code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
class lowercase_ :
def __init__( self) -> str:
a__ =0
a__ =0
a__ ={}
def __UpperCamelCase ( self , lowercase_) -> Dict:
if vertex not in self.adjacency:
a__ ={}
self.num_vertices += 1
def __UpperCamelCase ( self , lowercase_ , lowercase_ , lowercase_) -> Dict:
self.add_vertex(lowercase_)
self.add_vertex(lowercase_)
if head == tail:
return
a__ =weight
a__ =weight
def __UpperCamelCase ( self) -> Optional[int]:
a__ =self.get_edges()
for edge in edges:
a__ , a__ , a__ =edge
edges.remove((tail, head, weight))
for i in range(len(lowercase_)):
a__ =list(edges[i])
edges.sort(key=lambda lowercase_: e[2])
for i in range(len(lowercase_) - 1):
if edges[i][2] >= edges[i + 1][2]:
a__ =edges[i][2] + 1
for edge in edges:
a__ , a__ , a__ =edge
a__ =weight
a__ =weight
def __str__( self) -> Tuple:
a__ =''
for tail in self.adjacency:
for head in self.adjacency[tail]:
a__ =self.adjacency[head][tail]
string += F"""{head} -> {tail} == {weight}\n"""
return string.rstrip('\n')
def __UpperCamelCase ( self) -> Union[str, Any]:
a__ =[]
for tail in self.adjacency:
for head in self.adjacency[tail]:
output.append((tail, head, self.adjacency[head][tail]))
return output
def __UpperCamelCase ( self) -> int:
return self.adjacency.keys()
@staticmethod
def __UpperCamelCase ( lowercase_=None , lowercase_=None) -> Dict:
a__ =Graph()
if vertices is None:
a__ =[]
if edges is None:
a__ =[]
for vertex in vertices:
g.add_vertex(lowercase_)
for edge in edges:
g.add_edge(*lowercase_)
return g
class lowercase_ :
def __init__( self) -> Tuple:
a__ ={}
a__ ={}
def __len__( self) -> Dict:
return len(self.parent)
def __UpperCamelCase ( self , lowercase_) -> Dict:
if item in self.parent:
return self.find(lowercase_)
a__ =item
a__ =0
return item
def __UpperCamelCase ( self , lowercase_) -> Optional[Any]:
if item not in self.parent:
return self.make_set(lowercase_)
if item != self.parent[item]:
a__ =self.find(self.parent[item])
return self.parent[item]
def __UpperCamelCase ( self , lowercase_ , lowercase_) -> Dict:
a__ =self.find(lowercase_)
a__ =self.find(lowercase_)
if roota == roota:
return roota
if self.rank[roota] > self.rank[roota]:
a__ =roota
return roota
if self.rank[roota] < self.rank[roota]:
a__ =roota
return roota
if self.rank[roota] == self.rank[roota]:
self.rank[roota] += 1
a__ =roota
return roota
return None
@staticmethod
def __UpperCamelCase ( lowercase_) -> Optional[Any]:
a__ =graph.num_vertices
a__ =Graph.UnionFind()
a__ =[]
while num_components > 1:
a__ ={}
for vertex in graph.get_vertices():
a__ =-1
a__ =graph.get_edges()
for edge in edges:
a__ , a__ , a__ =edge
edges.remove((tail, head, weight))
for edge in edges:
a__ , a__ , a__ =edge
a__ =union_find.find(lowercase_)
a__ =union_find.find(lowercase_)
if seta != seta:
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
a__ =[head, tail, weight]
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
a__ =[head, tail, weight]
for vertex in cheap_edge:
if cheap_edge[vertex] != -1:
a__ , a__ , a__ =cheap_edge[vertex]
if union_find.find(lowercase_) != union_find.find(lowercase_):
union_find.union(lowercase_ , lowercase_)
mst_edges.append(cheap_edge[vertex])
a__ =num_components - 1
a__ =Graph.build(edges=lowercase_)
return mst
| 20 |
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
__lowercase : List[Any] =WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""])
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =test_results.split(" " )
UpperCAmelCase_ =0
UpperCAmelCase_ =0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
UpperCAmelCase_ =expressions[-2] if "=" in expressions[-1] else expressions[-1]
for i, expression in enumerate(lowercase__ ):
if "failed" in expression:
failed += int(expressions[i - 1] )
if "passed" in expression:
success += int(expressions[i - 1] )
return failed, success, time_spent
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ ={}
UpperCAmelCase_ =None
UpperCAmelCase_ =False
for line in failures_short_lines.split("\n" ):
if re.search(R"_ \[doctest\]" , lowercase__ ):
UpperCAmelCase_ =True
UpperCAmelCase_ =line.split(" " )[2]
elif in_error and not line.split(" " )[0].isdigit():
UpperCAmelCase_ =line
UpperCAmelCase_ =False
return failures
class A :
def __init__( self: Optional[Any] , _lowerCAmelCase: str , _lowerCAmelCase: Dict ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ =title
UpperCAmelCase_ =doc_test_results["time_spent"].split("," )[0]
UpperCAmelCase_ =doc_test_results["success"]
UpperCAmelCase_ =doc_test_results["failures"]
UpperCAmelCase_ =self.n_success + self.n_failures
# Failures and success of the modeling tests
UpperCAmelCase_ =doc_test_results
@property
def lowerCAmelCase__ ( self: Optional[Any] ) -> str:
'''simple docstring'''
UpperCAmelCase_ =[self._time_spent]
UpperCAmelCase_ =0
for time in time_spent:
UpperCAmelCase_ =time.split(":" )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(_lowerCAmelCase ) == 1:
UpperCAmelCase_ =[0, 0, time_parts[0]]
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 3600 + minutes * 60 + seconds
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60
return F'{int(_lowerCAmelCase )}h{int(_lowerCAmelCase )}m{int(_lowerCAmelCase )}s'
@property
def lowerCAmelCase__ ( self: int ) -> Dict:
'''simple docstring'''
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict:
'''simple docstring'''
return {
"type": "section",
"text": {
"type": "plain_text",
"text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.',
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def lowerCAmelCase__ ( self: Optional[Any] ) -> Dict:
'''simple docstring'''
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in'
F' {self.time}.'
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def lowerCAmelCase__ ( self: Tuple ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ =40
UpperCAmelCase_ ={k: v["failed"] for k, v in doc_test_results.items() if isinstance(_lowerCAmelCase , _lowerCAmelCase )}
UpperCAmelCase_ =""
for category, failures in category_failures.items():
if len(_lowerCAmelCase ) == 0:
continue
if report != "":
report += "\n\n"
report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(_lowerCAmelCase )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": F'The following examples had failures:\n\n\n{report}\n',
},
}
@property
def lowerCAmelCase__ ( self: Optional[Any] ) -> str:
'''simple docstring'''
UpperCAmelCase_ =[self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(_lowerCAmelCase )
@staticmethod
def lowerCAmelCase__ ( ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ =[
{
"type": "section",
"text": {
"type": "plain_text",
"text": "There was an issue running the tests.",
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
]
print("Sending the following payload" )
print(json.dumps({"blocks": json.loads(_lowerCAmelCase )} ) )
client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=_lowerCAmelCase , )
def lowerCAmelCase__ ( self: Dict ) -> List[str]:
'''simple docstring'''
print("Sending the following payload" )
print(json.dumps({"blocks": json.loads(self.payload )} ) )
UpperCAmelCase_ =F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else "All tests passed."
UpperCAmelCase_ =client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=_lowerCAmelCase , )
def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: int ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ =""
for key, value in failures.items():
UpperCAmelCase_ =value[:200] + " [Truncated]" if len(_lowerCAmelCase ) > 250 else value
failures_text += F'*{key}*\n_{value}_\n\n'
UpperCAmelCase_ =job_name
UpperCAmelCase_ ={"type": "section", "text": {"type": "mrkdwn", "text": text}}
if job_link is not None:
UpperCAmelCase_ ={
"type": "button",
"text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True},
"url": job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def lowerCAmelCase__ ( self: Any ) -> List[str]:
'''simple docstring'''
if self.thread_ts is None:
raise ValueError("Can only post reply if a post has been made." )
UpperCAmelCase_ =self.doc_test_results.pop("job_link" )
self.doc_test_results.pop("failures" )
self.doc_test_results.pop("success" )
self.doc_test_results.pop("time_spent" )
UpperCAmelCase_ =sorted(self.doc_test_results.items() , key=lambda _lowerCAmelCase : t[0] )
for job, job_result in sorted_dict:
if len(job_result["failures"] ):
UpperCAmelCase_ =F'*Num failures* :{len(job_result["failed"] )} \n'
UpperCAmelCase_ =job_result["failures"]
UpperCAmelCase_ =self.get_reply_blocks(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , text=_lowerCAmelCase )
print("Sending the following reply" )
print(json.dumps({"blocks": blocks} ) )
client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=F'Results for {job}' , blocks=_lowerCAmelCase , thread_ts=self.thread_ts["ts"] , )
time.sleep(1 )
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =os.environ["GITHUB_RUN_ID"]
UpperCAmelCase_ =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100'
UpperCAmelCase_ =requests.get(lowercase__ ).json()
UpperCAmelCase_ ={}
try:
jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} )
UpperCAmelCase_ =math.ceil((result["total_count"] - 1_0_0) / 1_0_0 )
for i in range(lowercase__ ):
UpperCAmelCase_ =requests.get(url + F'&page={i + 2}' ).json()
jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} )
return jobs
except Exception as e:
print("Unknown error, could not fetch links." , lowercase__ )
return {}
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ ={}
if os.path.exists(lowercase__ ):
UpperCAmelCase_ =os.listdir(lowercase__ )
for file in files:
try:
with open(os.path.join(lowercase__ , lowercase__ ) , encoding="utf-8" ) as f:
UpperCAmelCase_ =f.read()
except UnicodeDecodeError as e:
raise ValueError(F'Could not open {os.path.join(lowercase__ , lowercase__ )}.' ) from e
return _artifact
def a__ ( ):
'''simple docstring'''
class A :
def __init__( self: Tuple , _lowerCAmelCase: str ) -> Any:
'''simple docstring'''
UpperCAmelCase_ =name
UpperCAmelCase_ =[]
def __str__( self: Optional[int] ) -> Tuple:
'''simple docstring'''
return self.name
def lowerCAmelCase__ ( self: int , _lowerCAmelCase: str ) -> List[Any]:
'''simple docstring'''
self.paths.append({"name": self.name, "path": path} )
UpperCAmelCase_ ={}
UpperCAmelCase_ =filter(os.path.isdir , os.listdir() )
for directory in directories:
UpperCAmelCase_ =directory
if artifact_name not in _available_artifacts:
UpperCAmelCase_ =Artifact(lowercase__ )
_available_artifacts[artifact_name].add_path(lowercase__ )
return _available_artifacts
if __name__ == "__main__":
__lowercase : str =get_job_links()
__lowercase : Dict =retrieve_available_artifacts()
__lowercase : Optional[int] =collections.OrderedDict(
[
("""*.py""", """API Examples"""),
("""*.md""", """MD Examples"""),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
__lowercase : Any ={
v: {
"""failed""": [],
"""failures""": {},
}
for v in docs.values()
}
# Link to the GitHub Action job
__lowercase : Tuple =github_actions_job_links.get("""run_doctests""")
__lowercase : int =available_artifacts["""doc_tests_gpu_test_reports"""].paths[0]
__lowercase : str =retrieve_artifact(artifact_path["""name"""])
if "stats" in artifact:
__lowercase , __lowercase , __lowercase : Tuple =handle_test_results(artifact["""stats"""])
__lowercase : int =failed
__lowercase : int =success
__lowercase : str =time_spent[1:-1] + """, """
__lowercase : str =extract_first_line_failure(artifact["""failures_short"""])
for line in artifact["summary_short"].split("""\n"""):
if re.search("""FAILED""", line):
__lowercase : int =line.replace("""FAILED """, """""")
__lowercase : List[Any] =line.split()[0].replace("""\n""", """""")
if "::" in line:
__lowercase , __lowercase : Any =line.split("""::""")
else:
__lowercase , __lowercase : Dict =line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
__lowercase : Optional[int] =docs[file_regex]
doc_test_results[category]["failed"].append(test)
__lowercase : Tuple =all_failures[test] if test in all_failures else """N/A"""
__lowercase : Optional[int] =failure
break
__lowercase : Optional[int] =Message("""🤗 Results of the doc tests.""", doc_test_results)
message.post()
message.post_reply()
| 54 | 0 |
import os
import zipfile
import pytest
from datasets.utils.extract import (
BzipaExtractor,
Extractor,
GzipExtractor,
LzaExtractor,
SevenZipExtractor,
TarExtractor,
XzExtractor,
ZipExtractor,
ZstdExtractor,
)
from .utils import require_lza, require_pyazr, require_zstandard
@pytest.mark.parametrize(
"""compression_format, is_archive""" , [
("""7z""", True),
("""bz2""", False),
("""gzip""", False),
("""lz4""", False),
("""tar""", True),
("""xz""", False),
("""zip""", True),
("""zstd""", False),
] , )
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ):
__magic_name__ : Dict ={
"""7z""": (seven_zip_file, SevenZipExtractor),
"""bz2""": (bza_file, BzipaExtractor),
"""gzip""": (gz_file, GzipExtractor),
"""lz4""": (lza_file, LzaExtractor),
"""tar""": (tar_file, TarExtractor),
"""xz""": (xz_file, XzExtractor),
"""zip""": (zip_file, ZipExtractor),
"""zstd""": (zstd_file, ZstdExtractor),
}
__magic_name__ , __magic_name__ : List[Any] =input_paths_and_base_extractors[compression_format]
if input_path is None:
__magic_name__ : Optional[Any] =F"for '{compression_format}' compression_format, "
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(lowerCamelCase )
assert base_extractor.is_extractable(lowerCamelCase )
__magic_name__ : List[str] =tmp_path / ("""extracted""" if is_archive else """extracted.txt""")
base_extractor.extract(lowerCamelCase , lowerCamelCase )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
__magic_name__ : Any =file_path.read_text(encoding="""utf-8""" )
else:
__magic_name__ : Any =output_path.read_text(encoding="""utf-8""" )
__magic_name__ : Tuple =text_file.read_text(encoding="""utf-8""" )
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize(
"""compression_format, is_archive""" , [
("""7z""", True),
("""bz2""", False),
("""gzip""", False),
("""lz4""", False),
("""tar""", True),
("""xz""", False),
("""zip""", True),
("""zstd""", False),
] , )
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ):
__magic_name__ : List[str] ={
"""7z""": seven_zip_file,
"""bz2""": bza_file,
"""gzip""": gz_file,
"""lz4""": lza_file,
"""tar""": tar_file,
"""xz""": xz_file,
"""zip""": zip_file,
"""zstd""": zstd_file,
}
__magic_name__ : int =input_paths[compression_format]
if input_path is None:
__magic_name__ : List[Any] =F"for '{compression_format}' compression_format, "
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(lowerCamelCase )
__magic_name__ : Optional[int] =Extractor.infer_extractor_format(lowerCamelCase )
assert extractor_format is not None
__magic_name__ : List[str] =tmp_path / ("""extracted""" if is_archive else """extracted.txt""")
Extractor.extract(lowerCamelCase , lowerCamelCase , lowerCamelCase )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
__magic_name__ : List[str] =file_path.read_text(encoding="""utf-8""" )
else:
__magic_name__ : Optional[int] =output_path.read_text(encoding="""utf-8""" )
__magic_name__ : str =text_file.read_text(encoding="""utf-8""" )
assert extracted_file_content == expected_file_content
@pytest.fixture
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ):
import tarfile
__magic_name__ : Union[str, Any] =tmp_path / """data_dot_dot"""
directory.mkdir()
__magic_name__ : List[str] =directory / """tar_file_with_dot_dot.tar"""
with tarfile.TarFile(lowerCamelCase , """w""" ) as f:
f.add(lowerCamelCase , arcname=os.path.join("""..""" , text_file.name ) )
return path
@pytest.fixture
def lowerCAmelCase_ ( lowerCamelCase ):
import tarfile
__magic_name__ : Any =tmp_path / """data_sym_link"""
directory.mkdir()
__magic_name__ : Dict =directory / """tar_file_with_sym_link.tar"""
os.symlink("""..""" , directory / """subdir""" , target_is_directory=lowerCamelCase )
with tarfile.TarFile(lowerCamelCase , """w""" ) as f:
f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8
return path
@pytest.mark.parametrize(
"""insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , )
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ):
__magic_name__ : int ={
"""tar_file_with_dot_dot""": tar_file_with_dot_dot,
"""tar_file_with_sym_link""": tar_file_with_sym_link,
}
__magic_name__ : Optional[int] =insecure_tar_files[insecure_tar_file]
__magic_name__ : str =tmp_path / """extracted"""
TarExtractor.extract(lowerCamelCase , lowerCamelCase )
assert caplog.text
for record in caplog.records:
assert record.levelname == "ERROR"
assert error_log in record.msg
def lowerCAmelCase_ ( lowerCamelCase ):
# We should have less false positives than zipfile.is_zipfile
# We do that by checking only the magic number
__magic_name__ : List[str] =tmpdir / """not_a_zip_file"""
# From: https://github.com/python/cpython/pull/5053
__magic_name__ : Any =(
B"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00"""
B"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I"""
B"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07"""
B"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82"""
)
with not_a_zip_file.open("""wb""" ) as f:
f.write(lowerCamelCase )
assert zipfile.is_zipfile(str(lowerCamelCase ) ) # is a false positive for `zipfile`
assert not ZipExtractor.is_extractable(lowerCamelCase ) # but we're right
| 21 |
def a__ ( lowercase__ = 2_0_0 ):
'''simple docstring'''
UpperCAmelCase_ =[1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0]
UpperCAmelCase_ =[0] * (pence + 1)
UpperCAmelCase_ =1 # base case: 1 way to make 0 pence
for coin in coins:
for i in range(lowercase__ , pence + 1 , 1 ):
number_of_ways[i] += number_of_ways[i - coin]
return number_of_ways[pence]
if __name__ == "__main__":
assert solution(200) == 7_3682
| 54 | 0 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification
def snake_case_ (UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
_a = SwinvaConfig()
_a = swinva_name.split('''_''' )
_a = name_split[1]
if "to" in name_split[3]:
_a = int(name_split[3][-3:] )
else:
_a = int(name_split[3] )
if "to" in name_split[2]:
_a = int(name_split[2][-2:] )
else:
_a = int(name_split[2][6:] )
if model_size == "tiny":
_a = 96
_a = (2, 2, 6, 2)
_a = (3, 6, 12, 24)
elif model_size == "small":
_a = 96
_a = (2, 2, 18, 2)
_a = (3, 6, 12, 24)
elif model_size == "base":
_a = 128
_a = (2, 2, 18, 2)
_a = (4, 8, 16, 32)
else:
_a = 192
_a = (2, 2, 18, 2)
_a = (6, 12, 24, 48)
if "to" in swinva_name:
_a = (12, 12, 12, 6)
if ("22k" in swinva_name) and ("to" not in swinva_name):
_a = 2_1841
_a = '''huggingface/label-files'''
_a = '''imagenet-22k-id2label.json'''
_a = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) )
_a = {int(UpperCamelCase ): v for k, v in idalabel.items()}
_a = idalabel
_a = {v: k for k, v in idalabel.items()}
else:
_a = 1000
_a = '''huggingface/label-files'''
_a = '''imagenet-1k-id2label.json'''
_a = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) )
_a = {int(UpperCamelCase ): v for k, v in idalabel.items()}
_a = idalabel
_a = {v: k for k, v in idalabel.items()}
_a = img_size
_a = num_classes
_a = embed_dim
_a = depths
_a = num_heads
_a = window_size
return config
def snake_case_ (UpperCamelCase : str ):
'''simple docstring'''
if "patch_embed.proj" in name:
_a = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "patch_embed.norm" in name:
_a = name.replace('''patch_embed.norm''' , '''embeddings.norm''' )
if "layers" in name:
_a = '''encoder.''' + name
if "attn.proj" in name:
_a = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
_a = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
_a = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
_a = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
_a = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
_a = name.replace('''mlp.fc2''' , '''output.dense''' )
if "q_bias" in name:
_a = name.replace('''q_bias''' , '''query.bias''' )
if "k_bias" in name:
_a = name.replace('''k_bias''' , '''key.bias''' )
if "v_bias" in name:
_a = name.replace('''v_bias''' , '''value.bias''' )
if "cpb_mlp" in name:
_a = name.replace('''cpb_mlp''' , '''continuous_position_bias_mlp''' )
if name == "norm.weight":
_a = '''layernorm.weight'''
if name == "norm.bias":
_a = '''layernorm.bias'''
if "head" in name:
_a = name.replace('''head''' , '''classifier''' )
else:
_a = '''swinv2.''' + name
return name
def snake_case_ (UpperCamelCase : int , UpperCamelCase : Optional[Any] ):
'''simple docstring'''
for key in orig_state_dict.copy().keys():
_a = orig_state_dict.pop(UpperCamelCase )
if "mask" in key:
continue
elif "qkv" in key:
_a = key.split('''.''' )
_a = int(key_split[1] )
_a = int(key_split[3] )
_a = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
_a = val[:dim, :]
_a = val[dim : dim * 2, :]
_a = val[-dim:, :]
else:
_a = val[:dim]
_a = val[
dim : dim * 2
]
_a = val[-dim:]
else:
_a = val
return orig_state_dict
def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : List[Any] ):
'''simple docstring'''
_a = timm.create_model(UpperCamelCase , pretrained=UpperCamelCase )
timm_model.eval()
_a = get_swinva_config(UpperCamelCase )
_a = SwinvaForImageClassification(UpperCamelCase )
model.eval()
_a = convert_state_dict(timm_model.state_dict() , UpperCamelCase )
model.load_state_dict(UpperCamelCase )
_a = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
_a = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swinva_name.replace('''_''' , '''-''' ) ) )
_a = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw )
_a = image_processor(images=UpperCamelCase , return_tensors='''pt''' )
_a = timm_model(inputs['''pixel_values'''] )
_a = model(**UpperCamelCase ).logits
assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 )
print(f'Saving model {swinva_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(UpperCamelCase )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(UpperCamelCase )
model.push_to_hub(
repo_path_or_name=Path(UpperCamelCase , UpperCamelCase ) , organization='''nandwalritik''' , commit_message='''Add model''' , )
if __name__ == "__main__":
_snake_case : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--swinv2_name',
default='swinv2_tiny_patch4_window8_256',
type=str,
help='Name of the Swinv2 timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
_snake_case : int = parser.parse_args()
convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
| 22 |
import sys
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =len(lowercase__ )
UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )]
UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )]
for chain_length in range(2 , lowercase__ ):
for a in range(1 , n - chain_length + 1 ):
UpperCAmelCase_ =a + chain_length - 1
UpperCAmelCase_ =sys.maxsize
for c in range(lowercase__ , lowercase__ ):
UpperCAmelCase_ =(
matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b]
)
if cost < matrix[a][b]:
UpperCAmelCase_ =cost
UpperCAmelCase_ =c
return matrix, sol
def a__ ( lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
if i == j:
print("A" + str(lowercase__ ) , end=" " )
else:
print("(" , end=" " )
print_optiomal_solution(lowercase__ , lowercase__ , optimal_solution[i][j] )
print_optiomal_solution(lowercase__ , optimal_solution[i][j] + 1 , lowercase__ )
print(")" , end=" " )
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =[3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5]
UpperCAmelCase_ =len(lowercase__ )
# Size of matrix created from above array will be
# 30*35 35*15 15*5 5*10 10*20 20*25
UpperCAmelCase_ , UpperCAmelCase_ =matrix_chain_order(lowercase__ )
print("No. of Operation required: " + str(matrix[1][n - 1] ) )
print_optiomal_solution(lowercase__ , 1 , n - 1 )
if __name__ == "__main__":
main()
| 54 | 0 |
def _snake_case (__lowercase , __lowercase):
UpperCamelCase_ = 0
while b > 0:
if b & 1:
res += a
a += a
b >>= 1
return res
def _snake_case (__lowercase , __lowercase , __lowercase):
UpperCamelCase_ = 0
while b > 0:
if b & 1:
UpperCamelCase_ = ((res % c) + (a % c)) % c
a += a
b >>= 1
return res
| 23 |
from math import loga
def a__ ( lowercase__ ):
'''simple docstring'''
if a < 0:
raise ValueError("Input value must be a positive integer" )
elif isinstance(lowercase__ , lowercase__ ):
raise TypeError("Input value must be a 'int' type" )
return 0 if (a == 0) else int(loga(a & -a ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 54 | 0 |
'''simple docstring'''
import importlib
import os
import sys
# This is required to make the module import works (when the python process is running from the root of the repo)
sys.path.append('''.''')
def _UpperCamelCase (_lowerCamelCase : Union[str, Any] )-> Dict:
'''simple docstring'''
__snake_case = test_file.split(os.path.sep )
if components[0:2] != ["tests", "models"]:
raise ValueError(
'''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got '''
f'''{test_file} instead.''' )
__snake_case = components[-1]
if not test_fn.endswith('''py''' ):
raise ValueError(f'''`test_file` should be a python file. Got {test_fn} instead.''' )
if not test_fn.startswith('''test_modeling_''' ):
raise ValueError(
f'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' )
__snake_case = components[:-1] + [test_fn.replace('''.py''' , '''''' )]
__snake_case = '''.'''.join(_lowerCamelCase )
return test_module_path
def _UpperCamelCase (_lowerCamelCase : Union[str, Any] )-> Dict:
'''simple docstring'''
__snake_case = get_module_path(_lowerCamelCase )
__snake_case = importlib.import_module(_lowerCamelCase )
return test_module
def _UpperCamelCase (_lowerCamelCase : int )-> List[str]:
'''simple docstring'''
__snake_case = []
__snake_case = get_test_module(_lowerCamelCase )
for attr in dir(_lowerCamelCase ):
if attr.endswith('''ModelTester''' ):
tester_classes.append(getattr(_lowerCamelCase , _lowerCamelCase ) )
# sort with class names
return sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x.__name__ )
def _UpperCamelCase (_lowerCamelCase : Optional[Any] )-> List[Any]:
'''simple docstring'''
__snake_case = []
__snake_case = get_test_module(_lowerCamelCase )
for attr in dir(_lowerCamelCase ):
__snake_case = getattr(_lowerCamelCase , _lowerCamelCase )
# (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking
# `all_model_classes` is not empty (which also excludes other special classes).
__snake_case = getattr(_lowerCamelCase , '''all_model_classes''' , [] )
if len(_lowerCamelCase ) > 0:
test_classes.append(_lowerCamelCase )
# sort with class names
return sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x.__name__ )
def _UpperCamelCase (_lowerCamelCase : List[str] )-> str:
'''simple docstring'''
__snake_case = get_test_classes(_lowerCamelCase )
__snake_case = set()
for test_class in test_classes:
model_classes.update(test_class.all_model_classes )
# sort with class names
return sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x.__name__ )
def _UpperCamelCase (_lowerCamelCase : Tuple )-> Any:
'''simple docstring'''
__snake_case = test_class()
if hasattr(_lowerCamelCase , '''setUp''' ):
test.setUp()
__snake_case = None
if hasattr(_lowerCamelCase , '''model_tester''' ):
# `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case.
if test.model_tester is not None:
__snake_case = test.model_tester.__class__
return model_tester
def _UpperCamelCase (_lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any] )-> str:
'''simple docstring'''
__snake_case = get_test_classes(_lowerCamelCase )
__snake_case = []
for test_class in test_classes:
if model_class in test_class.all_model_classes:
target_test_classes.append(_lowerCamelCase )
# sort with class names
return sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x.__name__ )
def _UpperCamelCase (_lowerCamelCase : List[Any] , _lowerCamelCase : int )-> Optional[int]:
'''simple docstring'''
__snake_case = get_test_classes_for_model(_lowerCamelCase , _lowerCamelCase )
__snake_case = []
for test_class in test_classes:
__snake_case = get_model_tester_from_test_class(_lowerCamelCase )
if tester_class is not None:
tester_classes.append(_lowerCamelCase )
# sort with class names
return sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x.__name__ )
def _UpperCamelCase (_lowerCamelCase : Union[str, Any] )-> Union[str, Any]:
'''simple docstring'''
__snake_case = get_test_classes(_lowerCamelCase )
__snake_case = {test_class: get_model_tester_from_test_class(_lowerCamelCase ) for test_class in test_classes}
return test_tester_mapping
def _UpperCamelCase (_lowerCamelCase : Optional[Any] )-> Union[str, Any]:
'''simple docstring'''
__snake_case = get_model_classes(_lowerCamelCase )
__snake_case = {
model_class: get_test_classes_for_model(_lowerCamelCase , _lowerCamelCase ) for model_class in model_classes
}
return model_test_mapping
def _UpperCamelCase (_lowerCamelCase : Optional[Any] )-> Dict:
'''simple docstring'''
__snake_case = get_model_classes(_lowerCamelCase )
__snake_case = {
model_class: get_tester_classes_for_model(_lowerCamelCase , _lowerCamelCase ) for model_class in model_classes
}
return model_to_tester_mapping
def _UpperCamelCase (_lowerCamelCase : Optional[Any] )-> str:
'''simple docstring'''
if isinstance(_lowerCamelCase , _lowerCamelCase ):
return o
elif isinstance(_lowerCamelCase , _lowerCamelCase ):
return o.__name__
elif isinstance(_lowerCamelCase , (list, tuple) ):
return [to_json(_lowerCamelCase ) for x in o]
elif isinstance(_lowerCamelCase , _lowerCamelCase ):
return {to_json(_lowerCamelCase ): to_json(_lowerCamelCase ) for k, v in o.items()}
else:
return o
| 24 |
import argparse
from pathlib import Path
import torch
from transformers import OPTConfig, OPTModel
from transformers.utils import logging
logging.set_verbosity_info()
__lowercase : Union[str, Any] =logging.get_logger(__name__)
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" )
if "model" in sd.keys():
UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" )["model"]
# pop unnecessary weights
UpperCAmelCase_ =[
"decoder.version",
"decoder.output_projection.weight",
]
for key in keys_to_delete:
if key in sd:
sd.pop(lowercase__ )
UpperCAmelCase_ ={
"decoder.project_in_dim.weight": "decoder.project_in.weight",
"decoder.project_out_dim.weight": "decoder.project_out.weight",
"decoder.layer_norm.weight": "decoder.final_layer_norm.weight",
"decoder.layer_norm.bias": "decoder.final_layer_norm.bias",
}
for old_key, new_key in keys_to_rename.items():
if old_key in sd:
UpperCAmelCase_ =sd.pop(lowercase__ )
UpperCAmelCase_ =list(sd.keys() )
for key in keys:
if ".qkv_proj." in key:
UpperCAmelCase_ =sd[key]
# We split QKV in separate Q,K,V
UpperCAmelCase_ =key.replace(".qkv_proj." , ".q_proj." )
UpperCAmelCase_ =key.replace(".qkv_proj." , ".k_proj." )
UpperCAmelCase_ =key.replace(".qkv_proj." , ".v_proj." )
UpperCAmelCase_ =value.shape[0]
assert depth % 3 == 0
# `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
# https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =torch.split(lowercase__ , depth // 3 , dim=0 )
UpperCAmelCase_ =q
UpperCAmelCase_ =k
UpperCAmelCase_ =v
del sd[key]
return sd
@torch.no_grad()
def a__ ( lowercase__ , lowercase__ , lowercase__=None ):
'''simple docstring'''
UpperCAmelCase_ =load_checkpoint(lowercase__ )
if config is not None:
UpperCAmelCase_ =OPTConfig.from_pretrained(lowercase__ )
else:
UpperCAmelCase_ =OPTConfig()
UpperCAmelCase_ =OPTModel(lowercase__ ).half().eval()
model.load_state_dict(lowercase__ )
# Check results
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
model.save_pretrained(lowercase__ )
if __name__ == "__main__":
__lowercase : List[Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--fairseq_path""",
type=str,
help=(
"""path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:"""
""" https://huggingface.co/models?other=opt_metasq"""
),
)
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""")
__lowercase : str =parser.parse_args()
convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
| 54 | 0 |
import argparse
from pathlib import Path
import torch
from transformers import OPTConfig, OPTModel
from transformers.utils import logging
logging.set_verbosity_info()
a_ = logging.get_logger(__name__)
def lowerCamelCase__ ( _a):
SCREAMING_SNAKE_CASE : List[Any] = torch.load(_a , map_location="cpu")
if "model" in sd.keys():
SCREAMING_SNAKE_CASE : Any = torch.load(_a , map_location="cpu")["model"]
# pop unnecessary weights
SCREAMING_SNAKE_CASE : str = [
"decoder.version",
"decoder.output_projection.weight",
]
for key in keys_to_delete:
if key in sd:
sd.pop(_a)
SCREAMING_SNAKE_CASE : Any = {
"decoder.project_in_dim.weight": "decoder.project_in.weight",
"decoder.project_out_dim.weight": "decoder.project_out.weight",
"decoder.layer_norm.weight": "decoder.final_layer_norm.weight",
"decoder.layer_norm.bias": "decoder.final_layer_norm.bias",
}
for old_key, new_key in keys_to_rename.items():
if old_key in sd:
SCREAMING_SNAKE_CASE : Union[str, Any] = sd.pop(_a)
SCREAMING_SNAKE_CASE : List[Any] = list(sd.keys())
for key in keys:
if ".qkv_proj." in key:
SCREAMING_SNAKE_CASE : Union[str, Any] = sd[key]
# We split QKV in separate Q,K,V
SCREAMING_SNAKE_CASE : Tuple = key.replace(".qkv_proj." , ".q_proj.")
SCREAMING_SNAKE_CASE : str = key.replace(".qkv_proj." , ".k_proj.")
SCREAMING_SNAKE_CASE : Optional[Any] = key.replace(".qkv_proj." , ".v_proj.")
SCREAMING_SNAKE_CASE : int = value.shape[0]
assert depth % 3 == 0
# `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
# https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = torch.split(_a , depth // 3 , dim=0)
SCREAMING_SNAKE_CASE : str = q
SCREAMING_SNAKE_CASE : Optional[int] = k
SCREAMING_SNAKE_CASE : List[str] = v
del sd[key]
return sd
@torch.no_grad()
def lowerCamelCase__ ( _a , _a , _a=None):
SCREAMING_SNAKE_CASE : str = load_checkpoint(_a)
if config is not None:
SCREAMING_SNAKE_CASE : Optional[Any] = OPTConfig.from_pretrained(_a)
else:
SCREAMING_SNAKE_CASE : str = OPTConfig()
SCREAMING_SNAKE_CASE : Tuple = OPTModel(_a).half().eval()
model.load_state_dict(_a)
# Check results
Path(_a).mkdir(exist_ok=_a)
model.save_pretrained(_a)
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--fairseq_path',
type=str,
help=(
'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:'
' https://huggingface.co/models?other=opt_metasq'
),
)
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.')
a_ = parser.parse_args()
convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
| 25 |
import PIL.Image
import PIL.ImageOps
from packaging import version
from PIL import Image
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""):
__lowercase : str ={
"""linear""": PIL.Image.Resampling.BILINEAR,
"""bilinear""": PIL.Image.Resampling.BILINEAR,
"""bicubic""": PIL.Image.Resampling.BICUBIC,
"""lanczos""": PIL.Image.Resampling.LANCZOS,
"""nearest""": PIL.Image.Resampling.NEAREST,
}
else:
__lowercase : Any ={
"""linear""": PIL.Image.LINEAR,
"""bilinear""": PIL.Image.BILINEAR,
"""bicubic""": PIL.Image.BICUBIC,
"""lanczos""": PIL.Image.LANCZOS,
"""nearest""": PIL.Image.NEAREST,
}
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =(images / 2 + 0.5).clamp(0 , 1 )
UpperCAmelCase_ =images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
UpperCAmelCase_ =numpy_to_pil(lowercase__ )
return images
def a__ ( lowercase__ ):
'''simple docstring'''
if images.ndim == 3:
UpperCAmelCase_ =images[None, ...]
