code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
class lowercase_ : def __init__( self) -> str: a__ =0 a__ =0 a__ ={} def __UpperCamelCase ( self , lowercase_) -> Dict: if vertex not in self.adjacency: a__ ={} self.num_vertices += 1 def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> Dict: self.add_vertex(lowercase_) self.add_vertex(lowercase_) if head == tail: return a__ =weight a__ =weight def __UpperCamelCase ( self) -> Optional[int]: a__ =self.get_edges() for edge in edges: a__ , a__ , a__ =edge edges.remove((tail, head, weight)) for i in range(len(lowercase_)): a__ =list(edges[i]) edges.sort(key=lambda lowercase_: e[2]) for i in range(len(lowercase_) - 1): if edges[i][2] >= edges[i + 1][2]: a__ =edges[i][2] + 1 for edge in edges: a__ , a__ , a__ =edge a__ =weight a__ =weight def __str__( self) -> Tuple: a__ ='' for tail in self.adjacency: for head in self.adjacency[tail]: a__ =self.adjacency[head][tail] string += F"""{head} -> {tail} == {weight}\n""" return string.rstrip('\n') def __UpperCamelCase ( self) -> Union[str, Any]: a__ =[] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail])) return output def __UpperCamelCase ( self) -> int: return self.adjacency.keys() @staticmethod def __UpperCamelCase ( lowercase_=None , lowercase_=None) -> Dict: a__ =Graph() if vertices is None: a__ =[] if edges is None: a__ =[] for vertex in vertices: g.add_vertex(lowercase_) for edge in edges: g.add_edge(*lowercase_) return g class lowercase_ : def __init__( self) -> Tuple: a__ ={} a__ ={} def __len__( self) -> Dict: return len(self.parent) def __UpperCamelCase ( self , lowercase_) -> Dict: if item in self.parent: return self.find(lowercase_) a__ =item a__ =0 return item def __UpperCamelCase ( self , lowercase_) -> Optional[Any]: if item not in self.parent: return self.make_set(lowercase_) if item != self.parent[item]: a__ =self.find(self.parent[item]) return self.parent[item] def __UpperCamelCase ( self , lowercase_ , lowercase_) -> Dict: a__ =self.find(lowercase_) a__ =self.find(lowercase_) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: a__ =roota return roota if self.rank[roota] < self.rank[roota]: a__ =roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 a__ =roota return roota return None @staticmethod def __UpperCamelCase ( lowercase_) -> Optional[Any]: a__ =graph.num_vertices a__ =Graph.UnionFind() a__ =[] while num_components > 1: a__ ={} for vertex in graph.get_vertices(): a__ =-1 a__ =graph.get_edges() for edge in edges: a__ , a__ , a__ =edge edges.remove((tail, head, weight)) for edge in edges: a__ , a__ , a__ =edge a__ =union_find.find(lowercase_) a__ =union_find.find(lowercase_) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: a__ =[head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: a__ =[head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: a__ , a__ , a__ =cheap_edge[vertex] if union_find.find(lowercase_) != union_find.find(lowercase_): union_find.union(lowercase_ , lowercase_) mst_edges.append(cheap_edge[vertex]) a__ =num_components - 1 a__ =Graph.build(edges=lowercase_) return mst
20
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowercase : List[Any] =WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =test_results.split(" " ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. UpperCAmelCase_ =expressions[-2] if "=" in expressions[-1] else expressions[-1] for i, expression in enumerate(lowercase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} UpperCAmelCase_ =None UpperCAmelCase_ =False for line in failures_short_lines.split("\n" ): if re.search(R"_ \[doctest\]" , lowercase__ ): UpperCAmelCase_ =True UpperCAmelCase_ =line.split(" " )[2] elif in_error and not line.split(" " )[0].isdigit(): UpperCAmelCase_ =line UpperCAmelCase_ =False return failures class A : def __init__( self: Optional[Any] , _lowerCAmelCase: str , _lowerCAmelCase: Dict ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =title UpperCAmelCase_ =doc_test_results["time_spent"].split("," )[0] UpperCAmelCase_ =doc_test_results["success"] UpperCAmelCase_ =doc_test_results["failures"] UpperCAmelCase_ =self.n_success + self.n_failures # Failures and success of the modeling tests UpperCAmelCase_ =doc_test_results @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self._time_spent] UpperCAmelCase_ =0 for time in time_spent: UpperCAmelCase_ =time.split(":" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCAmelCase ) == 1: UpperCAmelCase_ =[0, 0, time_parts[0]] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'{int(_lowerCAmelCase )}h{int(_lowerCAmelCase )}m{int(_lowerCAmelCase )}s' @property def lowerCAmelCase__ ( self: int ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' F' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ =40 UpperCAmelCase_ ={k: v["failed"] for k, v in doc_test_results.items() if isinstance(_lowerCAmelCase , _lowerCAmelCase )} UpperCAmelCase_ ="" for category, failures in category_failures.items(): if len(_lowerCAmelCase ) == 0: continue if report != "": report += "\n\n" report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCAmelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'The following examples had failures:\n\n\n{report}\n', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCAmelCase ) @staticmethod def lowerCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =[ { "type": "section", "text": { "type": "plain_text", "text": "There was an issue running the tests.", }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(_lowerCAmelCase )} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(self.payload )} ) ) UpperCAmelCase_ =F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else "All tests passed." UpperCAmelCase_ =client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ ="" for key, value in failures.items(): UpperCAmelCase_ =value[:200] + " [Truncated]" if len(_lowerCAmelCase ) > 250 else value failures_text += F'*{key}*\n_{value}_\n\n' UpperCAmelCase_ =job_name UpperCAmelCase_ ={"type": "section", "text": {"type": "mrkdwn", "text": text}} if job_link is not None: UpperCAmelCase_ ={ "type": "button", "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True}, "url": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowerCAmelCase__ ( self: Any ) -> List[str]: '''simple docstring''' if self.thread_ts is None: raise ValueError("Can only post reply if a post has been made." ) UpperCAmelCase_ =self.doc_test_results.pop("job_link" ) self.doc_test_results.pop("failures" ) self.doc_test_results.pop("success" ) self.doc_test_results.pop("time_spent" ) UpperCAmelCase_ =sorted(self.doc_test_results.items() , key=lambda _lowerCAmelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result["failures"] ): UpperCAmelCase_ =F'*Num failures* :{len(job_result["failed"] )} \n' UpperCAmelCase_ =job_result["failures"] UpperCAmelCase_ =self.get_reply_blocks(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , text=_lowerCAmelCase ) print("Sending the following reply" ) print(json.dumps({"blocks": blocks} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=F'Results for {job}' , blocks=_lowerCAmelCase , thread_ts=self.thread_ts["ts"] , ) time.sleep(1 ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =os.environ["GITHUB_RUN_ID"] UpperCAmelCase_ =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' UpperCAmelCase_ =requests.get(lowercase__ ).json() UpperCAmelCase_ ={} try: jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) UpperCAmelCase_ =math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(lowercase__ ): UpperCAmelCase_ =requests.get(url + F'&page={i + 2}' ).json() jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return jobs except Exception as e: print("Unknown error, could not fetch links." , lowercase__ ) return {} def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} if os.path.exists(lowercase__ ): UpperCAmelCase_ =os.listdir(lowercase__ ) for file in files: try: with open(os.path.join(lowercase__ , lowercase__ ) , encoding="utf-8" ) as f: UpperCAmelCase_ =f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(lowercase__ , lowercase__ )}.' ) from e return _artifact def a__ ( ): '''simple docstring''' class A : def __init__( self: Tuple , _lowerCAmelCase: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =name UpperCAmelCase_ =[] def __str__( self: Optional[int] ) -> Tuple: '''simple docstring''' return self.name def lowerCAmelCase__ ( self: int , _lowerCAmelCase: str ) -> List[Any]: '''simple docstring''' self.paths.append({"name": self.name, "path": path} ) UpperCAmelCase_ ={} UpperCAmelCase_ =filter(os.path.isdir , os.listdir() ) for directory in directories: UpperCAmelCase_ =directory if artifact_name not in _available_artifacts: UpperCAmelCase_ =Artifact(lowercase__ ) _available_artifacts[artifact_name].add_path(lowercase__ ) return _available_artifacts if __name__ == "__main__": __lowercase : str =get_job_links() __lowercase : Dict =retrieve_available_artifacts() __lowercase : Optional[int] =collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowercase : Any ={ v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job __lowercase : Tuple =github_actions_job_links.get("""run_doctests""") __lowercase : int =available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] __lowercase : str =retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: __lowercase , __lowercase , __lowercase : Tuple =handle_test_results(artifact["""stats"""]) __lowercase : int =failed __lowercase : int =success __lowercase : str =time_spent[1:-1] + """, """ __lowercase : str =extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): __lowercase : int =line.replace("""FAILED """, """""") __lowercase : List[Any] =line.split()[0].replace("""\n""", """""") if "::" in line: __lowercase , __lowercase : Any =line.split("""::""") else: __lowercase , __lowercase : Dict =line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowercase : Optional[int] =docs[file_regex] doc_test_results[category]["failed"].append(test) __lowercase : Tuple =all_failures[test] if test in all_failures else """N/A""" __lowercase : Optional[int] =failure break __lowercase : Optional[int] =Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
54
0
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): __magic_name__ : Dict ={ """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } __magic_name__ , __magic_name__ : List[Any] =input_paths_and_base_extractors[compression_format] if input_path is None: __magic_name__ : Optional[Any] =F"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCamelCase ) assert base_extractor.is_extractable(lowerCamelCase ) __magic_name__ : List[str] =tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(lowerCamelCase , lowerCamelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __magic_name__ : Any =file_path.read_text(encoding="""utf-8""" ) else: __magic_name__ : Any =output_path.read_text(encoding="""utf-8""" ) __magic_name__ : Tuple =text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): __magic_name__ : List[str] ={ """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } __magic_name__ : int =input_paths[compression_format] if input_path is None: __magic_name__ : List[Any] =F"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCamelCase ) __magic_name__ : Optional[int] =Extractor.infer_extractor_format(lowerCamelCase ) assert extractor_format is not None __magic_name__ : List[str] =tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(lowerCamelCase , lowerCamelCase , lowerCamelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __magic_name__ : List[str] =file_path.read_text(encoding="""utf-8""" ) else: __magic_name__ : Optional[int] =output_path.read_text(encoding="""utf-8""" ) __magic_name__ : str =text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): import tarfile __magic_name__ : Union[str, Any] =tmp_path / """data_dot_dot""" directory.mkdir() __magic_name__ : List[str] =directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(lowerCamelCase , """w""" ) as f: f.add(lowerCamelCase , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def lowerCAmelCase_ ( lowerCamelCase ): import tarfile __magic_name__ : Any =tmp_path / """data_sym_link""" directory.mkdir() __magic_name__ : Dict =directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=lowerCamelCase ) with tarfile.TarFile(lowerCamelCase , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : int ={ """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } __magic_name__ : Optional[int] =insecure_tar_files[insecure_tar_file] __magic_name__ : str =tmp_path / """extracted""" TarExtractor.extract(lowerCamelCase , lowerCamelCase ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def lowerCAmelCase_ ( lowerCamelCase ): # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number __magic_name__ : List[str] =tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 __magic_name__ : Any =( B"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" B"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" B"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" B"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(lowerCamelCase ) assert zipfile.is_zipfile(str(lowerCamelCase ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(lowerCamelCase ) # but we're right
21
def a__ ( lowercase__ = 2_0_0 ): '''simple docstring''' UpperCAmelCase_ =[1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] UpperCAmelCase_ =[0] * (pence + 1) UpperCAmelCase_ =1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowercase__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
54
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def snake_case_ (UpperCamelCase : Union[str, Any] ): '''simple docstring''' _a = SwinvaConfig() _a = swinva_name.split('''_''' ) _a = name_split[1] if "to" in name_split[3]: _a = int(name_split[3][-3:] ) else: _a = int(name_split[3] ) if "to" in name_split[2]: _a = int(name_split[2][-2:] ) else: _a = int(name_split[2][6:] ) if model_size == "tiny": _a = 96 _a = (2, 2, 6, 2) _a = (3, 6, 12, 24) elif model_size == "small": _a = 96 _a = (2, 2, 18, 2) _a = (3, 6, 12, 24) elif model_size == "base": _a = 128 _a = (2, 2, 18, 2) _a = (4, 8, 16, 32) else: _a = 192 _a = (2, 2, 18, 2) _a = (6, 12, 24, 48) if "to" in swinva_name: _a = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): _a = 2_1841 _a = '''huggingface/label-files''' _a = '''imagenet-22k-id2label.json''' _a = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) _a = {int(UpperCamelCase ): v for k, v in idalabel.items()} _a = idalabel _a = {v: k for k, v in idalabel.items()} else: _a = 1000 _a = '''huggingface/label-files''' _a = '''imagenet-1k-id2label.json''' _a = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) _a = {int(UpperCamelCase ): v for k, v in idalabel.items()} _a = idalabel _a = {v: k for k, v in idalabel.items()} _a = img_size _a = num_classes _a = embed_dim _a = depths _a = num_heads _a = window_size return config def snake_case_ (UpperCamelCase : str ): '''simple docstring''' if "patch_embed.proj" in name: _a = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _a = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: _a = '''encoder.''' + name if "attn.proj" in name: _a = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: _a = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _a = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _a = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _a = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _a = name.replace('''mlp.fc2''' , '''output.dense''' ) if "q_bias" in name: _a = name.replace('''q_bias''' , '''query.bias''' ) if "k_bias" in name: _a = name.replace('''k_bias''' , '''key.bias''' ) if "v_bias" in name: _a = name.replace('''v_bias''' , '''value.bias''' ) if "cpb_mlp" in name: _a = name.replace('''cpb_mlp''' , '''continuous_position_bias_mlp''' ) if name == "norm.weight": _a = '''layernorm.weight''' if name == "norm.bias": _a = '''layernorm.bias''' if "head" in name: _a = name.replace('''head''' , '''classifier''' ) else: _a = '''swinv2.''' + name return name def snake_case_ (UpperCamelCase : int , UpperCamelCase : Optional[Any] ): '''simple docstring''' for key in orig_state_dict.copy().keys(): _a = orig_state_dict.pop(UpperCamelCase ) if "mask" in key: continue elif "qkv" in key: _a = key.split('''.''' ) _a = int(key_split[1] ) _a = int(key_split[3] ) _a = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _a = val[:dim, :] _a = val[dim : dim * 2, :] _a = val[-dim:, :] else: _a = val[:dim] _a = val[ dim : dim * 2 ] _a = val[-dim:] else: _a = val return orig_state_dict def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : List[Any] ): '''simple docstring''' _a = timm.create_model(UpperCamelCase , pretrained=UpperCamelCase ) timm_model.eval() _a = get_swinva_config(UpperCamelCase ) _a = SwinvaForImageClassification(UpperCamelCase ) model.eval() _a = convert_state_dict(timm_model.state_dict() , UpperCamelCase ) model.load_state_dict(UpperCamelCase ) _a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swinva_name.replace('''_''' , '''-''' ) ) ) _a = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ) _a = image_processor(images=UpperCamelCase , return_tensors='''pt''' ) _a = timm_model(inputs['''pixel_values'''] ) _a = model(**UpperCamelCase ).logits assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) print(f'Saving model {swinva_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCamelCase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCamelCase ) model.push_to_hub( repo_path_or_name=Path(UpperCamelCase , UpperCamelCase ) , organization='''nandwalritik''' , commit_message='''Add model''' , ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swinv2_name', default='swinv2_tiny_patch4_window8_256', type=str, help='Name of the Swinv2 timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _snake_case : int = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
22
import sys def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] for chain_length in range(2 , lowercase__ ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ =a + chain_length - 1 UpperCAmelCase_ =sys.maxsize for c in range(lowercase__ , lowercase__ ): UpperCAmelCase_ =( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ =cost UpperCAmelCase_ =c return matrix, sol def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if i == j: print("A" + str(lowercase__ ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(lowercase__ , lowercase__ , optimal_solution[i][j] ) print_optiomal_solution(lowercase__ , optimal_solution[i][j] + 1 , lowercase__ ) print(")" , end=" " ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] UpperCAmelCase_ =len(lowercase__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ =matrix_chain_order(lowercase__ ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowercase__ , 1 , n - 1 ) if __name__ == "__main__": main()
54
0
def _snake_case (__lowercase , __lowercase): UpperCamelCase_ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _snake_case (__lowercase , __lowercase , __lowercase): UpperCamelCase_ = 0 while b > 0: if b & 1: UpperCamelCase_ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
23
from math import loga def a__ ( lowercase__ ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(lowercase__ , lowercase__ ): raise TypeError("Input value must be a 'int' type" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
54
0
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('''.''') def _UpperCamelCase (_lowerCamelCase : Union[str, Any] )-> Dict: '''simple docstring''' __snake_case = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' f'''{test_file} instead.''' ) __snake_case = components[-1] if not test_fn.endswith('''py''' ): raise ValueError(f'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( f'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) __snake_case = components[:-1] + [test_fn.replace('''.py''' , '''''' )] __snake_case = '''.'''.join(_lowerCamelCase ) return test_module_path def _UpperCamelCase (_lowerCamelCase : Union[str, Any] )-> Dict: '''simple docstring''' __snake_case = get_module_path(_lowerCamelCase ) __snake_case = importlib.import_module(_lowerCamelCase ) return test_module def _UpperCamelCase (_lowerCamelCase : int )-> List[str]: '''simple docstring''' __snake_case = [] __snake_case = get_test_module(_lowerCamelCase ) for attr in dir(_lowerCamelCase ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(_lowerCamelCase , _lowerCamelCase ) ) # sort with class names return sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x.__name__ ) def _UpperCamelCase (_lowerCamelCase : Optional[Any] )-> List[Any]: '''simple docstring''' __snake_case = [] __snake_case = get_test_module(_lowerCamelCase ) for attr in dir(_lowerCamelCase ): __snake_case = getattr(_lowerCamelCase , _lowerCamelCase ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). __snake_case = getattr(_lowerCamelCase , '''all_model_classes''' , [] ) if len(_lowerCamelCase ) > 0: test_classes.append(_lowerCamelCase ) # sort with class names return sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x.__name__ ) def _UpperCamelCase (_lowerCamelCase : List[str] )-> str: '''simple docstring''' __snake_case = get_test_classes(_lowerCamelCase ) __snake_case = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x.__name__ ) def _UpperCamelCase (_lowerCamelCase : Tuple )-> Any: '''simple docstring''' __snake_case = test_class() if hasattr(_lowerCamelCase , '''setUp''' ): test.setUp() __snake_case = None if hasattr(_lowerCamelCase , '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: __snake_case = test.model_tester.__class__ return model_tester def _UpperCamelCase (_lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any] )-> str: '''simple docstring''' __snake_case = get_test_classes(_lowerCamelCase ) __snake_case = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(_lowerCamelCase ) # sort with class names return sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x.__name__ ) def _UpperCamelCase (_lowerCamelCase : List[Any] , _lowerCamelCase : int )-> Optional[int]: '''simple docstring''' __snake_case = get_test_classes_for_model(_lowerCamelCase , _lowerCamelCase ) __snake_case = [] for test_class in test_classes: __snake_case = get_model_tester_from_test_class(_lowerCamelCase ) if tester_class is not None: tester_classes.append(_lowerCamelCase ) # sort with class names return sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x.__name__ ) def _UpperCamelCase (_lowerCamelCase : Union[str, Any] )-> Union[str, Any]: '''simple docstring''' __snake_case = get_test_classes(_lowerCamelCase ) __snake_case = {test_class: get_model_tester_from_test_class(_lowerCamelCase ) for test_class in test_classes} return test_tester_mapping def _UpperCamelCase (_lowerCamelCase : Optional[Any] )-> Union[str, Any]: '''simple docstring''' __snake_case = get_model_classes(_lowerCamelCase ) __snake_case = { model_class: get_test_classes_for_model(_lowerCamelCase , _lowerCamelCase ) for model_class in model_classes } return model_test_mapping def _UpperCamelCase (_lowerCamelCase : Optional[Any] )-> Dict: '''simple docstring''' __snake_case = get_model_classes(_lowerCamelCase ) __snake_case = { model_class: get_tester_classes_for_model(_lowerCamelCase , _lowerCamelCase ) for model_class in model_classes } return model_to_tester_mapping def _UpperCamelCase (_lowerCamelCase : Optional[Any] )-> str: '''simple docstring''' if isinstance(_lowerCamelCase , _lowerCamelCase ): return o elif isinstance(_lowerCamelCase , _lowerCamelCase ): return o.__name__ elif isinstance(_lowerCamelCase , (list, tuple) ): return [to_json(_lowerCamelCase ) for x in o] elif isinstance(_lowerCamelCase , _lowerCamelCase ): return {to_json(_lowerCamelCase ): to_json(_lowerCamelCase ) for k, v in o.items()} else: return o
24
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __lowercase : Union[str, Any] =logging.get_logger(__name__) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" ) if "model" in sd.keys(): UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" )["model"] # pop unnecessary weights UpperCAmelCase_ =[ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(lowercase__ ) UpperCAmelCase_ ={ "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase_ =sd.pop(lowercase__ ) UpperCAmelCase_ =list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase_ =sd[key] # We split QKV in separate Q,K,V UpperCAmelCase_ =key.replace(".qkv_proj." , ".q_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".k_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".v_proj." ) UpperCAmelCase_ =value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =torch.split(lowercase__ , depth // 3 , dim=0 ) UpperCAmelCase_ =q UpperCAmelCase_ =k UpperCAmelCase_ =v del sd[key] return sd @torch.no_grad() def a__ ( lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =load_checkpoint(lowercase__ ) if config is not None: UpperCAmelCase_ =OPTConfig.from_pretrained(lowercase__ ) else: UpperCAmelCase_ =OPTConfig() UpperCAmelCase_ =OPTModel(lowercase__ ).half().eval() model.load_state_dict(lowercase__ ) # Check results Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": __lowercase : List[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") __lowercase : str =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
54
0
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : List[Any] = torch.load(_a , map_location="cpu") if "model" in sd.keys(): SCREAMING_SNAKE_CASE : Any = torch.load(_a , map_location="cpu")["model"] # pop unnecessary weights SCREAMING_SNAKE_CASE : str = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(_a) SCREAMING_SNAKE_CASE : Any = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: SCREAMING_SNAKE_CASE : Union[str, Any] = sd.pop(_a) SCREAMING_SNAKE_CASE : List[Any] = list(sd.keys()) for key in keys: if ".qkv_proj." in key: SCREAMING_SNAKE_CASE : Union[str, Any] = sd[key] # We split QKV in separate Q,K,V SCREAMING_SNAKE_CASE : Tuple = key.replace(".qkv_proj." , ".q_proj.") SCREAMING_SNAKE_CASE : str = key.replace(".qkv_proj." , ".k_proj.") SCREAMING_SNAKE_CASE : Optional[Any] = key.replace(".qkv_proj." , ".v_proj.") SCREAMING_SNAKE_CASE : int = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = torch.split(_a , depth // 3 , dim=0) SCREAMING_SNAKE_CASE : str = q SCREAMING_SNAKE_CASE : Optional[int] = k SCREAMING_SNAKE_CASE : List[str] = v del sd[key] return sd @torch.no_grad() def lowerCamelCase__ ( _a , _a , _a=None): SCREAMING_SNAKE_CASE : str = load_checkpoint(_a) if config is not None: SCREAMING_SNAKE_CASE : Optional[Any] = OPTConfig.from_pretrained(_a) else: SCREAMING_SNAKE_CASE : str = OPTConfig() SCREAMING_SNAKE_CASE : Tuple = OPTModel(_a).half().eval() model.load_state_dict(_a) # Check results Path(_a).mkdir(exist_ok=_a) model.save_pretrained(_a) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') a_ = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
25
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): __lowercase : str ={ """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: __lowercase : Any ={ """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =(images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ =images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase_ =numpy_to_pil(lowercase__ ) return images def a__ ( lowercase__ ): '''simple docstring''' if images.ndim == 3: UpperCAmelCase_ =images[None, ...] UpperCAmelCase_ =(images * 2_5_5).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCAmelCase_ =[Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: UpperCAmelCase_ =[Image.fromarray(lowercase__ ) for image in images] return pil_images
54
0
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _A ( unittest.TestCase ): def __init__( self : Tuple , __magic_name__ : List[Any] , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : int = 32 , __magic_name__ : bool = True , __magic_name__ : Union[int, float] = 1 / 2_55 , __magic_name__ : bool = True , __magic_name__ : bool = True , __magic_name__ : Optional[Union[float, List[float]]] = [0.48145466, 0.4578275, 0.40821073] , __magic_name__ : Optional[Union[float, List[float]]] = [0.26862954, 0.26130258, 0.27577711] , __magic_name__ : bool = True , __magic_name__ : Any=7 , __magic_name__ : Tuple=30 , __magic_name__ : List[Any]=4_00 , __magic_name__ : Optional[Any]=3 , ) -> Tuple: """simple docstring""" __snake_case : int = parent __snake_case : Optional[Any] = do_resize __snake_case : List[str] = size if size is not None else {"""shortest_edge""": 2_88} __snake_case : Any = size_divisor __snake_case : List[str] = do_rescale __snake_case : Optional[int] = rescale_factor __snake_case : Any = do_normalize __snake_case : Any = do_center_crop __snake_case : Tuple = image_mean __snake_case : Tuple = image_std __snake_case : int = do_pad __snake_case : Union[str, Any] = batch_size __snake_case : Union[str, Any] = num_channels __snake_case : Optional[int] = min_resolution __snake_case : str = max_resolution def lowercase__ ( self : List[Any] ) -> Any: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def lowercase__ ( self : str , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any]=False ) -> Any: """simple docstring""" if not batched: __snake_case : Optional[Any] = self.size["""shortest_edge"""] __snake_case : Optional[int] = image_inputs[0] if isinstance(__magic_name__ , Image.Image ): __snake_case , __snake_case : List[Any] = image.size else: __snake_case , __snake_case : List[str] = image.shape[1], image.shape[2] __snake_case : Optional[Any] = size / min(__magic_name__ , __magic_name__ ) if h < w: __snake_case , __snake_case : List[str] = size, scale * w else: __snake_case , __snake_case : int = scale * h, size __snake_case : str = int((13_33 / 8_00) * size ) if max(__magic_name__ , __magic_name__ ) > max_size: __snake_case : Dict = max_size / max(__magic_name__ , __magic_name__ ) __snake_case : str = newh * scale __snake_case : List[Any] = neww * scale __snake_case , __snake_case : int = int(newh + 0.5 ), int(neww + 0.5 ) __snake_case , __snake_case : Tuple = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __snake_case : Tuple = [] for image in image_inputs: __snake_case , __snake_case : Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __snake_case : Dict = max(__magic_name__ , key=lambda __magic_name__ : item[0] )[0] __snake_case : Union[str, Any] = max(__magic_name__ , key=lambda __magic_name__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _A ( __lowercase , unittest.TestCase ): lowercase__: Any = BridgeTowerImageProcessor if is_vision_available() else None def lowercase__ ( self : List[str] ) -> Dict: """simple docstring""" __snake_case : Optional[int] = BridgeTowerImageProcessingTester(self ) @property def lowercase__ ( self : Optional[Any] ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__magic_name__ , """image_mean""" ) ) self.assertTrue(hasattr(__magic_name__ , """image_std""" ) ) self.assertTrue(hasattr(__magic_name__ , """do_normalize""" ) ) self.assertTrue(hasattr(__magic_name__ , """do_resize""" ) ) self.assertTrue(hasattr(__magic_name__ , """size""" ) ) self.assertTrue(hasattr(__magic_name__ , """size_divisor""" ) ) def lowercase__ ( self : Any ) -> Optional[Any]: """simple docstring""" pass def lowercase__ ( self : Dict ) -> List[str]: """simple docstring""" __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , Image.Image ) # Test not batched input __snake_case : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __snake_case , __snake_case : int = self.image_processor_tester.get_expected_values(__magic_name__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case : Dict = image_processing(__magic_name__ , return_tensors="""pt""" ).pixel_values __snake_case , __snake_case : Optional[int] = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase__ ( self : Any ) -> str: """simple docstring""" __snake_case : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , numpify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , np.ndarray ) # Test not batched input __snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __snake_case , __snake_case : Optional[int] = self.image_processor_tester.get_expected_values(__magic_name__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case : Any = image_processing(__magic_name__ , return_tensors="""pt""" ).pixel_values __snake_case , __snake_case : Tuple = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase__ ( self : str ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , torch.Tensor ) # Test not batched input __snake_case : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __snake_case , __snake_case : List[Any] = self.image_processor_tester.get_expected_values(__magic_name__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case : Optional[int] = image_processing(__magic_name__ , return_tensors="""pt""" ).pixel_values __snake_case , __snake_case : List[Any] = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
26
def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =int(lowercase__ ) if n_element < 1: UpperCAmelCase_ =ValueError("a should be a positive number" ) raise my_error UpperCAmelCase_ =[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =(0, 0, 0) UpperCAmelCase_ =1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": __lowercase : Tuple =input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") __lowercase : Union[str, Any] =hamming(int(n)) print("""-----------------------------------------------------""") print(f"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
54
0
__A : Dict = "Alexander Joslin" import operator as op from .stack import Stack def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _A = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} _A = Stack() _A = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(_SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 _A = operator_stack.peek() operator_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operand_stack.peek() operand_stack.pop() _A = operators[opr](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) operand_stack.push(_SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __A : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f"{equation} = {dijkstras_two_stack_algorithm(equation)}")
27
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __lowercase : List[Any] =logging.get_logger(__name__) class A ( __lowercase ): def __init__( self: List[Any] , *_lowerCAmelCase: Optional[Any] , **_lowerCAmelCase: List[str] ) -> None: '''simple docstring''' warnings.warn( "The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use GLPNImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
54
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool UpperCamelCase_ = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Union[str, Any] = '''facebook/nllb-200-distilled-600M''' A : Optional[Any] = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) A : Union[str, Any] = '''translator''' A : Any = AutoTokenizer A : List[Any] = AutoModelForSeqaSeqLM A : List[str] = LANGUAGE_CODES A : Tuple = ['''text''', '''text''', '''text'''] A : Union[str, Any] = ['''text'''] def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(F"{src_lang} is not a supported language." ) if tgt_lang not in self.lang_to_code: raise ValueError(F"{tgt_lang} is not a supported language." ) SCREAMING_SNAKE_CASE : Tuple = self.lang_to_code[src_lang] SCREAMING_SNAKE_CASE : List[Any] = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( A, return_tensors='pt', src_lang=A, tgt_lang=A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' return self.model.generate(**A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' return self.post_processor.decode(outputs[0].tolist(), skip_special_tokens=A )
28
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class A ( __lowercase , unittest.TestCase ): _snake_case =CanineTokenizer _snake_case =False def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' super().setUp() UpperCAmelCase_ =CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCAmelCase__ ( self: Optional[int] ) -> List[str]: '''simple docstring''' return CanineTokenizer.from_pretrained("google/canine-s" ) def lowerCAmelCase__ ( self: Union[str, Any] , **_lowerCAmelCase: List[Any] ) -> CanineTokenizer: '''simple docstring''' UpperCAmelCase_ =self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) UpperCAmelCase_ =1024 return tokenizer @require_torch def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off UpperCAmelCase_ =[5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =list(batch.input_ids.numpy()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , _lowerCAmelCase ) self.assertIn("attention_mask" , _lowerCAmelCase ) self.assertIn("token_type_ids" , _lowerCAmelCase ) @require_torch def lowerCAmelCase__ ( self: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =[ "What's the weater?", "It's about 25 degrees.", ] UpperCAmelCase_ =tokenizer( text_target=_lowerCAmelCase , max_length=32 , padding="max_length" , truncation=_lowerCAmelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) UpperCAmelCase_ =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: UpperCAmelCase_ =chr(0xe0_07 ) additional_special_tokens.append(_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn(_lowerCAmelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ , UpperCAmelCase_ =self.get_clean_sequence(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_05 UpperCAmelCase_ =chr(_lowerCAmelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) UpperCAmelCase_ =tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , input_encoded + special_token_id ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def lowerCAmelCase__ ( self: Any ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =chr(0xe0_05 ) UpperCAmelCase_ =chr(0xe0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=_lowerCAmelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(token_a[0] , _lowerCAmelCase ) self.assertEqual(token_a[0] , _lowerCAmelCase ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_lowerCAmelCase ) tokenizer.from_pretrained(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =[new_token_a] UpperCAmelCase_ =[new_token_a] with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase_ =tokenizer_class.from_pretrained(_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) UpperCAmelCase_ =0xe0_07 UpperCAmelCase_ =chr(_lowerCAmelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase_ =[AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase )] UpperCAmelCase_ =tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ ="hello world" if self.space_between_special_tokens: UpperCAmelCase_ ="[CLS] hello world [SEP]" else: UpperCAmelCase_ =input UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_lowerCAmelCase , [output, output.lower()] ) def lowerCAmelCase__ ( self: List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =[ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] UpperCAmelCase_ ="a" UpperCAmelCase_ =ord(_lowerCAmelCase ) for attr in attributes_list: setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [] ) UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' pass def lowerCAmelCase__ ( self: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Tuple ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: str ) -> str: '''simple docstring''' pass
54
0
"""simple docstring""" def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowerCamelCase_ = str(bin(lowerCAmelCase__ ) ) binary_number += "0" * shift_amount return binary_number def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) lowerCamelCase_ = str(bin(lowerCAmelCase__ ) )[2:] if shift_amount >= len(lowerCAmelCase__ ): return "0b0" lowerCamelCase_ = binary_number[: len(lowerCAmelCase__ ) - shift_amount] return "0b" + shifted_binary_number def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): if number >= 0: # Get binary representation of positive number lowerCamelCase_ = '''0''' + str(bin(lowerCAmelCase__ ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number lowerCamelCase_ = len(bin(lowerCAmelCase__ )[3:] ) # Find 2's complement of number lowerCamelCase_ = bin(abs(lowerCAmelCase__ ) - (1 << binary_number_length) )[3:] lowerCamelCase_ = ( '''1''' + '''0''' * (binary_number_length - len(lowerCAmelCase__ )) + binary_number ) if shift_amount >= len(lowerCAmelCase__ ): return "0b" + binary_number[0] * len(lowerCAmelCase__ ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(lowerCAmelCase__ ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
29
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __lowercase : Optional[int] ="""\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ __lowercase : Dict ="""\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ __lowercase : List[str] ="""\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def lowerCAmelCase__ ( self: int ) -> MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: List[List[List[str]]] , _lowerCAmelCase: List[List[str]] , _lowerCAmelCase: int = 1 , _lowerCAmelCase: int = 4 , ) -> Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_lowerCAmelCase , hypotheses=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase ) }
54
0
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained(_lowercase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors UpperCAmelCase_ : Tuple = load_file(_lowercase ) UpperCAmelCase_ : Union[str, Any] = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: UpperCAmelCase_ : List[Any] = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) UpperCAmelCase_ : Optional[int] = pipeline.text_encoder else: UpperCAmelCase_ : int = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) UpperCAmelCase_ : str = pipeline.unet # find the target layer UpperCAmelCase_ : str = layer_infos.pop(0 ) while len(_lowercase ) > -1: try: UpperCAmelCase_ : Optional[Any] = curr_layer.__getattr__(_lowercase ) if len(_lowercase ) > 0: UpperCAmelCase_ : List[Any] = layer_infos.pop(0 ) elif len(_lowercase ) == 0: break except Exception: if len(_lowercase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: UpperCAmelCase_ : Dict = layer_infos.pop(0 ) UpperCAmelCase_ : Optional[int] = [] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) ) pair_keys.append(_lowercase ) else: pair_keys.append(_lowercase ) pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: UpperCAmelCase_ : Union[str, Any] = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) UpperCAmelCase_ : List[str] = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_lowercase , _lowercase ).unsqueeze(2 ).unsqueeze(3 ) else: UpperCAmelCase_ : Optional[Any] = state_dict[pair_keys[0]].to(torch.floataa ) UpperCAmelCase_ : List[Any] = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_lowercase , _lowercase ) # update visited list for item in pair_keys: visited.append(_lowercase ) return pipeline if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.' ) parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors' ) parser.add_argument( '--lora_prefix_text_encoder', default='lora_te', type=str, help='The prefix of text encoder weight in safetensors', ) parser.add_argument('--alpha', default=0.75, type=float, help='The merging ratio in W = W0 + alpha * deltaW') parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.' ) parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') __a = parser.parse_args() __a = args.base_model_path __a = args.checkpoint_path __a = args.dump_path __a = args.lora_prefix_unet __a = args.lora_prefix_text_encoder __a = args.alpha __a = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) __a = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
30
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( __lowercase , unittest.TestCase ): _snake_case =KandinskyVaaImgaImgPipeline _snake_case =['''image_embeds''', '''negative_image_embeds''', '''image'''] _snake_case =[ '''image_embeds''', '''negative_image_embeds''', '''image''', ] _snake_case =[ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _snake_case =False @property def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self: List[str] ) -> Dict: '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' return 100 @property def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ ={ "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase_ =UNetaDConditionModel(**_lowerCAmelCase ) return model @property def lowerCAmelCase__ ( self: Any ) -> Tuple: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ ( self: Dict ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.dummy_unet UpperCAmelCase_ =self.dummy_movq UpperCAmelCase_ ={ "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.0_00_85, "beta_end": 0.0_12, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } UpperCAmelCase_ =DDIMScheduler(**_lowerCAmelCase ) UpperCAmelCase_ ={ "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[Any]=0 ) -> Dict: '''simple docstring''' UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCAmelCase ) # create init_image UpperCAmelCase_ =floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ =Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("RGB" ).resize((256, 256) ) if str(_lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase ) else: UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) UpperCAmelCase_ ={ "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ ="cpu" UpperCAmelCase_ =self.get_dummy_components() UpperCAmelCase_ =self.pipeline_class(**_lowerCAmelCase ) UpperCAmelCase_ =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) UpperCAmelCase_ =output.images UpperCAmelCase_ =pipe( **self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0] UpperCAmelCase_ =image[0, -3:, -3:, -1] UpperCAmelCase_ =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ =np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: List[Any] ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) UpperCAmelCase_ =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase_ ="A red cartoon frog, 4k" UpperCAmelCase_ =KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) UpperCAmelCase_ =KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) UpperCAmelCase_ =pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ , UpperCAmelCase_ =pipe_prior( _lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase_ =pipeline( image=_lowerCAmelCase , image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) UpperCAmelCase_ =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
54
0
import numpy as np def UpperCAmelCase_ ( __UpperCAmelCase : np.array ) -> np.array: return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
31
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class A ( unittest.TestCase ): def __init__( self: Optional[int] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: Optional[int]=7 , _lowerCAmelCase: Any=True , _lowerCAmelCase: List[Any]=True , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: str=True , _lowerCAmelCase: Optional[int]=99 , _lowerCAmelCase: Any=32 , _lowerCAmelCase: Any=5 , _lowerCAmelCase: Tuple=4 , _lowerCAmelCase: Union[str, Any]=37 , _lowerCAmelCase: List[str]="gelu" , _lowerCAmelCase: Dict=0.1 , _lowerCAmelCase: Tuple=0.1 , _lowerCAmelCase: int=512 , _lowerCAmelCase: Tuple=16 , _lowerCAmelCase: Tuple=2 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=4 , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =seq_length UpperCAmelCase_ =is_training UpperCAmelCase_ =use_attention_mask UpperCAmelCase_ =use_token_type_ids UpperCAmelCase_ =use_labels UpperCAmelCase_ =vocab_size UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =max_position_embeddings UpperCAmelCase_ =type_vocab_size UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =num_choices def lowerCAmelCase__ ( self: Dict ) -> Any: '''simple docstring''' UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ =None if self.use_attention_mask: UpperCAmelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ =None if self.use_token_type_ids: UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ =RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self: str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCAmelCase__ ( self: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ =True UpperCAmelCase_ =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( __lowercase , unittest.TestCase ): _snake_case =True _snake_case =( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self: Dict ) -> Dict: '''simple docstring''' UpperCAmelCase_ =FlaxRobertaModelTester(self ) @slow def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase_ =model_class_name.from_pretrained("roberta-base" , from_pt=_lowerCAmelCase ) UpperCAmelCase_ =model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase )
54
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def A__ ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> Any: """simple docstring""" _UpperCAmelCase = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __UpperCamelCase ( A__ , A__ , A__ , unittest.TestCase ): __A : str = StableDiffusionLatentUpscalePipeline __A : int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """height""", """width""", """cross_attention_kwargs""", """negative_prompt_embeds""", """prompt_embeds""", } __A : Dict = PipelineTesterMixin.required_optional_params - {"""num_images_per_prompt"""} __A : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __A : Any = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __A : Optional[int] = frozenset([] ) __A : str = True @property def UpperCamelCase( self ): _UpperCAmelCase = 1 _UpperCAmelCase = 4 _UpperCAmelCase = (16, 16) _UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_UpperCamelCase ) return image def UpperCamelCase( self ): torch.manual_seed(0 ) _UpperCAmelCase = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_UpperCamelCase , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=_UpperCamelCase , only_cross_attention=_UpperCamelCase , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) _UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) _UpperCAmelCase = EulerDiscreteScheduler(prediction_type='''sample''' ) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''quick_gelu''' , projection_dim=512 , ) _UpperCAmelCase = CLIPTextModel(_UpperCamelCase ) _UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _UpperCAmelCase = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=0 ): if str(_UpperCamelCase ).startswith('''mps''' ): _UpperCAmelCase = torch.manual_seed(_UpperCamelCase ) else: _UpperCAmelCase = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) _UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase( self ): _UpperCAmelCase = '''cpu''' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase ) _UpperCAmelCase = pipe(**_UpperCamelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) _UpperCAmelCase = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) _UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCamelCase , 1e-3 ) def UpperCamelCase( self ): super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def UpperCamelCase( self ): super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def UpperCamelCase( self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def UpperCamelCase( self ): super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def UpperCamelCase( self ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def UpperCamelCase( self ): super().test_save_load_local(expected_max_difference=3e-3 ) def UpperCamelCase( self ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def UpperCamelCase( self ): _UpperCAmelCase = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**_UpperCamelCase ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase ) _UpperCAmelCase = 2 _UpperCAmelCase = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue _UpperCAmelCase = getattr(_UpperCamelCase , scheduler_enum.name ) _UpperCAmelCase = scheduler_cls.from_config(pipe.scheduler.config ) _UpperCAmelCase = pipe(**_UpperCamelCase )[0] outputs.append(_UpperCamelCase ) assert check_same_shape(_UpperCamelCase ) @require_torch_gpu @slow class __UpperCamelCase ( unittest.TestCase ): def UpperCamelCase( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase( self ): _UpperCAmelCase = torch.manual_seed(33 ) _UpperCAmelCase = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) _UpperCAmelCase = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) _UpperCAmelCase = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' _UpperCAmelCase = pipe(_UpperCamelCase , generator=_UpperCamelCase , output_type='''latent''' ).images _UpperCAmelCase = upscaler( prompt=_UpperCamelCase , image=_UpperCamelCase , num_inference_steps=20 , guidance_scale=0 , generator=_UpperCamelCase , output_type='''np''' , ).images[0] _UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def UpperCamelCase( self ): _UpperCAmelCase = torch.manual_seed(33 ) _UpperCAmelCase = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) _UpperCAmelCase = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' _UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) _UpperCAmelCase = upscaler( prompt=_UpperCamelCase , image=_UpperCamelCase , num_inference_steps=20 , guidance_scale=0 , generator=_UpperCamelCase , output_type='''np''' , ).images[0] _UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-2
