: raise ImportError( 'This modeling file requires the following packages that were not found in your environment: ' F"""{", ".join(lowerCAmelCase_ )}. Run `pip install {" ".join(lowerCAmelCase_ )}`""" ) return get_relative_imports(lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : Dict ): __lowerCAmelCase = module_path.replace(os.path.sep, '.' ) __lowerCAmelCase = importlib.import_module(lowerCAmelCase_ ) if class_name is None: return find_pipeline_class(lowerCAmelCase_ ) return getattr(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Optional[int] ): from ..pipelines import DiffusionPipeline __lowerCAmelCase = dict(inspect.getmembers(lowerCAmelCase_, inspect.isclass ) ) __lowerCAmelCase = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls, lowerCAmelCase_ ) and cls.__module__.split('.' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:""" F""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in""" F""" {loaded_module}.""" ) __lowerCAmelCase = cls return pipeline_class def a_ ( lowerCAmelCase_ : Union[str, os.PathLike], lowerCAmelCase_ : str, lowerCAmelCase_ : Optional[Union[str, os.PathLike]] = None, lowerCAmelCase_ : bool = False, lowerCAmelCase_ : bool = False, lowerCAmelCase_ : Optional[Dict[str, str]] = None, lowerCAmelCase_ : Optional[Union[bool, str]] = None, lowerCAmelCase_ : Optional[str] = None, lowerCAmelCase_ : bool = False, ): __lowerCAmelCase = str(lowerCAmelCase_ ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) if os.path.isfile(lowerCAmelCase_ ): __lowerCAmelCase = module_file_or_url __lowerCAmelCase = 'local' elif pretrained_model_name_or_path.count('/' ) == 0: __lowerCAmelCase = get_diffusers_versions() # cut ".dev0" __lowerCAmelCase = 'v' + '.'.join(__version__.split('.' )[:3] ) # retrieve github version that matches if revision is None: __lowerCAmelCase = latest_version if latest_version[1:] in available_versions else 'main' logger.info(F"""Defaulting to latest_version: {revision}.""" ) elif revision in available_versions: __lowerCAmelCase = F"""v{revision}""" elif revision == "main": __lowerCAmelCase = revision else: raise ValueError( F"""`custom_revision`: {revision} does not exist. Please make sure to choose one of""" F""" {", ".join(available_versions + ["main"] )}.""" ) # community pipeline on GitHub __lowerCAmelCase = COMMUNITY_PIPELINES_URL.format(revision=lowerCAmelCase_, pipeline=lowerCAmelCase_ ) try: __lowerCAmelCase = cached_download( lowerCAmelCase_, cache_dir=lowerCAmelCase_, force_download=lowerCAmelCase_, proxies=lowerCAmelCase_, resume_download=lowerCAmelCase_, local_files_only=lowerCAmelCase_, use_auth_token=lowerCAmelCase_, ) __lowerCAmelCase = 'git' __lowerCAmelCase = pretrained_model_name_or_path + '.py' except EnvironmentError: logger.error(F"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise else: try: # Load from URL or cache if already cached __lowerCAmelCase = hf_hub_download( lowerCAmelCase_, lowerCAmelCase_, cache_dir=lowerCAmelCase_, force_download=lowerCAmelCase_, proxies=lowerCAmelCase_, resume_download=lowerCAmelCase_, local_files_only=lowerCAmelCase_, use_auth_token=lowerCAmelCase_, ) __lowerCAmelCase = os.path.join('local', '--'.join(pretrained_model_name_or_path.split('/' ) ) ) except EnvironmentError: logger.error(F"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise # Check we have all the requirements in our environment __lowerCAmelCase = check_imports(lowerCAmelCase_ ) # Now we move the module inside our cached dynamic modules. __lowerCAmelCase = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(lowerCAmelCase_ ) __lowerCAmelCase = Path(lowerCAmelCase_ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(lowerCAmelCase_, submodule_path / module_file ) for module_needed in modules_needed: __lowerCAmelCase = F"""{module_needed}.py""" shutil.copy(os.path.join(lowerCAmelCase_, lowerCAmelCase_ ), submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = use_auth_token elif use_auth_token is True: __lowerCAmelCase = HfFolder.get_token() else: __lowerCAmelCase = None __lowerCAmelCase = model_info(lowerCAmelCase_, revision=lowerCAmelCase_, token=lowerCAmelCase_ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. __lowerCAmelCase = submodule_path / commit_hash __lowerCAmelCase = full_submodule + os.path.sep + commit_hash create_dynamic_module(lowerCAmelCase_ ) if not (submodule_path / module_file).exists(): shutil.copy(lowerCAmelCase_, submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( lowerCAmelCase_, F"""{module_needed}.py""", cache_dir=lowerCAmelCase_, force_download=lowerCAmelCase_, resume_download=lowerCAmelCase_, proxies=lowerCAmelCase_, use_auth_token=lowerCAmelCase_, revision=lowerCAmelCase_, local_files_only=lowerCAmelCase_, ) return os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Union[str, os.PathLike], lowerCAmelCase_ : str, lowerCAmelCase_ : Optional[str] = None, lowerCAmelCase_ : Optional[Union[str, os.PathLike]] = None, lowerCAmelCase_ : bool = False, lowerCAmelCase_ : bool = False, lowerCAmelCase_ : Optional[Dict[str, str]] = None, lowerCAmelCase_ : Optional[Union[bool, str]] = None, lowerCAmelCase_ : Optional[str] = None, lowerCAmelCase_ : bool = False, **lowerCAmelCase_ : List[Any], ): __lowerCAmelCase = get_cached_module_file( lowerCAmelCase_, lowerCAmelCase_, cache_dir=lowerCAmelCase_, force_download=lowerCAmelCase_, resume_download=lowerCAmelCase_, proxies=lowerCAmelCase_, use_auth_token=lowerCAmelCase_, revision=lowerCAmelCase_, local_files_only=lowerCAmelCase_, ) return get_class_in_module(lowerCAmelCase_, final_module.replace('.py', '' ) )
53
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : str ) -> Any: __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : Tuple ) -> Optional[int]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : List[Any] ) -> int: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : str ) -> str: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[str]: # pass variant but use the non-variant filenames __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> Union[str, Any]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : List[str] ) -> List[Any]: # pass variant but use the non-variant filenames __lowerCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) )
53
1
import torch def a_ ( ): if torch.cuda.is_available(): __lowerCAmelCase = torch.cuda.device_count() else: __lowerCAmelCase = 0 print(F"""Successfully ran on {num_gpus} GPUs""" ) if __name__ == "__main__": main()
53
import math def a_ ( lowerCAmelCase_ : list, lowerCAmelCase_ : int ): __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) __lowerCAmelCase = 0 while arr[min(lowerCAmelCase_, lowerCAmelCase_ ) - 1] < x: __lowerCAmelCase = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: __lowerCAmelCase = prev + 1 if prev == min(lowerCAmelCase_, lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": _snake_case : List[str] = input('Enter numbers separated by a comma:\n').strip() _snake_case : Optional[Any] = [int(item) for item in user_input.split(',')] _snake_case : List[str] = int(input('Enter the number to be searched:\n')) _snake_case : Optional[int] = jump_search(arr, x) if res == -1: print('Number not found!') else: print(F"""Number {x} is at index {res}""")
53
1
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class _UpperCAmelCase : """simple docstring""" a_ = PegasusConfig a_ = {} a_ = """gelu""" def __init__( self : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=1_3 , lowerCAmelCase_ : List[Any]=7 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Union[str, Any]=9_9 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : int=4 , lowerCAmelCase_ : List[str]=3_7 , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : Optional[int]=4_0 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Dict=1 , lowerCAmelCase_ : int=0 , ) -> Optional[int]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = eos_token_id __lowerCAmelCase = pad_token_id __lowerCAmelCase = bos_token_id def lowercase ( self : Optional[int] ) -> Any: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowerCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowerCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __lowerCAmelCase = prepare_pegasus_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return config, inputs_dict def lowercase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any ) -> Tuple: __lowerCAmelCase = TFPegasusModel(config=lowerCAmelCase_ ).get_decoder() __lowerCAmelCase = inputs_dict['input_ids'] __lowerCAmelCase = input_ids[:1, :] __lowerCAmelCase = inputs_dict['attention_mask'][:1, :] __lowerCAmelCase = inputs_dict['head_mask'] __lowerCAmelCase = 1 # first forward pass __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) __lowerCAmelCase , __lowerCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowerCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) __lowerCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )[0] __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowerCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx] __lowerCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1e-3 ) def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : int, lowerCAmelCase_ : List[str], lowerCAmelCase_ : Optional[int]=None, lowerCAmelCase_ : Optional[int]=None, lowerCAmelCase_ : List[Any]=None, lowerCAmelCase_ : str=None, lowerCAmelCase_ : Union[str, Any]=None, ): if attention_mask is None: __lowerCAmelCase = tf.cast(tf.math.not_equal(lowerCAmelCase_, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: __lowerCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: __lowerCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () a_ = (TFPegasusForConditionalGeneration,) if is_tf_available() else () a_ = ( { """conversational""": TFPegasusForConditionalGeneration, """feature-extraction""": TFPegasusModel, """summarization""": TFPegasusForConditionalGeneration, """text2text-generation""": TFPegasusForConditionalGeneration, """translation""": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) a_ = True a_ = False a_ = False def lowercase ( self : Tuple ) -> Tuple: __lowerCAmelCase = TFPegasusModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ ) def lowercase ( self : Tuple ) -> Optional[Any]: self.config_tester.run_common_tests() def lowercase ( self : Optional[int] ) -> Dict: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ ) @require_sentencepiece @require_tokenizers @require_tf class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" a_ = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] a_ = [ """California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to""" """ reduce the risk of wildfires.""", """N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.""", ] # differs slightly from pytorch, likely due to numerical differences in linear layers a_ = """google/pegasus-xsum""" @cached_property def lowercase ( self : Any ) -> List[str]: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowercase ( self : Union[str, Any] ) -> List[Any]: __lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowercase ( self : str , **lowerCAmelCase_ : List[str] ) -> Optional[int]: __lowerCAmelCase = self.translate_src_text(**lowerCAmelCase_ ) assert self.expected_text == generated_words def lowercase ( self : Optional[int] , **lowerCAmelCase_ : str ) -> Dict: __lowerCAmelCase = self.tokenizer(self.src_text , **lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='tf' ) __lowerCAmelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowerCAmelCase_ , ) __lowerCAmelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowerCAmelCase_ ) return generated_words @slow def lowercase ( self : Dict ) -> List[str]: self._assert_generated_batch_equal_expected()
53
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[Any], lowerCAmelCase_ : str ): # Initialise PyTorch model __lowerCAmelCase = RemBertConfig.from_json_file(lowerCAmelCase_ ) print('Building PyTorch model from configuration: {}'.format(str(lowerCAmelCase_ ) ) ) __lowerCAmelCase = RemBertModel(lowerCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Save pytorch-model print('Save PyTorch model to {}'.format(lowerCAmelCase_ ) ) torch.save(model.state_dict(), lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : int = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
53
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : str = logging.get_logger(__name__) _snake_case : Any = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = """speech_to_text_2""" a_ = ["""past_key_values"""] a_ = {"""num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Tuple , lowerCAmelCase_ : str=1_0_0_0_0 , lowerCAmelCase_ : Optional[int]=6 , lowerCAmelCase_ : Union[str, Any]=2_0_4_8 , lowerCAmelCase_ : int=4 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Union[str, Any]="relu" , lowerCAmelCase_ : int=2_5_6 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Dict=0.02 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : Any=0 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : str=1_0_2_4 , **lowerCAmelCase_ : Optional[Any] , ) -> Optional[Any]: __lowerCAmelCase = vocab_size __lowerCAmelCase = d_model __lowerCAmelCase = decoder_ffn_dim __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = activation_function __lowerCAmelCase = init_std __lowerCAmelCase = decoder_layerdrop __lowerCAmelCase = use_cache __lowerCAmelCase = decoder_layers __lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCAmelCase = max_target_positions super().__init__( pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , decoder_start_token_id=lowerCAmelCase_ , **lowerCAmelCase_ , )
53
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _snake_case : Any = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224', out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) __lowerCAmelCase = MaskFormerConfig(backbone_config=lowerCAmelCase_ ) __lowerCAmelCase = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok __lowerCAmelCase = 847 __lowerCAmelCase = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok __lowerCAmelCase = 150 __lowerCAmelCase = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok __lowerCAmelCase = 171 __lowerCAmelCase = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO __lowerCAmelCase = 133 __lowerCAmelCase = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok __lowerCAmelCase = 19 __lowerCAmelCase = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok __lowerCAmelCase = 65 __lowerCAmelCase = 'mapillary-vistas-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} return config def a_ ( lowerCAmelCase_ : Tuple ): __lowerCAmelCase = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') ) for source_index, target_index in zip(range(3, 0, -1 ), range(0, 3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') ) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') ) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') ) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') ) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Tuple ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int ): __lowerCAmelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowerCAmelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[:dim, :] __lowerCAmelCase = in_proj_bias[: dim] __lowerCAmelCase = in_proj_weight[ dim : dim * 2, : ] __lowerCAmelCase = in_proj_bias[ dim : dim * 2 ] __lowerCAmelCase = in_proj_weight[ -dim :, : ] __lowerCAmelCase = in_proj_bias[-dim :] # fmt: on def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : Dict ): # fmt: off __lowerCAmelCase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: hidden_size, :] __lowerCAmelCase = in_proj_bias[:config.hidden_size] __lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCAmelCase = in_proj_weight[-hidden_size :, :] __lowerCAmelCase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: hidden_size, :] __lowerCAmelCase = in_proj_bias[:config.hidden_size] __lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCAmelCase = in_proj_weight[-hidden_size :, :] __lowerCAmelCase = in_proj_bias[-hidden_size :] # fmt: on def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : bool = False ): __lowerCAmelCase = get_maskformer_config(lowerCAmelCase_ ) # load original state_dict with open(lowerCAmelCase_, 'rb' ) as f: __lowerCAmelCase = pickle.load(lowerCAmelCase_ ) __lowerCAmelCase = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowerCAmelCase = create_rename_keys(lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_swin_q_k_v(lowerCAmelCase_, config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase_, lowerCAmelCase_ ) # update to torch tensors for key, value in state_dict.items(): __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ) # load 🤗 model __lowerCAmelCase = MaskFormerForInstanceSegmentation(lowerCAmelCase_ ) model.eval() for name, param in model.named_parameters(): print(lowerCAmelCase_, param.shape ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowerCAmelCase_, strict=lowerCAmelCase_ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCAmelCase_ ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results __lowerCAmelCase = prepare_img() if "vistas" in model_name: __lowerCAmelCase = 65 elif "cityscapes" in model_name: __lowerCAmelCase = 6_5535 else: __lowerCAmelCase = 255 __lowerCAmelCase = True if 'ade' in model_name else False __lowerCAmelCase = MaskFormerImageProcessor(ignore_index=lowerCAmelCase_, reduce_labels=lowerCAmelCase_ ) __lowerCAmelCase = image_processor(lowerCAmelCase_, return_tensors='pt' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) print('Logits:', outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowerCAmelCase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], lowerCAmelCase_, atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print('Pushing model and image processor to the hub...' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _snake_case : List[str] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
53
1
def a_ ( lowerCAmelCase_ : float, lowerCAmelCase_ : float ): if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
53
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): _snake_case : List[Any] = True from torch.cuda.amp import autocast _snake_case : Dict = logging.getLogger(__name__) def a_ ( lowerCAmelCase_ : str=None, lowerCAmelCase_ : str=None ): return field(default_factory=lambda: default, metadata=lowerCAmelCase_ ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) a_ = field( default=0.1 , metadata={"""help""": """The dropout ratio for the attention probabilities."""} ) a_ = field( default=0.1 , metadata={"""help""": """The dropout ratio for activations inside the fully connected layer."""} ) a_ = field( default=0.1 , metadata={ """help""": """The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.""" } , ) a_ = field( default=0.1 , metadata={"""help""": """The dropout probabilitiy for all 1D convolutional layers in feature extractor."""} , ) a_ = field( default=0.05 , metadata={ """help""": ( """Propability of each feature vector along the time axis to be chosen as the start of the vector""" """span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature""" """vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.""" ) } , ) a_ = field(default=0.0 , metadata={"""help""": """The LayerDrop probability."""} ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ = field( default="""train+validation""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of validation examples to this """ """value if set.""" ) } , ) a_ = list_field( default=[""",""", """?""", """.""", """!""", """-""", """;""", """:""", """\"\"""", """%""", """'""", """\"""", """�"""] , metadata={"""help""": """A list of characters to remove from the transcripts."""} , ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = 42 a_ = True a_ = None a_ = None a_ = None a_ = None def __call__( self : int , lowerCAmelCase_ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods __lowerCAmelCase = [{'input_values': feature['input_values']} for feature in features] __lowerCAmelCase = [{'input_ids': feature['labels']} for feature in features] __lowerCAmelCase = self.processor.pad( lowerCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) __lowerCAmelCase = self.processor.pad( labels=lowerCAmelCase_ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='pt' , ) # replace padding with -100 to ignore loss correctly __lowerCAmelCase = labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_0_0 ) __lowerCAmelCase = labels return batch class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Tuple , lowerCAmelCase_ : nn.Module , lowerCAmelCase_ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: model.train() __lowerCAmelCase = self._prepare_inputs(lowerCAmelCase_ ) if self.use_amp: with autocast(): __lowerCAmelCase = self.compute_loss(lowerCAmelCase_ , lowerCAmelCase_ ) else: __lowerCAmelCase = self.compute_loss(lowerCAmelCase_ , lowerCAmelCase_ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": __lowerCAmelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __lowerCAmelCase = loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: __lowerCAmelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowerCAmelCase_ ).backward() elif self.use_apex: with amp.scale_loss(lowerCAmelCase_ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowerCAmelCase_ ) else: loss.backward() return loss.detach() def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s', lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: __lowerCAmelCase = datasets.load_dataset( 'common_voice', data_args.dataset_config_name, split=data_args.train_split_name ) __lowerCAmelCase = datasets.load_dataset('common_voice', data_args.dataset_config_name, split='test' ) # Create and save tokenizer __lowerCAmelCase = F"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(lowerCAmelCase_ : Any ): __lowerCAmelCase = re.sub(lowerCAmelCase_, '', batch['sentence'] ).lower() + ' ' return batch __lowerCAmelCase = train_dataset.map(lowerCAmelCase_, remove_columns=['sentence'] ) __lowerCAmelCase = eval_dataset.map(lowerCAmelCase_, remove_columns=['sentence'] ) def extract_all_chars(lowerCAmelCase_ : Tuple ): __lowerCAmelCase = ' '.join(batch['text'] ) __lowerCAmelCase = list(set(lowerCAmelCase_ ) ) return {"vocab": [vocab], "all_text": [all_text]} __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, batched=lowerCAmelCase_, batch_size=-1, keep_in_memory=lowerCAmelCase_, remove_columns=train_dataset.column_names, ) __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, batched=lowerCAmelCase_, batch_size=-1, keep_in_memory=lowerCAmelCase_, remove_columns=eval_dataset.column_names, ) __lowerCAmelCase = list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) ) __lowerCAmelCase = {v: k for k, v in enumerate(lowerCAmelCase_ )} __lowerCAmelCase = vocab_dict[' '] del vocab_dict[" "] __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = len(lowerCAmelCase_ ) with open('vocab.json', 'w' ) as vocab_file: json.dump(lowerCAmelCase_, lowerCAmelCase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = WavaVecaCTCTokenizer( 'vocab.json', unk_token='[UNK]', pad_token='[PAD]', word_delimiter_token='|', ) __lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_6000, padding_value=0.0, do_normalize=lowerCAmelCase_, return_attention_mask=lowerCAmelCase_ ) __lowerCAmelCase = WavaVecaProcessor(feature_extractor=lowerCAmelCase_, tokenizer=lowerCAmelCase_ ) __lowerCAmelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, activation_dropout=model_args.activation_dropout, attention_dropout=model_args.attention_dropout, hidden_dropout=model_args.hidden_dropout, feat_proj_dropout=model_args.feat_proj_dropout, mask_time_prob=model_args.mask_time_prob, gradient_checkpointing=training_args.gradient_checkpointing, layerdrop=model_args.layerdrop, ctc_loss_reduction='mean', pad_token_id=processor.tokenizer.pad_token_id, vocab_size=len(processor.tokenizer ), ) if data_args.max_train_samples is not None: __lowerCAmelCase = min(len(lowerCAmelCase_ ), data_args.max_train_samples ) __lowerCAmelCase = train_dataset.select(range(lowerCAmelCase_ ) ) if data_args.max_val_samples is not None: __lowerCAmelCase = eval_dataset.select(range(data_args.max_val_samples ) ) __lowerCAmelCase = torchaudio.transforms.Resample(4_8000, 1_6000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(lowerCAmelCase_ : int ): __lowerCAmelCase , __lowerCAmelCase = torchaudio.load(batch['path'] ) __lowerCAmelCase = resampler(lowerCAmelCase_ ).squeeze().numpy() __lowerCAmelCase = 1_6000 __lowerCAmelCase = batch['text'] return batch __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, remove_columns=train_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) __lowerCAmelCase = eval_dataset.map( lowerCAmelCase_, remove_columns=eval_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) def prepare_dataset(lowerCAmelCase_ : Union[str, Any] ): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'] ) ) == 1 ), F"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" __lowerCAmelCase = processor( audio=batch['speech'], text=batch['target_text'], sampling_rate=batch['sampling_rate'][0] ) batch.update(lowerCAmelCase_ ) return batch __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, remove_columns=train_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, ) __lowerCAmelCase = eval_dataset.map( lowerCAmelCase_, remove_columns=eval_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, ) # Metric __lowerCAmelCase = datasets.load_metric('wer' ) def compute_metrics(lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = pred.predictions __lowerCAmelCase = np.argmax(lowerCAmelCase_, axis=-1 ) __lowerCAmelCase = processor.tokenizer.pad_token_id __lowerCAmelCase = processor.batch_decode(lowerCAmelCase_ ) # we do not want to group tokens when computing the metrics __lowerCAmelCase = processor.batch_decode(pred.label_ids, group_tokens=lowerCAmelCase_ ) __lowerCAmelCase = wer_metric.compute(predictions=lowerCAmelCase_, references=lowerCAmelCase_ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator __lowerCAmelCase = DataCollatorCTCWithPadding(processor=lowerCAmelCase_, padding=lowerCAmelCase_ ) # Initialize our Trainer __lowerCAmelCase = CTCTrainer( model=lowerCAmelCase_, data_collator=lowerCAmelCase_, args=lowerCAmelCase_, compute_metrics=lowerCAmelCase_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=processor.feature_extractor, ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() __lowerCAmelCase = train_result.metrics __lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase_ ) ) __lowerCAmelCase = min(lowerCAmelCase_, len(lowerCAmelCase_ ) ) trainer.log_metrics('train', lowerCAmelCase_ ) trainer.save_metrics('train', lowerCAmelCase_ ) trainer.save_state() # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(lowerCAmelCase_ ) __lowerCAmelCase = min(lowerCAmelCase_, len(lowerCAmelCase_ ) ) trainer.log_metrics('eval', lowerCAmelCase_ ) trainer.save_metrics('eval', lowerCAmelCase_ ) return results if __name__ == "__main__": main()
53
1
from __future__ import annotations import numpy as np def a_ ( lowerCAmelCase_ : list[float] ): return np.maximum(0, lowerCAmelCase_ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
53
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _snake_case : Any = logging.get_logger(__name__) _snake_case : int = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _snake_case : Optional[Any] = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } _snake_case : str = { 'yjernite/retribert-base-uncased': 512, } _snake_case : Optional[int] = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = PRETRAINED_INIT_CONFIGURATION a_ = RetriBertTokenizer a_ = ["""input_ids""", """attention_mask"""] def __init__( self : Dict , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : str="[UNK]" , lowerCAmelCase_ : Optional[Any]="[SEP]" , lowerCAmelCase_ : List[str]="[PAD]" , lowerCAmelCase_ : Optional[int]="[CLS]" , lowerCAmelCase_ : List[Any]="[MASK]" , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : List[Any] , ) -> Dict: super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(lowerCAmelCase_ , normalizer_state.pop('type' ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**lowerCAmelCase_ ) __lowerCAmelCase = do_lower_case def lowercase ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int]=None ) -> Optional[int]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
53
1
from math import isclose, sqrt def a_ ( lowerCAmelCase_ : float, lowerCAmelCase_ : float, lowerCAmelCase_ : float ): __lowerCAmelCase = point_y / 4 / point_x __lowerCAmelCase = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) __lowerCAmelCase = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) __lowerCAmelCase = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 __lowerCAmelCase = outgoing_gradient**2 + 4 __lowerCAmelCase = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) __lowerCAmelCase = (point_y - outgoing_gradient * point_x) ** 2 - 100 __lowerCAmelCase = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) __lowerCAmelCase = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point __lowerCAmelCase = x_minus if isclose(lowerCAmelCase_, lowerCAmelCase_ ) else x_plus __lowerCAmelCase = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def a_ ( lowerCAmelCase_ : float = 1.4, lowerCAmelCase_ : float = -9.6 ): __lowerCAmelCase = 0 __lowerCAmelCase = first_x_coord __lowerCAmelCase = first_y_coord __lowerCAmelCase = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = next_point(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"""{solution() = }""")
53
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _snake_case : Union[str, Any] = imread(R'digital_image_processing/image_data/lena_small.jpg') _snake_case : Optional[int] = cvtColor(img, COLOR_BGR2GRAY) def a_ ( ): __lowerCAmelCase = cn.convert_to_negative(lowerCAmelCase_ ) # assert negative_img array for at least one True assert negative_img.any() def a_ ( ): with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowerCAmelCase_, 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def a_ ( ): __lowerCAmelCase = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def a_ ( ): __lowerCAmelCase = imread('digital_image_processing/image_data/lena_small.jpg', 0 ) # assert ambiguous array for all == True assert canny_img.all() __lowerCAmelCase = canny.canny(lowerCAmelCase_ ) # assert canny array for at least one True assert canny_array.any() def a_ ( ): assert gg.gaussian_filter(lowerCAmelCase_, 5, sigma=0.9 ).all() def a_ ( ): # laplace diagonals __lowerCAmelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __lowerCAmelCase = conv.img_convolve(lowerCAmelCase_, lowerCAmelCase_ ).astype(lowerCAmelCase_ ) assert res.any() def a_ ( ): assert med.median_filter(lowerCAmelCase_, 3 ).any() def a_ ( ): __lowerCAmelCase , __lowerCAmelCase = sob.sobel_filter(lowerCAmelCase_ ) assert grad.any() and theta.any() def a_ ( ): __lowerCAmelCase = sp.make_sepia(lowerCAmelCase_, 20 ) assert sepia.all() def a_ ( lowerCAmelCase_ : str = "digital_image_processing/image_data/lena_small.jpg" ): __lowerCAmelCase = bs.Burkes(imread(lowerCAmelCase_, 1 ), 120 ) burkes.process() assert burkes.output_img.any() def a_ ( lowerCAmelCase_ : str = "digital_image_processing/image_data/lena_small.jpg", ): __lowerCAmelCase = rs.NearestNeighbour(imread(lowerCAmelCase_, 1 ), 400, 200 ) nn.process() assert nn.output.any() def a_ ( ): __lowerCAmelCase = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. __lowerCAmelCase = imread(lowerCAmelCase_, 0 ) # Test for get_neighbors_pixel function() return not None __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = image[x_coordinate][y_coordinate] __lowerCAmelCase = lbp.get_neighbors_pixel( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __lowerCAmelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): __lowerCAmelCase = lbp.local_binary_value(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) assert lbp_image.any()
53
1
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='%(message)s') def a_ ( lowerCAmelCase_ : np.ndarray ): return input_array.reshape((input_array.size, 1) ) def a_ ( lowerCAmelCase_ : np.ndarray, lowerCAmelCase_ : np.ndarray, lowerCAmelCase_ : int ): __lowerCAmelCase = np.nan for i in range(lowerCAmelCase_ ): __lowerCAmelCase = features[:, labels == i] __lowerCAmelCase = data.mean(1 ) # Centralize the data of class i __lowerCAmelCase = data - column_reshape(lowerCAmelCase_ ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(lowerCAmelCase_, centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) __lowerCAmelCase = np.dot(lowerCAmelCase_, centered_data.T ) return covariance_sum / features.shape[1] def a_ ( lowerCAmelCase_ : np.ndarray, lowerCAmelCase_ : np.ndarray, lowerCAmelCase_ : int ): __lowerCAmelCase = features.mean(1 ) __lowerCAmelCase = np.nan for i in range(lowerCAmelCase_ ): __lowerCAmelCase = features[:, labels == i] __lowerCAmelCase = data.shape[1] __lowerCAmelCase = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(lowerCAmelCase_ ) - column_reshape(lowerCAmelCase_ ), (column_reshape(lowerCAmelCase_ ) - column_reshape(lowerCAmelCase_ )).T, ) else: # If covariance_sum is np.nan (i.e. first loop) __lowerCAmelCase = device_data * np.dot( column_reshape(lowerCAmelCase_ ) - column_reshape(lowerCAmelCase_ ), (column_reshape(lowerCAmelCase_ ) - column_reshape(lowerCAmelCase_ )).T, ) return covariance_sum / features.shape[1] def a_ ( lowerCAmelCase_ : np.ndarray, lowerCAmelCase_ : int ): # Check if the features have been loaded if features.any(): __lowerCAmelCase = features.mean(1 ) # Center the dataset __lowerCAmelCase = features - np.reshape(lowerCAmelCase_, (data_mean.size, 1) ) __lowerCAmelCase = np.dot(lowerCAmelCase_, centered_data.T ) / features.shape[1] __lowerCAmelCase , __lowerCAmelCase = np.linalg.eigh(lowerCAmelCase_ ) # Take all the columns in the reverse order (-1), and then takes only the first __lowerCAmelCase = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space __lowerCAmelCase = np.dot(filtered_eigenvectors.T, lowerCAmelCase_ ) logging.info('Principal Component Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR, format='%(message)s', force=lowerCAmelCase_ ) logging.error('Dataset empty' ) raise AssertionError def a_ ( lowerCAmelCase_ : np.ndarray, lowerCAmelCase_ : np.ndarray, lowerCAmelCase_ : int, lowerCAmelCase_ : int ): assert classes > dimensions # Check if features have been already loaded if features.any: __lowerCAmelCase , __lowerCAmelCase = eigh( covariance_between_classes(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ), covariance_within_classes(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ), ) __lowerCAmelCase = eigenvectors[:, ::-1][:, :dimensions] __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = np.linalg.svd(lowerCAmelCase_ ) __lowerCAmelCase = svd_matrix[:, 0:dimensions] __lowerCAmelCase = np.dot(filtered_svd_matrix.T, lowerCAmelCase_ ) logging.info('Linear Discriminant Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR, format='%(message)s', force=lowerCAmelCase_ ) logging.error('Dataset empty' ) raise AssertionError def a_ ( ): # Create dummy dataset with 2 classes and 3 features __lowerCAmelCase = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) __lowerCAmelCase = np.array([0, 0, 0, 1, 1] ) __lowerCAmelCase = 2 __lowerCAmelCase = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(lowerCAmelCase_ ) as error_info: __lowerCAmelCase = linear_discriminant_analysis( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) if isinstance(lowerCAmelCase_, np.ndarray ): raise AssertionError( 'Did not raise AssertionError for dimensions > classes' ) assert error_info.type is AssertionError def a_ ( ): __lowerCAmelCase = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) __lowerCAmelCase = 2 __lowerCAmelCase = np.array([[6.9282_0323, 8.6602_5404, 10.3923_0485], [3.0, 3.0, 3.0]] ) with pytest.raises(lowerCAmelCase_ ) as error_info: __lowerCAmelCase = principal_component_analysis(lowerCAmelCase_, lowerCAmelCase_ ) if not np.allclose(lowerCAmelCase_, lowerCAmelCase_ ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
53
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case : List[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = ["""pixel_values"""] def __init__( self : Optional[int] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **lowerCAmelCase_ : Any , ) -> None: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = size if size is not None else {'shortest_edge': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = do_center_crop __lowerCAmelCase = crop_size __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[int] , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __lowerCAmelCase = int((2_5_6 / 2_2_4) * size['shortest_edge'] ) __lowerCAmelCase = get_resize_output_image_size(lowerCAmelCase_ , size=lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( lowerCAmelCase_ , size=(size_dict['height'], size_dict['width']) , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : str , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : str , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(lowerCAmelCase_ , size=(size['height'], size['width']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[int, float] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray: return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[str] , ) -> np.ndarray: return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase_ : str , ) -> BatchFeature: __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase = image_std if image_std is not None else self.image_std __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: __lowerCAmelCase = [self.resize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_center_crop: __lowerCAmelCase = [self.center_crop(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_rescale: __lowerCAmelCase = [self.rescale(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_normalize: __lowerCAmelCase = [self.normalize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
53
1
import pytest import datasets # Import fixture modules as plugins _snake_case : List[str] = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : List[str] ): # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ['integration', 'unit'] ): continue item.add_marker(pytest.mark.unit ) def a_ ( lowerCAmelCase_ : int ): config.addinivalue_line('markers', 'torchaudio_latest: mark test to run with torchaudio>=0.12' ) @pytest.fixture(autouse=lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Dict ): # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? __lowerCAmelCase = tmp_path_factory.getbasetemp() / 'cache' __lowerCAmelCase = test_hf_cache_home / 'datasets' __lowerCAmelCase = test_hf_cache_home / 'metrics' __lowerCAmelCase = test_hf_cache_home / 'modules' monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE', str(lowerCAmelCase_ ) ) monkeypatch.setattr('datasets.config.HF_METRICS_CACHE', str(lowerCAmelCase_ ) ) monkeypatch.setattr('datasets.config.HF_MODULES_CACHE', str(lowerCAmelCase_ ) ) __lowerCAmelCase = test_hf_datasets_cache / 'downloads' monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH', str(lowerCAmelCase_ ) ) __lowerCAmelCase = test_hf_datasets_cache / 'downloads' / 'extracted' monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH', str(lowerCAmelCase_ ) ) @pytest.fixture(autouse=lowerCAmelCase_, scope='session' ) def a_ ( ): datasets.disable_progress_bar() @pytest.fixture(autouse=lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : str ): # don't take tests into account when counting downloads monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS', lowerCAmelCase_ ) @pytest.fixture def a_ ( lowerCAmelCase_ : List[str] ): # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING', lowerCAmelCase_ )
53
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Optional[int]=8 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]=9_9 , lowerCAmelCase_ : List[Any]=1_6 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=3_6 , lowerCAmelCase_ : Optional[int]="gelu" , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : str=5_1_2 , lowerCAmelCase_ : List[str]=1_6 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Tuple=0.02 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : List[Any]=4 , lowerCAmelCase_ : List[str]=None , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope def lowercase ( self : Optional[int] ) -> Dict: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self : Any ) -> Union[str, Any]: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def lowercase ( self : Dict ) -> List[Any]: __lowerCAmelCase = self.get_config() __lowerCAmelCase = 3_0_0 return config def lowercase ( self : Optional[int] ) -> Union[str, Any]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = self.prepare_config_and_inputs() __lowerCAmelCase = True __lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = MraModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , ) -> Tuple: __lowerCAmelCase = True __lowerCAmelCase = MraModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , ) __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = MraForMaskedLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> str: __lowerCAmelCase = MraForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict ) -> Optional[Any]: __lowerCAmelCase = self.num_labels __lowerCAmelCase = MraForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict ) -> Any: __lowerCAmelCase = self.num_labels __lowerCAmelCase = MraForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] ) -> List[Any]: __lowerCAmelCase = self.num_choices __lowerCAmelCase = MraForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self : Tuple ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) a_ = False a_ = False a_ = False a_ = False a_ = () def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = MraModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : Tuple ) -> List[str]: self.config_tester.run_common_tests() def lowercase ( self : Optional[int] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase = type self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase_ ) def lowercase ( self : List[str] ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase_ ) def lowercase ( self : Tuple ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase_ ) @slow def lowercase ( self : Optional[int] ) -> Optional[int]: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = MraModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @unittest.skip(reason='MRA does not output attentions' ) def lowercase ( self : Optional[int] ) -> Tuple: return @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase ( self : Optional[Any] ) -> List[str]: __lowerCAmelCase = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) __lowerCAmelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : int ) -> Optional[int]: __lowerCAmelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) __lowerCAmelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = 5_0_2_6_5 __lowerCAmelCase = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : Any ) -> List[str]: __lowerCAmelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) __lowerCAmelCase = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = 5_0_2_6_5 __lowerCAmelCase = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
1
import re def a_ ( lowerCAmelCase_ : str ): return [char.split() for char in re.split(R'[^ a-z A-Z 0-9 \s]', str_ )] def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = split_input(str_ ) return "".join( [''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : bool, lowerCAmelCase_ : str ): try: __lowerCAmelCase = split_input(lowerCAmelCase_ ) if upper: __lowerCAmelCase = ''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: __lowerCAmelCase = ''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def a_ ( lowerCAmelCase_ : str ): return to_simple_case(lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : str ): try: __lowerCAmelCase = to_simple_case(lowerCAmelCase_ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : bool ): return to_complex_case(lowerCAmelCase_, lowerCAmelCase_, '_' ) def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : bool ): return to_complex_case(lowerCAmelCase_, lowerCAmelCase_, '-' ) if __name__ == "__main__": __import__('doctest').testmod()
53