UpperCAmelCase_ =(images * 2_5_5).round().astype("uint8" )
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
UpperCAmelCase_ =[Image.fromarray(image.squeeze() , mode="L" ) for image in images]
else:
UpperCAmelCase_ =[Image.fromarray(lowercase__ ) for image in images]
return pil_images
| 54 | 0 |
'''simple docstring'''
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class _A ( unittest.TestCase ):
def __init__( self : Tuple , __magic_name__ : List[Any] , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : int = 32 , __magic_name__ : bool = True , __magic_name__ : Union[int, float] = 1 / 2_55 , __magic_name__ : bool = True , __magic_name__ : bool = True , __magic_name__ : Optional[Union[float, List[float]]] = [0.48145466, 0.4578275, 0.40821073] , __magic_name__ : Optional[Union[float, List[float]]] = [0.26862954, 0.26130258, 0.27577711] , __magic_name__ : bool = True , __magic_name__ : Any=7 , __magic_name__ : Tuple=30 , __magic_name__ : List[Any]=4_00 , __magic_name__ : Optional[Any]=3 , ) -> Tuple:
"""simple docstring"""
__snake_case : int = parent
__snake_case : Optional[Any] = do_resize
__snake_case : List[str] = size if size is not None else {"""shortest_edge""": 2_88}
__snake_case : Any = size_divisor
__snake_case : List[str] = do_rescale
__snake_case : Optional[int] = rescale_factor
__snake_case : Any = do_normalize
__snake_case : Any = do_center_crop
__snake_case : Tuple = image_mean
__snake_case : Tuple = image_std
__snake_case : int = do_pad
__snake_case : Union[str, Any] = batch_size
__snake_case : Union[str, Any] = num_channels
__snake_case : Optional[int] = min_resolution
__snake_case : str = max_resolution
def lowercase__ ( self : List[Any] ) -> Any:
"""simple docstring"""
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def lowercase__ ( self : str , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any]=False ) -> Any:
"""simple docstring"""
if not batched:
__snake_case : Optional[Any] = self.size["""shortest_edge"""]
__snake_case : Optional[int] = image_inputs[0]
if isinstance(__magic_name__ , Image.Image ):
__snake_case , __snake_case : List[Any] = image.size
else:
__snake_case , __snake_case : List[str] = image.shape[1], image.shape[2]
__snake_case : Optional[Any] = size / min(__magic_name__ , __magic_name__ )
if h < w:
__snake_case , __snake_case : List[str] = size, scale * w
else:
__snake_case , __snake_case : int = scale * h, size
__snake_case : str = int((13_33 / 8_00) * size )
if max(__magic_name__ , __magic_name__ ) > max_size:
__snake_case : Dict = max_size / max(__magic_name__ , __magic_name__ )
__snake_case : str = newh * scale
__snake_case : List[Any] = neww * scale
__snake_case , __snake_case : int = int(newh + 0.5 ), int(neww + 0.5 )
__snake_case , __snake_case : Tuple = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
__snake_case : Tuple = []
for image in image_inputs:
__snake_case , __snake_case : Tuple = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__snake_case : Dict = max(__magic_name__ , key=lambda __magic_name__ : item[0] )[0]
__snake_case : Union[str, Any] = max(__magic_name__ , key=lambda __magic_name__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class _A ( __lowercase , unittest.TestCase ):
lowercase__: Any = BridgeTowerImageProcessor if is_vision_available() else None
def lowercase__ ( self : List[str] ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = BridgeTowerImageProcessingTester(self )
@property
def lowercase__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowercase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__magic_name__ , """image_mean""" ) )
self.assertTrue(hasattr(__magic_name__ , """image_std""" ) )
self.assertTrue(hasattr(__magic_name__ , """do_normalize""" ) )
self.assertTrue(hasattr(__magic_name__ , """do_resize""" ) )
self.assertTrue(hasattr(__magic_name__ , """size""" ) )
self.assertTrue(hasattr(__magic_name__ , """size_divisor""" ) )
def lowercase__ ( self : Any ) -> Optional[Any]:
"""simple docstring"""
pass
def lowercase__ ( self : Dict ) -> List[str]:
"""simple docstring"""
__snake_case : Dict = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ )
for image in image_inputs:
self.assertIsInstance(__magic_name__ , Image.Image )
# Test not batched input
__snake_case : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
__snake_case , __snake_case : int = self.image_processor_tester.get_expected_values(__magic_name__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__snake_case : Dict = image_processing(__magic_name__ , return_tensors="""pt""" ).pixel_values
__snake_case , __snake_case : Optional[int] = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def lowercase__ ( self : Any ) -> str:
"""simple docstring"""
__snake_case : str = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , numpify=__magic_name__ )
for image in image_inputs:
self.assertIsInstance(__magic_name__ , np.ndarray )
# Test not batched input
__snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
__snake_case , __snake_case : Optional[int] = self.image_processor_tester.get_expected_values(__magic_name__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__snake_case : Any = image_processing(__magic_name__ , return_tensors="""pt""" ).pixel_values
__snake_case , __snake_case : Tuple = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def lowercase__ ( self : str ) -> Any:
"""simple docstring"""
__snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__snake_case : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ )
for image in image_inputs:
self.assertIsInstance(__magic_name__ , torch.Tensor )
# Test not batched input
__snake_case : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
__snake_case , __snake_case : List[Any] = self.image_processor_tester.get_expected_values(__magic_name__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__snake_case : Optional[int] = image_processing(__magic_name__ , return_tensors="""pt""" ).pixel_values
__snake_case , __snake_case : List[Any] = self.image_processor_tester.get_expected_values(__magic_name__ , batched=__magic_name__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
| 26 |
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =int(lowercase__ )
if n_element < 1:
UpperCAmelCase_ =ValueError("a should be a positive number" )
raise my_error
UpperCAmelCase_ =[1]
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =(0, 0, 0)
UpperCAmelCase_ =1
while index < n_element:
while hamming_list[i] * 2 <= hamming_list[-1]:
i += 1
while hamming_list[j] * 3 <= hamming_list[-1]:
j += 1
while hamming_list[k] * 5 <= hamming_list[-1]:
k += 1
hamming_list.append(
min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) )
index += 1
return hamming_list
if __name__ == "__main__":
__lowercase : Tuple =input("""Enter the last number (nth term) of the Hamming Number Series: """)
print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""")
__lowercase : Union[str, Any] =hamming(int(n))
print("""-----------------------------------------------------""")
print(f"""The list with nth numbers is: {hamming_numbers}""")
print("""-----------------------------------------------------""")
| 54 | 0 |
__A : Dict = "Alexander Joslin"
import operator as op
from .stack import Stack
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
_A = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub}
_A = Stack()
_A = Stack()
for i in equation:
if i.isdigit():
# RULE 1
operand_stack.push(int(_SCREAMING_SNAKE_CASE ) )
elif i in operators:
# RULE 2
operator_stack.push(_SCREAMING_SNAKE_CASE )
elif i == ")":
# RULE 4
_A = operator_stack.peek()
operator_stack.pop()
_A = operand_stack.peek()
operand_stack.pop()
_A = operand_stack.peek()
operand_stack.pop()
_A = operators[opr](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
operand_stack.push(_SCREAMING_SNAKE_CASE )
# RULE 5
return operand_stack.peek()
if __name__ == "__main__":
__A : Any = "(5 + ((4 * 2) * (2 + 3)))"
# answer = 45
print(f"{equation} = {dijkstras_two_stack_algorithm(equation)}")
| 27 |
import warnings
from ...utils import logging
from .image_processing_glpn import GLPNImageProcessor
__lowercase : List[Any] =logging.get_logger(__name__)
class A ( __lowercase ):
def __init__( self: List[Any] , *_lowerCAmelCase: Optional[Any] , **_lowerCAmelCase: List[str] ) -> None:
'''simple docstring'''
warnings.warn(
"The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use GLPNImageProcessor instead." , _lowerCAmelCase , )
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
| 54 | 0 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
UpperCamelCase_ = {
"Acehnese Arabic": "ace_Arab",
"Acehnese Latin": "ace_Latn",
"Mesopotamian Arabic": "acm_Arab",
"Ta'izzi-Adeni Arabic": "acq_Arab",
"Tunisian Arabic": "aeb_Arab",
"Afrikaans": "afr_Latn",
"South Levantine Arabic": "ajp_Arab",
"Akan": "aka_Latn",
"Amharic": "amh_Ethi",
"North Levantine Arabic": "apc_Arab",
"Modern Standard Arabic": "arb_Arab",
"Modern Standard Arabic Romanized": "arb_Latn",
"Najdi Arabic": "ars_Arab",
"Moroccan Arabic": "ary_Arab",
"Egyptian Arabic": "arz_Arab",
"Assamese": "asm_Beng",
"Asturian": "ast_Latn",
"Awadhi": "awa_Deva",
"Central Aymara": "ayr_Latn",
"South Azerbaijani": "azb_Arab",
"North Azerbaijani": "azj_Latn",
"Bashkir": "bak_Cyrl",
"Bambara": "bam_Latn",
"Balinese": "ban_Latn",
"Belarusian": "bel_Cyrl",
"Bemba": "bem_Latn",
"Bengali": "ben_Beng",
"Bhojpuri": "bho_Deva",
"Banjar Arabic": "bjn_Arab",
"Banjar Latin": "bjn_Latn",
"Standard Tibetan": "bod_Tibt",
"Bosnian": "bos_Latn",
"Buginese": "bug_Latn",
"Bulgarian": "bul_Cyrl",
"Catalan": "cat_Latn",
"Cebuano": "ceb_Latn",
"Czech": "ces_Latn",
"Chokwe": "cjk_Latn",
"Central Kurdish": "ckb_Arab",
"Crimean Tatar": "crh_Latn",
"Welsh": "cym_Latn",
"Danish": "dan_Latn",
"German": "deu_Latn",
"Southwestern Dinka": "dik_Latn",
"Dyula": "dyu_Latn",
"Dzongkha": "dzo_Tibt",
"Greek": "ell_Grek",
"English": "eng_Latn",
"Esperanto": "epo_Latn",
"Estonian": "est_Latn",
"Basque": "eus_Latn",
"Ewe": "ewe_Latn",
"Faroese": "fao_Latn",
"Fijian": "fij_Latn",
"Finnish": "fin_Latn",
"Fon": "fon_Latn",
"French": "fra_Latn",
"Friulian": "fur_Latn",
"Nigerian Fulfulde": "fuv_Latn",
"Scottish Gaelic": "gla_Latn",
"Irish": "gle_Latn",
"Galician": "glg_Latn",
"Guarani": "grn_Latn",
"Gujarati": "guj_Gujr",
"Haitian Creole": "hat_Latn",
"Hausa": "hau_Latn",
"Hebrew": "heb_Hebr",
"Hindi": "hin_Deva",
"Chhattisgarhi": "hne_Deva",
"Croatian": "hrv_Latn",
"Hungarian": "hun_Latn",
"Armenian": "hye_Armn",
"Igbo": "ibo_Latn",
"Ilocano": "ilo_Latn",
"Indonesian": "ind_Latn",
"Icelandic": "isl_Latn",
"Italian": "ita_Latn",
"Javanese": "jav_Latn",
"Japanese": "jpn_Jpan",
"Kabyle": "kab_Latn",
"Jingpho": "kac_Latn",
"Kamba": "kam_Latn",
"Kannada": "kan_Knda",
"Kashmiri Arabic": "kas_Arab",
"Kashmiri Devanagari": "kas_Deva",
"Georgian": "kat_Geor",
"Central Kanuri Arabic": "knc_Arab",
"Central Kanuri Latin": "knc_Latn",
"Kazakh": "kaz_Cyrl",
"Kabiyè": "kbp_Latn",
"Kabuverdianu": "kea_Latn",
"Khmer": "khm_Khmr",
"Kikuyu": "kik_Latn",
"Kinyarwanda": "kin_Latn",
"Kyrgyz": "kir_Cyrl",
"Kimbundu": "kmb_Latn",
"Northern Kurdish": "kmr_Latn",
"Kikongo": "kon_Latn",
"Korean": "kor_Hang",
"Lao": "lao_Laoo",
"Ligurian": "lij_Latn",
"Limburgish": "lim_Latn",
"Lingala": "lin_Latn",
"Lithuanian": "lit_Latn",
"Lombard": "lmo_Latn",
"Latgalian": "ltg_Latn",
"Luxembourgish": "ltz_Latn",
"Luba-Kasai": "lua_Latn",
"Ganda": "lug_Latn",
"Luo": "luo_Latn",
"Mizo": "lus_Latn",
"Standard Latvian": "lvs_Latn",
"Magahi": "mag_Deva",
"Maithili": "mai_Deva",
"Malayalam": "mal_Mlym",
"Marathi": "mar_Deva",
"Minangkabau Arabic ": "min_Arab",
"Minangkabau Latin": "min_Latn",
"Macedonian": "mkd_Cyrl",
"Plateau Malagasy": "plt_Latn",
"Maltese": "mlt_Latn",
"Meitei Bengali": "mni_Beng",
"Halh Mongolian": "khk_Cyrl",
"Mossi": "mos_Latn",
"Maori": "mri_Latn",
"Burmese": "mya_Mymr",
"Dutch": "nld_Latn",
"Norwegian Nynorsk": "nno_Latn",
"Norwegian Bokmål": "nob_Latn",
"Nepali": "npi_Deva",
"Northern Sotho": "nso_Latn",
"Nuer": "nus_Latn",
"Nyanja": "nya_Latn",
"Occitan": "oci_Latn",
"West Central Oromo": "gaz_Latn",
"Odia": "ory_Orya",
"Pangasinan": "pag_Latn",
"Eastern Panjabi": "pan_Guru",
"Papiamento": "pap_Latn",
"Western Persian": "pes_Arab",
"Polish": "pol_Latn",
"Portuguese": "por_Latn",
"Dari": "prs_Arab",
"Southern Pashto": "pbt_Arab",
"Ayacucho Quechua": "quy_Latn",
"Romanian": "ron_Latn",
"Rundi": "run_Latn",
"Russian": "rus_Cyrl",
"Sango": "sag_Latn",
"Sanskrit": "san_Deva",
"Santali": "sat_Olck",
"Sicilian": "scn_Latn",
"Shan": "shn_Mymr",
"Sinhala": "sin_Sinh",
"Slovak": "slk_Latn",
"Slovenian": "slv_Latn",
"Samoan": "smo_Latn",
"Shona": "sna_Latn",
"Sindhi": "snd_Arab",
"Somali": "som_Latn",
"Southern Sotho": "sot_Latn",
"Spanish": "spa_Latn",
"Tosk Albanian": "als_Latn",
"Sardinian": "srd_Latn",
"Serbian": "srp_Cyrl",
"Swati": "ssw_Latn",
"Sundanese": "sun_Latn",
"Swedish": "swe_Latn",
"Swahili": "swh_Latn",
"Silesian": "szl_Latn",
"Tamil": "tam_Taml",
"Tatar": "tat_Cyrl",
"Telugu": "tel_Telu",
"Tajik": "tgk_Cyrl",
"Tagalog": "tgl_Latn",
"Thai": "tha_Thai",
"Tigrinya": "tir_Ethi",
"Tamasheq Latin": "taq_Latn",
"Tamasheq Tifinagh": "taq_Tfng",
"Tok Pisin": "tpi_Latn",
"Tswana": "tsn_Latn",
"Tsonga": "tso_Latn",
"Turkmen": "tuk_Latn",
"Tumbuka": "tum_Latn",
"Turkish": "tur_Latn",
"Twi": "twi_Latn",
"Central Atlas Tamazight": "tzm_Tfng",
"Uyghur": "uig_Arab",
"Ukrainian": "ukr_Cyrl",
"Umbundu": "umb_Latn",
"Urdu": "urd_Arab",
"Northern Uzbek": "uzn_Latn",
"Venetian": "vec_Latn",
"Vietnamese": "vie_Latn",
"Waray": "war_Latn",
"Wolof": "wol_Latn",
"Xhosa": "xho_Latn",
"Eastern Yiddish": "ydd_Hebr",
"Yoruba": "yor_Latn",
"Yue Chinese": "yue_Hant",
"Chinese Simplified": "zho_Hans",
"Chinese Traditional": "zho_Hant",
"Standard Malay": "zsm_Latn",
"Zulu": "zul_Latn",
}
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : Union[str, Any] = '''facebook/nllb-200-distilled-600M'''
A : Optional[Any] = (
'''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should '''
'''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, '''
'''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in '''
'''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.'''
)
A : Union[str, Any] = '''translator'''
A : Any = AutoTokenizer
A : List[Any] = AutoModelForSeqaSeqLM
A : List[str] = LANGUAGE_CODES
A : Tuple = ['''text''', '''text''', '''text''']
A : Union[str, Any] = ['''text''']
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
if src_lang not in self.lang_to_code:
raise ValueError(F"{src_lang} is not a supported language." )
if tgt_lang not in self.lang_to_code:
raise ValueError(F"{tgt_lang} is not a supported language." )
SCREAMING_SNAKE_CASE : Tuple = self.lang_to_code[src_lang]
SCREAMING_SNAKE_CASE : List[Any] = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
A, return_tensors='pt', src_lang=A, tgt_lang=A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
return self.model.generate(**A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
return self.post_processor.decode(outputs[0].tolist(), skip_special_tokens=A )
| 28 |
import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class A ( __lowercase , unittest.TestCase ):
_snake_case =CanineTokenizer
_snake_case =False
def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]:
'''simple docstring'''
super().setUp()
UpperCAmelCase_ =CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowerCAmelCase__ ( self: Optional[int] ) -> List[str]:
'''simple docstring'''
return CanineTokenizer.from_pretrained("google/canine-s" )
def lowerCAmelCase__ ( self: Union[str, Any] , **_lowerCAmelCase: List[Any] ) -> CanineTokenizer:
'''simple docstring'''
UpperCAmelCase_ =self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
UpperCAmelCase_ =1024
return tokenizer
@require_torch
def lowerCAmelCase__ ( self: int ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ =self.canine_tokenizer
UpperCAmelCase_ =["Life is like a box of chocolates.", "You never know what you're gonna get."]
# fmt: off
UpperCAmelCase_ =[5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0]
# fmt: on
UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase_ =list(batch.input_ids.numpy()[0] )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def lowerCAmelCase__ ( self: int ) -> str:
'''simple docstring'''
UpperCAmelCase_ =self.canine_tokenizer
UpperCAmelCase_ =["Once there was a man.", "He wrote a test in HuggingFace Tranformers."]
UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("input_ids" , _lowerCAmelCase )
self.assertIn("attention_mask" , _lowerCAmelCase )
self.assertIn("token_type_ids" , _lowerCAmelCase )
@require_torch
def lowerCAmelCase__ ( self: str ) -> Any:
'''simple docstring'''
UpperCAmelCase_ =self.canine_tokenizer
UpperCAmelCase_ =[
"What's the weater?",
"It's about 25 degrees.",
]
UpperCAmelCase_ =tokenizer(
text_target=_lowerCAmelCase , max_length=32 , padding="max_length" , truncation=_lowerCAmelCase , return_tensors="pt" )
self.assertEqual(32 , targets["input_ids"].shape[1] )
def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ =self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
UpperCAmelCase_ =self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
UpperCAmelCase_ =tempfile.mkdtemp()
UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running"
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
tokenizer.save_pretrained(_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase )
UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
shutil.rmtree(_lowerCAmelCase )
UpperCAmelCase_ =self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
UpperCAmelCase_ =tempfile.mkdtemp()
UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running"
UpperCAmelCase_ =tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
UpperCAmelCase_ =chr(0xe0_07 )
additional_special_tokens.append(_lowerCAmelCase )
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} )
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
tokenizer.save_pretrained(_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase )
UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertIn(_lowerCAmelCase , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(_lowerCAmelCase )
def lowerCAmelCase__ ( self: int ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
UpperCAmelCase_ , UpperCAmelCase_ =self.get_clean_sequence(_lowerCAmelCase )
# a special token for Canine can be defined as follows:
UpperCAmelCase_ =0xe0_05
UpperCAmelCase_ =chr(_lowerCAmelCase )
tokenizer.add_special_tokens({"cls_token": special_token} )
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertEqual(len(_lowerCAmelCase ) , 1 )
UpperCAmelCase_ =tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , input_encoded + special_token_id )
UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase )
self.assertTrue(special_token not in decoded )
def lowerCAmelCase__ ( self: Any ) -> Any:
'''simple docstring'''
UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
UpperCAmelCase_ =chr(0xe0_05 )
UpperCAmelCase_ =chr(0xe0_06 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=_lowerCAmelCase )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} )
UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase )
self.assertEqual(len(_lowerCAmelCase ) , 1 )
self.assertEqual(len(_lowerCAmelCase ) , 1 )
self.assertEqual(token_a[0] , _lowerCAmelCase )
self.assertEqual(token_a[0] , _lowerCAmelCase )
@require_tokenizers
def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# a special token for Canine can be defined as follows:
UpperCAmelCase_ =0xe0_06
UpperCAmelCase_ =chr(_lowerCAmelCase )
UpperCAmelCase_ =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase )
tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(_lowerCAmelCase )
tokenizer.from_pretrained(_lowerCAmelCase )
def lowerCAmelCase__ ( self: Any ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ =[]
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file:
UpperCAmelCase_ =json.load(_lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file:
UpperCAmelCase_ =json.load(_lowerCAmelCase )
# a special token for Canine can be defined as follows:
UpperCAmelCase_ =0xe0_06
UpperCAmelCase_ =chr(_lowerCAmelCase )
UpperCAmelCase_ =[new_token_a]
UpperCAmelCase_ =[new_token_a]
with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
UpperCAmelCase_ =tokenizer_class.from_pretrained(_lowerCAmelCase , extra_ids=0 )
self.assertIn(_lowerCAmelCase , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
UpperCAmelCase_ =0xe0_07
UpperCAmelCase_ =chr(_lowerCAmelCase )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
UpperCAmelCase_ =[AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase )]
UpperCAmelCase_ =tokenizer_class.from_pretrained(
_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , extra_ids=0 )
self.assertIn(_lowerCAmelCase , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
UpperCAmelCase_ ="hello world"
if self.space_between_special_tokens:
UpperCAmelCase_ ="[CLS] hello world [SEP]"
else:
UpperCAmelCase_ =input
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(_lowerCAmelCase , [output, output.lower()] )
def lowerCAmelCase__ ( self: List[str] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ =self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
UpperCAmelCase_ =[
"bos_token",
"eos_token",
"unk_token",
"sep_token",
"pad_token",
"cls_token",
"mask_token",
]
UpperCAmelCase_ ="a"
UpperCAmelCase_ =ord(_lowerCAmelCase )
for attr in attributes_list:
setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase )
self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase )
self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase )
setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase )
self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase )
self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase )
setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [] )
self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [] )
self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [] )
UpperCAmelCase_ =0xe0_06
UpperCAmelCase_ =chr(_lowerCAmelCase )
setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [additional_special_token_id] )
self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [additional_special_token] )
self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] )
def lowerCAmelCase__ ( self: List[str] ) -> List[str]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: Dict ) -> List[str]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: Any ) -> List[Any]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: List[Any] ) -> List[str]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: Tuple ) -> Union[str, Any]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: str ) -> str:
'''simple docstring'''
pass
| 54 | 0 |
"""simple docstring"""
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
if number < 0 or shift_amount < 0:
raise ValueError('''both inputs must be positive integers''' )
lowerCamelCase_ = str(bin(lowerCAmelCase__ ) )
binary_number += "0" * shift_amount
return binary_number
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
if number < 0 or shift_amount < 0:
raise ValueError('''both inputs must be positive integers''' )
lowerCamelCase_ = str(bin(lowerCAmelCase__ ) )[2:]
if shift_amount >= len(lowerCAmelCase__ ):
return "0b0"
lowerCamelCase_ = binary_number[: len(lowerCAmelCase__ ) - shift_amount]
return "0b" + shifted_binary_number
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
if number >= 0: # Get binary representation of positive number
lowerCamelCase_ = '''0''' + str(bin(lowerCAmelCase__ ) ).strip('''-''' )[2:]
else: # Get binary (2's complement) representation of negative number
lowerCamelCase_ = len(bin(lowerCAmelCase__ )[3:] ) # Find 2's complement of number
lowerCamelCase_ = bin(abs(lowerCAmelCase__ ) - (1 << binary_number_length) )[3:]
lowerCamelCase_ = (
'''1''' + '''0''' * (binary_number_length - len(lowerCAmelCase__ )) + binary_number
)
if shift_amount >= len(lowerCAmelCase__ ):
return "0b" + binary_number[0] * len(lowerCAmelCase__ )
return (
"0b"
+ binary_number[0] * shift_amount
+ binary_number[: len(lowerCAmelCase__ ) - shift_amount]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 29 |
from typing import Dict, List
from nltk.translate import gleu_score
import datasets
from datasets import MetricInfo
__lowercase : Optional[int] ="""\
@misc{wu2016googles,
title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},
author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey
and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin
Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto
Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and
Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes
and Jeffrey Dean},
year={2016},
eprint={1609.08144},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
__lowercase : Dict ="""\
The BLEU score has some undesirable properties when used for single
sentences, as it was designed to be a corpus measure. We therefore
use a slightly different score for our RL experiments which we call
the 'GLEU score'. For the GLEU score, we record all sub-sequences of
1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then
compute a recall, which is the ratio of the number of matching n-grams
to the number of total n-grams in the target (ground truth) sequence,
and a precision, which is the ratio of the number of matching n-grams
to the number of total n-grams in the generated output sequence. Then
GLEU score is simply the minimum of recall and precision. This GLEU
score's range is always between 0 (no matches) and 1 (all match) and
it is symmetrical when switching output and target. According to
our experiments, GLEU score correlates quite well with the BLEU
metric on a corpus level but does not have its drawbacks for our per
sentence reward objective.
"""
__lowercase : List[str] ="""\
Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.
Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching
tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.
Args:
predictions (list of str): list of translations to score.
Each translation should be tokenized into a list of tokens.
references (list of list of str): list of lists of references for each translation.
Each reference should be tokenized into a list of tokens.
min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.
max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.
Returns:
'google_bleu': google_bleu score
Examples:
Example 1:
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',
... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']
>>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',
... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',
... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
... 'interested', 'in', 'world', 'history']
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
... 'because', 'he', 'read', 'the', 'book']
>>> list_of_references = [[ref1a], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric(\"google_bleu\")
>>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)
>>> print(round(results[\"google_bleu\"], 2))
0.44
Example 2:
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',
... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']
>>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',
... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',
... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']
>>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',
... 'heed', 'the', 'cat', 'commands']
>>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',
... 'of', 'the', 'cat']
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
... 'interested', 'in', 'world', 'history']
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
... 'because', 'he', 'read', 'the', 'book']
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric(\"google_bleu\")
>>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)
>>> print(round(results[\"google_bleu\"], 2))
0.61
Example 3:
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',
... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']
>>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',
... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',
... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']
>>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',
... 'heed', 'the', 'cat', 'commands']
>>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',
... 'of', 'the', 'cat']
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
... 'interested', 'in', 'world', 'history']
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
... 'because', 'he', 'read', 'the', 'book']
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric(\"google_bleu\")
>>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)
>>> print(round(results[\"google_bleu\"], 2))
0.53
Example 4:
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',
... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']
>>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',
... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',
... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']
>>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',
... 'heed', 'the', 'cat', 'commands']
>>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',
... 'of', 'the', 'cat']
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
... 'interested', 'in', 'world', 'history']
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
... 'because', 'he', 'read', 'the', 'book']
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric(\"google_bleu\")
>>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)
>>> print(round(results[\"google_bleu\"], 2))
0.4
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A ( datasets.Metric ):
def lowerCAmelCase__ ( self: int ) -> MetricInfo:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ),
"references": datasets.Sequence(
datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ),
} ) , )
def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: List[List[List[str]]] , _lowerCAmelCase: List[List[str]] , _lowerCAmelCase: int = 1 , _lowerCAmelCase: int = 4 , ) -> Dict[str, float]:
'''simple docstring'''
return {
"google_bleu": gleu_score.corpus_gleu(
list_of_references=_lowerCAmelCase , hypotheses=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase )
}
| 54 | 0 |
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ):
'''simple docstring'''
UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained(_lowercase , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
UpperCAmelCase_ : Tuple = load_file(_lowercase )
UpperCAmelCase_ : Union[str, Any] = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
UpperCAmelCase_ : List[Any] = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' )
UpperCAmelCase_ : Optional[int] = pipeline.text_encoder
else:
UpperCAmelCase_ : int = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' )
UpperCAmelCase_ : str = pipeline.unet
# find the target layer
UpperCAmelCase_ : str = layer_infos.pop(0 )
while len(_lowercase ) > -1:
try:
UpperCAmelCase_ : Optional[Any] = curr_layer.__getattr__(_lowercase )
if len(_lowercase ) > 0:
UpperCAmelCase_ : List[Any] = layer_infos.pop(0 )
elif len(_lowercase ) == 0:
break
except Exception:
if len(_lowercase ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
UpperCAmelCase_ : Dict = layer_infos.pop(0 )
UpperCAmelCase_ : Optional[int] = []
if "lora_down" in key:
pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) )
pair_keys.append(_lowercase )
else:
pair_keys.append(_lowercase )
pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
UpperCAmelCase_ : Union[str, Any] = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
UpperCAmelCase_ : List[str] = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(_lowercase , _lowercase ).unsqueeze(2 ).unsqueeze(3 )
else:
UpperCAmelCase_ : Optional[Any] = state_dict[pair_keys[0]].to(torch.floataa )
UpperCAmelCase_ : List[Any] = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(_lowercase , _lowercase )
# update visited list
for item in pair_keys:
visited.append(_lowercase )
return pipeline
if __name__ == "__main__":
__a = argparse.ArgumentParser()
parser.add_argument(
'--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.'
)
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
parser.add_argument(
'--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors'
)
parser.add_argument(
'--lora_prefix_text_encoder',
default='lora_te',
type=str,
help='The prefix of text encoder weight in safetensors',
)
parser.add_argument('--alpha', default=0.75, type=float, help='The merging ratio in W = W0 + alpha * deltaW')
parser.add_argument(
'--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.'