32
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if b == 0: return (1, 0) ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , a % b ) UpperCAmelCase_ =a // b return (y, x - k * y) def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) if b < 0: UpperCAmelCase_ =(b % n + n) % n return b def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =invert_modulo(lowercase__ , lowercase__ ), invert_modulo(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
54
0
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging lowerCamelCase__ : Any = """\ """ lowerCamelCase__ : List[str] = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ lowerCamelCase__ : Any = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __magic_name__ (datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:List[Any] , _a:int = 16 , _a:bool = True , _a:Any=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": snake_case__ = '''cuda''' else: snake_case__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' snake_case__ = AutoModelForCausalLM.from_pretrained(_a ) snake_case__ = model.to(_a ) snake_case__ = AutoTokenizer.from_pretrained(_a ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: snake_case__ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_a ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" snake_case__ = model.config.max_length - 1 else: snake_case__ = model.config.max_length snake_case__ = tokenizer( _a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a ) snake_case__ = encodings['''input_ids'''] snake_case__ = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." snake_case__ = [] snake_case__ = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ): snake_case__ = min(start_index + batch_size , len(_a ) ) snake_case__ = encoded_texts[start_index:end_index] snake_case__ = attn_masks[start_index:end_index] if add_start_token: snake_case__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a ) snake_case__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) snake_case__ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 ) snake_case__ = encoded_batch with torch.no_grad(): snake_case__ = model(_a , attention_mask=_a ).logits snake_case__ = out_logits[..., :-1, :].contiguous() snake_case__ = labels[..., 1:].contiguous() snake_case__ = attn_mask[..., 1:].contiguous() snake_case__ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
33
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowercase : Tuple =logging.getLogger(__name__) __lowercase : Optional[int] =tf.data.AUTOTUNE def a__ ( ): '''simple docstring''' UpperCAmelCase_ =argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config" , type=lowercase__ , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , ) parser.add_argument( "--tokenizer" , type=lowercase__ , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , ) parser.add_argument( "--per_replica_batch_size" , type=lowercase__ , default=8 , help="Batch size per TPU core." , ) parser.add_argument( "--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , ) parser.add_argument( "--tpu_name" , type=lowercase__ , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , ) parser.add_argument( "--tpu_zone" , type=lowercase__ , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , ) parser.add_argument( "--gcp_project" , type=lowercase__ , help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , ) parser.add_argument( "--train_dataset" , type=lowercase__ , help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--shuffle_buffer_size" , type=lowercase__ , default=2**1_8 , help="Size of the shuffle buffer (in samples)" , ) parser.add_argument( "--eval_dataset" , type=lowercase__ , help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--num_epochs" , type=lowercase__ , default=1 , help="Number of epochs to train for." , ) parser.add_argument( "--learning_rate" , type=lowercase__ , default=1E-4 , help="Learning rate to use for training." , ) parser.add_argument( "--weight_decay_rate" , type=lowercase__ , default=1E-3 , help="Weight decay rate to use for training." , ) parser.add_argument( "--max_length" , type=lowercase__ , default=5_1_2 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , ) parser.add_argument( "--mlm_probability" , type=lowercase__ , default=0.15 , help="Fraction of tokens to mask during training." , ) parser.add_argument("--output_dir" , type=lowercase__ , required=lowercase__ , help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id" , type=lowercase__ , help="Model ID to upload to on the Hugging Face Hub." ) UpperCAmelCase_ =parser.parse_args() return args def a__ ( lowercase__ ): '''simple docstring''' try: if args.tpu_name: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(lowercase__ ) tf.tpu.experimental.initialize_tpu_system(lowercase__ ) return tpu def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =0 for file in file_list: UpperCAmelCase_ =file.split("/" )[-1] UpperCAmelCase_ =re.search(R"-\d+-(\d+)\.tfrecord" , lowercase__ ).group(1 ) UpperCAmelCase_ =int(lowercase__ ) num_samples += sample_count return num_samples def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =tf.data.Dataset.from_tensor_slices(lowercase__ ) if shuffle: UpperCAmelCase_ =dataset.shuffle(len(lowercase__ ) ) UpperCAmelCase_ =tf.data.TFRecordDataset(lowercase__ , num_parallel_reads=lowercase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here UpperCAmelCase_ =dataset.apply(tf.data.experimental.assert_cardinality(lowercase__ ) ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) if shuffle: assert shuffle_buffer_size is not None UpperCAmelCase_ =dataset.shuffle(args.shuffle_buffer_size ) UpperCAmelCase_ =dataset.batch(lowercase__ , drop_remainder=lowercase__ ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) UpperCAmelCase_ =dataset.prefetch(lowercase__ ) return dataset def a__ ( lowercase__ ): '''simple docstring''' if not args.no_tpu: UpperCAmelCase_ =initialize_tpu(lowercase__ ) UpperCAmelCase_ =tf.distribute.TPUStrategy(lowercase__ ) else: UpperCAmelCase_ =tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) UpperCAmelCase_ =AutoTokenizer.from_pretrained(args.tokenizer ) UpperCAmelCase_ =AutoConfig.from_pretrained(args.pretrained_model_config ) UpperCAmelCase_ =tokenizer.vocab_size UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) ) if not training_records: raise ValueError(F'No .tfrecord files found in {args.train_dataset}.' ) UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) ) if not eval_records: raise ValueError(F'No .tfrecord files found in {args.eval_dataset}.' ) UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) UpperCAmelCase_ =steps_per_epoch * args.num_epochs with strategy.scope(): UpperCAmelCase_ =TFAutoModelForMaskedLM.from_config(lowercase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built UpperCAmelCase_ , UpperCAmelCase_ =create_optimizer( num_train_steps=lowercase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowercase__ , metrics=["accuracy"] ) def decode_fn(lowercase__ ): UpperCAmelCase_ ={ "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowercase__ , lowercase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. UpperCAmelCase_ =DataCollatorForLanguageModeling( tokenizer=lowercase__ , mlm_probability=args.mlm_probability , mlm=lowercase__ , return_tensors="tf" ) def mask_with_collator(lowercase__ ): # TF really needs an isin() function UpperCAmelCase_ =( ~tf.cast(batch["attention_mask"] , tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) UpperCAmelCase_ , UpperCAmelCase_ =data_collator.tf_mask_tokens( batch["input_ids"] , vocab_size=len(lowercase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowercase__ , ) return batch UpperCAmelCase_ =args.per_replica_batch_size * strategy.num_replicas_in_sync UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , ) UpperCAmelCase_ =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowercase__ ) ) model.fit( lowercase__ , validation_data=lowercase__ , epochs=args.num_epochs , callbacks=lowercase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowercase : Union[str, Any] =parse_args() main(args)
54
0
"""simple docstring""" def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [0 for i in range(len(_lowercase ) )] # initialize interval's left pointer and right pointer UpperCamelCase , UpperCamelCase = 0, 0 for i in range(1 ,len(_lowercase ) ): # case when current index is inside the interval if i <= right_pointer: UpperCamelCase = min(right_pointer - i + 1 ,z_result[i - left_pointer] ) UpperCamelCase = min_edge while go_next(_lowercase ,_lowercase ,_lowercase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: UpperCamelCase , UpperCamelCase = i, i + z_result[i] - 1 return z_result def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" return i + z_result[i] < len(_lowercase ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string UpperCamelCase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_lowercase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
34
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A : @staticmethod def lowerCAmelCase__ ( *_lowerCAmelCase: List[Any] , **_lowerCAmelCase: List[str] ) -> List[str]: '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class A ( unittest.TestCase ): _snake_case =MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ =[ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: str ) -> int: '''simple docstring''' UpperCAmelCase_ =vqa_pipeline(_lowerCAmelCase , top_k=1 ) self.assertEqual( _lowerCAmelCase , [ [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], ] , ) @require_torch def lowerCAmelCase__ ( self: Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question="How many cats are there?" , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) @slow @require_torch def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [[{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def lowerCAmelCase__ ( self: int ) -> List[str]: '''simple docstring''' pass
54
0
from __future__ import annotations from typing import Any class lowercase : def __init__( self : int , _lowercase : int ): SCREAMING_SNAKE_CASE__ : List[str] = num_of_nodes SCREAMING_SNAKE_CASE__ : list[list[int]] = [] SCREAMING_SNAKE_CASE__ : dict[int, int] = {} def lowercase__ ( self : Union[str, Any] , _lowercase : int , _lowercase : int , _lowercase : int ): self.m_edges.append([u_node, v_node, weight] ) def lowercase__ ( self : Optional[int] , _lowercase : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase__ ( self : Optional[Any] , _lowercase : int ): if self.m_component[u_node] != u_node: for k in self.m_component: SCREAMING_SNAKE_CASE__ : Any = self.find_component(_lowercase ) def lowercase__ ( self : int , _lowercase : list[int] , _lowercase : int , _lowercase : int ): if component_size[u_node] <= component_size[v_node]: SCREAMING_SNAKE_CASE__ : Dict = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowercase ) elif component_size[u_node] >= component_size[v_node]: SCREAMING_SNAKE_CASE__ : List[Any] = self.find_component(_lowercase ) component_size[u_node] += component_size[v_node] self.set_component(_lowercase ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) SCREAMING_SNAKE_CASE__ : List[str] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = edge SCREAMING_SNAKE_CASE__ : Tuple = self.m_component[u] SCREAMING_SNAKE_CASE__ : List[str] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): SCREAMING_SNAKE_CASE__ : int = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = edge SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.m_component[u] SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowercase , _lowercase , _lowercase ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 SCREAMING_SNAKE_CASE__ : List[Any] = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def a ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
35
def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) != len(lowercase__ ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. UpperCAmelCase_ =[p / w for p, w in zip(lowercase__ , lowercase__ )] # Creating a copy of the list and sorting profit/weight in ascending order UpperCAmelCase_ =sorted(lowercase__ ) # declaring useful variables UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 UpperCAmelCase_ =0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight UpperCAmelCase_ =sorted_profit_by_weight[length - i - 1] UpperCAmelCase_ =profit_by_weight.index(lowercase__ ) UpperCAmelCase_ =-1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) __lowercase : List[str] =[int(x) for x in input("""Input profits separated by spaces: """).split()] __lowercase : Union[str, Any] =[int(x) for x in input("""Input weights separated by spaces: """).split()] __lowercase : Tuple =int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
54
0
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType __lowercase : List[str] = logging.get_logger(__name__) class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : Tuple = '''vision-encoder-decoder''' __lowerCamelCase : List[Any] = True def __init__( self ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F"""A configuraton of type {self.model_type} cannot be instantiated because """ F"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) snake_case : Union[str, Any] = kwargs.pop("""encoder""" ) snake_case : Any = encoder_config.pop("""model_type""" ) snake_case : Optional[Any] = kwargs.pop("""decoder""" ) snake_case : Union[str, Any] = decoder_config.pop("""model_type""" ) snake_case : Any = AutoConfig.for_model(SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) snake_case : Union[str, Any] = AutoConfig.for_model(SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) snake_case : int = True @classmethod def snake_case_ ( cls ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) snake_case : Tuple = True snake_case : Union[str, Any] = True return cls(encoder=encoder_config.to_dict() ,decoder=decoder_config.to_dict() ,**SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ): '''simple docstring''' snake_case : Union[str, Any] = copy.deepcopy(self.__dict__ ) snake_case : Union[str, Any] = self.encoder.to_dict() snake_case : Union[str, Any] = self.decoder.to_dict() snake_case : Dict = self.__class__.model_type return output class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : Optional[Any] = version.parse('''1.11''' ) @property def snake_case_ ( self ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def snake_case_ ( self ): '''simple docstring''' return 1E-4 @property def snake_case_ ( self ): '''simple docstring''' return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class _A ( snake_case ): '''simple docstring''' @property def snake_case_ ( self ): '''simple docstring''' snake_case : Tuple = OrderedDict() snake_case : Optional[int] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} snake_case : Union[str, Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} snake_case : Optional[Any] = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = -1 ,SCREAMING_SNAKE_CASE_ = -1 ,SCREAMING_SNAKE_CASE_ = False ,SCREAMING_SNAKE_CASE_ = None ,): '''simple docstring''' import torch snake_case : Optional[Any] = OrderedDict() snake_case : Tuple = super().generate_dummy_inputs( SCREAMING_SNAKE_CASE_ ,batch_size=SCREAMING_SNAKE_CASE_ ,seq_length=SCREAMING_SNAKE_CASE_ ,is_pair=SCREAMING_SNAKE_CASE_ ,framework=SCREAMING_SNAKE_CASE_ ) snake_case , snake_case : List[Any] = dummy_input["""input_ids"""].shape snake_case : Optional[int] = (batch, encoder_sequence, self._config.encoder_hidden_size) snake_case : List[str] = dummy_input.pop("""input_ids""" ) snake_case : int = dummy_input.pop("""attention_mask""" ) snake_case : Dict = torch.zeros(SCREAMING_SNAKE_CASE_ ) return common_inputs class _A ( snake_case ): '''simple docstring''' @property def snake_case_ ( self ): '''simple docstring''' pass def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return VisionEncoderDecoderEncoderOnnxConfig(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = "default" ): '''simple docstring''' snake_case : int = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ )
36
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowercase : Dict ={ """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any =["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __lowercase : Union[str, Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
54
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : Optional[Any] = { """configuration_clipseg""": [ """CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPSegConfig""", """CLIPSegTextConfig""", """CLIPSegVisionConfig""", ], """processing_clipseg""": ["""CLIPSegProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Dict = [ """CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPSegModel""", """CLIPSegPreTrainedModel""", """CLIPSegTextModel""", """CLIPSegVisionModel""", """CLIPSegForImageSegmentation""", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
37
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def a__ ( lowercase__ , lowercase__ , lowercase__=1_0_2_4 , lowercase__=1_0_2_4 , lowercase__=False , **lowercase__ ): '''simple docstring''' UpperCAmelCase_ =AutoTokenizer.from_pretrained(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="train" , **lowercase__ ) UpperCAmelCase_ =tok.pad_token_id def get_lens(lowercase__ ): UpperCAmelCase_ =tqdm( DataLoader(lowercase__ , batch_size=5_1_2 , num_workers=8 , shuffle=lowercase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCAmelCase_ =[] for batch in dl: UpperCAmelCase_ =batch["input_ids"].ne(lowercase__ ).sum(1 ).tolist() UpperCAmelCase_ =batch["labels"].ne(lowercase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowercase__ , lowercase__ ): max_lens.append(max(lowercase__ , lowercase__ ) ) else: max_lens.extend(lowercase__ ) return max_lens UpperCAmelCase_ =get_lens(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="val" , **lowercase__ ) UpperCAmelCase_ =get_lens(lowercase__ ) pickle_save(lowercase__ , train_ds.len_file ) pickle_save(lowercase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
54
0
'''simple docstring''' def UpperCamelCase__ ( __magic_name__ : int ) -> bool: '''simple docstring''' if not isinstance(__magic_name__ , __magic_name__ ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) snake_case__ : List[str] = str(__magic_name__ ) snake_case__ : str = """""".join(sorted(__magic_name__ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def UpperCamelCase__ ( __magic_name__ : float = 99 ) -> int: '''simple docstring''' if not 0 < percent < 1_00: raise ValueError("""solution() only accepts values from 0 to 100""" ) snake_case__ : Union[str, Any] = 0 snake_case__ : int = 1 while True: if check_bouncy(__magic_name__ ): bouncy_num += 1 if (bouncy_num / num) * 1_00 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F'{solution(99)}')
38
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A : def __init__( self: Any , _lowerCAmelCase: str , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: List[str]=30 , _lowerCAmelCase: List[Any]=2 , _lowerCAmelCase: List[str]=3 , _lowerCAmelCase: Dict=True , _lowerCAmelCase: int=True , _lowerCAmelCase: Tuple=32 , _lowerCAmelCase: str=2 , _lowerCAmelCase: Dict=4 , _lowerCAmelCase: Dict=37 , _lowerCAmelCase: Optional[Any]="gelu" , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: Union[str, Any]=10 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=3 , _lowerCAmelCase: Optional[int]=None , ) -> Any: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =image_size UpperCAmelCase_ =patch_size UpperCAmelCase_ =num_channels UpperCAmelCase_ =is_training UpperCAmelCase_ =use_labels UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ =(image_size // patch_size) ** 2 UpperCAmelCase_ =num_patches + 1 def lowerCAmelCase__ ( self: Any ) -> int: '''simple docstring''' UpperCAmelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ =None if self.use_labels: UpperCAmelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ =self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Any , _lowerCAmelCase: List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ =TFViTModel(config=_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) UpperCAmelCase_ =(image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.type_sequence_label_size UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ =1 UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ =model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"pixel_values": pixel_values} return config, inputs_dict @require_tf class A ( __lowercase , __lowercase , unittest.TestCase ): _snake_case =(TFViTModel, TFViTForImageClassification) if is_tf_available() else () _snake_case =( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) _snake_case =False _snake_case =False _snake_case =False def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ =TFViTModelTester(self ) UpperCAmelCase_ =ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: Dict ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: int ) -> Optional[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase_ =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , tf.keras.layers.Layer ) ) def lowerCAmelCase__ ( self: List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) UpperCAmelCase_ =inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ =[*signature.parameters.keys()] UpperCAmelCase_ =["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(_lowerCAmelCase ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class A ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self: Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase_ =self.default_image_processor UpperCAmelCase_ =prepare_img() UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="tf" ) # forward pass UpperCAmelCase_ =model(**_lowerCAmelCase ) # verify the logits UpperCAmelCase_ =tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) UpperCAmelCase_ =tf.constant([-0.27_44, 0.82_15, -0.08_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 )
54
0
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = tmp_path / '''cache''' snake_case_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ = JsonDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_json_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = tmp_path / '''cache''' snake_case_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} snake_case_ = features.copy() if features else default_expected_features snake_case_ = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ = JsonDatasetReader(SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_json_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = tmp_path / '''cache''' snake_case_ = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} snake_case_ = features.copy() if features else default_expected_features snake_case_ = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ = JsonDatasetReader(SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} snake_case_ = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} snake_case_ = features.copy() snake_case_ = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ = tmp_path / '''cache''' snake_case_ = JsonDatasetReader(SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = tmp_path / '''cache''' snake_case_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} snake_case_ = JsonDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , split=SCREAMING_SNAKE_CASE__ ).read() _check_json_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = jsonl_path elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = [jsonl_path] snake_case_ = tmp_path / '''cache''' snake_case_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} snake_case_ = JsonDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_json_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=("train",) ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for split in splits: snake_case_ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = tmp_path / '''cache''' snake_case_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_json_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = tmp_path / '''cache''' snake_case_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} snake_case_ = features.copy() if features else default_expected_features snake_case_ = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ = JsonDatasetReader({'''train''': jsonl_path} , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_json_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if split: snake_case_ = {split: jsonl_path} else: snake_case_ = '''train''' snake_case_ = {'''train''': jsonl_path, '''test''': jsonl_path} snake_case_ = tmp_path / '''cache''' snake_case_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} snake_case_ = JsonDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_json_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return json.load(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return [json.loads(SCREAMING_SNAKE_CASE__ ) for line in buffer] class snake_case_ : '''simple docstring''' @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def snake_case__( self : str , _UpperCamelCase : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : int ) ->str: with io.BytesIO() as buffer: JsonDatasetWriter(_UpperCamelCase , _UpperCamelCase , lines=_UpperCamelCase ).write() buffer.seek(0 ) snake_case_ = load_json_function(_UpperCamelCase ) assert isinstance(_UpperCamelCase , _UpperCamelCase ) assert isinstance(exported_content[0] , _UpperCamelCase ) assert len(_UpperCamelCase ) == 1_0 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def snake_case__( self : int , _UpperCamelCase : Optional[Any] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[Any] ) ->List[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(_UpperCamelCase , _UpperCamelCase , lines=_UpperCamelCase , orient=_UpperCamelCase ).write() buffer.seek(0 ) snake_case_ = load_json(_UpperCamelCase ) assert isinstance(_UpperCamelCase , _UpperCamelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_UpperCamelCase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 1_0 else: assert len(_UpperCamelCase ) == 1_0 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def snake_case__( self : str , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int ) ->Tuple: with io.BytesIO() as buffer: JsonDatasetWriter(_UpperCamelCase , _UpperCamelCase , lines=_UpperCamelCase , num_proc=2 ).write() buffer.seek(0 ) snake_case_ = load_json_function(_UpperCamelCase ) assert isinstance(_UpperCamelCase , _UpperCamelCase ) assert isinstance(exported_content[0] , _UpperCamelCase ) assert len(_UpperCamelCase ) == 1_0 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def snake_case__( self : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : str , _UpperCamelCase : Optional[Any] , _UpperCamelCase : str ) ->Optional[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(_UpperCamelCase , _UpperCamelCase , lines=_UpperCamelCase , orient=_UpperCamelCase , num_proc=2 ).write() buffer.seek(0 ) snake_case_ = load_json(_UpperCamelCase ) assert isinstance(_UpperCamelCase , _UpperCamelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_UpperCamelCase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 1_0 else: assert len(_UpperCamelCase ) == 1_0 def snake_case__( self : List[str] , _UpperCamelCase : Union[str, Any] ) ->Union[str, Any]: with pytest.raises(_UpperCamelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(_UpperCamelCase , _UpperCamelCase , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def snake_case__( self : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] ) ->List[Any]: snake_case_ = tmp_path_factory.mktemp('''data''' ) / f'''test.json.{extension}''' snake_case_ = str(shared_datadir / f'''test_file.json.{extension}''' ) JsonDatasetWriter(_UpperCamelCase , _UpperCamelCase , compression=_UpperCamelCase ).write() with fsspec.open(_UpperCamelCase , '''rb''' , compression='''infer''' ) as f: snake_case_ = f.read() with fsspec.open(_UpperCamelCase , '''rb''' , compression='''infer''' ) as f: snake_case_ = f.read() assert exported_content == original_content
39
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) == 0: return False UpperCAmelCase_ =len(lowercase__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowercase__ ) else: return binary_search(a_list[midpoint + 1 :] , lowercase__ ) if __name__ == "__main__": __lowercase : Tuple =input("""Enter numbers separated by comma:\n""").strip() __lowercase : Optional[Any] =[int(item.strip()) for item in user_input.split(""",""")] __lowercase : List[Any] =int(input("""Enter the number to be found in the list:\n""").strip()) __lowercase : Optional[Any] ="""""" if binary_search(sequence, target) else """not """ print(f"""{target} was {not_str}found in {sequence}""")
54
0
from __future__ import annotations import queue class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCamelCase : Optional[Any] = data UpperCamelCase : Any = None UpperCamelCase : List[Any] = None def UpperCamelCase ( ) -> TreeNode: print('\n********Press N to stop entering at any point of time********\n' ) UpperCamelCase : Optional[int] = input('Enter the value of the root node: ' ).strip().lower() UpperCamelCase : queue.Queue = queue.Queue() UpperCamelCase : int = TreeNode(int(snake_case__ ) ) q.put(snake_case__ ) while not q.empty(): UpperCamelCase : Tuple = q.get() UpperCamelCase : List[Any] = F"""Enter the left node of {node_found.data}: """ UpperCamelCase : List[Any] = input(snake_case__ ).strip().lower() or 'n' if check == "n": return tree_node UpperCamelCase : Dict = TreeNode(int(snake_case__ ) ) UpperCamelCase : Any = left_node q.put(snake_case__ ) UpperCamelCase : List[Any] = F"""Enter the right node of {node_found.data}: """ UpperCamelCase : Optional[Any] = input(snake_case__ ).strip().lower() or 'n' if check == "n": return tree_node UpperCamelCase : Tuple = TreeNode(int(snake_case__ ) ) UpperCamelCase : str = right_node q.put(snake_case__ ) raise def UpperCamelCase ( snake_case__ : TreeNode ) -> None: if not isinstance(snake_case__ , snake_case__ ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def UpperCamelCase ( snake_case__ : TreeNode ) -> None: if not isinstance(snake_case__ , snake_case__ ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def UpperCamelCase ( snake_case__ : TreeNode ) -> None: if not isinstance(snake_case__ , snake_case__ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def UpperCamelCase ( snake_case__ : TreeNode ) -> None: if not isinstance(snake_case__ , snake_case__ ) or not node: return UpperCamelCase : queue.Queue = queue.Queue() q.put(snake_case__ ) while not q.empty(): UpperCamelCase : List[str] = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def UpperCamelCase ( snake_case__ : TreeNode ) -> None: if not isinstance(snake_case__ , snake_case__ ) or not node: return UpperCamelCase : queue.Queue = queue.Queue() q.put(snake_case__ ) while not q.empty(): UpperCamelCase : str = [] while not q.empty(): UpperCamelCase : Optional[Any] = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(snake_case__ ) def UpperCamelCase ( snake_case__ : TreeNode ) -> None: if not isinstance(snake_case__ , snake_case__ ) or not node: return UpperCamelCase : list[TreeNode] = [] UpperCamelCase : Dict = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(snake_case__ ) UpperCamelCase : List[str] = n.left # end of while means current node doesn't have left child UpperCamelCase : Union[str, Any] = stack.pop() # start to traverse its right child UpperCamelCase : int = n.right def UpperCamelCase ( snake_case__ : TreeNode ) -> None: if not isinstance(snake_case__ , snake_case__ ) or not node: return UpperCamelCase : list[TreeNode] = [] UpperCamelCase : Tuple = node while n or stack: while n: stack.append(snake_case__ ) UpperCamelCase : List[Any] = n.left UpperCamelCase : int = stack.pop() print(n.data , end=',' ) UpperCamelCase : Optional[Any] = n.right def UpperCamelCase ( snake_case__ : TreeNode ) -> None: if not isinstance(snake_case__ , snake_case__ ) or not node: return UpperCamelCase , UpperCamelCase : Optional[int] = [], [] UpperCamelCase : List[str] = node stacka.append(snake_case__ ) while stacka: # to find the reversed order of post order, store it in stack2 UpperCamelCase : Optional[Any] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(snake_case__ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def UpperCamelCase ( snake_case__ : str = "" , snake_case__ : List[str]=50 , snake_case__ : List[Any]="*" ) -> str: if not s: return "\n" + width * char UpperCamelCase , UpperCamelCase : Union[str, Any] = divmod(width - len(snake_case__ ) - 2 , 2 ) return F"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('''Binary Tree Traversals''')) __UpperCAmelCase = build_tree() print(prompt('''Pre Order Traversal''')) pre_order(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal''')) in_order(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal''')) post_order(node) print(prompt() + '''\n''') print(prompt('''Level Order Traversal''')) level_order(node) print(prompt() + '''\n''') print(prompt('''Actual Level Order Traversal''')) level_order_actual(node) print('''*''' * 50 + '''\n''') print(prompt('''Pre Order Traversal - Iteration Version''')) pre_order_iter(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal - Iteration Version''')) in_order_iter(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal - Iteration Version''')) post_order_iter(node) print(prompt())
40
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __lowercase : Any =( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) __lowercase : Union[str, Any] =( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) __lowercase : List[str] =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) __lowercase : str =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) __lowercase : Union[str, Any] =( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]), ("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) __lowercase : str =( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) __lowercase : int =( ("""JH AH TH KH QH""", 23), ("""JH 9H TH KH QH""", 22), ("""JC KH JS JD JH""", 21), ("""KH KC 3S 3H 3D""", 20), ("""8C 9C 5C 3C TC""", 19), ("""JS QS 9H TS KH""", 18), ("""7C 7S KH 2H 7H""", 17), ("""3C KH 5D 5S KH""", 16), ("""QH 8H KD JH 8S""", 15), ("""2D 6D 9D TH 7D""", 14), ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) ) UpperCAmelCase_ =["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)] UpperCAmelCase_ , UpperCAmelCase_ =SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def a__ ( lowercase__ = 1_0_0 ): '''simple docstring''' return (generate_random_hand() for _ in range(lowercase__ )) @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =PokerHand(lowercase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand(lowercase__ ) for hand in SORTED_HANDS] UpperCAmelCase_ =poker_hands.copy() shuffle(lowercase__ ) UpperCAmelCase_ =chain(sorted(lowercase__ ) ) for index, hand in enumerate(lowercase__ ): assert hand == poker_hands[index] def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=lowercase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def a__ ( ): '''simple docstring''' UpperCAmelCase_ =PokerHand("2C 4S AS 3D 5C" ) UpperCAmelCase_ =True UpperCAmelCase_ =[5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def a__ ( ): '''simple docstring''' UpperCAmelCase_ =0 UpperCAmelCase_ =os.path.abspath(os.path.dirname(lowercase__ ) ) UpperCAmelCase_ =os.path.join(lowercase__ , "poker_hands.txt" ) with open(lowercase__ ) as file_hand: for line in file_hand: UpperCAmelCase_ =line[:1_4].strip() UpperCAmelCase_ =line[1_5:].strip() UpperCAmelCase_ , UpperCAmelCase_ =PokerHand(lowercase__ ), PokerHand(lowercase__ ) UpperCAmelCase_ =player.compare_with(lowercase__ ) if output == "Win": answer += 1 assert answer == 3_7_6
54
0
'''simple docstring''' from typing import Any import numpy as np def _A ( A__ ): """simple docstring""" return np.array_equal(A__ , matrix.conjugate().T ) def _A ( A__ , A__ ): """simple docstring""" __lowercase = v.conjugate().T __lowercase = v_star.dot(A__ ) assert isinstance(A__ , np.ndarray ) return (v_star_dot.dot(A__ )) / (v_star.dot(A__ )) def _A ( ): """simple docstring""" __lowercase = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) __lowercase = np.array([[1], [2], [3]] ) assert is_hermitian(A__ ), F"{a} is not hermitian." print(rayleigh_quotient(A__ , A__ ) ) __lowercase = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(A__ ), F"{a} is not hermitian." assert rayleigh_quotient(A__ , A__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
41
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowercase : int =logging.get_logger(__name__) class A ( __lowercase ): _snake_case =['''pixel_values'''] def __init__( self: List[Any] , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = PILImageResampling.BILINEAR , _lowerCAmelCase: bool = True , _lowerCAmelCase: Union[int, float] = 1 / 255 , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , **_lowerCAmelCase: Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =do_resize UpperCAmelCase_ =size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ =crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ =resample UpperCAmelCase_ =do_rescale UpperCAmelCase_ =rescale_factor UpperCAmelCase_ =do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ =image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: float , _lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Any , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) UpperCAmelCase_ =size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ =int(shortest_edge / crop_pct ) UpperCAmelCase_ =get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_lowerCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _lowerCAmelCase , size=(shortest_edge, shortest_edge) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[int, float] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: str , ) -> Optional[Any]: '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Dict , ) -> np.ndarray: '''simple docstring''' return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: ImageInput , _lowerCAmelCase: bool = None , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: float = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: ChannelDimension = ChannelDimension.FIRST , **_lowerCAmelCase: Optional[Any] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ =do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ =crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ =resample if resample is not None else self.resample UpperCAmelCase_ =do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ =do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ =image_std if image_std is not None else self.image_std UpperCAmelCase_ =size if size is not None else self.size UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ =[to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ =[self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , crop_pct=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ =[self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ =[self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] UpperCAmelCase_ =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] UpperCAmelCase_ ={"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
54
0
'''simple docstring''' def _UpperCamelCase ( __UpperCamelCase = 1_00_00_00 ) -> int: lowerCamelCase_ = 1 lowerCamelCase_ = 1 lowerCamelCase_ = {1: 1} for inputa in range(2 ,__UpperCamelCase ): lowerCamelCase_ = 0 lowerCamelCase_ = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: lowerCamelCase_ = (3 * number) + 1 counter += 1 if inputa not in counters: lowerCamelCase_ = counter if counter > pre_counter: lowerCamelCase_ = inputa lowerCamelCase_ = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
42
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowercase : List[Any] =WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =test_results.split(" " ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. UpperCAmelCase_ =expressions[-2] if "=" in expressions[-1] else expressions[-1] for i, expression in enumerate(lowercase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} UpperCAmelCase_ =None UpperCAmelCase_ =False for line in failures_short_lines.split("\n" ): if re.search(R"_ \[doctest\]" , lowercase__ ): UpperCAmelCase_ =True UpperCAmelCase_ =line.split(" " )[2] elif in_error and not line.split(" " )[0].isdigit(): UpperCAmelCase_ =line UpperCAmelCase_ =False return failures class A : def __init__( self: Optional[Any] , _lowerCAmelCase: str , _lowerCAmelCase: Dict ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =title UpperCAmelCase_ =doc_test_results["time_spent"].split("," )[0] UpperCAmelCase_ =doc_test_results["success"] UpperCAmelCase_ =doc_test_results["failures"] UpperCAmelCase_ =self.n_success + self.n_failures # Failures and success of the modeling tests UpperCAmelCase_ =doc_test_results @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self._time_spent] UpperCAmelCase_ =0 for time in time_spent: UpperCAmelCase_ =time.split(":" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCAmelCase ) == 1: UpperCAmelCase_ =[0, 0, time_parts[0]] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'{int(_lowerCAmelCase )}h{int(_lowerCAmelCase )}m{int(_lowerCAmelCase )}s' @property def lowerCAmelCase__ ( self: int ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' F' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ =40 UpperCAmelCase_ ={k: v["failed"] for k, v in doc_test_results.items() if isinstance(_lowerCAmelCase , _lowerCAmelCase )} UpperCAmelCase_ ="" for category, failures in category_failures.items(): if len(_lowerCAmelCase ) == 0: continue if report != "": report += "\n\n" report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCAmelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'The following examples had failures:\n\n\n{report}\n', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCAmelCase ) @staticmethod def lowerCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =[ { "type": "section", "text": { "type": "plain_text", "text": "There was an issue running the tests.", }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(_lowerCAmelCase )} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(self.payload )} ) ) UpperCAmelCase_ =F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else "All tests passed." UpperCAmelCase_ =client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ ="" for key, value in failures.items(): UpperCAmelCase_ =value[:200] + " [Truncated]" if len(_lowerCAmelCase ) > 250 else value failures_text += F'*{key}*\n_{value}_\n\n' UpperCAmelCase_ =job_name UpperCAmelCase_ ={"type": "section", "text": {"type": "mrkdwn", "text": text}} if job_link is not None: UpperCAmelCase_ ={ "type": "button", "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True}, "url": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowerCAmelCase__ ( self: Any ) -> List[str]: '''simple docstring''' if self.thread_ts is None: raise ValueError("Can only post reply if a post has been made." ) UpperCAmelCase_ =self.doc_test_results.pop("job_link" ) self.doc_test_results.pop("failures" ) self.doc_test_results.pop("success" ) self.doc_test_results.pop("time_spent" ) UpperCAmelCase_ =sorted(self.doc_test_results.items() , key=lambda _lowerCAmelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result["failures"] ): UpperCAmelCase_ =F'*Num failures* :{len(job_result["failed"] )} \n' UpperCAmelCase_ =job_result["failures"] UpperCAmelCase_ =self.get_reply_blocks(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , text=_lowerCAmelCase ) print("Sending the following reply" ) print(json.dumps({"blocks": blocks} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=F'Results for {job}' , blocks=_lowerCAmelCase , thread_ts=self.thread_ts["ts"] , ) time.sleep(1 ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =os.environ["GITHUB_RUN_ID"] UpperCAmelCase_ =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' UpperCAmelCase_ =requests.get(lowercase__ ).json() UpperCAmelCase_ ={} try: jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) UpperCAmelCase_ =math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(lowercase__ ): UpperCAmelCase_ =requests.get(url + F'&page={i + 2}' ).json() jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return jobs except Exception as e: print("Unknown error, could not fetch links." , lowercase__ ) return {} def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} if os.path.exists(lowercase__ ): UpperCAmelCase_ =os.listdir(lowercase__ ) for file in files: try: with open(os.path.join(lowercase__ , lowercase__ ) , encoding="utf-8" ) as f: UpperCAmelCase_ =f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(lowercase__ , lowercase__ )}.' ) from e return _artifact def a__ ( ): '''simple docstring''' class A : def __init__( self: Tuple , _lowerCAmelCase: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =name UpperCAmelCase_ =[] def __str__( self: Optional[int] ) -> Tuple: '''simple docstring''' return self.name def lowerCAmelCase__ ( self: int , _lowerCAmelCase: str ) -> List[Any]: '''simple docstring''' self.paths.append({"name": self.name, "path": path} ) UpperCAmelCase_ ={} UpperCAmelCase_ =filter(os.path.isdir , os.listdir() ) for directory in directories: UpperCAmelCase_ =directory if artifact_name not in _available_artifacts: UpperCAmelCase_ =Artifact(lowercase__ ) _available_artifacts[artifact_name].add_path(lowercase__ ) return _available_artifacts if __name__ == "__main__": __lowercase : str =get_job_links() __lowercase : Dict =retrieve_available_artifacts() __lowercase : Optional[int] =collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowercase : Any ={ v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job __lowercase : Tuple =github_actions_job_links.get("""run_doctests""") __lowercase : int =available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] __lowercase : str =retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: __lowercase , __lowercase , __lowercase : Tuple =handle_test_results(artifact["""stats"""]) __lowercase : int =failed __lowercase : int =success __lowercase : str =time_spent[1:-1] + """, """ __lowercase : str =extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): __lowercase : int =line.replace("""FAILED """, """""") __lowercase : List[Any] =line.split()[0].replace("""\n""", """""") if "::" in line: __lowercase , __lowercase : Any =line.split("""::""") else: __lowercase , __lowercase : Dict =line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowercase : Optional[int] =docs[file_regex] doc_test_results[category]["failed"].append(test) __lowercase : Tuple =all_failures[test] if test in all_failures else """N/A""" __lowercase : Optional[int] =failure break __lowercase : Optional[int] =Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
54
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase = 16 lowerCAmelCase = 32 def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 16 ): """simple docstring""" lowercase__ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowercase__ = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(SCREAMING_SNAKE_CASE ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ = datasets.map( SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(SCREAMING_SNAKE_CASE ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ = 16 elif accelerator.mixed_precision != "no": lowercase__ = 8 else: lowercase__ = None return tokenizer.pad( SCREAMING_SNAKE_CASE , padding='''longest''' , max_length=SCREAMING_SNAKE_CASE , pad_to_multiple_of=SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets['''train'''] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) lowercase__ = DataLoader( tokenized_datasets['''validation'''] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase = mocked_dataloaders # noqa: F811 def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , SCREAMING_SNAKE_CASE ) == "1": lowercase__ = 2 # New Code # lowercase__ = int(args.gradient_accumulation_steps ) # Initialize accelerator lowercase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=SCREAMING_SNAKE_CASE ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( '''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config['''lr'''] lowercase__ = int(config['''num_epochs'''] ) lowercase__ = int(config['''seed'''] ) lowercase__ = int(config['''batch_size'''] ) lowercase__ = evaluate.load('''glue''' , '''mrpc''' ) set_seed(SCREAMING_SNAKE_CASE ) lowercase__ , lowercase__ = get_dataloaders(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ = model.to(accelerator.device ) # Instantiate optimizer lowercase__ = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE ) # Instantiate scheduler lowercase__ = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE , num_warmup_steps=1_00 , num_training_steps=(len(SCREAMING_SNAKE_CASE ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(SCREAMING_SNAKE_CASE ): lowercase__ = model(**SCREAMING_SNAKE_CASE ) lowercase__ = output.loss accelerator.backward(SCREAMING_SNAKE_CASE ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**SCREAMING_SNAKE_CASE ) lowercase__ = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=SCREAMING_SNAKE_CASE , references=SCREAMING_SNAKE_CASE , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , SCREAMING_SNAKE_CASE ) def _a ( ): """simple docstring""" lowercase__ = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=SCREAMING_SNAKE_CASE , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowercase__ = parser.parse_args() lowercase__ = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
43
def a__ ( lowercase__ = 2_0_0 ): '''simple docstring''' UpperCAmelCase_ =[1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] UpperCAmelCase_ =[0] * (pence + 1) UpperCAmelCase_ =1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowercase__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
54
0
'''simple docstring''' def A_ ( _lowerCAmelCase : list ): """simple docstring""" if len(_lowerCAmelCase ) < 2: return collection def circle_sort_util(_lowerCAmelCase : list , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> bool: _lowerCamelCase : str = False if low == high: return swapped _lowerCamelCase : str = low _lowerCamelCase : Dict = high while left < right: if collection[left] > collection[right]: _lowerCamelCase , _lowerCamelCase : Optional[int] = ( collection[right], collection[left], ) _lowerCamelCase : List[Any] = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: _lowerCamelCase , _lowerCamelCase : Any = ( collection[right + 1], collection[left], ) _lowerCamelCase : Optional[int] = True _lowerCamelCase : List[Any] = low + int((high - low) / 2 ) _lowerCamelCase : List[Any] = circle_sort_util(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Any = circle_sort_util(_lowerCAmelCase , mid + 1 , _lowerCAmelCase ) return swapped or left_swap or right_swap _lowerCamelCase : str = True while is_not_sorted is True: _lowerCamelCase : str = circle_sort_util(_lowerCAmelCase , 0 , len(_lowerCAmelCase ) - 1 ) return collection if __name__ == "__main__": UpperCAmelCase_ : List[Any] = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ : Tuple = [int(item) for item in user_input.split(',')] print(circle_sort(unsorted))
44
import sys def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] for chain_length in range(2 , lowercase__ ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ =a + chain_length - 1 UpperCAmelCase_ =sys.maxsize for c in range(lowercase__ , lowercase__ ): UpperCAmelCase_ =( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ =cost UpperCAmelCase_ =c return matrix, sol def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if i == j: print("A" + str(lowercase__ ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(lowercase__ , lowercase__ , optimal_solution[i][j] ) print_optiomal_solution(lowercase__ , optimal_solution[i][j] + 1 , lowercase__ ) print(")" , end=" " ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] UpperCAmelCase_ =len(lowercase__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ =matrix_chain_order(lowercase__ ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowercase__ , 1 , n - 1 ) if __name__ == "__main__": main()