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _snake_case : Union[str, Any] = 2 class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , *, # begin keyword-only arguments lowerCAmelCase_ : str="<s>" , lowerCAmelCase_ : Dict="<pad>" , lowerCAmelCase_ : Any="</s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Optional[Any]=None , ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = bos, unk, pad, eos __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = {} __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = len(self.symbols ) def __eq__( self : Dict , lowerCAmelCase_ : Dict ) -> str: return self.indices == other.indices def __getitem__( self : List[Any] , lowerCAmelCase_ : int ) -> Union[str, Any]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : Tuple ) -> List[Any]: return len(self.symbols ) def __contains__( self : Optional[Any] , lowerCAmelCase_ : Dict ) -> Optional[int]: return sym in self.indices @classmethod def lowercase ( cls : Dict , lowerCAmelCase_ : str ) -> str: __lowerCAmelCase = cls() d.add_from_file(lowerCAmelCase_ ) return d def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : Any=False ) -> Optional[Any]: if word in self.indices and not overwrite: __lowerCAmelCase = self.indices[word] __lowerCAmelCase = self.count[idx] + n return idx else: __lowerCAmelCase = len(self.symbols ) __lowerCAmelCase = idx self.symbols.append(lowerCAmelCase_ ) self.count.append(lowerCAmelCase_ ) return idx def lowercase ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> Dict: return 0 def lowercase ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> int: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: with open(lowerCAmelCase_ , 'r' , encoding='utf-8' ) as fd: self.add_from_file(lowerCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(lowerCAmelCase_ ) ) return __lowerCAmelCase = f.readlines() __lowerCAmelCase = self._load_meta(lowerCAmelCase_ ) for line in lines[indices_start_line:]: try: __lowerCAmelCase , __lowerCAmelCase = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": __lowerCAmelCase = True __lowerCAmelCase , __lowerCAmelCase = line.rsplit(' ' , 1 ) else: __lowerCAmelCase = False __lowerCAmelCase = int(lowerCAmelCase_ ) __lowerCAmelCase = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(lowerCAmelCase_ ) ) self.add_symbol(lowerCAmelCase_ , n=lowerCAmelCase_ , overwrite=lowerCAmelCase_ ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def a_ ( lowerCAmelCase_ : List[str] ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} __lowerCAmelCase = dict((re.sub(R'@@$', '', lowerCAmelCase_ ), v) if k.endswith('@@' ) else (re.sub(R'$', '</w>', lowerCAmelCase_ ), v) for k, v in d.items() ) __lowerCAmelCase = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowerCAmelCase = d[k] # restore return da def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str] ): # prep if not os.path.exists(lowerCAmelCase_ ): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(lowerCAmelCase_, exist_ok=lowerCAmelCase_ ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'checkpoint.pt' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""" ) __lowerCAmelCase = torch.load(lowerCAmelCase_, map_location='cpu' ) __lowerCAmelCase = chkpt['cfg']['model'] # dicts __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'dict.txt' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {dict_file} does not exist!""" ) __lowerCAmelCase = Dictionary.load(lowerCAmelCase_ ) __lowerCAmelCase = rewrite_dict_keys(src_dict.indices ) __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, VOCAB_FILES_NAMES['vocab_file'] ) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # merges_file (bpecodes) __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'bpecodes' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""" ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(lowerCAmelCase_, lowerCAmelCase_ ) # model config __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'config.json' ) __lowerCAmelCase = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1E-12, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # tokenizer config __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F"""Generating {biogpt_tokenizer_config_file}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # model __lowerCAmelCase = chkpt['model'] # remove unneeded keys __lowerCAmelCase = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): __lowerCAmelCase = model_state_dict.pop(lowerCAmelCase_ ) else: __lowerCAmelCase = model_state_dict.pop(lowerCAmelCase_ ) __lowerCAmelCase = BioGptConfig.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = BioGptForCausalLM(lowerCAmelCase_ ) # check that it loads ok model_new.load_state_dict(lowerCAmelCase_ ) # save __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(lowerCAmelCase_, lowerCAmelCase_ ) print('Conversion is done!' ) if __name__ == "__main__": _snake_case : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : int = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device _snake_case : Union[str, Any] = False class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Optional[int] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self : Optional[int] ) -> List[str]: __lowerCAmelCase = VersatileDiffusionTextToImagePipeline.from_pretrained('shi-labs/versatile-diffusion' ) # remove text_unet pipe.remove_unused_weights() pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = 'A painting of a squirrel eating a burger ' __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = generator.manual_seed(0 ) __lowerCAmelCase = pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def lowercase ( self : Tuple ) -> Optional[int]: __lowerCAmelCase = VersatileDiffusionTextToImagePipeline.from_pretrained( 'shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = 'A painting of a squirrel eating a burger ' __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' ).images __lowerCAmelCase = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowerCAmelCase = np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
53
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" a_ = """pixel_values""" a_ = False a_ = TimmBackboneConfig def __init__( self : Tuple , lowerCAmelCase_ : Any , **lowerCAmelCase_ : Optional[int] ) -> Optional[Any]: requires_backends(self , 'timm' ) super().__init__(lowerCAmelCase_ ) __lowerCAmelCase = config if config.backbone is None: raise ValueError('backbone is not set in the config. Please set it to a timm model name.' ) if config.backbone not in timm.list_models(): raise ValueError(f"""backbone {config.backbone} is not supported by timm.""" ) if hasattr(lowerCAmelCase_ , 'out_features' ) and config.out_features is not None: raise ValueError('out_features is not supported by TimmBackbone. Please use out_indices instead.' ) __lowerCAmelCase = getattr(lowerCAmelCase_ , 'use_pretrained_backbone' , lowerCAmelCase_ ) if pretrained is None: raise ValueError('use_pretrained_backbone is not set in the config. Please set it to True or False.' ) # We just take the final layer by default. This matches the default for the transformers models. __lowerCAmelCase = config.out_indices if getattr(lowerCAmelCase_ , 'out_indices' , lowerCAmelCase_ ) is not None else (-1,) __lowerCAmelCase = timm.create_model( config.backbone , pretrained=lowerCAmelCase_ , features_only=config.features_only , in_chans=config.num_channels , out_indices=lowerCAmelCase_ , **lowerCAmelCase_ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. __lowerCAmelCase = self._backbone.return_layers __lowerCAmelCase = {layer['module']: str(lowerCAmelCase_ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(lowerCAmelCase_ ) @classmethod def lowercase ( cls : int , lowerCAmelCase_ : Dict , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['vision', 'timm'] ) from ...models.timm_backbone import TimmBackboneConfig __lowerCAmelCase = kwargs.pop('config' , TimmBackboneConfig() ) __lowerCAmelCase = kwargs.pop('use_timm_backbone' , lowerCAmelCase_ ) if not use_timm: raise ValueError('use_timm_backbone must be True for timm backbones' ) __lowerCAmelCase = kwargs.pop('num_channels' , config.num_channels ) __lowerCAmelCase = kwargs.pop('features_only' , config.features_only ) __lowerCAmelCase = kwargs.pop('use_pretrained_backbone' , config.use_pretrained_backbone ) __lowerCAmelCase = kwargs.pop('out_indices' , config.out_indices ) __lowerCAmelCase = TimmBackboneConfig( backbone=lowerCAmelCase_ , num_channels=lowerCAmelCase_ , features_only=lowerCAmelCase_ , use_pretrained_backbone=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , ) return super()._from_config(lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Tuple , lowerCAmelCase_ : int ) -> Dict: pass def lowercase ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Any=None , **lowerCAmelCase_ : Dict ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('Cannot output attentions for timm backbones at the moment' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone __lowerCAmelCase = self._all_layers __lowerCAmelCase = self._backbone(lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = self._return_layers __lowerCAmelCase = tuple(hidden_states[i] for i in self.out_indices ) else: __lowerCAmelCase = self._backbone(lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = None __lowerCAmelCase = tuple(lowerCAmelCase_ ) __lowerCAmelCase = tuple(lowerCAmelCase_ ) if hidden_states is not None else None if not return_dict: __lowerCAmelCase = (feature_maps,) if output_hidden_states: __lowerCAmelCase = output + (hidden_states,) return output return BackboneOutput(feature_maps=lowerCAmelCase_ , hidden_states=lowerCAmelCase_ , attentions=lowerCAmelCase_ )
53
1
def a_ ( lowerCAmelCase_ : list, lowerCAmelCase_ : int = 0 ): __lowerCAmelCase = length or len(lowerCAmelCase_ ) __lowerCAmelCase = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: __lowerCAmelCase , __lowerCAmelCase = list_data[i + 1], list_data[i] __lowerCAmelCase = True return list_data if not swapped else bubble_sort(lowerCAmelCase_, length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
53
from __future__ import annotations def a_ ( lowerCAmelCase_ : list[float] ): if len(lowerCAmelCase_ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) __lowerCAmelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _snake_case : List[str] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : int = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
53
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Union[str, Any]=1_0 , lowerCAmelCase_ : List[str]=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple="relu" , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : Optional[int]=None , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = embeddings_size __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_act __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = len(lowerCAmelCase_ ) def lowercase ( self : Optional[int] ) -> List[Any]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def lowercase ( self : Tuple ) -> List[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] ) -> str: __lowerCAmelCase = FlaxRegNetModel(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowercase ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int ) -> Tuple: __lowerCAmelCase = self.num_labels __lowerCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () a_ = False a_ = False a_ = False def lowercase ( self : Dict ) -> None: __lowerCAmelCase = FlaxRegNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : int ) -> Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : str ) -> Union[str, Any]: return def lowercase ( self : Dict ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def lowercase ( self : Union[str, Any] ) -> Any: pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def lowercase ( self : Tuple ) -> Tuple: pass def lowercase ( self : Optional[Any] ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: def check_hidden_states_output(lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : str ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Dict ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('JIT Enabled' ): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def a_ ( ): __lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : Union[str, Any] ) -> Optional[Any]: return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def lowercase ( self : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCAmelCase_ , return_tensors='np' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) # verify the logits __lowerCAmelCase = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
1
import logging from transformers import PretrainedConfig _snake_case : List[str] = logging.getLogger(__name__) _snake_case : Union[str, Any] = { 'bertabs-finetuned-cnndm': 'https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json', } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = """bertabs""" def __init__( self : List[str] , lowerCAmelCase_ : List[Any]=3_0_5_2_2 , lowerCAmelCase_ : List[Any]=5_1_2 , lowerCAmelCase_ : str=6 , lowerCAmelCase_ : Union[str, Any]=5_1_2 , lowerCAmelCase_ : int=8 , lowerCAmelCase_ : List[str]=5_1_2 , lowerCAmelCase_ : Tuple=0.2 , lowerCAmelCase_ : Dict=6 , lowerCAmelCase_ : Dict=7_6_8 , lowerCAmelCase_ : Tuple=8 , lowerCAmelCase_ : Optional[Any]=2_0_4_8 , lowerCAmelCase_ : int=0.2 , **lowerCAmelCase_ : Optional[Any] , ) -> Optional[Any]: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = vocab_size __lowerCAmelCase = max_pos __lowerCAmelCase = enc_layers __lowerCAmelCase = enc_hidden_size __lowerCAmelCase = enc_heads __lowerCAmelCase = enc_ff_size __lowerCAmelCase = enc_dropout __lowerCAmelCase = dec_layers __lowerCAmelCase = dec_hidden_size __lowerCAmelCase = dec_heads __lowerCAmelCase = dec_ff_size __lowerCAmelCase = dec_dropout
53
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process _snake_case : Optional[int] = logging.getLogger(__name__) _snake_case : Dict = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) _snake_case : List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(_UpperCamelCase )} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a_ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def lowercase ( self : List[Any] ) -> List[Any]: if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path' ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ = field(default=_UpperCamelCase , metadata={"""help""": """The input training data file (a text file)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a_ = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a_ = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def lowercase ( self : int ) -> int: if self.train_file is not None: __lowerCAmelCase = self.train_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __lowerCAmelCase = self.validation_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Union[str, Any] ): with open(lowerCAmelCase_, 'r', encoding='utf-8' ) as f: __lowerCAmelCase = [json.loads(lowerCAmelCase_ ) for line in f.read().splitlines() if (len(lowerCAmelCase_ ) > 0 and not line.isspace())] assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) __lowerCAmelCase = {c: dataset[c] for c in dataset.column_names} __lowerCAmelCase = refs return Dataset.from_dict(lowerCAmelCase_ ) def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s', lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset(data_args.dataset_name, data_args.dataset_config_name ) if "validation" not in datasets.keys(): __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[:{data_args.validation_split_percentage}%]""", ) __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[{data_args.validation_split_percentage}%:]""", ) else: __lowerCAmelCase = {} if data_args.train_file is not None: __lowerCAmelCase = data_args.train_file if data_args.validation_file is not None: __lowerCAmelCase = data_args.validation_file __lowerCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": __lowerCAmelCase = 'text' __lowerCAmelCase = load_dataset(lowerCAmelCase_, data_files=lowerCAmelCase_ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.config_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: __lowerCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: __lowerCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path, from_tf=bool('.ckpt' in model_args.model_name_or_path ), config=lowerCAmelCase_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info('Training new model from scratch' ) __lowerCAmelCase = AutoModelForMaskedLM.from_config(lowerCAmelCase_ ) model.resize_token_embeddings(len(lowerCAmelCase_ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __lowerCAmelCase = datasets['train'].column_names else: __lowerCAmelCase = datasets['validation'].column_names __lowerCAmelCase = 'text' if 'text' in column_names else column_names[0] __lowerCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(lowerCAmelCase_ : str ): # Remove empty lines __lowerCAmelCase = [line for line in examples['text'] if len(lowerCAmelCase_ ) > 0 and not line.isspace()] return tokenizer(examples['text'], padding=lowerCAmelCase_, truncation=lowerCAmelCase_, max_length=data_args.max_seq_length ) __lowerCAmelCase = datasets.map( lowerCAmelCase_, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, remove_columns=[text_column_name], load_from_cache_file=not data_args.overwrite_cache, ) # Add the chinese references if provided if data_args.train_ref_file is not None: __lowerCAmelCase = add_chinese_references(tokenized_datasets['train'], data_args.train_ref_file ) if data_args.validation_ref_file is not None: __lowerCAmelCase = add_chinese_references( tokenized_datasets['validation'], data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __lowerCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: __lowerCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. __lowerCAmelCase = DataCollatorForWholeWordMask(tokenizer=lowerCAmelCase_, mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowerCAmelCase = Trainer( model=lowerCAmelCase_, args=lowerCAmelCase_, train_dataset=tokenized_datasets['train'] if training_args.do_train else None, eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None, tokenizer=lowerCAmelCase_, data_collator=lowerCAmelCase_, ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload __lowerCAmelCase = os.path.join(training_args.output_dir, 'train_results.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir, 'trainer_state.json' ) ) # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = math.exp(eval_output['eval_loss'] ) __lowerCAmelCase = perplexity __lowerCAmelCase = os.path.join(training_args.output_dir, 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def a_ ( lowerCAmelCase_ : Tuple ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
53
1
def a_ ( lowerCAmelCase_ : list[list] ): __lowerCAmelCase = current_set.copy() for row_index, row in enumerate(lowerCAmelCase_ ): __lowerCAmelCase = row[0] for column_index, column in enumerate(lowerCAmelCase_ ): if magnitude == 0: __lowerCAmelCase = column continue __lowerCAmelCase = column / magnitude # Subtract to cancel term __lowerCAmelCase = current_set[0] __lowerCAmelCase = [first_row] __lowerCAmelCase = current_set[1::] for row in current_set: __lowerCAmelCase = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCAmelCase_ ) continue for column_index in range(len(lowerCAmelCase_ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCAmelCase_ ) # Create next recursion iteration set if len(final_set[0] ) != 3: __lowerCAmelCase = final_set[0] __lowerCAmelCase = [] __lowerCAmelCase = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) __lowerCAmelCase = simplify(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) ): resultant[i].insert(0, current_first_column[i] ) resultant.insert(0, lowerCAmelCase_ ) __lowerCAmelCase = resultant return final_set def a_ ( lowerCAmelCase_ : list[list] ): if len(lowerCAmelCase_ ) == 0: raise IndexError('solve_simultaneous() requires n lists of length n+1' ) __lowerCAmelCase = len(lowerCAmelCase_ ) + 1 if any(len(lowerCAmelCase_ ) != _length for item in equations ): raise IndexError('solve_simultaneous() requires n lists of length n+1' ) for row in equations: if any(not isinstance(lowerCAmelCase_, (int, float) ) for column in row ): raise ValueError('solve_simultaneous() requires lists of integers' ) if len(lowerCAmelCase_ ) == 1: return [equations[0][-1] / equations[0][0]] __lowerCAmelCase = equations.copy() if any(0 in row for row in data_set ): __lowerCAmelCase = data_set.copy() __lowerCAmelCase = [] for row_index, row in enumerate(lowerCAmelCase_ ): if 0 not in row: __lowerCAmelCase = data_set.pop(lowerCAmelCase_ ) break if not full_row: raise ValueError('solve_simultaneous() requires at least 1 full equation' ) data_set.insert(0, lowerCAmelCase_ ) __lowerCAmelCase = data_set.copy() __lowerCAmelCase = simplify(lowerCAmelCase_ ) __lowerCAmelCase = simplified[::-1] __lowerCAmelCase = [] for row in simplified: __lowerCAmelCase = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue __lowerCAmelCase = row.copy()[: len(lowerCAmelCase_ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCAmelCase_ ) == 0: solutions.append(0 ) continue __lowerCAmelCase = temp_row[1::] __lowerCAmelCase = temp_row[::-1] for column_index, column in enumerate(lowerCAmelCase_ ): current_solution -= column * solutions[column_index] solutions.append(lowerCAmelCase_ ) __lowerCAmelCase = [] for item in solutions: final.append(float(round(lowerCAmelCase_, 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() _snake_case : List[Any] = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
53
def a_ ( lowerCAmelCase_ : int = 200_0000 ): __lowerCAmelCase = [0 for i in range(n + 1 )] __lowerCAmelCase = 1 __lowerCAmelCase = 1 for i in range(2, int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i, n + 1, lowerCAmelCase_ ): __lowerCAmelCase = 1 __lowerCAmelCase = 0 for i in range(lowerCAmelCase_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"""{solution() = }""")
53
1
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class _UpperCAmelCase : """simple docstring""" a_ = 42 a_ = None # Automatically constructed a_ = "dict" a_ = None a_ = field(default="""Translation""" , init=_UpperCamelCase , repr=_UpperCamelCase ) def __call__( self : int ) -> Dict: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def lowercase ( self : List[str] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value('string' ) for k in sorted(self.languages )} @dataclass class _UpperCAmelCase : """simple docstring""" a_ = None a_ = None a_ = None # Automatically constructed a_ = "dict" a_ = None a_ = field(default="""TranslationVariableLanguages""" , init=_UpperCamelCase , repr=_UpperCamelCase ) def lowercase ( self : str ) -> Union[str, Any]: __lowerCAmelCase = sorted(set(self.languages ) ) if self.languages else None __lowerCAmelCase = len(self.languages ) if self.languages else None def __call__( self : Union[str, Any] ) -> str: return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : List[Any] ) -> List[str]: __lowerCAmelCase = set(self.languages ) if self.languages and set(lowerCAmelCase_ ) - lang_set: raise ValueError( f"""Some languages in example ({", ".join(sorted(set(lowerCAmelCase_ ) - lang_set ) )}) are not in valid set ({", ".join(lowerCAmelCase_ )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __lowerCAmelCase = [] for lang, text in translation_dict.items(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __lowerCAmelCase , __lowerCAmelCase = zip(*sorted(lowerCAmelCase_ ) ) return {"language": languages, "translation": translations} def lowercase ( self : int ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value('string' ) ), "translation": Sequence(Value('string' ) ), }
53
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _snake_case : Tuple = logging.getLogger() _snake_case : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Any , lowerCAmelCase_ : Dict ) -> Optional[int]: os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowerCAmelCase = {'source': 'What is love ?', 'target': 'life'} __lowerCAmelCase = {'train': 1_2, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: __lowerCAmelCase = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(lowerCAmelCase_ , f"""{split}.{field}""" ) , 'w' ) as f: f.write(lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : str = "pytorch" ) -> List[str]: __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'output' ) __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'data' ) self._create_dummy_data(data_dir=lowerCAmelCase_ ) __lowerCAmelCase = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) __lowerCAmelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowerCAmelCase_ , env=self.get_env() ) __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'metrics.json' ) with open(lowerCAmelCase_ ) as f: __lowerCAmelCase = json.load(lowerCAmelCase_ ) return result @require_torch_gpu def lowercase ( self : str ) -> int: __lowerCAmelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def lowercase ( self : List[str] ) -> Dict: __lowerCAmelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def lowercase ( self : int ) -> Tuple: __lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def lowercase ( self : List[Any] ) -> str: __lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
53