)
parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)')
__a = parser.parse_args()
__a = args.base_model_path
__a = args.checkpoint_path
__a = args.dump_path
__a = args.lora_prefix_unet
__a = args.lora_prefix_text_encoder
__a = args.alpha
__a = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
__a = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 30 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaImgaImgPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class A ( __lowercase , unittest.TestCase ):
_snake_case =KandinskyVaaImgaImgPipeline
_snake_case =['''image_embeds''', '''negative_image_embeds''', '''image''']
_snake_case =[
'''image_embeds''',
'''negative_image_embeds''',
'''image''',
]
_snake_case =[
'''generator''',
'''height''',
'''width''',
'''strength''',
'''guidance_scale''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
_snake_case =False
@property
def lowerCAmelCase__ ( self: List[Any] ) -> Dict:
'''simple docstring'''
return 32
@property
def lowerCAmelCase__ ( self: Any ) -> Optional[int]:
'''simple docstring'''
return 32
@property
def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]:
'''simple docstring'''
return self.time_input_dim
@property
def lowerCAmelCase__ ( self: List[str] ) -> Dict:
'''simple docstring'''
return self.time_input_dim * 4
@property
def lowerCAmelCase__ ( self: int ) -> str:
'''simple docstring'''
return 100
@property
def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]:
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase_ ={
"in_channels": 4,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
UpperCAmelCase_ =UNetaDConditionModel(**_lowerCAmelCase )
return model
@property
def lowerCAmelCase__ ( self: Any ) -> Tuple:
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase__ ( self: Union[str, Any] ) -> Any:
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase_ =VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase__ ( self: Dict ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ =self.dummy_unet
UpperCAmelCase_ =self.dummy_movq
UpperCAmelCase_ ={
"num_train_timesteps": 1000,
"beta_schedule": "linear",
"beta_start": 0.0_00_85,
"beta_end": 0.0_12,
"clip_sample": False,
"set_alpha_to_one": False,
"steps_offset": 0,
"prediction_type": "epsilon",
"thresholding": False,
}
UpperCAmelCase_ =DDIMScheduler(**_lowerCAmelCase )
UpperCAmelCase_ ={
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[Any]=0 ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase )
UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
_lowerCAmelCase )
# create init_image
UpperCAmelCase_ =floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase )
UpperCAmelCase_ =image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase_ =Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("RGB" ).resize((256, 256) )
if str(_lowerCAmelCase ).startswith("mps" ):
UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase )
else:
UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase )
UpperCAmelCase_ ={
"image": init_image,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 64,
"width": 64,
"num_inference_steps": 10,
"guidance_scale": 7.0,
"strength": 0.2,
"output_type": "np",
}
return inputs
def lowerCAmelCase__ ( self: int ) -> int:
'''simple docstring'''
UpperCAmelCase_ ="cpu"
UpperCAmelCase_ =self.get_dummy_components()
UpperCAmelCase_ =self.pipeline_class(**_lowerCAmelCase )
UpperCAmelCase_ =pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
UpperCAmelCase_ =pipe(**self.get_dummy_inputs(_lowerCAmelCase ) )
UpperCAmelCase_ =output.images
UpperCAmelCase_ =pipe(
**self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0]
UpperCAmelCase_ =image[0, -3:, -3:, -1]
UpperCAmelCase_ =image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase_ =np.array(
[0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), F' expected_slice {expected_slice}, but got {image_slice.flatten()}'
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'
@slow
@require_torch_gpu
class A ( unittest.TestCase ):
def lowerCAmelCase__ ( self: List[Any] ) -> str:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase__ ( self: int ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ =load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/kandinskyv22_img2img_frog.npy" )
UpperCAmelCase_ =load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
UpperCAmelCase_ ="A red cartoon frog, 4k"
UpperCAmelCase_ =KandinskyVaaPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa )
pipe_prior.to(_lowerCAmelCase )
UpperCAmelCase_ =KandinskyVaaImgaImgPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa )
UpperCAmelCase_ =pipeline.to(_lowerCAmelCase )
pipeline.set_progress_bar_config(disable=_lowerCAmelCase )
UpperCAmelCase_ =torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase_ , UpperCAmelCase_ =pipe_prior(
_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
UpperCAmelCase_ =pipeline(
image=_lowerCAmelCase , image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , )
UpperCAmelCase_ =output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
| 54 | 0 |
import numpy as np
def UpperCAmelCase_ ( __UpperCAmelCase : np.array ) -> np.array:
return 1 / (1 + np.exp(-vector ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 31 |
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class A ( unittest.TestCase ):
def __init__( self: Optional[int] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: Optional[int]=7 , _lowerCAmelCase: Any=True , _lowerCAmelCase: List[Any]=True , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: str=True , _lowerCAmelCase: Optional[int]=99 , _lowerCAmelCase: Any=32 , _lowerCAmelCase: Any=5 , _lowerCAmelCase: Tuple=4 , _lowerCAmelCase: Union[str, Any]=37 , _lowerCAmelCase: List[str]="gelu" , _lowerCAmelCase: Dict=0.1 , _lowerCAmelCase: Tuple=0.1 , _lowerCAmelCase: int=512 , _lowerCAmelCase: Tuple=16 , _lowerCAmelCase: Tuple=2 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=4 , ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ =parent
UpperCAmelCase_ =batch_size
UpperCAmelCase_ =seq_length
UpperCAmelCase_ =is_training
UpperCAmelCase_ =use_attention_mask
UpperCAmelCase_ =use_token_type_ids
UpperCAmelCase_ =use_labels
UpperCAmelCase_ =vocab_size
UpperCAmelCase_ =hidden_size
UpperCAmelCase_ =num_hidden_layers
UpperCAmelCase_ =num_attention_heads
UpperCAmelCase_ =intermediate_size
UpperCAmelCase_ =hidden_act
UpperCAmelCase_ =hidden_dropout_prob
UpperCAmelCase_ =attention_probs_dropout_prob
UpperCAmelCase_ =max_position_embeddings
UpperCAmelCase_ =type_vocab_size
UpperCAmelCase_ =type_sequence_label_size
UpperCAmelCase_ =initializer_range
UpperCAmelCase_ =num_choices
def lowerCAmelCase__ ( self: Dict ) -> Any:
'''simple docstring'''
UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ =None
if self.use_attention_mask:
UpperCAmelCase_ =random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase_ =None
if self.use_token_type_ids:
UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ =RobertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowerCAmelCase__ ( self: str ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ =self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs
UpperCAmelCase_ ={"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
return config, inputs_dict
def lowerCAmelCase__ ( self: Tuple ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ =self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs
UpperCAmelCase_ =True
UpperCAmelCase_ =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class A ( __lowercase , unittest.TestCase ):
_snake_case =True
_snake_case =(
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowerCAmelCase__ ( self: Dict ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ =FlaxRobertaModelTester(self )
@slow
def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
UpperCAmelCase_ =model_class_name.from_pretrained("roberta-base" , from_pt=_lowerCAmelCase )
UpperCAmelCase_ =model(np.ones((1, 1) ) )
self.assertIsNotNone(_lowerCAmelCase )
| 54 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import (
AutoencoderKL,
EulerDiscreteScheduler,
StableDiffusionLatentUpscalePipeline,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
def A__ ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> Any:
"""simple docstring"""
_UpperCAmelCase = [tensor.shape for tensor in tensor_list]
return all(shape == shapes[0] for shape in shapes[1:] )
class __UpperCamelCase ( A__ , A__ , A__ , unittest.TestCase ):
__A : str = StableDiffusionLatentUpscalePipeline
__A : int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
"""height""",
"""width""",
"""cross_attention_kwargs""",
"""negative_prompt_embeds""",
"""prompt_embeds""",
}
__A : Dict = PipelineTesterMixin.required_optional_params - {"""num_images_per_prompt"""}
__A : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
__A : Any = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
__A : Optional[int] = frozenset([] )
__A : str = True
@property
def UpperCamelCase( self ):
_UpperCAmelCase = 1
_UpperCAmelCase = 4
_UpperCAmelCase = (16, 16)
_UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_UpperCamelCase )
return image
def UpperCamelCase( self ):
torch.manual_seed(0 )
_UpperCAmelCase = UNetaDConditionModel(
act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_UpperCamelCase , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=(
'''KDownBlock2D''',
'''KCrossAttnDownBlock2D''',
'''KCrossAttnDownBlock2D''',
'''KCrossAttnDownBlock2D''',
) , in_channels=8 , mid_block_type=_UpperCamelCase , only_cross_attention=_UpperCamelCase , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , )
_UpperCAmelCase = AutoencoderKL(
block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[
'''DownEncoderBlock2D''',
'''DownEncoderBlock2D''',
'''DownEncoderBlock2D''',
'''DownEncoderBlock2D''',
] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
_UpperCAmelCase = EulerDiscreteScheduler(prediction_type='''sample''' )
_UpperCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''quick_gelu''' , projection_dim=512 , )
_UpperCAmelCase = CLIPTextModel(_UpperCamelCase )
_UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
_UpperCAmelCase = {
'''unet''': model.eval(),
'''vae''': vae.eval(),
'''scheduler''': scheduler,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
}
return components
def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=0 ):
if str(_UpperCamelCase ).startswith('''mps''' ):
_UpperCAmelCase = torch.manual_seed(_UpperCamelCase )
else:
_UpperCAmelCase = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase )
_UpperCAmelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': self.dummy_image.cpu(),
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def UpperCamelCase( self ):
_UpperCAmelCase = '''cpu'''
_UpperCAmelCase = self.get_dummy_components()
_UpperCAmelCase = self.pipeline_class(**_UpperCamelCase )
pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
_UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase )
_UpperCAmelCase = pipe(**_UpperCamelCase ).images
_UpperCAmelCase = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 256, 256, 3) )
_UpperCAmelCase = np.array(
[0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] )
_UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_UpperCamelCase , 1e-3 )
def UpperCamelCase( self ):
super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 )
def UpperCamelCase( self ):
super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 )
def UpperCamelCase( self ):
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
def UpperCamelCase( self ):
super().test_inference_batch_single_identical(expected_max_diff=7e-3 )
def UpperCamelCase( self ):
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 )
def UpperCamelCase( self ):
super().test_save_load_local(expected_max_difference=3e-3 )
def UpperCamelCase( self ):
super().test_save_load_optional_components(expected_max_difference=3e-3 )
def UpperCamelCase( self ):
_UpperCAmelCase = [
'''DDIMScheduler''',
'''DDPMScheduler''',
'''PNDMScheduler''',
'''HeunDiscreteScheduler''',
'''EulerAncestralDiscreteScheduler''',
'''KDPM2DiscreteScheduler''',
'''KDPM2AncestralDiscreteScheduler''',
'''DPMSolverSDEScheduler''',
]
_UpperCAmelCase = self.get_dummy_components()
_UpperCAmelCase = self.pipeline_class(**_UpperCamelCase )
# make sure that PNDM does not need warm-up
pipe.scheduler.register_to_config(skip_prk_steps=_UpperCamelCase )
pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
_UpperCAmelCase = self.get_dummy_inputs(_UpperCamelCase )
_UpperCAmelCase = 2
_UpperCAmelCase = []
for scheduler_enum in KarrasDiffusionSchedulers:
if scheduler_enum.name in skip_schedulers:
# no sigma schedulers are not supported
# no schedulers
continue
_UpperCAmelCase = getattr(_UpperCamelCase , scheduler_enum.name )
_UpperCAmelCase = scheduler_cls.from_config(pipe.scheduler.config )
_UpperCAmelCase = pipe(**_UpperCamelCase )[0]
outputs.append(_UpperCamelCase )
assert check_same_shape(_UpperCamelCase )
@require_torch_gpu
@slow
class __UpperCamelCase ( unittest.TestCase ):
def UpperCamelCase( self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase( self ):
_UpperCAmelCase = torch.manual_seed(33 )
_UpperCAmelCase = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa )
pipe.to('''cuda''' )
_UpperCAmelCase = StableDiffusionLatentUpscalePipeline.from_pretrained(
'''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa )
upscaler.to('''cuda''' )
_UpperCAmelCase = '''a photo of an astronaut high resolution, unreal engine, ultra realistic'''
_UpperCAmelCase = pipe(_UpperCamelCase , generator=_UpperCamelCase , output_type='''latent''' ).images
_UpperCAmelCase = upscaler(
prompt=_UpperCamelCase , image=_UpperCamelCase , num_inference_steps=20 , guidance_scale=0 , generator=_UpperCamelCase , output_type='''np''' , ).images[0]
_UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' )
assert np.abs((expected_image - image).mean() ) < 5e-2
def UpperCamelCase( self ):
_UpperCAmelCase = torch.manual_seed(33 )
_UpperCAmelCase = StableDiffusionLatentUpscalePipeline.from_pretrained(
'''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa )
upscaler.to('''cuda''' )
_UpperCAmelCase = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas'''
_UpperCAmelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' )
_UpperCAmelCase = upscaler(
prompt=_UpperCamelCase , image=_UpperCamelCase , num_inference_steps=20 , guidance_scale=0 , generator=_UpperCamelCase , output_type='''np''' , ).images[0]
_UpperCAmelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' )
assert np.abs((expected_image - image).max() ) < 5e-2
| 32 |
from __future__ import annotations
def a__ ( lowercase__ , lowercase__ ):
'''simple docstring'''
if b == 0:
return (1, 0)
((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , a % b )
UpperCAmelCase_ =a // b
return (y, x - k * y)
def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ )
UpperCAmelCase_ =na * na
UpperCAmelCase_ =ra * x * na + ra * y * na
return (n % m + m) % m
def a__ ( lowercase__ , lowercase__ ):
'''simple docstring'''
((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ )
if b < 0:
UpperCAmelCase_ =(b % n + n) % n
return b
def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ =invert_modulo(lowercase__ , lowercase__ ), invert_modulo(lowercase__ , lowercase__ )
UpperCAmelCase_ =na * na
UpperCAmelCase_ =ra * x * na + ra * y * na
return (n % m + m) % m
if __name__ == "__main__":
from doctest import testmod
testmod(name="""chinese_remainder_theorem""", verbose=True)
testmod(name="""chinese_remainder_theorem2""", verbose=True)
testmod(name="""invert_modulo""", verbose=True)
testmod(name="""extended_euclid""", verbose=True)
| 54 | 0 |
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
lowerCamelCase__ : Any = """\
"""
lowerCamelCase__ : List[str] = """
Perplexity (PPL) is one of the most common metrics for evaluating language models.
It is defined as the exponentiated average negative log-likelihood of a sequence.
For more information, see https://huggingface.co/docs/transformers/perplexity
"""
lowerCamelCase__ : Any = """
Args:
model_id (str): model used for calculating Perplexity
NOTE: Perplexity can only be calculated for causal language models.
This includes models such as gpt2, causal variations of bert,
causal versions of t5, and more (the full list can be found
in the AutoModelForCausalLM documentation here:
https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
input_texts (list of str): input text, each separate text snippet
is one list entry.
batch_size (int): the batch size to run texts through the model. Defaults to 16.
add_start_token (bool): whether to add the start token to the texts,
so the perplexity can include the probability of the first word. Defaults to True.
device (str): device to run on, defaults to 'cuda' when available
Returns:
perplexity: dictionary containing the perplexity scores for the texts
in the input list, as well as the mean perplexity. If one of the input texts is
longer than the max input length of the model, then it is truncated to the
max length for the perplexity computation.
Examples:
Example 1:
>>> perplexity = datasets.load_metric(\"perplexity\")
>>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]
>>> results = perplexity.compute(model_id='gpt2',
... add_start_token=False,
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
['perplexities', 'mean_perplexity']
>>> print(round(results[\"mean_perplexity\"], 2))
78.22
>>> print(round(results[\"perplexities\"][0], 2))
11.11
Example 2:
>>> perplexity = datasets.load_metric(\"perplexity\")
>>> input_texts = datasets.load_dataset(\"wikitext\",
... \"wikitext-2-raw-v1\",
... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS
[...]
>>> input_texts = [s for s in input_texts if s!='']
>>> results = perplexity.compute(model_id='gpt2',
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
['perplexities', 'mean_perplexity']
>>> print(round(results[\"mean_perplexity\"], 2))
60.35
>>> print(round(results[\"perplexities\"][0], 2))
81.12
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class __magic_name__ (datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:int ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''input_texts''': datasets.Value('''string''' ),
} ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , )
def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:List[Any] , _a:int = 16 , _a:bool = True , _a:Any=None ):
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
snake_case__ = '''cuda'''
else:
snake_case__ = '''cuda''' if torch.cuda.is_available() else '''cpu'''
snake_case__ = AutoModelForCausalLM.from_pretrained(_a )
snake_case__ = model.to(_a )
snake_case__ = AutoTokenizer.from_pretrained(_a )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
snake_case__ = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(_a ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
snake_case__ = model.config.max_length - 1
else:
snake_case__ = model.config.max_length
snake_case__ = tokenizer(
_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , return_tensors='''pt''' , return_attention_mask=_a , ).to(_a )
snake_case__ = encodings['''input_ids''']
snake_case__ = encodings['''attention_mask''']
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
snake_case__ = []
snake_case__ = CrossEntropyLoss(reduction='''none''' )
for start_index in logging.tqdm(range(0 , len(_a ) , _a ) ):
snake_case__ = min(start_index + batch_size , len(_a ) )
snake_case__ = encoded_texts[start_index:end_index]
snake_case__ = attn_masks[start_index:end_index]
if add_start_token:
snake_case__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_a )
snake_case__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 )
snake_case__ = torch.cat(
[torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_a ), attn_mask] , dim=1 )
snake_case__ = encoded_batch
with torch.no_grad():
snake_case__ = model(_a , attention_mask=_a ).logits
snake_case__ = out_logits[..., :-1, :].contiguous()
snake_case__ = labels[..., 1:].contiguous()
snake_case__ = attn_mask[..., 1:].contiguous()
snake_case__ = torch.expa(
(loss_fct(shift_logits.transpose(1 , 2 ) , _a ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(_a )}
| 33 |
import argparse
import logging
import os
import re
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
DataCollatorForLanguageModeling,
PushToHubCallback,
TFAutoModelForMaskedLM,
create_optimizer,
)
__lowercase : Tuple =logging.getLogger(__name__)
__lowercase : Optional[int] =tf.data.AUTOTUNE
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =argparse.ArgumentParser(description="Train a masked language model on TPU." )
parser.add_argument(
"--pretrained_model_config" , type=lowercase__ , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , )
parser.add_argument(
"--tokenizer" , type=lowercase__ , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , )
parser.add_argument(
"--per_replica_batch_size" , type=lowercase__ , default=8 , help="Batch size per TPU core." , )
parser.add_argument(
"--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , )
parser.add_argument(
"--tpu_name" , type=lowercase__ , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , )
parser.add_argument(
"--tpu_zone" , type=lowercase__ , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , )
parser.add_argument(
"--gcp_project" , type=lowercase__ , help="Google cloud project name. Only used for non-Colab TPU nodes." )
parser.add_argument(
"--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , )
parser.add_argument(
"--train_dataset" , type=lowercase__ , help="Path to training dataset to load. If the path begins with `gs://`"
" then the dataset will be loaded from a Google Cloud Storage bucket." , )
parser.add_argument(
"--shuffle_buffer_size" , type=lowercase__ , default=2**1_8 , help="Size of the shuffle buffer (in samples)" , )
parser.add_argument(
"--eval_dataset" , type=lowercase__ , help="Path to evaluation dataset to load. If the path begins with `gs://`"
" then the dataset will be loaded from a Google Cloud Storage bucket." , )
parser.add_argument(
"--num_epochs" , type=lowercase__ , default=1 , help="Number of epochs to train for." , )
parser.add_argument(
"--learning_rate" , type=lowercase__ , default=1E-4 , help="Learning rate to use for training." , )
parser.add_argument(
"--weight_decay_rate" , type=lowercase__ , default=1E-3 , help="Weight decay rate to use for training." , )
parser.add_argument(
"--max_length" , type=lowercase__ , default=5_1_2 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , )
parser.add_argument(
"--mlm_probability" , type=lowercase__ , default=0.15 , help="Fraction of tokens to mask during training." , )
parser.add_argument("--output_dir" , type=lowercase__ , required=lowercase__ , help="Path to save model checkpoints to." )
parser.add_argument("--hub_model_id" , type=lowercase__ , help="Model ID to upload to on the Hugging Face Hub." )
UpperCAmelCase_ =parser.parse_args()
return args
def a__ ( lowercase__ ):
'''simple docstring'''
try:
if args.tpu_name:
UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver(
args.tpu_name , zone=args.tpu_zone , project=args.gcp_project )
else:
UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
raise RuntimeError(
"Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or "
"--gcp_project. When running on a TPU VM, use --tpu_name local." )
tf.config.experimental_connect_to_cluster(lowercase__ )
tf.tpu.experimental.initialize_tpu_system(lowercase__ )
return tpu
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =0
for file in file_list:
UpperCAmelCase_ =file.split("/" )[-1]
UpperCAmelCase_ =re.search(R"-\d+-(\d+)\.tfrecord" , lowercase__ ).group(1 )
UpperCAmelCase_ =int(lowercase__ )
num_samples += sample_count
return num_samples
def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=None ):
'''simple docstring'''
UpperCAmelCase_ =count_samples(lowercase__ )
UpperCAmelCase_ =tf.data.Dataset.from_tensor_slices(lowercase__ )
if shuffle:
UpperCAmelCase_ =dataset.shuffle(len(lowercase__ ) )
UpperCAmelCase_ =tf.data.TFRecordDataset(lowercase__ , num_parallel_reads=lowercase__ )
# TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here
UpperCAmelCase_ =dataset.apply(tf.data.experimental.assert_cardinality(lowercase__ ) )
UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ )
if shuffle:
assert shuffle_buffer_size is not None
UpperCAmelCase_ =dataset.shuffle(args.shuffle_buffer_size )
UpperCAmelCase_ =dataset.batch(lowercase__ , drop_remainder=lowercase__ )
UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ )
UpperCAmelCase_ =dataset.prefetch(lowercase__ )
return dataset
def a__ ( lowercase__ ):
'''simple docstring'''
if not args.no_tpu:
UpperCAmelCase_ =initialize_tpu(lowercase__ )
UpperCAmelCase_ =tf.distribute.TPUStrategy(lowercase__ )
else:
UpperCAmelCase_ =tf.distribute.OneDeviceStrategy(device="/gpu:0" )
if args.bfloataa:
tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" )
UpperCAmelCase_ =AutoTokenizer.from_pretrained(args.tokenizer )
UpperCAmelCase_ =AutoConfig.from_pretrained(args.pretrained_model_config )
UpperCAmelCase_ =tokenizer.vocab_size
UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) )
if not training_records:
raise ValueError(F'No .tfrecord files found in {args.train_dataset}.' )
UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) )
if not eval_records:
raise ValueError(F'No .tfrecord files found in {args.eval_dataset}.' )
UpperCAmelCase_ =count_samples(lowercase__ )
UpperCAmelCase_ =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync)
UpperCAmelCase_ =steps_per_epoch * args.num_epochs
with strategy.scope():
UpperCAmelCase_ =TFAutoModelForMaskedLM.from_config(lowercase__ )
model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built
UpperCAmelCase_ , UpperCAmelCase_ =create_optimizer(
num_train_steps=lowercase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , )
# Transformers models compute the right loss for their task by default when labels are passed, and will
# use this for training unless you specify your own loss function in compile().
model.compile(optimizer=lowercase__ , metrics=["accuracy"] )
def decode_fn(lowercase__ ):
UpperCAmelCase_ ={
"input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ),
"attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ),
}
return tf.io.parse_single_example(lowercase__ , lowercase__ )
# Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can
# use their methods in our data pipeline.
UpperCAmelCase_ =DataCollatorForLanguageModeling(
tokenizer=lowercase__ , mlm_probability=args.mlm_probability , mlm=lowercase__ , return_tensors="tf" )
def mask_with_collator(lowercase__ ):
# TF really needs an isin() function
UpperCAmelCase_ =(
~tf.cast(batch["attention_mask"] , tf.bool )
| (batch["input_ids"] == tokenizer.cls_token_id)
| (batch["input_ids"] == tokenizer.sep_token_id)
)
UpperCAmelCase_ , UpperCAmelCase_ =data_collator.tf_mask_tokens(
batch["input_ids"] , vocab_size=len(lowercase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowercase__ , )
return batch
UpperCAmelCase_ =args.per_replica_batch_size * strategy.num_replicas_in_sync
UpperCAmelCase_ =prepare_dataset(
lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , shuffle_buffer_size=args.shuffle_buffer_size , )
UpperCAmelCase_ =prepare_dataset(
lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , )
UpperCAmelCase_ =[]
if args.hub_model_id:
callbacks.append(
PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowercase__ ) )
model.fit(
lowercase__ , validation_data=lowercase__ , epochs=args.num_epochs , callbacks=lowercase__ , )
model.save_pretrained(args.output_dir )
if __name__ == "__main__":
__lowercase : Union[str, Any] =parse_args()
main(args)
| 54 | 0 |
"""simple docstring"""
def __snake_case ( _lowercase ):
"""simple docstring"""
UpperCamelCase = [0 for i in range(len(_lowercase ) )]
# initialize interval's left pointer and right pointer
UpperCamelCase , UpperCamelCase = 0, 0
for i in range(1 ,len(_lowercase ) ):
# case when current index is inside the interval
if i <= right_pointer:
UpperCamelCase = min(right_pointer - i + 1 ,z_result[i - left_pointer] )
UpperCamelCase = min_edge
while go_next(_lowercase ,_lowercase ,_lowercase ):
z_result[i] += 1
# if new index's result gives us more right interval,
# we've to update left_pointer and right_pointer
if i + z_result[i] - 1 > right_pointer:
UpperCamelCase , UpperCamelCase = i, i + z_result[i] - 1
return z_result
def __snake_case ( _lowercase ,_lowercase ,_lowercase ):
"""simple docstring"""
return i + z_result[i] < len(_lowercase ) and s[z_result[i]] == s[i + z_result[i]]
def __snake_case ( _lowercase ,_lowercase ):
"""simple docstring"""
UpperCamelCase = 0
# concatenate 'pattern' and 'input_str' and call z_function
# with concatenated string
UpperCamelCase = z_function(pattern + input_str )
for val in z_result:
# if value is greater then length of the pattern string
# that means this index is starting position of substring
# which is equal to pattern string
if val >= len(_lowercase ):
answer += 1
return answer
if __name__ == "__main__":
import doctest
doctest.testmod()
| 34 |
import unittest
from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class A :
@staticmethod
def lowerCAmelCase__ ( *_lowerCAmelCase: List[Any] , **_lowerCAmelCase: List[str] ) -> List[str]:
'''simple docstring'''
pass
@is_pipeline_test
@require_torch
@require_vision
class A ( unittest.TestCase ):
_snake_case =MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Tuple ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" )
UpperCAmelCase_ =[
{
"image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ),
"question": "How many cats are there?",
},
{
"image": "./tests/fixtures/tests_samples/COCO/000000039769.png",
"question": "How many cats are there?",
},
]
return vqa_pipeline, examples
def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: str ) -> int:
'''simple docstring'''
UpperCAmelCase_ =vqa_pipeline(_lowerCAmelCase , top_k=1 )
self.assertEqual(
_lowerCAmelCase , [
[{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}],
[{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}],
] , )
@require_torch
def lowerCAmelCase__ ( self: Tuple ) -> str:
'''simple docstring'''
UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" )
UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png"
UpperCAmelCase_ ="How many cats are there?"
UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question="How many cats are there?" , top_k=2 )
self.assertEqual(
_lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] )
UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
_lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] )
@slow
@require_torch
def lowerCAmelCase__ ( self: List[str] ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ =pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" )
UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png"
UpperCAmelCase_ ="How many cats are there?"
UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] )
UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] )
UpperCAmelCase_ =vqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(_lowerCAmelCase , decimals=4 ) , [[{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}]] * 2 , )
@require_tf
@unittest.skip("Visual question answering not implemented in TF" )
def lowerCAmelCase__ ( self: int ) -> List[str]:
'''simple docstring'''
pass
| 54 | 0 |
from __future__ import annotations
from typing import Any
class lowercase :
def __init__( self : int , _lowercase : int ):
SCREAMING_SNAKE_CASE__ : List[str] = num_of_nodes
SCREAMING_SNAKE_CASE__ : list[list[int]] = []
SCREAMING_SNAKE_CASE__ : dict[int, int] = {}
def lowercase__ ( self : Union[str, Any] , _lowercase : int , _lowercase : int , _lowercase : int ):
self.m_edges.append([u_node, v_node, weight] )
def lowercase__ ( self : Optional[int] , _lowercase : int ):
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def lowercase__ ( self : Optional[Any] , _lowercase : int ):
if self.m_component[u_node] != u_node:
for k in self.m_component:
SCREAMING_SNAKE_CASE__ : Any = self.find_component(_lowercase )
def lowercase__ ( self : int , _lowercase : list[int] , _lowercase : int , _lowercase : int ):
if component_size[u_node] <= component_size[v_node]:
SCREAMING_SNAKE_CASE__ : Dict = v_node
component_size[v_node] += component_size[u_node]
self.set_component(_lowercase )
elif component_size[u_node] >= component_size[v_node]:
SCREAMING_SNAKE_CASE__ : List[Any] = self.find_component(_lowercase )
component_size[u_node] += component_size[v_node]
self.set_component(_lowercase )
def lowercase__ ( self : str ):
SCREAMING_SNAKE_CASE__ : Optional[int] = []
SCREAMING_SNAKE_CASE__ : Any = 0
SCREAMING_SNAKE_CASE__ : list[Any] = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
SCREAMING_SNAKE_CASE__ : List[str] = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = edge
SCREAMING_SNAKE_CASE__ : Tuple = self.m_component[u]
SCREAMING_SNAKE_CASE__ : List[str] = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
SCREAMING_SNAKE_CASE__ : int = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(_lowercase , _lowercase ):
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = edge
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.m_component[u]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(_lowercase , _lowercase , _lowercase )
print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" )
num_of_components -= 1
SCREAMING_SNAKE_CASE__ : List[Any] = [-1] * self.m_num_of_nodes
print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" )
def a ( ) -> None:
'''simple docstring'''
if __name__ == "__main__":
import doctest
doctest.testmod()
| 35 |
def a__ ( lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
if len(lowercase__ ) != len(lowercase__ ):
raise ValueError("The length of profit and weight must be same." )
if max_weight <= 0:
raise ValueError("max_weight must greater than zero." )
if any(p < 0 for p in profit ):
raise ValueError("Profit can not be negative." )
if any(w < 0 for w in weight ):
raise ValueError("Weight can not be negative." )
# List created to store profit gained for the 1kg in case of each weight
# respectively. Calculate and append profit/weight for each element.
UpperCAmelCase_ =[p / w for p, w in zip(lowercase__ , lowercase__ )]
# Creating a copy of the list and sorting profit/weight in ascending order
UpperCAmelCase_ =sorted(lowercase__ )
# declaring useful variables
UpperCAmelCase_ =len(lowercase__ )
UpperCAmelCase_ =0
UpperCAmelCase_ =0
UpperCAmelCase_ =0
# loop till the total weight do not reach max limit e.g. 15 kg and till i<length
while limit <= max_weight and i < length:
# flag value for encountered greatest element in sorted_profit_by_weight
UpperCAmelCase_ =sorted_profit_by_weight[length - i - 1]
UpperCAmelCase_ =profit_by_weight.index(lowercase__ )
UpperCAmelCase_ =-1
# check if the weight encountered is less than the total weight
# encountered before.
if max_weight - limit >= weight[index]:
limit += weight[index]
# Adding profit gained for the given weight 1 ===
# weight[index]/weight[index]
gain += 1 * profit[index]
else:
# Since the weight encountered is greater than limit, therefore take the
# required number of remaining kgs and calculate profit for it.
# weight remaining / weight[index]
gain += (max_weight - limit) / weight[index] * profit[index]
break
i += 1
return gain
if __name__ == "__main__":
print(
"""Input profits, weights, and then max_weight (all positive ints) separated by """
"""spaces."""
)
__lowercase : List[str] =[int(x) for x in input("""Input profits separated by spaces: """).split()]
__lowercase : Union[str, Any] =[int(x) for x in input("""Input weights separated by spaces: """).split()]
__lowercase : Tuple =int(input("""Max weight allowed: """))
# Function Call
calc_profit(profit, weight, max_weight)
| 54 | 0 |
import copy
from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto.configuration_auto import AutoConfig
if TYPE_CHECKING:
from ... import PreTrainedTokenizerBase, TensorType
__lowercase : List[str] = logging.get_logger(__name__)
class _A ( snake_case ):
'''simple docstring'''
__lowerCamelCase : Tuple = '''vision-encoder-decoder'''
__lowerCamelCase : List[Any] = True
def __init__( self ,**SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_ )
if "encoder" not in kwargs or "decoder" not in kwargs:
raise ValueError(
F"""A configuraton of type {self.model_type} cannot be instantiated because """
F"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" )
snake_case : Union[str, Any] = kwargs.pop("""encoder""" )
snake_case : Any = encoder_config.pop("""model_type""" )
snake_case : Optional[Any] = kwargs.pop("""decoder""" )
snake_case : Union[str, Any] = decoder_config.pop("""model_type""" )
snake_case : Any = AutoConfig.for_model(SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ )
snake_case : Union[str, Any] = AutoConfig.for_model(SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ )
snake_case : int = True
@classmethod
def snake_case_ ( cls ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" )
snake_case : Tuple = True
snake_case : Union[str, Any] = True
return cls(encoder=encoder_config.to_dict() ,decoder=decoder_config.to_dict() ,**SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ):
'''simple docstring'''
snake_case : Union[str, Any] = copy.deepcopy(self.__dict__ )
snake_case : Union[str, Any] = self.encoder.to_dict()
snake_case : Union[str, Any] = self.decoder.to_dict()
snake_case : Dict = self.__class__.model_type
return output
class _A ( snake_case ):
'''simple docstring'''
__lowerCamelCase : Optional[Any] = version.parse('''1.11''' )
@property
def snake_case_ ( self ):
'''simple docstring'''
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def snake_case_ ( self ):
'''simple docstring'''
return 1E-4
@property
def snake_case_ ( self ):
'''simple docstring'''
return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} )
class _A ( snake_case ):
'''simple docstring'''
@property
def snake_case_ ( self ):
'''simple docstring'''
snake_case : Tuple = OrderedDict()
snake_case : Optional[int] = {0: """batch""", 1: """past_decoder_sequence + sequence"""}
snake_case : Union[str, Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""}
snake_case : Optional[Any] = {0: """batch""", 1: """encoder_sequence"""}
return common_inputs
def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = -1 ,SCREAMING_SNAKE_CASE_ = -1 ,SCREAMING_SNAKE_CASE_ = False ,SCREAMING_SNAKE_CASE_ = None ,):
'''simple docstring'''
import torch
snake_case : Optional[Any] = OrderedDict()
snake_case : Tuple = super().generate_dummy_inputs(
SCREAMING_SNAKE_CASE_ ,batch_size=SCREAMING_SNAKE_CASE_ ,seq_length=SCREAMING_SNAKE_CASE_ ,is_pair=SCREAMING_SNAKE_CASE_ ,framework=SCREAMING_SNAKE_CASE_ )
snake_case , snake_case : List[Any] = dummy_input["""input_ids"""].shape
snake_case : Optional[int] = (batch, encoder_sequence, self._config.encoder_hidden_size)
snake_case : List[str] = dummy_input.pop("""input_ids""" )
snake_case : int = dummy_input.pop("""attention_mask""" )
snake_case : Dict = torch.zeros(SCREAMING_SNAKE_CASE_ )
return common_inputs
class _A ( snake_case ):
'''simple docstring'''
@property
def snake_case_ ( self ):
'''simple docstring'''
pass
def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
return VisionEncoderDecoderEncoderOnnxConfig(SCREAMING_SNAKE_CASE_ )
def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = "default" ):
'''simple docstring'''
snake_case : int = encoder_config.hidden_size
return VisionEncoderDecoderDecoderOnnxConfig(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ )
| 36 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
__lowercase : Dict ={
"""configuration_blip""": [
"""BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BlipConfig""",
"""BlipTextConfig""",
"""BlipVisionConfig""",
],
"""processing_blip""": ["""BlipProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase : Any =["""BlipImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase : List[Any] =[
"""BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BlipModel""",
"""BlipPreTrainedModel""",
"""BlipForConditionalGeneration""",
"""BlipForQuestionAnswering""",
"""BlipVisionModel""",
"""BlipTextModel""",
"""BlipForImageTextRetrieval""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase : List[Any] =[
"""TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBlipModel""",
"""TFBlipPreTrainedModel""",
"""TFBlipForConditionalGeneration""",
"""TFBlipForQuestionAnswering""",
"""TFBlipVisionModel""",
"""TFBlipTextModel""",
"""TFBlipForImageTextRetrieval""",
]
if TYPE_CHECKING:
from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig
from .processing_blip import BlipProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_blip import BlipImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip import (
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
BlipModel,
BlipPreTrainedModel,
BlipTextModel,
BlipVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blip import (
TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBlipForConditionalGeneration,
TFBlipForImageTextRetrieval,
TFBlipForQuestionAnswering,
TFBlipModel,
TFBlipPreTrainedModel,
TFBlipTextModel,
TFBlipVisionModel,
)
else:
import sys
__lowercase : Union[str, Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 54 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase : Optional[Any] = {
"""configuration_clipseg""": [
"""CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""CLIPSegConfig""",
"""CLIPSegTextConfig""",
"""CLIPSegVisionConfig""",
],
"""processing_clipseg""": ["""CLIPSegProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Dict = [
"""CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""CLIPSegModel""",
"""CLIPSegPreTrainedModel""",
"""CLIPSegTextModel""",
"""CLIPSegVisionModel""",
"""CLIPSegForImageSegmentation""",
]
if TYPE_CHECKING:
from .configuration_clipseg import (
CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPSegConfig,
CLIPSegTextConfig,
CLIPSegVisionConfig,
)
from .processing_clipseg import CLIPSegProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clipseg import (
CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPSegForImageSegmentation,
CLIPSegModel,
CLIPSegPreTrainedModel,
CLIPSegTextModel,
CLIPSegVisionModel,
)
else:
import sys
UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 37 |
import fire
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer
from utils import SeqaSeqDataset, pickle_save
def a__ ( lowercase__ , lowercase__ , lowercase__=1_0_2_4 , lowercase__=1_0_2_4 , lowercase__=False , **lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =AutoTokenizer.from_pretrained(lowercase__ )
UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="train" , **lowercase__ )
UpperCAmelCase_ =tok.pad_token_id
def get_lens(lowercase__ ):
UpperCAmelCase_ =tqdm(
DataLoader(lowercase__ , batch_size=5_1_2 , num_workers=8 , shuffle=lowercase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , )
UpperCAmelCase_ =[]
for batch in dl:
UpperCAmelCase_ =batch["input_ids"].ne(lowercase__ ).sum(1 ).tolist()
UpperCAmelCase_ =batch["labels"].ne(lowercase__ ).sum(1 ).tolist()
if consider_target:
for src, tgt in zip(lowercase__ , lowercase__ ):
max_lens.append(max(lowercase__ , lowercase__ ) )
else:
max_lens.extend(lowercase__ )
return max_lens
UpperCAmelCase_ =get_lens(lowercase__ )
UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="val" , **lowercase__ )
UpperCAmelCase_ =get_lens(lowercase__ )
pickle_save(lowercase__ , train_ds.len_file )
pickle_save(lowercase__ , val_ds.len_file )
if __name__ == "__main__":
fire.Fire(save_len_file)
| 54 | 0 |
'''simple docstring'''
def UpperCamelCase__ ( __magic_name__ : int ) -> bool:
'''simple docstring'''
if not isinstance(__magic_name__ , __magic_name__ ):
raise ValueError("""check_bouncy() accepts only integer arguments""" )
snake_case__ : List[str] = str(__magic_name__ )
snake_case__ : str = """""".join(sorted(__magic_name__ ) )
return sorted_str_n != str_n and sorted_str_n[::-1] != str_n
def UpperCamelCase__ ( __magic_name__ : float = 99 ) -> int:
'''simple docstring'''
if not 0 < percent < 1_00:
raise ValueError("""solution() only accepts values from 0 to 100""" )
snake_case__ : Union[str, Any] = 0
snake_case__ : int = 1
while True:
if check_bouncy(__magic_name__ ):
bouncy_num += 1
if (bouncy_num / num) * 1_00 >= percent:
return num
num += 1
if __name__ == "__main__":
from doctest import testmod
testmod()
print(F'{solution(99)}')
| 38 |
from __future__ import annotations
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTForImageClassification, TFViTModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class A :
def __init__( self: Any , _lowerCAmelCase: str , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: List[str]=30 , _lowerCAmelCase: List[Any]=2 , _lowerCAmelCase: List[str]=3 , _lowerCAmelCase: Dict=True , _lowerCAmelCase: int=True , _lowerCAmelCase: Tuple=32 , _lowerCAmelCase: str=2 , _lowerCAmelCase: Dict=4 , _lowerCAmelCase: Dict=37 , _lowerCAmelCase: Optional[Any]="gelu" , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: Union[str, Any]=10 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=3 , _lowerCAmelCase: Optional[int]=None , ) -> Any:
'''simple docstring'''
UpperCAmelCase_ =parent
UpperCAmelCase_ =batch_size
UpperCAmelCase_ =image_size
UpperCAmelCase_ =patch_size
UpperCAmelCase_ =num_channels
UpperCAmelCase_ =is_training
UpperCAmelCase_ =use_labels
UpperCAmelCase_ =hidden_size
UpperCAmelCase_ =num_hidden_layers
UpperCAmelCase_ =num_attention_heads
UpperCAmelCase_ =intermediate_size
UpperCAmelCase_ =hidden_act
UpperCAmelCase_ =hidden_dropout_prob
UpperCAmelCase_ =attention_probs_dropout_prob
UpperCAmelCase_ =type_sequence_label_size
UpperCAmelCase_ =initializer_range
UpperCAmelCase_ =scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCAmelCase_ =(image_size // patch_size) ** 2
UpperCAmelCase_ =num_patches + 1
def lowerCAmelCase__ ( self: Any ) -> int:
'''simple docstring'''
UpperCAmelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ =None
if self.use_labels:
UpperCAmelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ =self.get_config()
return config, pixel_values, labels
def lowerCAmelCase__ ( self: List[Any] ) -> Dict:
'''simple docstring'''
return ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , )
def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Any , _lowerCAmelCase: List[str] ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ =TFViTModel(config=_lowerCAmelCase )
UpperCAmelCase_ =model(_lowerCAmelCase , training=_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# Test with an image with different size than the one specified in config.