54
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {"vocab_file": "vocab.txt"} UpperCamelCase = { "vocab_file": { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt", } } UpperCamelCase = { "YituTech/conv-bert-base": 512, "YituTech/conv-bert-medium-small": 512, "YituTech/conv-bert-small": 512, } UpperCamelCase = { "YituTech/conv-bert-base": {"do_lower_case": True}, "YituTech/conv-bert-medium-small": {"do_lower_case": True}, "YituTech/conv-bert-small": {"do_lower_case": True}, } class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Any = VOCAB_FILES_NAMES _snake_case : Any = PRETRAINED_VOCAB_FILES_MAP _snake_case : List[Any] = PRETRAINED_INIT_CONFIGURATION _snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Union[str, Any] = ConvBertTokenizer def __init__( self :int , lowerCamelCase__ :Dict=None , lowerCamelCase__ :int=None , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Optional[int]="[UNK]" , lowerCamelCase__ :Optional[Any]="[SEP]" , lowerCamelCase__ :List[Any]="[PAD]" , lowerCamelCase__ :List[str]="[CLS]" , lowerCamelCase__ :Optional[Any]="[MASK]" , lowerCamelCase__ :Any=True , lowerCamelCase__ :Tuple=None , **lowerCamelCase__ :Optional[int] , ): super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , tokenize_chinese_chars=lowerCamelCase__ , strip_accents=lowerCamelCase__ , **lowerCamelCase__ , ) UpperCamelCase__ :List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCamelCase__ ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCamelCase__ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCamelCase__ ) != tokenize_chinese_chars ): UpperCamelCase__ :List[str] = getattr(lowerCamelCase__ , normalizer_state.pop("""type""" ) ) UpperCamelCase__ :Optional[Any] = do_lower_case UpperCamelCase__ :List[str] = strip_accents UpperCamelCase__ :Optional[Any] = tokenize_chinese_chars UpperCamelCase__ :Optional[Any] = normalizer_class(**lowerCamelCase__ ) UpperCamelCase__ :Tuple = do_lower_case def __a ( self :Optional[Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Dict=None ): UpperCamelCase__ :Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self :Dict , lowerCamelCase__ :List[int] , lowerCamelCase__ :Optional[List[int]] = None ): UpperCamelCase__ :Optional[int] = [self.sep_token_id] UpperCamelCase__ :Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[str] = None ): UpperCamelCase__ :Optional[int] = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
45
from math import loga def a__ ( lowercase__ ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(lowercase__ , lowercase__ ): raise TypeError("Input value must be a 'int' type" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
54
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class A_ ( _a ): lowerCAmelCase__ = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) lowerCAmelCase__ = 'CIDAS/clipseg-rd64-refined' lowerCAmelCase__ = 'image_segmenter' lowerCAmelCase__ = CLIPSegForImageSegmentation lowerCAmelCase__ = ['image', 'text'] lowerCAmelCase__ = ['image'] def __init__( self: List[Any] ,*__lowerCAmelCase: List[Any] ,**__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' requires_backends(self ,["vision"] ) super().__init__(*__lowerCAmelCase ,**__lowerCAmelCase ) def _lowercase ( self: Dict ,__lowerCAmelCase: "Image" ,__lowerCAmelCase: str ): '''simple docstring''' return self.pre_processor(text=[label] ,images=[image] ,padding=__lowerCAmelCase ,return_tensors="pt" ) def _lowercase ( self: Dict ,__lowerCAmelCase: Optional[int] ): '''simple docstring''' with torch.no_grad(): _lowerCamelCase : Optional[int] = self.model(**__lowerCAmelCase ).logits return logits def _lowercase ( self: List[Any] ,__lowerCAmelCase: Any ): '''simple docstring''' _lowerCamelCase : int = outputs.cpu().detach().numpy() _lowerCamelCase : int = 0 _lowerCamelCase : Optional[Any] = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
46
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __lowercase : Union[str, Any] =logging.get_logger(__name__) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" ) if "model" in sd.keys(): UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" )["model"] # pop unnecessary weights UpperCAmelCase_ =[ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(lowercase__ ) UpperCAmelCase_ ={ "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase_ =sd.pop(lowercase__ ) UpperCAmelCase_ =list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase_ =sd[key] # We split QKV in separate Q,K,V UpperCAmelCase_ =key.replace(".qkv_proj." , ".q_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".k_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".v_proj." ) UpperCAmelCase_ =value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =torch.split(lowercase__ , depth // 3 , dim=0 ) UpperCAmelCase_ =q UpperCAmelCase_ =k UpperCAmelCase_ =v del sd[key] return sd @torch.no_grad() def a__ ( lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =load_checkpoint(lowercase__ ) if config is not None: UpperCAmelCase_ =OPTConfig.from_pretrained(lowercase__ ) else: UpperCAmelCase_ =OPTConfig() UpperCAmelCase_ =OPTModel(lowercase__ ).half().eval() model.load_state_dict(lowercase__ ) # Check results Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": __lowercase : List[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") __lowercase : str =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
54
0
def UpperCAmelCase__ ( lowerCamelCase_ : int = 1_0 ): if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or n < 0: raise ValueError('Invalid input' ) __a : Optional[Any] = 1_0**n __a : Union[str, Any] = 2_8_4_3_3 * (pow(2 , 7_8_3_0_4_5_7 , lowerCamelCase_ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"{solution(10) = }")
47
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): __lowercase : str ={ """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: __lowercase : Any ={ """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =(images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ =images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase_ =numpy_to_pil(lowercase__ ) return images def a__ ( lowercase__ ): '''simple docstring''' if images.ndim == 3: UpperCAmelCase_ =images[None, ...] UpperCAmelCase_ =(images * 2_5_5).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCAmelCase_ =[Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: UpperCAmelCase_ =[Image.fromarray(lowercase__ ) for image in images] return pil_images
54
0
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase__ : int = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase__ : Any = 10 UpperCAmelCase__ : Union[str, Any] = 2_56 def A ( UpperCamelCase_ : List[str] ) -> Optional[MinHash]: '''simple docstring''' if len(UpperCamelCase_ ) < MIN_NUM_TOKENS: return None lowerCAmelCase__ = MinHash(num_perm=UpperCamelCase_ ) for token in set(UpperCamelCase_ ): min_hash.update(token.encode() ) return min_hash def A ( UpperCamelCase_ : str ) -> Set[str]: '''simple docstring''' return {t for t in NON_ALPHA.split(UpperCamelCase_ ) if len(t.strip() ) > 0} class A : def __init__( self : Tuple , *, __magic_name__ : float = 0.85 , ): """simple docstring""" lowerCAmelCase__ = duplication_jaccard_threshold lowerCAmelCase__ = NUM_PERM lowerCAmelCase__ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) lowerCAmelCase__ = defaultdict(__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Tuple , __magic_name__ : MinHash ): """simple docstring""" lowerCAmelCase__ = self._index.query(__magic_name__ ) if code_key in self._index.keys: print(f"""Duplicate key {code_key}""" ) return self._index.insert(__magic_name__ , __magic_name__ ) if len(__magic_name__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__magic_name__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" lowerCAmelCase__ = [] for base, duplicates in self._duplicate_clusters.items(): lowerCAmelCase__ = [base] + list(__magic_name__ ) # reformat the cluster to be a list of dict lowerCAmelCase__ = [{"base_index": el[0], "repo_name": el[1], "path": el[2]} for el in cluster] duplicate_clusters.append(__magic_name__ ) return duplicate_clusters def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = self.get_duplicate_clusters() with open(__magic_name__ , "w" ) as f: json.dump(__magic_name__ , __magic_name__ ) def A ( UpperCamelCase_ : Optional[int] ) -> str: '''simple docstring''' lowerCAmelCase__ ,lowerCAmelCase__ = element lowerCAmelCase__ = get_min_hash([t for t in NON_ALPHA.split(data["content"] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def A ( UpperCamelCase_ : Type[Dataset] ) -> Dict: '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(UpperCamelCase_ , max_queue_size=1_00_00 ) , chunksize=1_00 , ): if data is not None: yield data def A ( UpperCamelCase_ : Type[Dataset] , UpperCamelCase_ : float ) -> str: '''simple docstring''' lowerCAmelCase__ = DuplicationIndex(duplication_jaccard_threshold=UpperCamelCase_ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(UpperCamelCase_ ) ) , max_queue_size=1_00 ) ): di.add(UpperCamelCase_ , UpperCamelCase_ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def A ( UpperCamelCase_ : str , UpperCamelCase_ : str ) -> float: '''simple docstring''' lowerCAmelCase__ = get_tokens(UpperCamelCase_ ) lowerCAmelCase__ = get_tokens(UpperCamelCase_ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase__ : str = None def A ( UpperCamelCase_ : Dict , UpperCamelCase_ : Any ) -> Any: '''simple docstring''' lowerCAmelCase__ = [] for elementa in cluster: lowerCAmelCase__ = _shared_dataset[elementa["base_index"]]["content"] for elementa in extremes: lowerCAmelCase__ = _shared_dataset[elementa["base_index"]]["content"] if jaccard_similarity(UpperCamelCase_ , UpperCamelCase_ ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowerCAmelCase__ = 1 extremes.append(UpperCamelCase_ ) return extremes def A ( UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str ) -> str: '''simple docstring''' global _shared_dataset lowerCAmelCase__ = dataset lowerCAmelCase__ = [] lowerCAmelCase__ = partial(_find_cluster_extremes_shared , jaccard_threshold=UpperCamelCase_ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( UpperCamelCase_ , UpperCamelCase_ , ) , total=len(UpperCamelCase_ ) , ): extremes_list.append(UpperCamelCase_ ) return extremes_list def A ( UpperCamelCase_ : Type[Dataset] , UpperCamelCase_ : float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: '''simple docstring''' lowerCAmelCase__ = make_duplicate_clusters(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = {x["base_index"] for cluster in duplicate_clusters for x in cluster} lowerCAmelCase__ = {} lowerCAmelCase__ = find_extremes(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for extremes in extremes_clusters: for element in extremes: lowerCAmelCase__ = element lowerCAmelCase__ = duplicate_indices - set(extreme_dict.keys() ) lowerCAmelCase__ = dataset.filter(lambda UpperCamelCase_ , UpperCamelCase_ : idx not in remove_indices , with_indices=UpperCamelCase_ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowerCAmelCase__ = element["base_index"] in extreme_dict if element["is_extreme"]: lowerCAmelCase__ = extreme_dict[element["base_index"]]["copies"] print(F"""Original dataset size: {len(UpperCamelCase_ )}""" ) print(F"""Number of duplicate clusters: {len(UpperCamelCase_ )}""" ) print(F"""Files in duplicate cluster: {len(UpperCamelCase_ )}""" ) print(F"""Unique files in duplicate cluster: {len(UpperCamelCase_ )}""" ) print(F"""Filtered dataset size: {len(UpperCamelCase_ )}""" ) return ds_filter, duplicate_clusters
48
def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =int(lowercase__ ) if n_element < 1: UpperCAmelCase_ =ValueError("a should be a positive number" ) raise my_error UpperCAmelCase_ =[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =(0, 0, 0) UpperCAmelCase_ =1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": __lowercase : Tuple =input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") __lowercase : Union[str, Any] =hamming(int(n)) print("""-----------------------------------------------------""") print(f"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
54
0
"""simple docstring""" # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers _lowercase : Optional[int] = float('nan') class _UpperCAmelCase : def __init__( self : Optional[Any] , _lowercase : Optional[int] ): __UpperCAmelCase = sys.stdout __UpperCAmelCase = open(_lowercase , '''a''' ) def __getattr__( self : str , _lowercase : Union[str, Any] ): return getattr(self.stdout , _lowercase ) def a ( self : str , _lowercase : List[Any] ): self.stdout.write(_lowercase ) # strip tqdm codes self.file.write(re.sub(r'''^.*\r''' , '''''' , _lowercase , 0 , re.M ) ) def lowercase__ ( snake_case_ :Optional[Any]=80 , snake_case_ :Dict=False ): __UpperCAmelCase = [] # deal with critical env vars __UpperCAmelCase = ['''CUDA_VISIBLE_DEVICES'''] for key in env_keys: __UpperCAmelCase = os.environ.get(snake_case_ , snake_case_ ) if val is not None: cmd.append(F'''{key}={val}''' ) # python executable (not always needed if the script is executable) __UpperCAmelCase = sys.executable if full_python_path else sys.executable.split('''/''' )[-1] cmd.append(snake_case_ ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes __UpperCAmelCase = [] __UpperCAmelCase = '''''' while len(snake_case_ ) > 0: current_line += F'''{cmd.pop(0 )} ''' if len(snake_case_ ) == 0 or len(snake_case_ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(snake_case_ ) __UpperCAmelCase = '''''' return "\\\n".join(snake_case_ ) def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Dict ): # unwrap multi-line input __UpperCAmelCase = re.sub(r'''[\\\n]+''' , ''' ''' , args.base_cmd ) # remove --output_dir if any and set our own __UpperCAmelCase = re.sub('''--output_dir\s+[^\s]+''' , '''''' , args.base_cmd ) args.base_cmd += F''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir __UpperCAmelCase = re.sub('''--overwrite_output_dir\s+''' , '''''' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def lowercase__ ( snake_case_ :Any , snake_case_ :int , snake_case_ :Union[str, Any] , snake_case_ :Dict , snake_case_ :Tuple , snake_case_ :Any , snake_case_ :int ): # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.22222222] )} , ) __UpperCAmelCase = subprocess.run(snake_case_ , capture_output=snake_case_ , text=snake_case_ ) if verbose: print('''STDOUT''' , result.stdout ) print('''STDERR''' , result.stderr ) # save the streams __UpperCAmelCase = variation.replace(''' ''' , '''-''' ) with open(Path(snake_case_ ) / F'''log.{prefix}.stdout.txt''' , '''w''' ) as f: f.write(result.stdout ) with open(Path(snake_case_ ) / F'''log.{prefix}.stderr.txt''' , '''w''' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('''failed''' ) return {target_metric_key: nan} with io.open(F'''{output_dir}/all_results.json''' , '''r''' , encoding='''utf-8''' ) as f: __UpperCAmelCase = json.load(snake_case_ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def lowercase__ ( snake_case_ :int , snake_case_ :Any , snake_case_ :List[str] , snake_case_ :List[str] , snake_case_ :Dict , snake_case_ :List[str] , snake_case_ :List[str] , snake_case_ :str , snake_case_ :List[Any] , snake_case_ :Optional[int] , ): __UpperCAmelCase = [] __UpperCAmelCase = [] __UpperCAmelCase = F'''{id}: {variation:<{longest_variation_len}}''' __UpperCAmelCase = F'''{preamble}: ''' __UpperCAmelCase = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(snake_case_ ) , desc=snake_case_ , leave=snake_case_ ): __UpperCAmelCase = process_run_single( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) __UpperCAmelCase = single_run_metrics[target_metric_key] if not math.isnan(snake_case_ ): metrics.append(snake_case_ ) results.append(snake_case_ ) outcome += "✓" else: outcome += "✘" __UpperCAmelCase = F'''\33[2K\r{outcome}''' if len(snake_case_ ) > 0: __UpperCAmelCase = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} __UpperCAmelCase = round(mean_metrics[target_metric_key] , 2 ) __UpperCAmelCase = F'''{outcome} {mean_target}''' if len(snake_case_ ) > 1: results_str += F''' {tuple(round(snake_case_ , 2 ) for x in results )}''' print(snake_case_ ) __UpperCAmelCase = variation return mean_metrics else: print(snake_case_ ) return {variation_key: variation, target_metric_key: nan} def lowercase__ ( ): __UpperCAmelCase = torch.cuda.get_device_properties(torch.device('''cuda''' ) ) return F''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def lowercase__ ( snake_case_ :int , snake_case_ :Tuple , snake_case_ :Union[str, Any] , snake_case_ :Optional[Any] , snake_case_ :Optional[int] ): __UpperCAmelCase = pd.DataFrame(snake_case_ ) __UpperCAmelCase = '''variation''' __UpperCAmelCase = '''diff_%''' __UpperCAmelCase = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan __UpperCAmelCase = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(snake_case_ ): # as a fallback, use the minimal value as the sentinel __UpperCAmelCase = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(snake_case_ ): __UpperCAmelCase = df.apply( lambda snake_case_ : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='''columns''' , ) # re-order columns __UpperCAmelCase = [variation_key, target_metric_key, diff_key, *report_metric_keys] __UpperCAmelCase = df.reindex(snake_case_ , axis='''columns''' ) # reorder cols # capitalize __UpperCAmelCase = df.rename(str.capitalize , axis='''columns''' ) # make the cols as narrow as possible __UpperCAmelCase = df.rename(lambda snake_case_ : c.replace('''_''' , '''<br>''' ) , axis='''columns''' ) __UpperCAmelCase = df.rename(lambda snake_case_ : c.replace('''_''' , '''\n''' ) , axis='''columns''' ) __UpperCAmelCase = ['''''', '''Copy between the cut-here-lines and paste as is to github or a forum'''] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=snake_case_ , floatfmt='''.2f''' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=snake_case_ , floatfmt='''.2f''' )] print('''\n\n'''.join(snake_case_ ) ) def lowercase__ ( ): __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--base-cmd''' , default=snake_case_ , type=snake_case_ , required=snake_case_ , help='''Base cmd''' , ) parser.add_argument( '''--variations''' , default=snake_case_ , type=snake_case_ , nargs='''+''' , required=snake_case_ , help='''Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'''' , ) parser.add_argument( '''--base-variation''' , default=snake_case_ , type=snake_case_ , help='''Baseline variation to compare to. if None the minimal target value will be used to compare against''' , ) parser.add_argument( '''--target-metric-key''' , default=snake_case_ , type=snake_case_ , required=snake_case_ , help='''Target metric key in output_dir/all_results.json, e.g., train_samples_per_second''' , ) parser.add_argument( '''--report-metric-keys''' , default='''''' , type=snake_case_ , help='''Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples''' , ) parser.add_argument( '''--repeat-times''' , default=1 , type=snake_case_ , help='''How many times to re-run each variation - an average will be reported''' , ) parser.add_argument( '''--output_dir''' , default='''output_benchmark''' , type=snake_case_ , help='''The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked''' , ) parser.add_argument( '''--verbose''' , default=snake_case_ , action='''store_true''' , help='''Whether to show the outputs of each run or just the benchmark progress''' , ) __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = args.output_dir Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) __UpperCAmelCase = get_base_command(snake_case_ , snake_case_ ) # split each dimension into its --foo variations __UpperCAmelCase = [list(map(str.strip , re.split(r'''\|''' , snake_case_ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __UpperCAmelCase = list(map(str.strip , map(''' '''.join , itertools.product(*snake_case_ ) ) ) ) __UpperCAmelCase = max(len(snake_case_ ) for x in variations ) # split wanted keys __UpperCAmelCase = args.report_metric_keys.split() # capture prints into a log file for convenience __UpperCAmelCase = F'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(F'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(F'''and this script\'s output is also piped into {report_fn}''' ) __UpperCAmelCase = Tee(snake_case_ ) print(F'''\n*** Running {len(snake_case_ )} benchmarks:''' ) print(F'''Base command: {" ".join(snake_case_ )}''' ) __UpperCAmelCase = '''variation''' __UpperCAmelCase = [] for id, variation in enumerate(tqdm(snake_case_ , desc='''Total completion: ''' , leave=snake_case_ ) ): __UpperCAmelCase = base_cmd + variation.split() results.append( process_run( id + 1 , snake_case_ , snake_case_ , snake_case_ , snake_case_ , args.target_metric_key , snake_case_ , args.repeat_times , snake_case_ , args.verbose , ) ) process_results(snake_case_ , args.target_metric_key , snake_case_ , args.base_variation , snake_case_ ) if __name__ == "__main__": main()
49
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __lowercase : List[Any] =logging.get_logger(__name__) class A ( __lowercase ): def __init__( self: List[Any] , *_lowerCAmelCase: Optional[Any] , **_lowerCAmelCase: List[str] ) -> None: '''simple docstring''' warnings.warn( "The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use GLPNImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
54
0
'''simple docstring''' def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ): lowerCamelCase__ = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def A__ ( ): print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
50
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class A ( __lowercase , unittest.TestCase ): _snake_case =CanineTokenizer _snake_case =False def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' super().setUp() UpperCAmelCase_ =CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCAmelCase__ ( self: Optional[int] ) -> List[str]: '''simple docstring''' return CanineTokenizer.from_pretrained("google/canine-s" ) def lowerCAmelCase__ ( self: Union[str, Any] , **_lowerCAmelCase: List[Any] ) -> CanineTokenizer: '''simple docstring''' UpperCAmelCase_ =self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) UpperCAmelCase_ =1024 return tokenizer @require_torch def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off UpperCAmelCase_ =[5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =list(batch.input_ids.numpy()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , _lowerCAmelCase ) self.assertIn("attention_mask" , _lowerCAmelCase ) self.assertIn("token_type_ids" , _lowerCAmelCase ) @require_torch def lowerCAmelCase__ ( self: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =[ "What's the weater?", "It's about 25 degrees.", ] UpperCAmelCase_ =tokenizer( text_target=_lowerCAmelCase , max_length=32 , padding="max_length" , truncation=_lowerCAmelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) UpperCAmelCase_ =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: UpperCAmelCase_ =chr(0xe0_07 ) additional_special_tokens.append(_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn(_lowerCAmelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ , UpperCAmelCase_ =self.get_clean_sequence(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_05 UpperCAmelCase_ =chr(_lowerCAmelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) UpperCAmelCase_ =tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , input_encoded + special_token_id ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def lowerCAmelCase__ ( self: Any ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =chr(0xe0_05 ) UpperCAmelCase_ =chr(0xe0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=_lowerCAmelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(token_a[0] , _lowerCAmelCase ) self.assertEqual(token_a[0] , _lowerCAmelCase ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_lowerCAmelCase ) tokenizer.from_pretrained(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =[new_token_a] UpperCAmelCase_ =[new_token_a] with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase_ =tokenizer_class.from_pretrained(_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) UpperCAmelCase_ =0xe0_07 UpperCAmelCase_ =chr(_lowerCAmelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase_ =[AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase )] UpperCAmelCase_ =tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ ="hello world" if self.space_between_special_tokens: UpperCAmelCase_ ="[CLS] hello world [SEP]" else: UpperCAmelCase_ =input UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_lowerCAmelCase , [output, output.lower()] ) def lowerCAmelCase__ ( self: List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =[ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] UpperCAmelCase_ ="a" UpperCAmelCase_ =ord(_lowerCAmelCase ) for attr in attributes_list: setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [] ) UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' pass def lowerCAmelCase__ ( self: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Tuple ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: str ) -> str: '''simple docstring''' pass
54
0
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase__ : '''simple docstring''' def __init__( self : List[Any] , a__ : Optional[Any] , a__ : Any=13 , a__ : str=32 , a__ : Optional[int]=3 , a__ : Tuple=4 , a__ : Any=[10, 20, 30, 40] , a__ : Any=[2, 2, 3, 2] , a__ : List[Any]=True , a__ : List[str]=True , a__ : Union[str, Any]=37 , a__ : Tuple="gelu" , a__ : Any=10 , a__ : List[str]=0.02 , a__ : List[Any]=["stage2", "stage3", "stage4"] , a__ : Any=[2, 3, 4] , a__ : int=None , ): UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = num_stages UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = num_labels UpperCAmelCase = initializer_range UpperCAmelCase = out_features UpperCAmelCase = out_indices UpperCAmelCase = scope def __snake_case ( self : Dict ): UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def __snake_case ( self : Dict ): return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=a__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __snake_case ( self : Dict , a__ : Tuple , a__ : Union[str, Any] , a__ : List[Any] ): UpperCAmelCase = ConvNextVaModel(config=a__ ) model.to(a__ ) model.eval() UpperCAmelCase = model(a__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __snake_case ( self : Dict , a__ : Any , a__ : Dict , a__ : List[Any] ): UpperCAmelCase = ConvNextVaForImageClassification(a__ ) model.to(a__ ) model.eval() UpperCAmelCase = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self : Any , a__ : Optional[Any] , a__ : List[Any] , a__ : Dict ): UpperCAmelCase = ConvNextVaBackbone(config=a__ ) model.to(a__ ) model.eval() UpperCAmelCase = model(a__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase = None UpperCAmelCase = ConvNextVaBackbone(config=a__ ) model.to(a__ ) model.eval() UpperCAmelCase = model(a__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __snake_case ( self : Any ): UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict def __snake_case ( self : List[str] ): UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values, '''labels''': labels} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) _lowerCamelCase =( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) _lowerCamelCase =False _lowerCamelCase =False _lowerCamelCase =False _lowerCamelCase =False _lowerCamelCase =False def __snake_case ( self : List[Any] ): UpperCAmelCase = ConvNextVaModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def __snake_case ( self : Tuple ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __snake_case ( self : Optional[Any] ): return @unittest.skip(reason='''ConvNextV2 does not use inputs_embeds''' ) def __snake_case ( self : List[str] ): pass @unittest.skip(reason='''ConvNextV2 does not support input and output embeddings''' ) def __snake_case ( self : Union[str, Any] ): pass @unittest.skip(reason='''ConvNextV2 does not use feedforward chunking''' ) def __snake_case ( self : str ): pass def __snake_case ( self : Optional[Any] ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase = True if model_class.__name__ in [ *get_values(a__ ), *get_values(a__ ), ]: continue UpperCAmelCase = model_class(a__ ) model.to(a__ ) model.train() UpperCAmelCase = self._prepare_for_class(a__ , a__ , return_labels=a__ ) UpperCAmelCase = model(**a__ ).loss loss.backward() def __snake_case ( self : Union[str, Any] ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase = False UpperCAmelCase = True if ( model_class.__name__ in [*get_values(a__ ), *get_values(a__ )] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase = model_class(a__ ) model.to(a__ ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase = self._prepare_for_class(a__ , a__ , return_labels=a__ ) UpperCAmelCase = model(**a__ ).loss loss.backward() def __snake_case ( self : str ): UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(a__ ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__ ) def __snake_case ( self : Any ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __snake_case ( self : Any ): def check_hidden_states_output(a__ : Dict , a__ : str , a__ : Dict ): UpperCAmelCase = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(a__ , a__ ) ) UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(a__ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(a__ , a__ , a__ ) def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @slow def __snake_case ( self : Tuple ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = ConvNextVaModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def __snake_case ( ) -> int: """simple docstring""" UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self : Dict ): return AutoImageProcessor.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ) if is_vision_available() else None @slow def __snake_case ( self : Dict ): UpperCAmelCase = ConvNextVaForImageClassification.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ).to(a__ ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = preprocessor(images=a__ , return_tensors='''pt''' ).to(a__ ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**a__ ) # verify the logits UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , a__ ) UpperCAmelCase = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1e-4 ) )
51
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __lowercase : Optional[int] ="""\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ __lowercase : Dict ="""\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ __lowercase : List[str] ="""\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def lowerCAmelCase__ ( self: int ) -> MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: List[List[List[str]]] , _lowerCAmelCase: List[List[str]] , _lowerCAmelCase: int = 1 , _lowerCAmelCase: int = 4 , ) -> Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_lowerCAmelCase , hypotheses=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase ) }
54
0
"""simple docstring""" # using dfs for finding eulerian path traversal def __A ( a_ :int , a_ :Dict , a_ :str , a_ :Optional[int]=None) -> List[str]: __a : Any = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: __a , __a : Union[str, Any] = True, True __a : List[Any] = dfs(a_ , a_ , a_ , a_) return path def __A ( a_ :int , a_ :int) -> Optional[int]: __a : Any = 0 __a : Optional[int] = -1 for i in range(a_): if i not in graph.keys(): continue if len(graph[i]) % 2 == 1: odd_degree_nodes += 1 __a : int = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def __A ( a_ :List[str] , a_ :Tuple) -> Tuple: __a : List[str] = [[False for _ in range(max_node + 1)] for _ in range(max_node + 1)] __a , __a : Any = check_circuit_or_path(a_ , a_) if check == 3: print('''graph is not Eulerian''') print('''no path''') return __a : Any = 1 if check == 2: __a : str = odd_node print('''graph has a Euler path''') if check == 1: print('''graph has a Euler cycle''') __a : Any = dfs(a_ , a_ , a_) print(a_) def __A ( ) -> List[str]: __a : List[Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} __a : Any = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} __a : List[Any] = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} __a : str = {1: [2, 3], 2: [1, 3], 3: [1, 2]} __a : List[Any] = { 1: [], 2: [] # all degree is zero } __a : Tuple = 10 check_euler(a_ , a_) check_euler(a_ , a_) check_euler(a_ , a_) check_euler(a_ , a_) check_euler(a_ , a_) if __name__ == "__main__": main()
52
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( __lowercase , unittest.TestCase ): _snake_case =KandinskyVaaImgaImgPipeline _snake_case =['''image_embeds''', '''negative_image_embeds''', '''image'''] _snake_case =[ '''image_embeds''', '''negative_image_embeds''', '''image''', ] _snake_case =[ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _snake_case =False @property def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self: List[str] ) -> Dict: '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' return 100 @property def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ ={ "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase_ =UNetaDConditionModel(**_lowerCAmelCase ) return model @property def lowerCAmelCase__ ( self: Any ) -> Tuple: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ ( self: Dict ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.dummy_unet UpperCAmelCase_ =self.dummy_movq UpperCAmelCase_ ={ "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.0_00_85, "beta_end": 0.0_12, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } UpperCAmelCase_ =DDIMScheduler(**_lowerCAmelCase ) UpperCAmelCase_ ={ "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[Any]=0 ) -> Dict: '''simple docstring''' UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCAmelCase ) # create init_image UpperCAmelCase_ =floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ =Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("RGB" ).resize((256, 256) ) if str(_lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase ) else: UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) UpperCAmelCase_ ={ "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ ="cpu" UpperCAmelCase_ =self.get_dummy_components() UpperCAmelCase_ =self.pipeline_class(**_lowerCAmelCase ) UpperCAmelCase_ =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) UpperCAmelCase_ =output.images UpperCAmelCase_ =pipe( **self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0] UpperCAmelCase_ =image[0, -3:, -3:, -1] UpperCAmelCase_ =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ =np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: List[Any] ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) UpperCAmelCase_ =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase_ ="A red cartoon frog, 4k" UpperCAmelCase_ =KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) UpperCAmelCase_ =KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) UpperCAmelCase_ =pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ , UpperCAmelCase_ =pipe_prior( _lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase_ =pipeline( image=_lowerCAmelCase , image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) UpperCAmelCase_ =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
54
0
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger _snake_case : Union[str, Any] = get_logger(__name__) class _UpperCAmelCase : """simple docstring""" def __init__( self : int , lowerCAmelCase_ : Optional[str] = None ) -> Optional[Any]: __lowerCAmelCase = ( os.path.join(lowerCAmelCase_ , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) __lowerCAmelCase = Extractor def lowercase ( self : List[Any] , lowerCAmelCase_ : str ) -> str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" __lowerCAmelCase = os.path.abspath(lowerCAmelCase_ ) return os.path.join(self.extract_dir , hash_url_to_filename(lowerCAmelCase_ ) ) def lowercase ( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : bool ) -> bool: return force_extract or ( not os.path.isfile(lowerCAmelCase_ ) and not (os.path.isdir(lowerCAmelCase_ ) and os.listdir(lowerCAmelCase_ )) ) def lowercase ( self : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : bool = False ) -> str: __lowerCAmelCase = self.extractor.infer_extractor_format(lowerCAmelCase_ ) if not extractor_format: return input_path __lowerCAmelCase = self._get_output_path(lowerCAmelCase_ ) if self._do_extract(lowerCAmelCase_ , lowerCAmelCase_ ): self.extractor.extract(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return output_path class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" @classmethod @abstractmethod def lowercase ( cls : Optional[Any] , lowerCAmelCase_ : Union[Path, str] , **lowerCAmelCase_ : List[str] ) -> bool: ... @staticmethod @abstractmethod def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None: ... class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" a_ = [] @staticmethod def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : int ) -> List[Any]: with open(lowerCAmelCase_ , 'rb' ) as f: return f.read(lowerCAmelCase_ ) @classmethod def lowercase ( cls : str , lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : bytes = b"" ) -> bool: if not magic_number: __lowerCAmelCase = max(len(lowerCAmelCase_ ) for cls_magic_number in cls.magic_numbers ) try: __lowerCAmelCase = cls.read_magic_number(lowerCAmelCase_ , lowerCAmelCase_ ) except OSError: return False return any(magic_number.startswith(lowerCAmelCase_ ) for cls_magic_number in cls.magic_numbers ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" @classmethod def lowercase ( cls : Tuple , lowerCAmelCase_ : Union[Path, str] , **lowerCAmelCase_ : str ) -> bool: return tarfile.is_tarfile(lowerCAmelCase_ ) @staticmethod def lowercase ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] ) -> str: def resolved(lowerCAmelCase_ : str ) -> str: return os.path.realpath(os.path.abspath(lowerCAmelCase_ ) ) def badpath(lowerCAmelCase_ : str , lowerCAmelCase_ : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ).startswith(lowerCAmelCase_ ) def badlink(lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str ) -> bool: # Links are interpreted relative to the directory containing the link __lowerCAmelCase = resolved(os.path.join(lowerCAmelCase_ , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=lowerCAmelCase_ ) __lowerCAmelCase = resolved(lowerCAmelCase_ ) for finfo in members: if badpath(finfo.name , lowerCAmelCase_ ): logger.error(f"""Extraction of {finfo.name} is blocked (illegal path)""" ) elif finfo.issym() and badlink(lowerCAmelCase_ , lowerCAmelCase_ ): logger.error(f"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" ) elif finfo.islnk() and badlink(lowerCAmelCase_ , lowerCAmelCase_ ): logger.error(f"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" ) else: yield finfo @staticmethod def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None: os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowerCAmelCase = tarfile.open(lowerCAmelCase_ ) tar_file.extractall(lowerCAmelCase_ , members=TarExtractor.safemembers(lowerCAmelCase_ , lowerCAmelCase_ ) ) tar_file.close() class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = [b"""\x1F\x8B"""] @staticmethod def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None: with gzip.open(lowerCAmelCase_ , 'rb' ) as gzip_file: with open(lowerCAmelCase_ , 'wb' ) as extracted_file: shutil.copyfileobj(lowerCAmelCase_ , lowerCAmelCase_ ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = [ b"""PK\x03\x04""", b"""PK\x05\x06""", # empty archive b"""PK\x07\x08""", # spanned archive ] @classmethod def lowercase ( cls : List[str] , lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : bytes = b"" ) -> bool: if super().is_extractable(lowerCAmelCase_ , magic_number=lowerCAmelCase_ ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(lowerCAmelCase_ , 'rb' ) as fp: __lowerCAmelCase = _EndRecData(lowerCAmelCase_ ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: __lowerCAmelCase = fp.read(lowerCAmelCase_ ) # CD is where we expect it to be if len(lowerCAmelCase_ ) == sizeCentralDir: __lowerCAmelCase = struct.unpack(lowerCAmelCase_ , lowerCAmelCase_ ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None: os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) with zipfile.ZipFile(lowerCAmelCase_ , 'r' ) as zip_file: zip_file.extractall(lowerCAmelCase_ ) zip_file.close() class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = [b"""\xFD\x37\x7A\x58\x5A\x00"""] @staticmethod def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None: with lzma.open(lowerCAmelCase_ ) as compressed_file: with open(lowerCAmelCase_ , 'wb' ) as extracted_file: shutil.copyfileobj(lowerCAmelCase_ , lowerCAmelCase_ ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = [b"""Rar!\x1a\x07\x00""", b"""Rar!\x1a\x07\x01\x00"""] # RAR_ID # RAR5_ID @staticmethod def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None: if not config.RARFILE_AVAILABLE: raise ImportError('Please pip install rarfile' ) import rarfile os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowerCAmelCase = rarfile.RarFile(lowerCAmelCase_ ) rf.extractall(lowerCAmelCase_ ) rf.close() class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = [b"""\x28\xb5\x2F\xFD"""] @staticmethod def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None: if not config.ZSTANDARD_AVAILABLE: raise ImportError('Please pip install zstandard' ) import zstandard as zstd __lowerCAmelCase = zstd.ZstdDecompressor() with open(lowerCAmelCase_ , 'rb' ) as ifh, open(lowerCAmelCase_ , 'wb' ) as ofh: dctx.copy_stream(lowerCAmelCase_ , lowerCAmelCase_ ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = [b"""\x42\x5A\x68"""] @staticmethod def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None: with bza.open(lowerCAmelCase_ , 'rb' ) as compressed_file: with open(lowerCAmelCase_ , 'wb' ) as extracted_file: shutil.copyfileobj(lowerCAmelCase_ , lowerCAmelCase_ ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = [b"""\x37\x7A\xBC\xAF\x27\x1C"""] @staticmethod def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None: if not config.PY7ZR_AVAILABLE: raise ImportError('Please pip install py7zr' ) import pyazr os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) with pyazr.SevenZipFile(lowerCAmelCase_ , 'r' ) as archive: archive.extractall(lowerCAmelCase_ ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = [b"""\x04\x22\x4D\x18"""] @staticmethod def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None: if not config.LZ4_AVAILABLE: raise ImportError('Please pip install lz4' ) import lza.frame with lza.frame.open(lowerCAmelCase_ , 'rb' ) as compressed_file: with open(lowerCAmelCase_ , 'wb' ) as extracted_file: shutil.copyfileobj(lowerCAmelCase_ , lowerCAmelCase_ ) class _UpperCAmelCase : """simple docstring""" a_ = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def lowercase ( cls : int ) -> Any: return max( len(lowerCAmelCase_ ) for extractor in cls.extractors.values() if issubclass(lowerCAmelCase_ , lowerCAmelCase_ ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : int ) -> Optional[Any]: try: return MagicNumberBaseExtractor.read_magic_number(lowerCAmelCase_ , magic_number_length=lowerCAmelCase_ ) except OSError: return b"" @classmethod def lowercase ( cls : Dict , lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : bool = False ) -> bool: warnings.warn( 'Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ' 'Use \'infer_extractor_format\' instead.' , category=lowerCAmelCase_ , ) __lowerCAmelCase = cls.infer_extractor_format(lowerCAmelCase_ ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def lowercase ( cls : str , lowerCAmelCase_ : Union[Path, str] ) -> str: # <Added version="2.4.0"/> __lowerCAmelCase = cls._get_magic_number_max_length() __lowerCAmelCase = cls._read_magic_number(lowerCAmelCase_ , lowerCAmelCase_ ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(lowerCAmelCase_ , magic_number=lowerCAmelCase_ ): return extractor_format @classmethod def lowercase ( cls : Union[str, Any] , lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[BaseExtractor] = "deprecated" , ) -> None: os.makedirs(os.path.dirname(lowerCAmelCase_ ) , exist_ok=lowerCAmelCase_ ) # Prevent parallel extractions __lowerCAmelCase = str(Path(lowerCAmelCase_ ).with_suffix('.lock' ) ) with FileLock(lowerCAmelCase_ ): shutil.rmtree(lowerCAmelCase_ , ignore_errors=lowerCAmelCase_ ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): # passed as positional arg warnings.warn( 'Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ' 'Use \'extractor_format\' instead.' , category=lowerCAmelCase_ , ) __lowerCAmelCase = extractor if extractor != 'deprecated' else extractor_format else: __lowerCAmelCase = cls.extractors[extractor_format] return extractor.extract(lowerCAmelCase_ , lowerCAmelCase_ ) else: warnings.warn( 'Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ' 'exception in 3.0.0.' , category=lowerCAmelCase_ , ) for extractor in cls.extractors.values(): if extractor.is_extractable(lowerCAmelCase_ ): return extractor.extract(lowerCAmelCase_ , lowerCAmelCase_ )
53
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class A ( unittest.TestCase ): def __init__( self: Optional[int] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: Optional[int]=7 , _lowerCAmelCase: Any=True , _lowerCAmelCase: List[Any]=True , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: str=True , _lowerCAmelCase: Optional[int]=99 , _lowerCAmelCase: Any=32 , _lowerCAmelCase: Any=5 , _lowerCAmelCase: Tuple=4 , _lowerCAmelCase: Union[str, Any]=37 , _lowerCAmelCase: List[str]="gelu" , _lowerCAmelCase: Dict=0.1 , _lowerCAmelCase: Tuple=0.1 , _lowerCAmelCase: int=512 , _lowerCAmelCase: Tuple=16 , _lowerCAmelCase: Tuple=2 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=4 , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =seq_length UpperCAmelCase_ =is_training UpperCAmelCase_ =use_attention_mask UpperCAmelCase_ =use_token_type_ids UpperCAmelCase_ =use_labels UpperCAmelCase_ =vocab_size UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =max_position_embeddings UpperCAmelCase_ =type_vocab_size UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =num_choices def lowerCAmelCase__ ( self: Dict ) -> Any: '''simple docstring''' UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ =None if self.use_attention_mask: UpperCAmelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ =None if self.use_token_type_ids: UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ =RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self: str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCAmelCase__ ( self: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ =True UpperCAmelCase_ =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( __lowercase , unittest.TestCase ): _snake_case =True _snake_case =( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self: Dict ) -> Dict: '''simple docstring''' UpperCAmelCase_ =FlaxRobertaModelTester(self ) @slow def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase_ =model_class_name.from_pretrained("roberta-base" , from_pt=_lowerCAmelCase ) UpperCAmelCase_ =model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase )
54
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @slow @require_torch def UpperCamelCase_ ( self : Optional[int] ): __A = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" ,"prajjwal1/bert-tiny" ) __A = BertTokenizer.from_pretrained("bert-base-uncased" ) __A = bertabert.config.encoder.vocab_size __A = tokenizer.sep_token_id __A = tokenizer.cls_token_id __A = 1_28 __A = datasets.load_dataset("cnn_dailymail" ,"3.0.0" ,split="train[:1%]" ) __A = datasets.load_dataset("cnn_dailymail" ,"3.0.0" ,split="validation[:1%]" ) __A = train_dataset.select(range(32 ) ) __A = val_dataset.select(range(16 ) ) __A = 4 def _map_to_encoder_decoder_inputs(A : str ): # Tokenizer will automatically set [BOS] <text> [EOS] __A = tokenizer(batch["article"] ,padding="max_length" ,truncation=A ,max_length=5_12 ) __A = tokenizer(batch["highlights"] ,padding="max_length" ,truncation=A ,max_length=1_28 ) __A = inputs.input_ids __A = inputs.attention_mask __A = outputs.input_ids __A = outputs.input_ids.copy() __A = [ [-1_00 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] __A = outputs.attention_mask assert all(len(A ) == 5_12 for x in inputs.input_ids ) assert all(len(A ) == 1_28 for x in outputs.input_ids ) return batch def _compute_metrics(A : Union[str, Any] ): __A = pred.label_ids __A = pred.predictions # all unnecessary tokens are removed __A = tokenizer.batch_decode(A ,skip_special_tokens=A ) __A = tokenizer.batch_decode(A ,skip_special_tokens=A ) __A = sum([int(pred_str[i] == label_str[i] ) for i in range(len(A ) )] ) / len(A ) return {"accuracy": accuracy} # map train dataset __A = train_dataset.map( _map_to_encoder_decoder_inputs ,batched=A ,batch_size=A ,remove_columns=["article", "highlights"] ,) train_dataset.set_format( type="torch" ,columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] ,) # same for validation dataset __A = val_dataset.map( _map_to_encoder_decoder_inputs ,batched=A ,batch_size=A ,remove_columns=["article", "highlights"] ,) val_dataset.set_format( type="torch" ,columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] ,) __A = self.get_auto_remove_tmp_dir() __A = SeqaSeqTrainingArguments( output_dir=A ,per_device_train_batch_size=A ,per_device_eval_batch_size=A ,predict_with_generate=A ,evaluation_strategy="steps" ,do_train=A ,do_eval=A ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,) # instantiate trainer __A = SeqaSeqTrainer( model=A ,args=A ,compute_metrics=_compute_metrics ,train_dataset=A ,eval_dataset=A ,tokenizer=A ,) # start training trainer.train()
55
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if b == 0: return (1, 0) ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , a % b ) UpperCAmelCase_ =a // b return (y, x - k * y) def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) if b < 0: UpperCAmelCase_ =(b % n + n) % n return b def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =invert_modulo(lowercase__ , lowercase__ ), invert_modulo(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
54
0