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _snake_case : Optional[int] = 16 _snake_case : Tuple = 32 def a_ ( lowerCAmelCase_ : Accelerator, lowerCAmelCase_ : int = 16, lowerCAmelCase_ : str = "bert-base-cased" ): __lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = load_dataset('glue', 'mrpc' ) def tokenize_function(lowerCAmelCase_ : List[Any] ): # max_length=None => use the model max length (it's actually the default) __lowerCAmelCase = tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowerCAmelCase_, max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowerCAmelCase = datasets.map( lowerCAmelCase_, batched=lowerCAmelCase_, remove_columns=['idx', 'sentence1', 'sentence2'], load_from_cache_file=lowerCAmelCase_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCAmelCase = tokenized_datasets.rename_column('label', 'labels' ) def collate_fn(lowerCAmelCase_ : str ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase_, padding='max_length', max_length=128, return_tensors='pt' ) return tokenizer.pad(lowerCAmelCase_, padding='longest', return_tensors='pt' ) # Instantiate dataloaders. __lowerCAmelCase = DataLoader( tokenized_datasets['train'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) __lowerCAmelCase = DataLoader( tokenized_datasets['validation'], shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader def a_ ( lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Any ): model.eval() __lowerCAmelCase = 0 for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __lowerCAmelCase , __lowerCAmelCase = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCAmelCase_ ) - 1: __lowerCAmelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] __lowerCAmelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCAmelCase_, references=lowerCAmelCase_, ) __lowerCAmelCase = metric.compute() return eval_metric["accuracy"] def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Optional[int] ): # Initialize accelerator __lowerCAmelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCAmelCase = config['lr'] __lowerCAmelCase = int(config['num_epochs'] ) __lowerCAmelCase = int(config['seed'] ) __lowerCAmelCase = int(config['batch_size'] ) __lowerCAmelCase = args.model_name_or_path set_seed(lowerCAmelCase_ ) __lowerCAmelCase , __lowerCAmelCase = get_dataloaders(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase_, return_dict=lowerCAmelCase_ ) # Instantiate optimizer __lowerCAmelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowerCAmelCase = optimizer_cls(params=model.parameters(), lr=lowerCAmelCase_ ) if accelerator.state.deepspeed_plugin is not None: __lowerCAmelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: __lowerCAmelCase = 1 __lowerCAmelCase = (len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowerCAmelCase = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_, num_warmup_steps=0, num_training_steps=lowerCAmelCase_, ) else: __lowerCAmelCase = DummyScheduler(lowerCAmelCase_, total_num_steps=lowerCAmelCase_, warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # We need to keep track of how many total steps we have iterated over __lowerCAmelCase = 0 # We also need to keep track of the stating epoch so files are named properly __lowerCAmelCase = 0 __lowerCAmelCase = evaluate.load('glue', 'mrpc' ) __lowerCAmelCase = num_epochs if args.partial_train_epoch is not None: __lowerCAmelCase = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) __lowerCAmelCase = args.resume_from_checkpoint.split('epoch_' )[1] __lowerCAmelCase = '' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break __lowerCAmelCase = int(lowerCAmelCase_ ) + 1 __lowerCAmelCase = evaluation_loop(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) accelerator.print('resumed checkpoint performance:', lowerCAmelCase_ ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:', lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:', optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir, F"""state_{starting_epoch-1}.json""" ), 'r' ) as f: __lowerCAmelCase = json.load(lowerCAmelCase_ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model __lowerCAmelCase = {} for epoch in range(lowerCAmelCase_, lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = outputs.loss __lowerCAmelCase = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 __lowerCAmelCase = F"""epoch_{epoch}""" __lowerCAmelCase = os.path.join(args.output_dir, lowerCAmelCase_ ) accelerator.save_state(lowerCAmelCase_ ) __lowerCAmelCase = evaluation_loop(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = accuracy __lowerCAmelCase = lr_scheduler.get_lr()[0] __lowerCAmelCase = optimizer.param_groups[0]['lr'] __lowerCAmelCase = epoch __lowerCAmelCase = overall_step accelerator.print(F"""epoch {epoch}:""", lowerCAmelCase_ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir, F"""state_{epoch}.json""" ), 'w' ) as f: json.dump(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( ): __lowerCAmelCase = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path', type=lowerCAmelCase_, default='bert-base-cased', help='Path to pretrained model or model identifier from huggingface.co/models.', required=lowerCAmelCase_, ) parser.add_argument( '--output_dir', type=lowerCAmelCase_, default='.', help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.', ) parser.add_argument( '--resume_from_checkpoint', type=lowerCAmelCase_, default=lowerCAmelCase_, help='If the training should continue from a checkpoint folder.', ) parser.add_argument( '--partial_train_epoch', type=lowerCAmelCase_, default=lowerCAmelCase_, help='If passed, the training will stop after this number of epochs.', ) parser.add_argument( '--num_epochs', type=lowerCAmelCase_, default=2, help='Number of train epochs.', ) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(lowerCAmelCase_, lowerCAmelCase_ ) if __name__ == "__main__": main()
53
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]="resnet50" , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Optional[Any]=True , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = out_indices if out_indices is not None else [4] __lowerCAmelCase = stage_names __lowerCAmelCase = out_features __lowerCAmelCase = backbone __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = use_pretrained_backbone __lowerCAmelCase = is_training def lowercase ( self : List[str] ) -> Any: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def lowercase ( self : List[Any] ) -> Union[str, Any]: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase ( self : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ) -> int: __lowerCAmelCase = TimmBackbone(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 1_4, 1_4) , ) def lowercase ( self : List[str] ) -> str: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (TimmBackbone,) if is_torch_available() else () a_ = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Tuple ) -> int: __lowerCAmelCase = TimmBackboneModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : Dict ) -> List[str]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Union[str, Any] ) -> Optional[int]: __lowerCAmelCase = 'resnet18' __lowerCAmelCase = 'microsoft/resnet-18' __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ , out_indices=[1, 2, 3] ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def lowercase ( self : List[str] ) -> Tuple: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def lowercase ( self : Dict ) -> int: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def lowercase ( self : str ) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase ( self : Any ) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase ( self : Optional[int] ) -> Optional[Any]: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def lowercase ( self : Dict ) -> Any: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Any ) -> Optional[int]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase ( self : Union[str, Any] ) -> Tuple: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase ( self : List[str] ) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Dict ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Tuple ) -> List[str]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def lowercase ( self : int ) -> Optional[int]: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def lowercase ( self : Union[str, Any] ) -> str: pass @unittest.skip('Safetensors is not supported by timm.' ) def lowercase ( self : Dict ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : List[str] ) -> Optional[Any]: pass def lowercase ( self : Union[str, Any] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = self.has_attentions # no need to test all models as different heads yield the same functionality __lowerCAmelCase = self.all_model_classes[0] __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = outputs[0][-1] # Encoder-/Decoder-only models __lowerCAmelCase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowerCAmelCase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowerCAmelCase_ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) __lowerCAmelCase = None __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) __lowerCAmelCase = False __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ )
53
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any]=7 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : List[str]=1_8 , lowerCAmelCase_ : Union[str, Any]=3_0 , lowerCAmelCase_ : int=4_0_0 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : List[Any]=None , ) -> Union[str, Any]: __lowerCAmelCase = size if size is not None else {'shortest_edge': 2_0} __lowerCAmelCase = crop_size if crop_size is not None else {'height': 1_8, 'width': 1_8} __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = image_size __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = do_center_crop __lowerCAmelCase = crop_size def lowercase ( self : Tuple ) -> Optional[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = MobileNetVaImageProcessor if is_vision_available() else None def lowercase ( self : Dict ) -> int: __lowerCAmelCase = MobileNetVaImageProcessingTester(self ) @property def lowercase ( self : List[Any] ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def lowercase ( self : Any ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'size' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'do_center_crop' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'crop_size' ) ) def lowercase ( self : int ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 2_0} ) self.assertEqual(image_processor.crop_size , {'height': 1_8, 'width': 1_8} ) __lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2} ) self.assertEqual(image_processor.crop_size , {'height': 8_4, 'width': 8_4} ) def lowercase ( self : List[Any] ) -> str: pass def lowercase ( self : Any ) -> str: # Initialize image_processing __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , Image.Image ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __lowerCAmelCase = image_processing(lowerCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase ( self : List[Any] ) -> List[Any]: # Initialize image_processing __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __lowerCAmelCase = image_processing(lowerCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase ( self : List[Any] ) -> List[Any]: # Initialize image_processing __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __lowerCAmelCase = image_processing(lowerCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
53
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def a_ ( lowerCAmelCase_ : str=None ): if subparsers is not None: __lowerCAmelCase = subparsers.add_parser('env' ) else: __lowerCAmelCase = argparse.ArgumentParser('Accelerate env command' ) parser.add_argument( '--config_file', default=lowerCAmelCase_, help='The config file to use for the default values in the launching script.' ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def a_ ( lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = torch.__version__ __lowerCAmelCase = torch.cuda.is_available() __lowerCAmelCase = is_xpu_available() __lowerCAmelCase = is_npu_available() __lowerCAmelCase = 'Not found' # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowerCAmelCase_ ): __lowerCAmelCase = load_config_from_file(args.config_file ).to_dict() __lowerCAmelCase = { '`Accelerate` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Numpy version': np.__version__, 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'PyTorch XPU available': str(lowerCAmelCase_ ), 'PyTorch NPU available': str(lowerCAmelCase_ ), 'System RAM': F"""{psutil.virtual_memory().total / 1024 ** 3:.2f} GB""", } if pt_cuda_available: __lowerCAmelCase = torch.cuda.get_device_name() print('\nCopy-and-paste the text below in your GitHub issue\n' ) print('\n'.join([F"""- {prop}: {val}""" for prop, val in info.items()] ) ) print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:' ) __lowerCAmelCase = ( '\n'.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase_, lowerCAmelCase_ ) else F"""\t{accelerate_config}""" ) print(lowerCAmelCase_ ) __lowerCAmelCase = accelerate_config return info def a_ ( ): __lowerCAmelCase = env_command_parser() __lowerCAmelCase = parser.parse_args() env_command(lowerCAmelCase_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
53
1
import requests _snake_case : Tuple = '' # <-- Put your OpenWeatherMap appid here! _snake_case : Dict = 'https://api.openweathermap.org/data/2.5/' def a_ ( lowerCAmelCase_ : str = "Chicago", lowerCAmelCase_ : str = APPID ): return requests.get(URL_BASE + 'weather', params=locals() ).json() def a_ ( lowerCAmelCase_ : str = "Kolkata, India", lowerCAmelCase_ : str = APPID ): return requests.get(URL_BASE + 'forecast', params=locals() ).json() def a_ ( lowerCAmelCase_ : float = 55.68, lowerCAmelCase_ : float = 12.57, lowerCAmelCase_ : str = APPID ): return requests.get(URL_BASE + 'onecall', params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: _snake_case : List[str] = input('Enter a location:').strip() if location: pprint(current_weather(location)) else: break
53
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a_ ( ): __lowerCAmelCase = ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores', type=lowerCAmelCase_, default=1, help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script', type=lowerCAmelCase_, help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ), ) # rest from the training program parser.add_argument('training_script_args', nargs=lowerCAmelCase_ ) return parser.parse_args() def a_ ( ): __lowerCAmelCase = parse_args() # Import training_script as a module. __lowerCAmelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __lowerCAmelCase = script_fpath.stem __lowerCAmelCase = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv __lowerCAmelCase = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores ) if __name__ == "__main__": main()
53
1
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : List[Any] ) -> Tuple: debug_launcher(test_script.main ) def lowercase ( self : Any ) -> List[Any]: debug_launcher(test_ops.main )
53
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict=1_3 , lowerCAmelCase_ : str=3_2 , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : str=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Tuple=[2, 2, 3, 2] , lowerCAmelCase_ : str=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[int]=3_7 , lowerCAmelCase_ : Dict="gelu" , lowerCAmelCase_ : List[Any]=1_0 , lowerCAmelCase_ : str=0.02 , lowerCAmelCase_ : Dict=["stage2", "stage3", "stage4"] , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : List[Any]=None , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = num_stages __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = out_features __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = num_stages def lowercase ( self : Dict ) -> List[str]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase ( self : List[str] ) -> Union[str, Any]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowercase ( self : Dict ) -> List[str]: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_1_2 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=lowerCAmelCase_ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=4_0 , auxiliary_channels=2_5_6 , auxiliary_num_convs=1 , auxiliary_concat_input=lowerCAmelCase_ , loss_ignore_index=2_5_5 , num_labels=self.num_labels , ) def lowercase ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int ) -> Optional[Any]: __lowerCAmelCase = UperNetForSemanticSegmentation(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase ( self : Union[str, Any] ) -> Union[str, Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (UperNetForSemanticSegmentation,) if is_torch_available() else () a_ = {"""image-segmentation""": UperNetForSemanticSegmentation} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Optional[int] ) -> Dict: __lowerCAmelCase = UperNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : List[str] ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Tuple ) -> Union[str, Any]: return def lowercase ( self : Optional[int] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase_ ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def lowercase ( self : Optional[int] ) -> Dict: pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def lowercase ( self : Optional[Any] ) -> Dict: pass @unittest.skip(reason='UperNet does not have a base model' ) def lowercase ( self : Optional[int] ) -> List[Any]: pass @unittest.skip(reason='UperNet does not have a base model' ) def lowercase ( self : str ) -> Dict: pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowercase ( self : Optional[Any] ) -> Optional[int]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : Tuple ) -> List[Any]: pass def lowercase ( self : Union[str, Any] ) -> Tuple: def check_hidden_states_output(lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Any ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = _config_zero_init(lowerCAmelCase_ ) __lowerCAmelCase = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __lowerCAmelCase = model_class(config=lowerCAmelCase_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='UperNet does not have tied weights' ) def lowercase ( self : Any ) -> int: pass @slow def lowercase ( self : Optional[int] ) -> Optional[int]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def a_ ( ): __lowerCAmelCase = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k', repo_type='dataset', filename='ADE_val_00000001.jpg' ) __lowerCAmelCase = Image.open(lowerCAmelCase_ ).convert('RGB' ) return image @require_torch @require_vision @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Dict ) -> Union[str, Any]: __lowerCAmelCase = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(lowerCAmelCase_ ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) __lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(lowerCAmelCase_ ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
1
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed _snake_case : Optional[int] = logging.getLogger(__name__) def a_ ( lowerCAmelCase_ : List[Any]=2, lowerCAmelCase_ : List[str]=3, lowerCAmelCase_ : List[Any]=16, lowerCAmelCase_ : int = 10, lowerCAmelCase_ : int = 2 ): def get_dataset(lowerCAmelCase_ : int ): __lowerCAmelCase = torch.randn(batch_size * n_batches, 1 ) return TensorDataset(lowerCAmelCase_, a * x + b + 0.1 * torch.randn(batch_size * n_batches, 1 ) ) __lowerCAmelCase = get_dataset(lowerCAmelCase_ ) __lowerCAmelCase = get_dataset(lowerCAmelCase_ ) __lowerCAmelCase = DataLoader(lowerCAmelCase_, shuffle=lowerCAmelCase_, batch_size=lowerCAmelCase_, num_workers=4 ) __lowerCAmelCase = DataLoader(lowerCAmelCase_, shuffle=lowerCAmelCase_, batch_size=lowerCAmelCase_, num_workers=4 ) return (train_dataloader, valid_dataloader) def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Any, lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int, lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str]=None ): __lowerCAmelCase = [] for epoch in range(lowerCAmelCase_ ): # Train quickly model.train() for batch in dataloader: __lowerCAmelCase , __lowerCAmelCase = batch __lowerCAmelCase = model(lowerCAmelCase_ ) __lowerCAmelCase = torch.nn.functional.mse_loss(lowerCAmelCase_, lowerCAmelCase_ ) accelerator.backward(lowerCAmelCase_ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : List[str] ) -> Any: super().__init__() __lowerCAmelCase = nn.Parameter(torch.randn(1 ) ) __lowerCAmelCase = nn.Parameter(torch.randn(1 ) ) def lowercase ( self : int , lowerCAmelCase_ : Tuple ) -> List[str]: return x * self.a + self.b class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : str ) -> Any: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowerCAmelCase , __lowerCAmelCase = dummy_dataloaders() __lowerCAmelCase = ProjectConfiguration(total_limit=1 , project_dir=lowerCAmelCase_ , automatic_checkpoint_naming=lowerCAmelCase_ ) # Train baseline __lowerCAmelCase = Accelerator(project_config=lowerCAmelCase_ ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def lowercase ( self : Dict ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowerCAmelCase , __lowerCAmelCase = dummy_dataloaders() # Train baseline __lowerCAmelCase = Accelerator() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Save initial __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'initial' ) accelerator.save_state(lowerCAmelCase_ ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() __lowerCAmelCase = train(3 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() # Train partially set_seed(4_2 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowerCAmelCase , __lowerCAmelCase = dummy_dataloaders() __lowerCAmelCase = Accelerator() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) accelerator.load_state(lowerCAmelCase_ ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = train(2 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Save everything __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'checkpoint' ) accelerator.save_state(lowerCAmelCase_ ) # Load everything back in and make sure all states work accelerator.load_state(lowerCAmelCase_ ) test_rands += train(1 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Tuple ) -> Tuple: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowerCAmelCase , __lowerCAmelCase = dummy_dataloaders() __lowerCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=lowerCAmelCase_ ) # Train baseline __lowerCAmelCase = Accelerator(project_dir=lowerCAmelCase_ , project_config=lowerCAmelCase_ ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Save initial accelerator.save_state() ((__lowerCAmelCase) , (__lowerCAmelCase)) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() __lowerCAmelCase = train(3 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() # Train partially set_seed(4_2 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowerCAmelCase , __lowerCAmelCase = dummy_dataloaders() __lowerCAmelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=lowerCAmelCase_ ) __lowerCAmelCase = Accelerator(project_dir=lowerCAmelCase_ , project_config=lowerCAmelCase_ ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) accelerator.load_state(os.path.join(lowerCAmelCase_ , 'checkpoints' , 'checkpoint_0' ) ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = train(2 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowerCAmelCase_ , 'checkpoints' , 'checkpoint_1' ) ) test_rands += train(1 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ((__lowerCAmelCase) , (__lowerCAmelCase)) = model.a.item(), model.b.item() __lowerCAmelCase = optimizer.state_dict() self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Any ) -> Any: __lowerCAmelCase = torch.tensor([1, 2, 3] ) __lowerCAmelCase = torch.tensor([2, 3, 4] ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(net.parameters() ) __lowerCAmelCase = Accelerator() with self.assertRaises(lowerCAmelCase_ ) as ve: accelerator.register_for_checkpointing(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def lowercase ( self : Any ) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowerCAmelCase = torch.optim.lr_scheduler.StepLR(lowerCAmelCase_ , step_size=1 , gamma=0.99 ) __lowerCAmelCase , __lowerCAmelCase = dummy_dataloaders() __lowerCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=lowerCAmelCase_ ) # Train baseline __lowerCAmelCase = Accelerator(project_dir=lowerCAmelCase_ , project_config=lowerCAmelCase_ ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Save initial accelerator.save_state() __lowerCAmelCase = scheduler.state_dict() train(3 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotEqual(lowerCAmelCase_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowerCAmelCase_ , 'checkpoints' , 'checkpoint_0' ) ) self.assertEqual(lowerCAmelCase_ , scheduler.state_dict() ) def lowercase ( self : int ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) __lowerCAmelCase = DummyModel() __lowerCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=lowerCAmelCase_ , total_limit=2 ) # Train baseline __lowerCAmelCase = Accelerator(project_dir=lowerCAmelCase_ , project_config=lowerCAmelCase_ ) __lowerCAmelCase = accelerator.prepare(lowerCAmelCase_ ) # Save 3 states: for _ in range(1_1 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(lowerCAmelCase_ , 'checkpoints' , 'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase_ , 'checkpoints' , 'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase_ , 'checkpoints' , 'checkpoint_10' ) ) ) @require_cuda def lowercase ( self : List[str] ) -> Any: __lowerCAmelCase = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(lowerCAmelCase_ , env=os.environ.copy() ) if __name__ == "__main__": _snake_case : List[str] = '/tmp/accelerate/state_checkpointing' _snake_case : int = DummyModel() _snake_case : Union[str, Any] = torch.optim.Adam(params=model.parameters(), lr=1e-3) _snake_case : str = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) _snake_case , _snake_case : Optional[int] = dummy_dataloaders() _snake_case : Optional[int] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline _snake_case : int = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : Dict = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) _snake_case , _snake_case : Tuple = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: _snake_case : List[Any] = group['params'][0].device break assert param_device.type == accelerator.device.type _snake_case : Optional[Any] = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: _snake_case : List[str] = group['params'][0].device break assert ( param_device.type == torch.device('cpu').type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: _snake_case : List[str] = group['params'][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