UpperCAmelCase_ =self.image_size // 2
UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size]
UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase )
UpperCAmelCase_ =(image_size // self.patch_size) ** 2 + 1
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) )
def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[Any] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ =self.type_sequence_label_size
UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase )
UpperCAmelCase_ =model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# Test with an image with different size than the one specified in config.
UpperCAmelCase_ =self.image_size // 2
UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size]
UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCAmelCase_ =1
UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase )
UpperCAmelCase_ =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase_ =model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowerCAmelCase__ ( self: Any ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ =self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs
UpperCAmelCase_ ={"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class A ( __lowercase , __lowercase , unittest.TestCase ):
_snake_case =(TFViTModel, TFViTForImageClassification) if is_tf_available() else ()
_snake_case =(
{'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification}
if is_tf_available()
else {}
)
_snake_case =False
_snake_case =False
_snake_case =False
def lowerCAmelCase__ ( self: int ) -> int:
'''simple docstring'''
UpperCAmelCase_ =TFViTModelTester(self )
UpperCAmelCase_ =ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 )
def lowerCAmelCase__ ( self: Optional[Any] ) -> str:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="ViT does not use inputs_embeds" )
def lowerCAmelCase__ ( self: Dict ) -> Tuple:
'''simple docstring'''
pass
@unittest.skip(reason="ViT does not use inputs_embeds" )
def lowerCAmelCase__ ( self: int ) -> Optional[Any]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: List[Any] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ =model_class(_lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
UpperCAmelCase_ =model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_lowerCAmelCase , tf.keras.layers.Layer ) )
def lowerCAmelCase__ ( self: List[str] ) -> int:
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ =model_class(_lowerCAmelCase )
UpperCAmelCase_ =inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ =[*signature.parameters.keys()]
UpperCAmelCase_ =["pixel_values"]
self.assertListEqual(arg_names[:1] , _lowerCAmelCase )
def lowerCAmelCase__ ( self: int ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def lowerCAmelCase__ ( self: List[Any] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase )
@slow
def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ =TFViTModel.from_pretrained("google/vit-base-patch16-224" )
self.assertIsNotNone(_lowerCAmelCase )
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class A ( unittest.TestCase ):
@cached_property
def lowerCAmelCase__ ( self: Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None
@slow
def lowerCAmelCase__ ( self: Dict ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ =TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" )
UpperCAmelCase_ =self.default_image_processor
UpperCAmelCase_ =prepare_img()
UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="tf" )
# forward pass
UpperCAmelCase_ =model(**_lowerCAmelCase )
# verify the logits
UpperCAmelCase_ =tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , _lowerCAmelCase )
UpperCAmelCase_ =tf.constant([-0.27_44, 0.82_15, -0.08_36] )
tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 )
| 54 | 0 |
import io
import json
import fsspec
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.json import JsonDatasetReader, JsonDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = tmp_path / '''cache'''
snake_case_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
snake_case_ = JsonDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read()
_check_json_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
] , )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = tmp_path / '''cache'''
snake_case_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
snake_case_ = features.copy() if features else default_expected_features
snake_case_ = (
Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None
)
snake_case_ = JsonDatasetReader(SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read()
_check_json_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''},
] , )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = tmp_path / '''cache'''
snake_case_ = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}
snake_case_ = features.copy() if features else default_expected_features
snake_case_ = (
Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None
)
snake_case_ = JsonDatasetReader(SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read()
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_3", "col_1", "col_2"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
# jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"}
snake_case_ = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''}
snake_case_ = features.copy()
snake_case_ = (
Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None
)
snake_case_ = tmp_path / '''cache'''
snake_case_ = JsonDatasetReader(SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read()
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_2", "col_3", "col_1"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = tmp_path / '''cache'''
snake_case_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
snake_case_ = JsonDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , split=SCREAMING_SNAKE_CASE__ ).read()
_check_json_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('''path_type''' , [str, list] )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = jsonl_path
elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = [jsonl_path]
snake_case_ = tmp_path / '''cache'''
snake_case_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
snake_case_ = JsonDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read()
_check_json_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=("train",) ):
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
for split in splits:
snake_case_ = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = tmp_path / '''cache'''
snake_case_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
snake_case_ = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read()
_check_json_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
] , )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = tmp_path / '''cache'''
snake_case_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
snake_case_ = features.copy() if features else default_expected_features
snake_case_ = (
Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None
)
snake_case_ = JsonDatasetReader({'''train''': jsonl_path} , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read()
_check_json_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
if split:
snake_case_ = {split: jsonl_path}
else:
snake_case_ = '''train'''
snake_case_ = {'''train''': jsonl_path, '''test''': jsonl_path}
snake_case_ = tmp_path / '''cache'''
snake_case_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
snake_case_ = JsonDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read()
_check_json_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
return json.load(SCREAMING_SNAKE_CASE__ )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
return [json.loads(SCREAMING_SNAKE_CASE__ ) for line in buffer]
class snake_case_ :
'''simple docstring'''
@pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] )
def snake_case__( self : str , _UpperCamelCase : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : int ) ->str:
with io.BytesIO() as buffer:
JsonDatasetWriter(_UpperCamelCase , _UpperCamelCase , lines=_UpperCamelCase ).write()
buffer.seek(0 )
snake_case_ = load_json_function(_UpperCamelCase )
assert isinstance(_UpperCamelCase , _UpperCamelCase )
assert isinstance(exported_content[0] , _UpperCamelCase )
assert len(_UpperCamelCase ) == 1_0
@pytest.mark.parametrize(
'''orient, container, keys, len_at''' , [
('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None),
('''split''', dict, {'''columns''', '''data'''}, '''data'''),
('''index''', dict, set('''0123456789''' ), None),
('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''),
('''values''', list, None, None),
('''table''', dict, {'''schema''', '''data'''}, '''data'''),
] , )
def snake_case__( self : int , _UpperCamelCase : Optional[Any] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict , _UpperCamelCase : List[Any] ) ->List[Any]:
with io.BytesIO() as buffer:
JsonDatasetWriter(_UpperCamelCase , _UpperCamelCase , lines=_UpperCamelCase , orient=_UpperCamelCase ).write()
buffer.seek(0 )
snake_case_ = load_json(_UpperCamelCase )
assert isinstance(_UpperCamelCase , _UpperCamelCase )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(_UpperCamelCase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' )
if len_at:
assert len(exported_content[len_at] ) == 1_0
else:
assert len(_UpperCamelCase ) == 1_0
@pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] )
def snake_case__( self : str , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int ) ->Tuple:
with io.BytesIO() as buffer:
JsonDatasetWriter(_UpperCamelCase , _UpperCamelCase , lines=_UpperCamelCase , num_proc=2 ).write()
buffer.seek(0 )
snake_case_ = load_json_function(_UpperCamelCase )
assert isinstance(_UpperCamelCase , _UpperCamelCase )
assert isinstance(exported_content[0] , _UpperCamelCase )
assert len(_UpperCamelCase ) == 1_0
@pytest.mark.parametrize(
'''orient, container, keys, len_at''' , [
('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None),
('''split''', dict, {'''columns''', '''data'''}, '''data'''),
('''index''', dict, set('''0123456789''' ), None),
('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''),
('''values''', list, None, None),
('''table''', dict, {'''schema''', '''data'''}, '''data'''),
] , )
def snake_case__( self : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : str , _UpperCamelCase : Optional[Any] , _UpperCamelCase : str ) ->Optional[Any]:
with io.BytesIO() as buffer:
JsonDatasetWriter(_UpperCamelCase , _UpperCamelCase , lines=_UpperCamelCase , orient=_UpperCamelCase , num_proc=2 ).write()
buffer.seek(0 )
snake_case_ = load_json(_UpperCamelCase )
assert isinstance(_UpperCamelCase , _UpperCamelCase )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(_UpperCamelCase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' )
if len_at:
assert len(exported_content[len_at] ) == 1_0
else:
assert len(_UpperCamelCase ) == 1_0
def snake_case__( self : List[str] , _UpperCamelCase : Union[str, Any] ) ->Union[str, Any]:
with pytest.raises(_UpperCamelCase ):
with io.BytesIO() as buffer:
JsonDatasetWriter(_UpperCamelCase , _UpperCamelCase , num_proc=0 )
@pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] )
def snake_case__( self : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] ) ->List[Any]:
snake_case_ = tmp_path_factory.mktemp('''data''' ) / f'''test.json.{extension}'''
snake_case_ = str(shared_datadir / f'''test_file.json.{extension}''' )
JsonDatasetWriter(_UpperCamelCase , _UpperCamelCase , compression=_UpperCamelCase ).write()
with fsspec.open(_UpperCamelCase , '''rb''' , compression='''infer''' ) as f:
snake_case_ = f.read()
with fsspec.open(_UpperCamelCase , '''rb''' , compression='''infer''' ) as f:
snake_case_ = f.read()
assert exported_content == original_content
| 39 |
from __future__ import annotations
def a__ ( lowercase__ , lowercase__ ):
'''simple docstring'''
if len(lowercase__ ) == 0:
return False
UpperCAmelCase_ =len(lowercase__ ) // 2
if a_list[midpoint] == item:
return True
if item < a_list[midpoint]:
return binary_search(a_list[:midpoint] , lowercase__ )
else:
return binary_search(a_list[midpoint + 1 :] , lowercase__ )
if __name__ == "__main__":
__lowercase : Tuple =input("""Enter numbers separated by comma:\n""").strip()
__lowercase : Optional[Any] =[int(item.strip()) for item in user_input.split(""",""")]
__lowercase : List[Any] =int(input("""Enter the number to be found in the list:\n""").strip())
__lowercase : Optional[Any] ="""""" if binary_search(sequence, target) else """not """
print(f"""{target} was {not_str}found in {sequence}""")
| 54 | 0 |
from __future__ import annotations
import queue
class lowerCAmelCase_ :
def __init__( self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
UpperCamelCase : Optional[Any] = data
UpperCamelCase : Any = None
UpperCamelCase : List[Any] = None
def UpperCamelCase ( ) -> TreeNode:
print('\n********Press N to stop entering at any point of time********\n' )
UpperCamelCase : Optional[int] = input('Enter the value of the root node: ' ).strip().lower()
UpperCamelCase : queue.Queue = queue.Queue()
UpperCamelCase : int = TreeNode(int(snake_case__ ) )
q.put(snake_case__ )
while not q.empty():
UpperCamelCase : Tuple = q.get()
UpperCamelCase : List[Any] = F"""Enter the left node of {node_found.data}: """
UpperCamelCase : List[Any] = input(snake_case__ ).strip().lower() or 'n'
if check == "n":
return tree_node
UpperCamelCase : Dict = TreeNode(int(snake_case__ ) )
UpperCamelCase : Any = left_node
q.put(snake_case__ )
UpperCamelCase : List[Any] = F"""Enter the right node of {node_found.data}: """
UpperCamelCase : Optional[Any] = input(snake_case__ ).strip().lower() or 'n'
if check == "n":
return tree_node
UpperCamelCase : Tuple = TreeNode(int(snake_case__ ) )
UpperCamelCase : str = right_node
q.put(snake_case__ )
raise
def UpperCamelCase ( snake_case__ : TreeNode ) -> None:
if not isinstance(snake_case__ , snake_case__ ) or not node:
return
print(node.data , end=',' )
pre_order(node.left )
pre_order(node.right )
def UpperCamelCase ( snake_case__ : TreeNode ) -> None:
if not isinstance(snake_case__ , snake_case__ ) or not node:
return
in_order(node.left )
print(node.data , end=',' )
in_order(node.right )
def UpperCamelCase ( snake_case__ : TreeNode ) -> None:
if not isinstance(snake_case__ , snake_case__ ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data , end=',' )
def UpperCamelCase ( snake_case__ : TreeNode ) -> None:
if not isinstance(snake_case__ , snake_case__ ) or not node:
return
UpperCamelCase : queue.Queue = queue.Queue()
q.put(snake_case__ )
while not q.empty():
UpperCamelCase : List[str] = q.get()
print(node_dequeued.data , end=',' )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def UpperCamelCase ( snake_case__ : TreeNode ) -> None:
if not isinstance(snake_case__ , snake_case__ ) or not node:
return
UpperCamelCase : queue.Queue = queue.Queue()
q.put(snake_case__ )
while not q.empty():
UpperCamelCase : str = []
while not q.empty():
UpperCamelCase : Optional[Any] = q.get()
print(node_dequeued.data , end=',' )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(snake_case__ )
def UpperCamelCase ( snake_case__ : TreeNode ) -> None:
if not isinstance(snake_case__ , snake_case__ ) or not node:
return
UpperCamelCase : list[TreeNode] = []
UpperCamelCase : Dict = node
while n or stack:
while n: # start from root node, find its left child
print(n.data , end=',' )
stack.append(snake_case__ )
UpperCamelCase : List[str] = n.left
# end of while means current node doesn't have left child
UpperCamelCase : Union[str, Any] = stack.pop()
# start to traverse its right child
UpperCamelCase : int = n.right
def UpperCamelCase ( snake_case__ : TreeNode ) -> None:
if not isinstance(snake_case__ , snake_case__ ) or not node:
return
UpperCamelCase : list[TreeNode] = []
UpperCamelCase : Tuple = node
while n or stack:
while n:
stack.append(snake_case__ )
UpperCamelCase : List[Any] = n.left
UpperCamelCase : int = stack.pop()
print(n.data , end=',' )
UpperCamelCase : Optional[Any] = n.right
def UpperCamelCase ( snake_case__ : TreeNode ) -> None:
if not isinstance(snake_case__ , snake_case__ ) or not node:
return
UpperCamelCase , UpperCamelCase : Optional[int] = [], []
UpperCamelCase : List[str] = node
stacka.append(snake_case__ )
while stacka: # to find the reversed order of post order, store it in stack2
UpperCamelCase : Optional[Any] = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(snake_case__ )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data , end=',' )
def UpperCamelCase ( snake_case__ : str = "" , snake_case__ : List[str]=50 , snake_case__ : List[Any]="*" ) -> str:
if not s:
return "\n" + width * char
UpperCamelCase , UpperCamelCase : Union[str, Any] = divmod(width - len(snake_case__ ) - 2 , 2 )
return F"""{left * char} {s} {(left + extra) * char}"""
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt('''Binary Tree Traversals'''))
__UpperCAmelCase = build_tree()
print(prompt('''Pre Order Traversal'''))
pre_order(node)
print(prompt() + '''\n''')
print(prompt('''In Order Traversal'''))
in_order(node)
print(prompt() + '''\n''')
print(prompt('''Post Order Traversal'''))
post_order(node)
print(prompt() + '''\n''')
print(prompt('''Level Order Traversal'''))
level_order(node)
print(prompt() + '''\n''')
print(prompt('''Actual Level Order Traversal'''))
level_order_actual(node)
print('''*''' * 50 + '''\n''')
print(prompt('''Pre Order Traversal - Iteration Version'''))
pre_order_iter(node)
print(prompt() + '''\n''')
print(prompt('''In Order Traversal - Iteration Version'''))
in_order_iter(node)
print(prompt() + '''\n''')
print(prompt('''Post Order Traversal - Iteration Version'''))
post_order_iter(node)
print(prompt())
| 40 |
import os
from itertools import chain
from random import randrange, shuffle
import pytest
from .sola import PokerHand
__lowercase : Any =(
"""4S 3H 2C 7S 5H""",
"""9D 8H 2C 6S 7H""",
"""2D 6D 9D TH 7D""",
"""TC 8C 2S JH 6C""",
"""JH 8S TH AH QH""",
"""TS KS 5S 9S AC""",
"""KD 6S 9D TH AD""",
"""KS 8D 4D 9S 4S""", # pair
"""8C 4S KH JS 4D""", # pair
"""QH 8H KD JH 8S""", # pair
"""KC 4H KS 2H 8D""", # pair
"""KD 4S KC 3H 8S""", # pair
"""AH 8S AS KC JH""", # pair
"""3H 4C 4H 3S 2H""", # 2 pairs
"""5S 5D 2C KH KH""", # 2 pairs
"""3C KH 5D 5S KH""", # 2 pairs
"""AS 3C KH AD KH""", # 2 pairs
"""7C 7S 3S 7H 5S""", # 3 of a kind
"""7C 7S KH 2H 7H""", # 3 of a kind
"""AC KH QH AH AS""", # 3 of a kind
"""2H 4D 3C AS 5S""", # straight (low ace)
"""3C 5C 4C 2C 6H""", # straight
"""6S 8S 7S 5H 9H""", # straight
"""JS QS 9H TS KH""", # straight
"""QC KH TS JS AH""", # straight (high ace)
"""8C 9C 5C 3C TC""", # flush
"""3S 8S 9S 5S KS""", # flush
"""4C 5C 9C 8C KC""", # flush
"""JH 8H AH KH QH""", # flush
"""3D 2H 3H 2C 2D""", # full house
"""2H 2C 3S 3H 3D""", # full house
"""KH KC 3S 3H 3D""", # full house
"""JC 6H JS JD JH""", # 4 of a kind
"""JC 7H JS JD JH""", # 4 of a kind
"""JC KH JS JD JH""", # 4 of a kind
"""2S AS 4S 5S 3S""", # straight flush (low ace)
"""2D 6D 3D 4D 5D""", # straight flush
"""5C 6C 3C 7C 4C""", # straight flush
"""JH 9H TH KH QH""", # straight flush
"""JH AH TH KH QH""", # royal flush (high ace straight flush)
)
__lowercase : Union[str, Any] =(
("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""),
("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""),
("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""),
("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""),
("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""),
("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""),
("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""),
("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""),
("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""),
("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""),
("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""),
("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""),
("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""),
("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""),
("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""),
("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""),
("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""),
("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""),
("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""),
("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""),
("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""),
("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""),
("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""),
("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""),
("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""),
("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""),
("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""),
("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""),
("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""),
("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""),
("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""),
("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""),
("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""),
)
__lowercase : List[str] =(
("""2H 3H 4H 5H 6H""", True),
("""AS AH 2H AD AC""", False),
("""2H 3H 5H 6H 7H""", True),
("""KS AS TS QS JS""", True),
("""8H 9H QS JS TH""", False),
("""AS 3S 4S 8S 2S""", True),
)
__lowercase : str =(
("""2H 3H 4H 5H 6H""", True),
("""AS AH 2H AD AC""", False),
("""2H 3H 5H 6H 7H""", False),
("""KS AS TS QS JS""", True),
("""8H 9H QS JS TH""", True),
)
__lowercase : Union[str, Any] =(
("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]),
("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]),
("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]),
("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]),
)
__lowercase : str =(
("""JH AH TH KH QH""", 0),
("""JH 9H TH KH QH""", 0),
("""JC KH JS JD JH""", 7),
("""KH KC 3S 3H 3D""", 6),
("""8C 9C 5C 3C TC""", 0),
("""JS QS 9H TS KH""", 0),
("""7C 7S KH 2H 7H""", 3),
("""3C KH 5D 5S KH""", 2),
("""QH 8H KD JH 8S""", 1),
("""2D 6D 9D TH 7D""", 0),
)
__lowercase : int =(
("""JH AH TH KH QH""", 23),
("""JH 9H TH KH QH""", 22),
("""JC KH JS JD JH""", 21),
("""KH KC 3S 3H 3D""", 20),
("""8C 9C 5C 3C TC""", 19),
("""JS QS 9H TS KH""", 18),
("""7C 7S KH 2H 7H""", 17),
("""3C KH 5D 5S KH""", 16),
("""QH 8H KD JH 8S""", 15),
("""2D 6D 9D TH 7D""", 14),
)
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ =randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) )
UpperCAmelCase_ =["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)]
UpperCAmelCase_ , UpperCAmelCase_ =SORTED_HANDS[play], SORTED_HANDS[oppo]
return hand, other, expected
def a__ ( lowercase__ = 1_0_0 ):
'''simple docstring'''
return (generate_random_hand() for _ in range(lowercase__ ))
@pytest.mark.parametrize("hand, expected" , lowercase__ )
def a__ ( lowercase__ , lowercase__ ):
'''simple docstring'''
assert PokerHand(lowercase__ )._is_flush() == expected
@pytest.mark.parametrize("hand, expected" , lowercase__ )
def a__ ( lowercase__ , lowercase__ ):
'''simple docstring'''
assert PokerHand(lowercase__ )._is_straight() == expected
@pytest.mark.parametrize("hand, expected, card_values" , lowercase__ )
def a__ ( lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =PokerHand(lowercase__ )
assert player._is_five_high_straight() == expected
assert player._card_values == card_values
@pytest.mark.parametrize("hand, expected" , lowercase__ )
def a__ ( lowercase__ , lowercase__ ):
'''simple docstring'''
assert PokerHand(lowercase__ )._is_same_kind() == expected
@pytest.mark.parametrize("hand, expected" , lowercase__ )
def a__ ( lowercase__ , lowercase__ ):
'''simple docstring'''
assert PokerHand(lowercase__ )._hand_type == expected
@pytest.mark.parametrize("hand, other, expected" , lowercase__ )
def a__ ( lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected
@pytest.mark.parametrize("hand, other, expected" , generate_random_hands() )
def a__ ( lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =[PokerHand(lowercase__ ) for hand in SORTED_HANDS]
UpperCAmelCase_ =poker_hands.copy()
shuffle(lowercase__ )
UpperCAmelCase_ =chain(sorted(lowercase__ ) )
for index, hand in enumerate(lowercase__ ):
assert hand == poker_hands[index]
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =[PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )]
pokerhands.sort(reverse=lowercase__ )
assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C"
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =PokerHand("2C 4S AS 3D 5C" )
UpperCAmelCase_ =True
UpperCAmelCase_ =[5, 4, 3, 2, 1_4]
for _ in range(1_0 ):
assert pokerhand._is_five_high_straight() == expected
assert pokerhand._card_values == expected_card_values
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =0
UpperCAmelCase_ =os.path.abspath(os.path.dirname(lowercase__ ) )
UpperCAmelCase_ =os.path.join(lowercase__ , "poker_hands.txt" )
with open(lowercase__ ) as file_hand:
for line in file_hand:
UpperCAmelCase_ =line[:1_4].strip()
UpperCAmelCase_ =line[1_5:].strip()
UpperCAmelCase_ , UpperCAmelCase_ =PokerHand(lowercase__ ), PokerHand(lowercase__ )
UpperCAmelCase_ =player.compare_with(lowercase__ )
if output == "Win":
answer += 1
assert answer == 3_7_6
| 54 | 0 |
'''simple docstring'''
from typing import Any
import numpy as np
def _A ( A__ ):
"""simple docstring"""
return np.array_equal(A__ , matrix.conjugate().T )
def _A ( A__ , A__ ):
"""simple docstring"""
__lowercase = v.conjugate().T
__lowercase = v_star.dot(A__ )
assert isinstance(A__ , np.ndarray )
return (v_star_dot.dot(A__ )) / (v_star.dot(A__ ))
def _A ( ):
"""simple docstring"""
__lowercase = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] )
__lowercase = np.array([[1], [2], [3]] )
assert is_hermitian(A__ ), F"{a} is not hermitian."
print(rayleigh_quotient(A__ , A__ ) )
__lowercase = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] )
assert is_hermitian(A__ ), F"{a} is not hermitian."
assert rayleigh_quotient(A__ , A__ ) == float(3 )
if __name__ == "__main__":
import doctest
doctest.testmod()
tests()
| 41 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__lowercase : int =logging.get_logger(__name__)
class A ( __lowercase ):
_snake_case =['''pixel_values''']
def __init__( self: List[Any] , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = PILImageResampling.BILINEAR , _lowerCAmelCase: bool = True , _lowerCAmelCase: Union[int, float] = 1 / 255 , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , **_lowerCAmelCase: Optional[int] , ) -> None:
'''simple docstring'''
super().__init__(**_lowerCAmelCase )
UpperCAmelCase_ =size if size is not None else {"shortest_edge": 384}
UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
UpperCAmelCase_ =do_resize
UpperCAmelCase_ =size
# Default value set here for backwards compatibility where the value in config is None
UpperCAmelCase_ =crop_pct if crop_pct is not None else 224 / 256
UpperCAmelCase_ =resample
UpperCAmelCase_ =do_rescale
UpperCAmelCase_ =rescale_factor
UpperCAmelCase_ =do_normalize
UpperCAmelCase_ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase_ =image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: float , _lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Any , ) -> np.ndarray:
'''simple docstring'''
UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
if "shortest_edge" not in size:
raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' )
UpperCAmelCase_ =size["shortest_edge"]
if shortest_edge < 384:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
UpperCAmelCase_ =int(shortest_edge / crop_pct )
UpperCAmelCase_ =get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase )
UpperCAmelCase_ =resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=_lowerCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_lowerCAmelCase , **_lowerCAmelCase )
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
_lowerCAmelCase , size=(shortest_edge, shortest_edge) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[int, float] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: str , ) -> Optional[Any]:
'''simple docstring'''
return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Dict , ) -> np.ndarray:
'''simple docstring'''
return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: ImageInput , _lowerCAmelCase: bool = None , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: float = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: ChannelDimension = ChannelDimension.FIRST , **_lowerCAmelCase: Optional[Any] , ) -> PIL.Image.Image:
'''simple docstring'''
UpperCAmelCase_ =do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ =crop_pct if crop_pct is not None else self.crop_pct
UpperCAmelCase_ =resample if resample is not None else self.resample
UpperCAmelCase_ =do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase_ =do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase_ =image_mean if image_mean is not None else self.image_mean
UpperCAmelCase_ =image_std if image_std is not None else self.image_std
UpperCAmelCase_ =size if size is not None else self.size
UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
UpperCAmelCase_ =make_list_of_images(_lowerCAmelCase )
if not valid_images(_lowerCAmelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_resize and size["shortest_edge"] < 384 and crop_pct is None:
raise ValueError("crop_pct must be specified if size < 384." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
UpperCAmelCase_ =[to_numpy_array(_lowerCAmelCase ) for image in images]
if do_resize:
UpperCAmelCase_ =[self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , crop_pct=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images]
if do_rescale:
UpperCAmelCase_ =[self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images]
if do_normalize:
UpperCAmelCase_ =[self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images]
UpperCAmelCase_ =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images]
UpperCAmelCase_ ={"pixel_values": images}
return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
| 54 | 0 |
'''simple docstring'''
def _UpperCamelCase ( __UpperCamelCase = 1_00_00_00 ) -> int:
lowerCamelCase_ = 1
lowerCamelCase_ = 1
lowerCamelCase_ = {1: 1}
for inputa in range(2 ,__UpperCamelCase ):
lowerCamelCase_ = 0
lowerCamelCase_ = inputa
while True:
if number in counters:
counter += counters[number]
break
if number % 2 == 0:
number //= 2
counter += 1
else:
lowerCamelCase_ = (3 * number) + 1
counter += 1
if inputa not in counters:
lowerCamelCase_ = counter
if counter > pre_counter:
lowerCamelCase_ = inputa
lowerCamelCase_ = counter
return largest_number
if __name__ == "__main__":
print(solution(int(input().strip())))
| 42 |
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
__lowercase : List[Any] =WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""])
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =test_results.split(" " )
UpperCAmelCase_ =0
UpperCAmelCase_ =0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
UpperCAmelCase_ =expressions[-2] if "=" in expressions[-1] else expressions[-1]
for i, expression in enumerate(lowercase__ ):
if "failed" in expression:
failed += int(expressions[i - 1] )
if "passed" in expression:
success += int(expressions[i - 1] )
return failed, success, time_spent
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ ={}
UpperCAmelCase_ =None
UpperCAmelCase_ =False
for line in failures_short_lines.split("\n" ):
if re.search(R"_ \[doctest\]" , lowercase__ ):
UpperCAmelCase_ =True
UpperCAmelCase_ =line.split(" " )[2]
elif in_error and not line.split(" " )[0].isdigit():
UpperCAmelCase_ =line
UpperCAmelCase_ =False
return failures
class A :
def __init__( self: Optional[Any] , _lowerCAmelCase: str , _lowerCAmelCase: Dict ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ =title
UpperCAmelCase_ =doc_test_results["time_spent"].split("," )[0]
UpperCAmelCase_ =doc_test_results["success"]
UpperCAmelCase_ =doc_test_results["failures"]
UpperCAmelCase_ =self.n_success + self.n_failures
# Failures and success of the modeling tests
UpperCAmelCase_ =doc_test_results
@property
def lowerCAmelCase__ ( self: Optional[Any] ) -> str:
'''simple docstring'''
UpperCAmelCase_ =[self._time_spent]
UpperCAmelCase_ =0
for time in time_spent:
UpperCAmelCase_ =time.split(":" )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(_lowerCAmelCase ) == 1:
UpperCAmelCase_ =[0, 0, time_parts[0]]
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 3600 + minutes * 60 + seconds
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60
return F'{int(_lowerCAmelCase )}h{int(_lowerCAmelCase )}m{int(_lowerCAmelCase )}s'
@property
def lowerCAmelCase__ ( self: int ) -> Dict:
'''simple docstring'''
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict:
'''simple docstring'''
return {
"type": "section",
"text": {
"type": "plain_text",
"text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.',
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def lowerCAmelCase__ ( self: Optional[Any] ) -> Dict:
'''simple docstring'''
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in'
F' {self.time}.'
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def lowerCAmelCase__ ( self: Tuple ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ =40
UpperCAmelCase_ ={k: v["failed"] for k, v in doc_test_results.items() if isinstance(_lowerCAmelCase , _lowerCAmelCase )}
UpperCAmelCase_ =""
for category, failures in category_failures.items():
if len(_lowerCAmelCase ) == 0:
continue
if report != "":
report += "\n\n"
report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(_lowerCAmelCase )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": F'The following examples had failures:\n\n\n{report}\n',
},
}
@property
def lowerCAmelCase__ ( self: Optional[Any] ) -> str:
'''simple docstring'''
UpperCAmelCase_ =[self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(_lowerCAmelCase )
@staticmethod
def lowerCAmelCase__ ( ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ =[
{
"type": "section",
"text": {
"type": "plain_text",
"text": "There was an issue running the tests.",
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
]
print("Sending the following payload" )
print(json.dumps({"blocks": json.loads(_lowerCAmelCase )} ) )
client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=_lowerCAmelCase , )
def lowerCAmelCase__ ( self: Dict ) -> List[str]:
'''simple docstring'''
print("Sending the following payload" )
print(json.dumps({"blocks": json.loads(self.payload )} ) )
UpperCAmelCase_ =F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else "All tests passed."