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig _a : List[Any] = logging.get_logger(__name__) # General docstring _a : Union[str, Any] = "MobileNetV1Config" # Base docstring _a : int = "google/mobilenet_v1_1.0_224" _a : Any = [1, 1_024, 7, 7] # Image classification docstring _a : Any = "google/mobilenet_v1_1.0_224" _a : Tuple = "tabby, tabby cat" _a : Tuple = [ "google/mobilenet_v1_1.0_224", "google/mobilenet_v1_0.75_192", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def _a (lowercase__ : Union[str, Any] , lowercase__ : Tuple , lowercase__ : Tuple=None ) -> Optional[int]: """simple docstring""" __snake_case = {} if isinstance(lowercase__ , lowercase__ ): __snake_case = model.mobilenet_va else: __snake_case = model __snake_case = 'MobilenetV1/Conv2d_0/' __snake_case = backbone.conv_stem.convolution.weight __snake_case = backbone.conv_stem.normalization.bias __snake_case = backbone.conv_stem.normalization.weight __snake_case = backbone.conv_stem.normalization.running_mean __snake_case = backbone.conv_stem.normalization.running_var for i in range(1_3 ): __snake_case = i + 1 __snake_case = i * 2 __snake_case = backbone.layer[pt_index] __snake_case = f'MobilenetV1/Conv2d_{tf_index}_depthwise/' __snake_case = pointer.convolution.weight __snake_case = pointer.normalization.bias __snake_case = pointer.normalization.weight __snake_case = pointer.normalization.running_mean __snake_case = pointer.normalization.running_var __snake_case = backbone.layer[pt_index + 1] __snake_case = f'MobilenetV1/Conv2d_{tf_index}_pointwise/' __snake_case = pointer.convolution.weight __snake_case = pointer.normalization.bias __snake_case = pointer.normalization.weight __snake_case = pointer.normalization.running_mean __snake_case = pointer.normalization.running_var if isinstance(lowercase__ , lowercase__ ): __snake_case = 'MobilenetV1/Logits/Conv2d_1c_1x1/' __snake_case = model.classifier.weight __snake_case = model.classifier.bias return tf_to_pt_map def _a (lowercase__ : List[str] , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> str: """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( 'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ' 'https://www.tensorflow.org/install/ for installation instructions.' ) raise # Load weights from TF model __snake_case = tf.train.list_variables(lowercase__ ) __snake_case = {} for name, shape in init_vars: logger.info(f'Loading TF weight {name} with shape {shape}' ) __snake_case = tf.train.load_variable(lowercase__ , lowercase__ ) __snake_case = array # Build TF to PyTorch weights loading map __snake_case = _build_tf_to_pytorch_map(lowercase__ , lowercase__ , lowercase__ ) for name, pointer in tf_to_pt_map.items(): logger.info(f'Importing {name}' ) if name not in tf_weights: logger.info(f'{name} not in tf pre-trained weights, skipping' ) continue __snake_case = tf_weights[name] if "depthwise_weights" in name: logger.info('Transposing depthwise' ) __snake_case = np.transpose(lowercase__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('Transposing' ) if len(pointer.shape ) == 2: # copying into linear layer __snake_case = array.squeeze().transpose() else: __snake_case = np.transpose(lowercase__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' ) logger.info(f'Initialize PyTorch weight {name} {array.shape}' ) __snake_case = torch.from_numpy(lowercase__ ) tf_weights.pop(lowercase__ , lowercase__ ) tf_weights.pop(name + '/RMSProp' , lowercase__ ) tf_weights.pop(name + '/RMSProp_1' , lowercase__ ) tf_weights.pop(name + '/ExponentialMovingAverage' , lowercase__ ) logger.info(f'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' ) return model def _a (lowercase__ : torch.Tensor , lowercase__ : nn.Convad ) -> torch.Tensor: """simple docstring""" __snake_case , __snake_case = features.shape[-2:] __snake_case , __snake_case = conv_layer.stride __snake_case , __snake_case = conv_layer.kernel_size if in_height % stride_height == 0: __snake_case = max(kernel_height - stride_height , 0 ) else: __snake_case = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: __snake_case = max(kernel_width - stride_width , 0 ) else: __snake_case = max(kernel_width - (in_width % stride_width) , 0 ) __snake_case = pad_along_width // 2 __snake_case = pad_along_width - pad_left __snake_case = pad_along_height // 2 __snake_case = pad_along_height - pad_top __snake_case = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(lowercase__ , lowercase__ , 'constant' , 0.0 ) class _lowercase ( nn.Module ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : MobileNetVaConfig , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] = 1 , SCREAMING_SNAKE_CASE_ : Optional[int] = 1 , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[bool] = True , SCREAMING_SNAKE_CASE_ : Optional[bool or str] = True , ) -> None: super().__init__() __snake_case = config if in_channels % groups != 0: raise ValueError(f'Input channels ({in_channels}) are not divisible by {groups} groups.' ) if out_channels % groups != 0: raise ValueError(f'Output channels ({out_channels}) are not divisible by {groups} groups.' ) __snake_case = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) __snake_case = nn.Convad( in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , kernel_size=SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , groups=SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ , padding_mode='zeros' , ) if use_normalization: __snake_case = nn.BatchNormad( num_features=SCREAMING_SNAKE_CASE_ , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=SCREAMING_SNAKE_CASE_ , track_running_stats=SCREAMING_SNAKE_CASE_ , ) else: __snake_case = None if use_activation: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __snake_case = ACTaFN[use_activation] elif isinstance(config.hidden_act , SCREAMING_SNAKE_CASE_ ): __snake_case = ACTaFN[config.hidden_act] else: __snake_case = config.hidden_act else: __snake_case = None def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : torch.Tensor ) -> torch.Tensor: if self.config.tf_padding: __snake_case = apply_tf_padding(SCREAMING_SNAKE_CASE_ , self.convolution ) __snake_case = self.convolution(SCREAMING_SNAKE_CASE_ ) if self.normalization is not None: __snake_case = self.normalization(SCREAMING_SNAKE_CASE_ ) if self.activation is not None: __snake_case = self.activation(SCREAMING_SNAKE_CASE_ ) return features class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Tuple = MobileNetVaConfig _SCREAMING_SNAKE_CASE : Optional[Any] = load_tf_weights_in_mobilenet_va _SCREAMING_SNAKE_CASE : Any = "mobilenet_v1" _SCREAMING_SNAKE_CASE : Optional[Any] = "pixel_values" _SCREAMING_SNAKE_CASE : List[Any] = False def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[nn.Linear, nn.Convad] ) -> None: if isinstance(SCREAMING_SNAKE_CASE_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(SCREAMING_SNAKE_CASE_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) _a : Optional[Any] = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" _a : str = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." , __lowercase , ) class _lowercase ( __lowercase ): def __init__( self : str , SCREAMING_SNAKE_CASE_ : MobileNetVaConfig , SCREAMING_SNAKE_CASE_ : bool = True ) -> Any: super().__init__(SCREAMING_SNAKE_CASE_ ) __snake_case = config __snake_case = 32 __snake_case = max(int(depth * config.depth_multiplier ) , config.min_depth ) __snake_case = MobileNetVaConvLayer( SCREAMING_SNAKE_CASE_ , in_channels=config.num_channels , out_channels=SCREAMING_SNAKE_CASE_ , kernel_size=3 , stride=2 , ) __snake_case = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] __snake_case = nn.ModuleList() for i in range(13 ): __snake_case = out_channels if strides[i] == 2 or i == 0: depth *= 2 __snake_case = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , kernel_size=3 , stride=strides[i] , groups=SCREAMING_SNAKE_CASE_ , ) ) self.layer.append( MobileNetVaConvLayer( SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , kernel_size=1 , ) ) __snake_case = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int ) -> Dict: raise NotImplementedError @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: __snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) __snake_case = self.conv_stem(SCREAMING_SNAKE_CASE_ ) __snake_case = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): __snake_case = layer_module(SCREAMING_SNAKE_CASE_ ) if output_hidden_states: __snake_case = all_hidden_states + (hidden_states,) __snake_case = hidden_states if self.pooler is not None: __snake_case = torch.flatten(self.pooler(SCREAMING_SNAKE_CASE_ ) , start_dim=1 ) else: __snake_case = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE_ , pooler_output=SCREAMING_SNAKE_CASE_ , hidden_states=SCREAMING_SNAKE_CASE_ , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , __lowercase , ) class _lowercase ( __lowercase ): def __init__( self : int , SCREAMING_SNAKE_CASE_ : MobileNetVaConfig ) -> None: super().__init__(SCREAMING_SNAKE_CASE_ ) __snake_case = config.num_labels __snake_case = MobileNetVaModel(SCREAMING_SNAKE_CASE_ ) __snake_case = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head __snake_case = nn.Dropout(config.classifier_dropout_prob , inplace=SCREAMING_SNAKE_CASE_ ) __snake_case = nn.Linear(SCREAMING_SNAKE_CASE_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: __snake_case = return_dict if return_dict is not None else self.config.use_return_dict __snake_case = self.mobilenet_va(SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ ) __snake_case = outputs.pooler_output if return_dict else outputs[1] __snake_case = self.classifier(self.dropout(SCREAMING_SNAKE_CASE_ ) ) __snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __snake_case = 'single_label_classification' else: __snake_case = 'multi_label_classification' if self.config.problem_type == "regression": __snake_case = MSELoss() if self.num_labels == 1: __snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: __snake_case = loss_fct(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif self.config.problem_type == "single_label_classification": __snake_case = CrossEntropyLoss() __snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __snake_case = BCEWithLogitsLoss() __snake_case = loss_fct(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not return_dict: __snake_case = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=SCREAMING_SNAKE_CASE_ , logits=SCREAMING_SNAKE_CASE_ , hidden_states=outputs.hidden_states , )
56
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowercase : Tuple =logging.getLogger(__name__) __lowercase : Optional[int] =tf.data.AUTOTUNE def a__ ( ): '''simple docstring''' UpperCAmelCase_ =argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config" , type=lowercase__ , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , ) parser.add_argument( "--tokenizer" , type=lowercase__ , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , ) parser.add_argument( "--per_replica_batch_size" , type=lowercase__ , default=8 , help="Batch size per TPU core." , ) parser.add_argument( "--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , ) parser.add_argument( "--tpu_name" , type=lowercase__ , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , ) parser.add_argument( "--tpu_zone" , type=lowercase__ , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , ) parser.add_argument( "--gcp_project" , type=lowercase__ , help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , ) parser.add_argument( "--train_dataset" , type=lowercase__ , help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--shuffle_buffer_size" , type=lowercase__ , default=2**1_8 , help="Size of the shuffle buffer (in samples)" , ) parser.add_argument( "--eval_dataset" , type=lowercase__ , help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--num_epochs" , type=lowercase__ , default=1 , help="Number of epochs to train for." , ) parser.add_argument( "--learning_rate" , type=lowercase__ , default=1E-4 , help="Learning rate to use for training." , ) parser.add_argument( "--weight_decay_rate" , type=lowercase__ , default=1E-3 , help="Weight decay rate to use for training." , ) parser.add_argument( "--max_length" , type=lowercase__ , default=5_1_2 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , ) parser.add_argument( "--mlm_probability" , type=lowercase__ , default=0.15 , help="Fraction of tokens to mask during training." , ) parser.add_argument("--output_dir" , type=lowercase__ , required=lowercase__ , help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id" , type=lowercase__ , help="Model ID to upload to on the Hugging Face Hub." ) UpperCAmelCase_ =parser.parse_args() return args def a__ ( lowercase__ ): '''simple docstring''' try: if args.tpu_name: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(lowercase__ ) tf.tpu.experimental.initialize_tpu_system(lowercase__ ) return tpu def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =0 for file in file_list: UpperCAmelCase_ =file.split("/" )[-1] UpperCAmelCase_ =re.search(R"-\d+-(\d+)\.tfrecord" , lowercase__ ).group(1 ) UpperCAmelCase_ =int(lowercase__ ) num_samples += sample_count return num_samples def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =tf.data.Dataset.from_tensor_slices(lowercase__ ) if shuffle: UpperCAmelCase_ =dataset.shuffle(len(lowercase__ ) ) UpperCAmelCase_ =tf.data.TFRecordDataset(lowercase__ , num_parallel_reads=lowercase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here UpperCAmelCase_ =dataset.apply(tf.data.experimental.assert_cardinality(lowercase__ ) ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) if shuffle: assert shuffle_buffer_size is not None UpperCAmelCase_ =dataset.shuffle(args.shuffle_buffer_size ) UpperCAmelCase_ =dataset.batch(lowercase__ , drop_remainder=lowercase__ ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) UpperCAmelCase_ =dataset.prefetch(lowercase__ ) return dataset def a__ ( lowercase__ ): '''simple docstring''' if not args.no_tpu: UpperCAmelCase_ =initialize_tpu(lowercase__ ) UpperCAmelCase_ =tf.distribute.TPUStrategy(lowercase__ ) else: UpperCAmelCase_ =tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) UpperCAmelCase_ =AutoTokenizer.from_pretrained(args.tokenizer ) UpperCAmelCase_ =AutoConfig.from_pretrained(args.pretrained_model_config ) UpperCAmelCase_ =tokenizer.vocab_size UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) ) if not training_records: raise ValueError(F'No .tfrecord files found in {args.train_dataset}.' ) UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) ) if not eval_records: raise ValueError(F'No .tfrecord files found in {args.eval_dataset}.' ) UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) UpperCAmelCase_ =steps_per_epoch * args.num_epochs with strategy.scope(): UpperCAmelCase_ =TFAutoModelForMaskedLM.from_config(lowercase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built UpperCAmelCase_ , UpperCAmelCase_ =create_optimizer( num_train_steps=lowercase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowercase__ , metrics=["accuracy"] ) def decode_fn(lowercase__ ): UpperCAmelCase_ ={ "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowercase__ , lowercase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. UpperCAmelCase_ =DataCollatorForLanguageModeling( tokenizer=lowercase__ , mlm_probability=args.mlm_probability , mlm=lowercase__ , return_tensors="tf" ) def mask_with_collator(lowercase__ ): # TF really needs an isin() function UpperCAmelCase_ =( ~tf.cast(batch["attention_mask"] , tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) UpperCAmelCase_ , UpperCAmelCase_ =data_collator.tf_mask_tokens( batch["input_ids"] , vocab_size=len(lowercase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowercase__ , ) return batch UpperCAmelCase_ =args.per_replica_batch_size * strategy.num_replicas_in_sync UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , ) UpperCAmelCase_ =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowercase__ ) ) model.fit( lowercase__ , validation_data=lowercase__ , epochs=args.num_epochs , callbacks=lowercase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowercase : Union[str, Any] =parse_args() main(args)
54
0
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap A_ : Union[str, Any] = 'Usage of script: script_name <size_of_canvas:int>' A_ : str = [0] * 100 + [1] * 10 random.shuffle(choice) def snake_case (UpperCAmelCase__ ) -> list[list[bool]]: UpperCamelCase_: str = [[False for i in range(UpperCAmelCase__ )] for j in range(UpperCAmelCase__ )] return canvas def snake_case (UpperCAmelCase__ ) -> None: for i, row in enumerate(UpperCAmelCase__ ): for j, _ in enumerate(UpperCAmelCase__ ): UpperCamelCase_: List[str] = bool(random.getrandbits(1 ) ) def snake_case (UpperCAmelCase__ ) -> list[list[bool]]: UpperCamelCase_: List[Any] = np.array(UpperCAmelCase__ ) UpperCamelCase_: Optional[int] = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(UpperCAmelCase__ ): for c, pt in enumerate(UpperCAmelCase__ ): UpperCamelCase_: int = __judge_point( UpperCAmelCase__ , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) UpperCamelCase_: str = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. UpperCamelCase_: list[list[bool]] = current_canvas.tolist() return return_canvas def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> bool: UpperCamelCase_: Union[str, Any] = 0 UpperCamelCase_: Tuple = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. UpperCamelCase_: Tuple = pt if pt: if alive < 2: UpperCamelCase_: Tuple = False elif alive == 2 or alive == 3: UpperCamelCase_: Any = True elif alive > 3: UpperCamelCase_: List[Any] = False else: if alive == 3: UpperCamelCase_: List[str] = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) A_ : List[Any] = int(sys.argv[1]) # main working structure of this module. A_ : Union[str, Any] = create_canvas(canvas_size) seed(c) A_ , A_ : str = plt.subplots() fig.show() A_ : Union[str, Any] = ListedColormap(['w', 'k']) try: while True: A_ : Optional[Any] = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
57
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A : @staticmethod def lowerCAmelCase__ ( *_lowerCAmelCase: List[Any] , **_lowerCAmelCase: List[str] ) -> List[str]: '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class A ( unittest.TestCase ): _snake_case =MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ =[ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: str ) -> int: '''simple docstring''' UpperCAmelCase_ =vqa_pipeline(_lowerCAmelCase , top_k=1 ) self.assertEqual( _lowerCAmelCase , [ [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], ] , ) @require_torch def lowerCAmelCase__ ( self: Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question="How many cats are there?" , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) @slow @require_torch def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [[{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def lowerCAmelCase__ ( self: int ) -> List[str]: '''simple docstring''' pass
54
0
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder __lowerCAmelCase : List[str] = '''__DUMMY_TRANSFORMERS_USER__''' __lowerCAmelCase : Dict = '''Dummy User''' __lowerCAmelCase : Dict = '''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''' __lowerCAmelCase : Dict = '''https://hub-ci.huggingface.co''' __lowerCAmelCase : List[str] = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}''' __lowerCAmelCase : int = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}''' __lowerCAmelCase : Optional[Any] = Path('''~/.huggingface/hub_ci_token''').expanduser() @pytest.fixture def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ): '''simple docstring''' monkeypatch.setattr( """huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , __UpperCamelCase ) @pytest.fixture def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , __UpperCamelCase ) monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , __UpperCamelCase ) @pytest.fixture def __lowerCAmelCase ( __UpperCamelCase : Tuple ): '''simple docstring''' monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , __UpperCamelCase ) @pytest.fixture def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] ): '''simple docstring''' HfFolder.save_token(__UpperCamelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( ): '''simple docstring''' return HfApi(endpoint=__UpperCamelCase ) @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : HfApi ): '''simple docstring''' snake_case_ : List[Any] = HfFolder.get_token() HfFolder.save_token(__UpperCamelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(__UpperCamelCase ) @pytest.fixture def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' def _cleanup_repo(__UpperCamelCase : int ): hf_api.delete_repo(__UpperCamelCase , token=__UpperCamelCase , repo_type="""dataset""" ) return _cleanup_repo @pytest.fixture def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' @contextmanager def _temporary_repo(__UpperCamelCase : int ): try: yield repo_id finally: cleanup_repo(__UpperCamelCase ) return _temporary_repo @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : HfApi , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : List[str] = F'repo_txt_data-{int(time.time() * 1_0E3 )}' snake_case_ : Optional[int] = F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(__UpperCamelCase , token=__UpperCamelCase , repo_type="""dataset""" , private=__UpperCamelCase ) hf_api.upload_file( token=__UpperCamelCase , path_or_fileobj=str(__UpperCamelCase ) , path_in_repo="""data/text_data.txt""" , repo_id=__UpperCamelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__UpperCamelCase , token=__UpperCamelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ): '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : HfApi , __UpperCamelCase : str , __UpperCamelCase : str ): '''simple docstring''' snake_case_ : Optional[Any] = F'repo_zipped_txt_data-{int(time.time() * 1_0E3 )}' snake_case_ : Tuple = F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(__UpperCamelCase , token=__UpperCamelCase , repo_type="""dataset""" , private=__UpperCamelCase ) hf_api.upload_file( token=__UpperCamelCase , path_or_fileobj=str(__UpperCamelCase ) , path_in_repo="""data.zip""" , repo_id=__UpperCamelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__UpperCamelCase , token=__UpperCamelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] ): '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="""session""" ) def __lowerCAmelCase ( __UpperCamelCase : HfApi , __UpperCamelCase : int , __UpperCamelCase : Tuple ): '''simple docstring''' snake_case_ : Any = F'repo_zipped_img_data-{int(time.time() * 1_0E3 )}' snake_case_ : str = F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(__UpperCamelCase , token=__UpperCamelCase , repo_type="""dataset""" , private=__UpperCamelCase ) hf_api.upload_file( token=__UpperCamelCase , path_or_fileobj=str(__UpperCamelCase ) , path_in_repo="""data.zip""" , repo_id=__UpperCamelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__UpperCamelCase , token=__UpperCamelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Any ): '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
58
def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) != len(lowercase__ ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. UpperCAmelCase_ =[p / w for p, w in zip(lowercase__ , lowercase__ )] # Creating a copy of the list and sorting profit/weight in ascending order UpperCAmelCase_ =sorted(lowercase__ ) # declaring useful variables UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 UpperCAmelCase_ =0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight UpperCAmelCase_ =sorted_profit_by_weight[length - i - 1] UpperCAmelCase_ =profit_by_weight.index(lowercase__ ) UpperCAmelCase_ =-1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) __lowercase : List[str] =[int(x) for x in input("""Input profits separated by spaces: """).split()] __lowercase : Union[str, Any] =[int(x) for x in input("""Input weights separated by spaces: """).split()] __lowercase : Tuple =int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
54
0
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
59
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowercase : Dict ={ """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any =["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __lowercase : Union[str, Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
54
0
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class __lowerCAmelCase ( _a ): def __init__(self , __magic_name__ = "▁" , __magic_name__ = True , __magic_name__ = "<unk>" , __magic_name__ = "</s>" , __magic_name__ = "<pad>" , ) -> Dict: '''simple docstring''' snake_case_ : List[Any] = { '''pad''': {'''id''': 0, '''token''': pad_token}, '''eos''': {'''id''': 1, '''token''': eos_token}, '''unk''': {'''id''': 2, '''token''': unk_token}, } snake_case_ : List[str] = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): snake_case_ : int = token_dict['''token'''] snake_case_ : Optional[int] = Tokenizer(Unigram() ) snake_case_ : int = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(''' {2,}''' ) , ''' ''' ), normalizers.Lowercase(), ] ) snake_case_ : Optional[int] = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__magic_name__ , add_prefix_space=__magic_name__ ), pre_tokenizers.Digits(individual_digits=__magic_name__ ), pre_tokenizers.Punctuation(), ] ) snake_case_ : Tuple = decoders.Metaspace(replacement=__magic_name__ , add_prefix_space=__magic_name__ ) snake_case_ : Optional[Any] = TemplateProcessing( single=F'''$A {self.special_tokens["eos"]["token"]}''' , special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])] , ) snake_case_ : Optional[Any] = { '''model''': '''SentencePieceUnigram''', '''replacement''': replacement, '''add_prefix_space''': add_prefix_space, } super().__init__(__magic_name__ , __magic_name__ ) def lowerCamelCase (self , __magic_name__ , __magic_name__ = 8000 , __magic_name__ = True , ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = trainers.UnigramTrainer( vocab_size=__magic_name__ , special_tokens=self.special_tokens_list , show_progress=__magic_name__ , ) if isinstance(__magic_name__ , __magic_name__ ): snake_case_ : Dict = [files] self._tokenizer.train(__magic_name__ , trainer=__magic_name__ ) self.add_unk_id() def lowerCamelCase (self , __magic_name__ , __magic_name__ = 8000 , __magic_name__ = True , ) -> int: '''simple docstring''' snake_case_ : Any = trainers.UnigramTrainer( vocab_size=__magic_name__ , special_tokens=self.special_tokens_list , show_progress=__magic_name__ , ) self._tokenizer.train_from_iterator(__magic_name__ , trainer=__magic_name__ ) self.add_unk_id() def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = json.loads(self._tokenizer.to_str() ) snake_case_ : Union[str, Any] = self.special_tokens['''unk''']['''id'''] snake_case_ : Tuple = Tokenizer.from_str(json.dumps(__magic_name__ ) )
60
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def a__ ( lowercase__ , lowercase__ , lowercase__=1_0_2_4 , lowercase__=1_0_2_4 , lowercase__=False , **lowercase__ ): '''simple docstring''' UpperCAmelCase_ =AutoTokenizer.from_pretrained(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="train" , **lowercase__ ) UpperCAmelCase_ =tok.pad_token_id def get_lens(lowercase__ ): UpperCAmelCase_ =tqdm( DataLoader(lowercase__ , batch_size=5_1_2 , num_workers=8 , shuffle=lowercase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCAmelCase_ =[] for batch in dl: UpperCAmelCase_ =batch["input_ids"].ne(lowercase__ ).sum(1 ).tolist() UpperCAmelCase_ =batch["labels"].ne(lowercase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowercase__ , lowercase__ ): max_lens.append(max(lowercase__ , lowercase__ ) ) else: max_lens.extend(lowercase__ ) return max_lens UpperCAmelCase_ =get_lens(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="val" , **lowercase__ ) UpperCAmelCase_ =get_lens(lowercase__ ) pickle_save(lowercase__ , train_ds.len_file ) pickle_save(lowercase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
54
0
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'vocab_file': 'spiece.model'} UpperCamelCase = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), } } UpperCamelCase = { 'google/bigbird-roberta-base': 4096, 'google/bigbird-roberta-large': 4096, 'google/bigbird-base-trivia-itc': 4096, } class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "attention_mask"] snake_case__ = [] def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str]="<unk>" , SCREAMING_SNAKE_CASE__ : List[str]="<s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="</s>" , SCREAMING_SNAKE_CASE__ : Tuple="<pad>" , SCREAMING_SNAKE_CASE__ : Any="[SEP]" , SCREAMING_SNAKE_CASE__ : Optional[int]="[MASK]" , SCREAMING_SNAKE_CASE__ : List[Any]="[CLS]" , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE__ : List[Any] , ) -> None: lowerCAmelCase__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else bos_token lowerCAmelCase__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else eos_token lowerCAmelCase__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else unk_token lowerCAmelCase__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else pad_token lowerCAmelCase__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else cls_token lowerCAmelCase__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token lowerCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = vocab_file lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE__ ) @property def a ( self : List[str] ) -> List[str]: return self.sp_model.get_piece_size() def a ( self : List[str] ) -> Dict: lowerCAmelCase__ = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ) -> Any: lowerCAmelCase__ = self.__dict__.copy() lowerCAmelCase__ = None return state def __setstate__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any: lowerCAmelCase__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCAmelCase__ = {} lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple: return self.sp_model.piece_to_id(SCREAMING_SNAKE_CASE__ ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[str]: lowerCAmelCase__ = self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__ ) return token def a ( self : str , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: lowerCAmelCase__ = [] lowerCAmelCase__ = "" lowerCAmelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) + token lowerCAmelCase__ = True lowerCAmelCase__ = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) return out_string.strip() def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : bool = True , **SCREAMING_SNAKE_CASE__ : int , ) -> str: lowerCAmelCase__ = kwargs.pop("use_source_tokenizer" , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowerCAmelCase__ = [] lowerCAmelCase__ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = [] sub_texts.append(SCREAMING_SNAKE_CASE__ ) else: current_sub_text.append(SCREAMING_SNAKE_CASE__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(SCREAMING_SNAKE_CASE__ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: lowerCAmelCase__ = re.sub(r" (\[(MASK|SEP)\])" , r"\1" , " ".join(SCREAMING_SNAKE_CASE__ ) ) else: lowerCAmelCase__ = "".join(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowerCAmelCase__ = self.clean_up_tokenization(SCREAMING_SNAKE_CASE__ ) return clean_text else: return text def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase__ = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , "wb" ) as fi: lowerCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,) def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] lowerCAmelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
61
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A : def __init__( self: Any , _lowerCAmelCase: str , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: List[str]=30 , _lowerCAmelCase: List[Any]=2 , _lowerCAmelCase: List[str]=3 , _lowerCAmelCase: Dict=True , _lowerCAmelCase: int=True , _lowerCAmelCase: Tuple=32 , _lowerCAmelCase: str=2 , _lowerCAmelCase: Dict=4 , _lowerCAmelCase: Dict=37 , _lowerCAmelCase: Optional[Any]="gelu" , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: Union[str, Any]=10 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=3 , _lowerCAmelCase: Optional[int]=None , ) -> Any: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =image_size UpperCAmelCase_ =patch_size UpperCAmelCase_ =num_channels UpperCAmelCase_ =is_training UpperCAmelCase_ =use_labels UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ =(image_size // patch_size) ** 2 UpperCAmelCase_ =num_patches + 1 def lowerCAmelCase__ ( self: Any ) -> int: '''simple docstring''' UpperCAmelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ =None if self.use_labels: UpperCAmelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ =self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Any , _lowerCAmelCase: List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ =TFViTModel(config=_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) UpperCAmelCase_ =(image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.type_sequence_label_size UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ =1 UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ =model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"pixel_values": pixel_values} return config, inputs_dict @require_tf class A ( __lowercase , __lowercase , unittest.TestCase ): _snake_case =(TFViTModel, TFViTForImageClassification) if is_tf_available() else () _snake_case =( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) _snake_case =False _snake_case =False _snake_case =False def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ =TFViTModelTester(self ) UpperCAmelCase_ =ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: Dict ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: int ) -> Optional[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase_ =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , tf.keras.layers.Layer ) ) def lowerCAmelCase__ ( self: List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) UpperCAmelCase_ =inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ =[*signature.parameters.keys()] UpperCAmelCase_ =["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(_lowerCAmelCase ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class A ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self: Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase_ =self.default_image_processor UpperCAmelCase_ =prepare_img() UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="tf" ) # forward pass UpperCAmelCase_ =model(**_lowerCAmelCase ) # verify the logits UpperCAmelCase_ =tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) UpperCAmelCase_ =tf.constant([-0.27_44, 0.82_15, -0.08_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 )
54
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case = { """configuration_biogpt""": ["""BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BioGptConfig"""], """tokenization_biogpt""": ["""BioGptTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BioGptForCausalLM""", """BioGptForTokenClassification""", """BioGptForSequenceClassification""", """BioGptModel""", """BioGptPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
62
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) == 0: return False UpperCAmelCase_ =len(lowercase__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowercase__ ) else: return binary_search(a_list[midpoint + 1 :] , lowercase__ ) if __name__ == "__main__": __lowercase : Tuple =input("""Enter numbers separated by comma:\n""").strip() __lowercase : Optional[Any] =[int(item.strip()) for item in user_input.split(""",""")] __lowercase : List[Any] =int(input("""Enter the number to be found in the list:\n""").strip()) __lowercase : Optional[Any] ="""""" if binary_search(sequence, target) else """not """ print(f"""{target} was {not_str}found in {sequence}""")
54
0
import math import sys import cva import numpy as np def lowerCamelCase__ ( __lowerCamelCase : np.ndarray , __lowerCamelCase : float ): # For applying gaussian function for each element in matrix. __UpperCAmelCase : int = math.sqrt(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def lowerCamelCase__ ( __lowerCamelCase : np.ndarray , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): __UpperCAmelCase : List[Any] = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : float ): # Creates a gaussian kernel of given dimension. __UpperCAmelCase : Union[str, Any] = np.zeros((kernel_size, kernel_size) ) for i in range(0 , __lowerCamelCase ): for j in range(0 , __lowerCamelCase ): __UpperCAmelCase : str = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(__lowerCamelCase , __lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : np.ndarray , __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : int , ): __UpperCAmelCase : Optional[Any] = np.zeros(img.shape ) __UpperCAmelCase : int = get_gauss_kernel(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Tuple = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __UpperCAmelCase : int = get_slice(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Dict = img_s - img_s[kernel_size // 2, kernel_size // 2] __UpperCAmelCase : Optional[Any] = vec_gaussian(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Any = np.multiply(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : str = np.multiply(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : List[str] = np.sum(__lowerCamelCase ) / np.sum(__lowerCamelCase ) __UpperCAmelCase : List[Any] = val return imga def lowerCamelCase__ ( __lowerCamelCase : list ): __UpperCAmelCase : List[str] = args[1] if args[1:] else """../image_data/lena.jpg""" __UpperCAmelCase : Optional[Any] = float(args[2] ) if args[2:] else 1.0 __UpperCAmelCase : Dict = float(args[3] ) if args[3:] else 1.0 if args[4:]: __UpperCAmelCase : Optional[int] = int(args[4] ) __UpperCAmelCase : List[str] = kernel_size + abs(kernel_size % 2 - 1 ) else: __UpperCAmelCase : int = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": a ,a ,a ,a : Optional[Any] = parse_args(sys.argv) a : Optional[int] = cva.imread(filename, 0) cva.imshow("input image", img) a : int = img / 255 a : Union[str, Any] = out.astype("float32") a : Any = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) a : Optional[int] = out * 255 a : Union[str, Any] = np.uinta(out) cva.imshow("output image", out) cva.waitKey(0) cva.destroyAllWindows()
63
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __lowercase : Any =( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) __lowercase : Union[str, Any] =( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) __lowercase : List[str] =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) __lowercase : str =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) __lowercase : Union[str, Any] =( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]), ("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) __lowercase : str =( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) __lowercase : int =( ("""JH AH TH KH QH""", 23), ("""JH 9H TH KH QH""", 22), ("""JC KH JS JD JH""", 21), ("""KH KC 3S 3H 3D""", 20), ("""8C 9C 5C 3C TC""", 19), ("""JS QS 9H TS KH""", 18), ("""7C 7S KH 2H 7H""", 17), ("""3C KH 5D 5S KH""", 16), ("""QH 8H KD JH 8S""", 15), ("""2D 6D 9D TH 7D""", 14), ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) ) UpperCAmelCase_ =["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)] UpperCAmelCase_ , UpperCAmelCase_ =SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def a__ ( lowercase__ = 1_0_0 ): '''simple docstring''' return (generate_random_hand() for _ in range(lowercase__ )) @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =PokerHand(lowercase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand(lowercase__ ) for hand in SORTED_HANDS] UpperCAmelCase_ =poker_hands.copy() shuffle(lowercase__ ) UpperCAmelCase_ =chain(sorted(lowercase__ ) ) for index, hand in enumerate(lowercase__ ): assert hand == poker_hands[index] def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=lowercase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def a__ ( ): '''simple docstring''' UpperCAmelCase_ =PokerHand("2C 4S AS 3D 5C" ) UpperCAmelCase_ =True UpperCAmelCase_ =[5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def a__ ( ): '''simple docstring''' UpperCAmelCase_ =0 UpperCAmelCase_ =os.path.abspath(os.path.dirname(lowercase__ ) ) UpperCAmelCase_ =os.path.join(lowercase__ , "poker_hands.txt" ) with open(lowercase__ ) as file_hand: for line in file_hand: UpperCAmelCase_ =line[:1_4].strip() UpperCAmelCase_ =line[1_5:].strip() UpperCAmelCase_ , UpperCAmelCase_ =PokerHand(lowercase__ ), PokerHand(lowercase__ ) UpperCAmelCase_ =player.compare_with(lowercase__ ) if output == "Win": answer += 1 assert answer == 3_7_6
54
0
def A__ ( snake_case_ : int ): return str(snake_case_ ) == str(snake_case_ )[::-1] def A__ ( snake_case_ : int ): return int(snake_case_ ) + int(str(snake_case_ )[::-1] ) def A__ ( snake_case_ : int = 10_000 ): SCREAMING_SNAKE_CASE__: Dict= [] for num in range(1 , snake_case_ ): SCREAMING_SNAKE_CASE__: List[Any]= 0 SCREAMING_SNAKE_CASE__: Optional[Any]= num while iterations < 50: SCREAMING_SNAKE_CASE__: Optional[int]= sum_reverse(snake_case_ ) iterations += 1 if is_palindrome(snake_case_ ): break else: lychrel_nums.append(snake_case_ ) return len(snake_case_ ) if __name__ == "__main__": print(f'''{solution() = }''')
64
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowercase : int =logging.get_logger(__name__) class A ( __lowercase ): _snake_case =['''pixel_values'''] def __init__( self: List[Any] , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = PILImageResampling.BILINEAR , _lowerCAmelCase: bool = True , _lowerCAmelCase: Union[int, float] = 1 / 255 , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , **_lowerCAmelCase: Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =do_resize UpperCAmelCase_ =size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ =crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ =resample UpperCAmelCase_ =do_rescale UpperCAmelCase_ =rescale_factor UpperCAmelCase_ =do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ =image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: float , _lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Any , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) UpperCAmelCase_ =size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ =int(shortest_edge / crop_pct ) UpperCAmelCase_ =get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_lowerCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _lowerCAmelCase , size=(shortest_edge, shortest_edge) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[int, float] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: str , ) -> Optional[Any]: '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Dict , ) -> np.ndarray: '''simple docstring''' return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: ImageInput , _lowerCAmelCase: bool = None , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: float = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: ChannelDimension = ChannelDimension.FIRST , **_lowerCAmelCase: Optional[Any] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ =do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ =crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ =resample if resample is not None else self.resample UpperCAmelCase_ =do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ =do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ =image_std if image_std is not None else self.image_std UpperCAmelCase_ =size if size is not None else self.size UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ =[to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ =[self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , crop_pct=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ =[self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ =[self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] UpperCAmelCase_ =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] UpperCAmelCase_ ={"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
54
0
"""simple docstring""" def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : List[str] = """""" for word_or_phrase in separated: if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise Exception("""join() accepts only strings to be joined""" ) joined += word_or_phrase + separator return joined.strip(__UpperCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
65
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowercase : List[Any] =WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =test_results.split(" " ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. UpperCAmelCase_ =expressions[-2] if "=" in expressions[-1] else expressions[-1] for i, expression in enumerate(lowercase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} UpperCAmelCase_ =None UpperCAmelCase_ =False for line in failures_short_lines.split("\n" ): if re.search(R"_ \[doctest\]" , lowercase__ ): UpperCAmelCase_ =True UpperCAmelCase_ =line.split(" " )[2] elif in_error and not line.split(" " )[0].isdigit(): UpperCAmelCase_ =line UpperCAmelCase_ =False return failures class A : def __init__( self: Optional[Any] , _lowerCAmelCase: str , _lowerCAmelCase: Dict ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =title UpperCAmelCase_ =doc_test_results["time_spent"].split("," )[0] UpperCAmelCase_ =doc_test_results["success"] UpperCAmelCase_ =doc_test_results["failures"] UpperCAmelCase_ =self.n_success + self.n_failures # Failures and success of the modeling tests UpperCAmelCase_ =doc_test_results @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self._time_spent] UpperCAmelCase_ =0 for time in time_spent: UpperCAmelCase_ =time.split(":" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCAmelCase ) == 1: UpperCAmelCase_ =[0, 0, time_parts[0]] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'{int(_lowerCAmelCase )}h{int(_lowerCAmelCase )}m{int(_lowerCAmelCase )}s' @property def lowerCAmelCase__ ( self: int ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' F' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ =40 UpperCAmelCase_ ={k: v["failed"] for k, v in doc_test_results.items() if isinstance(_lowerCAmelCase , _lowerCAmelCase )} UpperCAmelCase_ ="" for category, failures in category_failures.items(): if len(_lowerCAmelCase ) == 0: continue if report != "": report += "\n\n" report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCAmelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'The following examples had failures:\n\n\n{report}\n', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCAmelCase ) @staticmethod def lowerCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =[ { "type": "section", "text": { "type": "plain_text", "text": "There was an issue running the tests.", }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(_lowerCAmelCase )} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(self.payload )} ) ) UpperCAmelCase_ =F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else "All tests passed." UpperCAmelCase_ =client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ ="" for key, value in failures.items(): UpperCAmelCase_ =value[:200] + " [Truncated]" if len(_lowerCAmelCase ) > 250 else value failures_text += F'*{key}*\n_{value}_\n\n' UpperCAmelCase_ =job_name UpperCAmelCase_ ={"type": "section", "text": {"type": "mrkdwn", "text": text}} if job_link is not None: UpperCAmelCase_ ={ "type": "button", "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True}, "url": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowerCAmelCase__ ( self: Any ) -> List[str]: '''simple docstring''' if self.thread_ts is None: raise ValueError("Can only post reply if a post has been made." ) UpperCAmelCase_ =self.doc_test_results.pop("job_link" ) self.doc_test_results.pop("failures" ) self.doc_test_results.pop("success" ) self.doc_test_results.pop("time_spent" ) UpperCAmelCase_ =sorted(self.doc_test_results.items() , key=lambda _lowerCAmelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result["failures"] ): UpperCAmelCase_ =F'*Num failures* :{len(job_result["failed"] )} \n' UpperCAmelCase_ =job_result["failures"] UpperCAmelCase_ =self.get_reply_blocks(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , text=_lowerCAmelCase ) print("Sending the following reply" ) print(json.dumps({"blocks": blocks} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=F'Results for {job}' , blocks=_lowerCAmelCase , thread_ts=self.thread_ts["ts"] , ) time.sleep(1 ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =os.environ["GITHUB_RUN_ID"] UpperCAmelCase_ =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' UpperCAmelCase_ =requests.get(lowercase__ ).json() UpperCAmelCase_ ={} try: jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) UpperCAmelCase_ =math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(lowercase__ ): UpperCAmelCase_ =requests.get(url + F'&page={i + 2}' ).json() jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return jobs except Exception as e: print("Unknown error, could not fetch links." , lowercase__ ) return {} def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} if os.path.exists(lowercase__ ): UpperCAmelCase_ =os.listdir(lowercase__ ) for file in files: try: with open(os.path.join(lowercase__ , lowercase__ ) , encoding="utf-8" ) as f: UpperCAmelCase_ =f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(lowercase__ , lowercase__ )}.' ) from e return _artifact def a__ ( ): '''simple docstring''' class A : def __init__( self: Tuple , _lowerCAmelCase: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =name UpperCAmelCase_ =[] def __str__( self: Optional[int] ) -> Tuple: '''simple docstring''' return self.name def lowerCAmelCase__ ( self: int , _lowerCAmelCase: str ) -> List[Any]: '''simple docstring''' self.paths.append({"name": self.name, "path": path} ) UpperCAmelCase_ ={} UpperCAmelCase_ =filter(os.path.isdir , os.listdir() ) for directory in directories: UpperCAmelCase_ =directory if artifact_name not in _available_artifacts: UpperCAmelCase_ =Artifact(lowercase__ ) _available_artifacts[artifact_name].add_path(lowercase__ ) return _available_artifacts if __name__ == "__main__": __lowercase : str =get_job_links() __lowercase : Dict =retrieve_available_artifacts() __lowercase : Optional[int] =collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowercase : Any ={ v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job __lowercase : Tuple =github_actions_job_links.get("""run_doctests""") __lowercase : int =available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] __lowercase : str =retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: __lowercase , __lowercase , __lowercase : Tuple =handle_test_results(artifact["""stats"""]) __lowercase : int =failed __lowercase : int =success __lowercase : str =time_spent[1:-1] + """, """ __lowercase : str =extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): __lowercase : int =line.replace("""FAILED """, """""") __lowercase : List[Any] =line.split()[0].replace("""\n""", """""") if "::" in line: __lowercase , __lowercase : Any =line.split("""::""") else: __lowercase , __lowercase : Dict =line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowercase : Optional[int] =docs[file_regex] doc_test_results[category]["failed"].append(test) __lowercase : Tuple =all_failures[test] if test in all_failures else """N/A""" __lowercase : Optional[int] =failure break __lowercase : Optional[int] =Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
54
0
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: assert column_title.isupper() _lowercase : Optional[Any] = 0 _lowercase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) - 1 _lowercase : Optional[int] = 0 while index >= 0: _lowercase : Union[str, Any] = (ord(column_title[index] ) - 64) * pow(26 , SCREAMING_SNAKE_CASE ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
66
def a__ ( lowercase__ = 2_0_0 ): '''simple docstring''' UpperCAmelCase_ =[1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] UpperCAmelCase_ =[0] * (pence + 1) UpperCAmelCase_ =1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowercase__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
54
0
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets snake_case = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ snake_case = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ snake_case = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : Tuple ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='https://github.com/krishnap25/mauve' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/krishnap25/mauve'] ,reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] ,) def __UpperCAmelCase ( self : Optional[Any] ,__A : Optional[Any] ,__A : List[str] ,__A : List[str]=None ,__A : List[Any]=None ,__A : Dict=None ,__A : str=None ,__A : int="auto" ,__A : List[str]=-1 ,__A : Union[str, Any]=0.9 ,__A : Dict=5 ,__A : Optional[Any]=500 ,__A : int="gpt2-large" ,__A : List[Any]=-1 ,__A : List[Any]=1024 ,__A : Tuple=25 ,__A : Optional[Any]=5 ,__A : int=True ,__A : int=25 ,) -> List[str]: _lowercase = compute_mauve( p_text=__A ,q_text=__A ,p_features=__A ,q_features=__A ,p_tokens=__A ,q_tokens=__A ,num_buckets=__A ,pca_max_data=__A ,kmeans_explained_var=__A ,kmeans_num_redo=__A ,kmeans_max_iter=__A ,featurize_model_name=__A ,device_id=__A ,max_text_length=__A ,divergence_curve_discretization_size=__A ,mauve_scaling_factor=__A ,verbose=__A ,seed=__A ,) return out
67
import sys def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] for chain_length in range(2 , lowercase__ ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ =a + chain_length - 1 UpperCAmelCase_ =sys.maxsize for c in range(lowercase__ , lowercase__ ): UpperCAmelCase_ =( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ =cost UpperCAmelCase_ =c return matrix, sol def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if i == j: print("A" + str(lowercase__ ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(lowercase__ , lowercase__ , optimal_solution[i][j] ) print_optiomal_solution(lowercase__ , optimal_solution[i][j] + 1 , lowercase__ ) print(")" , end=" " ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] UpperCAmelCase_ =len(lowercase__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ =matrix_chain_order(lowercase__ ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowercase__ , 1 , n - 1 ) if __name__ == "__main__": main()
54
0