53
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Optional[Any] ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : int ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_, keep_in_memory=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Dict, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, features=lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Any ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_, split=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type', [str, list] ) def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : Any, lowerCAmelCase_ : Dict ): if issubclass(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = text_path elif issubclass(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = [text_path] __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : int, lowerCAmelCase_ : Tuple=("train",) ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) for split in splits: __lowerCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def a_ ( lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Dict ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = TextDatasetReader({'train': text_path}, cache_dir=lowerCAmelCase_, keep_in_memory=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = TextDatasetReader({'train': text_path}, features=lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : Optional[int] ): if split: __lowerCAmelCase = {split: text_path} else: __lowerCAmelCase = 'train' __lowerCAmelCase = {'train': text_path, 'test': text_path} __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
53
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]=7 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : List[Any]=3_0 , lowerCAmelCase_ : List[str]=4_0_0 , lowerCAmelCase_ : int=True , lowerCAmelCase_ : str=None , lowerCAmelCase_ : List[Any]=0.9 , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , lowerCAmelCase_ : List[str]=[0.5, 0.5, 0.5] , ) -> List[str]: __lowerCAmelCase = size if size is not None else {'shortest_edge': 3_0} __lowerCAmelCase = crop_size if crop_size is not None else {'height': 3_0, 'width': 3_0} __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution __lowerCAmelCase = do_resize_and_center_crop __lowerCAmelCase = size __lowerCAmelCase = crop_pct __lowerCAmelCase = crop_size __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean __lowerCAmelCase = image_std def lowercase ( self : str ) -> Tuple: return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = PoolFormerImageProcessor if is_vision_available() else None def lowercase ( self : int ) -> str: __lowerCAmelCase = PoolFormerImageProcessingTester(self ) @property def lowercase ( self : List[Any] ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def lowercase ( self : List[str] ) -> Optional[int]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , 'do_resize_and_center_crop' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'size' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'crop_pct' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'image_mean' ) ) self.assertTrue(hasattr(lowerCAmelCase_ , 'image_std' ) ) def lowercase ( self : Optional[Any] ) -> List[str]: __lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 3_0} ) self.assertEqual(image_processor.crop_size , {'height': 3_0, 'width': 3_0} ) __lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'shortest_edge': 4_2} ) self.assertEqual(image_processor.crop_size , {'height': 8_4, 'width': 8_4} ) def lowercase ( self : List[Any] ) -> str: pass def lowercase ( self : Tuple ) -> Tuple: # Initialize image_processing __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , Image.Image ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __lowerCAmelCase = image_processing(lowerCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase ( self : Tuple ) -> Optional[int]: # Initialize image_processing __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __lowerCAmelCase = image_processing(lowerCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase ( self : Dict ) -> Optional[Any]: # Initialize image_processing __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __lowerCAmelCase = image_processing(lowerCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
53
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case : Union[str, Any] = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : int=False ): __lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Optional[int]=False ): for i in range(config.num_hidden_layers ): if base_model: __lowerCAmelCase = '' else: __lowerCAmelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] __lowerCAmelCase = in_proj_bias[: config.hidden_size] __lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase = in_proj_bias[-config.hidden_size :] def a_ ( lowerCAmelCase_ : List[str] ): __lowerCAmelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Optional[Any]=True ): __lowerCAmelCase = ViTConfig() # patch_size if model_name[-1] == "8": __lowerCAmelCase = 8 # set labels if required if not base_model: __lowerCAmelCase = 1000 __lowerCAmelCase = 'huggingface/label-files' __lowerCAmelCase = 'imagenet-1k-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: __lowerCAmelCase = 384 __lowerCAmelCase = 1536 __lowerCAmelCase = 12 __lowerCAmelCase = 6 # load original model from torch hub __lowerCAmelCase = torch.hub.load('facebookresearch/dino:main', lowerCAmelCase_ ) original_model.eval() # load state_dict of original model, remove and rename some keys __lowerCAmelCase = original_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase_ ) __lowerCAmelCase = create_rename_keys(lowerCAmelCase_, base_model=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # load HuggingFace model if base_model: __lowerCAmelCase = ViTModel(lowerCAmelCase_, add_pooling_layer=lowerCAmelCase_ ).eval() else: __lowerCAmelCase = ViTForImageClassification(lowerCAmelCase_ ).eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor __lowerCAmelCase = ViTImageProcessor() __lowerCAmelCase = image_processor(images=prepare_img(), return_tensors='pt' ) __lowerCAmelCase = encoding['pixel_values'] __lowerCAmelCase = model(lowerCAmelCase_ ) if base_model: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_, outputs.last_hidden_state[:, 0, :], atol=1E-1 ) else: __lowerCAmelCase = original_model(lowerCAmelCase_ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase_, outputs.logits, atol=1E-3 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) _snake_case : List[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
53
1
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class _UpperCAmelCase : """simple docstring""" def __init__( self : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any]=1_3 , lowerCAmelCase_ : Optional[int]=7 , lowerCAmelCase_ : List[str]=6 , lowerCAmelCase_ : str=1_7 , lowerCAmelCase_ : Dict=2_3 , lowerCAmelCase_ : Dict=1_1 , lowerCAmelCase_ : List[str]=True , ) -> str: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = act_dim __lowerCAmelCase = state_dim __lowerCAmelCase = hidden_size __lowerCAmelCase = max_length __lowerCAmelCase = is_training def lowercase ( self : Optional[int] ) -> int: __lowerCAmelCase = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) __lowerCAmelCase = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) __lowerCAmelCase = floats_tensor((self.batch_size, self.seq_length, 1) ) __lowerCAmelCase = floats_tensor((self.batch_size, self.seq_length, 1) ) __lowerCAmelCase = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_0_0_0 ) __lowerCAmelCase = random_attention_mask((self.batch_size, self.seq_length) ) __lowerCAmelCase = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def lowercase ( self : str ) -> Union[str, Any]: return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , ) -> Dict: __lowerCAmelCase = DecisionTransformerModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def lowercase ( self : int ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = { 'states': states, 'actions': actions, 'rewards': rewards, 'returns_to_go': returns_to_go, 'timesteps': timesteps, 'attention_mask': attention_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (DecisionTransformerModel,) if is_torch_available() else () a_ = () a_ = {"""feature-extraction""": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids a_ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features a_ = False a_ = False a_ = False a_ = False a_ = False a_ = False a_ = False a_ = False a_ = False def lowercase ( self : int ) -> Optional[Any]: __lowerCAmelCase = DecisionTransformerModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : Optional[int] ) -> Optional[int]: self.config_tester.run_common_tests() def lowercase ( self : Optional[int] ) -> int: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) @slow def lowercase ( self : Union[str, Any] ) -> Union[str, Any]: for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = DecisionTransformerModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def lowercase ( self : Optional[Any] ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = [ 'states', 'actions', 'rewards', 'returns_to_go', 'timesteps', 'attention_mask', ] self.assertListEqual(arg_names[: len(lowerCAmelCase_ )] , lowerCAmelCase_ ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase ( self : List[str] ) -> Any: __lowerCAmelCase = 2 # number of steps of autoregressive prediction we will perform __lowerCAmelCase = 1_0 # defined by the RL environment, may be normalized __lowerCAmelCase = DecisionTransformerModel.from_pretrained('edbeeching/decision-transformer-gym-hopper-expert' ) __lowerCAmelCase = model.to(lowerCAmelCase_ ) __lowerCAmelCase = model.config torch.manual_seed(0 ) __lowerCAmelCase = torch.randn(1 , 1 , config.state_dim ).to(device=lowerCAmelCase_ , dtype=torch.floataa ) # env.reset() __lowerCAmelCase = torch.tensor( [[0.24_27_93, -0.28_69_30_74, 0.8_74_26_13], [0.67_81_52_74, -0.08_10_10_85, -0.12_95_21_47]] , device=lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor(lowerCAmelCase_ , device=lowerCAmelCase_ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) __lowerCAmelCase = state __lowerCAmelCase = torch.zeros(1 , 0 , config.act_dim , device=lowerCAmelCase_ , dtype=torch.floataa ) __lowerCAmelCase = torch.zeros(1 , 0 , device=lowerCAmelCase_ , dtype=torch.floataa ) __lowerCAmelCase = torch.tensor(0 , device=lowerCAmelCase_ , dtype=torch.long ).reshape(1 , 1 ) for step in range(lowerCAmelCase_ ): __lowerCAmelCase = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=lowerCAmelCase_ )] , dim=1 ) __lowerCAmelCase = torch.cat([rewards, torch.zeros(1 , 1 , device=lowerCAmelCase_ )] , dim=1 ) __lowerCAmelCase = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = model( states=lowerCAmelCase_ , actions=lowerCAmelCase_ , rewards=lowerCAmelCase_ , returns_to_go=lowerCAmelCase_ , timesteps=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=lowerCAmelCase_ , dtype=torch.floataa ), 1.0, False, {}, ) __lowerCAmelCase = action_pred[0, -1] __lowerCAmelCase = torch.cat([states, state] , dim=1 ) __lowerCAmelCase = returns_to_go[0, -1] - reward __lowerCAmelCase = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) __lowerCAmelCase = torch.cat( [timesteps, torch.ones((1, 1) , device=lowerCAmelCase_ , dtype=torch.long ) * (step + 1)] , dim=1 )
53
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : str ) -> Any: __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : Tuple ) -> Optional[int]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : List[Any] ) -> int: __lowerCAmelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ ) ) def lowercase ( self : str ) -> str: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[str]: # pass variant but use the non-variant filenames __lowerCAmelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> Union[str, Any]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : List[str] ) -> List[Any]: # pass variant but use the non-variant filenames __lowerCAmelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] __lowerCAmelCase = 'fp16' self.assertTrue(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) ) def lowercase ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowerCAmelCase = 'fp16' self.assertFalse(is_safetensors_compatible(lowerCAmelCase_ , variant=lowerCAmelCase_ ) )
53
1
from math import factorial def a_ ( lowerCAmelCase_ : int = 20 ): __lowerCAmelCase = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... __lowerCAmelCase = n // 2 return int(factorial(lowerCAmelCase_ ) / (factorial(lowerCAmelCase_ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: _snake_case : Union[str, Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
53
import math def a_ ( lowerCAmelCase_ : list, lowerCAmelCase_ : int ): __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) __lowerCAmelCase = 0 while arr[min(lowerCAmelCase_, lowerCAmelCase_ ) - 1] < x: __lowerCAmelCase = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: __lowerCAmelCase = prev + 1 if prev == min(lowerCAmelCase_, lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": _snake_case : List[str] = input('Enter numbers separated by a comma:\n').strip() _snake_case : Optional[Any] = [int(item) for item in user_input.split(',')] _snake_case : List[str] = int(input('Enter the number to be searched:\n')) _snake_case : Optional[int] = jump_search(arr, x) if res == -1: print('Number not found!') else: print(F"""Number {x} is at index {res}""")
53
1
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def a_ ( lowerCAmelCase_ : Dict ): __lowerCAmelCase = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', 'decoder.output_projection.weight', ] for k in ignore_keys: state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Dict ): __lowerCAmelCase , __lowerCAmelCase = emb.weight.shape __lowerCAmelCase = nn.Linear(lowerCAmelCase_, lowerCAmelCase_, bias=lowerCAmelCase_ ) __lowerCAmelCase = emb.weight.data return lin_layer def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Any="facebook/mbart-large-en-ro", lowerCAmelCase_ : List[str]=False, lowerCAmelCase_ : int=False ): __lowerCAmelCase = torch.load(lowerCAmelCase_, map_location='cpu' )['model'] remove_ignore_keys_(lowerCAmelCase_ ) __lowerCAmelCase = state_dict['encoder.embed_tokens.weight'].shape[0] __lowerCAmelCase = MBartConfig.from_pretrained(lowerCAmelCase_, vocab_size=lowerCAmelCase_ ) if mbart_aa and finetuned: __lowerCAmelCase = 'relu' __lowerCAmelCase = state_dict['decoder.embed_tokens.weight'] __lowerCAmelCase = MBartForConditionalGeneration(lowerCAmelCase_ ) model.model.load_state_dict(lowerCAmelCase_ ) if finetuned: __lowerCAmelCase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') _snake_case : List[str] = parser.parse_args() _snake_case : Dict = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
53
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : List[Any], lowerCAmelCase_ : str ): # Initialise PyTorch model __lowerCAmelCase = RemBertConfig.from_json_file(lowerCAmelCase_ ) print('Building PyTorch model from configuration: {}'.format(str(lowerCAmelCase_ ) ) ) __lowerCAmelCase = RemBertModel(lowerCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) # Save pytorch-model print('Save PyTorch model to {}'.format(lowerCAmelCase_ ) ) torch.save(model.state_dict(), lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : int = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
53
1
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : List[str]=7 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : str=9_9 , lowerCAmelCase_ : Union[str, Any]=3_2 , lowerCAmelCase_ : List[Any]=5 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : List[str]=3_7 , lowerCAmelCase_ : Dict="gelu" , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : str=5_1_2 , lowerCAmelCase_ : Optional[int]=1_6 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : List[str]=4 , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_attention_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_choices def lowercase ( self : int ) -> List[Any]: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_attention_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase ( self : Tuple ) -> Union[str, Any]: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def lowercase ( self : Any ) -> List[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = True __lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = True a_ = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def lowercase ( self : Tuple ) -> Optional[Any]: __lowerCAmelCase = FlaxRobertaPreLayerNormModelTester(self ) @slow def lowercase ( self : Tuple ) -> List[Any]: for model_class_name in self.all_model_classes: __lowerCAmelCase = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCAmelCase_ ) __lowerCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCAmelCase_ ) @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase ( self : Union[str, Any] ) -> Optional[Any]: __lowerCAmelCase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCAmelCase_ ) __lowerCAmelCase = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = [1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) , lowerCAmelCase_ ) # compare the actual values for a slice. __lowerCAmelCase = np.array( [[[40.48_80, 18.01_99, -5.23_67], [-1.88_77, -4.08_85, 10.70_85], [-2.26_13, -5.61_10, 7.26_65]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : Tuple ) -> Dict: __lowerCAmelCase = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCAmelCase_ ) __lowerCAmelCase = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) __lowerCAmelCase = model(lowerCAmelCase_ )[0] # compare the actual values for a slice. __lowerCAmelCase = np.array( [[[0.02_08, -0.03_56, 0.02_37], [-0.15_69, -0.04_11, -0.26_26], [0.18_79, 0.01_25, -0.00_89]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _snake_case : Any = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224', out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) __lowerCAmelCase = MaskFormerConfig(backbone_config=lowerCAmelCase_ ) __lowerCAmelCase = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok __lowerCAmelCase = 847 __lowerCAmelCase = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok __lowerCAmelCase = 150 __lowerCAmelCase = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok __lowerCAmelCase = 171 __lowerCAmelCase = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO __lowerCAmelCase = 133 __lowerCAmelCase = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok __lowerCAmelCase = 19 __lowerCAmelCase = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok __lowerCAmelCase = 65 __lowerCAmelCase = 'mapillary-vistas-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} return config def a_ ( lowerCAmelCase_ : Tuple ): __lowerCAmelCase = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') ) for source_index, target_index in zip(range(3, 0, -1 ), range(0, 3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') ) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') ) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') ) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') ) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Tuple ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int ): __lowerCAmelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowerCAmelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[:dim, :] __lowerCAmelCase = in_proj_bias[: dim] __lowerCAmelCase = in_proj_weight[ dim : dim * 2, : ] __lowerCAmelCase = in_proj_bias[ dim : dim * 2 ] __lowerCAmelCase = in_proj_weight[ -dim :, : ] __lowerCAmelCase = in_proj_bias[-dim :] # fmt: on def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : Dict ): # fmt: off __lowerCAmelCase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: hidden_size, :] __lowerCAmelCase = in_proj_bias[:config.hidden_size] __lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCAmelCase = in_proj_weight[-hidden_size :, :] __lowerCAmelCase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: hidden_size, :] __lowerCAmelCase = in_proj_bias[:config.hidden_size] __lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCAmelCase = in_proj_weight[-hidden_size :, :] __lowerCAmelCase = in_proj_bias[-hidden_size :] # fmt: on def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : bool = False ): __lowerCAmelCase = get_maskformer_config(lowerCAmelCase_ ) # load original state_dict with open(lowerCAmelCase_, 'rb' ) as f: __lowerCAmelCase = pickle.load(lowerCAmelCase_ ) __lowerCAmelCase = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowerCAmelCase = create_rename_keys(lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_swin_q_k_v(lowerCAmelCase_, config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase_, lowerCAmelCase_ ) # update to torch tensors for key, value in state_dict.items(): __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ) # load 🤗 model __lowerCAmelCase = MaskFormerForInstanceSegmentation(lowerCAmelCase_ ) model.eval() for name, param in model.named_parameters(): print(lowerCAmelCase_, param.shape ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowerCAmelCase_, strict=lowerCAmelCase_ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCAmelCase_ ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results __lowerCAmelCase = prepare_img() if "vistas" in model_name: __lowerCAmelCase = 65 elif "cityscapes" in model_name: __lowerCAmelCase = 6_5535 else: __lowerCAmelCase = 255 __lowerCAmelCase = True if 'ade' in model_name else False __lowerCAmelCase = MaskFormerImageProcessor(ignore_index=lowerCAmelCase_, reduce_labels=lowerCAmelCase_ ) __lowerCAmelCase = image_processor(lowerCAmelCase_, return_tensors='pt' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) print('Logits:', outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowerCAmelCase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], lowerCAmelCase_, atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print('Pushing model and image processor to the hub...' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _snake_case : List[str] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