UpperCAmelCase_ =client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=_lowerCAmelCase , )
def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: int ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ =""
for key, value in failures.items():
UpperCAmelCase_ =value[:200] + " [Truncated]" if len(_lowerCAmelCase ) > 250 else value
failures_text += F'*{key}*\n_{value}_\n\n'
UpperCAmelCase_ =job_name
UpperCAmelCase_ ={"type": "section", "text": {"type": "mrkdwn", "text": text}}
if job_link is not None:
UpperCAmelCase_ ={
"type": "button",
"text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True},
"url": job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def lowerCAmelCase__ ( self: Any ) -> List[str]:
'''simple docstring'''
if self.thread_ts is None:
raise ValueError("Can only post reply if a post has been made." )
UpperCAmelCase_ =self.doc_test_results.pop("job_link" )
self.doc_test_results.pop("failures" )
self.doc_test_results.pop("success" )
self.doc_test_results.pop("time_spent" )
UpperCAmelCase_ =sorted(self.doc_test_results.items() , key=lambda _lowerCAmelCase : t[0] )
for job, job_result in sorted_dict:
if len(job_result["failures"] ):
UpperCAmelCase_ =F'*Num failures* :{len(job_result["failed"] )} \n'
UpperCAmelCase_ =job_result["failures"]
UpperCAmelCase_ =self.get_reply_blocks(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , text=_lowerCAmelCase )
print("Sending the following reply" )
print(json.dumps({"blocks": blocks} ) )
client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=F'Results for {job}' , blocks=_lowerCAmelCase , thread_ts=self.thread_ts["ts"] , )
time.sleep(1 )
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =os.environ["GITHUB_RUN_ID"]
UpperCAmelCase_ =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100'
UpperCAmelCase_ =requests.get(lowercase__ ).json()
UpperCAmelCase_ ={}
try:
jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} )
UpperCAmelCase_ =math.ceil((result["total_count"] - 1_0_0) / 1_0_0 )
for i in range(lowercase__ ):
UpperCAmelCase_ =requests.get(url + F'&page={i + 2}' ).json()
jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} )
return jobs
except Exception as e:
print("Unknown error, could not fetch links." , lowercase__ )
return {}
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ ={}
if os.path.exists(lowercase__ ):
UpperCAmelCase_ =os.listdir(lowercase__ )
for file in files:
try:
with open(os.path.join(lowercase__ , lowercase__ ) , encoding="utf-8" ) as f:
UpperCAmelCase_ =f.read()
except UnicodeDecodeError as e:
raise ValueError(F'Could not open {os.path.join(lowercase__ , lowercase__ )}.' ) from e
return _artifact
def a__ ( ):
'''simple docstring'''
class A :
def __init__( self: Tuple , _lowerCAmelCase: str ) -> Any:
'''simple docstring'''
UpperCAmelCase_ =name
UpperCAmelCase_ =[]
def __str__( self: Optional[int] ) -> Tuple:
'''simple docstring'''
return self.name
def lowerCAmelCase__ ( self: int , _lowerCAmelCase: str ) -> List[Any]:
'''simple docstring'''
self.paths.append({"name": self.name, "path": path} )
UpperCAmelCase_ ={}
UpperCAmelCase_ =filter(os.path.isdir , os.listdir() )
for directory in directories:
UpperCAmelCase_ =directory
if artifact_name not in _available_artifacts:
UpperCAmelCase_ =Artifact(lowercase__ )
_available_artifacts[artifact_name].add_path(lowercase__ )
return _available_artifacts
if __name__ == "__main__":
__lowercase : str =get_job_links()
__lowercase : Dict =retrieve_available_artifacts()
__lowercase : Optional[int] =collections.OrderedDict(
[
("""*.py""", """API Examples"""),
("""*.md""", """MD Examples"""),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
__lowercase : Any ={
v: {
"""failed""": [],
"""failures""": {},
}
for v in docs.values()
}
# Link to the GitHub Action job
__lowercase : Tuple =github_actions_job_links.get("""run_doctests""")
__lowercase : int =available_artifacts["""doc_tests_gpu_test_reports"""].paths[0]
__lowercase : str =retrieve_artifact(artifact_path["""name"""])
if "stats" in artifact:
__lowercase , __lowercase , __lowercase : Tuple =handle_test_results(artifact["""stats"""])
__lowercase : int =failed
__lowercase : int =success
__lowercase : str =time_spent[1:-1] + """, """
__lowercase : str =extract_first_line_failure(artifact["""failures_short"""])
for line in artifact["summary_short"].split("""\n"""):
if re.search("""FAILED""", line):
__lowercase : int =line.replace("""FAILED """, """""")
__lowercase : List[Any] =line.split()[0].replace("""\n""", """""")
if "::" in line:
__lowercase , __lowercase : Any =line.split("""::""")
else:
__lowercase , __lowercase : Dict =line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
__lowercase : Optional[int] =docs[file_regex]
doc_test_results[category]["failed"].append(test)
__lowercase : Tuple =all_failures[test] if test in all_failures else """N/A"""
__lowercase : Optional[int] =failure
break
__lowercase : Optional[int] =Message("""🤗 Results of the doc tests.""", doc_test_results)
message.post()
message.post_reply()
| 54 | 0 |
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate
# and perform gradient accumulation
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
lowerCAmelCase = 16
lowerCAmelCase = 32
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 16 ):
"""simple docstring"""
lowercase__ = AutoTokenizer.from_pretrained('''bert-base-cased''' )
lowercase__ = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(SCREAMING_SNAKE_CASE ):
# max_length=None => use the model max length (it's actually the default)
lowercase__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
lowercase__ = datasets.map(
SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowercase__ = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(SCREAMING_SNAKE_CASE ):
# On TPU it's best to pad everything to the same length or training will be very slow.
lowercase__ = 1_28 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
lowercase__ = 16
elif accelerator.mixed_precision != "no":
lowercase__ = 8
else:
lowercase__ = None
return tokenizer.pad(
SCREAMING_SNAKE_CASE , padding='''longest''' , max_length=SCREAMING_SNAKE_CASE , pad_to_multiple_of=SCREAMING_SNAKE_CASE , return_tensors='''pt''' , )
# Instantiate dataloaders.
lowercase__ = DataLoader(
tokenized_datasets['''train'''] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE )
lowercase__ = DataLoader(
tokenized_datasets['''validation'''] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
lowerCAmelCase = mocked_dataloaders # noqa: F811
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , SCREAMING_SNAKE_CASE ) == "1":
lowercase__ = 2
# New Code #
lowercase__ = int(args.gradient_accumulation_steps )
# Initialize accelerator
lowercase__ = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=SCREAMING_SNAKE_CASE )
if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1:
raise NotImplementedError(
'''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''' )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowercase__ = config['''lr''']
lowercase__ = int(config['''num_epochs'''] )
lowercase__ = int(config['''seed'''] )
lowercase__ = int(config['''batch_size'''] )
lowercase__ = evaluate.load('''glue''' , '''mrpc''' )
set_seed(SCREAMING_SNAKE_CASE )
lowercase__ , lowercase__ = get_dataloaders(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowercase__ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=SCREAMING_SNAKE_CASE )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowercase__ = model.to(accelerator.device )
# Instantiate optimizer
lowercase__ = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE )
# Instantiate scheduler
lowercase__ = get_linear_schedule_with_warmup(
optimizer=SCREAMING_SNAKE_CASE , num_warmup_steps=1_00 , num_training_steps=(len(SCREAMING_SNAKE_CASE ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Now we train the model
for epoch in range(SCREAMING_SNAKE_CASE ):
model.train()
for step, batch in enumerate(SCREAMING_SNAKE_CASE ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
# New code #
# We use the new `accumulate` context manager to perform gradient accumulation
# We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests.
with accelerator.accumulate(SCREAMING_SNAKE_CASE ):
lowercase__ = model(**SCREAMING_SNAKE_CASE )
lowercase__ = output.loss
accelerator.backward(SCREAMING_SNAKE_CASE )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(SCREAMING_SNAKE_CASE ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowercase__ = model(**SCREAMING_SNAKE_CASE )
lowercase__ = outputs.logits.argmax(dim=-1 )
lowercase__ , lowercase__ = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=SCREAMING_SNAKE_CASE , references=SCREAMING_SNAKE_CASE , )
lowercase__ = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'epoch {epoch}:' , SCREAMING_SNAKE_CASE )
def _a ( ):
"""simple docstring"""
lowercase__ = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
# New Code #
parser.add_argument(
'''--gradient_accumulation_steps''' , type=SCREAMING_SNAKE_CASE , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
lowercase__ = parser.parse_args()
lowercase__ = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 43 |
def a__ ( lowercase__ = 2_0_0 ):
'''simple docstring'''
UpperCAmelCase_ =[1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0]
UpperCAmelCase_ =[0] * (pence + 1)
UpperCAmelCase_ =1 # base case: 1 way to make 0 pence
for coin in coins:
for i in range(lowercase__ , pence + 1 , 1 ):
number_of_ways[i] += number_of_ways[i - coin]
return number_of_ways[pence]
if __name__ == "__main__":
assert solution(200) == 7_3682
| 54 | 0 |
'''simple docstring'''
def A_ ( _lowerCAmelCase : list ):
"""simple docstring"""
if len(_lowerCAmelCase ) < 2:
return collection
def circle_sort_util(_lowerCAmelCase : list , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> bool:
_lowerCamelCase : str = False
if low == high:
return swapped
_lowerCamelCase : str = low
_lowerCamelCase : Dict = high
while left < right:
if collection[left] > collection[right]:
_lowerCamelCase , _lowerCamelCase : Optional[int] = (
collection[right],
collection[left],
)
_lowerCamelCase : List[Any] = True
left += 1
right -= 1
if left == right and collection[left] > collection[right + 1]:
_lowerCamelCase , _lowerCamelCase : Any = (
collection[right + 1],
collection[left],
)
_lowerCamelCase : Optional[int] = True
_lowerCamelCase : List[Any] = low + int((high - low) / 2 )
_lowerCamelCase : List[Any] = circle_sort_util(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
_lowerCamelCase : Any = circle_sort_util(_lowerCAmelCase , mid + 1 , _lowerCAmelCase )
return swapped or left_swap or right_swap
_lowerCamelCase : str = True
while is_not_sorted is True:
_lowerCamelCase : str = circle_sort_util(_lowerCAmelCase , 0 , len(_lowerCAmelCase ) - 1 )
return collection
if __name__ == "__main__":
UpperCAmelCase_ : List[Any] = input('Enter numbers separated by a comma:\n').strip()
UpperCAmelCase_ : Tuple = [int(item) for item in user_input.split(',')]
print(circle_sort(unsorted))
| 44 |
import sys
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =len(lowercase__ )
UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )]
UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )]
for chain_length in range(2 , lowercase__ ):
for a in range(1 , n - chain_length + 1 ):
UpperCAmelCase_ =a + chain_length - 1
UpperCAmelCase_ =sys.maxsize
for c in range(lowercase__ , lowercase__ ):
UpperCAmelCase_ =(
matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b]
)
if cost < matrix[a][b]:
UpperCAmelCase_ =cost
UpperCAmelCase_ =c
return matrix, sol
def a__ ( lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
if i == j:
print("A" + str(lowercase__ ) , end=" " )
else:
print("(" , end=" " )
print_optiomal_solution(lowercase__ , lowercase__ , optimal_solution[i][j] )
print_optiomal_solution(lowercase__ , optimal_solution[i][j] + 1 , lowercase__ )
print(")" , end=" " )
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =[3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5]
UpperCAmelCase_ =len(lowercase__ )
# Size of matrix created from above array will be
# 30*35 35*15 15*5 5*10 10*20 20*25
UpperCAmelCase_ , UpperCAmelCase_ =matrix_chain_order(lowercase__ )
print("No. of Operation required: " + str(matrix[1][n - 1] ) )
print_optiomal_solution(lowercase__ , 1 , n - 1 )
if __name__ == "__main__":
main()
| 54 | 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {"vocab_file": "vocab.txt"}
UpperCamelCase = {
"vocab_file": {
"YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt",
"YituTech/conv-bert-medium-small": (
"https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt"
),
"YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt",
}
}
UpperCamelCase = {
"YituTech/conv-bert-base": 512,
"YituTech/conv-bert-medium-small": 512,
"YituTech/conv-bert-small": 512,
}
UpperCamelCase = {
"YituTech/conv-bert-base": {"do_lower_case": True},
"YituTech/conv-bert-medium-small": {"do_lower_case": True},
"YituTech/conv-bert-small": {"do_lower_case": True},
}
class lowerCAmelCase_ ( lowercase ):
"""simple docstring"""
_snake_case : Any = VOCAB_FILES_NAMES
_snake_case : Any = PRETRAINED_VOCAB_FILES_MAP
_snake_case : List[Any] = PRETRAINED_INIT_CONFIGURATION
_snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case : Union[str, Any] = ConvBertTokenizer
def __init__( self :int , lowerCamelCase__ :Dict=None , lowerCamelCase__ :int=None , lowerCamelCase__ :Optional[Any]=True , lowerCamelCase__ :Optional[int]="[UNK]" , lowerCamelCase__ :Optional[Any]="[SEP]" , lowerCamelCase__ :List[Any]="[PAD]" , lowerCamelCase__ :List[str]="[CLS]" , lowerCamelCase__ :Optional[Any]="[MASK]" , lowerCamelCase__ :Any=True , lowerCamelCase__ :Tuple=None , **lowerCamelCase__ :Optional[int] , ):
super().__init__(
lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , tokenize_chinese_chars=lowerCamelCase__ , strip_accents=lowerCamelCase__ , **lowerCamelCase__ , )
UpperCamelCase__ :List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , lowerCamelCase__ ) != do_lower_case
or normalizer_state.get("""strip_accents""" , lowerCamelCase__ ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , lowerCamelCase__ ) != tokenize_chinese_chars
):
UpperCamelCase__ :List[str] = getattr(lowerCamelCase__ , normalizer_state.pop("""type""" ) )
UpperCamelCase__ :Optional[Any] = do_lower_case
UpperCamelCase__ :List[str] = strip_accents
UpperCamelCase__ :Optional[Any] = tokenize_chinese_chars
UpperCamelCase__ :Optional[Any] = normalizer_class(**lowerCamelCase__ )
UpperCamelCase__ :Tuple = do_lower_case
def __a ( self :Optional[Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Dict=None ):
UpperCamelCase__ :Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __a ( self :Dict , lowerCamelCase__ :List[int] , lowerCamelCase__ :Optional[List[int]] = None ):
UpperCamelCase__ :Optional[int] = [self.sep_token_id]
UpperCamelCase__ :Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __a ( self :Optional[Any] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[str] = None ):
UpperCamelCase__ :Optional[int] = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ )
return tuple(lowerCamelCase__ )
| 45 |
from math import loga
def a__ ( lowercase__ ):
'''simple docstring'''
if a < 0:
raise ValueError("Input value must be a positive integer" )
elif isinstance(lowercase__ , lowercase__ ):
raise TypeError("Input value must be a 'int' type" )
return 0 if (a == 0) else int(loga(a & -a ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 54 | 0 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
from ..models.clipseg import CLIPSegForImageSegmentation
from ..utils import is_vision_available, requires_backends
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class A_ ( _a ):
lowerCAmelCase__ = (
'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.'
'It takes two arguments named `image` which should be the original image, and `label` which should be a text '
'describing the elements what should be identified in the segmentation mask. The tool returns the mask.'
)
lowerCAmelCase__ = 'CIDAS/clipseg-rd64-refined'
lowerCAmelCase__ = 'image_segmenter'
lowerCAmelCase__ = CLIPSegForImageSegmentation
lowerCAmelCase__ = ['image', 'text']
lowerCAmelCase__ = ['image']
def __init__( self: List[Any] ,*__lowerCAmelCase: List[Any] ,**__lowerCAmelCase: Union[str, Any] ):
'''simple docstring'''
requires_backends(self ,["vision"] )
super().__init__(*__lowerCAmelCase ,**__lowerCAmelCase )
def _lowercase ( self: Dict ,__lowerCAmelCase: "Image" ,__lowerCAmelCase: str ):
'''simple docstring'''
return self.pre_processor(text=[label] ,images=[image] ,padding=__lowerCAmelCase ,return_tensors="pt" )
def _lowercase ( self: Dict ,__lowerCAmelCase: Optional[int] ):
'''simple docstring'''
with torch.no_grad():
_lowerCamelCase : Optional[int] = self.model(**__lowerCAmelCase ).logits
return logits
def _lowercase ( self: List[Any] ,__lowerCAmelCase: Any ):
'''simple docstring'''
_lowerCamelCase : int = outputs.cpu().detach().numpy()
_lowerCamelCase : int = 0
_lowerCamelCase : Optional[Any] = 1
return Image.fromarray((array * 255).astype(np.uinta ) )
| 46 |
import argparse
from pathlib import Path
import torch
from transformers import OPTConfig, OPTModel
from transformers.utils import logging
logging.set_verbosity_info()
__lowercase : Union[str, Any] =logging.get_logger(__name__)
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" )
if "model" in sd.keys():
UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" )["model"]
# pop unnecessary weights
UpperCAmelCase_ =[
"decoder.version",
"decoder.output_projection.weight",
]
for key in keys_to_delete:
if key in sd:
sd.pop(lowercase__ )
UpperCAmelCase_ ={
"decoder.project_in_dim.weight": "decoder.project_in.weight",
"decoder.project_out_dim.weight": "decoder.project_out.weight",
"decoder.layer_norm.weight": "decoder.final_layer_norm.weight",
"decoder.layer_norm.bias": "decoder.final_layer_norm.bias",
}
for old_key, new_key in keys_to_rename.items():
if old_key in sd:
UpperCAmelCase_ =sd.pop(lowercase__ )
UpperCAmelCase_ =list(sd.keys() )
for key in keys:
if ".qkv_proj." in key:
UpperCAmelCase_ =sd[key]
# We split QKV in separate Q,K,V
UpperCAmelCase_ =key.replace(".qkv_proj." , ".q_proj." )
UpperCAmelCase_ =key.replace(".qkv_proj." , ".k_proj." )
UpperCAmelCase_ =key.replace(".qkv_proj." , ".v_proj." )
UpperCAmelCase_ =value.shape[0]
assert depth % 3 == 0
# `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
# https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =torch.split(lowercase__ , depth // 3 , dim=0 )
UpperCAmelCase_ =q
UpperCAmelCase_ =k
UpperCAmelCase_ =v
del sd[key]
return sd
@torch.no_grad()
def a__ ( lowercase__ , lowercase__ , lowercase__=None ):
'''simple docstring'''
UpperCAmelCase_ =load_checkpoint(lowercase__ )
if config is not None:
UpperCAmelCase_ =OPTConfig.from_pretrained(lowercase__ )
else:
UpperCAmelCase_ =OPTConfig()
UpperCAmelCase_ =OPTModel(lowercase__ ).half().eval()
model.load_state_dict(lowercase__ )
# Check results
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
model.save_pretrained(lowercase__ )
if __name__ == "__main__":
__lowercase : List[Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--fairseq_path""",
type=str,
help=(
"""path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:"""
""" https://huggingface.co/models?other=opt_metasq"""
),
)
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""")
__lowercase : str =parser.parse_args()
convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
| 54 | 0 |
def UpperCAmelCase__ ( lowerCamelCase_ : int = 1_0 ):
if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or n < 0:
raise ValueError('Invalid input' )
__a : Optional[Any] = 1_0**n
__a : Union[str, Any] = 2_8_4_3_3 * (pow(2 , 7_8_3_0_4_5_7 , lowerCamelCase_ )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(F"{solution(10) = }")
| 47 |
import PIL.Image
import PIL.ImageOps
from packaging import version
from PIL import Image
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""):
__lowercase : str ={
"""linear""": PIL.Image.Resampling.BILINEAR,
"""bilinear""": PIL.Image.Resampling.BILINEAR,
"""bicubic""": PIL.Image.Resampling.BICUBIC,
"""lanczos""": PIL.Image.Resampling.LANCZOS,
"""nearest""": PIL.Image.Resampling.NEAREST,
}
else:
__lowercase : Any ={
"""linear""": PIL.Image.LINEAR,
"""bilinear""": PIL.Image.BILINEAR,
"""bicubic""": PIL.Image.BICUBIC,
"""lanczos""": PIL.Image.LANCZOS,
"""nearest""": PIL.Image.NEAREST,
}
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =(images / 2 + 0.5).clamp(0 , 1 )
UpperCAmelCase_ =images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
UpperCAmelCase_ =numpy_to_pil(lowercase__ )
return images
def a__ ( lowercase__ ):
'''simple docstring'''
if images.ndim == 3:
UpperCAmelCase_ =images[None, ...]
UpperCAmelCase_ =(images * 2_5_5).round().astype("uint8" )
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
UpperCAmelCase_ =[Image.fromarray(image.squeeze() , mode="L" ) for image in images]
else:
UpperCAmelCase_ =[Image.fromarray(lowercase__ ) for image in images]
return pil_images
| 54 | 0 |
'''simple docstring'''
import json
import multiprocessing as mp
import re
from collections import defaultdict
from functools import partial
from typing import Dict, List, Optional, Set, Tuple, Type
from datasets import Dataset
from datasketch import MinHash, MinHashLSH
from dpu_utils.utils.iterators import ThreadedIterator
from tqdm import tqdm
UpperCAmelCase__ : int = re.compile("[^A-Za-z_0-9]")
# parameters used in DuplicationIndex
UpperCAmelCase__ : Any = 10
UpperCAmelCase__ : Union[str, Any] = 2_56
def A ( UpperCamelCase_ : List[str] ) -> Optional[MinHash]:
'''simple docstring'''
if len(UpperCamelCase_ ) < MIN_NUM_TOKENS:
return None
lowerCAmelCase__ = MinHash(num_perm=UpperCamelCase_ )
for token in set(UpperCamelCase_ ):
min_hash.update(token.encode() )
return min_hash
def A ( UpperCamelCase_ : str ) -> Set[str]:
'''simple docstring'''
return {t for t in NON_ALPHA.split(UpperCamelCase_ ) if len(t.strip() ) > 0}
class A :
def __init__( self : Tuple , *,
__magic_name__ : float = 0.85 , ):
"""simple docstring"""
lowerCAmelCase__ = duplication_jaccard_threshold
lowerCAmelCase__ = NUM_PERM
lowerCAmelCase__ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm )
lowerCAmelCase__ = defaultdict(__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Tuple , __magic_name__ : MinHash ):
"""simple docstring"""
lowerCAmelCase__ = self._index.query(__magic_name__ )
if code_key in self._index.keys:
print(f"""Duplicate key {code_key}""" )
return
self._index.insert(__magic_name__ , __magic_name__ )
if len(__magic_name__ ) > 0:
for base_duplicate in close_duplicates:
if base_duplicate in self._duplicate_clusters:
self._duplicate_clusters[base_duplicate].add(__magic_name__ )
break
else:
self._duplicate_clusters[close_duplicates[0]].add(__magic_name__ )
def __SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
lowerCAmelCase__ = []
for base, duplicates in self._duplicate_clusters.items():
lowerCAmelCase__ = [base] + list(__magic_name__ )
# reformat the cluster to be a list of dict
lowerCAmelCase__ = [{"base_index": el[0], "repo_name": el[1], "path": el[2]} for el in cluster]
duplicate_clusters.append(__magic_name__ )
return duplicate_clusters
def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Any ):
"""simple docstring"""
lowerCAmelCase__ = self.get_duplicate_clusters()
with open(__magic_name__ , "w" ) as f:
json.dump(__magic_name__ , __magic_name__ )
def A ( UpperCamelCase_ : Optional[int] ) -> str:
'''simple docstring'''
lowerCAmelCase__ ,lowerCAmelCase__ = element
lowerCAmelCase__ = get_min_hash([t for t in NON_ALPHA.split(data["content"] ) if len(t.strip() ) > 0] )
if min_hash is not None:
return (index, data["repo_name"], data["path"]), min_hash
def A ( UpperCamelCase_ : Type[Dataset] ) -> Dict:
'''simple docstring'''
with mp.Pool() as pool:
for data in pool.imap_unordered(
_compute_min_hash , ThreadedIterator(UpperCamelCase_ , max_queue_size=1_00_00 ) , chunksize=1_00 , ):
if data is not None:
yield data
def A ( UpperCamelCase_ : Type[Dataset] , UpperCamelCase_ : float ) -> str:
'''simple docstring'''
lowerCAmelCase__ = DuplicationIndex(duplication_jaccard_threshold=UpperCamelCase_ )
for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(UpperCamelCase_ ) ) , max_queue_size=1_00 ) ):
di.add(UpperCamelCase_ , UpperCamelCase_ )
# Returns a List[Cluster] where Cluster is List[str] with the filenames.
return di.get_duplicate_clusters()
def A ( UpperCamelCase_ : str , UpperCamelCase_ : str ) -> float:
'''simple docstring'''
lowerCAmelCase__ = get_tokens(UpperCamelCase_ )
lowerCAmelCase__ = get_tokens(UpperCamelCase_ )
return len(tokensa & tokensa ) / len(tokensa | tokensa )
UpperCAmelCase__ : str = None
def A ( UpperCamelCase_ : Dict , UpperCamelCase_ : Any ) -> Any:
'''simple docstring'''
lowerCAmelCase__ = []
for elementa in cluster:
lowerCAmelCase__ = _shared_dataset[elementa["base_index"]]["content"]
for elementa in extremes:
lowerCAmelCase__ = _shared_dataset[elementa["base_index"]]["content"]
if jaccard_similarity(UpperCamelCase_ , UpperCamelCase_ ) >= jaccard_threshold:
elementa["copies"] += 1
break
else:
lowerCAmelCase__ = 1
extremes.append(UpperCamelCase_ )
return extremes
def A ( UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str ) -> str:
'''simple docstring'''
global _shared_dataset
lowerCAmelCase__ = dataset
lowerCAmelCase__ = []
lowerCAmelCase__ = partial(_find_cluster_extremes_shared , jaccard_threshold=UpperCamelCase_ )
with mp.Pool() as pool:
for extremes in tqdm(
pool.imap_unordered(
UpperCamelCase_ , UpperCamelCase_ , ) , total=len(UpperCamelCase_ ) , ):
extremes_list.append(UpperCamelCase_ )
return extremes_list
def A ( UpperCamelCase_ : Type[Dataset] , UpperCamelCase_ : float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]:
'''simple docstring'''
lowerCAmelCase__ = make_duplicate_clusters(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = {x["base_index"] for cluster in duplicate_clusters for x in cluster}
lowerCAmelCase__ = {}
lowerCAmelCase__ = find_extremes(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
for extremes in extremes_clusters:
for element in extremes:
lowerCAmelCase__ = element
lowerCAmelCase__ = duplicate_indices - set(extreme_dict.keys() )
lowerCAmelCase__ = dataset.filter(lambda UpperCamelCase_ , UpperCamelCase_ : idx not in remove_indices , with_indices=UpperCamelCase_ )
# update duplicate_clusters
for cluster in duplicate_clusters:
for element in cluster:
lowerCAmelCase__ = element["base_index"] in extreme_dict
if element["is_extreme"]:
lowerCAmelCase__ = extreme_dict[element["base_index"]]["copies"]
print(F"""Original dataset size: {len(UpperCamelCase_ )}""" )
print(F"""Number of duplicate clusters: {len(UpperCamelCase_ )}""" )
print(F"""Files in duplicate cluster: {len(UpperCamelCase_ )}""" )
print(F"""Unique files in duplicate cluster: {len(UpperCamelCase_ )}""" )
print(F"""Filtered dataset size: {len(UpperCamelCase_ )}""" )
return ds_filter, duplicate_clusters
| 48 |
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =int(lowercase__ )
if n_element < 1:
UpperCAmelCase_ =ValueError("a should be a positive number" )
raise my_error
UpperCAmelCase_ =[1]
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =(0, 0, 0)
UpperCAmelCase_ =1
while index < n_element:
while hamming_list[i] * 2 <= hamming_list[-1]:
i += 1
while hamming_list[j] * 3 <= hamming_list[-1]:
j += 1
while hamming_list[k] * 5 <= hamming_list[-1]:
k += 1
hamming_list.append(
min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) )
index += 1
return hamming_list
if __name__ == "__main__":
__lowercase : Tuple =input("""Enter the last number (nth term) of the Hamming Number Series: """)
print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""")
__lowercase : Union[str, Any] =hamming(int(n))
print("""-----------------------------------------------------""")
print(f"""The list with nth numbers is: {hamming_numbers}""")
print("""-----------------------------------------------------""")
| 54 | 0 |
"""simple docstring"""
# HF Trainer benchmarking tool
#
# This tool can be used to run and compare multiple dimensions of the HF Trainers args.
#
# It then prints a report once in github format with all the information that needs to be shared
# with others and second time in a console-friendly format, so it's easier to use for tuning things up.
#
# The main idea is:
#
# ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \
# --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \
# --target-metric-key train_samples_per_second
#
# The variations can be any command line argument that you want to compare and not just dtype as in
# the example.
#
# --variations allows you to compare variations in multiple dimensions.
#
# as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6
# times adding one of:
#
# 1. --tf32 0 --fp16 0
# 2. --tf32 0 --fp16 1
# 3. --tf32 0 --bf16 1
# 4. --tf32 1 --fp16 0
# 5. --tf32 1 --fp16 1
# 6. --tf32 1 --bf16 1
#
# and print the results. This is just a cartesian product - and more than 2 dimensions can be used.
#
# If you want to rely on defaults, this:
# --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1'
# is identical to this:
# --variations '--tf32 0|--tf32 1' '|--fp16|--bf16'
#
# the leading empty variation in the 2nd dimension is a valid variation.
#
# So here we get the following 6 variations:
#
# 1. --tf32 0
# 2. --tf32 0 --fp16
# 3. --tf32 0 --bf16
# 4. --tf32 1
# 5. --tf32 1 --fp16
# 6. --tf32 1 --bf16
#
# In this particular case we don't know what the default tf32 setting is as it's normally
# pytorch-version dependent). That's why it's best to do an explicit setting of each variation:
# `--tf32 0|--tf32 1`
#
# Here is a full example of a train:
#
# CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \
# --base-cmd \
# ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \
# --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \
# --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \
# --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \
# --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \
# --source_prefix "translate English to Romanian: " --warmup_steps 50 \
# --max_train_samples 20000 --dataloader_num_workers 2 ' \
# --target-metric-key train_samples_per_second --repeat-times 1 --variations \
# '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \
# --repeat-times 1 --base-variation '--tf32 0'
#
# and here is a possible output:
#
#
# | Variation | Train | Diff | Train |
# | | samples | % | loss |
# | | per | | |
# | | second | | |
# |:----------------|----------:|-------:|--------:|
# | --tf32 0 | 285.11 | 0 | 2.51 |
# | --tf32 1 | 342.09 | 20 | 2.51 |
# | --fp16 --tf32 0 | 423.49 | 49 | 2.51 |
# | --fp16 --tf32 1 | 423.13 | 48 | 2.51 |
# | --bf16 --tf32 0 | 416.80 | 46 | 2.52 |
# | --bf16 --tf32 1 | 415.87 | 46 | 2.52 |
#
#
# So you can quickly compare the different outcomes.
#
# Typically running each experiment once is enough, but if the environment is unstable you can
# re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results.
#
# By default it'll use the lowest result as the base line to use as 100% and then compare the rest to
# it as can be seen from the table above, but you can also specify which combination is the one to use as
# the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0'
#
# --target-metric-key is there to tell the program which metrics to compare - the different metric keys are
# inside output_dir/all_results.json. e.g., to measure eval performance instead of train use:
# --target-metric-key eval_samples_per_second
# but of course you will need to adjust the --base-cmd value in the example to perform evaluation as
# well (as currently it doesn't)
#
import argparse
import datetime
import io
import itertools
import json
import math
import os
import platform
import re
import shlex
import subprocess
import sys
from pathlib import Path
from statistics import fmean
import pandas as pd
import torch
from tqdm import tqdm
import transformers
_lowercase : Optional[int] = float('nan')
class _UpperCAmelCase :
def __init__( self : Optional[Any] , _lowercase : Optional[int] ):
__UpperCAmelCase = sys.stdout
__UpperCAmelCase = open(_lowercase , '''a''' )
def __getattr__( self : str , _lowercase : Union[str, Any] ):
return getattr(self.stdout , _lowercase )
def a ( self : str , _lowercase : List[Any] ):
self.stdout.write(_lowercase )
# strip tqdm codes
self.file.write(re.sub(r'''^.*\r''' , '''''' , _lowercase , 0 , re.M ) )
def lowercase__ ( snake_case_ :Optional[Any]=80 , snake_case_ :Dict=False ):
__UpperCAmelCase = []
# deal with critical env vars
__UpperCAmelCase = ['''CUDA_VISIBLE_DEVICES''']
for key in env_keys:
__UpperCAmelCase = os.environ.get(snake_case_ , snake_case_ )
if val is not None:
cmd.append(F'''{key}={val}''' )
# python executable (not always needed if the script is executable)
__UpperCAmelCase = sys.executable if full_python_path else sys.executable.split('''/''' )[-1]
cmd.append(snake_case_ )
# now the normal args
cmd += list(map(shlex.quote , sys.argv ) )
# split up into up to MAX_WIDTH lines with shell multi-line escapes
__UpperCAmelCase = []
__UpperCAmelCase = ''''''
while len(snake_case_ ) > 0:
current_line += F'''{cmd.pop(0 )} '''
if len(snake_case_ ) == 0 or len(snake_case_ ) + len(cmd[0] ) + 1 > max_width - 1:
lines.append(snake_case_ )
__UpperCAmelCase = ''''''
return "\\\n".join(snake_case_ )
def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Dict ):
# unwrap multi-line input
__UpperCAmelCase = re.sub(r'''[\\\n]+''' , ''' ''' , args.base_cmd )
# remove --output_dir if any and set our own
__UpperCAmelCase = re.sub('''--output_dir\s+[^\s]+''' , '''''' , args.base_cmd )
args.base_cmd += F''' --output_dir {output_dir}'''
# ensure we have --overwrite_output_dir
__UpperCAmelCase = re.sub('''--overwrite_output_dir\s+''' , '''''' , args.base_cmd )
args.base_cmd += " --overwrite_output_dir"
return [sys.executable] + shlex.split(args.base_cmd )
def lowercase__ ( snake_case_ :Any , snake_case_ :int , snake_case_ :Union[str, Any] , snake_case_ :Dict , snake_case_ :Tuple , snake_case_ :Any , snake_case_ :int ):
# Enable to debug everything but the run itself, to do it fast and see the progress.
# This is useful for debugging the output formatting quickly - we can remove it later once
# everybody is happy with the output
if 0:
import random
from time import sleep
sleep(0 )
return dict(
{k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.22222222] )} , )
__UpperCAmelCase = subprocess.run(snake_case_ , capture_output=snake_case_ , text=snake_case_ )
if verbose:
print('''STDOUT''' , result.stdout )
print('''STDERR''' , result.stderr )
# save the streams
__UpperCAmelCase = variation.replace(''' ''' , '''-''' )
with open(Path(snake_case_ ) / F'''log.{prefix}.stdout.txt''' , '''w''' ) as f:
f.write(result.stdout )
with open(Path(snake_case_ ) / F'''log.{prefix}.stderr.txt''' , '''w''' ) as f:
f.write(result.stderr )
if result.returncode != 0:
if verbose:
print('''failed''' )
return {target_metric_key: nan}
with io.open(F'''{output_dir}/all_results.json''' , '''r''' , encoding='''utf-8''' ) as f:
__UpperCAmelCase = json.load(snake_case_ )
# filter out just the keys we want
return {k: v for k, v in metrics.items() if k in metric_keys}
def lowercase__ ( snake_case_ :int , snake_case_ :Any , snake_case_ :List[str] , snake_case_ :List[str] , snake_case_ :Dict , snake_case_ :List[str] , snake_case_ :List[str] , snake_case_ :str , snake_case_ :List[Any] , snake_case_ :Optional[int] , ):
__UpperCAmelCase = []
__UpperCAmelCase = []
__UpperCAmelCase = F'''{id}: {variation:<{longest_variation_len}}'''
__UpperCAmelCase = F'''{preamble}: '''
__UpperCAmelCase = set(report_metric_keys + [target_metric_key] )
for i in tqdm(range(snake_case_ ) , desc=snake_case_ , leave=snake_case_ ):
__UpperCAmelCase = process_run_single(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
__UpperCAmelCase = single_run_metrics[target_metric_key]
if not math.isnan(snake_case_ ):
metrics.append(snake_case_ )
results.append(snake_case_ )
outcome += "✓"
else:
outcome += "✘"
__UpperCAmelCase = F'''\33[2K\r{outcome}'''
if len(snake_case_ ) > 0:
__UpperCAmelCase = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()}
__UpperCAmelCase = round(mean_metrics[target_metric_key] , 2 )
__UpperCAmelCase = F'''{outcome} {mean_target}'''
if len(snake_case_ ) > 1:
results_str += F''' {tuple(round(snake_case_ , 2 ) for x in results )}'''
print(snake_case_ )
__UpperCAmelCase = variation
return mean_metrics
else:
print(snake_case_ )
return {variation_key: variation, target_metric_key: nan}
def lowercase__ ( ):
__UpperCAmelCase = torch.cuda.get_device_properties(torch.device('''cuda''' ) )
return F'''
Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )}
Software:
transformers: {transformers.__version__}
torch : {torch.__version__}
cuda : {torch.version.cuda}
python : {platform.python_version()}
Hardware:
{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB
'''
def lowercase__ ( snake_case_ :int , snake_case_ :Tuple , snake_case_ :Union[str, Any] , snake_case_ :Optional[Any] , snake_case_ :Optional[int] ):
__UpperCAmelCase = pd.DataFrame(snake_case_ )
__UpperCAmelCase = '''variation'''
__UpperCAmelCase = '''diff_%'''
__UpperCAmelCase = nan
if base_variation is not None and len(df[df[variation_key] == base_variation] ):
# this may still return nan
__UpperCAmelCase = df.loc[df[variation_key] == base_variation][target_metric_key].item()
if math.isnan(snake_case_ ):
# as a fallback, use the minimal value as the sentinel
__UpperCAmelCase = df.loc[df[target_metric_key] != nan][target_metric_key].min()
# create diff column if possible
if not math.isnan(snake_case_ ):
__UpperCAmelCase = df.apply(
lambda snake_case_ : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value )
if not math.isnan(r[target_metric_key] )
else 0 , axis='''columns''' , )
# re-order columns
__UpperCAmelCase = [variation_key, target_metric_key, diff_key, *report_metric_keys]
__UpperCAmelCase = df.reindex(snake_case_ , axis='''columns''' ) # reorder cols
# capitalize
__UpperCAmelCase = df.rename(str.capitalize , axis='''columns''' )
# make the cols as narrow as possible
__UpperCAmelCase = df.rename(lambda snake_case_ : c.replace('''_''' , '''<br>''' ) , axis='''columns''' )
__UpperCAmelCase = df.rename(lambda snake_case_ : c.replace('''_''' , '''\n''' ) , axis='''columns''' )
__UpperCAmelCase = ['''''', '''Copy between the cut-here-lines and paste as is to github or a forum''']
report += ["----------8<-----------------8<--------"]
report += ["*** Results:", df_github.to_markdown(index=snake_case_ , floatfmt='''.2f''' )]
report += ["```"]
report += ["*** Setup:", get_versions()]
report += ["*** The benchmark command line was:", get_original_command()]
report += ["```"]
report += ["----------8<-----------------8<--------"]
report += ["*** Results (console):", df_console.to_markdown(index=snake_case_ , floatfmt='''.2f''' )]
print('''\n\n'''.join(snake_case_ ) )
def lowercase__ ( ):
__UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument(
'''--base-cmd''' , default=snake_case_ , type=snake_case_ , required=snake_case_ , help='''Base cmd''' , )
parser.add_argument(
'''--variations''' , default=snake_case_ , type=snake_case_ , nargs='''+''' , required=snake_case_ , help='''Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'''' , )
parser.add_argument(
'''--base-variation''' , default=snake_case_ , type=snake_case_ , help='''Baseline variation to compare to. if None the minimal target value will be used to compare against''' , )
parser.add_argument(
'''--target-metric-key''' , default=snake_case_ , type=snake_case_ , required=snake_case_ , help='''Target metric key in output_dir/all_results.json, e.g., train_samples_per_second''' , )
parser.add_argument(
'''--report-metric-keys''' , default='''''' , type=snake_case_ , help='''Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples''' , )
parser.add_argument(
'''--repeat-times''' , default=1 , type=snake_case_ , help='''How many times to re-run each variation - an average will be reported''' , )
parser.add_argument(
'''--output_dir''' , default='''output_benchmark''' , type=snake_case_ , help='''The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked''' , )
parser.add_argument(
'''--verbose''' , default=snake_case_ , action='''store_true''' , help='''Whether to show the outputs of each run or just the benchmark progress''' , )
__UpperCAmelCase = parser.parse_args()
__UpperCAmelCase = args.output_dir
Path(snake_case_ ).mkdir(exist_ok=snake_case_ )
__UpperCAmelCase = get_base_command(snake_case_ , snake_case_ )
# split each dimension into its --foo variations
__UpperCAmelCase = [list(map(str.strip , re.split(r'''\|''' , snake_case_ ) ) ) for x in args.variations]
# build a cartesian product of dimensions and convert those back into cmd-line arg strings,
# while stripping white space for inputs that were empty
__UpperCAmelCase = list(map(str.strip , map(''' '''.join , itertools.product(*snake_case_ ) ) ) )
__UpperCAmelCase = max(len(snake_case_ ) for x in variations )
# split wanted keys
__UpperCAmelCase = args.report_metric_keys.split()
# capture prints into a log file for convenience
__UpperCAmelCase = F'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt'''
print(F'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' )
print(F'''and this script\'s output is also piped into {report_fn}''' )
__UpperCAmelCase = Tee(snake_case_ )
print(F'''\n*** Running {len(snake_case_ )} benchmarks:''' )
print(F'''Base command: {" ".join(snake_case_ )}''' )
__UpperCAmelCase = '''variation'''
__UpperCAmelCase = []
for id, variation in enumerate(tqdm(snake_case_ , desc='''Total completion: ''' , leave=snake_case_ ) ):
__UpperCAmelCase = base_cmd + variation.split()
results.append(
process_run(
id + 1 , snake_case_ , snake_case_ , snake_case_ , snake_case_ , args.target_metric_key , snake_case_ , args.repeat_times , snake_case_ , args.verbose , ) )
process_results(snake_case_ , args.target_metric_key , snake_case_ , args.base_variation , snake_case_ )
if __name__ == "__main__":
main()
| 49 |
import warnings
from ...utils import logging
from .image_processing_glpn import GLPNImageProcessor
__lowercase : List[Any] =logging.get_logger(__name__)
class A ( __lowercase ):
def __init__( self: List[Any] , *_lowerCAmelCase: Optional[Any] , **_lowerCAmelCase: List[str] ) -> None:
'''simple docstring'''
warnings.warn(
"The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use GLPNImageProcessor instead." , _lowerCAmelCase , )
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
| 54 | 0 |
'''simple docstring'''
def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ):
lowerCamelCase__ = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff)
# formula for sum of series
return total
def A__ ( ):
print(sum_of_series(1 , 1 , 10 ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 50 |
import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class A ( __lowercase , unittest.TestCase ):
_snake_case =CanineTokenizer
_snake_case =False
def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]:
'''simple docstring'''
super().setUp()
UpperCAmelCase_ =CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowerCAmelCase__ ( self: Optional[int] ) -> List[str]:
'''simple docstring'''
return CanineTokenizer.from_pretrained("google/canine-s" )
def lowerCAmelCase__ ( self: Union[str, Any] , **_lowerCAmelCase: List[Any] ) -> CanineTokenizer:
'''simple docstring'''
UpperCAmelCase_ =self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
UpperCAmelCase_ =1024
return tokenizer
@require_torch
def lowerCAmelCase__ ( self: int ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ =self.canine_tokenizer
UpperCAmelCase_ =["Life is like a box of chocolates.", "You never know what you're gonna get."]