from ...configuration_utils import PretrainedConfig __A = { "google/tapas-base-finetuned-sqa": ( "https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json" ), "google/tapas-base-finetuned-wtq": ( "https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json" ), "google/tapas-base-finetuned-wikisql-supervised": ( "https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json" ), "google/tapas-base-finetuned-tabfact": ( "https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json" ), } class _A ( UpperCamelCase ): """simple docstring""" lowerCamelCase : Optional[int] = 'tapas' def __init__( self : Any , __SCREAMING_SNAKE_CASE : Tuple=30522 , __SCREAMING_SNAKE_CASE : Union[str, Any]=768 , __SCREAMING_SNAKE_CASE : Optional[int]=12 , __SCREAMING_SNAKE_CASE : Optional[int]=12 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3072 , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : Any=0.1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1024 , __SCREAMING_SNAKE_CASE : int=[3, 256, 256, 2, 256, 256, 10] , __SCREAMING_SNAKE_CASE : Any=0.02 , __SCREAMING_SNAKE_CASE : int=1e-12 , __SCREAMING_SNAKE_CASE : Any=0 , __SCREAMING_SNAKE_CASE : Dict=10.0 , __SCREAMING_SNAKE_CASE : List[str]=0 , __SCREAMING_SNAKE_CASE : List[str]=1.0 , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=1.0 , __SCREAMING_SNAKE_CASE : Dict=False , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Optional[int]=1.0 , __SCREAMING_SNAKE_CASE : List[Any]=1.0 , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Union[str, Any]="ratio" , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : int=64 , __SCREAMING_SNAKE_CASE : Any=32 , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Dict=False , __SCREAMING_SNAKE_CASE : Dict=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Dict=None , **__SCREAMING_SNAKE_CASE : Tuple , ) -> int: super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __UpperCAmelCase =vocab_size __UpperCAmelCase =hidden_size __UpperCAmelCase =num_hidden_layers __UpperCAmelCase =num_attention_heads __UpperCAmelCase =hidden_act __UpperCAmelCase =intermediate_size __UpperCAmelCase =hidden_dropout_prob __UpperCAmelCase =attention_probs_dropout_prob __UpperCAmelCase =max_position_embeddings __UpperCAmelCase =type_vocab_sizes __UpperCAmelCase =initializer_range __UpperCAmelCase =layer_norm_eps # Fine-tuning task hyperparameters __UpperCAmelCase =positive_label_weight __UpperCAmelCase =num_aggregation_labels __UpperCAmelCase =aggregation_loss_weight __UpperCAmelCase =use_answer_as_supervision __UpperCAmelCase =answer_loss_importance __UpperCAmelCase =use_normalized_answer_loss __UpperCAmelCase =huber_loss_delta __UpperCAmelCase =temperature __UpperCAmelCase =aggregation_temperature __UpperCAmelCase =use_gumbel_for_cells __UpperCAmelCase =use_gumbel_for_aggregation __UpperCAmelCase =average_approximation_function __UpperCAmelCase =cell_selection_preference __UpperCAmelCase =answer_loss_cutoff __UpperCAmelCase =max_num_rows __UpperCAmelCase =max_num_columns __UpperCAmelCase =average_logits_per_cell __UpperCAmelCase =select_one_column __UpperCAmelCase =allow_empty_column_selection __UpperCAmelCase =init_cell_selection_weights_to_zero __UpperCAmelCase =reset_position_index_per_cell __UpperCAmelCase =disable_per_token_loss # Aggregation hyperparameters __UpperCAmelCase =aggregation_labels __UpperCAmelCase =no_aggregation_label_index if isinstance(self.aggregation_labels , __SCREAMING_SNAKE_CASE ): __UpperCAmelCase ={int(__SCREAMING_SNAKE_CASE ): v for k, v in aggregation_labels.items()}
68
from math import loga def a__ ( lowercase__ ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(lowercase__ , lowercase__ ): raise TypeError("Input value must be a 'int' type" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
54
0
'''simple docstring''' import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) a : int = logging.getLogger(__name__) def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : Tuple ) -> Dict: __snake_case = np.argmax(_UpperCAmelCase , axis=1 ) return np.sum(outputs == labels ) def __UpperCAmelCase ( _UpperCAmelCase : str ) -> Dict: with open(_UpperCAmelCase , encoding="utf_8" ) as f: __snake_case = csv.reader(_UpperCAmelCase ) __snake_case = [] next(_UpperCAmelCase ) # skip the first line for line in tqdm(_UpperCAmelCase ): output.append((" ".join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> List[Any]: __snake_case = [] for dataset in encoded_datasets: __snake_case = len(_UpperCAmelCase ) __snake_case = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) __snake_case = np.zeros((n_batch, 2) , dtype=np.intaa ) __snake_case = np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa ) __snake_case = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(_UpperCAmelCase ): __snake_case = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __snake_case = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __snake_case = with_conta __snake_case = with_conta __snake_case = len(_UpperCAmelCase ) - 1 __snake_case = len(_UpperCAmelCase ) - 1 __snake_case = with_conta __snake_case = with_conta __snake_case = mc_label __snake_case = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(_UpperCAmelCase ) for t in all_inputs ) ) return tensor_datasets def __UpperCAmelCase ( ) -> Optional[int]: __snake_case = argparse.ArgumentParser() parser.add_argument("--model_name" , type=_UpperCAmelCase , default="openai-gpt" , help="pretrained model name" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_eval" , action="store_true" , help="Whether to run eval on the dev set." ) parser.add_argument( "--output_dir" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument("--train_dataset" , type=_UpperCAmelCase , default="" ) parser.add_argument("--eval_dataset" , type=_UpperCAmelCase , default="" ) parser.add_argument("--seed" , type=_UpperCAmelCase , default=42 ) parser.add_argument("--num_train_epochs" , type=_UpperCAmelCase , default=3 ) parser.add_argument("--train_batch_size" , type=_UpperCAmelCase , default=8 ) parser.add_argument("--eval_batch_size" , type=_UpperCAmelCase , default=16 ) parser.add_argument("--adam_epsilon" , default=1E-8 , type=_UpperCAmelCase , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , type=_UpperCAmelCase , default=1 ) parser.add_argument( "--max_steps" , default=-1 , type=_UpperCAmelCase , help=( "If > 0: set total number of training steps to perform. Override num_train_epochs." ) , ) parser.add_argument( "--gradient_accumulation_steps" , type=_UpperCAmelCase , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--learning_rate" , type=_UpperCAmelCase , default=6.2_5E-5 ) parser.add_argument("--warmup_steps" , default=0 , type=_UpperCAmelCase , help="Linear warmup over warmup_steps." ) parser.add_argument("--lr_schedule" , type=_UpperCAmelCase , default="warmup_linear" ) parser.add_argument("--weight_decay" , type=_UpperCAmelCase , default=0.01 ) parser.add_argument("--lm_coef" , type=_UpperCAmelCase , default=0.9 ) parser.add_argument("--n_valid" , type=_UpperCAmelCase , default=3_74 ) parser.add_argument("--server_ip" , type=_UpperCAmelCase , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=_UpperCAmelCase , default="" , help="Can be used for distant debugging." ) __snake_case = parser.parse_args() print(_UpperCAmelCase ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_UpperCAmelCase ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) __snake_case = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) __snake_case = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(_UpperCAmelCase , _UpperCAmelCase ) ) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True." ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __snake_case = ["_start_", "_delimiter_", "_classify_"] __snake_case = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(_UpperCAmelCase ) __snake_case = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) __snake_case = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(_UpperCAmelCase ) ) model.to(_UpperCAmelCase ) # Load and encode the datasets def tokenize_and_encode(_UpperCAmelCase : Optional[Any] ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(_UpperCAmelCase ) ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): return obj return [tokenize_and_encode(_UpperCAmelCase ) for o in obj] logger.info("Encoding dataset..." ) __snake_case = load_rocstories_dataset(args.train_dataset ) __snake_case = load_rocstories_dataset(args.eval_dataset ) __snake_case = (train_dataset, eval_dataset) __snake_case = tokenize_and_encode(_UpperCAmelCase ) # Compute the max input length for the Transformer __snake_case = model.config.n_positions // 2 - 2 __snake_case = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) __snake_case = min(_UpperCAmelCase , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __snake_case = pre_process_datasets(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase ) __snake_case , __snake_case = tensor_datasets[0], tensor_datasets[1] __snake_case = TensorDataset(*_UpperCAmelCase ) __snake_case = RandomSampler(_UpperCAmelCase ) __snake_case = DataLoader(_UpperCAmelCase , sampler=_UpperCAmelCase , batch_size=args.train_batch_size ) __snake_case = TensorDataset(*_UpperCAmelCase ) __snake_case = SequentialSampler(_UpperCAmelCase ) __snake_case = DataLoader(_UpperCAmelCase , sampler=_UpperCAmelCase , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: __snake_case = args.max_steps __snake_case = args.max_steps // (len(_UpperCAmelCase ) // args.gradient_accumulation_steps) + 1 else: __snake_case = len(_UpperCAmelCase ) // args.gradient_accumulation_steps * args.num_train_epochs __snake_case = list(model.named_parameters() ) __snake_case = ["bias", "LayerNorm.bias", "LayerNorm.weight"] __snake_case = [ { "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], "weight_decay": args.weight_decay, }, {"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], "weight_decay": 0.0}, ] __snake_case = AdamW(_UpperCAmelCase , lr=args.learning_rate , eps=args.adam_epsilon ) __snake_case = get_linear_schedule_with_warmup( _UpperCAmelCase , num_warmup_steps=args.warmup_steps , num_training_steps=_UpperCAmelCase ) if args.do_train: __snake_case , __snake_case , __snake_case = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="Epoch" ): __snake_case = 0 __snake_case = 0 __snake_case = tqdm(_UpperCAmelCase , desc="Training" ) for step, batch in enumerate(_UpperCAmelCase ): __snake_case = tuple(t.to(_UpperCAmelCase ) for t in batch ) __snake_case , __snake_case , __snake_case , __snake_case = batch __snake_case = model(_UpperCAmelCase , mc_token_ids=_UpperCAmelCase , lm_labels=_UpperCAmelCase , mc_labels=_UpperCAmelCase ) __snake_case = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __snake_case = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __snake_case = "Training loss: {:.2e} lr: {:.2e}".format(_UpperCAmelCase , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __snake_case = model.module if hasattr(_UpperCAmelCase , "module" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __snake_case = os.path.join(args.output_dir , _UpperCAmelCase ) __snake_case = os.path.join(args.output_dir , _UpperCAmelCase ) torch.save(model_to_save.state_dict() , _UpperCAmelCase ) model_to_save.config.to_json_file(_UpperCAmelCase ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned __snake_case = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) __snake_case = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(_UpperCAmelCase ) if args.do_eval: model.eval() __snake_case , __snake_case = 0, 0 __snake_case , __snake_case = 0, 0 for batch in tqdm(_UpperCAmelCase , desc="Evaluating" ): __snake_case = tuple(t.to(_UpperCAmelCase ) for t in batch ) __snake_case , __snake_case , __snake_case , __snake_case = batch with torch.no_grad(): __snake_case , __snake_case , __snake_case , __snake_case = model( _UpperCAmelCase , mc_token_ids=_UpperCAmelCase , lm_labels=_UpperCAmelCase , mc_labels=_UpperCAmelCase ) __snake_case = mc_logits.detach().cpu().numpy() __snake_case = mc_labels.to("cpu" ).numpy() __snake_case = accuracy(_UpperCAmelCase , _UpperCAmelCase ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 __snake_case = eval_loss / nb_eval_steps __snake_case = eval_accuracy / nb_eval_examples __snake_case = tr_loss / nb_tr_steps if args.do_train else None __snake_case = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss} __snake_case = os.path.join(args.output_dir , "eval_results.txt" ) with open(_UpperCAmelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , _UpperCAmelCase , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) if __name__ == "__main__": main()
69
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __lowercase : Union[str, Any] =logging.get_logger(__name__) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" ) if "model" in sd.keys(): UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" )["model"] # pop unnecessary weights UpperCAmelCase_ =[ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(lowercase__ ) UpperCAmelCase_ ={ "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase_ =sd.pop(lowercase__ ) UpperCAmelCase_ =list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase_ =sd[key] # We split QKV in separate Q,K,V UpperCAmelCase_ =key.replace(".qkv_proj." , ".q_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".k_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".v_proj." ) UpperCAmelCase_ =value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =torch.split(lowercase__ , depth // 3 , dim=0 ) UpperCAmelCase_ =q UpperCAmelCase_ =k UpperCAmelCase_ =v del sd[key] return sd @torch.no_grad() def a__ ( lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =load_checkpoint(lowercase__ ) if config is not None: UpperCAmelCase_ =OPTConfig.from_pretrained(lowercase__ ) else: UpperCAmelCase_ =OPTConfig() UpperCAmelCase_ =OPTModel(lowercase__ ).half().eval() model.load_state_dict(lowercase__ ) # Check results Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": __lowercase : List[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") __lowercase : str =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
54
0
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = BertTokenizer UpperCamelCase = BertTokenizerFast UpperCamelCase = True UpperCamelCase = True UpperCamelCase = filter_non_english def a__ ( self : List[Any] ) -> int: """simple docstring""" super().setUp() lowerCamelCase_ = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def a__ ( self : Tuple , A_ : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = 'UNwant\u00E9d,running' lowerCamelCase_ = 'unwanted, running' return input_text, output_text def a__ ( self : Any ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.tokenizer_class(self.vocab_file ) lowerCamelCase_ = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(A_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [9, 6, 7, 12, 10, 11] ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" if not self.test_rust_tokenizer: return lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = 'UNwant\u00E9d,running' lowerCamelCase_ = tokenizer.tokenize(A_ ) lowerCamelCase_ = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = tokenizer.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = tokenizer.encode(A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) # With lower casing lowerCamelCase_ = self.get_tokenizer(do_lower_case=A_ ) lowerCamelCase_ = self.get_rust_tokenizer(do_lower_case=A_ ) lowerCamelCase_ = 'UNwant\u00E9d,running' lowerCamelCase_ = tokenizer.tokenize(A_ ) lowerCamelCase_ = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = tokenizer.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = tokenizer.encode(A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) def a__ ( self : Any ) -> Dict: """simple docstring""" lowerCamelCase_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def a__ ( self : Dict ) -> int: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : str ) -> int: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def a__ ( self : Optional[int] ) -> Any: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Tuple ) -> str: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : int ) -> List[Any]: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : str ) -> List[str]: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : Dict ) -> Any: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : int ) -> Any: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def a__ ( self : List[Any] ) -> int: """simple docstring""" lowerCamelCase_ = BasicTokenizer() lowerCamelCase_ = 'a\n\'ll !!to?\'d of, can\'t.' lowerCamelCase_ = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(A_ ) , A_ ) def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_ = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] lowerCamelCase_ = {} for i, token in enumerate(A_ ): lowerCamelCase_ = i lowerCamelCase_ = WordpieceTokenizer(vocab=A_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def a__ ( self : Optional[Any] ) -> str: """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def a__ ( self : List[Any] ) -> int: """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def a__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def a__ ( self : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def a__ ( self : Any ) -> int: """simple docstring""" lowerCamelCase_ = self.tokenizer_class.from_pretrained('bert-base-uncased' ) lowerCamelCase_ = tokenizer.encode('sequence builders' , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer.encode('multi-sequence build' , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(A_ ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def a__ ( self : str ) -> str: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" lowerCamelCase_ = tokenizer_r.encode_plus( A_ , return_attention_mask=A_ , return_token_type_ids=A_ , return_offsets_mapping=A_ , add_special_tokens=A_ , ) lowerCamelCase_ = tokenizer_r.do_lower_case if hasattr(A_ , 'do_lower_case' ) else False lowerCamelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = ['的', '人', '有'] lowerCamelCase_ = ''.join(A_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase_ = True lowerCamelCase_ = self.tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = tokenizer_p.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer_r.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(A_ ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = False lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = tokenizer_r.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer_p.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(A_ ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase_ = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(A_ ) ] self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ )
70
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): __lowercase : str ={ """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: __lowercase : Any ={ """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =(images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ =images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase_ =numpy_to_pil(lowercase__ ) return images def a__ ( lowercase__ ): '''simple docstring''' if images.ndim == 3: UpperCAmelCase_ =images[None, ...] UpperCAmelCase_ =(images * 2_5_5).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCAmelCase_ =[Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: UpperCAmelCase_ =[Image.fromarray(lowercase__ ) for image in images] return pil_images
54
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) class _snake_case (__SCREAMING_SNAKE_CASE): __A : Optional[int] ="timm_backbone" def __init__( self ,_snake_case=None ,_snake_case=3 ,_snake_case=True ,_snake_case=True ,_snake_case=None ,**_snake_case ,): super().__init__(**_snake_case ) UpperCAmelCase_ : Tuple = backbone UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : str = features_only UpperCAmelCase_ : int = use_pretrained_backbone UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : str = out_indices if out_indices is not None else (-1,)
71
def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =int(lowercase__ ) if n_element < 1: UpperCAmelCase_ =ValueError("a should be a positive number" ) raise my_error UpperCAmelCase_ =[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =(0, 0, 0) UpperCAmelCase_ =1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": __lowercase : Tuple =input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") __lowercase : Union[str, Any] =hamming(int(n)) print("""-----------------------------------------------------""") print(f"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
54
0
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _UpperCAmelCase : Dict = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' _UpperCAmelCase : Union[str, Any] = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' _UpperCAmelCase : Dict = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def _A( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/ROUGE_(metric)''', '''https://github.com/google-research/google-research/tree/master/rouge''', ] , ) def _A( self , snake_case_ , snake_case_ , snake_case_=None , snake_case_=True , snake_case_=False ): if rouge_types is None: lowercase =['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum'''] lowercase =rouge_scorer.RougeScorer(rouge_types=snake_case_ , use_stemmer=snake_case_ ) if use_aggregator: lowercase =scoring.BootstrapAggregator() else: lowercase =[] for ref, pred in zip(snake_case_ , snake_case_ ): lowercase =scorer.score(snake_case_ , snake_case_ ) if use_aggregator: aggregator.add_scores(snake_case_ ) else: scores.append(snake_case_ ) if use_aggregator: lowercase =aggregator.aggregate() else: lowercase ={} for key in scores[0]: lowercase =[score[key] for score in scores] return result
72
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __lowercase : List[Any] =logging.get_logger(__name__) class A ( __lowercase ): def __init__( self: List[Any] , *_lowerCAmelCase: Optional[Any] , **_lowerCAmelCase: List[str] ) -> None: '''simple docstring''' warnings.warn( "The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use GLPNImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
54
0
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler') class _snake_case : def __init__( self , a , a , a = True , a = False) -> Optional[int]: SCREAMING_SNAKE_CASE = scheduler SCREAMING_SNAKE_CASE = optimizers if isinstance(a , (list, tuple)) else [optimizers] SCREAMING_SNAKE_CASE = split_batches SCREAMING_SNAKE_CASE = step_with_optimizer SCREAMING_SNAKE_CASE = GradientState() def SCREAMING_SNAKE_CASE__ ( self , *a , **a) -> List[Any]: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*a , **a) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*a , **a) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step SCREAMING_SNAKE_CASE = AcceleratorState().num_processes for _ in range(a): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps'): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*a , **a) else: self.scheduler.step(*a , **a) def SCREAMING_SNAKE_CASE__ ( self) -> Any: return self.scheduler.get_last_lr() def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: return self.scheduler.state_dict() def SCREAMING_SNAKE_CASE__ ( self , a) -> Optional[Any]: self.scheduler.load_state_dict(a) def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: return self.scheduler.get_lr() def SCREAMING_SNAKE_CASE__ ( self , *a , **a) -> str: return self.scheduler.print_lr(*a , **a)
73
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class A ( __lowercase , unittest.TestCase ): _snake_case =CanineTokenizer _snake_case =False def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' super().setUp() UpperCAmelCase_ =CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCAmelCase__ ( self: Optional[int] ) -> List[str]: '''simple docstring''' return CanineTokenizer.from_pretrained("google/canine-s" ) def lowerCAmelCase__ ( self: Union[str, Any] , **_lowerCAmelCase: List[Any] ) -> CanineTokenizer: '''simple docstring''' UpperCAmelCase_ =self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) UpperCAmelCase_ =1024 return tokenizer @require_torch def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off UpperCAmelCase_ =[5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =list(batch.input_ids.numpy()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , _lowerCAmelCase ) self.assertIn("attention_mask" , _lowerCAmelCase ) self.assertIn("token_type_ids" , _lowerCAmelCase ) @require_torch def lowerCAmelCase__ ( self: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =[ "What's the weater?", "It's about 25 degrees.", ] UpperCAmelCase_ =tokenizer( text_target=_lowerCAmelCase , max_length=32 , padding="max_length" , truncation=_lowerCAmelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) UpperCAmelCase_ =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: UpperCAmelCase_ =chr(0xe0_07 ) additional_special_tokens.append(_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn(_lowerCAmelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ , UpperCAmelCase_ =self.get_clean_sequence(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_05 UpperCAmelCase_ =chr(_lowerCAmelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) UpperCAmelCase_ =tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , input_encoded + special_token_id ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def lowerCAmelCase__ ( self: Any ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =chr(0xe0_05 ) UpperCAmelCase_ =chr(0xe0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=_lowerCAmelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(token_a[0] , _lowerCAmelCase ) self.assertEqual(token_a[0] , _lowerCAmelCase ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_lowerCAmelCase ) tokenizer.from_pretrained(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =[new_token_a] UpperCAmelCase_ =[new_token_a] with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase_ =tokenizer_class.from_pretrained(_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) UpperCAmelCase_ =0xe0_07 UpperCAmelCase_ =chr(_lowerCAmelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase_ =[AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase )] UpperCAmelCase_ =tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ ="hello world" if self.space_between_special_tokens: UpperCAmelCase_ ="[CLS] hello world [SEP]" else: UpperCAmelCase_ =input UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_lowerCAmelCase , [output, output.lower()] ) def lowerCAmelCase__ ( self: List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =[ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] UpperCAmelCase_ ="a" UpperCAmelCase_ =ord(_lowerCAmelCase ) for attr in attributes_list: setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [] ) UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' pass def lowerCAmelCase__ ( self: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Tuple ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: str ) -> str: '''simple docstring''' pass
54
0
def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = [0 for i in range(len(snake_case ) )] # initialize interval's left pointer and right pointer __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = 0, 0 for i in range(1 , len(snake_case ) ): # case when current index is inside the interval if i <= right_pointer: __SCREAMING_SNAKE_CASE : List[Any] = min(right_pointer - i + 1 , z_result[i - left_pointer] ) __SCREAMING_SNAKE_CASE : Dict = min_edge while go_next(snake_case , snake_case , snake_case ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = i, i + z_result[i] - 1 return z_result def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" return i + z_result[i] < len(snake_case ) and s[z_result[i]] == s[i + z_result[i]] def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string __SCREAMING_SNAKE_CASE : str = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(snake_case ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
74
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __lowercase : Optional[int] ="""\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ __lowercase : Dict ="""\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ __lowercase : List[str] ="""\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def lowerCAmelCase__ ( self: int ) -> MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: List[List[List[str]]] , _lowerCAmelCase: List[List[str]] , _lowerCAmelCase: int = 1 , _lowerCAmelCase: int = 4 , ) -> Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_lowerCAmelCase , hypotheses=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase ) }
54
0
'''simple docstring''' from itertools import product def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> list[int]: UpperCAmelCase__ : Optional[Any] = sides_number UpperCAmelCase__ : Optional[Any] = max_face_number * dice_number UpperCAmelCase__ : Optional[int] = [0] * (max_total + 1) UpperCAmelCase__ : Union[str, Any] = 1 UpperCAmelCase__ : List[str] = range(lowerCAmelCase__ , max_face_number + 1 ) for dice_numbers in product(lowerCAmelCase__ , repeat=lowerCAmelCase__ ): UpperCAmelCase__ : Optional[Any] = sum(lowerCAmelCase__ ) totals_frequencies[total] += 1 return totals_frequencies def a__ ( ) -> float: UpperCAmelCase__ : int = total_frequency_distribution( sides_number=4 , dice_number=9 ) UpperCAmelCase__ : Optional[int] = total_frequency_distribution( sides_number=6 , dice_number=6 ) UpperCAmelCase__ : Union[str, Any] = 0 UpperCAmelCase__ : str = 9 UpperCAmelCase__ : str = 4 * 9 UpperCAmelCase__ : Tuple = 6 for peter_total in range(lowerCAmelCase__ , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) UpperCAmelCase__ : str = (4**9) * (6**6) UpperCAmelCase__ : Union[str, Any] = peter_wins_count / total_games_number UpperCAmelCase__ : Any = round(lowerCAmelCase__ , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
75
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( __lowercase , unittest.TestCase ): _snake_case =KandinskyVaaImgaImgPipeline _snake_case =['''image_embeds''', '''negative_image_embeds''', '''image'''] _snake_case =[ '''image_embeds''', '''negative_image_embeds''', '''image''', ] _snake_case =[ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _snake_case =False @property def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self: List[str] ) -> Dict: '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' return 100 @property def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ ={ "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase_ =UNetaDConditionModel(**_lowerCAmelCase ) return model @property def lowerCAmelCase__ ( self: Any ) -> Tuple: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ ( self: Dict ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.dummy_unet UpperCAmelCase_ =self.dummy_movq UpperCAmelCase_ ={ "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.0_00_85, "beta_end": 0.0_12, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } UpperCAmelCase_ =DDIMScheduler(**_lowerCAmelCase ) UpperCAmelCase_ ={ "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[Any]=0 ) -> Dict: '''simple docstring''' UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCAmelCase ) # create init_image UpperCAmelCase_ =floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ =Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("RGB" ).resize((256, 256) ) if str(_lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase ) else: UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) UpperCAmelCase_ ={ "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ ="cpu" UpperCAmelCase_ =self.get_dummy_components() UpperCAmelCase_ =self.pipeline_class(**_lowerCAmelCase ) UpperCAmelCase_ =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) UpperCAmelCase_ =output.images UpperCAmelCase_ =pipe( **self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0] UpperCAmelCase_ =image[0, -3:, -3:, -1] UpperCAmelCase_ =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ =np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: List[Any] ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) UpperCAmelCase_ =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase_ ="A red cartoon frog, 4k" UpperCAmelCase_ =KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) UpperCAmelCase_ =KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) UpperCAmelCase_ =pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ , UpperCAmelCase_ =pipe_prior( _lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase_ =pipeline( image=_lowerCAmelCase , image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) UpperCAmelCase_ =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
54
0
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : Union[str, Any] = list(range(len(__UpperCamelCase ) ) ) __lowercase : List[Any] = [v / w for v, w in zip(__UpperCamelCase , __UpperCamelCase )] index.sort(key=lambda __UpperCamelCase : ratio[i] , reverse=__UpperCamelCase ) __lowercase : float = 0 __lowercase : list[float] = [0] * len(__UpperCamelCase ) for i in index: if weight[i] <= capacity: __lowercase : Tuple = 1 max_value += value[i] capacity -= weight[i] else: __lowercase : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
76
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class A ( unittest.TestCase ): def __init__( self: Optional[int] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: Optional[int]=7 , _lowerCAmelCase: Any=True , _lowerCAmelCase: List[Any]=True , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: str=True , _lowerCAmelCase: Optional[int]=99 , _lowerCAmelCase: Any=32 , _lowerCAmelCase: Any=5 , _lowerCAmelCase: Tuple=4 , _lowerCAmelCase: Union[str, Any]=37 , _lowerCAmelCase: List[str]="gelu" , _lowerCAmelCase: Dict=0.1 , _lowerCAmelCase: Tuple=0.1 , _lowerCAmelCase: int=512 , _lowerCAmelCase: Tuple=16 , _lowerCAmelCase: Tuple=2 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=4 , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =seq_length UpperCAmelCase_ =is_training UpperCAmelCase_ =use_attention_mask UpperCAmelCase_ =use_token_type_ids UpperCAmelCase_ =use_labels UpperCAmelCase_ =vocab_size UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =max_position_embeddings UpperCAmelCase_ =type_vocab_size UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =num_choices def lowerCAmelCase__ ( self: Dict ) -> Any: '''simple docstring''' UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ =None if self.use_attention_mask: UpperCAmelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ =None if self.use_token_type_ids: UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ =RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self: str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCAmelCase__ ( self: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ =True UpperCAmelCase_ =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( __lowercase , unittest.TestCase ): _snake_case =True _snake_case =( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self: Dict ) -> Dict: '''simple docstring''' UpperCAmelCase_ =FlaxRobertaModelTester(self ) @slow def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase_ =model_class_name.from_pretrained("roberta-base" , from_pt=_lowerCAmelCase ) UpperCAmelCase_ =model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase )
54
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: A = None A = logging.get_logger(__name__) A = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} A = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } A = { """facebook/nllb-large-en-ro""": 1_024, """facebook/nllb-200-distilled-600M""": 1_024, } # fmt: off A = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class a__ ( __magic_name__ ): lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = ["input_ids", "attention_mask"] lowercase_ = NllbTokenizer lowercase_ = [] lowercase_ = [] def __init__( self : str , UpperCamelCase_ : Any=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : List[str]="<s>" , UpperCamelCase_ : int="</s>" , UpperCamelCase_ : Union[str, Any]="</s>" , UpperCamelCase_ : List[Any]="<s>" , UpperCamelCase_ : Any="<unk>" , UpperCamelCase_ : int="<pad>" , UpperCamelCase_ : int="<mask>" , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Tuple=False , **UpperCamelCase_ : List[Any] , ): """simple docstring""" __UpperCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_) if isinstance(UpperCamelCase_ , UpperCamelCase_) else mask_token __UpperCAmelCase : Tuple = legacy_behaviour super().__init__( vocab_file=UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , src_lang=UpperCamelCase_ , tgt_lang=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , legacy_behaviour=UpperCamelCase_ , **UpperCamelCase_ , ) __UpperCAmelCase : List[str] = vocab_file __UpperCAmelCase : Union[str, Any] = False if not self.vocab_file else True __UpperCAmelCase : Union[str, Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens}) __UpperCAmelCase : Any = { lang_code: self.convert_tokens_to_ids(UpperCamelCase_) for lang_code in FAIRSEQ_LANGUAGE_CODES } __UpperCAmelCase : Optional[Any] = src_lang if src_lang is not None else "eng_Latn" __UpperCAmelCase : List[str] = self.convert_tokens_to_ids(self._src_lang) __UpperCAmelCase : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def a_ ( self : str): """simple docstring""" return self._src_lang @src_lang.setter def a_ ( self : List[str] , UpperCamelCase_ : str): """simple docstring""" __UpperCAmelCase : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def a_ ( self : List[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a_ ( self : Any , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None): """simple docstring""" __UpperCAmelCase : List[Any] = [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def a_ ( self : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] , UpperCamelCase_ : Optional[str] , **UpperCamelCase_ : List[Any]): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") __UpperCAmelCase : Any = src_lang __UpperCAmelCase : Optional[Any] = self(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_) __UpperCAmelCase : List[Any] = self.convert_tokens_to_ids(UpperCamelCase_) __UpperCAmelCase : str = tgt_lang_id return inputs def a_ ( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str = "eng_Latn" , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : str = "fra_Latn" , **UpperCamelCase_ : str , ): """simple docstring""" __UpperCAmelCase : List[Any] = src_lang __UpperCAmelCase : Dict = tgt_lang return super().prepare_seqaseq_batch(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_) def a_ ( self : Any): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang) def a_ ( self : List[str]): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang) def a_ ( self : str , UpperCamelCase_ : Dict): """simple docstring""" __UpperCAmelCase : List[str] = self.convert_tokens_to_ids(UpperCamelCase_) if self.legacy_behaviour: __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : Tuple = [self.eos_token_id, self.cur_lang_code] else: __UpperCAmelCase : str = [self.cur_lang_code] __UpperCAmelCase : int = [self.eos_token_id] __UpperCAmelCase : str = self.convert_ids_to_tokens(self.prefix_tokens) __UpperCAmelCase : List[str] = self.convert_ids_to_tokens(self.suffix_tokens) __UpperCAmelCase : int = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def a_ ( self : Union[str, Any] , UpperCamelCase_ : str): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.convert_tokens_to_ids(UpperCamelCase_) if self.legacy_behaviour: __UpperCAmelCase : str = [] __UpperCAmelCase : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: __UpperCAmelCase : List[str] = [self.cur_lang_code] __UpperCAmelCase : Any = [self.eos_token_id] __UpperCAmelCase : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens) __UpperCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens) __UpperCAmelCase : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def a_ ( self : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(UpperCamelCase_): logger.error(F"Vocabulary path ({save_directory}) should be a directory.") return __UpperCAmelCase : Union[str, Any] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCamelCase_): copyfile(self.vocab_file , UpperCamelCase_) return (out_vocab_file,)
77
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if b == 0: return (1, 0) ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , a % b ) UpperCAmelCase_ =a // b return (y, x - k * y) def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) if b < 0: UpperCAmelCase_ =(b % n + n) % n return b def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =invert_modulo(lowercase__ , lowercase__ ), invert_modulo(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
54
0
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> Union[str, Any]: '''simple docstring''' if b == 0: return 1 if (b % 2) == 0: return actual_power(snake_case_ , int(b / 2 ) ) * actual_power(snake_case_ , int(b / 2 ) ) else: return a * actual_power(snake_case_ , int(b / 2 ) ) * actual_power(snake_case_ , int(b / 2 ) ) def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> float: '''simple docstring''' if b < 0: return 1 / actual_power(snake_case_ , snake_case_ ) return actual_power(snake_case_ , snake_case_ ) if __name__ == "__main__": print(power(-2, -3))
78
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowercase : Tuple =logging.getLogger(__name__) __lowercase : Optional[int] =tf.data.AUTOTUNE def a__ ( ): '''simple docstring''' UpperCAmelCase_ =argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config" , type=lowercase__ , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , ) parser.add_argument( "--tokenizer" , type=lowercase__ , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , ) parser.add_argument( "--per_replica_batch_size" , type=lowercase__ , default=8 , help="Batch size per TPU core." , ) parser.add_argument( "--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , ) parser.add_argument( "--tpu_name" , type=lowercase__ , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , ) parser.add_argument( "--tpu_zone" , type=lowercase__ , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , ) parser.add_argument( "--gcp_project" , type=lowercase__ , help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , ) parser.add_argument( "--train_dataset" , type=lowercase__ , help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--shuffle_buffer_size" , type=lowercase__ , default=2**1_8 , help="Size of the shuffle buffer (in samples)" , ) parser.add_argument( "--eval_dataset" , type=lowercase__ , help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--num_epochs" , type=lowercase__ , default=1 , help="Number of epochs to train for." , ) parser.add_argument( "--learning_rate" , type=lowercase__ , default=1E-4 , help="Learning rate to use for training." , ) parser.add_argument( "--weight_decay_rate" , type=lowercase__ , default=1E-3 , help="Weight decay rate to use for training." , ) parser.add_argument( "--max_length" , type=lowercase__ , default=5_1_2 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , ) parser.add_argument( "--mlm_probability" , type=lowercase__ , default=0.15 , help="Fraction of tokens to mask during training." , ) parser.add_argument("--output_dir" , type=lowercase__ , required=lowercase__ , help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id" , type=lowercase__ , help="Model ID to upload to on the Hugging Face Hub." ) UpperCAmelCase_ =parser.parse_args() return args def a__ ( lowercase__ ): '''simple docstring''' try: if args.tpu_name: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(lowercase__ ) tf.tpu.experimental.initialize_tpu_system(lowercase__ ) return tpu def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =0 for file in file_list: UpperCAmelCase_ =file.split("/" )[-1] UpperCAmelCase_ =re.search(R"-\d+-(\d+)\.tfrecord" , lowercase__ ).group(1 ) UpperCAmelCase_ =int(lowercase__ ) num_samples += sample_count return num_samples def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =tf.data.Dataset.from_tensor_slices(lowercase__ ) if shuffle: UpperCAmelCase_ =dataset.shuffle(len(lowercase__ ) ) UpperCAmelCase_ =tf.data.TFRecordDataset(lowercase__ , num_parallel_reads=lowercase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here UpperCAmelCase_ =dataset.apply(tf.data.experimental.assert_cardinality(lowercase__ ) ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) if shuffle: assert shuffle_buffer_size is not None UpperCAmelCase_ =dataset.shuffle(args.shuffle_buffer_size ) UpperCAmelCase_ =dataset.batch(lowercase__ , drop_remainder=lowercase__ ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) UpperCAmelCase_ =dataset.prefetch(lowercase__ ) return dataset def a__ ( lowercase__ ): '''simple docstring''' if not args.no_tpu: UpperCAmelCase_ =initialize_tpu(lowercase__ ) UpperCAmelCase_ =tf.distribute.TPUStrategy(lowercase__ ) else: UpperCAmelCase_ =tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) UpperCAmelCase_ =AutoTokenizer.from_pretrained(args.tokenizer ) UpperCAmelCase_ =AutoConfig.from_pretrained(args.pretrained_model_config ) UpperCAmelCase_ =tokenizer.vocab_size UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) ) if not training_records: raise ValueError(F'No .tfrecord files found in {args.train_dataset}.' ) UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) ) if not eval_records: raise ValueError(F'No .tfrecord files found in {args.eval_dataset}.' ) UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) UpperCAmelCase_ =steps_per_epoch * args.num_epochs with strategy.scope(): UpperCAmelCase_ =TFAutoModelForMaskedLM.from_config(lowercase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built UpperCAmelCase_ , UpperCAmelCase_ =create_optimizer( num_train_steps=lowercase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowercase__ , metrics=["accuracy"] ) def decode_fn(lowercase__ ): UpperCAmelCase_ ={ "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowercase__ , lowercase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. UpperCAmelCase_ =DataCollatorForLanguageModeling( tokenizer=lowercase__ , mlm_probability=args.mlm_probability , mlm=lowercase__ , return_tensors="tf" ) def mask_with_collator(lowercase__ ): # TF really needs an isin() function UpperCAmelCase_ =( ~tf.cast(batch["attention_mask"] , tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) UpperCAmelCase_ , UpperCAmelCase_ =data_collator.tf_mask_tokens( batch["input_ids"] , vocab_size=len(lowercase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowercase__ , ) return batch UpperCAmelCase_ =args.per_replica_batch_size * strategy.num_replicas_in_sync UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , ) UpperCAmelCase_ =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowercase__ ) ) model.fit( lowercase__ , validation_data=lowercase__ , epochs=args.num_epochs , callbacks=lowercase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowercase : Union[str, Any] =parse_args() main(args)
54
0
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version SCREAMING_SNAKE_CASE__ : List[str] = logging.getLogger(__name__) require_version("""pytorch_lightning>=1.0.4""") SCREAMING_SNAKE_CASE__ : Optional[int] = { """base""": AutoModel, """sequence-classification""": AutoModelForSequenceClassification, """question-answering""": AutoModelForQuestionAnswering, """pretraining""": AutoModelForPreTraining, """token-classification""": AutoModelForTokenClassification, """language-modeling""": AutoModelWithLMHead, """summarization""": AutoModelForSeqaSeqLM, """translation""": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization SCREAMING_SNAKE_CASE__ : List[str] = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } SCREAMING_SNAKE_CASE__ : Tuple = sorted(arg_to_scheduler.keys()) SCREAMING_SNAKE_CASE__ : Optional[Any] = """{""" + """, """.join(arg_to_scheduler_choices) + """}""" class UpperCAmelCase_ ( pl.LightningModule ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase="base" , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase , ): super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(_lowerCAmelCase ) UpperCAmelCase__ : int = 0 UpperCAmelCase__ : int = Path(self.hparams.output_dir ) UpperCAmelCase__ : Dict = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: UpperCAmelCase__ : Optional[int] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"""num_labels""": num_labels} if num_labels is not None else {}) , cache_dir=_lowerCAmelCase , **_lowerCAmelCase , ) else: UpperCAmelCase__ : PretrainedConfig = config UpperCAmelCase__ : List[str] = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(self.hparams , _lowerCAmelCase , _lowerCAmelCase ): assert hasattr(self.config , _lowerCAmelCase ), f"model config doesn't have a `{p}` attribute" setattr(self.config , _lowerCAmelCase , getattr(self.hparams , _lowerCAmelCase ) ) if tokenizer is None: UpperCAmelCase__ : str = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_lowerCAmelCase , ) else: UpperCAmelCase__ : PreTrainedTokenizer = tokenizer UpperCAmelCase__ : List[str] = MODEL_MODES[mode] if model is None: UpperCAmelCase__ : Optional[Any] = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(""".ckpt""" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=_lowerCAmelCase , ) else: UpperCAmelCase__ : Tuple = model def __UpperCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): UpperCAmelCase__ : Union[str, Any] = self.model_type.from_pretrained(*_lowerCAmelCase , **_lowerCAmelCase ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Tuple = arg_to_scheduler[self.hparams.lr_scheduler] UpperCAmelCase__ : Optional[int] = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) UpperCAmelCase__ : Union[str, Any] = {"""scheduler""": scheduler, """interval""": """step""", """frequency""": 1} return scheduler def __UpperCAmelCase ( self ): UpperCAmelCase__ : Any = self.model UpperCAmelCase__ : int = ["""bias""", """LayerNorm.weight"""] UpperCAmelCase__ : int = [ { """params""": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters """weight_decay""": self.hparams.weight_decay, }, { """params""": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] if self.hparams.adafactor: UpperCAmelCase__ : Dict = Adafactor( _lowerCAmelCase , lr=self.hparams.learning_rate , scale_parameter=_lowerCAmelCase , relative_step=_lowerCAmelCase ) else: UpperCAmelCase__ : Union[str, Any] = AdamW( _lowerCAmelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) UpperCAmelCase__ : Optional[int] = optimizer UpperCAmelCase__ : int = self.get_lr_scheduler() return [optimizer], [scheduler] def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): return self.validation_step(_lowerCAmelCase , _lowerCAmelCase ) def __UpperCAmelCase ( self , _lowerCAmelCase ): return self.validation_end(_lowerCAmelCase ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Dict = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores UpperCAmelCase__ : List[Any] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __UpperCAmelCase ( self , _lowerCAmelCase ): if stage == "test": UpperCAmelCase__ : int = len(self.test_dataloader().dataset ) else: UpperCAmelCase__ : Optional[Any] = self.get_dataloader("""train""" , self.hparams.train_batch_size , shuffle=_lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = len(self.train_dataloader().dataset ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = False ): raise NotImplementedError("""You must implement this for your task""" ) def __UpperCAmelCase ( self ): return self.train_loader def __UpperCAmelCase ( self ): return self.get_dataloader("""dev""" , self.hparams.eval_batch_size , shuffle=_lowerCAmelCase ) def __UpperCAmelCase ( self ): return self.get_dataloader("""test""" , self.hparams.eval_batch_size , shuffle=_lowerCAmelCase ) def __UpperCAmelCase ( self , _lowerCAmelCase ): return os.path.join( self.hparams.data_dir , """cached_{}_{}_{}""".format( _lowerCAmelCase , list(filter(_lowerCAmelCase , self.hparams.model_name_or_path.split("""/""" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __UpperCAmelCase ( self , _lowerCAmelCase ): UpperCAmelCase__ : Optional[int] = self.output_dir.joinpath("""best_tfmr""" ) UpperCAmelCase__ : List[str] = self.step_count self.model.save_pretrained(_lowerCAmelCase ) self.tokenizer.save_pretrained(_lowerCAmelCase ) @staticmethod def __UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase ): parser.add_argument( """--model_name_or_path""" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--config_name""" , default="""""" , type=_lowerCAmelCase , help="""Pretrained config name or path if not the same as model_name""" ) parser.add_argument( """--tokenizer_name""" , default=_lowerCAmelCase , type=_lowerCAmelCase , help="""Pretrained tokenizer name or path if not the same as model_name""" , ) parser.add_argument( """--cache_dir""" , default=str(Path(_lowerCAmelCase ).parent / """test_run""" / """cache""" ) , type=_lowerCAmelCase , help="""Where do you want to store the pre-trained models downloaded from huggingface.co""" , ) parser.add_argument( """--encoder_layerdrop""" , type=_lowerCAmelCase , help="""Encoder layer dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--decoder_layerdrop""" , type=_lowerCAmelCase , help="""Decoder layer dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--dropout""" , type=_lowerCAmelCase , help="""Dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--attention_dropout""" , type=_lowerCAmelCase , help="""Attention dropout probability (Optional). Goes into model.config""" , ) parser.add_argument("""--learning_rate""" , default=5e-5 , type=_lowerCAmelCase , help="""The initial learning rate for Adam.""" ) parser.add_argument( """--lr_scheduler""" , default="""linear""" , choices=_lowerCAmelCase , metavar=_lowerCAmelCase , type=_lowerCAmelCase , help="""Learning rate scheduler""" , ) parser.add_argument("""--weight_decay""" , default=0.0 , type=_lowerCAmelCase , help="""Weight decay if we apply some.""" ) parser.add_argument("""--adam_epsilon""" , default=1e-8 , type=_lowerCAmelCase , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--warmup_steps""" , default=0 , type=_lowerCAmelCase , help="""Linear warmup over warmup_steps.""" ) parser.add_argument("""--num_workers""" , default=4 , type=_lowerCAmelCase , help="""kwarg passed to DataLoader""" ) parser.add_argument("""--num_train_epochs""" , dest="""max_epochs""" , default=3 , type=_lowerCAmelCase ) parser.add_argument("""--train_batch_size""" , default=32 , type=_lowerCAmelCase ) parser.add_argument("""--eval_batch_size""" , default=32 , type=_lowerCAmelCase ) parser.add_argument("""--adafactor""" , action="""store_true""" ) class UpperCAmelCase_ ( pl.Callback ): def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class UpperCAmelCase_ ( pl.Callback ): def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(_lowerCAmelCase ) class UpperCAmelCase_ ( pl.Callback ): def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ : Any = trainer.lr_schedulers[0]["""scheduler"""] UpperCAmelCase__ : Optional[int] = {f"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(_lowerCAmelCase ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): rank_zero_info("""***** Validation results *****""" ) UpperCAmelCase__ : Tuple = trainer.callback_metrics # Log results for key in sorted(_lowerCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(_lowerCAmelCase , str(metrics[key] ) ) ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): rank_zero_info("""***** Test results *****""" ) UpperCAmelCase__ : Any = trainer.callback_metrics # Log and save results to file UpperCAmelCase__ : Optional[Any] = os.path.join(pl_module.hparams.output_dir , """test_results.txt""" ) with open(_lowerCAmelCase , """w""" ) as writer: for key in sorted(_lowerCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(_lowerCAmelCase , str(metrics[key] ) ) ) writer.write("""{} = {}\n""".format(_lowerCAmelCase , str(metrics[key] ) ) ) def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase ) -> None: '''simple docstring''' # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( """--output_dir""" , default=str(Path(__lowerCamelCase ).parent / """test_run""" / """model_checkpoints""" ) , type=__lowerCamelCase , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=__lowerCamelCase , default="""O2""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_tpu_cores""" , dest="""tpu_cores""" , type=__lowerCamelCase ) parser.add_argument("""--max_grad_norm""" , dest="""gradient_clip_val""" , default=1.0 , type=__lowerCamelCase , help="""Max gradient norm""" ) parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" ) parser.add_argument("""--do_predict""" , action="""store_true""" , help="""Whether to run predictions on the test set.""" ) parser.add_argument( """--gradient_accumulation_steps""" , dest="""accumulate_grad_batches""" , type=__lowerCamelCase , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--seed""" , type=__lowerCamelCase , default=42 , help="""random seed for initialization""" ) parser.add_argument( """--data_dir""" , default=str(Path(__lowerCamelCase ).parent / """test_run""" / """dummy-train-data""" ) , type=__lowerCamelCase , help="""The input data dir. Should contain the training files for the CoNLL-2003 NER task.""" , ) def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=[] , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase , ) -> Dict: '''simple docstring''' pl.seed_everything(args.seed ) # init model UpperCAmelCase__ : Optional[int] = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=__lowerCamelCase ) # add custom checkpoints if checkpoint_callback is None: UpperCAmelCase__ : List[Any] = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="""checkpoint""" , monitor="""val_loss""" , mode="""min""" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(__lowerCamelCase ) if logging_callback is None: UpperCAmelCase__ : Optional[Any] = LoggingCallback() UpperCAmelCase__ : List[str] = {} if args.fpaa: UpperCAmelCase__ : List[Any] = 16 if args.gpus > 1: UpperCAmelCase__ : Dict = """auto""" UpperCAmelCase__ : str = """ddp""" UpperCAmelCase__ : Optional[Any] = args.accumulate_grad_batches UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : List[str] = """auto""" UpperCAmelCase__ : List[str] = pl.Trainer.from_argparse_args( __lowerCamelCase , weights_summary=__lowerCamelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=__lowerCamelCase , val_check_interval=1 , num_sanity_val_steps=2 , **__lowerCamelCase , ) if args.do_train: trainer.fit(__lowerCamelCase ) else: print("""RAG modeling tests with new set functions successfuly executed!""" ) return trainer