53
1
from __future__ import annotations def a_ ( lowerCAmelCase_ : list[float] ): if len(lowerCAmelCase_ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) __lowerCAmelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): _snake_case : List[Any] = True from torch.cuda.amp import autocast _snake_case : Dict = logging.getLogger(__name__) def a_ ( lowerCAmelCase_ : str=None, lowerCAmelCase_ : str=None ): return field(default_factory=lambda: default, metadata=lowerCAmelCase_ ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) a_ = field( default=0.1 , metadata={"""help""": """The dropout ratio for the attention probabilities."""} ) a_ = field( default=0.1 , metadata={"""help""": """The dropout ratio for activations inside the fully connected layer."""} ) a_ = field( default=0.1 , metadata={ """help""": """The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.""" } , ) a_ = field( default=0.1 , metadata={"""help""": """The dropout probabilitiy for all 1D convolutional layers in feature extractor."""} , ) a_ = field( default=0.05 , metadata={ """help""": ( """Propability of each feature vector along the time axis to be chosen as the start of the vector""" """span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature""" """vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.""" ) } , ) a_ = field(default=0.0 , metadata={"""help""": """The LayerDrop probability."""} ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ = field( default="""train+validation""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of validation examples to this """ """value if set.""" ) } , ) a_ = list_field( default=[""",""", """?""", """.""", """!""", """-""", """;""", """:""", """\"\"""", """%""", """'""", """\"""", """�"""] , metadata={"""help""": """A list of characters to remove from the transcripts."""} , ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = 42 a_ = True a_ = None a_ = None a_ = None a_ = None def __call__( self : int , lowerCAmelCase_ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods __lowerCAmelCase = [{'input_values': feature['input_values']} for feature in features] __lowerCAmelCase = [{'input_ids': feature['labels']} for feature in features] __lowerCAmelCase = self.processor.pad( lowerCAmelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) __lowerCAmelCase = self.processor.pad( labels=lowerCAmelCase_ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='pt' , ) # replace padding with -100 to ignore loss correctly __lowerCAmelCase = labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_0_0 ) __lowerCAmelCase = labels return batch class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Tuple , lowerCAmelCase_ : nn.Module , lowerCAmelCase_ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: model.train() __lowerCAmelCase = self._prepare_inputs(lowerCAmelCase_ ) if self.use_amp: with autocast(): __lowerCAmelCase = self.compute_loss(lowerCAmelCase_ , lowerCAmelCase_ ) else: __lowerCAmelCase = self.compute_loss(lowerCAmelCase_ , lowerCAmelCase_ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": __lowerCAmelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __lowerCAmelCase = loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: __lowerCAmelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowerCAmelCase_ ).backward() elif self.use_apex: with amp.scale_loss(lowerCAmelCase_ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowerCAmelCase_ ) else: loss.backward() return loss.detach() def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s', lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: __lowerCAmelCase = datasets.load_dataset( 'common_voice', data_args.dataset_config_name, split=data_args.train_split_name ) __lowerCAmelCase = datasets.load_dataset('common_voice', data_args.dataset_config_name, split='test' ) # Create and save tokenizer __lowerCAmelCase = F"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(lowerCAmelCase_ : Any ): __lowerCAmelCase = re.sub(lowerCAmelCase_, '', batch['sentence'] ).lower() + ' ' return batch __lowerCAmelCase = train_dataset.map(lowerCAmelCase_, remove_columns=['sentence'] ) __lowerCAmelCase = eval_dataset.map(lowerCAmelCase_, remove_columns=['sentence'] ) def extract_all_chars(lowerCAmelCase_ : Tuple ): __lowerCAmelCase = ' '.join(batch['text'] ) __lowerCAmelCase = list(set(lowerCAmelCase_ ) ) return {"vocab": [vocab], "all_text": [all_text]} __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, batched=lowerCAmelCase_, batch_size=-1, keep_in_memory=lowerCAmelCase_, remove_columns=train_dataset.column_names, ) __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, batched=lowerCAmelCase_, batch_size=-1, keep_in_memory=lowerCAmelCase_, remove_columns=eval_dataset.column_names, ) __lowerCAmelCase = list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) ) __lowerCAmelCase = {v: k for k, v in enumerate(lowerCAmelCase_ )} __lowerCAmelCase = vocab_dict[' '] del vocab_dict[" "] __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = len(lowerCAmelCase_ ) with open('vocab.json', 'w' ) as vocab_file: json.dump(lowerCAmelCase_, lowerCAmelCase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = WavaVecaCTCTokenizer( 'vocab.json', unk_token='[UNK]', pad_token='[PAD]', word_delimiter_token='|', ) __lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_6000, padding_value=0.0, do_normalize=lowerCAmelCase_, return_attention_mask=lowerCAmelCase_ ) __lowerCAmelCase = WavaVecaProcessor(feature_extractor=lowerCAmelCase_, tokenizer=lowerCAmelCase_ ) __lowerCAmelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, activation_dropout=model_args.activation_dropout, attention_dropout=model_args.attention_dropout, hidden_dropout=model_args.hidden_dropout, feat_proj_dropout=model_args.feat_proj_dropout, mask_time_prob=model_args.mask_time_prob, gradient_checkpointing=training_args.gradient_checkpointing, layerdrop=model_args.layerdrop, ctc_loss_reduction='mean', pad_token_id=processor.tokenizer.pad_token_id, vocab_size=len(processor.tokenizer ), ) if data_args.max_train_samples is not None: __lowerCAmelCase = min(len(lowerCAmelCase_ ), data_args.max_train_samples ) __lowerCAmelCase = train_dataset.select(range(lowerCAmelCase_ ) ) if data_args.max_val_samples is not None: __lowerCAmelCase = eval_dataset.select(range(data_args.max_val_samples ) ) __lowerCAmelCase = torchaudio.transforms.Resample(4_8000, 1_6000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(lowerCAmelCase_ : int ): __lowerCAmelCase , __lowerCAmelCase = torchaudio.load(batch['path'] ) __lowerCAmelCase = resampler(lowerCAmelCase_ ).squeeze().numpy() __lowerCAmelCase = 1_6000 __lowerCAmelCase = batch['text'] return batch __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, remove_columns=train_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) __lowerCAmelCase = eval_dataset.map( lowerCAmelCase_, remove_columns=eval_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) def prepare_dataset(lowerCAmelCase_ : Union[str, Any] ): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'] ) ) == 1 ), F"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" __lowerCAmelCase = processor( audio=batch['speech'], text=batch['target_text'], sampling_rate=batch['sampling_rate'][0] ) batch.update(lowerCAmelCase_ ) return batch __lowerCAmelCase = train_dataset.map( lowerCAmelCase_, remove_columns=train_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, ) __lowerCAmelCase = eval_dataset.map( lowerCAmelCase_, remove_columns=eval_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, ) # Metric __lowerCAmelCase = datasets.load_metric('wer' ) def compute_metrics(lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = pred.predictions __lowerCAmelCase = np.argmax(lowerCAmelCase_, axis=-1 ) __lowerCAmelCase = processor.tokenizer.pad_token_id __lowerCAmelCase = processor.batch_decode(lowerCAmelCase_ ) # we do not want to group tokens when computing the metrics __lowerCAmelCase = processor.batch_decode(pred.label_ids, group_tokens=lowerCAmelCase_ ) __lowerCAmelCase = wer_metric.compute(predictions=lowerCAmelCase_, references=lowerCAmelCase_ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator __lowerCAmelCase = DataCollatorCTCWithPadding(processor=lowerCAmelCase_, padding=lowerCAmelCase_ ) # Initialize our Trainer __lowerCAmelCase = CTCTrainer( model=lowerCAmelCase_, data_collator=lowerCAmelCase_, args=lowerCAmelCase_, compute_metrics=lowerCAmelCase_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=processor.feature_extractor, ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() __lowerCAmelCase = train_result.metrics __lowerCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase_ ) ) __lowerCAmelCase = min(lowerCAmelCase_, len(lowerCAmelCase_ ) ) trainer.log_metrics('train', lowerCAmelCase_ ) trainer.save_metrics('train', lowerCAmelCase_ ) trainer.save_state() # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(lowerCAmelCase_ ) __lowerCAmelCase = min(lowerCAmelCase_, len(lowerCAmelCase_ ) ) trainer.log_metrics('eval', lowerCAmelCase_ ) trainer.save_metrics('eval', lowerCAmelCase_ ) return results if __name__ == "__main__": main()
53
1
# Algorithm for the pigeonhole sorting def a_ ( lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = min(lowerCAmelCase_ ) # min() finds the minimum value __lowerCAmelCase = max(lowerCAmelCase_ ) # max() finds the maximum value __lowerCAmelCase = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size __lowerCAmelCase = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. __lowerCAmelCase = 0 for count in range(lowerCAmelCase_ ): while holes[count] > 0: holes[count] -= 1 __lowerCAmelCase = count + min_val i += 1 def a_ ( ): __lowerCAmelCase = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(lowerCAmelCase_ ) print('Sorted order is:', ' '.join(lowerCAmelCase_ ) ) if __name__ == "__main__": main()
53
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _snake_case : Any = logging.get_logger(__name__) _snake_case : int = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _snake_case : Optional[Any] = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } _snake_case : str = { 'yjernite/retribert-base-uncased': 512, } _snake_case : Optional[int] = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = PRETRAINED_INIT_CONFIGURATION a_ = RetriBertTokenizer a_ = ["""input_ids""", """attention_mask"""] def __init__( self : Dict , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : str="[UNK]" , lowerCAmelCase_ : Optional[Any]="[SEP]" , lowerCAmelCase_ : List[str]="[PAD]" , lowerCAmelCase_ : Optional[int]="[CLS]" , lowerCAmelCase_ : List[Any]="[MASK]" , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : List[Any] , ) -> Dict: super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(lowerCAmelCase_ , normalizer_state.pop('type' ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**lowerCAmelCase_ ) __lowerCAmelCase = do_lower_case def lowercase ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int]=None ) -> Optional[int]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
53
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : Dict = logging.get_logger(__name__) _snake_case : Dict = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = """swin2sr""" a_ = { """hidden_size""": """embed_dim""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Any , lowerCAmelCase_ : List[str]=6_4 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : Optional[Any]=1_8_0 , lowerCAmelCase_ : Union[str, Any]=[6, 6, 6, 6, 6, 6] , lowerCAmelCase_ : int=[6, 6, 6, 6, 6, 6] , lowerCAmelCase_ : Optional[int]=8 , lowerCAmelCase_ : List[str]=2.0 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Dict=0.0 , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : int="gelu" , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : List[Any]=0.02 , lowerCAmelCase_ : List[Any]=1e-5 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Union[str, Any]=1.0 , lowerCAmelCase_ : List[Any]="1conv" , lowerCAmelCase_ : Optional[Any]="pixelshuffle" , **lowerCAmelCase_ : Dict , ) -> str: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = embed_dim __lowerCAmelCase = depths __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = num_heads __lowerCAmelCase = window_size __lowerCAmelCase = mlp_ratio __lowerCAmelCase = qkv_bias __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = drop_path_rate __lowerCAmelCase = hidden_act __lowerCAmelCase = use_absolute_embeddings __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = initializer_range __lowerCAmelCase = upscale __lowerCAmelCase = img_range __lowerCAmelCase = resi_connection __lowerCAmelCase = upsampler
53
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _snake_case : Union[str, Any] = imread(R'digital_image_processing/image_data/lena_small.jpg') _snake_case : Optional[int] = cvtColor(img, COLOR_BGR2GRAY) def a_ ( ): __lowerCAmelCase = cn.convert_to_negative(lowerCAmelCase_ ) # assert negative_img array for at least one True assert negative_img.any() def a_ ( ): with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowerCAmelCase_, 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def a_ ( ): __lowerCAmelCase = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def a_ ( ): __lowerCAmelCase = imread('digital_image_processing/image_data/lena_small.jpg', 0 ) # assert ambiguous array for all == True assert canny_img.all() __lowerCAmelCase = canny.canny(lowerCAmelCase_ ) # assert canny array for at least one True assert canny_array.any() def a_ ( ): assert gg.gaussian_filter(lowerCAmelCase_, 5, sigma=0.9 ).all() def a_ ( ): # laplace diagonals __lowerCAmelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __lowerCAmelCase = conv.img_convolve(lowerCAmelCase_, lowerCAmelCase_ ).astype(lowerCAmelCase_ ) assert res.any() def a_ ( ): assert med.median_filter(lowerCAmelCase_, 3 ).any() def a_ ( ): __lowerCAmelCase , __lowerCAmelCase = sob.sobel_filter(lowerCAmelCase_ ) assert grad.any() and theta.any() def a_ ( ): __lowerCAmelCase = sp.make_sepia(lowerCAmelCase_, 20 ) assert sepia.all() def a_ ( lowerCAmelCase_ : str = "digital_image_processing/image_data/lena_small.jpg" ): __lowerCAmelCase = bs.Burkes(imread(lowerCAmelCase_, 1 ), 120 ) burkes.process() assert burkes.output_img.any() def a_ ( lowerCAmelCase_ : str = "digital_image_processing/image_data/lena_small.jpg", ): __lowerCAmelCase = rs.NearestNeighbour(imread(lowerCAmelCase_, 1 ), 400, 200 ) nn.process() assert nn.output.any() def a_ ( ): __lowerCAmelCase = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. __lowerCAmelCase = imread(lowerCAmelCase_, 0 ) # Test for get_neighbors_pixel function() return not None __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = image[x_coordinate][y_coordinate] __lowerCAmelCase = lbp.get_neighbors_pixel( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __lowerCAmelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): __lowerCAmelCase = lbp.local_binary_value(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) assert lbp_image.any()
53
1
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel _snake_case : Optional[int] = False _snake_case : Any = True _snake_case : Optional[Any] = False if __name__ == "__main__": _snake_case : Dict = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') _snake_case : Tuple = parser.parse_args() _snake_case : Any = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } _snake_case : int = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } _snake_case : Optional[int] = '' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: _snake_case : Any = reader.read() _snake_case : Dict = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): _snake_case : str = UNetaDModel(**config) else: _snake_case : Any = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel _snake_case : Dict = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) _snake_case : int = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: _snake_case : Optional[Any] = config[key] del config[key] _snake_case : Optional[Any] = [k.replace('UNetRes', '') for k in config['down_block_types']] _snake_case : Tuple = [k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: _snake_case : int = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) _snake_case : Any = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue _snake_case : Optional[int] = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: _snake_case : List[Any] = param_value _snake_case : Optional[Any] = True if not has_changed: _snake_case : Union[str, Any] = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
53
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case : List[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = ["""pixel_values"""] def __init__( self : Optional[int] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **lowerCAmelCase_ : Any , ) -> None: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = size if size is not None else {'shortest_edge': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = do_center_crop __lowerCAmelCase = crop_size __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[int] , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __lowerCAmelCase = int((2_5_6 / 2_2_4) * size['shortest_edge'] ) __lowerCAmelCase = get_resize_output_image_size(lowerCAmelCase_ , size=lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( lowerCAmelCase_ , size=(size_dict['height'], size_dict['width']) , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : str , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : str , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(lowerCAmelCase_ , size=(size['height'], size['width']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[int, float] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray: return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[str] , ) -> np.ndarray: return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase_ : str , ) -> BatchFeature: __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase = image_std if image_std is not None else self.image_std __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: __lowerCAmelCase = [self.resize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_center_crop: __lowerCAmelCase = [self.center_crop(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_rescale: __lowerCAmelCase = [self.rescale(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_normalize: __lowerCAmelCase = [self.normalize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
53
1
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = DanceDiffusionPipeline a_ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS a_ = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } a_ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS a_ = False a_ = False def lowercase ( self : int ) -> Union[str, Any]: torch.manual_seed(0 ) __lowerCAmelCase = UNetaDModel( block_out_channels=(3_2, 3_2, 6_4) , extra_in_channels=1_6 , sample_size=5_1_2 , sample_rate=1_6_0_0_0 , in_channels=2 , out_channels=2 , flip_sin_to_cos=lowerCAmelCase_ , use_timestep_embedding=lowerCAmelCase_ , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) __lowerCAmelCase = IPNDMScheduler() __lowerCAmelCase = { 'unet': unet, 'scheduler': scheduler, } return components def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any]=0 ) -> int: if str(lowerCAmelCase_ ).startswith('mps' ): __lowerCAmelCase = torch.manual_seed(lowerCAmelCase_ ) else: __lowerCAmelCase = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) __lowerCAmelCase = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def lowercase ( self : List[Any] ) -> Dict: __lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = DanceDiffusionPipeline(**lowerCAmelCase_ ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = self.get_dummy_inputs(lowerCAmelCase_ ) __lowerCAmelCase = pipe(**lowerCAmelCase_ ) __lowerCAmelCase = output.audios __lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) __lowerCAmelCase = np.array([-0.72_65, 1.00_00, -0.83_88, 0.11_75, 0.94_98, -1.00_00] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowercase ( self : Any ) -> Any: return super().test_save_load_local() @skip_mps def lowercase ( self : Union[str, Any] ) -> Union[str, Any]: return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def lowercase ( self : Optional[int] ) -> Dict: return super().test_save_load_optional_components() @skip_mps def lowercase ( self : Tuple ) -> Any: return super().test_attention_slicing_forward_pass() def lowercase ( self : str ) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Optional[int] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self : int ) -> Dict: __lowerCAmelCase = torch_device __lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pipe(generator=lowerCAmelCase_ , num_inference_steps=1_0_0 , audio_length_in_s=4.0_96 ) __lowerCAmelCase = output.audios __lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __lowerCAmelCase = np.array([-0.01_92, -0.02_31, -0.03_18, -0.00_59, 0.00_02, -0.00_20] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self : Tuple ) -> Optional[int]: __lowerCAmelCase = torch_device __lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pipe(generator=lowerCAmelCase_ , num_inference_steps=1_0_0 , audio_length_in_s=4.0_96 ) __lowerCAmelCase = output.audios __lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __lowerCAmelCase = np.array([-0.03_67, -0.04_88, -0.07_71, -0.05_25, -0.04_44, -0.03_41] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
53