# fmt: off
UpperCAmelCase_ =[5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0]
# fmt: on
UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase_ =list(batch.input_ids.numpy()[0] )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def lowerCAmelCase__ ( self: int ) -> str:
'''simple docstring'''
UpperCAmelCase_ =self.canine_tokenizer
UpperCAmelCase_ =["Once there was a man.", "He wrote a test in HuggingFace Tranformers."]
UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("input_ids" , _lowerCAmelCase )
self.assertIn("attention_mask" , _lowerCAmelCase )
self.assertIn("token_type_ids" , _lowerCAmelCase )
@require_torch
def lowerCAmelCase__ ( self: str ) -> Any:
'''simple docstring'''
UpperCAmelCase_ =self.canine_tokenizer
UpperCAmelCase_ =[
"What's the weater?",
"It's about 25 degrees.",
]
UpperCAmelCase_ =tokenizer(
text_target=_lowerCAmelCase , max_length=32 , padding="max_length" , truncation=_lowerCAmelCase , return_tensors="pt" )
self.assertEqual(32 , targets["input_ids"].shape[1] )
def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ =self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
UpperCAmelCase_ =self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
UpperCAmelCase_ =tempfile.mkdtemp()
UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running"
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
tokenizer.save_pretrained(_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase )
UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
shutil.rmtree(_lowerCAmelCase )
UpperCAmelCase_ =self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
UpperCAmelCase_ =tempfile.mkdtemp()
UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running"
UpperCAmelCase_ =tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
UpperCAmelCase_ =chr(0xe0_07 )
additional_special_tokens.append(_lowerCAmelCase )
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} )
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
tokenizer.save_pretrained(_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase )
UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertIn(_lowerCAmelCase , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(_lowerCAmelCase )
def lowerCAmelCase__ ( self: int ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
UpperCAmelCase_ , UpperCAmelCase_ =self.get_clean_sequence(_lowerCAmelCase )
# a special token for Canine can be defined as follows:
UpperCAmelCase_ =0xe0_05
UpperCAmelCase_ =chr(_lowerCAmelCase )
tokenizer.add_special_tokens({"cls_token": special_token} )
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertEqual(len(_lowerCAmelCase ) , 1 )
UpperCAmelCase_ =tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , input_encoded + special_token_id )
UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase )
self.assertTrue(special_token not in decoded )
def lowerCAmelCase__ ( self: Any ) -> Any:
'''simple docstring'''
UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
UpperCAmelCase_ =chr(0xe0_05 )
UpperCAmelCase_ =chr(0xe0_06 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=_lowerCAmelCase )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} )
UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase )
self.assertEqual(len(_lowerCAmelCase ) , 1 )
self.assertEqual(len(_lowerCAmelCase ) , 1 )
self.assertEqual(token_a[0] , _lowerCAmelCase )
self.assertEqual(token_a[0] , _lowerCAmelCase )
@require_tokenizers
def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# a special token for Canine can be defined as follows:
UpperCAmelCase_ =0xe0_06
UpperCAmelCase_ =chr(_lowerCAmelCase )
UpperCAmelCase_ =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase )
tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(_lowerCAmelCase )
tokenizer.from_pretrained(_lowerCAmelCase )
def lowerCAmelCase__ ( self: Any ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ =[]
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file:
UpperCAmelCase_ =json.load(_lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file:
UpperCAmelCase_ =json.load(_lowerCAmelCase )
# a special token for Canine can be defined as follows:
UpperCAmelCase_ =0xe0_06
UpperCAmelCase_ =chr(_lowerCAmelCase )
UpperCAmelCase_ =[new_token_a]
UpperCAmelCase_ =[new_token_a]
with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
UpperCAmelCase_ =tokenizer_class.from_pretrained(_lowerCAmelCase , extra_ids=0 )
self.assertIn(_lowerCAmelCase , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
UpperCAmelCase_ =0xe0_07
UpperCAmelCase_ =chr(_lowerCAmelCase )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
UpperCAmelCase_ =[AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase )]
UpperCAmelCase_ =tokenizer_class.from_pretrained(
_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , extra_ids=0 )
self.assertIn(_lowerCAmelCase , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
UpperCAmelCase_ ="hello world"
if self.space_between_special_tokens:
UpperCAmelCase_ ="[CLS] hello world [SEP]"
else:
UpperCAmelCase_ =input
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(_lowerCAmelCase , [output, output.lower()] )
def lowerCAmelCase__ ( self: List[str] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ =self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
UpperCAmelCase_ =[
"bos_token",
"eos_token",
"unk_token",
"sep_token",
"pad_token",
"cls_token",
"mask_token",
]
UpperCAmelCase_ ="a"
UpperCAmelCase_ =ord(_lowerCAmelCase )
for attr in attributes_list:
setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase )
self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase )
self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase )
setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase )
self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase )
self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase )
setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [] )
self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [] )
self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [] )
UpperCAmelCase_ =0xe0_06
UpperCAmelCase_ =chr(_lowerCAmelCase )
setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [additional_special_token_id] )
self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [additional_special_token] )
self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] )
def lowerCAmelCase__ ( self: List[str] ) -> List[str]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: Dict ) -> List[str]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: Any ) -> List[Any]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: List[Any] ) -> List[str]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: Tuple ) -> Union[str, Any]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: str ) -> str:
'''simple docstring'''
pass
| 54 | 0 |
'''simple docstring'''
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : List[Any] , a__ : Optional[Any] , a__ : Any=13 , a__ : str=32 , a__ : Optional[int]=3 , a__ : Tuple=4 , a__ : Any=[10, 20, 30, 40] , a__ : Any=[2, 2, 3, 2] , a__ : List[Any]=True , a__ : List[str]=True , a__ : Union[str, Any]=37 , a__ : Tuple="gelu" , a__ : Any=10 , a__ : List[str]=0.02 , a__ : List[Any]=["stage2", "stage3", "stage4"] , a__ : Any=[2, 3, 4] , a__ : int=None , ):
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = image_size
UpperCAmelCase = num_channels
UpperCAmelCase = num_stages
UpperCAmelCase = hidden_sizes
UpperCAmelCase = depths
UpperCAmelCase = is_training
UpperCAmelCase = use_labels
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_act
UpperCAmelCase = num_labels
UpperCAmelCase = initializer_range
UpperCAmelCase = out_features
UpperCAmelCase = out_indices
UpperCAmelCase = scope
def __snake_case ( self : Dict ):
UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase = None
if self.use_labels:
UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels )
UpperCAmelCase = self.get_config()
return config, pixel_values, labels
def __snake_case ( self : Dict ):
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=a__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def __snake_case ( self : Dict , a__ : Tuple , a__ : Union[str, Any] , a__ : List[Any] ):
UpperCAmelCase = ConvNextVaModel(config=a__ )
model.to(a__ )
model.eval()
UpperCAmelCase = model(a__ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def __snake_case ( self : Dict , a__ : Any , a__ : Dict , a__ : List[Any] ):
UpperCAmelCase = ConvNextVaForImageClassification(a__ )
model.to(a__ )
model.eval()
UpperCAmelCase = model(a__ , labels=a__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __snake_case ( self : Any , a__ : Optional[Any] , a__ : List[Any] , a__ : Dict ):
UpperCAmelCase = ConvNextVaBackbone(config=a__ )
model.to(a__ )
model.eval()
UpperCAmelCase = model(a__ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
UpperCAmelCase = None
UpperCAmelCase = ConvNextVaBackbone(config=a__ )
model.to(a__ )
model.eval()
UpperCAmelCase = model(a__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def __snake_case ( self : Any ):
UpperCAmelCase = self.prepare_config_and_inputs()
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = config_and_inputs
UpperCAmelCase = {'''pixel_values''': pixel_values}
return config, inputs_dict
def __snake_case ( self : List[str] ):
UpperCAmelCase = self.prepare_config_and_inputs()
UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = config_and_inputs
UpperCAmelCase = {'''pixel_values''': pixel_values, '''labels''': labels}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =(
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
_lowerCamelCase =(
{"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
_lowerCamelCase =False
_lowerCamelCase =False
_lowerCamelCase =False
_lowerCamelCase =False
_lowerCamelCase =False
def __snake_case ( self : List[Any] ):
UpperCAmelCase = ConvNextVaModelTester(self )
UpperCAmelCase = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 )
def __snake_case ( self : Tuple ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __snake_case ( self : Optional[Any] ):
return
@unittest.skip(reason='''ConvNextV2 does not use inputs_embeds''' )
def __snake_case ( self : List[str] ):
pass
@unittest.skip(reason='''ConvNextV2 does not support input and output embeddings''' )
def __snake_case ( self : Union[str, Any] ):
pass
@unittest.skip(reason='''ConvNextV2 does not use feedforward chunking''' )
def __snake_case ( self : str ):
pass
def __snake_case ( self : Optional[Any] ):
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_with_labels()
UpperCAmelCase = True
if model_class.__name__ in [
*get_values(a__ ),
*get_values(a__ ),
]:
continue
UpperCAmelCase = model_class(a__ )
model.to(a__ )
model.train()
UpperCAmelCase = self._prepare_for_class(a__ , a__ , return_labels=a__ )
UpperCAmelCase = model(**a__ ).loss
loss.backward()
def __snake_case ( self : Union[str, Any] ):
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_with_labels()
UpperCAmelCase = False
UpperCAmelCase = True
if (
model_class.__name__
in [*get_values(a__ ), *get_values(a__ )]
or not model_class.supports_gradient_checkpointing
):
continue
UpperCAmelCase = model_class(a__ )
model.to(a__ )
model.gradient_checkpointing_enable()
model.train()
UpperCAmelCase = self._prepare_for_class(a__ , a__ , return_labels=a__ )
UpperCAmelCase = model(**a__ ).loss
loss.backward()
def __snake_case ( self : str ):
UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase = model_class(a__ )
UpperCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase = [*signature.parameters.keys()]
UpperCAmelCase = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , a__ )
def __snake_case ( self : Any ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a__ )
def __snake_case ( self : Any ):
def check_hidden_states_output(a__ : Dict , a__ : str , a__ : Dict ):
UpperCAmelCase = model_class(a__ )
model.to(a__ )
model.eval()
with torch.no_grad():
UpperCAmelCase = model(**self._prepare_for_class(a__ , a__ ) )
UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCAmelCase = self.model_tester.num_stages
self.assertEqual(len(a__ ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase = True
check_hidden_states_output(a__ , a__ , a__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase = True
check_hidden_states_output(a__ , a__ , a__ )
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*a__ )
@slow
def __snake_case ( self : Tuple ):
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase = ConvNextVaModel.from_pretrained(a__ )
self.assertIsNotNone(a__ )
def __snake_case ( ) -> int:
"""simple docstring"""
UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def __snake_case ( self : Dict ):
return AutoImageProcessor.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ) if is_vision_available() else None
@slow
def __snake_case ( self : Dict ):
UpperCAmelCase = ConvNextVaForImageClassification.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ).to(a__ )
UpperCAmelCase = self.default_image_processor
UpperCAmelCase = prepare_img()
UpperCAmelCase = preprocessor(images=a__ , return_tensors='''pt''' ).to(a__ )
# forward pass
with torch.no_grad():
UpperCAmelCase = model(**a__ )
# verify the logits
UpperCAmelCase = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , a__ )
UpperCAmelCase = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(a__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1e-4 ) )
| 51 |
from typing import Dict, List
from nltk.translate import gleu_score
import datasets
from datasets import MetricInfo
__lowercase : Optional[int] ="""\
@misc{wu2016googles,
title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},
author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey
and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin
Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto
Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and
Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes
and Jeffrey Dean},
year={2016},
eprint={1609.08144},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
__lowercase : Dict ="""\
The BLEU score has some undesirable properties when used for single
sentences, as it was designed to be a corpus measure. We therefore
use a slightly different score for our RL experiments which we call
the 'GLEU score'. For the GLEU score, we record all sub-sequences of
1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then
compute a recall, which is the ratio of the number of matching n-grams
to the number of total n-grams in the target (ground truth) sequence,
and a precision, which is the ratio of the number of matching n-grams
to the number of total n-grams in the generated output sequence. Then
GLEU score is simply the minimum of recall and precision. This GLEU
score's range is always between 0 (no matches) and 1 (all match) and
it is symmetrical when switching output and target. According to
our experiments, GLEU score correlates quite well with the BLEU
metric on a corpus level but does not have its drawbacks for our per
sentence reward objective.
"""
__lowercase : List[str] ="""\
Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.
Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching
tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.
Args:
predictions (list of str): list of translations to score.
Each translation should be tokenized into a list of tokens.
references (list of list of str): list of lists of references for each translation.
Each reference should be tokenized into a list of tokens.
min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.
max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.
Returns:
'google_bleu': google_bleu score
Examples:
Example 1:
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',
... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']
>>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',
... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',
... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
... 'interested', 'in', 'world', 'history']
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
... 'because', 'he', 'read', 'the', 'book']
>>> list_of_references = [[ref1a], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric(\"google_bleu\")
>>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)
>>> print(round(results[\"google_bleu\"], 2))
0.44
Example 2:
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',
... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']
>>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',
... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',
... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']
>>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',
... 'heed', 'the', 'cat', 'commands']
>>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',
... 'of', 'the', 'cat']
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
... 'interested', 'in', 'world', 'history']
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
... 'because', 'he', 'read', 'the', 'book']
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric(\"google_bleu\")
>>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)
>>> print(round(results[\"google_bleu\"], 2))
0.61
Example 3:
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',
... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']
>>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',
... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',
... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']
>>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',
... 'heed', 'the', 'cat', 'commands']
>>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',
... 'of', 'the', 'cat']
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
... 'interested', 'in', 'world', 'history']
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
... 'because', 'he', 'read', 'the', 'book']
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric(\"google_bleu\")
>>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)
>>> print(round(results[\"google_bleu\"], 2))
0.53
Example 4:
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',
... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']
>>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',
... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',
... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']
>>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',
... 'heed', 'the', 'cat', 'commands']
>>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',
... 'of', 'the', 'cat']
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
... 'interested', 'in', 'world', 'history']
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
... 'because', 'he', 'read', 'the', 'book']
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric(\"google_bleu\")
>>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)
>>> print(round(results[\"google_bleu\"], 2))
0.4
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A ( datasets.Metric ):
def lowerCAmelCase__ ( self: int ) -> MetricInfo:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ),
"references": datasets.Sequence(
datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ),
} ) , )
def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: List[List[List[str]]] , _lowerCAmelCase: List[List[str]] , _lowerCAmelCase: int = 1 , _lowerCAmelCase: int = 4 , ) -> Dict[str, float]:
'''simple docstring'''
return {
"google_bleu": gleu_score.corpus_gleu(
list_of_references=_lowerCAmelCase , hypotheses=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase )
}
| 54 | 0 |
"""simple docstring"""
# using dfs for finding eulerian path traversal
def __A ( a_ :int , a_ :Dict , a_ :str , a_ :Optional[int]=None) -> List[str]:
__a : Any = (path or []) + [u]
for v in graph[u]:
if visited_edge[u][v] is False:
__a , __a : Union[str, Any] = True, True
__a : List[Any] = dfs(a_ , a_ , a_ , a_)
return path
def __A ( a_ :int , a_ :int) -> Optional[int]:
__a : Any = 0
__a : Optional[int] = -1
for i in range(a_):
if i not in graph.keys():
continue
if len(graph[i]) % 2 == 1:
odd_degree_nodes += 1
__a : int = i
if odd_degree_nodes == 0:
return 1, odd_node
if odd_degree_nodes == 2:
return 2, odd_node
return 3, odd_node
def __A ( a_ :List[str] , a_ :Tuple) -> Tuple:
__a : List[str] = [[False for _ in range(max_node + 1)] for _ in range(max_node + 1)]
__a , __a : Any = check_circuit_or_path(a_ , a_)
if check == 3:
print('''graph is not Eulerian''')
print('''no path''')
return
__a : Any = 1
if check == 2:
__a : str = odd_node
print('''graph has a Euler path''')
if check == 1:
print('''graph has a Euler cycle''')
__a : Any = dfs(a_ , a_ , a_)
print(a_)
def __A ( ) -> List[str]:
__a : List[Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]}
__a : Any = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]}
__a : List[Any] = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]}
__a : str = {1: [2, 3], 2: [1, 3], 3: [1, 2]}
__a : List[Any] = {
1: [],
2: []
# all degree is zero
}
__a : Tuple = 10
check_euler(a_ , a_)
check_euler(a_ , a_)
check_euler(a_ , a_)
check_euler(a_ , a_)
check_euler(a_ , a_)
if __name__ == "__main__":
main()
| 52 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaImgaImgPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class A ( __lowercase , unittest.TestCase ):
_snake_case =KandinskyVaaImgaImgPipeline
_snake_case =['''image_embeds''', '''negative_image_embeds''', '''image''']
_snake_case =[
'''image_embeds''',
'''negative_image_embeds''',
'''image''',
]
_snake_case =[
'''generator''',
'''height''',
'''width''',
'''strength''',
'''guidance_scale''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
_snake_case =False
@property
def lowerCAmelCase__ ( self: List[Any] ) -> Dict:
'''simple docstring'''
return 32
@property
def lowerCAmelCase__ ( self: Any ) -> Optional[int]:
'''simple docstring'''
return 32
@property
def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]:
'''simple docstring'''
return self.time_input_dim
@property
def lowerCAmelCase__ ( self: List[str] ) -> Dict:
'''simple docstring'''
return self.time_input_dim * 4
@property
def lowerCAmelCase__ ( self: int ) -> str:
'''simple docstring'''
return 100
@property
def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]:
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase_ ={
"in_channels": 4,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
UpperCAmelCase_ =UNetaDConditionModel(**_lowerCAmelCase )
return model
@property
def lowerCAmelCase__ ( self: Any ) -> Tuple:
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase__ ( self: Union[str, Any] ) -> Any:
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase_ =VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase__ ( self: Dict ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ =self.dummy_unet
UpperCAmelCase_ =self.dummy_movq
UpperCAmelCase_ ={
"num_train_timesteps": 1000,
"beta_schedule": "linear",
"beta_start": 0.0_00_85,
"beta_end": 0.0_12,
"clip_sample": False,
"set_alpha_to_one": False,
"steps_offset": 0,
"prediction_type": "epsilon",
"thresholding": False,
}
UpperCAmelCase_ =DDIMScheduler(**_lowerCAmelCase )
UpperCAmelCase_ ={
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[Any]=0 ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase )
UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
_lowerCAmelCase )
# create init_image
UpperCAmelCase_ =floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase )
UpperCAmelCase_ =image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase_ =Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("RGB" ).resize((256, 256) )
if str(_lowerCAmelCase ).startswith("mps" ):
UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase )
else:
UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase )
UpperCAmelCase_ ={
"image": init_image,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 64,
"width": 64,
"num_inference_steps": 10,
"guidance_scale": 7.0,
"strength": 0.2,
"output_type": "np",
}
return inputs
def lowerCAmelCase__ ( self: int ) -> int:
'''simple docstring'''
UpperCAmelCase_ ="cpu"
UpperCAmelCase_ =self.get_dummy_components()
UpperCAmelCase_ =self.pipeline_class(**_lowerCAmelCase )
UpperCAmelCase_ =pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
UpperCAmelCase_ =pipe(**self.get_dummy_inputs(_lowerCAmelCase ) )
UpperCAmelCase_ =output.images
UpperCAmelCase_ =pipe(
**self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0]
UpperCAmelCase_ =image[0, -3:, -3:, -1]
UpperCAmelCase_ =image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase_ =np.array(
[0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), F' expected_slice {expected_slice}, but got {image_slice.flatten()}'
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'
@slow
@require_torch_gpu
class A ( unittest.TestCase ):
def lowerCAmelCase__ ( self: List[Any] ) -> str:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase__ ( self: int ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ =load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/kandinskyv22_img2img_frog.npy" )
UpperCAmelCase_ =load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
UpperCAmelCase_ ="A red cartoon frog, 4k"
UpperCAmelCase_ =KandinskyVaaPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa )
pipe_prior.to(_lowerCAmelCase )
UpperCAmelCase_ =KandinskyVaaImgaImgPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa )
UpperCAmelCase_ =pipeline.to(_lowerCAmelCase )
pipeline.set_progress_bar_config(disable=_lowerCAmelCase )
UpperCAmelCase_ =torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase_ , UpperCAmelCase_ =pipe_prior(
_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
UpperCAmelCase_ =pipeline(
image=_lowerCAmelCase , image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , )
UpperCAmelCase_ =output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
| 54 | 0 |
import bza
import gzip
import lzma
import os
import shutil
import struct
import tarfile
import warnings
import zipfile
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Dict, List, Optional, Type, Union
from .. import config
from .filelock import FileLock
from .logging import get_logger
_snake_case : Union[str, Any] = get_logger(__name__)
class _UpperCAmelCase :
"""simple docstring"""
def __init__( self : int , lowerCAmelCase_ : Optional[str] = None ) -> Optional[Any]:
__lowerCAmelCase = (
os.path.join(lowerCAmelCase_ , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH
)
__lowerCAmelCase = Extractor
def lowercase ( self : List[Any] , lowerCAmelCase_ : str ) -> str:
from .file_utils import hash_url_to_filename
# Path where we extract compressed archives
# We extract in the cache dir, and get the extracted path name by hashing the original path"
__lowerCAmelCase = os.path.abspath(lowerCAmelCase_ )
return os.path.join(self.extract_dir , hash_url_to_filename(lowerCAmelCase_ ) )
def lowercase ( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : bool ) -> bool:
return force_extract or (
not os.path.isfile(lowerCAmelCase_ ) and not (os.path.isdir(lowerCAmelCase_ ) and os.listdir(lowerCAmelCase_ ))
)
def lowercase ( self : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : bool = False ) -> str:
__lowerCAmelCase = self.extractor.infer_extractor_format(lowerCAmelCase_ )
if not extractor_format:
return input_path
__lowerCAmelCase = self._get_output_path(lowerCAmelCase_ )
if self._do_extract(lowerCAmelCase_ , lowerCAmelCase_ ):
self.extractor.extract(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
return output_path
class _UpperCAmelCase ( _UpperCamelCase ):
"""simple docstring"""
@classmethod
@abstractmethod
def lowercase ( cls : Optional[Any] , lowerCAmelCase_ : Union[Path, str] , **lowerCAmelCase_ : List[str] ) -> bool:
...
@staticmethod
@abstractmethod
def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None:
...
class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ):
"""simple docstring"""
a_ = []
@staticmethod
def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : int ) -> List[Any]:
with open(lowerCAmelCase_ , 'rb' ) as f:
return f.read(lowerCAmelCase_ )
@classmethod
def lowercase ( cls : str , lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : bytes = b"" ) -> bool:
if not magic_number:
__lowerCAmelCase = max(len(lowerCAmelCase_ ) for cls_magic_number in cls.magic_numbers )
try:
__lowerCAmelCase = cls.read_magic_number(lowerCAmelCase_ , lowerCAmelCase_ )
except OSError:
return False
return any(magic_number.startswith(lowerCAmelCase_ ) for cls_magic_number in cls.magic_numbers )
class _UpperCAmelCase ( _UpperCamelCase ):
"""simple docstring"""
@classmethod
def lowercase ( cls : Tuple , lowerCAmelCase_ : Union[Path, str] , **lowerCAmelCase_ : str ) -> bool:
return tarfile.is_tarfile(lowerCAmelCase_ )
@staticmethod
def lowercase ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] ) -> str:
def resolved(lowerCAmelCase_ : str ) -> str:
return os.path.realpath(os.path.abspath(lowerCAmelCase_ ) )
def badpath(lowerCAmelCase_ : str , lowerCAmelCase_ : str ) -> bool:
# joinpath will ignore base if path is absolute
return not resolved(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ).startswith(lowerCAmelCase_ )
def badlink(lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str ) -> bool:
# Links are interpreted relative to the directory containing the link
__lowerCAmelCase = resolved(os.path.join(lowerCAmelCase_ , os.path.dirname(info.name ) ) )
return badpath(info.linkname , base=lowerCAmelCase_ )
__lowerCAmelCase = resolved(lowerCAmelCase_ )
for finfo in members:
if badpath(finfo.name , lowerCAmelCase_ ):
logger.error(f"""Extraction of {finfo.name} is blocked (illegal path)""" )
elif finfo.issym() and badlink(lowerCAmelCase_ , lowerCAmelCase_ ):
logger.error(f"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" )
elif finfo.islnk() and badlink(lowerCAmelCase_ , lowerCAmelCase_ ):
logger.error(f"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" )
else:
yield finfo
@staticmethod
def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None:
os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ )
__lowerCAmelCase = tarfile.open(lowerCAmelCase_ )
tar_file.extractall(lowerCAmelCase_ , members=TarExtractor.safemembers(lowerCAmelCase_ , lowerCAmelCase_ ) )
tar_file.close()
class _UpperCAmelCase ( _UpperCamelCase ):
"""simple docstring"""
a_ = [b"""\x1F\x8B"""]
@staticmethod
def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None:
with gzip.open(lowerCAmelCase_ , 'rb' ) as gzip_file:
with open(lowerCAmelCase_ , 'wb' ) as extracted_file:
shutil.copyfileobj(lowerCAmelCase_ , lowerCAmelCase_ )
class _UpperCAmelCase ( _UpperCamelCase ):
"""simple docstring"""
a_ = [
b"""PK\x03\x04""",
b"""PK\x05\x06""", # empty archive
b"""PK\x07\x08""", # spanned archive
]
@classmethod
def lowercase ( cls : List[str] , lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : bytes = b"" ) -> bool:
if super().is_extractable(lowerCAmelCase_ , magic_number=lowerCAmelCase_ ):
return True
try:
# Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives.