79
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A : @staticmethod def lowerCAmelCase__ ( *_lowerCAmelCase: List[Any] , **_lowerCAmelCase: List[str] ) -> List[str]: '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class A ( unittest.TestCase ): _snake_case =MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ =[ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: str ) -> int: '''simple docstring''' UpperCAmelCase_ =vqa_pipeline(_lowerCAmelCase , top_k=1 ) self.assertEqual( _lowerCAmelCase , [ [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], ] , ) @require_torch def lowerCAmelCase__ ( self: Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question="How many cats are there?" , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) @slow @require_torch def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [[{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def lowerCAmelCase__ ( self: int ) -> List[str]: '''simple docstring''' pass
54
0
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __UpperCamelCase : def __init__( self : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : str=13 , _lowerCAmelCase : List[Any]=64 , _lowerCAmelCase : int=2 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Optional[Any]=32 , _lowerCAmelCase : int=5 , _lowerCAmelCase : List[Any]=4 , _lowerCAmelCase : int=37 , _lowerCAmelCase : Any="gelu" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Optional[Any]=0.1 , _lowerCAmelCase : List[Any]=10 , _lowerCAmelCase : Union[str, Any]=0.02 , _lowerCAmelCase : Tuple=[1, 16, 4, 4] , _lowerCAmelCase : str=None , ) -> str: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = scope __lowercase = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size __lowercase = (self.image_size // 32) ** 2 __lowercase = num_patches + 1 def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def _a ( self : str ) -> List[str]: """simple docstring""" __lowercase = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [4, 8, 16, 32], """num_groups""": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=_lowerCAmelCase , ) def _a ( self : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase = ViTHybridModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] ) -> Any: """simple docstring""" __lowercase = self.type_sequence_label_size __lowercase = ViTHybridForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Union[str, Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __snake_case :int = ( {'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification} if is_torch_available() else {} ) __snake_case :Optional[Any] = False __snake_case :Union[str, Any] = False __snake_case :List[Any] = False def _a ( self : Optional[int] ) -> str: """simple docstring""" __lowercase = ViTHybridModelTester(self ) __lowercase = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _a ( self : int ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def _a ( self : int ) -> Optional[Any]: """simple docstring""" pass def _a ( self : str ) -> Any: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def _a ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self : Tuple ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = _config_zero_init(_lowerCAmelCase ) for model_class in self.all_model_classes: __lowercase = model_class(config=_lowerCAmelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": __lowercase = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def _a ( self : Optional[Any] ) -> Dict: """simple docstring""" for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = ViTHybridModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def snake_case ( ): '''simple docstring''' __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : Optional[int] ) -> str: """simple docstring""" return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self : List[Any] ) -> Any: """simple docstring""" __lowercase = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _lowerCAmelCase ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): __lowercase = model(**_lowerCAmelCase ) # verify the logits __lowercase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = torch.tensor([-1.9_090, -0.4_993, -0.2_389] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow @require_accelerate def _a ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" ) __lowercase = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" ) __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ) __lowercase = model(**_lowerCAmelCase ) __lowercase = outputs.logits # model predicts one of the 1000 ImageNet classes __lowercase = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
80
def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) != len(lowercase__ ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. UpperCAmelCase_ =[p / w for p, w in zip(lowercase__ , lowercase__ )] # Creating a copy of the list and sorting profit/weight in ascending order UpperCAmelCase_ =sorted(lowercase__ ) # declaring useful variables UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 UpperCAmelCase_ =0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight UpperCAmelCase_ =sorted_profit_by_weight[length - i - 1] UpperCAmelCase_ =profit_by_weight.index(lowercase__ ) UpperCAmelCase_ =-1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) __lowercase : List[str] =[int(x) for x in input("""Input profits separated by spaces: """).split()] __lowercase : Union[str, Any] =[int(x) for x in input("""Input weights separated by spaces: """).split()] __lowercase : Tuple =int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
54
0
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node _snake_case : Tuple = 4 _snake_case : Tuple = 3 class a (_lowerCAmelCase ): """simple docstring""" pass def lowerCAmelCase_ ( __lowerCamelCase ): for shard in shards: for i in range(__lowerCamelCase ): yield {"i": i, "shard": shard} def lowerCAmelCase_ ( ): __snake_case : Optional[Any] = int(os.environ["RANK"] ) __snake_case : Any = int(os.environ["WORLD_SIZE"] ) __snake_case : List[str] = ArgumentParser() parser.add_argument("--streaming" , type=__lowerCamelCase ) parser.add_argument("--local_rank" , type=__lowerCamelCase ) parser.add_argument("--num_workers" , type=__lowerCamelCase , default=0 ) __snake_case : Optional[Any] = parser.parse_args() __snake_case : List[Any] = args.streaming __snake_case : List[str] = args.num_workers __snake_case : int = {"shards": [F'shard_{shard_idx}' for shard_idx in range(__lowerCamelCase )]} __snake_case : List[Any] = IterableDataset.from_generator(__lowerCamelCase , gen_kwargs=__lowerCamelCase ) if not streaming: __snake_case : int = Dataset.from_list(list(__lowerCamelCase ) ) __snake_case : int = split_dataset_by_node(__lowerCamelCase , rank=__lowerCamelCase , world_size=__lowerCamelCase ) __snake_case : Optional[int] = torch.utils.data.DataLoader(__lowerCamelCase , num_workers=__lowerCamelCase ) __snake_case : Optional[Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD __snake_case : int = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __snake_case : int = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F'local_size {local_size} != expected_local_size {expected_local_size}' ) if __name__ == "__main__": main()
81
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowercase : Dict ={ """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any =["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __lowercase : Union[str, Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
54
0
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger lowerCamelCase = get_logger(__name__) lowerCamelCase = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. """ class lowercase__ : '''simple docstring''' @add_start_docstrings(_UpperCAmelCase ) def __call__( self : str , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray ) -> jnp.ndarray: '''simple docstring''' raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class lowercase__ : '''simple docstring''' @add_start_docstrings(_UpperCAmelCase ) def __call__( self : Union[str, Any] , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray ) -> jnp.ndarray: '''simple docstring''' raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @add_start_docstrings(_UpperCAmelCase ) def __call__( self : Any , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : int , **_UpperCAmelCase : List[str] ) -> jnp.ndarray: '''simple docstring''' for processor in self: UpperCAmelCase_ = inspect.signature(processor.__call__ ).parameters if len(_UpperCAmelCase ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F"""Make sure that all the required parameters: {list(function_args.keys() )} for """ F"""{processor.__class__} are passed to the logits processor.""" ) UpperCAmelCase_ = processor(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) else: UpperCAmelCase_ = processor(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return scores class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[int] , _UpperCAmelCase : float ) -> List[Any]: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not (temperature > 0): raise ValueError(F"""`temperature` has to be a strictly positive float, but is {temperature}""" ) UpperCAmelCase_ = temperature def __call__( self : Dict , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : int ) -> jnp.ndarray: '''simple docstring''' UpperCAmelCase_ = scores / self.temperature return scores class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : float , _UpperCAmelCase : float = -float("Inf" ) , _UpperCAmelCase : int = 1 ) -> Optional[int]: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or (top_p < 0 or top_p > 1.0): raise ValueError(F"""`top_p` has to be a float > 0 and < 1, but is {top_p}""" ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or (min_tokens_to_keep < 1): raise ValueError(F"""`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}""" ) UpperCAmelCase_ = top_p UpperCAmelCase_ = filter_value UpperCAmelCase_ = min_tokens_to_keep def __call__( self : Optional[int] , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : int ) -> jnp.ndarray: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = lax.top_k(_UpperCAmelCase , scores.shape[-1] ) UpperCAmelCase_ = jnp.full_like(_UpperCAmelCase , self.filter_value ) UpperCAmelCase_ = jax.nn.softmax(_UpperCAmelCase , axis=-1 ).cumsum(axis=-1 ) UpperCAmelCase_ = cumulative_probs < self.top_p # include the token that is higher than top_p as well UpperCAmelCase_ = jnp.roll(_UpperCAmelCase , 1 ) score_mask |= score_mask.at[:, 0].set(_UpperCAmelCase ) # min tokens to keep UpperCAmelCase_ = score_mask.at[:, : self.min_tokens_to_keep].set(_UpperCAmelCase ) UpperCAmelCase_ = jnp.where(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = jax.lax.sort_key_val(_UpperCAmelCase , _UpperCAmelCase )[-1] return next_scores class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : float = -float("Inf" ) , _UpperCAmelCase : int = 1 ) -> Optional[int]: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or top_k <= 0: raise ValueError(F"""`top_k` has to be a strictly positive integer, but is {top_k}""" ) UpperCAmelCase_ = max(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = filter_value def __call__( self : Union[str, Any] , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : int ) -> jnp.ndarray: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = scores.shape UpperCAmelCase_ = jnp.full(batch_size * vocab_size , self.filter_value ) UpperCAmelCase_ = min(self.top_k , scores.shape[-1] ) # Safety check UpperCAmelCase_ , UpperCAmelCase_ = lax.top_k(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = jnp.broadcast_to((jnp.arange(_UpperCAmelCase ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() UpperCAmelCase_ = topk_scores.flatten() UpperCAmelCase_ = topk_indices.flatten() + shift UpperCAmelCase_ = next_scores_flat.at[topk_indices_flat].set(_UpperCAmelCase ) UpperCAmelCase_ = next_scores_flat.reshape(_UpperCAmelCase , _UpperCAmelCase ) return next_scores class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : str , _UpperCAmelCase : int ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = bos_token_id def __call__( self : Optional[Any] , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : int ) -> jnp.ndarray: '''simple docstring''' UpperCAmelCase_ = jnp.full(scores.shape , -float("inf" ) ) UpperCAmelCase_ = 1 - jnp.bool_(cur_len - 1 ) UpperCAmelCase_ = jnp.where(_UpperCAmelCase , new_scores.at[:, self.bos_token_id].set(0 ) , _UpperCAmelCase ) return scores class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = max_length UpperCAmelCase_ = eos_token_id def __call__( self : Optional[int] , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : int ) -> jnp.ndarray: '''simple docstring''' UpperCAmelCase_ = jnp.full(scores.shape , -float("inf" ) ) UpperCAmelCase_ = 1 - jnp.bool_(cur_len - self.max_length + 1 ) UpperCAmelCase_ = jnp.where(_UpperCAmelCase , new_scores.at[:, self.eos_token_id].set(0 ) , _UpperCAmelCase ) return scores class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[Any]: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or min_length < 0: raise ValueError(F"""`min_length` has to be a positive integer, but is {min_length}""" ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or eos_token_id < 0: raise ValueError(F"""`eos_token_id` has to be a positive integer, but is {eos_token_id}""" ) UpperCAmelCase_ = min_length UpperCAmelCase_ = eos_token_id def __call__( self : List[str] , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : int ) -> jnp.ndarray: '''simple docstring''' UpperCAmelCase_ = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) UpperCAmelCase_ = jnp.where(_UpperCAmelCase , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , _UpperCAmelCase ) return scores class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = list(_UpperCAmelCase ) UpperCAmelCase_ = begin_index def __call__( self : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> Any: '''simple docstring''' UpperCAmelCase_ = 1 - jnp.bool_(cur_len - self.begin_index ) UpperCAmelCase_ = jnp.where(_UpperCAmelCase , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , _UpperCAmelCase ) return scores class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[str] , _UpperCAmelCase : list ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = list(_UpperCAmelCase ) def __call__( self : Dict , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : int ) -> jnp.ndarray: '''simple docstring''' UpperCAmelCase_ = scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Optional[int] , _UpperCAmelCase : str ) -> Any: '''simple docstring''' UpperCAmelCase_ = dict(_UpperCAmelCase ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. UpperCAmelCase_ = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: UpperCAmelCase_ = force_token_array.at[index].set(_UpperCAmelCase ) UpperCAmelCase_ = jnp.intaa(_UpperCAmelCase ) def __call__( self : str , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : int ) -> jnp.ndarray: '''simple docstring''' def _force_token(_UpperCAmelCase : Optional[Any] ): UpperCAmelCase_ = scores.shape[0] UpperCAmelCase_ = self.force_token_array[generation_idx] UpperCAmelCase_ = jnp.ones_like(_UpperCAmelCase , dtype=scores.dtype ) * -float("inf" ) UpperCAmelCase_ = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) UpperCAmelCase_ = lax.dynamic_update_slice(_UpperCAmelCase , _UpperCAmelCase , (0, current_token) ) return new_scores UpperCAmelCase_ = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(_UpperCAmelCase ) , lambda: scores , ) , ) return scores class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = generate_config.eos_token_id UpperCAmelCase_ = generate_config.no_timestamps_token_id UpperCAmelCase_ = generate_config.no_timestamps_token_id + 1 UpperCAmelCase_ = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(_UpperCAmelCase , "max_initial_timestamp_index" ): UpperCAmelCase_ = generate_config.max_initial_timestamp_index else: UpperCAmelCase_ = model_config.vocab_size if self.max_initial_timestamp_index is None: UpperCAmelCase_ = model_config.vocab_size def __call__( self : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' UpperCAmelCase_ = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(_UpperCAmelCase : int , _UpperCAmelCase : int ): UpperCAmelCase_ = jnp.where((cur_len - self.begin_index) >= 1 , _UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , _UpperCAmelCase , ) UpperCAmelCase_ = jnp.where((cur_len - self.begin_index) < 2 , _UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , _UpperCAmelCase , _UpperCAmelCase , ) return jnp.where( _UpperCAmelCase , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , _UpperCAmelCase , ) UpperCAmelCase_ = jax.vmap(_UpperCAmelCase )(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = jnp.where(cur_len == self.begin_index , _UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , _UpperCAmelCase , ) UpperCAmelCase_ = self.timestamp_begin + self.max_initial_timestamp_index UpperCAmelCase_ = jnp.where( _UpperCAmelCase , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , _UpperCAmelCase , ) # if sum of probability over timestamps is above any other token, sample timestamp UpperCAmelCase_ = jax.nn.log_softmax(_UpperCAmelCase , axis=-1 ) def handle_cumulative_probs(_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] ): UpperCAmelCase_ = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) UpperCAmelCase_ = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , _UpperCAmelCase , ) UpperCAmelCase_ = jax.vmap(_UpperCAmelCase )(_UpperCAmelCase , _UpperCAmelCase ) return scores
82
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def a__ ( lowercase__ , lowercase__ , lowercase__=1_0_2_4 , lowercase__=1_0_2_4 , lowercase__=False , **lowercase__ ): '''simple docstring''' UpperCAmelCase_ =AutoTokenizer.from_pretrained(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="train" , **lowercase__ ) UpperCAmelCase_ =tok.pad_token_id def get_lens(lowercase__ ): UpperCAmelCase_ =tqdm( DataLoader(lowercase__ , batch_size=5_1_2 , num_workers=8 , shuffle=lowercase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCAmelCase_ =[] for batch in dl: UpperCAmelCase_ =batch["input_ids"].ne(lowercase__ ).sum(1 ).tolist() UpperCAmelCase_ =batch["labels"].ne(lowercase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowercase__ , lowercase__ ): max_lens.append(max(lowercase__ , lowercase__ ) ) else: max_lens.extend(lowercase__ ) return max_lens UpperCAmelCase_ =get_lens(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="val" , **lowercase__ ) UpperCAmelCase_ =get_lens(lowercase__ ) pickle_save(lowercase__ , train_ds.len_file ) pickle_save(lowercase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
54
0
"""simple docstring""" from pathlib import Path import fire def snake_case_ ( A_ : str, A_ : str, A_ : int ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = Path(A_ ) _lowerCamelCase : int = Path(A_ ) dest_dir.mkdir(exist_ok=A_ ) for path in src_dir.iterdir(): _lowerCamelCase : Optional[Any] = [x.rstrip() for x in list(path.open().readlines() )][:n] _lowerCamelCase : Any = dest_dir.joinpath(path.name ) print(A_ ) dest_path.open('''w''' ).write('''\n'''.join(A_ ) ) if __name__ == "__main__": fire.Fire(minify)
83
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A : def __init__( self: Any , _lowerCAmelCase: str , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: List[str]=30 , _lowerCAmelCase: List[Any]=2 , _lowerCAmelCase: List[str]=3 , _lowerCAmelCase: Dict=True , _lowerCAmelCase: int=True , _lowerCAmelCase: Tuple=32 , _lowerCAmelCase: str=2 , _lowerCAmelCase: Dict=4 , _lowerCAmelCase: Dict=37 , _lowerCAmelCase: Optional[Any]="gelu" , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: Union[str, Any]=10 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=3 , _lowerCAmelCase: Optional[int]=None , ) -> Any: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =image_size UpperCAmelCase_ =patch_size UpperCAmelCase_ =num_channels UpperCAmelCase_ =is_training UpperCAmelCase_ =use_labels UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ =(image_size // patch_size) ** 2 UpperCAmelCase_ =num_patches + 1 def lowerCAmelCase__ ( self: Any ) -> int: '''simple docstring''' UpperCAmelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ =None if self.use_labels: UpperCAmelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ =self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Any , _lowerCAmelCase: List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ =TFViTModel(config=_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) UpperCAmelCase_ =(image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.type_sequence_label_size UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ =1 UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ =model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"pixel_values": pixel_values} return config, inputs_dict @require_tf class A ( __lowercase , __lowercase , unittest.TestCase ): _snake_case =(TFViTModel, TFViTForImageClassification) if is_tf_available() else () _snake_case =( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) _snake_case =False _snake_case =False _snake_case =False def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ =TFViTModelTester(self ) UpperCAmelCase_ =ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: Dict ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: int ) -> Optional[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase_ =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , tf.keras.layers.Layer ) ) def lowerCAmelCase__ ( self: List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) UpperCAmelCase_ =inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ =[*signature.parameters.keys()] UpperCAmelCase_ =["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(_lowerCAmelCase ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class A ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self: Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase_ =self.default_image_processor UpperCAmelCase_ =prepare_img() UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="tf" ) # forward pass UpperCAmelCase_ =model(**_lowerCAmelCase ) # verify the logits UpperCAmelCase_ =tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) UpperCAmelCase_ =tf.constant([-0.27_44, 0.82_15, -0.08_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 )
54
0
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''): UpperCAmelCase = True from torch.cuda.amp import autocast UpperCAmelCase = logging.getLogger(__name__) @dataclass class A_ : '''simple docstring''' _UpperCamelCase : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _UpperCamelCase : Optional[str] = field( default=__lowerCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) _UpperCamelCase : Optional[bool] = field( default=__lowerCamelCase , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) _UpperCamelCase : Optional[bool] = field( default=__lowerCamelCase , metadata={"""help""": """Whether to log verbose messages or not."""} , ) _UpperCamelCase : Optional[float] = field( default=2.0 , metadata={"""help""": """Maximum temperature for gumbel softmax."""} ) _UpperCamelCase : Optional[float] = field( default=0.5 , metadata={"""help""": """Minimum temperature for gumbel softmax."""} ) _UpperCamelCase : Optional[float] = field( default=0.999995 , metadata={"""help""": """Decay of gumbel temperature during training."""} ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) lowercase = logging.WARNING if model_args.verbose_logging: lowercase = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): lowercase = logging.INFO logger.setLevel(__SCREAMING_SNAKE_CASE ) @dataclass class A_ : '''simple docstring''' _UpperCamelCase : str = field( default=__lowerCamelCase , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) _UpperCamelCase : Optional[str] = field( default=__lowerCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) _UpperCamelCase : Optional[str] = field( default="""train""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) _UpperCamelCase : Optional[str] = field( default="""validation""" , metadata={ """help""": ( """The name of the validation data set split to use (via the datasets library). Defaults to 'validation'""" ) } , ) _UpperCamelCase : Optional[str] = field( default="""file""" , metadata={"""help""": """Column in the dataset that contains speech file path. Defaults to 'file'"""} , ) _UpperCamelCase : bool = field( default=__lowerCamelCase , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) _UpperCamelCase : Optional[int] = field( default=1 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) _UpperCamelCase : Optional[int] = field( default=__lowerCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) _UpperCamelCase : Optional[float] = field( default=20.0 , metadata={"""help""": """Filter audio files that are longer than `max_duration_in_seconds` seconds"""} ) @dataclass class A_ : '''simple docstring''' _UpperCamelCase : WavaVecaForPreTraining _UpperCamelCase : WavaVecaFeatureExtractor _UpperCamelCase : Union[bool, str] = "longest" _UpperCamelCase : Optional[int] = None _UpperCamelCase : Optional[int] = None def __call__( self , snake_case ): # reformat list to dict and set to pytorch format lowercase = self.feature_extractor.pad( snake_case , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) lowercase = self.model._get_feat_extract_output_lengths(batch['input_values'].shape[-1] ) lowercase = batch['input_values'].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula lowercase = self.model._get_feat_extract_output_lengths(batch['attention_mask'].sum(-1 ) ).to( torch.long ) lowercase = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch['input_values'].device ) # these two operations makes sure that all values # before the output lengths indices are attended to lowercase = 1 lowercase = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices lowercase = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=snake_case , min_masks=2 , ) return batch class A_ ( __lowerCamelCase ): '''simple docstring''' def __init__( self , *snake_case , snake_case=1 , snake_case=0 , snake_case=1.0 , **snake_case ): super().__init__(*snake_case , **snake_case ) lowercase = 0 lowercase = max_gumbel_temp lowercase = min_gumbel_temp lowercase = gumbel_temp_decay def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): model.train() lowercase = self._prepare_inputs(snake_case ) if self.use_amp: with autocast(): lowercase = self.compute_loss(snake_case , snake_case ) else: lowercase = self.compute_loss(snake_case , snake_case ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": lowercase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": lowercase = loss.sum() / (inputs['mask_time_indices']).sum() else: raise ValueError(F'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: lowercase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(snake_case ).backward() elif self.use_apex: with amp.scale_loss(snake_case , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(snake_case ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def UpperCAmelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses() configure_logger(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Downloading and loading a dataset from the hub. lowercase = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" lowercase = DatasetDict() lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}[:{data_args.validation_split_percentage}%]''' , cache_dir=model_args.cache_dir , ) lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}[{data_args.validation_split_percentage}%:]''' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" lowercase = DatasetDict() lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split='validation' , cache_dir=model_args.cache_dir , ) lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}''' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported lowercase = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=__SCREAMING_SNAKE_CASE ) def prepare_dataset(__SCREAMING_SNAKE_CASE ): # check that all files have the correct sampling rate lowercase , lowercase = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays lowercase = datasets.map( __SCREAMING_SNAKE_CASE , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['train'].column_names ) # filter audio files that are too long lowercase = vectorized_datasets.filter( lambda __SCREAMING_SNAKE_CASE : len(data['speech'] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(__SCREAMING_SNAKE_CASE ): return feature_extractor(batch['speech'] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` lowercase = vectorized_datasets.map( __SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['train'].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 lowercase = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( 'PreTraining is only supported for ``config.do_stable_layer_norm=True`` and' ' ``config.feat_extract_norm=\'layer\'' ) lowercase = WavaVecaForPreTraining(__SCREAMING_SNAKE_CASE ) lowercase = DataCollatorForWavaVecaPretraining(model=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE ) lowercase = WavaVecaPreTrainer( model=__SCREAMING_SNAKE_CASE , data_collator=__SCREAMING_SNAKE_CASE , args=__SCREAMING_SNAKE_CASE , train_dataset=vectorized_datasets['train'] , eval_dataset=vectorized_datasets['validation'] , tokenizer=__SCREAMING_SNAKE_CASE , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
84
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) == 0: return False UpperCAmelCase_ =len(lowercase__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowercase__ ) else: return binary_search(a_list[midpoint + 1 :] , lowercase__ ) if __name__ == "__main__": __lowercase : Tuple =input("""Enter numbers separated by comma:\n""").strip() __lowercase : Optional[Any] =[int(item.strip()) for item in user_input.split(""",""")] __lowercase : List[Any] =int(input("""Enter the number to be found in the list:\n""").strip()) __lowercase : Optional[Any] ="""""" if binary_search(sequence, target) else """not """ print(f"""{target} was {not_str}found in {sequence}""")
54
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ : Union[str, Any] = { "configuration_nllb_moe": [ "NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP", "NllbMoeConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : str = [ "NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST", "NllbMoeForConditionalGeneration", "NllbMoeModel", "NllbMoePreTrainedModel", "NllbMoeTop2Router", "NllbMoeSparseMLP", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys SCREAMING_SNAKE_CASE__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
85
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __lowercase : Any =( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) __lowercase : Union[str, Any] =( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) __lowercase : List[str] =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) __lowercase : str =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) __lowercase : Union[str, Any] =( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]), ("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) __lowercase : str =( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) __lowercase : int =( ("""JH AH TH KH QH""", 23), ("""JH 9H TH KH QH""", 22), ("""JC KH JS JD JH""", 21), ("""KH KC 3S 3H 3D""", 20), ("""8C 9C 5C 3C TC""", 19), ("""JS QS 9H TS KH""", 18), ("""7C 7S KH 2H 7H""", 17), ("""3C KH 5D 5S KH""", 16), ("""QH 8H KD JH 8S""", 15), ("""2D 6D 9D TH 7D""", 14), ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) ) UpperCAmelCase_ =["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)] UpperCAmelCase_ , UpperCAmelCase_ =SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def a__ ( lowercase__ = 1_0_0 ): '''simple docstring''' return (generate_random_hand() for _ in range(lowercase__ )) @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =PokerHand(lowercase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand(lowercase__ ) for hand in SORTED_HANDS] UpperCAmelCase_ =poker_hands.copy() shuffle(lowercase__ ) UpperCAmelCase_ =chain(sorted(lowercase__ ) ) for index, hand in enumerate(lowercase__ ): assert hand == poker_hands[index] def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=lowercase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def a__ ( ): '''simple docstring''' UpperCAmelCase_ =PokerHand("2C 4S AS 3D 5C" ) UpperCAmelCase_ =True UpperCAmelCase_ =[5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def a__ ( ): '''simple docstring''' UpperCAmelCase_ =0 UpperCAmelCase_ =os.path.abspath(os.path.dirname(lowercase__ ) ) UpperCAmelCase_ =os.path.join(lowercase__ , "poker_hands.txt" ) with open(lowercase__ ) as file_hand: for line in file_hand: UpperCAmelCase_ =line[:1_4].strip() UpperCAmelCase_ =line[1_5:].strip() UpperCAmelCase_ , UpperCAmelCase_ =PokerHand(lowercase__ ), PokerHand(lowercase__ ) UpperCAmelCase_ =player.compare_with(lowercase__ ) if output == "Win": answer += 1 assert answer == 3_7_6
54
0
__a :Tuple = '0.21.0' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
86
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowercase : int =logging.get_logger(__name__) class A ( __lowercase ): _snake_case =['''pixel_values'''] def __init__( self: List[Any] , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = PILImageResampling.BILINEAR , _lowerCAmelCase: bool = True , _lowerCAmelCase: Union[int, float] = 1 / 255 , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , **_lowerCAmelCase: Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =do_resize UpperCAmelCase_ =size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ =crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ =resample UpperCAmelCase_ =do_rescale UpperCAmelCase_ =rescale_factor UpperCAmelCase_ =do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ =image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: float , _lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Any , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) UpperCAmelCase_ =size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ =int(shortest_edge / crop_pct ) UpperCAmelCase_ =get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_lowerCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _lowerCAmelCase , size=(shortest_edge, shortest_edge) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[int, float] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: str , ) -> Optional[Any]: '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Dict , ) -> np.ndarray: '''simple docstring''' return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: ImageInput , _lowerCAmelCase: bool = None , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: float = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: ChannelDimension = ChannelDimension.FIRST , **_lowerCAmelCase: Optional[Any] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ =do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ =crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ =resample if resample is not None else self.resample UpperCAmelCase_ =do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ =do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ =image_std if image_std is not None else self.image_std UpperCAmelCase_ =size if size is not None else self.size UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ =[to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ =[self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , crop_pct=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ =[self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ =[self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] UpperCAmelCase_ =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] UpperCAmelCase_ ={"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
54
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase : Tuple = { """configuration_whisper""": ["""WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WhisperConfig""", """WhisperOnnxConfig"""], """feature_extraction_whisper""": ["""WhisperFeatureExtractor"""], """processing_whisper""": ["""WhisperProcessor"""], """tokenization_whisper""": ["""WhisperTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = ["""WhisperTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = [ """WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""", """WhisperForConditionalGeneration""", """WhisperModel""", """WhisperPreTrainedModel""", """WhisperForAudioClassification""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = [ """TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWhisperForConditionalGeneration""", """TFWhisperModel""", """TFWhisperPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ """FlaxWhisperForConditionalGeneration""", """FlaxWhisperModel""", """FlaxWhisperPreTrainedModel""", """FlaxWhisperForAudioClassification""", ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
87
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowercase : List[Any] =WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =test_results.split(" " ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. UpperCAmelCase_ =expressions[-2] if "=" in expressions[-1] else expressions[-1] for i, expression in enumerate(lowercase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} UpperCAmelCase_ =None UpperCAmelCase_ =False for line in failures_short_lines.split("\n" ): if re.search(R"_ \[doctest\]" , lowercase__ ): UpperCAmelCase_ =True UpperCAmelCase_ =line.split(" " )[2] elif in_error and not line.split(" " )[0].isdigit(): UpperCAmelCase_ =line UpperCAmelCase_ =False return failures class A : def __init__( self: Optional[Any] , _lowerCAmelCase: str , _lowerCAmelCase: Dict ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =title UpperCAmelCase_ =doc_test_results["time_spent"].split("," )[0] UpperCAmelCase_ =doc_test_results["success"] UpperCAmelCase_ =doc_test_results["failures"] UpperCAmelCase_ =self.n_success + self.n_failures # Failures and success of the modeling tests UpperCAmelCase_ =doc_test_results @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self._time_spent] UpperCAmelCase_ =0 for time in time_spent: UpperCAmelCase_ =time.split(":" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCAmelCase ) == 1: UpperCAmelCase_ =[0, 0, time_parts[0]] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'{int(_lowerCAmelCase )}h{int(_lowerCAmelCase )}m{int(_lowerCAmelCase )}s' @property def lowerCAmelCase__ ( self: int ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' F' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ =40 UpperCAmelCase_ ={k: v["failed"] for k, v in doc_test_results.items() if isinstance(_lowerCAmelCase , _lowerCAmelCase )} UpperCAmelCase_ ="" for category, failures in category_failures.items(): if len(_lowerCAmelCase ) == 0: continue if report != "": report += "\n\n" report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCAmelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'The following examples had failures:\n\n\n{report}\n', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCAmelCase ) @staticmethod def lowerCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =[ { "type": "section", "text": { "type": "plain_text", "text": "There was an issue running the tests.", }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(_lowerCAmelCase )} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(self.payload )} ) ) UpperCAmelCase_ =F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else "All tests passed." UpperCAmelCase_ =client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ ="" for key, value in failures.items(): UpperCAmelCase_ =value[:200] + " [Truncated]" if len(_lowerCAmelCase ) > 250 else value failures_text += F'*{key}*\n_{value}_\n\n' UpperCAmelCase_ =job_name UpperCAmelCase_ ={"type": "section", "text": {"type": "mrkdwn", "text": text}} if job_link is not None: UpperCAmelCase_ ={ "type": "button", "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True}, "url": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowerCAmelCase__ ( self: Any ) -> List[str]: '''simple docstring''' if self.thread_ts is None: raise ValueError("Can only post reply if a post has been made." ) UpperCAmelCase_ =self.doc_test_results.pop("job_link" ) self.doc_test_results.pop("failures" ) self.doc_test_results.pop("success" ) self.doc_test_results.pop("time_spent" ) UpperCAmelCase_ =sorted(self.doc_test_results.items() , key=lambda _lowerCAmelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result["failures"] ): UpperCAmelCase_ =F'*Num failures* :{len(job_result["failed"] )} \n' UpperCAmelCase_ =job_result["failures"] UpperCAmelCase_ =self.get_reply_blocks(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , text=_lowerCAmelCase ) print("Sending the following reply" ) print(json.dumps({"blocks": blocks} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=F'Results for {job}' , blocks=_lowerCAmelCase , thread_ts=self.thread_ts["ts"] , ) time.sleep(1 ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =os.environ["GITHUB_RUN_ID"] UpperCAmelCase_ =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' UpperCAmelCase_ =requests.get(lowercase__ ).json() UpperCAmelCase_ ={} try: jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) UpperCAmelCase_ =math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(lowercase__ ): UpperCAmelCase_ =requests.get(url + F'&page={i + 2}' ).json() jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return jobs except Exception as e: print("Unknown error, could not fetch links." , lowercase__ ) return {} def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} if os.path.exists(lowercase__ ): UpperCAmelCase_ =os.listdir(lowercase__ ) for file in files: try: with open(os.path.join(lowercase__ , lowercase__ ) , encoding="utf-8" ) as f: UpperCAmelCase_ =f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(lowercase__ , lowercase__ )}.' ) from e return _artifact def a__ ( ): '''simple docstring''' class A : def __init__( self: Tuple , _lowerCAmelCase: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =name UpperCAmelCase_ =[] def __str__( self: Optional[int] ) -> Tuple: '''simple docstring''' return self.name def lowerCAmelCase__ ( self: int , _lowerCAmelCase: str ) -> List[Any]: '''simple docstring''' self.paths.append({"name": self.name, "path": path} ) UpperCAmelCase_ ={} UpperCAmelCase_ =filter(os.path.isdir , os.listdir() ) for directory in directories: UpperCAmelCase_ =directory if artifact_name not in _available_artifacts: UpperCAmelCase_ =Artifact(lowercase__ ) _available_artifacts[artifact_name].add_path(lowercase__ ) return _available_artifacts if __name__ == "__main__": __lowercase : str =get_job_links() __lowercase : Dict =retrieve_available_artifacts() __lowercase : Optional[int] =collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowercase : Any ={ v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job __lowercase : Tuple =github_actions_job_links.get("""run_doctests""") __lowercase : int =available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] __lowercase : str =retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: __lowercase , __lowercase , __lowercase : Tuple =handle_test_results(artifact["""stats"""]) __lowercase : int =failed __lowercase : int =success __lowercase : str =time_spent[1:-1] + """, """ __lowercase : str =extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): __lowercase : int =line.replace("""FAILED """, """""") __lowercase : List[Any] =line.split()[0].replace("""\n""", """""") if "::" in line: __lowercase , __lowercase : Any =line.split("""::""") else: __lowercase , __lowercase : Dict =line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowercase : Optional[int] =docs[file_regex] doc_test_results[category]["failed"].append(test) __lowercase : Tuple =all_failures[test] if test in all_failures else """N/A""" __lowercase : Optional[int] =failure break __lowercase : Optional[int] =Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
54
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/config.json""", """funnel-transformer/small-base""": """https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json""", """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/config.json""", """funnel-transformer/medium-base""": """https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json""", """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/config.json""", """funnel-transformer/large-base""": """https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json""", """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json""", """funnel-transformer/xlarge-base""": """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json""", } class lowercase__ ( A_ ): __UpperCAmelCase = '''funnel''' __UpperCAmelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', } def __init__( self , SCREAMING_SNAKE_CASE=3_0522 , SCREAMING_SNAKE_CASE=[4, 4, 4] , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=64 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE="gelu_new" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=1e-9 , SCREAMING_SNAKE_CASE="mean" , SCREAMING_SNAKE_CASE="relative_shift" , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> Optional[Any]: _lowerCamelCase : Optional[int] = vocab_size _lowerCamelCase : Any = block_sizes _lowerCamelCase : int = [1] * len(SCREAMING_SNAKE_CASE) if block_repeats is None else block_repeats assert len(SCREAMING_SNAKE_CASE) == len( self.block_repeats), "`block_sizes` and `block_repeats` should have the same length." _lowerCamelCase : Tuple = num_decoder_layers _lowerCamelCase : Dict = d_model _lowerCamelCase : List[Any] = n_head _lowerCamelCase : Dict = d_head _lowerCamelCase : List[str] = d_inner _lowerCamelCase : Dict = hidden_act _lowerCamelCase : int = hidden_dropout _lowerCamelCase : Any = attention_dropout _lowerCamelCase : int = activation_dropout _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : str = initializer_std _lowerCamelCase : Any = layer_norm_eps assert pooling_type in [ "mean", "max", ], F'Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.' _lowerCamelCase : List[str] = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F'Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.' _lowerCamelCase : int = attention_type _lowerCamelCase : List[str] = separate_cls _lowerCamelCase : Tuple = truncate_seq _lowerCamelCase : List[Any] = pool_q_only super().__init__(**SCREAMING_SNAKE_CASE) @property def UpperCamelCase_ ( self) -> Union[str, Any]: return sum(self.block_sizes) @num_hidden_layers.setter def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> List[str]: raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.""") @property def UpperCamelCase_ ( self) -> List[Any]: return len(self.block_sizes) @num_blocks.setter def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> Optional[Any]: raise NotImplementedError("""This model does not support the setting of `num_blocks`. Please set `block_sizes`.""")