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Optional[int]=8 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]=9_9 , lowerCAmelCase_ : List[Any]=1_6 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=3_6 , lowerCAmelCase_ : Optional[int]="gelu" , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : str=5_1_2 , lowerCAmelCase_ : List[str]=1_6 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Tuple=0.02 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : List[Any]=4 , lowerCAmelCase_ : List[str]=None , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope def lowercase ( self : Optional[int] ) -> Dict: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self : Any ) -> Union[str, Any]: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def lowercase ( self : Dict ) -> List[Any]: __lowerCAmelCase = self.get_config() __lowerCAmelCase = 3_0_0 return config def lowercase ( self : Optional[int] ) -> Union[str, Any]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = self.prepare_config_and_inputs() __lowerCAmelCase = True __lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = MraModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , ) -> Tuple: __lowerCAmelCase = True __lowerCAmelCase = MraModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , ) __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = MraForMaskedLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> str: __lowerCAmelCase = MraForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict ) -> Optional[Any]: __lowerCAmelCase = self.num_labels __lowerCAmelCase = MraForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict ) -> Any: __lowerCAmelCase = self.num_labels __lowerCAmelCase = MraForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] ) -> List[Any]: __lowerCAmelCase = self.num_choices __lowerCAmelCase = MraForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self : Tuple ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) a_ = False a_ = False a_ = False a_ = False a_ = () def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = MraModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : Tuple ) -> List[str]: self.config_tester.run_common_tests() def lowercase ( self : Optional[int] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase = type self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase_ ) def lowercase ( self : List[str] ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase_ ) def lowercase ( self : Tuple ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase_ ) @slow def lowercase ( self : Optional[int] ) -> Optional[int]: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = MraModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @unittest.skip(reason='MRA does not output attentions' ) def lowercase ( self : Optional[int] ) -> Tuple: return @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase ( self : Optional[Any] ) -> List[str]: __lowerCAmelCase = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) __lowerCAmelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : int ) -> Optional[int]: __lowerCAmelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) __lowerCAmelCase = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = 5_0_2_6_5 __lowerCAmelCase = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : Any ) -> List[str]: __lowerCAmelCase = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) __lowerCAmelCase = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = 5_0_2_6_5 __lowerCAmelCase = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
1
def a_ ( lowerCAmelCase_ : int = 200_0000 ): __lowerCAmelCase = [0 for i in range(n + 1 )] __lowerCAmelCase = 1 __lowerCAmelCase = 1 for i in range(2, int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i, n + 1, lowerCAmelCase_ ): __lowerCAmelCase = 1 __lowerCAmelCase = 0 for i in range(lowerCAmelCase_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"""{solution() = }""")
53
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _snake_case : Union[str, Any] = 2 class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , *, # begin keyword-only arguments lowerCAmelCase_ : str="<s>" , lowerCAmelCase_ : Dict="<pad>" , lowerCAmelCase_ : Any="</s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Optional[Any]=None , ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = bos, unk, pad, eos __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = {} __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = len(self.symbols ) def __eq__( self : Dict , lowerCAmelCase_ : Dict ) -> str: return self.indices == other.indices def __getitem__( self : List[Any] , lowerCAmelCase_ : int ) -> Union[str, Any]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : Tuple ) -> List[Any]: return len(self.symbols ) def __contains__( self : Optional[Any] , lowerCAmelCase_ : Dict ) -> Optional[int]: return sym in self.indices @classmethod def lowercase ( cls : Dict , lowerCAmelCase_ : str ) -> str: __lowerCAmelCase = cls() d.add_from_file(lowerCAmelCase_ ) return d def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : Any=False ) -> Optional[Any]: if word in self.indices and not overwrite: __lowerCAmelCase = self.indices[word] __lowerCAmelCase = self.count[idx] + n return idx else: __lowerCAmelCase = len(self.symbols ) __lowerCAmelCase = idx self.symbols.append(lowerCAmelCase_ ) self.count.append(lowerCAmelCase_ ) return idx def lowercase ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> Dict: return 0 def lowercase ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> int: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: with open(lowerCAmelCase_ , 'r' , encoding='utf-8' ) as fd: self.add_from_file(lowerCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(lowerCAmelCase_ ) ) return __lowerCAmelCase = f.readlines() __lowerCAmelCase = self._load_meta(lowerCAmelCase_ ) for line in lines[indices_start_line:]: try: __lowerCAmelCase , __lowerCAmelCase = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": __lowerCAmelCase = True __lowerCAmelCase , __lowerCAmelCase = line.rsplit(' ' , 1 ) else: __lowerCAmelCase = False __lowerCAmelCase = int(lowerCAmelCase_ ) __lowerCAmelCase = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(lowerCAmelCase_ ) ) self.add_symbol(lowerCAmelCase_ , n=lowerCAmelCase_ , overwrite=lowerCAmelCase_ ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def a_ ( lowerCAmelCase_ : List[str] ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} __lowerCAmelCase = dict((re.sub(R'@@$', '', lowerCAmelCase_ ), v) if k.endswith('@@' ) else (re.sub(R'$', '</w>', lowerCAmelCase_ ), v) for k, v in d.items() ) __lowerCAmelCase = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowerCAmelCase = d[k] # restore return da def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str] ): # prep if not os.path.exists(lowerCAmelCase_ ): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(lowerCAmelCase_, exist_ok=lowerCAmelCase_ ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'checkpoint.pt' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""" ) __lowerCAmelCase = torch.load(lowerCAmelCase_, map_location='cpu' ) __lowerCAmelCase = chkpt['cfg']['model'] # dicts __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'dict.txt' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {dict_file} does not exist!""" ) __lowerCAmelCase = Dictionary.load(lowerCAmelCase_ ) __lowerCAmelCase = rewrite_dict_keys(src_dict.indices ) __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, VOCAB_FILES_NAMES['vocab_file'] ) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # merges_file (bpecodes) __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'bpecodes' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""" ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(lowerCAmelCase_, lowerCAmelCase_ ) # model config __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'config.json' ) __lowerCAmelCase = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1E-12, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # tokenizer config __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F"""Generating {biogpt_tokenizer_config_file}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # model __lowerCAmelCase = chkpt['model'] # remove unneeded keys __lowerCAmelCase = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): __lowerCAmelCase = model_state_dict.pop(lowerCAmelCase_ ) else: __lowerCAmelCase = model_state_dict.pop(lowerCAmelCase_ ) __lowerCAmelCase = BioGptConfig.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = BioGptForCausalLM(lowerCAmelCase_ ) # check that it loads ok model_new.load_state_dict(lowerCAmelCase_ ) # save __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(lowerCAmelCase_, lowerCAmelCase_ ) print('Conversion is done!' ) if __name__ == "__main__": _snake_case : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : int = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
1
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef _snake_case : Union[str, Any] = ( 'This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' ) def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Union[str, Any] ): warnings.warn(lowerCAmelCase_, lowerCAmelCase_ ) requires_backends(lowerCAmelCase_, 'sklearn' ) return (preds == labels).mean() def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : List[str] ): warnings.warn(lowerCAmelCase_, lowerCAmelCase_ ) requires_backends(lowerCAmelCase_, 'sklearn' ) __lowerCAmelCase = simple_accuracy(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = fa_score(y_true=lowerCAmelCase_, y_pred=lowerCAmelCase_ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Optional[int] ): warnings.warn(lowerCAmelCase_, lowerCAmelCase_ ) requires_backends(lowerCAmelCase_, 'sklearn' ) __lowerCAmelCase = pearsonr(lowerCAmelCase_, lowerCAmelCase_ )[0] __lowerCAmelCase = spearmanr(lowerCAmelCase_, lowerCAmelCase_ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Union[str, Any] ): warnings.warn(lowerCAmelCase_, lowerCAmelCase_ ) requires_backends(lowerCAmelCase_, 'sklearn' ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), F"""Predictions and labels have mismatched lengths {len(lowerCAmelCase_ )} and {len(lowerCAmelCase_ )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(lowerCAmelCase_, lowerCAmelCase_ )} elif task_name == "sst-2": return {"acc": simple_accuracy(lowerCAmelCase_, lowerCAmelCase_ )} elif task_name == "mrpc": return acc_and_fa(lowerCAmelCase_, lowerCAmelCase_ ) elif task_name == "sts-b": return pearson_and_spearman(lowerCAmelCase_, lowerCAmelCase_ ) elif task_name == "qqp": return acc_and_fa(lowerCAmelCase_, lowerCAmelCase_ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(lowerCAmelCase_, lowerCAmelCase_ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(lowerCAmelCase_, lowerCAmelCase_ )} elif task_name == "qnli": return {"acc": simple_accuracy(lowerCAmelCase_, lowerCAmelCase_ )} elif task_name == "rte": return {"acc": simple_accuracy(lowerCAmelCase_, lowerCAmelCase_ )} elif task_name == "wnli": return {"acc": simple_accuracy(lowerCAmelCase_, lowerCAmelCase_ )} elif task_name == "hans": return {"acc": simple_accuracy(lowerCAmelCase_, lowerCAmelCase_ )} else: raise KeyError(lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : int, lowerCAmelCase_ : Union[str, Any] ): warnings.warn(lowerCAmelCase_, lowerCAmelCase_ ) requires_backends(lowerCAmelCase_, 'sklearn' ) if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError(F"""Predictions and labels have mismatched lengths {len(lowerCAmelCase_ )} and {len(lowerCAmelCase_ )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(lowerCAmelCase_, lowerCAmelCase_ )} else: raise KeyError(lowerCAmelCase_ )
53
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" a_ = """pixel_values""" a_ = False a_ = TimmBackboneConfig def __init__( self : Tuple , lowerCAmelCase_ : Any , **lowerCAmelCase_ : Optional[int] ) -> Optional[Any]: requires_backends(self , 'timm' ) super().__init__(lowerCAmelCase_ ) __lowerCAmelCase = config if config.backbone is None: raise ValueError('backbone is not set in the config. Please set it to a timm model name.' ) if config.backbone not in timm.list_models(): raise ValueError(f"""backbone {config.backbone} is not supported by timm.""" ) if hasattr(lowerCAmelCase_ , 'out_features' ) and config.out_features is not None: raise ValueError('out_features is not supported by TimmBackbone. Please use out_indices instead.' ) __lowerCAmelCase = getattr(lowerCAmelCase_ , 'use_pretrained_backbone' , lowerCAmelCase_ ) if pretrained is None: raise ValueError('use_pretrained_backbone is not set in the config. Please set it to True or False.' ) # We just take the final layer by default. This matches the default for the transformers models. __lowerCAmelCase = config.out_indices if getattr(lowerCAmelCase_ , 'out_indices' , lowerCAmelCase_ ) is not None else (-1,) __lowerCAmelCase = timm.create_model( config.backbone , pretrained=lowerCAmelCase_ , features_only=config.features_only , in_chans=config.num_channels , out_indices=lowerCAmelCase_ , **lowerCAmelCase_ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. __lowerCAmelCase = self._backbone.return_layers __lowerCAmelCase = {layer['module']: str(lowerCAmelCase_ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(lowerCAmelCase_ ) @classmethod def lowercase ( cls : int , lowerCAmelCase_ : Dict , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: requires_backends(cls , ['vision', 'timm'] ) from ...models.timm_backbone import TimmBackboneConfig __lowerCAmelCase = kwargs.pop('config' , TimmBackboneConfig() ) __lowerCAmelCase = kwargs.pop('use_timm_backbone' , lowerCAmelCase_ ) if not use_timm: raise ValueError('use_timm_backbone must be True for timm backbones' ) __lowerCAmelCase = kwargs.pop('num_channels' , config.num_channels ) __lowerCAmelCase = kwargs.pop('features_only' , config.features_only ) __lowerCAmelCase = kwargs.pop('use_pretrained_backbone' , config.use_pretrained_backbone ) __lowerCAmelCase = kwargs.pop('out_indices' , config.out_indices ) __lowerCAmelCase = TimmBackboneConfig( backbone=lowerCAmelCase_ , num_channels=lowerCAmelCase_ , features_only=lowerCAmelCase_ , use_pretrained_backbone=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , ) return super()._from_config(lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Tuple , lowerCAmelCase_ : int ) -> Dict: pass def lowercase ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Any=None , **lowerCAmelCase_ : Dict ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('Cannot output attentions for timm backbones at the moment' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone __lowerCAmelCase = self._all_layers __lowerCAmelCase = self._backbone(lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = self._return_layers __lowerCAmelCase = tuple(hidden_states[i] for i in self.out_indices ) else: __lowerCAmelCase = self._backbone(lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = None __lowerCAmelCase = tuple(lowerCAmelCase_ ) __lowerCAmelCase = tuple(lowerCAmelCase_ ) if hidden_states is not None else None if not return_dict: __lowerCAmelCase = (feature_maps,) if output_hidden_states: __lowerCAmelCase = output + (hidden_states,) return output return BackboneOutput(feature_maps=lowerCAmelCase_ , hidden_states=lowerCAmelCase_ , attentions=lowerCAmelCase_ )
53
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = 42 class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" @register_to_config def __init__( self : Union[str, Any] , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : Tuple[str] = ("DownEncoderBlock2D",) , lowerCAmelCase_ : Tuple[str] = ("UpDecoderBlock2D",) , lowerCAmelCase_ : Tuple[int] = (6_4,) , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : str = "silu" , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 3_2 , lowerCAmelCase_ : int = 2_5_6 , lowerCAmelCase_ : int = 3_2 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : float = 0.1_82_15 , lowerCAmelCase_ : str = "group" , ) -> List[Any]: super().__init__() # pass init params to Encoder __lowerCAmelCase = Encoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , down_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , double_z=lowerCAmelCase_ , ) __lowerCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels __lowerCAmelCase = nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) __lowerCAmelCase = VectorQuantizer(lowerCAmelCase_ , lowerCAmelCase_ , beta=0.25 , remap=lowerCAmelCase_ , sane_index_shape=lowerCAmelCase_ ) __lowerCAmelCase = nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) # pass init params to Decoder __lowerCAmelCase = Decoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , up_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , norm_type=lowerCAmelCase_ , ) @apply_forward_hook def lowercase ( self : Optional[int] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> VQEncoderOutput: __lowerCAmelCase = self.encoder(lowerCAmelCase_ ) __lowerCAmelCase = self.quant_conv(lowerCAmelCase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowerCAmelCase_ ) @apply_forward_hook def lowercase ( self : Optional[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.quantize(lowerCAmelCase_ ) else: __lowerCAmelCase = h __lowerCAmelCase = self.post_quant_conv(lowerCAmelCase_ ) __lowerCAmelCase = self.decoder(lowerCAmelCase_ , quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: __lowerCAmelCase = sample __lowerCAmelCase = self.encode(lowerCAmelCase_ ).latents __lowerCAmelCase = self.decode(lowerCAmelCase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ )
53
from __future__ import annotations def a_ ( lowerCAmelCase_ : list[float] ): if len(lowerCAmelCase_ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) __lowerCAmelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _snake_case : str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[str] = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[Any] = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys _snake_case : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
53
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Union[str, Any]=1_0 , lowerCAmelCase_ : List[str]=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase_ : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple="relu" , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : Optional[int]=None , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = embeddings_size __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_act __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = len(lowerCAmelCase_ ) def lowercase ( self : Optional[int] ) -> List[Any]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def lowercase ( self : Tuple ) -> List[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] ) -> str: __lowerCAmelCase = FlaxRegNetModel(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowercase ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int ) -> Tuple: __lowerCAmelCase = self.num_labels __lowerCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () a_ = False a_ = False a_ = False def lowercase ( self : Dict ) -> None: __lowerCAmelCase = FlaxRegNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : int ) -> Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : str ) -> Union[str, Any]: return def lowercase ( self : Dict ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def lowercase ( self : Union[str, Any] ) -> Any: pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def lowercase ( self : Tuple ) -> Tuple: pass def lowercase ( self : Optional[Any] ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: def check_hidden_states_output(lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : str ) -> str: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Dict ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('JIT Enabled' ): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCAmelCase = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def a_ ( ): __lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : Union[str, Any] ) -> Optional[Any]: return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def lowercase ( self : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCAmelCase_ , return_tensors='np' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) # verify the logits __lowerCAmelCase = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer _snake_case : List[str] = logging.get_logger(__name__) _snake_case : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _snake_case : Optional[Any] = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } _snake_case : Union[str, Any] = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } _snake_case : Dict = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } _snake_case : Tuple = { 'facebook/dpr-ctx_encoder-single-nq-base': 512, 'facebook/dpr-ctx_encoder-multiset-base': 512, } _snake_case : Tuple = { 'facebook/dpr-question_encoder-single-nq-base': 512, 'facebook/dpr-question_encoder-multiset-base': 512, } _snake_case : Dict = { 'facebook/dpr-reader-single-nq-base': 512, 'facebook/dpr-reader-multiset-base': 512, } _snake_case : Optional[int] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } _snake_case : int = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } _snake_case : Tuple = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP a_ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION a_ = DPRContextEncoderTokenizer class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP a_ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION a_ = DPRQuestionEncoderTokenizer _snake_case : Tuple = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) _snake_case : Optional[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) _snake_case : Any = R'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(_UpperCamelCase ) class _UpperCAmelCase : """simple docstring""" def __call__( self : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Union[bool, str] = False , lowerCAmelCase_ : Union[bool, str] = False , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Optional[bool] = None , **lowerCAmelCase_ : Optional[Any] , ) -> BatchEncoding: if titles is None and texts is None: return super().__call__( lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ , ) elif titles is None or texts is None: __lowerCAmelCase = titles if texts is None else texts return super().__call__( lowerCAmelCase_ , lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowerCAmelCase = titles if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else [titles] __lowerCAmelCase = texts if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else [texts] __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = questions if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else [questions] * n_passages assert len(lowerCAmelCase_ ) == len( lowerCAmelCase_ ), f"""There should be as many titles than texts but got {len(lowerCAmelCase_ )} titles and {len(lowerCAmelCase_ )} texts.""" __lowerCAmelCase = super().__call__(lowerCAmelCase_ , lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ )['input_ids'] __lowerCAmelCase = super().__call__(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ )['input_ids'] __lowerCAmelCase = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCAmelCase_ , lowerCAmelCase_ ) ] } if return_attention_mask is not False: __lowerCAmelCase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __lowerCAmelCase = attention_mask return self.pad(lowerCAmelCase_ , padding=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) def lowercase ( self : int , lowerCAmelCase_ : BatchEncoding , lowerCAmelCase_ : DPRReaderOutput , lowerCAmelCase_ : int = 1_6 , lowerCAmelCase_ : int = 6_4 , lowerCAmelCase_ : int = 4 , ) -> List[DPRSpanPrediction]: __lowerCAmelCase = reader_input['input_ids'] __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = reader_output[:3] __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = sorted(range(lowerCAmelCase_ ) , reverse=lowerCAmelCase_ , key=relevance_logits.__getitem__ ) __lowerCAmelCase = [] for doc_id in sorted_docs: __lowerCAmelCase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __lowerCAmelCase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __lowerCAmelCase = sequence_ids.index(self.pad_token_id ) else: __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCAmelCase_ , top_spans=lowerCAmelCase_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCAmelCase_ , start_index=lowerCAmelCase_ , end_index=lowerCAmelCase_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowerCAmelCase_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase ( self : Any , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , ) -> List[DPRSpanPrediction]: __lowerCAmelCase = [] for start_index, start_score in enumerate(lowerCAmelCase_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __lowerCAmelCase = sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : x[1] , reverse=lowerCAmelCase_ ) __lowerCAmelCase = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]""" __lowerCAmelCase = end_index - start_index + 1 assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCAmelCase_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCamelCase ) class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = READER_PRETRAINED_VOCAB_FILES_MAP a_ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = READER_PRETRAINED_INIT_CONFIGURATION a_ = ["""input_ids""", """attention_mask"""] a_ = DPRReaderTokenizer