# From: https://github.com/python/cpython/pull/5053
from zipfile import (
_CD_SIGNATURE,
_ECD_DISK_NUMBER,
_ECD_DISK_START,
_ECD_ENTRIES_TOTAL,
_ECD_OFFSET,
_ECD_SIZE,
_EndRecData,
sizeCentralDir,
stringCentralDir,
structCentralDir,
)
with open(lowerCAmelCase_ , 'rb' ) as fp:
__lowerCAmelCase = _EndRecData(lowerCAmelCase_ )
if endrec:
if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0:
return True # Empty zipfiles are still zipfiles
elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]:
fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk
if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir:
__lowerCAmelCase = fp.read(lowerCAmelCase_ ) # CD is where we expect it to be
if len(lowerCAmelCase_ ) == sizeCentralDir:
__lowerCAmelCase = struct.unpack(lowerCAmelCase_ , lowerCAmelCase_ ) # CD is the right size
if centdir[_CD_SIGNATURE] == stringCentralDir:
return True # First central directory entry has correct magic number
return False
except Exception: # catch all errors in case future python versions change the zipfile internals
return False
@staticmethod
def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None:
os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ )
with zipfile.ZipFile(lowerCAmelCase_ , 'r' ) as zip_file:
zip_file.extractall(lowerCAmelCase_ )
zip_file.close()
class _UpperCAmelCase ( _UpperCamelCase ):
"""simple docstring"""
a_ = [b"""\xFD\x37\x7A\x58\x5A\x00"""]
@staticmethod
def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None:
with lzma.open(lowerCAmelCase_ ) as compressed_file:
with open(lowerCAmelCase_ , 'wb' ) as extracted_file:
shutil.copyfileobj(lowerCAmelCase_ , lowerCAmelCase_ )
class _UpperCAmelCase ( _UpperCamelCase ):
"""simple docstring"""
a_ = [b"""Rar!\x1a\x07\x00""", b"""Rar!\x1a\x07\x01\x00"""] # RAR_ID # RAR5_ID
@staticmethod
def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None:
if not config.RARFILE_AVAILABLE:
raise ImportError('Please pip install rarfile' )
import rarfile
os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ )
__lowerCAmelCase = rarfile.RarFile(lowerCAmelCase_ )
rf.extractall(lowerCAmelCase_ )
rf.close()
class _UpperCAmelCase ( _UpperCamelCase ):
"""simple docstring"""
a_ = [b"""\x28\xb5\x2F\xFD"""]
@staticmethod
def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None:
if not config.ZSTANDARD_AVAILABLE:
raise ImportError('Please pip install zstandard' )
import zstandard as zstd
__lowerCAmelCase = zstd.ZstdDecompressor()
with open(lowerCAmelCase_ , 'rb' ) as ifh, open(lowerCAmelCase_ , 'wb' ) as ofh:
dctx.copy_stream(lowerCAmelCase_ , lowerCAmelCase_ )
class _UpperCAmelCase ( _UpperCamelCase ):
"""simple docstring"""
a_ = [b"""\x42\x5A\x68"""]
@staticmethod
def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None:
with bza.open(lowerCAmelCase_ , 'rb' ) as compressed_file:
with open(lowerCAmelCase_ , 'wb' ) as extracted_file:
shutil.copyfileobj(lowerCAmelCase_ , lowerCAmelCase_ )
class _UpperCAmelCase ( _UpperCamelCase ):
"""simple docstring"""
a_ = [b"""\x37\x7A\xBC\xAF\x27\x1C"""]
@staticmethod
def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None:
if not config.PY7ZR_AVAILABLE:
raise ImportError('Please pip install py7zr' )
import pyazr
os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ )
with pyazr.SevenZipFile(lowerCAmelCase_ , 'r' ) as archive:
archive.extractall(lowerCAmelCase_ )
class _UpperCAmelCase ( _UpperCamelCase ):
"""simple docstring"""
a_ = [b"""\x04\x22\x4D\x18"""]
@staticmethod
def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] ) -> None:
if not config.LZ4_AVAILABLE:
raise ImportError('Please pip install lz4' )
import lza.frame
with lza.frame.open(lowerCAmelCase_ , 'rb' ) as compressed_file:
with open(lowerCAmelCase_ , 'wb' ) as extracted_file:
shutil.copyfileobj(lowerCAmelCase_ , lowerCAmelCase_ )
class _UpperCAmelCase :
"""simple docstring"""
a_ = {
"tar": TarExtractor,
"gzip": GzipExtractor,
"zip": ZipExtractor,
"xz": XzExtractor,
"rar": RarExtractor,
"zstd": ZstdExtractor,
"bz2": BzipaExtractor,
"7z": SevenZipExtractor, # <Added version="2.4.0"/>
"lz4": LzaExtractor, # <Added version="2.4.0"/>
}
@classmethod
def lowercase ( cls : int ) -> Any:
return max(
len(lowerCAmelCase_ )
for extractor in cls.extractors.values()
if issubclass(lowerCAmelCase_ , lowerCAmelCase_ )
for extractor_magic_number in extractor.magic_numbers )
@staticmethod
def lowercase ( lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : int ) -> Optional[Any]:
try:
return MagicNumberBaseExtractor.read_magic_number(lowerCAmelCase_ , magic_number_length=lowerCAmelCase_ )
except OSError:
return b""
@classmethod
def lowercase ( cls : Dict , lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : bool = False ) -> bool:
warnings.warn(
'Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. '
'Use \'infer_extractor_format\' instead.' , category=lowerCAmelCase_ , )
__lowerCAmelCase = cls.infer_extractor_format(lowerCAmelCase_ )
if extractor_format:
return True if not return_extractor else (True, cls.extractors[extractor_format])
return False if not return_extractor else (False, None)
@classmethod
def lowercase ( cls : str , lowerCAmelCase_ : Union[Path, str] ) -> str: # <Added version="2.4.0"/>
__lowerCAmelCase = cls._get_magic_number_max_length()
__lowerCAmelCase = cls._read_magic_number(lowerCAmelCase_ , lowerCAmelCase_ )
for extractor_format, extractor in cls.extractors.items():
if extractor.is_extractable(lowerCAmelCase_ , magic_number=lowerCAmelCase_ ):
return extractor_format
@classmethod
def lowercase ( cls : Union[str, Any] , lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Union[Path, str] , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[BaseExtractor] = "deprecated" , ) -> None:
os.makedirs(os.path.dirname(lowerCAmelCase_ ) , exist_ok=lowerCAmelCase_ )
# Prevent parallel extractions
__lowerCAmelCase = str(Path(lowerCAmelCase_ ).with_suffix('.lock' ) )
with FileLock(lowerCAmelCase_ ):
shutil.rmtree(lowerCAmelCase_ , ignore_errors=lowerCAmelCase_ )
if extractor_format or extractor != "deprecated":
if extractor != "deprecated" or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): # passed as positional arg
warnings.warn(
'Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. '
'Use \'extractor_format\' instead.' , category=lowerCAmelCase_ , )
__lowerCAmelCase = extractor if extractor != 'deprecated' else extractor_format
else:
__lowerCAmelCase = cls.extractors[extractor_format]
return extractor.extract(lowerCAmelCase_ , lowerCAmelCase_ )
else:
warnings.warn(
'Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an '
'exception in 3.0.0.' , category=lowerCAmelCase_ , )
for extractor in cls.extractors.values():
if extractor.is_extractable(lowerCAmelCase_ ):
return extractor.extract(lowerCAmelCase_ , lowerCAmelCase_ )
| 53 |
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class A ( unittest.TestCase ):
def __init__( self: Optional[int] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: Optional[int]=7 , _lowerCAmelCase: Any=True , _lowerCAmelCase: List[Any]=True , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: str=True , _lowerCAmelCase: Optional[int]=99 , _lowerCAmelCase: Any=32 , _lowerCAmelCase: Any=5 , _lowerCAmelCase: Tuple=4 , _lowerCAmelCase: Union[str, Any]=37 , _lowerCAmelCase: List[str]="gelu" , _lowerCAmelCase: Dict=0.1 , _lowerCAmelCase: Tuple=0.1 , _lowerCAmelCase: int=512 , _lowerCAmelCase: Tuple=16 , _lowerCAmelCase: Tuple=2 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=4 , ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ =parent
UpperCAmelCase_ =batch_size
UpperCAmelCase_ =seq_length
UpperCAmelCase_ =is_training
UpperCAmelCase_ =use_attention_mask
UpperCAmelCase_ =use_token_type_ids
UpperCAmelCase_ =use_labels
UpperCAmelCase_ =vocab_size
UpperCAmelCase_ =hidden_size
UpperCAmelCase_ =num_hidden_layers
UpperCAmelCase_ =num_attention_heads
UpperCAmelCase_ =intermediate_size
UpperCAmelCase_ =hidden_act
UpperCAmelCase_ =hidden_dropout_prob
UpperCAmelCase_ =attention_probs_dropout_prob
UpperCAmelCase_ =max_position_embeddings
UpperCAmelCase_ =type_vocab_size
UpperCAmelCase_ =type_sequence_label_size
UpperCAmelCase_ =initializer_range
UpperCAmelCase_ =num_choices
def lowerCAmelCase__ ( self: Dict ) -> Any:
'''simple docstring'''
UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ =None
if self.use_attention_mask:
UpperCAmelCase_ =random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase_ =None
if self.use_token_type_ids:
UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ =RobertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowerCAmelCase__ ( self: str ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ =self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs
UpperCAmelCase_ ={"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
return config, inputs_dict
def lowerCAmelCase__ ( self: Tuple ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ =self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs
UpperCAmelCase_ =True
UpperCAmelCase_ =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class A ( __lowercase , unittest.TestCase ):
_snake_case =True
_snake_case =(
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowerCAmelCase__ ( self: Dict ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ =FlaxRobertaModelTester(self )
@slow
def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
UpperCAmelCase_ =model_class_name.from_pretrained("roberta-base" , from_pt=_lowerCAmelCase )
UpperCAmelCase_ =model(np.ones((1, 1) ) )
self.assertIsNotNone(_lowerCAmelCase )
| 54 | 0 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@slow
@require_torch
def UpperCamelCase_ ( self : Optional[int] ):
__A = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" ,"prajjwal1/bert-tiny" )
__A = BertTokenizer.from_pretrained("bert-base-uncased" )
__A = bertabert.config.encoder.vocab_size
__A = tokenizer.sep_token_id
__A = tokenizer.cls_token_id
__A = 1_28
__A = datasets.load_dataset("cnn_dailymail" ,"3.0.0" ,split="train[:1%]" )
__A = datasets.load_dataset("cnn_dailymail" ,"3.0.0" ,split="validation[:1%]" )
__A = train_dataset.select(range(32 ) )
__A = val_dataset.select(range(16 ) )
__A = 4
def _map_to_encoder_decoder_inputs(A : str ):
# Tokenizer will automatically set [BOS] <text> [EOS]
__A = tokenizer(batch["article"] ,padding="max_length" ,truncation=A ,max_length=5_12 )
__A = tokenizer(batch["highlights"] ,padding="max_length" ,truncation=A ,max_length=1_28 )
__A = inputs.input_ids
__A = inputs.attention_mask
__A = outputs.input_ids
__A = outputs.input_ids.copy()
__A = [
[-1_00 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"]
]
__A = outputs.attention_mask
assert all(len(A ) == 5_12 for x in inputs.input_ids )
assert all(len(A ) == 1_28 for x in outputs.input_ids )
return batch
def _compute_metrics(A : Union[str, Any] ):
__A = pred.label_ids
__A = pred.predictions
# all unnecessary tokens are removed
__A = tokenizer.batch_decode(A ,skip_special_tokens=A )
__A = tokenizer.batch_decode(A ,skip_special_tokens=A )
__A = sum([int(pred_str[i] == label_str[i] ) for i in range(len(A ) )] ) / len(A )
return {"accuracy": accuracy}
# map train dataset
__A = train_dataset.map(
_map_to_encoder_decoder_inputs ,batched=A ,batch_size=A ,remove_columns=["article", "highlights"] ,)
train_dataset.set_format(
type="torch" ,columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] ,)
# same for validation dataset
__A = val_dataset.map(
_map_to_encoder_decoder_inputs ,batched=A ,batch_size=A ,remove_columns=["article", "highlights"] ,)
val_dataset.set_format(
type="torch" ,columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] ,)
__A = self.get_auto_remove_tmp_dir()
__A = SeqaSeqTrainingArguments(
output_dir=A ,per_device_train_batch_size=A ,per_device_eval_batch_size=A ,predict_with_generate=A ,evaluation_strategy="steps" ,do_train=A ,do_eval=A ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,)
# instantiate trainer
__A = SeqaSeqTrainer(
model=A ,args=A ,compute_metrics=_compute_metrics ,train_dataset=A ,eval_dataset=A ,tokenizer=A ,)
# start training
trainer.train()
| 55 |
from __future__ import annotations
def a__ ( lowercase__ , lowercase__ ):
'''simple docstring'''
if b == 0:
return (1, 0)
((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , a % b )
UpperCAmelCase_ =a // b
return (y, x - k * y)
def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ )
UpperCAmelCase_ =na * na
UpperCAmelCase_ =ra * x * na + ra * y * na
return (n % m + m) % m
def a__ ( lowercase__ , lowercase__ ):
'''simple docstring'''
((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ )
if b < 0:
UpperCAmelCase_ =(b % n + n) % n
return b
def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ =invert_modulo(lowercase__ , lowercase__ ), invert_modulo(lowercase__ , lowercase__ )
UpperCAmelCase_ =na * na
UpperCAmelCase_ =ra * x * na + ra * y * na
return (n % m + m) % m
if __name__ == "__main__":
from doctest import testmod
testmod(name="""chinese_remainder_theorem""", verbose=True)
testmod(name="""chinese_remainder_theorem2""", verbose=True)
testmod(name="""invert_modulo""", verbose=True)
testmod(name="""extended_euclid""", verbose=True)
| 54 | 0 |
'''simple docstring'''
from typing import Optional, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_mobilenet_va import MobileNetVaConfig
_a : List[Any] = logging.get_logger(__name__)
# General docstring
_a : Union[str, Any] = "MobileNetV1Config"
# Base docstring
_a : int = "google/mobilenet_v1_1.0_224"
_a : Any = [1, 1_024, 7, 7]
# Image classification docstring
_a : Any = "google/mobilenet_v1_1.0_224"
_a : Tuple = "tabby, tabby cat"
_a : Tuple = [
"google/mobilenet_v1_1.0_224",
"google/mobilenet_v1_0.75_192",
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
]
def _a (lowercase__ : Union[str, Any] , lowercase__ : Tuple , lowercase__ : Tuple=None ) -> Optional[int]:
"""simple docstring"""
__snake_case = {}
if isinstance(lowercase__ , lowercase__ ):
__snake_case = model.mobilenet_va
else:
__snake_case = model
__snake_case = 'MobilenetV1/Conv2d_0/'
__snake_case = backbone.conv_stem.convolution.weight
__snake_case = backbone.conv_stem.normalization.bias
__snake_case = backbone.conv_stem.normalization.weight
__snake_case = backbone.conv_stem.normalization.running_mean
__snake_case = backbone.conv_stem.normalization.running_var
for i in range(1_3 ):
__snake_case = i + 1
__snake_case = i * 2
__snake_case = backbone.layer[pt_index]
__snake_case = f'MobilenetV1/Conv2d_{tf_index}_depthwise/'
__snake_case = pointer.convolution.weight
__snake_case = pointer.normalization.bias
__snake_case = pointer.normalization.weight
__snake_case = pointer.normalization.running_mean
__snake_case = pointer.normalization.running_var
__snake_case = backbone.layer[pt_index + 1]
__snake_case = f'MobilenetV1/Conv2d_{tf_index}_pointwise/'
__snake_case = pointer.convolution.weight
__snake_case = pointer.normalization.bias
__snake_case = pointer.normalization.weight
__snake_case = pointer.normalization.running_mean
__snake_case = pointer.normalization.running_var
if isinstance(lowercase__ , lowercase__ ):
__snake_case = 'MobilenetV1/Logits/Conv2d_1c_1x1/'
__snake_case = model.classifier.weight
__snake_case = model.classifier.bias
return tf_to_pt_map
def _a (lowercase__ : List[str] , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> str:
"""simple docstring"""
try:
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see '
'https://www.tensorflow.org/install/ for installation instructions.' )
raise
# Load weights from TF model
__snake_case = tf.train.list_variables(lowercase__ )
__snake_case = {}
for name, shape in init_vars:
logger.info(f'Loading TF weight {name} with shape {shape}' )
__snake_case = tf.train.load_variable(lowercase__ , lowercase__ )
__snake_case = array
# Build TF to PyTorch weights loading map
__snake_case = _build_tf_to_pytorch_map(lowercase__ , lowercase__ , lowercase__ )
for name, pointer in tf_to_pt_map.items():
logger.info(f'Importing {name}' )
if name not in tf_weights:
logger.info(f'{name} not in tf pre-trained weights, skipping' )
continue
__snake_case = tf_weights[name]
if "depthwise_weights" in name:
logger.info('Transposing depthwise' )
__snake_case = np.transpose(lowercase__ , (2, 3, 0, 1) )
elif "weights" in name:
logger.info('Transposing' )
if len(pointer.shape ) == 2: # copying into linear layer
__snake_case = array.squeeze().transpose()
else:
__snake_case = np.transpose(lowercase__ , (3, 2, 0, 1) )
if pointer.shape != array.shape:
raise ValueError(f'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' )
logger.info(f'Initialize PyTorch weight {name} {array.shape}' )
__snake_case = torch.from_numpy(lowercase__ )
tf_weights.pop(lowercase__ , lowercase__ )
tf_weights.pop(name + '/RMSProp' , lowercase__ )
tf_weights.pop(name + '/RMSProp_1' , lowercase__ )
tf_weights.pop(name + '/ExponentialMovingAverage' , lowercase__ )
logger.info(f'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' )
return model
def _a (lowercase__ : torch.Tensor , lowercase__ : nn.Convad ) -> torch.Tensor:
"""simple docstring"""
__snake_case , __snake_case = features.shape[-2:]
__snake_case , __snake_case = conv_layer.stride
__snake_case , __snake_case = conv_layer.kernel_size
if in_height % stride_height == 0:
__snake_case = max(kernel_height - stride_height , 0 )
else:
__snake_case = max(kernel_height - (in_height % stride_height) , 0 )
if in_width % stride_width == 0:
__snake_case = max(kernel_width - stride_width , 0 )
else:
__snake_case = max(kernel_width - (in_width % stride_width) , 0 )
__snake_case = pad_along_width // 2
__snake_case = pad_along_width - pad_left
__snake_case = pad_along_height // 2
__snake_case = pad_along_height - pad_top
__snake_case = (pad_left, pad_right, pad_top, pad_bottom)
return nn.functional.pad(lowercase__ , lowercase__ , 'constant' , 0.0 )
class _lowercase ( nn.Module ):
def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : MobileNetVaConfig , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] = 1 , SCREAMING_SNAKE_CASE_ : Optional[int] = 1 , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[bool] = True , SCREAMING_SNAKE_CASE_ : Optional[bool or str] = True , ) -> None:
super().__init__()
__snake_case = config
if in_channels % groups != 0:
raise ValueError(f'Input channels ({in_channels}) are not divisible by {groups} groups.' )
if out_channels % groups != 0:
raise ValueError(f'Output channels ({out_channels}) are not divisible by {groups} groups.' )
__snake_case = 0 if config.tf_padding else int((kernel_size - 1) / 2 )
__snake_case = nn.Convad(
in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , kernel_size=SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , groups=SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ , padding_mode='zeros' , )
if use_normalization:
__snake_case = nn.BatchNormad(
num_features=SCREAMING_SNAKE_CASE_ , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=SCREAMING_SNAKE_CASE_ , track_running_stats=SCREAMING_SNAKE_CASE_ , )
else:
__snake_case = None
if use_activation:
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__snake_case = ACTaFN[use_activation]
elif isinstance(config.hidden_act , SCREAMING_SNAKE_CASE_ ):
__snake_case = ACTaFN[config.hidden_act]
else:
__snake_case = config.hidden_act
else:
__snake_case = None
def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : torch.Tensor ) -> torch.Tensor:
if self.config.tf_padding:
__snake_case = apply_tf_padding(SCREAMING_SNAKE_CASE_ , self.convolution )
__snake_case = self.convolution(SCREAMING_SNAKE_CASE_ )
if self.normalization is not None:
__snake_case = self.normalization(SCREAMING_SNAKE_CASE_ )
if self.activation is not None:
__snake_case = self.activation(SCREAMING_SNAKE_CASE_ )
return features
class _lowercase ( __lowercase ):
_SCREAMING_SNAKE_CASE : Tuple = MobileNetVaConfig
_SCREAMING_SNAKE_CASE : Optional[Any] = load_tf_weights_in_mobilenet_va
_SCREAMING_SNAKE_CASE : Any = "mobilenet_v1"
_SCREAMING_SNAKE_CASE : Optional[Any] = "pixel_values"
_SCREAMING_SNAKE_CASE : List[Any] = False
def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[nn.Linear, nn.Convad] ) -> None:
if isinstance(SCREAMING_SNAKE_CASE_ , (nn.Linear, nn.Convad) ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(SCREAMING_SNAKE_CASE_ , nn.BatchNormad ):
module.bias.data.zero_()
module.weight.data.fill_(1.0 )
_a : Optional[Any] = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n"
_a : str = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n"
@add_start_docstrings(
"The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." , __lowercase , )
class _lowercase ( __lowercase ):
def __init__( self : str , SCREAMING_SNAKE_CASE_ : MobileNetVaConfig , SCREAMING_SNAKE_CASE_ : bool = True ) -> Any:
super().__init__(SCREAMING_SNAKE_CASE_ )
__snake_case = config
__snake_case = 32
__snake_case = max(int(depth * config.depth_multiplier ) , config.min_depth )
__snake_case = MobileNetVaConvLayer(
SCREAMING_SNAKE_CASE_ , in_channels=config.num_channels , out_channels=SCREAMING_SNAKE_CASE_ , kernel_size=3 , stride=2 , )
__snake_case = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1]
__snake_case = nn.ModuleList()
for i in range(13 ):
__snake_case = out_channels
if strides[i] == 2 or i == 0:
depth *= 2
__snake_case = max(int(depth * config.depth_multiplier ) , config.min_depth )
self.layer.append(
MobileNetVaConvLayer(
SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , kernel_size=3 , stride=strides[i] , groups=SCREAMING_SNAKE_CASE_ , ) )
self.layer.append(
MobileNetVaConvLayer(
SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , kernel_size=1 , ) )
__snake_case = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int ) -> Dict:
raise NotImplementedError
@add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]:
__snake_case = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__snake_case = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError('You have to specify pixel_values' )
__snake_case = self.conv_stem(SCREAMING_SNAKE_CASE_ )
__snake_case = () if output_hidden_states else None
for i, layer_module in enumerate(self.layer ):
__snake_case = layer_module(SCREAMING_SNAKE_CASE_ )
if output_hidden_states:
__snake_case = all_hidden_states + (hidden_states,)
__snake_case = hidden_states
if self.pooler is not None:
__snake_case = torch.flatten(self.pooler(SCREAMING_SNAKE_CASE_ ) , start_dim=1 )
else:
__snake_case = None
if not return_dict:
return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None )
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=SCREAMING_SNAKE_CASE_ , pooler_output=SCREAMING_SNAKE_CASE_ , hidden_states=SCREAMING_SNAKE_CASE_ , )
@add_start_docstrings(
"\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , __lowercase , )
class _lowercase ( __lowercase ):
def __init__( self : int , SCREAMING_SNAKE_CASE_ : MobileNetVaConfig ) -> None:
super().__init__(SCREAMING_SNAKE_CASE_ )
__snake_case = config.num_labels
__snake_case = MobileNetVaModel(SCREAMING_SNAKE_CASE_ )
__snake_case = self.mobilenet_va.layer[-1].convolution.out_channels
# Classifier head
__snake_case = nn.Dropout(config.classifier_dropout_prob , inplace=SCREAMING_SNAKE_CASE_ )
__snake_case = nn.Linear(SCREAMING_SNAKE_CASE_ , config.num_labels ) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]:
__snake_case = return_dict if return_dict is not None else self.config.use_return_dict
__snake_case = self.mobilenet_va(SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ )
__snake_case = outputs.pooler_output if return_dict else outputs[1]
__snake_case = self.classifier(self.dropout(SCREAMING_SNAKE_CASE_ ) )
__snake_case = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
__snake_case = 'regression'
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
__snake_case = 'single_label_classification'
else:
__snake_case = 'multi_label_classification'
if self.config.problem_type == "regression":
__snake_case = MSELoss()
if self.num_labels == 1:
__snake_case = loss_fct(logits.squeeze() , labels.squeeze() )
else:
__snake_case = loss_fct(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
elif self.config.problem_type == "single_label_classification":
__snake_case = CrossEntropyLoss()
__snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
__snake_case = BCEWithLogitsLoss()
__snake_case = loss_fct(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if not return_dict:
__snake_case = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=SCREAMING_SNAKE_CASE_ , logits=SCREAMING_SNAKE_CASE_ , hidden_states=outputs.hidden_states , )
| 56 |
import argparse
import logging
import os
import re
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
DataCollatorForLanguageModeling,
PushToHubCallback,
TFAutoModelForMaskedLM,
create_optimizer,
)
__lowercase : Tuple =logging.getLogger(__name__)
__lowercase : Optional[int] =tf.data.AUTOTUNE
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =argparse.ArgumentParser(description="Train a masked language model on TPU." )
parser.add_argument(
"--pretrained_model_config" , type=lowercase__ , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , )
parser.add_argument(
"--tokenizer" , type=lowercase__ , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , )
parser.add_argument(
"--per_replica_batch_size" , type=lowercase__ , default=8 , help="Batch size per TPU core." , )
parser.add_argument(
"--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , )
parser.add_argument(
"--tpu_name" , type=lowercase__ , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , )
parser.add_argument(
"--tpu_zone" , type=lowercase__ , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , )
parser.add_argument(
"--gcp_project" , type=lowercase__ , help="Google cloud project name. Only used for non-Colab TPU nodes." )
parser.add_argument(
"--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , )
parser.add_argument(
"--train_dataset" , type=lowercase__ , help="Path to training dataset to load. If the path begins with `gs://`"
" then the dataset will be loaded from a Google Cloud Storage bucket." , )
parser.add_argument(
"--shuffle_buffer_size" , type=lowercase__ , default=2**1_8 , help="Size of the shuffle buffer (in samples)" , )
parser.add_argument(
"--eval_dataset" , type=lowercase__ , help="Path to evaluation dataset to load. If the path begins with `gs://`"
" then the dataset will be loaded from a Google Cloud Storage bucket." , )
parser.add_argument(
"--num_epochs" , type=lowercase__ , default=1 , help="Number of epochs to train for." , )
parser.add_argument(
"--learning_rate" , type=lowercase__ , default=1E-4 , help="Learning rate to use for training." , )
parser.add_argument(
"--weight_decay_rate" , type=lowercase__ , default=1E-3 , help="Weight decay rate to use for training." , )
parser.add_argument(
"--max_length" , type=lowercase__ , default=5_1_2 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , )
parser.add_argument(
"--mlm_probability" , type=lowercase__ , default=0.15 , help="Fraction of tokens to mask during training." , )
parser.add_argument("--output_dir" , type=lowercase__ , required=lowercase__ , help="Path to save model checkpoints to." )
parser.add_argument("--hub_model_id" , type=lowercase__ , help="Model ID to upload to on the Hugging Face Hub." )
UpperCAmelCase_ =parser.parse_args()
return args
def a__ ( lowercase__ ):
'''simple docstring'''
try:
if args.tpu_name:
UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver(
args.tpu_name , zone=args.tpu_zone , project=args.gcp_project )
else:
UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
raise RuntimeError(
"Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or "
"--gcp_project. When running on a TPU VM, use --tpu_name local." )
tf.config.experimental_connect_to_cluster(lowercase__ )
tf.tpu.experimental.initialize_tpu_system(lowercase__ )
return tpu
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =0
for file in file_list:
UpperCAmelCase_ =file.split("/" )[-1]
UpperCAmelCase_ =re.search(R"-\d+-(\d+)\.tfrecord" , lowercase__ ).group(1 )
UpperCAmelCase_ =int(lowercase__ )
num_samples += sample_count
return num_samples
def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=None ):
'''simple docstring'''
UpperCAmelCase_ =count_samples(lowercase__ )
UpperCAmelCase_ =tf.data.Dataset.from_tensor_slices(lowercase__ )
if shuffle:
UpperCAmelCase_ =dataset.shuffle(len(lowercase__ ) )
UpperCAmelCase_ =tf.data.TFRecordDataset(lowercase__ , num_parallel_reads=lowercase__ )
# TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here
UpperCAmelCase_ =dataset.apply(tf.data.experimental.assert_cardinality(lowercase__ ) )
UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ )
if shuffle:
assert shuffle_buffer_size is not None
UpperCAmelCase_ =dataset.shuffle(args.shuffle_buffer_size )
UpperCAmelCase_ =dataset.batch(lowercase__ , drop_remainder=lowercase__ )
UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ )
UpperCAmelCase_ =dataset.prefetch(lowercase__ )
return dataset
def a__ ( lowercase__ ):
'''simple docstring'''
if not args.no_tpu:
UpperCAmelCase_ =initialize_tpu(lowercase__ )
UpperCAmelCase_ =tf.distribute.TPUStrategy(lowercase__ )
else:
UpperCAmelCase_ =tf.distribute.OneDeviceStrategy(device="/gpu:0" )
if args.bfloataa:
tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" )
UpperCAmelCase_ =AutoTokenizer.from_pretrained(args.tokenizer )
UpperCAmelCase_ =AutoConfig.from_pretrained(args.pretrained_model_config )
UpperCAmelCase_ =tokenizer.vocab_size
UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) )
if not training_records:
raise ValueError(F'No .tfrecord files found in {args.train_dataset}.' )
UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) )
if not eval_records:
raise ValueError(F'No .tfrecord files found in {args.eval_dataset}.' )
UpperCAmelCase_ =count_samples(lowercase__ )
UpperCAmelCase_ =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync)
UpperCAmelCase_ =steps_per_epoch * args.num_epochs
with strategy.scope():
UpperCAmelCase_ =TFAutoModelForMaskedLM.from_config(lowercase__ )
model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built
UpperCAmelCase_ , UpperCAmelCase_ =create_optimizer(
num_train_steps=lowercase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , )
# Transformers models compute the right loss for their task by default when labels are passed, and will
# use this for training unless you specify your own loss function in compile().
model.compile(optimizer=lowercase__ , metrics=["accuracy"] )
def decode_fn(lowercase__ ):
UpperCAmelCase_ ={
"input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ),
"attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ),
}
return tf.io.parse_single_example(lowercase__ , lowercase__ )
# Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can
# use their methods in our data pipeline.
UpperCAmelCase_ =DataCollatorForLanguageModeling(
tokenizer=lowercase__ , mlm_probability=args.mlm_probability , mlm=lowercase__ , return_tensors="tf" )
def mask_with_collator(lowercase__ ):
# TF really needs an isin() function
UpperCAmelCase_ =(
~tf.cast(batch["attention_mask"] , tf.bool )
| (batch["input_ids"] == tokenizer.cls_token_id)
| (batch["input_ids"] == tokenizer.sep_token_id)
)
UpperCAmelCase_ , UpperCAmelCase_ =data_collator.tf_mask_tokens(
batch["input_ids"] , vocab_size=len(lowercase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowercase__ , )
return batch
UpperCAmelCase_ =args.per_replica_batch_size * strategy.num_replicas_in_sync
UpperCAmelCase_ =prepare_dataset(
lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , shuffle_buffer_size=args.shuffle_buffer_size , )
UpperCAmelCase_ =prepare_dataset(
lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , )
UpperCAmelCase_ =[]
if args.hub_model_id:
callbacks.append(
PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowercase__ ) )
model.fit(
lowercase__ , validation_data=lowercase__ , epochs=args.num_epochs , callbacks=lowercase__ , )
model.save_pretrained(args.output_dir )
if __name__ == "__main__":
__lowercase : Union[str, Any] =parse_args()
main(args)
| 54 | 0 |
import random
import sys
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
A_ : Union[str, Any] = 'Usage of script: script_name <size_of_canvas:int>'
A_ : str = [0] * 100 + [1] * 10
random.shuffle(choice)
def snake_case (UpperCAmelCase__ ) -> list[list[bool]]:
UpperCamelCase_: str = [[False for i in range(UpperCAmelCase__ )] for j in range(UpperCAmelCase__ )]
return canvas
def snake_case (UpperCAmelCase__ ) -> None:
for i, row in enumerate(UpperCAmelCase__ ):
for j, _ in enumerate(UpperCAmelCase__ ):
UpperCamelCase_: List[str] = bool(random.getrandbits(1 ) )
def snake_case (UpperCAmelCase__ ) -> list[list[bool]]:
UpperCamelCase_: List[Any] = np.array(UpperCAmelCase__ )
UpperCamelCase_: Optional[int] = np.array(create_canvas(current_canvas.shape[0] ) )
for r, row in enumerate(UpperCAmelCase__ ):
for c, pt in enumerate(UpperCAmelCase__ ):
UpperCamelCase_: int = __judge_point(
UpperCAmelCase__ , current_canvas[r - 1 : r + 2, c - 1 : c + 2] )
UpperCamelCase_: str = next_gen_canvas
del next_gen_canvas # cleaning memory as we move on.
UpperCamelCase_: list[list[bool]] = current_canvas.tolist()
return return_canvas
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> bool:
UpperCamelCase_: Union[str, Any] = 0
UpperCamelCase_: Tuple = 0
# finding dead or alive neighbours count.
for i in neighbours:
for status in i:
if status:
alive += 1
else:
dead += 1
# handling duplicate entry for focus pt.
if pt:
alive -= 1
else:
dead -= 1
# running the rules of game here.
UpperCamelCase_: Tuple = pt
if pt:
if alive < 2:
UpperCamelCase_: Tuple = False
elif alive == 2 or alive == 3:
UpperCamelCase_: Any = True
elif alive > 3:
UpperCamelCase_: List[Any] = False
else:
if alive == 3:
UpperCamelCase_: List[str] = True
return state
if __name__ == "__main__":
if len(sys.argv) != 2:
raise Exception(usage_doc)
A_ : List[Any] = int(sys.argv[1])
# main working structure of this module.
A_ : Union[str, Any] = create_canvas(canvas_size)
seed(c)
A_ , A_ : str = plt.subplots()
fig.show()
A_ : Union[str, Any] = ListedColormap(['w', 'k'])
try:
while True:
A_ : Optional[Any] = run(c)
ax.matshow(c, cmap=cmap)
fig.canvas.draw()
ax.cla()
except KeyboardInterrupt:
# do nothing.
pass
| 57 |
import unittest
from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class A :
@staticmethod
def lowerCAmelCase__ ( *_lowerCAmelCase: List[Any] , **_lowerCAmelCase: List[str] ) -> List[str]:
'''simple docstring'''
pass
@is_pipeline_test
@require_torch
@require_vision
class A ( unittest.TestCase ):
_snake_case =MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Tuple ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" )
UpperCAmelCase_ =[
{
"image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ),
"question": "How many cats are there?",
},
{
"image": "./tests/fixtures/tests_samples/COCO/000000039769.png",
"question": "How many cats are there?",
},
]
return vqa_pipeline, examples
def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: str ) -> int:
'''simple docstring'''
UpperCAmelCase_ =vqa_pipeline(_lowerCAmelCase , top_k=1 )
self.assertEqual(
_lowerCAmelCase , [
[{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}],
[{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}],
] , )
@require_torch
def lowerCAmelCase__ ( self: Tuple ) -> str:
'''simple docstring'''
UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" )
UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png"
UpperCAmelCase_ ="How many cats are there?"
UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question="How many cats are there?" , top_k=2 )
self.assertEqual(
_lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] )
UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
_lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] )
@slow
@require_torch
def lowerCAmelCase__ ( self: List[str] ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ =pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" )
UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png"
UpperCAmelCase_ ="How many cats are there?"
UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] )
UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] )
UpperCAmelCase_ =vqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(_lowerCAmelCase , decimals=4 ) , [[{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}]] * 2 , )
@require_tf
@unittest.skip("Visual question answering not implemented in TF" )
def lowerCAmelCase__ ( self: int ) -> List[str]:
'''simple docstring'''
pass
| 54 | 0 |
"""simple docstring"""
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
__lowerCAmelCase : List[str] = '''__DUMMY_TRANSFORMERS_USER__'''
__lowerCAmelCase : Dict = '''Dummy User'''
__lowerCAmelCase : Dict = '''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'''
__lowerCAmelCase : Dict = '''https://hub-ci.huggingface.co'''
__lowerCAmelCase : List[str] = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}'''
__lowerCAmelCase : int = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}'''
__lowerCAmelCase : Optional[Any] = Path('''~/.huggingface/hub_ci_token''').expanduser()
@pytest.fixture
def __lowerCAmelCase ( __UpperCamelCase : Optional[int] ):
'''simple docstring'''
monkeypatch.setattr(
"""huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , __UpperCamelCase )
@pytest.fixture
def __lowerCAmelCase ( __UpperCamelCase : Tuple ):
'''simple docstring'''
monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , __UpperCamelCase )
monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , __UpperCamelCase )
@pytest.fixture
def __lowerCAmelCase ( __UpperCamelCase : Tuple ):
'''simple docstring'''
monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , __UpperCamelCase )
@pytest.fixture
def __lowerCAmelCase ( __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
HfFolder.save_token(__UpperCamelCase )
yield
HfFolder.delete_token()
@pytest.fixture(scope="""session""" )
def __lowerCAmelCase ( ):
'''simple docstring'''
return HfApi(endpoint=__UpperCamelCase )
@pytest.fixture(scope="""session""" )
def __lowerCAmelCase ( __UpperCamelCase : HfApi ):
'''simple docstring'''
snake_case_ : List[Any] = HfFolder.get_token()
HfFolder.save_token(__UpperCamelCase )
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(__UpperCamelCase )
@pytest.fixture
def __lowerCAmelCase ( __UpperCamelCase : str ):
'''simple docstring'''
def _cleanup_repo(__UpperCamelCase : int ):
hf_api.delete_repo(__UpperCamelCase , token=__UpperCamelCase , repo_type="""dataset""" )
return _cleanup_repo
@pytest.fixture
def __lowerCAmelCase ( __UpperCamelCase : str ):
'''simple docstring'''
@contextmanager
def _temporary_repo(__UpperCamelCase : int ):
try:
yield repo_id
finally:
cleanup_repo(__UpperCamelCase )
return _temporary_repo
@pytest.fixture(scope="""session""" )
def __lowerCAmelCase ( __UpperCamelCase : HfApi , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] ):
'''simple docstring'''
snake_case_ : List[str] = F'repo_txt_data-{int(time.time() * 1_0E3 )}'
snake_case_ : Optional[int] = F'{CI_HUB_USER}/{repo_name}'
hf_api.create_repo(__UpperCamelCase , token=__UpperCamelCase , repo_type="""dataset""" , private=__UpperCamelCase )
hf_api.upload_file(
token=__UpperCamelCase , path_or_fileobj=str(__UpperCamelCase ) , path_in_repo="""data/text_data.txt""" , repo_id=__UpperCamelCase , repo_type="""dataset""" , )
yield repo_id
try:
hf_api.delete_repo(__UpperCamelCase , token=__UpperCamelCase , repo_type="""dataset""" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def __lowerCAmelCase ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ):
'''simple docstring'''
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope="""session""" )
def __lowerCAmelCase ( __UpperCamelCase : HfApi , __UpperCamelCase : str , __UpperCamelCase : str ):
'''simple docstring'''
snake_case_ : Optional[Any] = F'repo_zipped_txt_data-{int(time.time() * 1_0E3 )}'
snake_case_ : Tuple = F'{CI_HUB_USER}/{repo_name}'
hf_api.create_repo(__UpperCamelCase , token=__UpperCamelCase , repo_type="""dataset""" , private=__UpperCamelCase )
hf_api.upload_file(
token=__UpperCamelCase , path_or_fileobj=str(__UpperCamelCase ) , path_in_repo="""data.zip""" , repo_id=__UpperCamelCase , repo_type="""dataset""" , )
yield repo_id
try:
hf_api.delete_repo(__UpperCamelCase , token=__UpperCamelCase , repo_type="""dataset""" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] ):
'''simple docstring'''
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope="""session""" )
def __lowerCAmelCase ( __UpperCamelCase : HfApi , __UpperCamelCase : int , __UpperCamelCase : Tuple ):
'''simple docstring'''
snake_case_ : Any = F'repo_zipped_img_data-{int(time.time() * 1_0E3 )}'
snake_case_ : str = F'{CI_HUB_USER}/{repo_name}'
hf_api.create_repo(__UpperCamelCase , token=__UpperCamelCase , repo_type="""dataset""" , private=__UpperCamelCase )
hf_api.upload_file(
token=__UpperCamelCase , path_or_fileobj=str(__UpperCamelCase ) , path_in_repo="""data.zip""" , repo_id=__UpperCamelCase , repo_type="""dataset""" , )
yield repo_id
try:
hf_api.delete_repo(__UpperCamelCase , token=__UpperCamelCase , repo_type="""dataset""" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def __lowerCAmelCase ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Any ):
'''simple docstring'''
return hf_private_dataset_repo_zipped_img_data_
| 58 |
def a__ ( lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
if len(lowercase__ ) != len(lowercase__ ):
raise ValueError("The length of profit and weight must be same." )
if max_weight <= 0:
raise ValueError("max_weight must greater than zero." )
if any(p < 0 for p in profit ):
raise ValueError("Profit can not be negative." )
if any(w < 0 for w in weight ):
raise ValueError("Weight can not be negative." )
# List created to store profit gained for the 1kg in case of each weight
# respectively. Calculate and append profit/weight for each element.
UpperCAmelCase_ =[p / w for p, w in zip(lowercase__ , lowercase__ )]
# Creating a copy of the list and sorting profit/weight in ascending order
UpperCAmelCase_ =sorted(lowercase__ )
# declaring useful variables
UpperCAmelCase_ =len(lowercase__ )
UpperCAmelCase_ =0
UpperCAmelCase_ =0
UpperCAmelCase_ =0
# loop till the total weight do not reach max limit e.g. 15 kg and till i<length
while limit <= max_weight and i < length:
# flag value for encountered greatest element in sorted_profit_by_weight
UpperCAmelCase_ =sorted_profit_by_weight[length - i - 1]
UpperCAmelCase_ =profit_by_weight.index(lowercase__ )
UpperCAmelCase_ =-1
# check if the weight encountered is less than the total weight
# encountered before.
if max_weight - limit >= weight[index]:
limit += weight[index]
# Adding profit gained for the given weight 1 ===
# weight[index]/weight[index]
gain += 1 * profit[index]
else:
# Since the weight encountered is greater than limit, therefore take the
# required number of remaining kgs and calculate profit for it.
# weight remaining / weight[index]
gain += (max_weight - limit) / weight[index] * profit[index]
break
i += 1
return gain
if __name__ == "__main__":
print(
"""Input profits, weights, and then max_weight (all positive ints) separated by """
"""spaces."""