88
def a__ ( lowercase__ = 2_0_0 ): '''simple docstring''' UpperCAmelCase_ =[1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] UpperCAmelCase_ =[0] * (pence + 1) UpperCAmelCase_ =1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowercase__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
54
0
SCREAMING_SNAKE_CASE : Tuple = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
89
import sys def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] for chain_length in range(2 , lowercase__ ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ =a + chain_length - 1 UpperCAmelCase_ =sys.maxsize for c in range(lowercase__ , lowercase__ ): UpperCAmelCase_ =( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ =cost UpperCAmelCase_ =c return matrix, sol def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if i == j: print("A" + str(lowercase__ ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(lowercase__ , lowercase__ , optimal_solution[i][j] ) print_optiomal_solution(lowercase__ , optimal_solution[i][j] + 1 , lowercase__ ) print(")" , end=" " ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] UpperCAmelCase_ =len(lowercase__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ =matrix_chain_order(lowercase__ ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowercase__ , 1 , n - 1 ) if __name__ == "__main__": main()
54
0
'''simple docstring''' def _snake_case ( A , A ) -> int: lowerCAmelCase__ = [0 for i in range(r + 1 )] # nc0 = 1 lowerCAmelCase__ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. lowerCAmelCase__ = min(A , A ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
90
from math import loga def a__ ( lowercase__ ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(lowercase__ , lowercase__ ): raise TypeError("Input value must be a 'int' type" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
54
0
"""simple docstring""" from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : Any ,A_ : Callable ,A_ : Optional[Features] = None ,A_ : str = None ,A_ : bool = False ,A_ : bool = False ,A_ : Optional[dict] = None ,A_ : Optional[int] = None ,**A_ : int ,) -> str: super().__init__( features=A_ ,cache_dir=A_ ,keep_in_memory=A_ ,streaming=A_ ,num_proc=A_ ,**A_ ,) A = Generator( cache_dir=A_ ,features=A_ ,generator=A_ ,gen_kwargs=A_ ,**A_ ,) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: # Build iterable dataset if self.streaming: A = self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: A = None A = None A = None A = None self.builder.download_and_prepare( download_config=A_ ,download_mode=A_ ,verification_mode=A_ ,base_path=A_ ,num_proc=self.num_proc ,) A = self.builder.as_dataset( split='train' ,verification_mode=A_ ,in_memory=self.keep_in_memory ) return dataset
91
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __lowercase : Union[str, Any] =logging.get_logger(__name__) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" ) if "model" in sd.keys(): UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" )["model"] # pop unnecessary weights UpperCAmelCase_ =[ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(lowercase__ ) UpperCAmelCase_ ={ "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase_ =sd.pop(lowercase__ ) UpperCAmelCase_ =list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase_ =sd[key] # We split QKV in separate Q,K,V UpperCAmelCase_ =key.replace(".qkv_proj." , ".q_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".k_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".v_proj." ) UpperCAmelCase_ =value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =torch.split(lowercase__ , depth // 3 , dim=0 ) UpperCAmelCase_ =q UpperCAmelCase_ =k UpperCAmelCase_ =v del sd[key] return sd @torch.no_grad() def a__ ( lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =load_checkpoint(lowercase__ ) if config is not None: UpperCAmelCase_ =OPTConfig.from_pretrained(lowercase__ ) else: UpperCAmelCase_ =OPTConfig() UpperCAmelCase_ =OPTModel(lowercase__ ).half().eval() model.load_state_dict(lowercase__ ) # Check results Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": __lowercase : List[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") __lowercase : str =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
54
0
'''simple docstring''' import math import sys def _lowerCAmelCase ( __magic_name__ : str ) -> str: lowercase : Tuple ='''''' try: with open(__magic_name__ , '''rb''' ) as binary_file: lowercase : Dict =binary_file.read() for dat in data: lowercase : Any =f'''{dat:08b}''' result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def _lowerCAmelCase ( __magic_name__ : str ) -> str: lowercase : int ={'''0''': '''0''', '''1''': '''1'''} lowercase , lowercase : List[str] ='''''', '''''' lowercase : Union[str, Any] =len(__magic_name__ ) for i in range(len(__magic_name__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowercase : int =lexicon[curr_string] result += last_match_id lowercase : List[str] =last_match_id + '''0''' if math.loga(__magic_name__ ).is_integer(): lowercase : int ={} for curr_key in list(__magic_name__ ): lowercase : int =lexicon.pop(__magic_name__ ) lowercase : Any =new_lex lowercase : Any =last_match_id + '''1''' index += 1 lowercase : int ='''''' return result def _lowerCAmelCase ( __magic_name__ : str , __magic_name__ : str ) -> None: lowercase : Optional[Any] =8 try: with open(__magic_name__ , '''wb''' ) as opened_file: lowercase : Any =[ to_write[i : i + byte_length] for i in range(0 , len(__magic_name__ ) , __magic_name__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(__magic_name__ , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def _lowerCAmelCase ( __magic_name__ : str ) -> str: lowercase : int =0 for letter in data_bits: if letter == "1": break counter += 1 lowercase : List[str] =data_bits[counter:] lowercase : List[Any] =data_bits[counter + 1 :] return data_bits def _lowerCAmelCase ( __magic_name__ : str , __magic_name__ : str ) -> None: lowercase : Optional[int] =read_file_binary(__magic_name__ ) lowercase : Dict =remove_prefix(__magic_name__ ) lowercase : Optional[Any] =decompress_data(__magic_name__ ) write_file_binary(__magic_name__ , __magic_name__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
92
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): __lowercase : str ={ """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: __lowercase : Any ={ """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =(images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ =images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase_ =numpy_to_pil(lowercase__ ) return images def a__ ( lowercase__ ): '''simple docstring''' if images.ndim == 3: UpperCAmelCase_ =images[None, ...] UpperCAmelCase_ =(images * 2_5_5).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCAmelCase_ =[Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: UpperCAmelCase_ =[Image.fromarray(lowercase__ ) for image in images] return pil_images
54
0
"""simple docstring""" from PIL import Image def __A (_SCREAMING_SNAKE_CASE ) ->Image: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ :Dict = image.size lowerCAmelCase__ :Dict = 0 lowerCAmelCase__ :Tuple = image.load() for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Optional[int] = pixels[j, i] mean += pixel mean //= width * height for j in range(_SCREAMING_SNAKE_CASE ): for i in range(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Dict = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": __A = mean_threshold(Image.open("""path_to_image""").convert("""L""")) image.save("""output_image_path""")
93
def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =int(lowercase__ ) if n_element < 1: UpperCAmelCase_ =ValueError("a should be a positive number" ) raise my_error UpperCAmelCase_ =[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =(0, 0, 0) UpperCAmelCase_ =1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": __lowercase : Tuple =input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") __lowercase : Union[str, Any] =hamming(int(n)) print("""-----------------------------------------------------""") print(f"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
54
0
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ ( __A ): """simple docstring""" def A__ ( self : Tuple ) -> List[str]: '''simple docstring''' lowercase : Any =self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCAmelCase , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(UpperCAmelCase , '''num_heads''' ) ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any=13 , UpperCAmelCase : Tuple=64 , UpperCAmelCase : int=3 , UpperCAmelCase : Dict=[16, 48, 96] , UpperCAmelCase : Tuple=[1, 3, 6] , UpperCAmelCase : Optional[int]=[1, 2, 10] , UpperCAmelCase : List[str]=[7, 3, 3] , UpperCAmelCase : Any=[4, 2, 2] , UpperCAmelCase : Dict=[2, 1, 1] , UpperCAmelCase : int=[2, 2, 2] , UpperCAmelCase : str=[False, False, True] , UpperCAmelCase : Tuple=[0.0, 0.0, 0.0] , UpperCAmelCase : str=0.0_2 , UpperCAmelCase : Any=1e-12 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Optional[Any]=2 , ) -> List[str]: '''simple docstring''' lowercase : int =parent lowercase : Tuple =batch_size lowercase : Optional[int] =image_size lowercase : Optional[Any] =patch_sizes lowercase : int =patch_stride lowercase : Optional[int] =patch_padding lowercase : Tuple =is_training lowercase : Union[str, Any] =use_labels lowercase : Optional[Any] =num_labels lowercase : Any =num_channels lowercase : Tuple =embed_dim lowercase : int =num_heads lowercase : Optional[Any] =stride_kv lowercase : List[str] =depth lowercase : Dict =cls_token lowercase : Dict =attention_drop_rate lowercase : List[Any] =initializer_range lowercase : Optional[int] =layer_norm_eps def A__ ( self : str ) -> List[Any]: '''simple docstring''' lowercase : str =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase : List[Any] =None if self.use_labels: lowercase : List[str] =ids_tensor([self.batch_size] , self.num_labels ) lowercase : int =self.get_config() return config, pixel_values, labels def A__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def A__ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' lowercase : str =CvtModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : Optional[int] =model(UpperCAmelCase ) lowercase : str =(self.image_size, self.image_size) lowercase , lowercase : Any =image_size[0], image_size[1] for i in range(len(self.depth ) ): lowercase : str =floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) lowercase : str =floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def A__ ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Tuple ) -> str: '''simple docstring''' lowercase : List[Any] =self.num_labels lowercase : str =CvtForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase : int =model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : Any ) -> Any: '''simple docstring''' lowercase : int =self.prepare_config_and_inputs() lowercase , lowercase , lowercase : Optional[Any] =config_and_inputs lowercase : Tuple ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = (CvtModel, CvtForImageClassification) if is_torch_available() else () UpperCamelCase_ = ( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Any ) -> List[str]: '''simple docstring''' lowercase : int =CvtModelTester(self ) lowercase : str =ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def A__ ( self : Tuple ) -> Tuple: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self : Dict ) -> Tuple: '''simple docstring''' return @unittest.skip(reason='''Cvt does not output attentions''' ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def A__ ( self : str ) -> int: '''simple docstring''' pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def A__ ( self : Any ) -> Dict: '''simple docstring''' pass def A__ ( self : List[str] ) -> int: '''simple docstring''' lowercase , lowercase : int =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Tuple =model_class(UpperCAmelCase ) lowercase : List[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : Tuple =[*signature.parameters.keys()] lowercase : str =['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A__ ( self : str ) -> Dict: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self : Tuple ) -> int: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] ): lowercase : List[str] =model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase : Tuple =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase : List[str] =outputs.hidden_states lowercase : str =len(self.model_tester.depth ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) lowercase , lowercase : str =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Dict =True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase : str =True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A__ ( self : int ) -> Optional[int]: '''simple docstring''' lowercase : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A__ ( self : Tuple ) -> Any: '''simple docstring''' pass @slow def A__ ( self : Dict ) -> Tuple: '''simple docstring''' for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : List[str] =CvtModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def lowercase_ ( ) -> List[str]: """simple docstring""" lowercase : Tuple =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : Any =CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(UpperCAmelCase ) lowercase : Tuple =self.default_image_processor lowercase : str =prepare_img() lowercase : List[str] =image_processor(images=UpperCAmelCase , return_tensors='''pt''' ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase : Optional[Any] =model(**UpperCAmelCase ) # verify the logits lowercase : List[str] =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowercase : Optional[int] =torch.tensor([0.9_2_8_5, 0.9_0_1_5, -0.3_1_5_0] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) )
94
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __lowercase : List[Any] =logging.get_logger(__name__) class A ( __lowercase ): def __init__( self: List[Any] , *_lowerCAmelCase: Optional[Any] , **_lowerCAmelCase: List[str] ) -> None: '''simple docstring''' warnings.warn( "The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use GLPNImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
54
0
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files" ,[ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ] ,) def snake_case ( A__ ,A__ ): UpperCAmelCase_ : List[str] = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md" ,"w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md" ,"w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json" ,"w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) UpperCAmelCase_ : List[Any] = DatasetInfosDict.from_directory(A__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( "dataset_info" ,[ DatasetInfo(), DatasetInfo( description="foo" ,features=Features({"a": Value("int32" )} ) ,builder_name="builder" ,config_name="config" ,version="1.0.0" ,splits=[{"name": "train"}] ,download_size=42 ,), ] ,) def snake_case ( A__ ,A__ ): UpperCAmelCase_ : Tuple = str(A__ ) dataset_info.write_to_directory(A__ ) UpperCAmelCase_ : Dict = DatasetInfo.from_directory(A__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(A__ ,"dataset_info.json" ) ) def snake_case ( ): UpperCAmelCase_ : List[Any] = DatasetInfo( description="foo" ,citation="bar" ,homepage="https://foo.bar" ,license="CC0" ,features=Features({"a": Value("int32" )} ) ,post_processed={} ,supervised_keys=() ,task_templates=[] ,builder_name="builder" ,config_name="config" ,version="1.0.0" ,splits=[{"name": "train", "num_examples": 42}] ,download_checksums={} ,download_size=13_37 ,post_processing_size=4_42 ,dataset_size=12_34 ,size_in_bytes=13_37 + 4_42 + 12_34 ,) UpperCAmelCase_ : List[Any] = dataset_info._to_yaml_dict() assert sorted(A__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] ,(list, dict, int, str) ) UpperCAmelCase_ : List[Any] = yaml.safe_dump(A__ ) UpperCAmelCase_ : Union[str, Any] = yaml.safe_load(A__ ) assert dataset_info_yaml_dict == reloaded def snake_case ( ): UpperCAmelCase_ : Tuple = DatasetInfo() UpperCAmelCase_ : List[Any] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict" ,[ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo" ,features=Features({"a": Value("int32" )} ) ,builder_name="builder" ,config_name="config" ,version="1.0.0" ,splits=[{"name": "train"}] ,download_size=42 ,) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=42 ), "v2": DatasetInfo(dataset_size=13_37 ), } ), ] ,) def snake_case ( A__ ,A__ ): UpperCAmelCase_ : List[Any] = str(A__ ) dataset_infos_dict.write_to_directory(A__ ) UpperCAmelCase_ : Tuple = DatasetInfosDict.from_directory(A__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): UpperCAmelCase_ : List[str] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml UpperCAmelCase_ : Union[str, Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(A__ ,"README.md" ) )
95
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class A ( __lowercase , unittest.TestCase ): _snake_case =CanineTokenizer _snake_case =False def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' super().setUp() UpperCAmelCase_ =CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCAmelCase__ ( self: Optional[int] ) -> List[str]: '''simple docstring''' return CanineTokenizer.from_pretrained("google/canine-s" ) def lowerCAmelCase__ ( self: Union[str, Any] , **_lowerCAmelCase: List[Any] ) -> CanineTokenizer: '''simple docstring''' UpperCAmelCase_ =self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) UpperCAmelCase_ =1024 return tokenizer @require_torch def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off UpperCAmelCase_ =[5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =list(batch.input_ids.numpy()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , _lowerCAmelCase ) self.assertIn("attention_mask" , _lowerCAmelCase ) self.assertIn("token_type_ids" , _lowerCAmelCase ) @require_torch def lowerCAmelCase__ ( self: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =[ "What's the weater?", "It's about 25 degrees.", ] UpperCAmelCase_ =tokenizer( text_target=_lowerCAmelCase , max_length=32 , padding="max_length" , truncation=_lowerCAmelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) UpperCAmelCase_ =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: UpperCAmelCase_ =chr(0xe0_07 ) additional_special_tokens.append(_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn(_lowerCAmelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ , UpperCAmelCase_ =self.get_clean_sequence(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_05 UpperCAmelCase_ =chr(_lowerCAmelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) UpperCAmelCase_ =tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , input_encoded + special_token_id ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def lowerCAmelCase__ ( self: Any ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =chr(0xe0_05 ) UpperCAmelCase_ =chr(0xe0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=_lowerCAmelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(token_a[0] , _lowerCAmelCase ) self.assertEqual(token_a[0] , _lowerCAmelCase ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_lowerCAmelCase ) tokenizer.from_pretrained(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =[new_token_a] UpperCAmelCase_ =[new_token_a] with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase_ =tokenizer_class.from_pretrained(_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) UpperCAmelCase_ =0xe0_07 UpperCAmelCase_ =chr(_lowerCAmelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase_ =[AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase )] UpperCAmelCase_ =tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ ="hello world" if self.space_between_special_tokens: UpperCAmelCase_ ="[CLS] hello world [SEP]" else: UpperCAmelCase_ =input UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_lowerCAmelCase , [output, output.lower()] ) def lowerCAmelCase__ ( self: List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =[ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] UpperCAmelCase_ ="a" UpperCAmelCase_ =ord(_lowerCAmelCase ) for attr in attributes_list: setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [] ) UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' pass def lowerCAmelCase__ ( self: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Tuple ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: str ) -> str: '''simple docstring''' pass
54
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = field(default="automatic-speech-recognition" ,metadata={"include_in_asdict_even_if_is_default": True} ) UpperCAmelCase__ = Features({"audio": Audio()} ) UpperCAmelCase__ = Features({"transcription": Value("string" )} ) UpperCAmelCase__ = "audio" UpperCAmelCase__ = "transcription" def lowerCamelCase__ ( self : Optional[Any] , __snake_case : Union[str, Any] ) -> Any: if self.audio_column not in features: raise ValueError(F'Column {self.audio_column} is not present in features.' ) if not isinstance(features[self.audio_column] , __snake_case ): raise ValueError(F'Column {self.audio_column} is not an Audio type.' ) __magic_name__: List[str] = copy.deepcopy(self ) __magic_name__: Tuple = self.input_schema.copy() __magic_name__: Dict = features[self.audio_column] __magic_name__: List[str] = input_schema return task_template @property def lowerCamelCase__ ( self : List[str] ) -> Dict[str, str]: return {self.audio_column: "audio", self.transcription_column: "transcription"}
96
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __lowercase : Optional[int] ="""\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ __lowercase : Dict ="""\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ __lowercase : List[str] ="""\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def lowerCAmelCase__ ( self: int ) -> MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: List[List[List[str]]] , _lowerCAmelCase: List[List[str]] , _lowerCAmelCase: int = 1 , _lowerCAmelCase: int = 4 , ) -> Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_lowerCAmelCase , hypotheses=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase ) }
54
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = {'configuration_focalnet': ['FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FocalNetConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FocalNetForImageClassification', 'FocalNetForMaskedImageModeling', 'FocalNetBackbone', 'FocalNetModel', 'FocalNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
97
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( __lowercase , unittest.TestCase ): _snake_case =KandinskyVaaImgaImgPipeline _snake_case =['''image_embeds''', '''negative_image_embeds''', '''image'''] _snake_case =[ '''image_embeds''', '''negative_image_embeds''', '''image''', ] _snake_case =[ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _snake_case =False @property def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self: List[str] ) -> Dict: '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' return 100 @property def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ ={ "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase_ =UNetaDConditionModel(**_lowerCAmelCase ) return model @property def lowerCAmelCase__ ( self: Any ) -> Tuple: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ ( self: Dict ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.dummy_unet UpperCAmelCase_ =self.dummy_movq UpperCAmelCase_ ={ "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.0_00_85, "beta_end": 0.0_12, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } UpperCAmelCase_ =DDIMScheduler(**_lowerCAmelCase ) UpperCAmelCase_ ={ "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[Any]=0 ) -> Dict: '''simple docstring''' UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCAmelCase ) # create init_image UpperCAmelCase_ =floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ =Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("RGB" ).resize((256, 256) ) if str(_lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase ) else: UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) UpperCAmelCase_ ={ "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ ="cpu" UpperCAmelCase_ =self.get_dummy_components() UpperCAmelCase_ =self.pipeline_class(**_lowerCAmelCase ) UpperCAmelCase_ =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) UpperCAmelCase_ =output.images UpperCAmelCase_ =pipe( **self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0] UpperCAmelCase_ =image[0, -3:, -3:, -1] UpperCAmelCase_ =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ =np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: List[Any] ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) UpperCAmelCase_ =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase_ ="A red cartoon frog, 4k" UpperCAmelCase_ =KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) UpperCAmelCase_ =KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) UpperCAmelCase_ =pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ , UpperCAmelCase_ =pipe_prior( _lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase_ =pipeline( image=_lowerCAmelCase , image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) UpperCAmelCase_ =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
54
0
'''simple docstring''' import math def a__ ( lowercase : int = 100 ) -> int: """simple docstring""" _UpperCamelCase = sum(i * i for i in range(1, n + 1 ) ) _UpperCamelCase = int(math.pow(sum(range(1, n + 1 ) ), 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
98
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class A ( unittest.TestCase ): def __init__( self: Optional[int] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: Optional[int]=7 , _lowerCAmelCase: Any=True , _lowerCAmelCase: List[Any]=True , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: str=True , _lowerCAmelCase: Optional[int]=99 , _lowerCAmelCase: Any=32 , _lowerCAmelCase: Any=5 , _lowerCAmelCase: Tuple=4 , _lowerCAmelCase: Union[str, Any]=37 , _lowerCAmelCase: List[str]="gelu" , _lowerCAmelCase: Dict=0.1 , _lowerCAmelCase: Tuple=0.1 , _lowerCAmelCase: int=512 , _lowerCAmelCase: Tuple=16 , _lowerCAmelCase: Tuple=2 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=4 , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =seq_length UpperCAmelCase_ =is_training UpperCAmelCase_ =use_attention_mask UpperCAmelCase_ =use_token_type_ids UpperCAmelCase_ =use_labels UpperCAmelCase_ =vocab_size UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =max_position_embeddings UpperCAmelCase_ =type_vocab_size UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =num_choices def lowerCAmelCase__ ( self: Dict ) -> Any: '''simple docstring''' UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ =None if self.use_attention_mask: UpperCAmelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ =None if self.use_token_type_ids: UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ =RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self: str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCAmelCase__ ( self: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ =True UpperCAmelCase_ =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( __lowercase , unittest.TestCase ): _snake_case =True _snake_case =( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self: Dict ) -> Dict: '''simple docstring''' UpperCAmelCase_ =FlaxRobertaModelTester(self ) @slow def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase_ =model_class_name.from_pretrained("roberta-base" , from_pt=_lowerCAmelCase ) UpperCAmelCase_ =model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase )
54
0
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __UpperCAmelCase ( __A ): """simple docstring""" _lowerCamelCase = 42 class __UpperCAmelCase ( __A , __A ): """simple docstring""" @register_to_config def __init__( self , __A = 32 , __A = 64 , __A = 20 , __A = 768 , __A=77 , __A=4 , __A = 0.0 , __A = "silu" , __A = None , __A = None , __A = "linear" , __A = "prd" , __A = None , __A = None , __A = None , ): super().__init__() __a = num_attention_heads __a = attention_head_dim __a = num_attention_heads * attention_head_dim __a = additional_embeddings __a = time_embed_dim or inner_dim __a = embedding_proj_dim or embedding_dim __a = clip_embed_dim or embedding_dim __a = Timesteps(__A , __A , 0 ) __a = TimestepEmbedding(__A , __A , out_dim=__A , act_fn=__A ) __a = nn.Linear(__A , __A ) if embedding_proj_norm_type is None: __a = None elif embedding_proj_norm_type == "layer": __a = nn.LayerNorm(__A ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) __a = nn.Linear(__A , __A ) if encoder_hid_proj_type is None: __a = None elif encoder_hid_proj_type == "linear": __a = nn.Linear(__A , __A ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) __a = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , __A ) ) if added_emb_type == "prd": __a = nn.Parameter(torch.zeros(1 , 1 , __A ) ) elif added_emb_type is None: __a = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) __a = nn.ModuleList( [ BasicTransformerBlock( __A , __A , __A , dropout=__A , activation_fn="""gelu""" , attention_bias=__A , ) for d in range(__A ) ] ) if norm_in_type == "layer": __a = nn.LayerNorm(__A ) elif norm_in_type is None: __a = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) __a = nn.LayerNorm(__A ) __a = nn.Linear(__A , __A ) __a = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) __a = causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" , __A , persistent=__A ) __a = nn.Parameter(torch.zeros(1 , __A ) ) __a = nn.Parameter(torch.zeros(1 , __A ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def snake_case_ ( self ): __a = {} def fn_recursive_add_processors(__A , __A , __A ): if hasattr(__A , """set_processor""" ): __a = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , __A , __A ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__A , __A , __A ) return processors def snake_case_ ( self , __A ): __a = len(self.attn_processors.keys() ) if isinstance(__A , __A ) and len(__A ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(__A )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(__A , __A , __A ): if hasattr(__A , """set_processor""" ): if not isinstance(__A , __A ): module.set_processor(__A ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , __A , __A ) for name, module in self.named_children(): fn_recursive_attn_processor(__A , __A , __A ) def snake_case_ ( self ): self.set_attn_processor(AttnProcessor() ) def snake_case_ ( self , __A , __A , __A , __A = None , __A = None , __A = True , ): __a = hidden_states.shape[0] __a = timestep if not torch.is_tensor(__A ): __a = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(__A ) and len(timesteps.shape ) == 0: __a = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __a = timesteps * torch.ones(__A , dtype=timesteps.dtype , device=timesteps.device ) __a = self.time_proj(__A ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __a = timesteps_projected.to(dtype=self.dtype ) __a = self.time_embedding(__A ) if self.embedding_proj_norm is not None: __a = self.embedding_proj_norm(__A ) __a = self.embedding_proj(__A ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __a = self.encoder_hidden_states_proj(__A ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) __a = self.proj_in(__A ) __a = self.positional_embedding.to(hidden_states.dtype ) __a = [] __a = 0 if encoder_hidden_states is not None: additional_embeds.append(__A ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __a = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __a = hidden_states[:, None, :] __a = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __a = self.prd_embedding.to(hidden_states.dtype ).expand(__A , -1 , -1 ) additional_embeds.append(__A ) __a = torch.cat( __A , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __a = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __a = F.pad( __A , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __a = hidden_states + positional_embeddings if attention_mask is not None: __a = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 __a = F.pad(__A , (0, self.additional_embeddings) , value=0.0 ) __a = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __a = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __a = self.norm_in(__A ) for block in self.transformer_blocks: __a = block(__A , attention_mask=__A ) __a = self.norm_out(__A ) if self.prd_embedding is not None: __a = hidden_states[:, -1] else: __a = hidden_states[:, additional_embeddings_len:] __a = self.proj_to_clip_embeddings(__A ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=__A ) def snake_case_ ( self , __A ): __a = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
99
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if b == 0: return (1, 0) ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , a % b ) UpperCAmelCase_ =a // b return (y, x - k * y) def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ ) if b < 0: UpperCAmelCase_ =(b % n + n) % n return b def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =invert_modulo(lowercase__ , lowercase__ ), invert_modulo(lowercase__ , lowercase__ ) UpperCAmelCase_ =na * na UpperCAmelCase_ =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
54
0
# Function to print upper half of diamond (pyramid) def __snake_case ( lowerCAmelCase_ ) -> List[Any]: for i in range(0 , lowerCAmelCase_ ): for _ in range(0 , n - i - 1 ): # printing spaces print(''' ''' , end='''''' ) for _ in range(0 , i + 1 ): # printing stars print('''* ''' , end='''''' ) print() def __snake_case ( lowerCAmelCase_ ) -> Tuple: for i in range(lowerCAmelCase_ , 0 , -1 ): for _ in range(lowerCAmelCase_ , 0 , -1 ): # printing stars print('''* ''' , end='''''' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(''' ''' , end='''''' ) def __snake_case ( lowerCAmelCase_ ) -> Tuple: if n <= 0: print(''' ... .... nothing printing :(''' ) return floyd(lowerCAmelCase_ ) # upper half reverse_floyd(lowerCAmelCase_ ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") _A : str = 1 while K: _A : str = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) _A : Dict = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
100
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __lowercase : Tuple =logging.getLogger(__name__) __lowercase : Optional[int] =tf.data.AUTOTUNE def a__ ( ): '''simple docstring''' UpperCAmelCase_ =argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config" , type=lowercase__ , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , ) parser.add_argument( "--tokenizer" , type=lowercase__ , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , ) parser.add_argument( "--per_replica_batch_size" , type=lowercase__ , default=8 , help="Batch size per TPU core." , ) parser.add_argument( "--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , ) parser.add_argument( "--tpu_name" , type=lowercase__ , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , ) parser.add_argument( "--tpu_zone" , type=lowercase__ , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , ) parser.add_argument( "--gcp_project" , type=lowercase__ , help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , ) parser.add_argument( "--train_dataset" , type=lowercase__ , help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--shuffle_buffer_size" , type=lowercase__ , default=2**1_8 , help="Size of the shuffle buffer (in samples)" , ) parser.add_argument( "--eval_dataset" , type=lowercase__ , help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--num_epochs" , type=lowercase__ , default=1 , help="Number of epochs to train for." , ) parser.add_argument( "--learning_rate" , type=lowercase__ , default=1E-4 , help="Learning rate to use for training." , ) parser.add_argument( "--weight_decay_rate" , type=lowercase__ , default=1E-3 , help="Weight decay rate to use for training." , ) parser.add_argument( "--max_length" , type=lowercase__ , default=5_1_2 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , ) parser.add_argument( "--mlm_probability" , type=lowercase__ , default=0.15 , help="Fraction of tokens to mask during training." , ) parser.add_argument("--output_dir" , type=lowercase__ , required=lowercase__ , help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id" , type=lowercase__ , help="Model ID to upload to on the Hugging Face Hub." ) UpperCAmelCase_ =parser.parse_args() return args def a__ ( lowercase__ ): '''simple docstring''' try: if args.tpu_name: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(lowercase__ ) tf.tpu.experimental.initialize_tpu_system(lowercase__ ) return tpu def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =0 for file in file_list: UpperCAmelCase_ =file.split("/" )[-1] UpperCAmelCase_ =re.search(R"-\d+-(\d+)\.tfrecord" , lowercase__ ).group(1 ) UpperCAmelCase_ =int(lowercase__ ) num_samples += sample_count return num_samples def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =tf.data.Dataset.from_tensor_slices(lowercase__ ) if shuffle: UpperCAmelCase_ =dataset.shuffle(len(lowercase__ ) ) UpperCAmelCase_ =tf.data.TFRecordDataset(lowercase__ , num_parallel_reads=lowercase__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here UpperCAmelCase_ =dataset.apply(tf.data.experimental.assert_cardinality(lowercase__ ) ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) if shuffle: assert shuffle_buffer_size is not None UpperCAmelCase_ =dataset.shuffle(args.shuffle_buffer_size ) UpperCAmelCase_ =dataset.batch(lowercase__ , drop_remainder=lowercase__ ) UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ ) UpperCAmelCase_ =dataset.prefetch(lowercase__ ) return dataset def a__ ( lowercase__ ): '''simple docstring''' if not args.no_tpu: UpperCAmelCase_ =initialize_tpu(lowercase__ ) UpperCAmelCase_ =tf.distribute.TPUStrategy(lowercase__ ) else: UpperCAmelCase_ =tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) UpperCAmelCase_ =AutoTokenizer.from_pretrained(args.tokenizer ) UpperCAmelCase_ =AutoConfig.from_pretrained(args.pretrained_model_config ) UpperCAmelCase_ =tokenizer.vocab_size UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) ) if not training_records: raise ValueError(F'No .tfrecord files found in {args.train_dataset}.' ) UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) ) if not eval_records: raise ValueError(F'No .tfrecord files found in {args.eval_dataset}.' ) UpperCAmelCase_ =count_samples(lowercase__ ) UpperCAmelCase_ =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) UpperCAmelCase_ =steps_per_epoch * args.num_epochs with strategy.scope(): UpperCAmelCase_ =TFAutoModelForMaskedLM.from_config(lowercase__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built UpperCAmelCase_ , UpperCAmelCase_ =create_optimizer( num_train_steps=lowercase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=lowercase__ , metrics=["accuracy"] ) def decode_fn(lowercase__ ): UpperCAmelCase_ ={ "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(lowercase__ , lowercase__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. UpperCAmelCase_ =DataCollatorForLanguageModeling( tokenizer=lowercase__ , mlm_probability=args.mlm_probability , mlm=lowercase__ , return_tensors="tf" ) def mask_with_collator(lowercase__ ): # TF really needs an isin() function UpperCAmelCase_ =( ~tf.cast(batch["attention_mask"] , tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) UpperCAmelCase_ , UpperCAmelCase_ =data_collator.tf_mask_tokens( batch["input_ids"] , vocab_size=len(lowercase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowercase__ , ) return batch UpperCAmelCase_ =args.per_replica_batch_size * strategy.num_replicas_in_sync UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , shuffle_buffer_size=args.shuffle_buffer_size , ) UpperCAmelCase_ =prepare_dataset( lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , ) UpperCAmelCase_ =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowercase__ ) ) model.fit( lowercase__ , validation_data=lowercase__ , epochs=args.num_epochs , callbacks=lowercase__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __lowercase : Union[str, Any] =parse_args() main(args)
54
0
from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase__ : List[str] =3_00 # TEMPERATURE (unit = K) def a__ ( A__, A__, A__, ): if donor_conc <= 0: raise ValueError('Donor concentration should be positive' ) elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive' ) elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive' ) elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
101
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A : @staticmethod def lowerCAmelCase__ ( *_lowerCAmelCase: List[Any] , **_lowerCAmelCase: List[str] ) -> List[str]: '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class A ( unittest.TestCase ): _snake_case =MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ =[ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: str ) -> int: '''simple docstring''' UpperCAmelCase_ =vqa_pipeline(_lowerCAmelCase , top_k=1 ) self.assertEqual( _lowerCAmelCase , [ [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}], ] , ) @require_torch def lowerCAmelCase__ ( self: Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question="How many cats are there?" , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( _lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] ) @slow @require_torch def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ ="How many cats are there?" UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] ) UpperCAmelCase_ =vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4 ) , [[{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def lowerCAmelCase__ ( self: int ) -> List[str]: '''simple docstring''' pass
54
0
"""simple docstring""" import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=() , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="no" , SCREAMING_SNAKE_CASE="29500" ): UpperCamelCase : Any = False UpperCamelCase : List[Any] = False if any(key.startswith("""KAGGLE""" ) for key in os.environ.keys() ): UpperCamelCase : List[str] = True elif "IPython" in sys.modules: UpperCamelCase : Any = """google.colab""" in str(sys.modules["""IPython"""].get_ipython() ) try: UpperCamelCase : Union[str, Any] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" ) if (in_colab or in_kaggle) and (os.environ.get("""TPU_NAME""" , SCREAMING_SNAKE_CASE ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( """To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside """ """your training function. Restart your notebook and make sure no cells initializes an """ """`Accelerator`.""" ) if num_processes is None: UpperCamelCase : List[str] = 8 UpperCamelCase : Any = PrepareForLaunch(SCREAMING_SNAKE_CASE , distributed_type="""TPU""" ) print(f"""Launching a training on {num_processes} TPU cores.""" ) xmp.spawn(SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , nprocs=SCREAMING_SNAKE_CASE , start_method="""fork""" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("""Launching training on one GPU.""" ) else: print("""Launching training on one CPU.""" ) function(*SCREAMING_SNAKE_CASE ) else: if num_processes is None: raise ValueError( """You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.""" ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( """To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized """ """inside your training function. Restart your notebook and make sure no cells initializes an """ """`Accelerator`.""" ) if torch.cuda.is_initialized(): raise ValueError( """To launch a multi-GPU training from your notebook, you need to avoid running any instruction """ """using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA """ """function.""" ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=SCREAMING_SNAKE_CASE , master_addr="""127.0.01""" , master_port=SCREAMING_SNAKE_CASE , mixed_precision=SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[int] = PrepareForLaunch(SCREAMING_SNAKE_CASE , distributed_type="""MULTI_GPU""" ) print(f"""Launching training on {num_processes} GPUs.""" ) try: start_processes(SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , nprocs=SCREAMING_SNAKE_CASE , start_method="""fork""" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( """CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. """ """This likely stems from an outside import causing issues once the `notebook_launcher()` is called. """ """Please review your imports and test them when running the `notebook_launcher()` to identify """ """which one is problematic.""" ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): UpperCamelCase : List[str] = """1""" print("""Launching training on MPS.""" ) elif torch.cuda.is_available(): print("""Launching training on one GPU.""" ) else: print("""Launching training on CPU.""" ) function(*SCREAMING_SNAKE_CASE ) def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=() , SCREAMING_SNAKE_CASE=2 ): from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=SCREAMING_SNAKE_CASE , master_addr="""127.0.01""" , master_port="""29500""" , accelerate_mixed_precision="""no""" , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu="""yes""" , ): UpperCamelCase : Union[str, Any] = PrepareForLaunch(SCREAMING_SNAKE_CASE , debug=SCREAMING_SNAKE_CASE ) start_processes(SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , nprocs=SCREAMING_SNAKE_CASE , start_method="""fork""" )
102
def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) != len(lowercase__ ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. UpperCAmelCase_ =[p / w for p, w in zip(lowercase__ , lowercase__ )] # Creating a copy of the list and sorting profit/weight in ascending order UpperCAmelCase_ =sorted(lowercase__ ) # declaring useful variables UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 UpperCAmelCase_ =0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight UpperCAmelCase_ =sorted_profit_by_weight[length - i - 1] UpperCAmelCase_ =profit_by_weight.index(lowercase__ ) UpperCAmelCase_ =-1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) __lowercase : List[str] =[int(x) for x in input("""Input profits separated by spaces: """).split()] __lowercase : Union[str, Any] =[int(x) for x in input("""Input weights separated by spaces: """).split()] __lowercase : Tuple =int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
54
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer snake_case = logging.get_logger(__name__) snake_case = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } snake_case = {'''mobilebert-uncased''': 5_1_2} snake_case = {} class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): A__ : List[str] = VOCAB_FILES_NAMES A__ : List[str] = PRETRAINED_VOCAB_FILES_MAP A__ : int = PRETRAINED_INIT_CONFIGURATION A__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Tuple = MobileBertTokenizer def __init__( self : List[str] , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Any=None , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Union[str, Any]="[UNK]" , __lowerCamelCase : List[Any]="[SEP]" , __lowerCamelCase : Optional[int]="[PAD]" , __lowerCamelCase : str="[CLS]" , __lowerCamelCase : List[Any]="[MASK]" , __lowerCamelCase : List[Any]=True , __lowerCamelCase : List[Any]=None , **__lowerCamelCase : List[Any] , ): """simple docstring""" super().__init__( __lowerCamelCase , tokenizer_file=__lowerCamelCase , do_lower_case=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , tokenize_chinese_chars=__lowerCamelCase , strip_accents=__lowerCamelCase , **__lowerCamelCase , ) _snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __lowerCamelCase ) != tokenize_chinese_chars ): _snake_case = getattr(__lowerCamelCase , normalizer_state.pop('''type''' ) ) _snake_case = do_lower_case _snake_case = strip_accents _snake_case = tokenize_chinese_chars _snake_case = normalizer_class(**__lowerCamelCase ) _snake_case = do_lower_case def __UpperCAmelCase ( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Dict=None ): """simple docstring""" _snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): """simple docstring""" _snake_case = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase )
103
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowercase : Dict ={ """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any =["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] =[ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __lowercase : Union[str, Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
54
0
"""simple docstring""" import mpmath # for roots of unity import numpy as np class UpperCamelCase__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ) -> Optional[Any]: # Input as list A__ = list(poly_a or [0] )[:] A__ = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() A__ = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() A__ = len(self.polyB ) # Add 0 to make lengths equal a power of 2 A__ = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform A__ = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product A__ = self.__multiply() def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: A__ = [[x] for x in self.polyA] if which == "A" else [[x] for x in self.polyB] # Corner case if len(SCREAMING_SNAKE_CASE__ ) <= 1: return dft[0] # A__ = self.c_max_length // 2 while next_ncol > 0: A__ = [[] for i in range(SCREAMING_SNAKE_CASE__ )] A__ = self.root**next_ncol # First half of next step A__ = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(SCREAMING_SNAKE_CASE__ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step A__ = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(SCREAMING_SNAKE_CASE__ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update A__ = new_dft A__ = next_ncol // 2 return dft[0] def snake_case__ ( self ) -> int: A__ = self.__dft("A" ) A__ = self.__dft("B" ) A__ = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT A__ = 2 while next_ncol <= self.c_max_length: A__ = [[] for i in range(SCREAMING_SNAKE_CASE__ )] A__ = self.root ** (next_ncol // 2) A__ = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update A__ = new_inverse_c next_ncol *= 2 # Unpack A__ = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self ) -> Optional[Any]: A__ = "A = " + " + ".join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.polyA[: self.len_A] ) ) A__ = "B = " + " + ".join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.polyB[: self.len_B] ) ) A__ = "A*B = " + " + ".join( f"""{coef}*x^{i}""" for coef, i in enumerate(self.product ) ) return f"""{a}\n{b}\n{c}""" # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
104
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def a__ ( lowercase__ , lowercase__ , lowercase__=1_0_2_4 , lowercase__=1_0_2_4 , lowercase__=False , **lowercase__ ): '''simple docstring''' UpperCAmelCase_ =AutoTokenizer.from_pretrained(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="train" , **lowercase__ ) UpperCAmelCase_ =tok.pad_token_id def get_lens(lowercase__ ): UpperCAmelCase_ =tqdm( DataLoader(lowercase__ , batch_size=5_1_2 , num_workers=8 , shuffle=lowercase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCAmelCase_ =[] for batch in dl: UpperCAmelCase_ =batch["input_ids"].ne(lowercase__ ).sum(1 ).tolist() UpperCAmelCase_ =batch["labels"].ne(lowercase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowercase__ , lowercase__ ): max_lens.append(max(lowercase__ , lowercase__ ) ) else: max_lens.extend(lowercase__ ) return max_lens UpperCAmelCase_ =get_lens(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="val" , **lowercase__ ) UpperCAmelCase_ =get_lens(lowercase__ ) pickle_save(lowercase__ , train_ds.len_file ) pickle_save(lowercase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
54
0
def __UpperCAmelCase ( lowerCamelCase_ : str ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 0 for ch in input_str: SCREAMING_SNAKE_CASE_ : Union[str, Any] = ord(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Tuple = pow(2 , lowerCamelCase_ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
105
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A : def __init__( self: Any , _lowerCAmelCase: str , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: List[str]=30 , _lowerCAmelCase: List[Any]=2 , _lowerCAmelCase: List[str]=3 , _lowerCAmelCase: Dict=True , _lowerCAmelCase: int=True , _lowerCAmelCase: Tuple=32 , _lowerCAmelCase: str=2 , _lowerCAmelCase: Dict=4 , _lowerCAmelCase: Dict=37 , _lowerCAmelCase: Optional[Any]="gelu" , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: Union[str, Any]=10 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=3 , _lowerCAmelCase: Optional[int]=None , ) -> Any: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =image_size UpperCAmelCase_ =patch_size UpperCAmelCase_ =num_channels UpperCAmelCase_ =is_training UpperCAmelCase_ =use_labels UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ =(image_size // patch_size) ** 2 UpperCAmelCase_ =num_patches + 1 def lowerCAmelCase__ ( self: Any ) -> int: '''simple docstring''' UpperCAmelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ =None if self.use_labels: UpperCAmelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ =self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Any , _lowerCAmelCase: List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ =TFViTModel(config=_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) UpperCAmelCase_ =(image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.type_sequence_label_size UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase_ =self.image_size // 2 UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size] UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ =1 UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ =model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"pixel_values": pixel_values} return config, inputs_dict @require_tf class A ( __lowercase , __lowercase , unittest.TestCase ): _snake_case =(TFViTModel, TFViTForImageClassification) if is_tf_available() else () _snake_case =( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) _snake_case =False _snake_case =False _snake_case =False def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ =TFViTModelTester(self ) UpperCAmelCase_ =ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: Dict ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self: int ) -> Optional[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase_ =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , tf.keras.layers.Layer ) ) def lowerCAmelCase__ ( self: List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ =model_class(_lowerCAmelCase ) UpperCAmelCase_ =inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ =[*signature.parameters.keys()] UpperCAmelCase_ =["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(_lowerCAmelCase ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class A ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self: Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase_ =self.default_image_processor UpperCAmelCase_ =prepare_img() UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="tf" ) # forward pass UpperCAmelCase_ =model(**_lowerCAmelCase ) # verify the logits UpperCAmelCase_ =tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) UpperCAmelCase_ =tf.constant([-0.27_44, 0.82_15, -0.08_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 )
54
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case :Tuple ={ 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :Dict =['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :Optional[int] =[ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :Optional[Any] =[ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __snake_case :Dict =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
106
from __future__ import annotations def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) == 0: return False UpperCAmelCase_ =len(lowercase__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowercase__ ) else: return binary_search(a_list[midpoint + 1 :] , lowercase__ ) if __name__ == "__main__": __lowercase : Tuple =input("""Enter numbers separated by comma:\n""").strip() __lowercase : Optional[Any] =[int(item.strip()) for item in user_input.split(""",""")] __lowercase : List[Any] =int(input("""Enter the number to be found in the list:\n""").strip()) __lowercase : Optional[Any] ="""""" if binary_search(sequence, target) else """not """ print(f"""{target} was {not_str}found in {sequence}""")
54
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : List[Any] = logging.get_logger(__name__) _UpperCAmelCase : int = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class lowercase_ ( _UpperCamelCase ): """simple docstring""" __lowerCAmelCase = "visual_bert" def __init__( self : Union[str, Any], UpperCamelCase__ : Any=3_05_22, UpperCamelCase__ : Union[str, Any]=7_68, UpperCamelCase__ : Optional[Any]=5_12, UpperCamelCase__ : Tuple=12, UpperCamelCase__ : Union[str, Any]=12, UpperCamelCase__ : int=30_72, UpperCamelCase__ : List[str]="gelu", UpperCamelCase__ : int=0.1, UpperCamelCase__ : List[Any]=0.1, UpperCamelCase__ : Any=5_12, UpperCamelCase__ : int=2, UpperCamelCase__ : Any=0.02, UpperCamelCase__ : Union[str, Any]=1e-12, UpperCamelCase__ : int=False, UpperCamelCase__ : int=True, UpperCamelCase__ : Optional[Any]=1, UpperCamelCase__ : Tuple=0, UpperCamelCase__ : Optional[Any]=2, **UpperCamelCase__ : str, ) -> List[Any]: super().__init__(pad_token_id=UpperCamelCase__, bos_token_id=UpperCamelCase__, eos_token_id=UpperCamelCase__, **UpperCamelCase__ ) _A = vocab_size _A = max_position_embeddings _A = hidden_size _A = visual_embedding_dim _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = initializer_range _A = type_vocab_size _A = layer_norm_eps _A = bypass_transformer _A = special_visual_initialize
107
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __lowercase : Any =( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) __lowercase : Union[str, Any] =( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) __lowercase : List[str] =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) __lowercase : str =( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) __lowercase : Union[str, Any] =( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]), ("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) __lowercase : str =( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) __lowercase : int =( ("""JH AH TH KH QH""", 23), ("""JH 9H TH KH QH""", 22), ("""JC KH JS JD JH""", 21), ("""KH KC 3S 3H 3D""", 20), ("""8C 9C 5C 3C TC""", 19), ("""JS QS 9H TS KH""", 18), ("""7C 7S KH 2H 7H""", 17), ("""3C KH 5D 5S KH""", 16), ("""QH 8H KD JH 8S""", 15), ("""2D 6D 9D TH 7D""", 14), ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) ) UpperCAmelCase_ =["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)] UpperCAmelCase_ , UpperCAmelCase_ =SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def a__ ( lowercase__ = 1_0_0 ): '''simple docstring''' return (generate_random_hand() for _ in range(lowercase__ )) @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =PokerHand(lowercase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , lowercase__ ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand(lowercase__ ) for hand in SORTED_HANDS] UpperCAmelCase_ =poker_hands.copy() shuffle(lowercase__ ) UpperCAmelCase_ =chain(sorted(lowercase__ ) ) for index, hand in enumerate(lowercase__ ): assert hand == poker_hands[index] def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=lowercase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def a__ ( ): '''simple docstring''' UpperCAmelCase_ =PokerHand("2C 4S AS 3D 5C" ) UpperCAmelCase_ =True UpperCAmelCase_ =[5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def a__ ( ): '''simple docstring''' UpperCAmelCase_ =0 UpperCAmelCase_ =os.path.abspath(os.path.dirname(lowercase__ ) ) UpperCAmelCase_ =os.path.join(lowercase__ , "poker_hands.txt" ) with open(lowercase__ ) as file_hand: for line in file_hand: UpperCAmelCase_ =line[:1_4].strip() UpperCAmelCase_ =line[1_5:].strip() UpperCAmelCase_ , UpperCAmelCase_ =PokerHand(lowercase__ ), PokerHand(lowercase__ ) UpperCAmelCase_ =player.compare_with(lowercase__ ) if output == "Win": answer += 1 assert answer == 3_7_6