53
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process _snake_case : Optional[int] = logging.getLogger(__name__) _snake_case : Dict = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) _snake_case : List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(_UpperCamelCase )} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a_ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def lowercase ( self : List[Any] ) -> List[Any]: if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path' ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ = field(default=_UpperCamelCase , metadata={"""help""": """The input training data file (a text file)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a_ = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a_ = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def lowercase ( self : int ) -> int: if self.train_file is not None: __lowerCAmelCase = self.train_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __lowerCAmelCase = self.validation_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Union[str, Any] ): with open(lowerCAmelCase_, 'r', encoding='utf-8' ) as f: __lowerCAmelCase = [json.loads(lowerCAmelCase_ ) for line in f.read().splitlines() if (len(lowerCAmelCase_ ) > 0 and not line.isspace())] assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) __lowerCAmelCase = {c: dataset[c] for c in dataset.column_names} __lowerCAmelCase = refs return Dataset.from_dict(lowerCAmelCase_ ) def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s', lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset(data_args.dataset_name, data_args.dataset_config_name ) if "validation" not in datasets.keys(): __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[:{data_args.validation_split_percentage}%]""", ) __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[{data_args.validation_split_percentage}%:]""", ) else: __lowerCAmelCase = {} if data_args.train_file is not None: __lowerCAmelCase = data_args.train_file if data_args.validation_file is not None: __lowerCAmelCase = data_args.validation_file __lowerCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": __lowerCAmelCase = 'text' __lowerCAmelCase = load_dataset(lowerCAmelCase_, data_files=lowerCAmelCase_ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.config_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: __lowerCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: __lowerCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path, from_tf=bool('.ckpt' in model_args.model_name_or_path ), config=lowerCAmelCase_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info('Training new model from scratch' ) __lowerCAmelCase = AutoModelForMaskedLM.from_config(lowerCAmelCase_ ) model.resize_token_embeddings(len(lowerCAmelCase_ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __lowerCAmelCase = datasets['train'].column_names else: __lowerCAmelCase = datasets['validation'].column_names __lowerCAmelCase = 'text' if 'text' in column_names else column_names[0] __lowerCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(lowerCAmelCase_ : str ): # Remove empty lines __lowerCAmelCase = [line for line in examples['text'] if len(lowerCAmelCase_ ) > 0 and not line.isspace()] return tokenizer(examples['text'], padding=lowerCAmelCase_, truncation=lowerCAmelCase_, max_length=data_args.max_seq_length ) __lowerCAmelCase = datasets.map( lowerCAmelCase_, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, remove_columns=[text_column_name], load_from_cache_file=not data_args.overwrite_cache, ) # Add the chinese references if provided if data_args.train_ref_file is not None: __lowerCAmelCase = add_chinese_references(tokenized_datasets['train'], data_args.train_ref_file ) if data_args.validation_ref_file is not None: __lowerCAmelCase = add_chinese_references( tokenized_datasets['validation'], data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __lowerCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: __lowerCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. __lowerCAmelCase = DataCollatorForWholeWordMask(tokenizer=lowerCAmelCase_, mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowerCAmelCase = Trainer( model=lowerCAmelCase_, args=lowerCAmelCase_, train_dataset=tokenized_datasets['train'] if training_args.do_train else None, eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None, tokenizer=lowerCAmelCase_, data_collator=lowerCAmelCase_, ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload __lowerCAmelCase = os.path.join(training_args.output_dir, 'train_results.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir, 'trainer_state.json' ) ) # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = math.exp(eval_output['eval_loss'] ) __lowerCAmelCase = perplexity __lowerCAmelCase = os.path.join(training_args.output_dir, 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def a_ ( lowerCAmelCase_ : Tuple ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
53
1
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int]=1_3 , lowerCAmelCase_ : Any=3_0 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : List[Any]=3 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Tuple=3_2 , lowerCAmelCase_ : Union[str, Any]=5 , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : Tuple=3_7 , lowerCAmelCase_ : str="gelu" , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Any=1_0 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : int=0.6 , lowerCAmelCase_ : Tuple=None , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = mask_ratio __lowerCAmelCase = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __lowerCAmelCase = (image_size // patch_size) ** 2 __lowerCAmelCase = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowercase ( self : Any ) -> Optional[Any]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase ( self : Any ) -> int: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowercase ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]: __lowerCAmelCase = ViTMAEModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : int ) -> List[str]: __lowerCAmelCase = ViTMAEForPreTraining(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ ) __lowerCAmelCase = (self.image_size // self.patch_size) ** 2 __lowerCAmelCase = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = ViTMAEForPreTraining(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(lowerCAmelCase_ ) __lowerCAmelCase = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowercase ( self : Tuple ) -> List[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () a_ = {"""feature-extraction""": ViTMAEModel} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False def lowercase ( self : str ) -> Optional[Any]: __lowerCAmelCase = ViTMAEModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : List[Any] ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def lowercase ( self : List[str] ) -> Dict: pass def lowercase ( self : List[str] ) -> List[str]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear ) ) def lowercase ( self : int ) -> int: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> Any: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> int: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] ) -> List[Any]: # make masks reproducible np.random.seed(2 ) __lowerCAmelCase = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) __lowerCAmelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __lowerCAmelCase = pt_noise super().check_pt_tf_models(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Tuple ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs[0].cpu().numpy() __lowerCAmelCase = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = model_class.from_pretrained(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) # Make sure we don't have nans __lowerCAmelCase = after_outputs[0].cpu().numpy() __lowerCAmelCase = 0 __lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase_ , 1e-5 ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def lowercase ( self : Dict ) -> Optional[Any]: pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def lowercase ( self : str ) -> List[Any]: pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def lowercase ( self : int ) -> List[str]: pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def lowercase ( self : List[str] ) -> Optional[Any]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : List[Any] ) -> Any: pass @slow def lowercase ( self : Dict ) -> List[Any]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = ViTMAEModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def a_ ( ): __lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : Tuple ) -> List[Any]: return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def lowercase ( self : Optional[int] ) -> Union[str, Any]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) __lowerCAmelCase = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ).to(lowerCAmelCase_ ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __lowerCAmelCase = ViTMAEConfig() __lowerCAmelCase = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __lowerCAmelCase = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ , noise=torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ ) ) # verify the logits __lowerCAmelCase = torch.Size((1, 1_9_6, 7_6_8) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowerCAmelCase_ ) , atol=1e-4 ) )
53
def a_ ( lowerCAmelCase_ : int = 200_0000 ): __lowerCAmelCase = [0 for i in range(n + 1 )] __lowerCAmelCase = 1 __lowerCAmelCase = 1 for i in range(2, int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i, n + 1, lowerCAmelCase_ ): __lowerCAmelCase = 1 __lowerCAmelCase = 0 for i in range(lowerCAmelCase_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"""{solution() = }""")
53
1
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass _snake_case : Dict = (3, 9, -11, 0, 7, 5, 1, -1) _snake_case : List[str] = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = 42 a_ = 42 class _UpperCAmelCase : """simple docstring""" def __init__( self : int , lowerCAmelCase_ : Iterable[int] ) -> None: __lowerCAmelCase = None for i in sorted(lowerCAmelCase_ , reverse=lowerCAmelCase_ ): __lowerCAmelCase = Node(lowerCAmelCase_ , self.head ) def __iter__( self : List[Any] ) -> Iterator[int]: __lowerCAmelCase = self.head while node: yield node.data __lowerCAmelCase = node.next_node def __len__( self : str ) -> int: return sum(1 for _ in self ) def __str__( self : str ) -> str: return " -> ".join([str(lowerCAmelCase_ ) for node in self] ) def a_ ( lowerCAmelCase_ : SortedLinkedList, lowerCAmelCase_ : SortedLinkedList ): return SortedLinkedList(list(lowerCAmelCase_ ) + list(lowerCAmelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() _snake_case : Optional[Any] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
53
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _snake_case : Tuple = logging.getLogger() _snake_case : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : Any , lowerCAmelCase_ : Dict ) -> Optional[int]: os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowerCAmelCase = {'source': 'What is love ?', 'target': 'life'} __lowerCAmelCase = {'train': 1_2, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: __lowerCAmelCase = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(lowerCAmelCase_ , f"""{split}.{field}""" ) , 'w' ) as f: f.write(lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : str = "pytorch" ) -> List[str]: __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'output' ) __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'data' ) self._create_dummy_data(data_dir=lowerCAmelCase_ ) __lowerCAmelCase = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) __lowerCAmelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowerCAmelCase_ , env=self.get_env() ) __lowerCAmelCase = os.path.join(lowerCAmelCase_ , 'metrics.json' ) with open(lowerCAmelCase_ ) as f: __lowerCAmelCase = json.load(lowerCAmelCase_ ) return result @require_torch_gpu def lowercase ( self : str ) -> int: __lowerCAmelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def lowercase ( self : List[str] ) -> Dict: __lowerCAmelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def lowercase ( self : int ) -> Tuple: __lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def lowercase ( self : List[Any] ) -> str: __lowerCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
53
1
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _snake_case : Union[str, Any] = 2 class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , *, # begin keyword-only arguments lowerCAmelCase_ : str="<s>" , lowerCAmelCase_ : Dict="<pad>" , lowerCAmelCase_ : Any="</s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Optional[Any]=None , ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = bos, unk, pad, eos __lowerCAmelCase = [] __lowerCAmelCase = [] __lowerCAmelCase = {} __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = self.add_symbol(lowerCAmelCase_ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(lowerCAmelCase_ ) __lowerCAmelCase = len(self.symbols ) def __eq__( self : Dict , lowerCAmelCase_ : Dict ) -> str: return self.indices == other.indices def __getitem__( self : List[Any] , lowerCAmelCase_ : int ) -> Union[str, Any]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : Tuple ) -> List[Any]: return len(self.symbols ) def __contains__( self : Optional[Any] , lowerCAmelCase_ : Dict ) -> Optional[int]: return sym in self.indices @classmethod def lowercase ( cls : Dict , lowerCAmelCase_ : str ) -> str: __lowerCAmelCase = cls() d.add_from_file(lowerCAmelCase_ ) return d def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : Any=False ) -> Optional[Any]: if word in self.indices and not overwrite: __lowerCAmelCase = self.indices[word] __lowerCAmelCase = self.count[idx] + n return idx else: __lowerCAmelCase = len(self.symbols ) __lowerCAmelCase = idx self.symbols.append(lowerCAmelCase_ ) self.count.append(lowerCAmelCase_ ) return idx def lowercase ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> Dict: return 0 def lowercase ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> int: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: with open(lowerCAmelCase_ , 'r' , encoding='utf-8' ) as fd: self.add_from_file(lowerCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(lowerCAmelCase_ ) ) return __lowerCAmelCase = f.readlines() __lowerCAmelCase = self._load_meta(lowerCAmelCase_ ) for line in lines[indices_start_line:]: try: __lowerCAmelCase , __lowerCAmelCase = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": __lowerCAmelCase = True __lowerCAmelCase , __lowerCAmelCase = line.rsplit(' ' , 1 ) else: __lowerCAmelCase = False __lowerCAmelCase = int(lowerCAmelCase_ ) __lowerCAmelCase = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(lowerCAmelCase_ ) ) self.add_symbol(lowerCAmelCase_ , n=lowerCAmelCase_ , overwrite=lowerCAmelCase_ ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def a_ ( lowerCAmelCase_ : List[str] ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} __lowerCAmelCase = dict((re.sub(R'@@$', '', lowerCAmelCase_ ), v) if k.endswith('@@' ) else (re.sub(R'$', '</w>', lowerCAmelCase_ ), v) for k, v in d.items() ) __lowerCAmelCase = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowerCAmelCase = d[k] # restore return da def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str] ): # prep if not os.path.exists(lowerCAmelCase_ ): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(lowerCAmelCase_, exist_ok=lowerCAmelCase_ ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'checkpoint.pt' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""" ) __lowerCAmelCase = torch.load(lowerCAmelCase_, map_location='cpu' ) __lowerCAmelCase = chkpt['cfg']['model'] # dicts __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'dict.txt' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {dict_file} does not exist!""" ) __lowerCAmelCase = Dictionary.load(lowerCAmelCase_ ) __lowerCAmelCase = rewrite_dict_keys(src_dict.indices ) __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, VOCAB_FILES_NAMES['vocab_file'] ) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # merges_file (bpecodes) __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'bpecodes' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""" ) __lowerCAmelCase = os.path.join(lowerCAmelCase_, VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(lowerCAmelCase_, lowerCAmelCase_ ) # model config __lowerCAmelCase = os.path.join(lowerCAmelCase_, 'config.json' ) __lowerCAmelCase = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1E-12, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # tokenizer config __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F"""Generating {biogpt_tokenizer_config_file}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, ensure_ascii=lowerCAmelCase_, indent=lowerCAmelCase_ ) ) # model __lowerCAmelCase = chkpt['model'] # remove unneeded keys __lowerCAmelCase = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): __lowerCAmelCase = model_state_dict.pop(lowerCAmelCase_ ) else: __lowerCAmelCase = model_state_dict.pop(lowerCAmelCase_ ) __lowerCAmelCase = BioGptConfig.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = BioGptForCausalLM(lowerCAmelCase_ ) # check that it loads ok model_new.load_state_dict(lowerCAmelCase_ ) # save __lowerCAmelCase = os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(lowerCAmelCase_, lowerCAmelCase_ ) print('Conversion is done!' ) if __name__ == "__main__": _snake_case : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : int = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]="resnet50" , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Optional[Any]=True , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = out_indices if out_indices is not None else [4] __lowerCAmelCase = stage_names __lowerCAmelCase = out_features __lowerCAmelCase = backbone __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = use_pretrained_backbone __lowerCAmelCase = is_training def lowercase ( self : List[str] ) -> Any: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = self.get_config() return config, pixel_values def lowercase ( self : List[Any] ) -> Union[str, Any]: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase ( self : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ) -> int: __lowerCAmelCase = TimmBackbone(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(lowerCAmelCase_ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 1_4, 1_4) , ) def lowercase ( self : List[str] ) -> str: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = (TimmBackbone,) if is_torch_available() else () a_ = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Tuple ) -> int: __lowerCAmelCase = TimmBackboneModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def lowercase ( self : Dict ) -> List[str]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Union[str, Any] ) -> Optional[int]: __lowerCAmelCase = 'resnet18' __lowerCAmelCase = 'microsoft/resnet-18' __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , use_timm_backbone=lowerCAmelCase_ , out_indices=[1, 2, 3] ) __lowerCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase_ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def lowercase ( self : List[str] ) -> Tuple: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def lowercase ( self : Dict ) -> int: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def lowercase ( self : str ) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase ( self : Any ) -> str: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def lowercase ( self : Optional[int] ) -> Optional[Any]: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def lowercase ( self : Dict ) -> Any: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Any ) -> Optional[int]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase ( self : Union[str, Any] ) -> Tuple: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def lowercase ( self : List[str] ) -> Optional[int]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Dict ) -> int: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def lowercase ( self : Tuple ) -> List[str]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def lowercase ( self : int ) -> Optional[int]: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def lowercase ( self : Union[str, Any] ) -> str: pass @unittest.skip('Safetensors is not supported by timm.' ) def lowercase ( self : Dict ) -> str: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : List[str] ) -> Optional[Any]: pass def lowercase ( self : Union[str, Any] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = self.has_attentions # no need to test all models as different heads yield the same functionality __lowerCAmelCase = self.all_model_classes[0] __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = model(**lowerCAmelCase_ ) __lowerCAmelCase = outputs[0][-1] # Encoder-/Decoder-only models __lowerCAmelCase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowerCAmelCase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowerCAmelCase_ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) __lowerCAmelCase = None __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowerCAmelCase = copy.deepcopy(lowerCAmelCase_ ) __lowerCAmelCase = False __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(**lowerCAmelCase_ )
53
1