54
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self : Dict ) -> Tuple: """simple docstring""" _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """的""", """价""", """格""", """是""", """15""", """便""", """alex""", """##andra""", """,""", """。""", """-""", """t""", """shirt""", ] _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) _UpperCAmelCase = { """do_resize""": True, """size""": {"""height""": 224, """width""": 224}, """do_center_crop""": True, """crop_size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.4814_5466, 0.457_8275, 0.4082_1073], """image_std""": [0.2686_2954, 0.2613_0258, 0.2757_7711], """do_convert_rgb""": True, } _UpperCAmelCase = os.path.join(self.tmpdirname , lowerCamelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(lowerCamelCase , lowerCamelCase ) def lowerCamelCase ( self : List[Any] , **lowerCamelCase : List[str] ) -> Tuple: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase ) def lowerCamelCase ( self : Optional[int] , **lowerCamelCase : List[str] ) -> Union[str, Any]: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase ) def lowerCamelCase ( self : Optional[Any] , **lowerCamelCase : List[Any] ) -> int: """simple docstring""" return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase ) def lowerCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase ( self : Tuple ) -> List[str]: """simple docstring""" _UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _UpperCAmelCase = [Image.fromarray(np.moveaxis(lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = ChineseCLIPProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) _UpperCAmelCase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCamelCase ) _UpperCAmelCase = ChineseCLIPProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) _UpperCAmelCase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , lowerCamelCase ) def lowerCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" _UpperCAmelCase = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase = self.get_tokenizer(cls_token="""(CLS)""" , sep_token="""(SEP)""" ) _UpperCAmelCase = self.get_image_processor(do_normalize=lowerCamelCase ) _UpperCAmelCase = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="""(CLS)""" , sep_token="""(SEP)""" , do_normalize=lowerCamelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase ) def lowerCamelCase ( self : List[str] ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = ChineseCLIPProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = image_processor(lowerCamelCase , return_tensors="""np""" ) _UpperCAmelCase = processor(images=lowerCamelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase ( self : Tuple ) -> Any: """simple docstring""" _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = ChineseCLIPProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) _UpperCAmelCase = """Alexandra,T-shirt的价格是15便士。""" _UpperCAmelCase = processor(text=lowerCamelCase ) _UpperCAmelCase = tokenizer(lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase ( self : Any ) -> List[str]: """simple docstring""" _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = ChineseCLIPProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) _UpperCAmelCase = """Alexandra,T-shirt的价格是15便士。""" _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = processor(text=lowerCamelCase , images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def lowerCamelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = ChineseCLIPProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) _UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCAmelCase = processor.batch_decode(lowerCamelCase ) _UpperCAmelCase = tokenizer.batch_decode(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) def lowerCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = ChineseCLIPProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) _UpperCAmelCase = """Alexandra,T-shirt的价格是15便士。""" _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = processor(text=lowerCamelCase , images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
108
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowercase : int =logging.get_logger(__name__) class A ( __lowercase ): _snake_case =['''pixel_values'''] def __init__( self: List[Any] , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = PILImageResampling.BILINEAR , _lowerCAmelCase: bool = True , _lowerCAmelCase: Union[int, float] = 1 / 255 , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , **_lowerCAmelCase: Optional[int] , ) -> None: '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =size if size is not None else {"shortest_edge": 384} UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =do_resize UpperCAmelCase_ =size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase_ =crop_pct if crop_pct is not None else 224 / 256 UpperCAmelCase_ =resample UpperCAmelCase_ =do_rescale UpperCAmelCase_ =rescale_factor UpperCAmelCase_ =do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ =image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: float , _lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Any , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) UpperCAmelCase_ =size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase_ =int(shortest_edge / crop_pct ) UpperCAmelCase_ =get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_lowerCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _lowerCAmelCase , size=(shortest_edge, shortest_edge) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[int, float] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: str , ) -> Optional[Any]: '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Dict , ) -> np.ndarray: '''simple docstring''' return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: ImageInput , _lowerCAmelCase: bool = None , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: float = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: ChannelDimension = ChannelDimension.FIRST , **_lowerCAmelCase: Optional[Any] , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ =do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ =crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase_ =resample if resample is not None else self.resample UpperCAmelCase_ =do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ =do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ =image_std if image_std is not None else self.image_std UpperCAmelCase_ =size if size is not None else self.size UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ =[to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ =[self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , crop_pct=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ =[self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ =[self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] UpperCAmelCase_ =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] UpperCAmelCase_ ={"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
54
0
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase ) -> list[int]: '''simple docstring''' if num <= 0: raise ValueError("""Input must be a positive integer""" ) __SCREAMING_SNAKE_CASE = [True] * (num + 1) __SCREAMING_SNAKE_CASE = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , __UpperCAmelCase ): __SCREAMING_SNAKE_CASE = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() a = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
109
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowercase : List[Any] =WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =test_results.split(" " ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. UpperCAmelCase_ =expressions[-2] if "=" in expressions[-1] else expressions[-1] for i, expression in enumerate(lowercase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} UpperCAmelCase_ =None UpperCAmelCase_ =False for line in failures_short_lines.split("\n" ): if re.search(R"_ \[doctest\]" , lowercase__ ): UpperCAmelCase_ =True UpperCAmelCase_ =line.split(" " )[2] elif in_error and not line.split(" " )[0].isdigit(): UpperCAmelCase_ =line UpperCAmelCase_ =False return failures class A : def __init__( self: Optional[Any] , _lowerCAmelCase: str , _lowerCAmelCase: Dict ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =title UpperCAmelCase_ =doc_test_results["time_spent"].split("," )[0] UpperCAmelCase_ =doc_test_results["success"] UpperCAmelCase_ =doc_test_results["failures"] UpperCAmelCase_ =self.n_success + self.n_failures # Failures and success of the modeling tests UpperCAmelCase_ =doc_test_results @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self._time_spent] UpperCAmelCase_ =0 for time in time_spent: UpperCAmelCase_ =time.split(":" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCAmelCase ) == 1: UpperCAmelCase_ =[0, 0, time_parts[0]] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'{int(_lowerCAmelCase )}h{int(_lowerCAmelCase )}m{int(_lowerCAmelCase )}s' @property def lowerCAmelCase__ ( self: int ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' F' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def lowerCAmelCase__ ( self: Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ =40 UpperCAmelCase_ ={k: v["failed"] for k, v in doc_test_results.items() if isinstance(_lowerCAmelCase , _lowerCAmelCase )} UpperCAmelCase_ ="" for category, failures in category_failures.items(): if len(_lowerCAmelCase ) == 0: continue if report != "": report += "\n\n" report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCAmelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'The following examples had failures:\n\n\n{report}\n', }, } @property def lowerCAmelCase__ ( self: Optional[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ =[self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCAmelCase ) @staticmethod def lowerCAmelCase__ ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =[ { "type": "section", "text": { "type": "plain_text", "text": "There was an issue running the tests.", }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(_lowerCAmelCase )} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(self.payload )} ) ) UpperCAmelCase_ =F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else "All tests passed." UpperCAmelCase_ =client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=_lowerCAmelCase , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ ="" for key, value in failures.items(): UpperCAmelCase_ =value[:200] + " [Truncated]" if len(_lowerCAmelCase ) > 250 else value failures_text += F'*{key}*\n_{value}_\n\n' UpperCAmelCase_ =job_name UpperCAmelCase_ ={"type": "section", "text": {"type": "mrkdwn", "text": text}} if job_link is not None: UpperCAmelCase_ ={ "type": "button", "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True}, "url": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowerCAmelCase__ ( self: Any ) -> List[str]: '''simple docstring''' if self.thread_ts is None: raise ValueError("Can only post reply if a post has been made." ) UpperCAmelCase_ =self.doc_test_results.pop("job_link" ) self.doc_test_results.pop("failures" ) self.doc_test_results.pop("success" ) self.doc_test_results.pop("time_spent" ) UpperCAmelCase_ =sorted(self.doc_test_results.items() , key=lambda _lowerCAmelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result["failures"] ): UpperCAmelCase_ =F'*Num failures* :{len(job_result["failed"] )} \n' UpperCAmelCase_ =job_result["failures"] UpperCAmelCase_ =self.get_reply_blocks(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , text=_lowerCAmelCase ) print("Sending the following reply" ) print(json.dumps({"blocks": blocks} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=F'Results for {job}' , blocks=_lowerCAmelCase , thread_ts=self.thread_ts["ts"] , ) time.sleep(1 ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =os.environ["GITHUB_RUN_ID"] UpperCAmelCase_ =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' UpperCAmelCase_ =requests.get(lowercase__ ).json() UpperCAmelCase_ ={} try: jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) UpperCAmelCase_ =math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(lowercase__ ): UpperCAmelCase_ =requests.get(url + F'&page={i + 2}' ).json() jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return jobs except Exception as e: print("Unknown error, could not fetch links." , lowercase__ ) return {} def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} if os.path.exists(lowercase__ ): UpperCAmelCase_ =os.listdir(lowercase__ ) for file in files: try: with open(os.path.join(lowercase__ , lowercase__ ) , encoding="utf-8" ) as f: UpperCAmelCase_ =f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(lowercase__ , lowercase__ )}.' ) from e return _artifact def a__ ( ): '''simple docstring''' class A : def __init__( self: Tuple , _lowerCAmelCase: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =name UpperCAmelCase_ =[] def __str__( self: Optional[int] ) -> Tuple: '''simple docstring''' return self.name def lowerCAmelCase__ ( self: int , _lowerCAmelCase: str ) -> List[Any]: '''simple docstring''' self.paths.append({"name": self.name, "path": path} ) UpperCAmelCase_ ={} UpperCAmelCase_ =filter(os.path.isdir , os.listdir() ) for directory in directories: UpperCAmelCase_ =directory if artifact_name not in _available_artifacts: UpperCAmelCase_ =Artifact(lowercase__ ) _available_artifacts[artifact_name].add_path(lowercase__ ) return _available_artifacts if __name__ == "__main__": __lowercase : str =get_job_links() __lowercase : Dict =retrieve_available_artifacts() __lowercase : Optional[int] =collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowercase : Any ={ v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job __lowercase : Tuple =github_actions_job_links.get("""run_doctests""") __lowercase : int =available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] __lowercase : str =retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: __lowercase , __lowercase , __lowercase : Tuple =handle_test_results(artifact["""stats"""]) __lowercase : int =failed __lowercase : int =success __lowercase : str =time_spent[1:-1] + """, """ __lowercase : str =extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): __lowercase : int =line.replace("""FAILED """, """""") __lowercase : List[Any] =line.split()[0].replace("""\n""", """""") if "::" in line: __lowercase , __lowercase : Any =line.split("""::""") else: __lowercase , __lowercase : Dict =line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowercase : Optional[int] =docs[file_regex] doc_test_results[category]["failed"].append(test) __lowercase : Tuple =all_failures[test] if test in all_failures else """N/A""" __lowercase : Optional[int] =failure break __lowercase : Optional[int] =Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
54
0
"""simple docstring""" import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel UpperCamelCase__ = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class a ( unittest.TestCase ): @classmethod def __snake_case ( cls ): UpperCAmelCase__ : Optional[Any] = TOKEN HfFolder.save_token(UpperCamelCase_ ) @classmethod def __snake_case ( cls ): try: delete_repo(token=cls._token , repo_id='test-model-flax' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-model-flax-org' ) except HTTPError: pass def __snake_case ( self ): UpperCAmelCase__ : Optional[int] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase__ : List[str] = FlaxBertModel(UpperCamelCase_ ) model.push_to_hub('test-model-flax' , use_auth_token=self._token ) UpperCAmelCase__ : Any = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) UpperCAmelCase__ : List[str] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase__ : List[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase__ : Dict = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCamelCase_ , 1E-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='test-model-flax' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(UpperCamelCase_ , repo_id='test-model-flax' , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) UpperCAmelCase__ : Dict = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) UpperCAmelCase__ : Any = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase__ : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase__ : Tuple = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCamelCase_ , 1E-3 , msg=F'''{key} not identical''' ) def __snake_case ( self ): UpperCAmelCase__ : Dict = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase__ : Dict = FlaxBertModel(UpperCamelCase_ ) model.push_to_hub('valid_org/test-model-flax-org' , use_auth_token=self._token ) UpperCAmelCase__ : Optional[int] = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' ) UpperCAmelCase__ : Tuple = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase__ : Union[str, Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase__ : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCamelCase_ , 1E-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-model-flax-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( UpperCamelCase_ , repo_id='valid_org/test-model-flax-org' , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) UpperCAmelCase__ : Any = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' ) UpperCAmelCase__ : Optional[int] = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase__ : int = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase__ : List[str] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCamelCase_ , 1E-3 , msg=F'''{key} not identical''' ) def lowerCamelCase ( _snake_case ,_snake_case ): UpperCAmelCase__ : List[str] = True UpperCAmelCase__ : Optional[int] = flatten_dict(modela.params ) UpperCAmelCase__ : int = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: UpperCAmelCase__ : str = False return models_are_equal @require_flax class a ( unittest.TestCase ): def __snake_case ( self ): UpperCAmelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) UpperCAmelCase__ : Optional[int] = FlaxBertModel(UpperCamelCase_ ) UpperCAmelCase__ : Dict = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) ) with self.assertRaises(UpperCamelCase_ ): UpperCAmelCase__ : Optional[Any] = FlaxBertModel.from_pretrained(UpperCamelCase_ ) UpperCAmelCase__ : Optional[Any] = FlaxBertModel.from_pretrained(UpperCamelCase_ , subfolder=UpperCamelCase_ ) self.assertTrue(check_models_equal(UpperCamelCase_ , UpperCamelCase_ ) ) def __snake_case ( self ): UpperCAmelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) UpperCAmelCase__ : Optional[Any] = FlaxBertModel(UpperCamelCase_ ) UpperCAmelCase__ : Union[str, Any] = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , max_shard_size='10KB' ) with self.assertRaises(UpperCamelCase_ ): UpperCAmelCase__ : Optional[Any] = FlaxBertModel.from_pretrained(UpperCamelCase_ ) UpperCAmelCase__ : List[str] = FlaxBertModel.from_pretrained(UpperCamelCase_ , subfolder=UpperCamelCase_ ) self.assertTrue(check_models_equal(UpperCamelCase_ , UpperCamelCase_ ) ) def __snake_case ( self ): UpperCAmelCase__ : int = 'bert' UpperCAmelCase__ : Dict = 'hf-internal-testing/tiny-random-bert-subfolder' with self.assertRaises(UpperCamelCase_ ): UpperCAmelCase__ : Any = FlaxBertModel.from_pretrained(UpperCamelCase_ ) UpperCAmelCase__ : Dict = FlaxBertModel.from_pretrained(UpperCamelCase_ , subfolder=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def __snake_case ( self ): UpperCAmelCase__ : str = 'bert' UpperCAmelCase__ : Optional[int] = 'hf-internal-testing/tiny-random-bert-sharded-subfolder' with self.assertRaises(UpperCamelCase_ ): UpperCAmelCase__ : Tuple = FlaxBertModel.from_pretrained(UpperCamelCase_ ) UpperCAmelCase__ : List[Any] = FlaxBertModel.from_pretrained(UpperCamelCase_ , subfolder=UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ )
110
def a__ ( lowercase__ = 2_0_0 ): '''simple docstring''' UpperCAmelCase_ =[1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] UpperCAmelCase_ =[0] * (pence + 1) UpperCAmelCase_ =1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowercase__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
54
0
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { """kakaobrain/align-base""": """https://huggingface.co/kakaobrain/align-base/resolve/main/config.json""", } class UpperCAmelCase__ ( __lowercase ): '''simple docstring''' UpperCAmelCase_ = '''align_text_model''' def __init__( self : Optional[Any] , UpperCamelCase : Optional[Any]=3_05_22 , UpperCamelCase : int=7_68 , UpperCamelCase : List[str]=12 , UpperCamelCase : Dict=12 , UpperCamelCase : Optional[Any]=30_72 , UpperCamelCase : Tuple="gelu" , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Union[str, Any]=0.1 , UpperCamelCase : Dict=5_12 , UpperCamelCase : Optional[int]=2 , UpperCamelCase : Any=0.02 , UpperCamelCase : Union[str, Any]=1E-12 , UpperCamelCase : Tuple=0 , UpperCamelCase : Tuple="absolute" , UpperCamelCase : int=True , **UpperCamelCase : Tuple , ): """simple docstring""" super().__init__(**_lowerCAmelCase ) _lowercase : Optional[int] = vocab_size _lowercase : Optional[int] = hidden_size _lowercase : Optional[int] = num_hidden_layers _lowercase : Any = num_attention_heads _lowercase : Union[str, Any] = hidden_act _lowercase : Any = intermediate_size _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : str = attention_probs_dropout_prob _lowercase : Tuple = max_position_embeddings _lowercase : Optional[Any] = type_vocab_size _lowercase : int = initializer_range _lowercase : List[str] = layer_norm_eps _lowercase : Tuple = position_embedding_type _lowercase : Any = use_cache _lowercase : Union[str, Any] = pad_token_id @classmethod def lowerCAmelCase_ ( cls : str , UpperCamelCase : Union[str, os.PathLike] , **UpperCamelCase : Any ): """simple docstring""" cls._set_token_in_kwargs(_lowerCAmelCase ) _lowercase , _lowercase : List[str] = cls.get_config_dict(_lowerCAmelCase , **_lowerCAmelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": _lowercase : Dict = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_lowerCAmelCase , **_lowerCAmelCase ) class UpperCAmelCase__ ( __lowercase ): '''simple docstring''' UpperCAmelCase_ = '''align_vision_model''' def __init__( self : int , UpperCamelCase : int = 3 , UpperCamelCase : int = 6_00 , UpperCamelCase : float = 2.0 , UpperCamelCase : float = 3.1 , UpperCamelCase : int = 8 , UpperCamelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , UpperCamelCase : List[int] = [32, 16, 24, 40, 80, 1_12, 1_92] , UpperCamelCase : List[int] = [16, 24, 40, 80, 1_12, 1_92, 3_20] , UpperCamelCase : List[int] = [] , UpperCamelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , UpperCamelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , UpperCamelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , UpperCamelCase : float = 0.25 , UpperCamelCase : str = "swish" , UpperCamelCase : int = 25_60 , UpperCamelCase : str = "mean" , UpperCamelCase : float = 0.02 , UpperCamelCase : float = 0.001 , UpperCamelCase : float = 0.99 , UpperCamelCase : float = 0.2 , **UpperCamelCase : str , ): """simple docstring""" super().__init__(**_lowerCAmelCase ) _lowercase : Any = num_channels _lowercase : Tuple = image_size _lowercase : Optional[Any] = width_coefficient _lowercase : Tuple = depth_coefficient _lowercase : int = depth_divisor _lowercase : Optional[Any] = kernel_sizes _lowercase : List[Any] = in_channels _lowercase : Optional[Any] = out_channels _lowercase : int = depthwise_padding _lowercase : Any = strides _lowercase : Union[str, Any] = num_block_repeats _lowercase : Union[str, Any] = expand_ratios _lowercase : List[str] = squeeze_expansion_ratio _lowercase : List[str] = hidden_act _lowercase : Union[str, Any] = hidden_dim _lowercase : Any = pooling_type _lowercase : str = initializer_range _lowercase : str = batch_norm_eps _lowercase : Optional[Any] = batch_norm_momentum _lowercase : Optional[int] = drop_connect_rate _lowercase : Optional[Any] = sum(_lowerCAmelCase ) * 4 @classmethod def lowerCAmelCase_ ( cls : Optional[Any] , UpperCamelCase : Union[str, os.PathLike] , **UpperCamelCase : Optional[int] ): """simple docstring""" cls._set_token_in_kwargs(_lowerCAmelCase ) _lowercase , _lowercase : List[Any] = cls.get_config_dict(_lowerCAmelCase , **_lowerCAmelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": _lowercase : Union[str, Any] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_lowerCAmelCase , **_lowerCAmelCase ) class UpperCAmelCase__ ( __lowercase ): '''simple docstring''' UpperCAmelCase_ = '''align''' UpperCAmelCase_ = True def __init__( self : str , UpperCamelCase : Optional[Any]=None , UpperCamelCase : List[str]=None , UpperCamelCase : List[Any]=6_40 , UpperCamelCase : Any=1.0 , UpperCamelCase : Tuple=0.02 , **UpperCamelCase : List[Any] , ): """simple docstring""" super().__init__(**_lowerCAmelCase ) if text_config is None: _lowercase : Optional[int] = {} logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''' ) if vision_config is None: _lowercase : Optional[Any] = {} logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''' ) _lowercase : Tuple = AlignTextConfig(**_lowerCAmelCase ) _lowercase : Tuple = AlignVisionConfig(**_lowerCAmelCase ) _lowercase : List[str] = projection_dim _lowercase : Tuple = temperature_init_value _lowercase : Dict = initializer_range @classmethod def lowerCAmelCase_ ( cls : Any , UpperCamelCase : AlignTextConfig , UpperCamelCase : AlignVisionConfig , **UpperCamelCase : Optional[Any] ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" _lowercase : List[Any] = copy.deepcopy(self.__dict__ ) _lowercase : List[str] = self.text_config.to_dict() _lowercase : List[str] = self.vision_config.to_dict() _lowercase : Tuple = self.__class__.model_type return output
322
import sys def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )] for chain_length in range(2 , lowercase__ ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ =a + chain_length - 1 UpperCAmelCase_ =sys.maxsize for c in range(lowercase__ , lowercase__ ): UpperCAmelCase_ =( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ =cost UpperCAmelCase_ =c return matrix, sol def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if i == j: print("A" + str(lowercase__ ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(lowercase__ , lowercase__ , optimal_solution[i][j] ) print_optiomal_solution(lowercase__ , optimal_solution[i][j] + 1 , lowercase__ ) print(")" , end=" " ) def a__ ( ): '''simple docstring''' UpperCAmelCase_ =[3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] UpperCAmelCase_ =len(lowercase__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ =matrix_chain_order(lowercase__ ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowercase__ , 1 , n - 1 ) if __name__ == "__main__": main()
54
0
"""simple docstring""" from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( '''The RoBERTa Model transformer with early exiting (DeeRoBERTa). ''' , __lowercase , ) class __magic_name__ ( __lowercase ): UpperCamelCase_ = RobertaConfig UpperCamelCase_ = '''roberta''' def __init__( self , A_ ) -> Any: """simple docstring""" super().__init__(_lowerCAmelCase ) _lowercase: Dict = RobertaEmbeddings(_lowerCAmelCase ) self.init_weights() @add_start_docstrings( '''RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. ''' , __lowercase , ) class __magic_name__ ( __lowercase ): UpperCamelCase_ = RobertaConfig UpperCamelCase_ = '''roberta''' def __init__( self , A_ ) -> Any: """simple docstring""" super().__init__(_lowerCAmelCase ) _lowercase: Optional[int] = config.num_labels _lowercase: str = config.num_hidden_layers _lowercase: Tuple = DeeRobertaModel(_lowerCAmelCase ) _lowercase: str = nn.Dropout(config.hidden_dropout_prob ) _lowercase: str = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(_lowerCAmelCase ) def lowercase_ ( self , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=-1 , A_=False , ) -> List[str]: """simple docstring""" _lowercase: List[Any] = self.num_layers try: _lowercase: Any = self.roberta( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , position_ids=_lowerCAmelCase , head_mask=_lowerCAmelCase , inputs_embeds=_lowerCAmelCase , ) _lowercase: Any = outputs[1] _lowercase: int = self.dropout(_lowerCAmelCase ) _lowercase: List[str] = self.classifier(_lowerCAmelCase ) _lowercase: int = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _lowercase: Tuple = e.message _lowercase: Optional[Any] = e.exit_layer _lowercase: List[str] = outputs[0] if not self.training: _lowercase: List[Any] = entropy(_lowerCAmelCase ) _lowercase: Optional[Any] = [] _lowercase: List[str] = [] if labels is not None: if self.num_labels == 1: # We are doing regression _lowercase: Dict = MSELoss() _lowercase: Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _lowercase: List[str] = CrossEntropyLoss() _lowercase: Optional[Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _lowercase: int = [] for highway_exit in outputs[-1]: _lowercase: Optional[Any] = highway_exit[0] if not self.training: highway_logits_all.append(_lowerCAmelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _lowercase: List[str] = MSELoss() _lowercase: Any = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _lowercase: Union[str, Any] = CrossEntropyLoss() _lowercase: Dict = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(_lowerCAmelCase ) if train_highway: _lowercase: List[Any] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _lowercase: Union[str, Any] = (loss,) + outputs if not self.training: _lowercase: List[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _lowercase: List[str] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
353
from math import loga def a__ ( lowercase__ ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(lowercase__ , lowercase__ ): raise TypeError("Input value must be a 'int' type" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
54
0
def lowercase__ ( A_: Dict = 200 ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase =[1, 2, 5, 10, 20, 50, 100, 200] __UpperCAmelCase =[0] * (pence + 1) __UpperCAmelCase =1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowercase__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
68
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __lowercase : Union[str, Any] =logging.get_logger(__name__) def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" ) if "model" in sd.keys(): UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" )["model"] # pop unnecessary weights UpperCAmelCase_ =[ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(lowercase__ ) UpperCAmelCase_ ={ "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase_ =sd.pop(lowercase__ ) UpperCAmelCase_ =list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase_ =sd[key] # We split QKV in separate Q,K,V UpperCAmelCase_ =key.replace(".qkv_proj." , ".q_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".k_proj." ) UpperCAmelCase_ =key.replace(".qkv_proj." , ".v_proj." ) UpperCAmelCase_ =value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =torch.split(lowercase__ , depth // 3 , dim=0 ) UpperCAmelCase_ =q UpperCAmelCase_ =k UpperCAmelCase_ =v del sd[key] return sd @torch.no_grad() def a__ ( lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' UpperCAmelCase_ =load_checkpoint(lowercase__ ) if config is not None: UpperCAmelCase_ =OPTConfig.from_pretrained(lowercase__ ) else: UpperCAmelCase_ =OPTConfig() UpperCAmelCase_ =OPTModel(lowercase__ ).half().eval() model.load_state_dict(lowercase__ ) # Check results Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": __lowercase : List[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") __lowercase : str =parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
54
0
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase_ : def __init__( self , __lowerCAmelCase , __lowerCAmelCase=1_3 , __lowerCAmelCase=3_2 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=[1_0, 2_0, 3_0, 4_0] , __lowerCAmelCase=[2, 2, 3, 2] , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=3_7 , __lowerCAmelCase="gelu" , __lowerCAmelCase=1_0 , __lowerCAmelCase=0.02 , __lowerCAmelCase=["stage2", "stage3", "stage4"] , __lowerCAmelCase=[2, 3, 4] , __lowerCAmelCase=None , ): """simple docstring""" __magic_name__ :List[str] = parent __magic_name__ :Any = batch_size __magic_name__ :List[Any] = image_size __magic_name__ :List[str] = num_channels __magic_name__ :Union[str, Any] = num_stages __magic_name__ :Any = hidden_sizes __magic_name__ :Union[str, Any] = depths __magic_name__ :Any = is_training __magic_name__ :Optional[int] = use_labels __magic_name__ :Dict = intermediate_size __magic_name__ :str = hidden_act __magic_name__ :List[str] = num_labels __magic_name__ :List[str] = initializer_range __magic_name__ :int = out_features __magic_name__ :Optional[int] = out_indices __magic_name__ :List[Any] = scope def A ( self ): """simple docstring""" __magic_name__ :Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ :str = None if self.use_labels: __magic_name__ :Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ :str = self.get_config() return config, pixel_values, labels def A ( self ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :List[Any] = ConvNextModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __magic_name__ :Optional[Any] = model(_lowerCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Dict = ConvNextForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __magic_name__ :Union[str, Any] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Tuple = ConvNextBackbone(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __magic_name__ :Optional[int] = model(_lowerCAmelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __magic_name__ :Tuple = None __magic_name__ :List[Any] = ConvNextBackbone(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __magic_name__ :Dict = model(_lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A ( self ): """simple docstring""" __magic_name__ :List[str] = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ :Optional[Any] = config_and_inputs __magic_name__ :int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase_ ( __lowercase , __lowercase , unittest.TestCase ): a__ = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) a__ = ( {'''feature-extraction''': ConvNextModel, '''image-classification''': ConvNextForImageClassification} if is_torch_available() else {} ) a__ = True a__ = False a__ = False a__ = False a__ = False def A ( self ): """simple docstring""" __magic_name__ :Optional[Any] = ConvNextModelTester(self ) __magic_name__ :Union[str, Any] = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=3_7 ) def A ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self ): """simple docstring""" return @unittest.skip(reason='''ConvNext does not use inputs_embeds''' ) def A ( self ): """simple docstring""" pass @unittest.skip(reason='''ConvNext does not support input and output embeddings''' ) def A ( self ): """simple docstring""" pass @unittest.skip(reason='''ConvNext does not use feedforward chunking''' ) def A ( self ): """simple docstring""" pass def A ( self ): """simple docstring""" __magic_name__ , __magic_name__ :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ :List[Any] = model_class(_lowerCAmelCase ) __magic_name__ :List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ :List[Any] = [*signature.parameters.keys()] __magic_name__ :str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCAmelCase ) def A ( self ): """simple docstring""" def check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): __magic_name__ :List[str] = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): __magic_name__ :List[Any] = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) __magic_name__ :Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __magic_name__ :Optional[int] = self.model_tester.num_stages self.assertEqual(len(_lowerCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __magic_name__ , __magic_name__ :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ :str = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ :Dict = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def A ( self ): """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ :Dict = ConvNextModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def __lowercase ( ): """simple docstring""" __magic_name__ :str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCamelCase_ ( unittest.TestCase ): @cached_property def A ( self ): """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None @slow def A ( self ): """simple docstring""" __magic_name__ :Optional[Any] = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(_lowerCAmelCase ) __magic_name__ :str = self.default_image_processor __magic_name__ :Optional[int] = prepare_img() __magic_name__ :List[Any] = image_processor(images=_lowerCAmelCase , return_tensors='''pt''' ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): __magic_name__ :Any = model(**_lowerCAmelCase ) # verify the logits __magic_name__ :List[str] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __magic_name__ :Union[str, Any] = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) ) @require_torch class lowerCamelCase_ ( unittest.TestCase , __lowercase ): a__ = (ConvNextBackbone,) if is_torch_available() else () a__ = ConvNextConfig a__ = False def A ( self ): """simple docstring""" __magic_name__ :List[Any] = ConvNextModelTester(self )
0
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): __lowercase : str ={ """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: __lowercase : Any ={ """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =(images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ =images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase_ =numpy_to_pil(lowercase__ ) return images def a__ ( lowercase__ ): '''simple docstring''' if images.ndim == 3: UpperCAmelCase_ =images[None, ...] UpperCAmelCase_ =(images * 2_5_5).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCAmelCase_ =[Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: UpperCAmelCase_ =[Image.fromarray(lowercase__ ) for image in images] return pil_images
54
0
import re from filelock import FileLock try: import nltk A_ = True except (ImportError, ModuleNotFoundError): A_ = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def __UpperCAmelCase ( UpperCAmelCase )-> Dict: """simple docstring""" re.sub('''<n>''', '''''', lowercase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(lowercase__ ) )
604
def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =int(lowercase__ ) if n_element < 1: UpperCAmelCase_ =ValueError("a should be a positive number" ) raise my_error UpperCAmelCase_ =[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =(0, 0, 0) UpperCAmelCase_ =1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": __lowercase : Tuple =input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") __lowercase : Union[str, Any] =hamming(int(n)) print("""-----------------------------------------------------""") print(f"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
54
0
"""simple docstring""" from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
624
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __lowercase : List[Any] =logging.get_logger(__name__) class A ( __lowercase ): def __init__( self: List[Any] , *_lowerCAmelCase: Optional[Any] , **_lowerCAmelCase: List[str] ) -> None: '''simple docstring''' warnings.warn( "The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use GLPNImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
54
0
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class _A ( unittest.TestCase ): def A__ ( self ): """simple docstring""" lowercase = tempfile.mkdtemp() lowercase = BlipImageProcessor() lowercase = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) lowercase = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) lowercase = InstructBlipProcessor(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def A__ ( self , **__lowerCAmelCase ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ).tokenizer def A__ ( self , **__lowerCAmelCase ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ).image_processor def A__ ( self , **__lowerCAmelCase ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ).qformer_tokenizer def A__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def A__ ( self ): """simple docstring""" lowercase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase = [Image.fromarray(np.moveaxis(_lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def A__ ( self ): """simple docstring""" lowercase = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) lowercase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase = self.get_image_processor(do_normalize=_lowerCAmelCase , padding_value=1.0 ) lowercase = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCAmelCase ) self.assertIsInstance(processor.qformer_tokenizer , _lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = self.get_qformer_tokenizer() lowercase = InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) lowercase = self.prepare_image_inputs() lowercase = image_processor(_lowerCAmelCase , return_tensors="""np""" ) lowercase = processor(images=_lowerCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def A__ ( self ): """simple docstring""" lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = self.get_qformer_tokenizer() lowercase = InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) lowercase = """lower newer""" lowercase = processor(text=_lowerCAmelCase ) lowercase = tokenizer(_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase ) lowercase = qformer_tokenizer(_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def A__ ( self ): """simple docstring""" lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = self.get_qformer_tokenizer() lowercase = InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) lowercase = """lower newer""" lowercase = self.prepare_image_inputs() lowercase = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def A__ ( self ): """simple docstring""" lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = self.get_qformer_tokenizer() lowercase = InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase = processor.batch_decode(_lowerCAmelCase ) lowercase = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = self.get_qformer_tokenizer() lowercase = InstructBlipProcessor( tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase ) lowercase = """lower newer""" lowercase = self.prepare_image_inputs() lowercase = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
359
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class A ( __lowercase , unittest.TestCase ): _snake_case =CanineTokenizer _snake_case =False def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' super().setUp() UpperCAmelCase_ =CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCAmelCase__ ( self: Optional[int] ) -> List[str]: '''simple docstring''' return CanineTokenizer.from_pretrained("google/canine-s" ) def lowerCAmelCase__ ( self: Union[str, Any] , **_lowerCAmelCase: List[Any] ) -> CanineTokenizer: '''simple docstring''' UpperCAmelCase_ =self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) UpperCAmelCase_ =1024 return tokenizer @require_torch def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off UpperCAmelCase_ =[5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =list(batch.input_ids.numpy()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , _lowerCAmelCase ) self.assertIn("attention_mask" , _lowerCAmelCase ) self.assertIn("token_type_ids" , _lowerCAmelCase ) @require_torch def lowerCAmelCase__ ( self: str ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.canine_tokenizer UpperCAmelCase_ =[ "What's the weater?", "It's about 25 degrees.", ] UpperCAmelCase_ =tokenizer( text_target=_lowerCAmelCase , max_length=32 , padding="max_length" , truncation=_lowerCAmelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) UpperCAmelCase_ =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ =tempfile.mkdtemp() UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ =tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: UpperCAmelCase_ =chr(0xe0_07 ) additional_special_tokens.append(_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase ) UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertIn(_lowerCAmelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_lowerCAmelCase ) def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ , UpperCAmelCase_ =self.get_clean_sequence(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_05 UpperCAmelCase_ =chr(_lowerCAmelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) UpperCAmelCase_ =tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , input_encoded + special_token_id ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def lowerCAmelCase__ ( self: Any ) -> Any: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =chr(0xe0_05 ) UpperCAmelCase_ =chr(0xe0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=_lowerCAmelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) self.assertEqual(token_a[0] , _lowerCAmelCase ) self.assertEqual(token_a[0] , _lowerCAmelCase ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_lowerCAmelCase ) tokenizer.from_pretrained(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ =json.load(_lowerCAmelCase ) # a special token for Canine can be defined as follows: UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) UpperCAmelCase_ =[new_token_a] UpperCAmelCase_ =[new_token_a] with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase_ =tokenizer_class.from_pretrained(_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) UpperCAmelCase_ =0xe0_07 UpperCAmelCase_ =chr(_lowerCAmelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase_ =[AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase )] UpperCAmelCase_ =tokenizer_class.from_pretrained( _lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , extra_ids=0 ) self.assertIn(_lowerCAmelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ ="hello world" if self.space_between_special_tokens: UpperCAmelCase_ ="[CLS] hello world [SEP]" else: UpperCAmelCase_ =input UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_lowerCAmelCase , [output, output.lower()] ) def lowerCAmelCase__ ( self: List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ =[ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] UpperCAmelCase_ ="a" UpperCAmelCase_ =ord(_lowerCAmelCase ) for attr in attributes_list: setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [] ) UpperCAmelCase_ =0xe0_06 UpperCAmelCase_ =chr(_lowerCAmelCase ) setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Dict ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict: '''simple docstring''' pass def lowerCAmelCase__ ( self: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: List[Any] ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self: Tuple ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase__ ( self: str ) -> str: '''simple docstring''' pass
54
0
"""simple docstring""" import argparse import os import re import packaging.version A_ : Tuple = """examples/""" A_ : Optional[Any] = { """examples""": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"""\1version=\"VERSION\","""), """doc""": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), """release = \"VERSION\"\n"""), } A_ : Union[str, Any] = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } A_ : Any = """README.md""" def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' with open(lowercase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: SCREAMING_SNAKE_CASE__ = f.read() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = REPLACE_PATTERNS[pattern] SCREAMING_SNAKE_CASE__ = replace.replace("""VERSION""" , lowercase__ ) SCREAMING_SNAKE_CASE__ = re_pattern.sub(lowercase__ , lowercase__ ) with open(lowercase__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(lowercase__ ) def A ( snake_case__ ): '''simple docstring''' for folder, directories, fnames in os.walk(lowercase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(lowercase__ , lowercase__ ) , lowercase__ , pattern="""examples""" ) def A ( snake_case__ , snake_case__=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowercase__ , lowercase__ , lowercase__ ) if not patch: update_version_in_examples(lowercase__ ) def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = """🤗 Transformers currently provides the following architectures""" SCREAMING_SNAKE_CASE__ = """1. Want to contribute a new model?""" with open(lowercase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: SCREAMING_SNAKE_CASE__ = f.readlines() # Find the start of the list. SCREAMING_SNAKE_CASE__ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE__ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): SCREAMING_SNAKE_CASE__ = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(lowercase__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lowercase__ ) def A ( ): '''simple docstring''' with open(REPLACE_FILES["""init"""] , """r""" ) as f: SCREAMING_SNAKE_CASE__ = f.read() SCREAMING_SNAKE_CASE__ = REPLACE_PATTERNS["""init"""][0].search(lowercase__ ).groups()[0] return packaging.version.parse(lowercase__ ) def A ( snake_case__=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: SCREAMING_SNAKE_CASE__ = default_version.base_version elif patch: SCREAMING_SNAKE_CASE__ = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: SCREAMING_SNAKE_CASE__ = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. SCREAMING_SNAKE_CASE__ = input(f"""Which version are you releasing? [{default_version}]""" ) if len(lowercase__ ) == 0: SCREAMING_SNAKE_CASE__ = default_version print(f"""Updating version to {version}.""" ) global_version_update(lowercase__ , patch=lowercase__ ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = get_version() SCREAMING_SNAKE_CASE__ = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" SCREAMING_SNAKE_CASE__ = current_version.base_version # Check with the user we got that right. SCREAMING_SNAKE_CASE__ = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(lowercase__ ) == 0: SCREAMING_SNAKE_CASE__ = dev_version print(f"""Updating version to {version}.""" ) global_version_update(lowercase__ ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") A_ : List[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
196
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __lowercase : Optional[int] ="""\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ __lowercase : Dict ="""\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ __lowercase : List[str] ="""\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def lowerCAmelCase__ ( self: int ) -> MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: List[List[List[str]]] , _lowerCAmelCase: List[List[str]] , _lowerCAmelCase: int = 1 , _lowerCAmelCase: int = 4 , ) -> Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_lowerCAmelCase , hypotheses=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase ) }
54
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class __UpperCamelCase ( __lowercase ): _UpperCAmelCase = 42 _UpperCAmelCase = 42 _UpperCAmelCase = None class __UpperCamelCase ( __lowercase , __lowercase ): _UpperCAmelCase = 2 @register_to_config def __init__( self ,_A = 0.0_2 ,_A = 100 ,_A = 1.0_0_7 ,_A = 80 ,_A = 0.0_5 ,_A = 50 ,): '''simple docstring''' _lowerCAmelCase : str = sigma_max # setable values _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Dict = None _lowerCAmelCase : Union[str, Any] = None # sigma(t_i) def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' return sample def __lowerCamelCase ( self ,_A ,_A = None ): '''simple docstring''' _lowerCAmelCase : str = num_inference_steps _lowerCAmelCase : List[Any] = np.arange(0 ,self.num_inference_steps )[::-1].copy() _lowerCAmelCase : List[Any] = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase ) _lowerCAmelCase : List[str] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] _lowerCAmelCase : Any = torch.tensor(_lowerCAmelCase ,dtype=torch.floataa ,device=_lowerCAmelCase ) def __lowerCamelCase ( self ,_A ,_A ,_A = None ): '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: _lowerCAmelCase : List[str] = min(self.config.s_churn / self.num_inference_steps ,2**0.5 - 1 ) else: _lowerCAmelCase : Any = 0 # sample eps ~ N(0, S_noise^2 * I) _lowerCAmelCase : Optional[Any] = self.config.s_noise * randn_tensor(sample.shape ,generator=_lowerCAmelCase ).to(sample.device ) _lowerCAmelCase : List[Any] = sigma + gamma * sigma _lowerCAmelCase : str = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A = True ,): '''simple docstring''' _lowerCAmelCase : int = sample_hat + sigma_hat * model_output _lowerCAmelCase : str = (sample_hat - pred_original_sample) / sigma_hat _lowerCAmelCase : Optional[Any] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_lowerCAmelCase ,derivative=_lowerCAmelCase ,pred_original_sample=_lowerCAmelCase ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A = True ,): '''simple docstring''' _lowerCAmelCase : Dict = sample_prev + sigma_prev * model_output _lowerCAmelCase : int = (sample_prev - pred_original_sample) / sigma_prev _lowerCAmelCase : Tuple = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_lowerCAmelCase ,derivative=_lowerCAmelCase ,pred_original_sample=_lowerCAmelCase ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' raise NotImplementedError()
259
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( __lowercase , unittest.TestCase ): _snake_case =KandinskyVaaImgaImgPipeline _snake_case =['''image_embeds''', '''negative_image_embeds''', '''image'''] _snake_case =[ '''image_embeds''', '''negative_image_embeds''', '''image''', ] _snake_case =[ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _snake_case =False @property def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self: List[str] ) -> Dict: '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' return 100 @property def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ ={ "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase_ =UNetaDConditionModel(**_lowerCAmelCase ) return model @property def lowerCAmelCase__ ( self: Any ) -> Tuple: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ ( self: Dict ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.dummy_unet UpperCAmelCase_ =self.dummy_movq UpperCAmelCase_ ={ "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.0_00_85, "beta_end": 0.0_12, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } UpperCAmelCase_ =DDIMScheduler(**_lowerCAmelCase ) UpperCAmelCase_ ={ "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[Any]=0 ) -> Dict: '''simple docstring''' UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCAmelCase ) # create init_image UpperCAmelCase_ =floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ =Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("RGB" ).resize((256, 256) ) if str(_lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase ) else: UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) UpperCAmelCase_ ={ "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ ="cpu" UpperCAmelCase_ =self.get_dummy_components() UpperCAmelCase_ =self.pipeline_class(**_lowerCAmelCase ) UpperCAmelCase_ =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) UpperCAmelCase_ =output.images UpperCAmelCase_ =pipe( **self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0] UpperCAmelCase_ =image[0, -3:, -3:, -1] UpperCAmelCase_ =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ =np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: List[Any] ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) UpperCAmelCase_ =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase_ ="A red cartoon frog, 4k" UpperCAmelCase_ =KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) UpperCAmelCase_ =KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) UpperCAmelCase_ =pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ , UpperCAmelCase_ =pipe_prior( _lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase_ =pipeline( image=_lowerCAmelCase , image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) UpperCAmelCase_ =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
54
0
class __snake_case : def __init__( self : List[Any] ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : str = {} def SCREAMING_SNAKE_CASE ( self : str ) -> None: '''simple docstring''' print(self.vertex ) for i in self.vertex: print(_lowerCAmelCase , """ -> """ , """ -> """.join([str(_lowerCAmelCase ) for j in self.vertex[i]] ) ) def SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> None: '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(_lowerCAmelCase ) else: # else make a new vertex _lowerCAmelCase : Optional[int] = [to_vertex] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> None: '''simple docstring''' _lowerCAmelCase : Any = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : list ) -> None: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = True print(_lowerCAmelCase , end=""" """ ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": _lowerCamelCase : Dict = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("DFS:") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
429
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class A ( unittest.TestCase ): def __init__( self: Optional[int] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: Optional[int]=7 , _lowerCAmelCase: Any=True , _lowerCAmelCase: List[Any]=True , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: str=True , _lowerCAmelCase: Optional[int]=99 , _lowerCAmelCase: Any=32 , _lowerCAmelCase: Any=5 , _lowerCAmelCase: Tuple=4 , _lowerCAmelCase: Union[str, Any]=37 , _lowerCAmelCase: List[str]="gelu" , _lowerCAmelCase: Dict=0.1 , _lowerCAmelCase: Tuple=0.1 , _lowerCAmelCase: int=512 , _lowerCAmelCase: Tuple=16 , _lowerCAmelCase: Tuple=2 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=4 , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =parent UpperCAmelCase_ =batch_size UpperCAmelCase_ =seq_length UpperCAmelCase_ =is_training UpperCAmelCase_ =use_attention_mask UpperCAmelCase_ =use_token_type_ids UpperCAmelCase_ =use_labels UpperCAmelCase_ =vocab_size UpperCAmelCase_ =hidden_size UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =hidden_dropout_prob UpperCAmelCase_ =attention_probs_dropout_prob UpperCAmelCase_ =max_position_embeddings UpperCAmelCase_ =type_vocab_size UpperCAmelCase_ =type_sequence_label_size UpperCAmelCase_ =initializer_range UpperCAmelCase_ =num_choices def lowerCAmelCase__ ( self: Dict ) -> Any: '''simple docstring''' UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ =None if self.use_attention_mask: UpperCAmelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ =None if self.use_token_type_ids: UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ =RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self: str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ ={"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCAmelCase__ ( self: Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs UpperCAmelCase_ =True UpperCAmelCase_ =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( __lowercase , unittest.TestCase ): _snake_case =True _snake_case =( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self: Dict ) -> Dict: '''simple docstring''' UpperCAmelCase_ =FlaxRobertaModelTester(self ) @slow def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase_ =model_class_name.from_pretrained("roberta-base" , from_pt=_lowerCAmelCase ) UpperCAmelCase_ =model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase )
54
0