)
__lowercase : List[str] =[int(x) for x in input("""Input profits separated by spaces: """).split()]
__lowercase : Union[str, Any] =[int(x) for x in input("""Input weights separated by spaces: """).split()]
__lowercase : Tuple =int(input("""Max weight allowed: """))
# Function Call
calc_profit(profit, weight, max_weight)
| 54 | 0 |
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .notes_encoder import SpectrogramNotesEncoder
from .continous_encoder import SpectrogramContEncoder
from .pipeline_spectrogram_diffusion import (
SpectrogramContEncoder,
SpectrogramDiffusionPipeline,
TaFilmDecoder,
)
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .midi_utils import MidiProcessor
| 59 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
__lowercase : Dict ={
"""configuration_blip""": [
"""BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BlipConfig""",
"""BlipTextConfig""",
"""BlipVisionConfig""",
],
"""processing_blip""": ["""BlipProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase : Any =["""BlipImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase : List[Any] =[
"""BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BlipModel""",
"""BlipPreTrainedModel""",
"""BlipForConditionalGeneration""",
"""BlipForQuestionAnswering""",
"""BlipVisionModel""",
"""BlipTextModel""",
"""BlipForImageTextRetrieval""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase : List[Any] =[
"""TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBlipModel""",
"""TFBlipPreTrainedModel""",
"""TFBlipForConditionalGeneration""",
"""TFBlipForQuestionAnswering""",
"""TFBlipVisionModel""",
"""TFBlipTextModel""",
"""TFBlipForImageTextRetrieval""",
]
if TYPE_CHECKING:
from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig
from .processing_blip import BlipProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_blip import BlipImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip import (
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
BlipModel,
BlipPreTrainedModel,
BlipTextModel,
BlipVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blip import (
TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBlipForConditionalGeneration,
TFBlipForImageTextRetrieval,
TFBlipForQuestionAnswering,
TFBlipModel,
TFBlipPreTrainedModel,
TFBlipTextModel,
TFBlipVisionModel,
)
else:
import sys
__lowercase : Union[str, Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 54 | 0 |
import json
from typing import Iterator, List, Union
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
from tokenizers.implementations.base_tokenizer import BaseTokenizer
from tokenizers.models import Unigram
from tokenizers.processors import TemplateProcessing
class __lowerCAmelCase ( _a ):
def __init__(self , __magic_name__ = "▁" , __magic_name__ = True , __magic_name__ = "<unk>" , __magic_name__ = "</s>" , __magic_name__ = "<pad>" , ) -> Dict:
'''simple docstring'''
snake_case_ : List[Any] = {
'''pad''': {'''id''': 0, '''token''': pad_token},
'''eos''': {'''id''': 1, '''token''': eos_token},
'''unk''': {'''id''': 2, '''token''': unk_token},
}
snake_case_ : List[str] = [None] * len(self.special_tokens )
for token_dict in self.special_tokens.values():
snake_case_ : int = token_dict['''token''']
snake_case_ : Optional[int] = Tokenizer(Unigram() )
snake_case_ : int = normalizers.Sequence(
[
normalizers.Nmt(),
normalizers.NFKC(),
normalizers.Replace(Regex(''' {2,}''' ) , ''' ''' ),
normalizers.Lowercase(),
] )
snake_case_ : Optional[int] = pre_tokenizers.Sequence(
[
pre_tokenizers.Metaspace(replacement=__magic_name__ , add_prefix_space=__magic_name__ ),
pre_tokenizers.Digits(individual_digits=__magic_name__ ),
pre_tokenizers.Punctuation(),
] )
snake_case_ : Tuple = decoders.Metaspace(replacement=__magic_name__ , add_prefix_space=__magic_name__ )
snake_case_ : Optional[Any] = TemplateProcessing(
single=F'''$A {self.special_tokens["eos"]["token"]}''' , special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])] , )
snake_case_ : Optional[Any] = {
'''model''': '''SentencePieceUnigram''',
'''replacement''': replacement,
'''add_prefix_space''': add_prefix_space,
}
super().__init__(__magic_name__ , __magic_name__ )
def lowerCamelCase (self , __magic_name__ , __magic_name__ = 8000 , __magic_name__ = True , ) -> List[str]:
'''simple docstring'''
snake_case_ : Tuple = trainers.UnigramTrainer(
vocab_size=__magic_name__ , special_tokens=self.special_tokens_list , show_progress=__magic_name__ , )
if isinstance(__magic_name__ , __magic_name__ ):
snake_case_ : Dict = [files]
self._tokenizer.train(__magic_name__ , trainer=__magic_name__ )
self.add_unk_id()
def lowerCamelCase (self , __magic_name__ , __magic_name__ = 8000 , __magic_name__ = True , ) -> int:
'''simple docstring'''
snake_case_ : Any = trainers.UnigramTrainer(
vocab_size=__magic_name__ , special_tokens=self.special_tokens_list , show_progress=__magic_name__ , )
self._tokenizer.train_from_iterator(__magic_name__ , trainer=__magic_name__ )
self.add_unk_id()
def lowerCamelCase (self ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Tuple = json.loads(self._tokenizer.to_str() )
snake_case_ : Union[str, Any] = self.special_tokens['''unk''']['''id''']
snake_case_ : Tuple = Tokenizer.from_str(json.dumps(__magic_name__ ) )
| 60 |
import fire
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer
from utils import SeqaSeqDataset, pickle_save
def a__ ( lowercase__ , lowercase__ , lowercase__=1_0_2_4 , lowercase__=1_0_2_4 , lowercase__=False , **lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =AutoTokenizer.from_pretrained(lowercase__ )
UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="train" , **lowercase__ )
UpperCAmelCase_ =tok.pad_token_id
def get_lens(lowercase__ ):
UpperCAmelCase_ =tqdm(
DataLoader(lowercase__ , batch_size=5_1_2 , num_workers=8 , shuffle=lowercase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , )
UpperCAmelCase_ =[]
for batch in dl:
UpperCAmelCase_ =batch["input_ids"].ne(lowercase__ ).sum(1 ).tolist()
UpperCAmelCase_ =batch["labels"].ne(lowercase__ ).sum(1 ).tolist()
if consider_target:
for src, tgt in zip(lowercase__ , lowercase__ ):
max_lens.append(max(lowercase__ , lowercase__ ) )
else:
max_lens.extend(lowercase__ )
return max_lens
UpperCAmelCase_ =get_lens(lowercase__ )
UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="val" , **lowercase__ )
UpperCAmelCase_ =get_lens(lowercase__ )
pickle_save(lowercase__ , train_ds.len_file )
pickle_save(lowercase__ , val_ds.len_file )
if __name__ == "__main__":
fire.Fire(save_len_file)
| 54 | 0 |
import os
import re
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {'vocab_file': 'spiece.model'}
UpperCamelCase = {
'vocab_file': {
'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model',
'google/bigbird-roberta-large': (
'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model'
),
'google/bigbird-base-trivia-itc': (
'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model'
),
}
}
UpperCamelCase = {
'google/bigbird-roberta-base': 4096,
'google/bigbird-roberta-large': 4096,
'google/bigbird-base-trivia-itc': 4096,
}
class __lowerCamelCase ( UpperCamelCase__ ):
"""simple docstring"""
snake_case__ = VOCAB_FILES_NAMES
snake_case__ = PRETRAINED_VOCAB_FILES_MAP
snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case__ = ["input_ids", "attention_mask"]
snake_case__ = []
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str]="<unk>" , SCREAMING_SNAKE_CASE__ : List[str]="<s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="</s>" , SCREAMING_SNAKE_CASE__ : Tuple="<pad>" , SCREAMING_SNAKE_CASE__ : Any="[SEP]" , SCREAMING_SNAKE_CASE__ : Optional[int]="[MASK]" , SCREAMING_SNAKE_CASE__ : List[Any]="[CLS]" , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE__ : List[Any] , ) -> None:
lowerCAmelCase__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else bos_token
lowerCAmelCase__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else eos_token
lowerCAmelCase__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else unk_token
lowerCAmelCase__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else pad_token
lowerCAmelCase__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else cls_token
lowerCAmelCase__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
lowerCAmelCase__ = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token
lowerCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , )
lowerCAmelCase__ = vocab_file
lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(SCREAMING_SNAKE_CASE__ )
@property
def a ( self : List[str] ) -> List[str]:
return self.sp_model.get_piece_size()
def a ( self : List[str] ) -> Dict:
lowerCAmelCase__ = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Optional[int] ) -> Any:
lowerCAmelCase__ = self.__dict__.copy()
lowerCAmelCase__ = None
return state
def __setstate__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any:
lowerCAmelCase__ = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
lowerCAmelCase__ = {}
lowerCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]:
return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ )
def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple:
return self.sp_model.piece_to_id(SCREAMING_SNAKE_CASE__ )
def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[str]:
lowerCAmelCase__ = self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__ )
return token
def a ( self : str , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str:
lowerCAmelCase__ = []
lowerCAmelCase__ = ""
lowerCAmelCase__ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) + token
lowerCAmelCase__ = True
lowerCAmelCase__ = []
else:
current_sub_tokens.append(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = False
out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ )
return out_string.strip()
def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : bool = True , **SCREAMING_SNAKE_CASE__ : int , ) -> str:
lowerCAmelCase__ = kwargs.pop("use_source_tokenizer" , SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
lowerCAmelCase__ = []
lowerCAmelCase__ = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(SCREAMING_SNAKE_CASE__ ) )
lowerCAmelCase__ = []
sub_texts.append(SCREAMING_SNAKE_CASE__ )
else:
current_sub_text.append(SCREAMING_SNAKE_CASE__ )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(SCREAMING_SNAKE_CASE__ ) )
# Mimic the behavior of the Rust tokenizer:
# No space before [MASK] and [SEP]
if spaces_between_special_tokens:
lowerCAmelCase__ = re.sub(r" (\[(MASK|SEP)\])" , r"\1" , " ".join(SCREAMING_SNAKE_CASE__ ) )
else:
lowerCAmelCase__ = "".join(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
lowerCAmelCase__ = self.clean_up_tokenization(SCREAMING_SNAKE_CASE__ )
return clean_text
else:
return text
def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
lowerCAmelCase__ = os.path.join(
SCREAMING_SNAKE_CASE__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ )
elif not os.path.isfile(self.vocab_file ):
with open(SCREAMING_SNAKE_CASE__ , "wb" ) as fi:
lowerCAmelCase__ = self.sp_model.serialized_model_proto()
fi.write(SCREAMING_SNAKE_CASE__ )
return (out_vocab_file,)
def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCAmelCase__ = [self.cls_token_id]
lowerCAmelCase__ = [self.sep_token_id]
return cls + token_ids_a + sep + token_ids_a + sep
def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1]
def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]:
lowerCAmelCase__ = [self.sep_token_id]
lowerCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
| 61 |
from __future__ import annotations
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTForImageClassification, TFViTModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class A :
def __init__( self: Any , _lowerCAmelCase: str , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: List[str]=30 , _lowerCAmelCase: List[Any]=2 , _lowerCAmelCase: List[str]=3 , _lowerCAmelCase: Dict=True , _lowerCAmelCase: int=True , _lowerCAmelCase: Tuple=32 , _lowerCAmelCase: str=2 , _lowerCAmelCase: Dict=4 , _lowerCAmelCase: Dict=37 , _lowerCAmelCase: Optional[Any]="gelu" , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: Union[str, Any]=10 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=3 , _lowerCAmelCase: Optional[int]=None , ) -> Any:
'''simple docstring'''
UpperCAmelCase_ =parent
UpperCAmelCase_ =batch_size
UpperCAmelCase_ =image_size
UpperCAmelCase_ =patch_size
UpperCAmelCase_ =num_channels
UpperCAmelCase_ =is_training
UpperCAmelCase_ =use_labels
UpperCAmelCase_ =hidden_size
UpperCAmelCase_ =num_hidden_layers
UpperCAmelCase_ =num_attention_heads
UpperCAmelCase_ =intermediate_size
UpperCAmelCase_ =hidden_act
UpperCAmelCase_ =hidden_dropout_prob
UpperCAmelCase_ =attention_probs_dropout_prob
UpperCAmelCase_ =type_sequence_label_size
UpperCAmelCase_ =initializer_range
UpperCAmelCase_ =scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCAmelCase_ =(image_size // patch_size) ** 2
UpperCAmelCase_ =num_patches + 1
def lowerCAmelCase__ ( self: Any ) -> int:
'''simple docstring'''
UpperCAmelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ =None
if self.use_labels:
UpperCAmelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ =self.get_config()
return config, pixel_values, labels
def lowerCAmelCase__ ( self: List[Any] ) -> Dict:
'''simple docstring'''
return ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , )
def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Any , _lowerCAmelCase: List[str] ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ =TFViTModel(config=_lowerCAmelCase )
UpperCAmelCase_ =model(_lowerCAmelCase , training=_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# Test with an image with different size than the one specified in config.
UpperCAmelCase_ =self.image_size // 2
UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size]
UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase )
UpperCAmelCase_ =(image_size // self.patch_size) ** 2 + 1
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) )
def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[Any] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ =self.type_sequence_label_size
UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase )
UpperCAmelCase_ =model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# Test with an image with different size than the one specified in config.
UpperCAmelCase_ =self.image_size // 2
UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size]
UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCAmelCase_ =1
UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase )
UpperCAmelCase_ =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase_ =model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowerCAmelCase__ ( self: Any ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ =self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs
UpperCAmelCase_ ={"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class A ( __lowercase , __lowercase , unittest.TestCase ):
_snake_case =(TFViTModel, TFViTForImageClassification) if is_tf_available() else ()
_snake_case =(
{'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification}
if is_tf_available()
else {}
)
_snake_case =False
_snake_case =False
_snake_case =False
def lowerCAmelCase__ ( self: int ) -> int:
'''simple docstring'''
UpperCAmelCase_ =TFViTModelTester(self )
UpperCAmelCase_ =ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 )
def lowerCAmelCase__ ( self: Optional[Any] ) -> str:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="ViT does not use inputs_embeds" )
def lowerCAmelCase__ ( self: Dict ) -> Tuple:
'''simple docstring'''
pass
@unittest.skip(reason="ViT does not use inputs_embeds" )
def lowerCAmelCase__ ( self: int ) -> Optional[Any]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: List[Any] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ =model_class(_lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
UpperCAmelCase_ =model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_lowerCAmelCase , tf.keras.layers.Layer ) )
def lowerCAmelCase__ ( self: List[str] ) -> int:
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ =model_class(_lowerCAmelCase )
UpperCAmelCase_ =inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ =[*signature.parameters.keys()]
UpperCAmelCase_ =["pixel_values"]
self.assertListEqual(arg_names[:1] , _lowerCAmelCase )
def lowerCAmelCase__ ( self: int ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def lowerCAmelCase__ ( self: List[Any] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase )
@slow
def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ =TFViTModel.from_pretrained("google/vit-base-patch16-224" )
self.assertIsNotNone(_lowerCAmelCase )
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class A ( unittest.TestCase ):
@cached_property
def lowerCAmelCase__ ( self: Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None
@slow
def lowerCAmelCase__ ( self: Dict ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ =TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" )
UpperCAmelCase_ =self.default_image_processor
UpperCAmelCase_ =prepare_img()
UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="tf" )
# forward pass
UpperCAmelCase_ =model(**_lowerCAmelCase )
# verify the logits
UpperCAmelCase_ =tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , _lowerCAmelCase )
UpperCAmelCase_ =tf.constant([-0.27_44, 0.82_15, -0.08_36] )
tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 )
| 54 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
snake_case = {
"""configuration_biogpt""": ["""BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BioGptConfig"""],
"""tokenization_biogpt""": ["""BioGptTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case = [
"""BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BioGptForCausalLM""",
"""BioGptForTokenClassification""",
"""BioGptForSequenceClassification""",
"""BioGptModel""",
"""BioGptPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 62 |
from __future__ import annotations
def a__ ( lowercase__ , lowercase__ ):
'''simple docstring'''
if len(lowercase__ ) == 0:
return False
UpperCAmelCase_ =len(lowercase__ ) // 2
if a_list[midpoint] == item:
return True
if item < a_list[midpoint]:
return binary_search(a_list[:midpoint] , lowercase__ )
else:
return binary_search(a_list[midpoint + 1 :] , lowercase__ )
if __name__ == "__main__":
__lowercase : Tuple =input("""Enter numbers separated by comma:\n""").strip()
__lowercase : Optional[Any] =[int(item.strip()) for item in user_input.split(""",""")]
__lowercase : List[Any] =int(input("""Enter the number to be found in the list:\n""").strip())
__lowercase : Optional[Any] ="""""" if binary_search(sequence, target) else """not """
print(f"""{target} was {not_str}found in {sequence}""")
| 54 | 0 |
import math
import sys
import cva
import numpy as np
def lowerCamelCase__ ( __lowerCamelCase : np.ndarray , __lowerCamelCase : float ):
# For applying gaussian function for each element in matrix.
__UpperCAmelCase : int = math.sqrt(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = 1 / (sigma * math.sqrt(2 * math.pi ))
return cons * np.exp(-((img / sigma) ** 2) * 0.5 )
def lowerCamelCase__ ( __lowerCamelCase : np.ndarray , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ):
__UpperCAmelCase : List[Any] = kernel_size // 2
return img[x - half : x + half + 1, y - half : y + half + 1]
def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : float ):
# Creates a gaussian kernel of given dimension.
__UpperCAmelCase : Union[str, Any] = np.zeros((kernel_size, kernel_size) )
for i in range(0 , __lowerCamelCase ):
for j in range(0 , __lowerCamelCase ):
__UpperCAmelCase : str = math.sqrt(
abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 )
return vec_gaussian(__lowerCamelCase , __lowerCamelCase )
def lowerCamelCase__ ( __lowerCamelCase : np.ndarray , __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : int , ):
__UpperCAmelCase : Optional[Any] = np.zeros(img.shape )
__UpperCAmelCase : int = get_gauss_kernel(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase , __UpperCAmelCase : Tuple = img.shape
for i in range(kernel_size // 2 , size_x - kernel_size // 2 ):
for j in range(kernel_size // 2 , size_y - kernel_size // 2 ):
__UpperCAmelCase : int = get_slice(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Dict = img_s - img_s[kernel_size // 2, kernel_size // 2]
__UpperCAmelCase : Optional[Any] = vec_gaussian(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Any = np.multiply(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : str = np.multiply(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : List[str] = np.sum(__lowerCamelCase ) / np.sum(__lowerCamelCase )
__UpperCAmelCase : List[Any] = val
return imga
def lowerCamelCase__ ( __lowerCamelCase : list ):
__UpperCAmelCase : List[str] = args[1] if args[1:] else """../image_data/lena.jpg"""
__UpperCAmelCase : Optional[Any] = float(args[2] ) if args[2:] else 1.0
__UpperCAmelCase : Dict = float(args[3] ) if args[3:] else 1.0
if args[4:]:
__UpperCAmelCase : Optional[int] = int(args[4] )
__UpperCAmelCase : List[str] = kernel_size + abs(kernel_size % 2 - 1 )
else:
__UpperCAmelCase : int = 5
return filename, spatial_variance, intensity_variance, kernel_size
if __name__ == "__main__":
a ,a ,a ,a : Optional[Any] = parse_args(sys.argv)
a : Optional[int] = cva.imread(filename, 0)
cva.imshow("input image", img)
a : int = img / 255
a : Union[str, Any] = out.astype("float32")
a : Any = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size)
a : Optional[int] = out * 255
a : Union[str, Any] = np.uinta(out)
cva.imshow("output image", out)
cva.waitKey(0)
cva.destroyAllWindows()
| 63 |
import os
from itertools import chain
from random import randrange, shuffle
import pytest
from .sola import PokerHand
__lowercase : Any =(
"""4S 3H 2C 7S 5H""",
"""9D 8H 2C 6S 7H""",
"""2D 6D 9D TH 7D""",
"""TC 8C 2S JH 6C""",
"""JH 8S TH AH QH""",
"""TS KS 5S 9S AC""",
"""KD 6S 9D TH AD""",
"""KS 8D 4D 9S 4S""", # pair
"""8C 4S KH JS 4D""", # pair
"""QH 8H KD JH 8S""", # pair
"""KC 4H KS 2H 8D""", # pair
"""KD 4S KC 3H 8S""", # pair
"""AH 8S AS KC JH""", # pair
"""3H 4C 4H 3S 2H""", # 2 pairs
"""5S 5D 2C KH KH""", # 2 pairs
"""3C KH 5D 5S KH""", # 2 pairs
"""AS 3C KH AD KH""", # 2 pairs
"""7C 7S 3S 7H 5S""", # 3 of a kind
"""7C 7S KH 2H 7H""", # 3 of a kind
"""AC KH QH AH AS""", # 3 of a kind
"""2H 4D 3C AS 5S""", # straight (low ace)
"""3C 5C 4C 2C 6H""", # straight
"""6S 8S 7S 5H 9H""", # straight
"""JS QS 9H TS KH""", # straight
"""QC KH TS JS AH""", # straight (high ace)
"""8C 9C 5C 3C TC""", # flush
"""3S 8S 9S 5S KS""", # flush
"""4C 5C 9C 8C KC""", # flush
"""JH 8H AH KH QH""", # flush
"""3D 2H 3H 2C 2D""", # full house
"""2H 2C 3S 3H 3D""", # full house
"""KH KC 3S 3H 3D""", # full house
"""JC 6H JS JD JH""", # 4 of a kind
"""JC 7H JS JD JH""", # 4 of a kind
"""JC KH JS JD JH""", # 4 of a kind
"""2S AS 4S 5S 3S""", # straight flush (low ace)
"""2D 6D 3D 4D 5D""", # straight flush
"""5C 6C 3C 7C 4C""", # straight flush
"""JH 9H TH KH QH""", # straight flush
"""JH AH TH KH QH""", # royal flush (high ace straight flush)
)
__lowercase : Union[str, Any] =(
("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""),
("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""),
("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""),
("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""),
("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""),
("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""),
("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""),
("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""),
("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""),
("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""),
("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""),
("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""),
("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""),
("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""),
("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""),
("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""),
("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""),
("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""),
("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""),
("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""),
("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""),
("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""),
("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""),
("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""),
("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""),
("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""),
("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""),
("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""),
("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""),
("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""),
("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""),
("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""),
("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""),
)
__lowercase : List[str] =(
("""2H 3H 4H 5H 6H""", True),
("""AS AH 2H AD AC""", False),
("""2H 3H 5H 6H 7H""", True),
("""KS AS TS QS JS""", True),
("""8H 9H QS JS TH""", False),
("""AS 3S 4S 8S 2S""", True),
)
__lowercase : str =(
("""2H 3H 4H 5H 6H""", True),
("""AS AH 2H AD AC""", False),
("""2H 3H 5H 6H 7H""", False),
("""KS AS TS QS JS""", True),
("""8H 9H QS JS TH""", True),
)
__lowercase : Union[str, Any] =(
("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]),
("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]),
("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]),
("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]),
)
__lowercase : str =(
("""JH AH TH KH QH""", 0),
("""JH 9H TH KH QH""", 0),
("""JC KH JS JD JH""", 7),
("""KH KC 3S 3H 3D""", 6),
("""8C 9C 5C 3C TC""", 0),
("""JS QS 9H TS KH""", 0),
("""7C 7S KH 2H 7H""", 3),
("""3C KH 5D 5S KH""", 2),
("""QH 8H KD JH 8S""", 1),
("""2D 6D 9D TH 7D""", 0),
)
__lowercase : int =(
("""JH AH TH KH QH""", 23),
("""JH 9H TH KH QH""", 22),
("""JC KH JS JD JH""", 21),
("""KH KC 3S 3H 3D""", 20),
("""8C 9C 5C 3C TC""", 19),
("""JS QS 9H TS KH""", 18),
("""7C 7S KH 2H 7H""", 17),
("""3C KH 5D 5S KH""", 16),
("""QH 8H KD JH 8S""", 15),
("""2D 6D 9D TH 7D""", 14),
)
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ =randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) )
UpperCAmelCase_ =["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)]
UpperCAmelCase_ , UpperCAmelCase_ =SORTED_HANDS[play], SORTED_HANDS[oppo]
return hand, other, expected
def a__ ( lowercase__ = 1_0_0 ):
'''simple docstring'''
return (generate_random_hand() for _ in range(lowercase__ ))
@pytest.mark.parametrize("hand, expected" , lowercase__ )
def a__ ( lowercase__ , lowercase__ ):
'''simple docstring'''
assert PokerHand(lowercase__ )._is_flush() == expected
@pytest.mark.parametrize("hand, expected" , lowercase__ )
def a__ ( lowercase__ , lowercase__ ):
'''simple docstring'''
assert PokerHand(lowercase__ )._is_straight() == expected
@pytest.mark.parametrize("hand, expected, card_values" , lowercase__ )
def a__ ( lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =PokerHand(lowercase__ )
assert player._is_five_high_straight() == expected
assert player._card_values == card_values
@pytest.mark.parametrize("hand, expected" , lowercase__ )
def a__ ( lowercase__ , lowercase__ ):
'''simple docstring'''
assert PokerHand(lowercase__ )._is_same_kind() == expected
@pytest.mark.parametrize("hand, expected" , lowercase__ )
def a__ ( lowercase__ , lowercase__ ):
'''simple docstring'''
assert PokerHand(lowercase__ )._hand_type == expected
@pytest.mark.parametrize("hand, other, expected" , lowercase__ )
def a__ ( lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected
@pytest.mark.parametrize("hand, other, expected" , generate_random_hands() )
def a__ ( lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =[PokerHand(lowercase__ ) for hand in SORTED_HANDS]
UpperCAmelCase_ =poker_hands.copy()
shuffle(lowercase__ )
UpperCAmelCase_ =chain(sorted(lowercase__ ) )
for index, hand in enumerate(lowercase__ ):
assert hand == poker_hands[index]
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =[PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )]
pokerhands.sort(reverse=lowercase__ )
assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C"
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =PokerHand("2C 4S AS 3D 5C" )
UpperCAmelCase_ =True
UpperCAmelCase_ =[5, 4, 3, 2, 1_4]
for _ in range(1_0 ):
assert pokerhand._is_five_high_straight() == expected
assert pokerhand._card_values == expected_card_values
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =0
UpperCAmelCase_ =os.path.abspath(os.path.dirname(lowercase__ ) )
UpperCAmelCase_ =os.path.join(lowercase__ , "poker_hands.txt" )
with open(lowercase__ ) as file_hand:
for line in file_hand:
UpperCAmelCase_ =line[:1_4].strip()
UpperCAmelCase_ =line[1_5:].strip()
UpperCAmelCase_ , UpperCAmelCase_ =PokerHand(lowercase__ ), PokerHand(lowercase__ )
UpperCAmelCase_ =player.compare_with(lowercase__ )
if output == "Win":
answer += 1
assert answer == 3_7_6
| 54 | 0 |
def A__ ( snake_case_ : int ):
return str(snake_case_ ) == str(snake_case_ )[::-1]
def A__ ( snake_case_ : int ):
return int(snake_case_ ) + int(str(snake_case_ )[::-1] )
def A__ ( snake_case_ : int = 10_000 ):
SCREAMING_SNAKE_CASE__: Dict= []
for num in range(1 , snake_case_ ):
SCREAMING_SNAKE_CASE__: List[Any]= 0
SCREAMING_SNAKE_CASE__: Optional[Any]= num
while iterations < 50:
SCREAMING_SNAKE_CASE__: Optional[int]= sum_reverse(snake_case_ )
iterations += 1
if is_palindrome(snake_case_ ):
break
else:
lychrel_nums.append(snake_case_ )
return len(snake_case_ )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 64 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__lowercase : int =logging.get_logger(__name__)
class A ( __lowercase ):
_snake_case =['''pixel_values''']
def __init__( self: List[Any] , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = PILImageResampling.BILINEAR , _lowerCAmelCase: bool = True , _lowerCAmelCase: Union[int, float] = 1 / 255 , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , **_lowerCAmelCase: Optional[int] , ) -> None:
'''simple docstring'''
super().__init__(**_lowerCAmelCase )
UpperCAmelCase_ =size if size is not None else {"shortest_edge": 384}
UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
UpperCAmelCase_ =do_resize
UpperCAmelCase_ =size
# Default value set here for backwards compatibility where the value in config is None
UpperCAmelCase_ =crop_pct if crop_pct is not None else 224 / 256
UpperCAmelCase_ =resample
UpperCAmelCase_ =do_rescale
UpperCAmelCase_ =rescale_factor
UpperCAmelCase_ =do_normalize
UpperCAmelCase_ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase_ =image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: float , _lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Any , ) -> np.ndarray:
'''simple docstring'''
UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
if "shortest_edge" not in size:
raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' )
UpperCAmelCase_ =size["shortest_edge"]
if shortest_edge < 384:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
UpperCAmelCase_ =int(shortest_edge / crop_pct )
UpperCAmelCase_ =get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase )
UpperCAmelCase_ =resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=_lowerCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_lowerCAmelCase , **_lowerCAmelCase )
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
_lowerCAmelCase , size=(shortest_edge, shortest_edge) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[int, float] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: str , ) -> Optional[Any]:
'''simple docstring'''
return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Dict , ) -> np.ndarray:
'''simple docstring'''
return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: ImageInput , _lowerCAmelCase: bool = None , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: float = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: ChannelDimension = ChannelDimension.FIRST , **_lowerCAmelCase: Optional[Any] , ) -> PIL.Image.Image:
'''simple docstring'''
UpperCAmelCase_ =do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ =crop_pct if crop_pct is not None else self.crop_pct
UpperCAmelCase_ =resample if resample is not None else self.resample
UpperCAmelCase_ =do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase_ =do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase_ =image_mean if image_mean is not None else self.image_mean
UpperCAmelCase_ =image_std if image_std is not None else self.image_std
UpperCAmelCase_ =size if size is not None else self.size
UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
UpperCAmelCase_ =make_list_of_images(_lowerCAmelCase )
if not valid_images(_lowerCAmelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_resize and size["shortest_edge"] < 384 and crop_pct is None:
raise ValueError("crop_pct must be specified if size < 384." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
UpperCAmelCase_ =[to_numpy_array(_lowerCAmelCase ) for image in images]
if do_resize:
UpperCAmelCase_ =[self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , crop_pct=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images]
if do_rescale:
UpperCAmelCase_ =[self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images]
if do_normalize:
UpperCAmelCase_ =[self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images]
UpperCAmelCase_ =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images]
UpperCAmelCase_ ={"pixel_values": images}
return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
| 54 | 0 |
"""simple docstring"""
def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ):
'''simple docstring'''
UpperCAmelCase__ : List[str] = """"""
for word_or_phrase in separated:
if not isinstance(__UpperCamelCase , __UpperCamelCase ):
raise Exception("""join() accepts only strings to be joined""" )
joined += word_or_phrase + separator
return joined.strip(__UpperCamelCase )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 65 |
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
__lowercase : List[Any] =WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""])
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =test_results.split(" " )
UpperCAmelCase_ =0
UpperCAmelCase_ =0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
UpperCAmelCase_ =expressions[-2] if "=" in expressions[-1] else expressions[-1]
for i, expression in enumerate(lowercase__ ):
if "failed" in expression:
failed += int(expressions[i - 1] )
if "passed" in expression:
success += int(expressions[i - 1] )
return failed, success, time_spent
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ ={}
UpperCAmelCase_ =None
UpperCAmelCase_ =False
for line in failures_short_lines.split("\n" ):
if re.search(R"_ \[doctest\]" , lowercase__ ):
UpperCAmelCase_ =True
UpperCAmelCase_ =line.split(" " )[2]
elif in_error and not line.split(" " )[0].isdigit():
UpperCAmelCase_ =line
UpperCAmelCase_ =False
return failures
class A :
def __init__( self: Optional[Any] , _lowerCAmelCase: str , _lowerCAmelCase: Dict ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ =title
UpperCAmelCase_ =doc_test_results["time_spent"].split("," )[0]
UpperCAmelCase_ =doc_test_results["success"]
UpperCAmelCase_ =doc_test_results["failures"]
UpperCAmelCase_ =self.n_success + self.n_failures
# Failures and success of the modeling tests
UpperCAmelCase_ =doc_test_results
@property
def lowerCAmelCase__ ( self: Optional[Any] ) -> str:
'''simple docstring'''
UpperCAmelCase_ =[self._time_spent]
UpperCAmelCase_ =0
for time in time_spent:
UpperCAmelCase_ =time.split(":" )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(_lowerCAmelCase ) == 1:
UpperCAmelCase_ =[0, 0, time_parts[0]]
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 3600 + minutes * 60 + seconds
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60
return F'{int(_lowerCAmelCase )}h{int(_lowerCAmelCase )}m{int(_lowerCAmelCase )}s'
@property
def lowerCAmelCase__ ( self: int ) -> Dict:
'''simple docstring'''
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict:
'''simple docstring'''
return {
"type": "section",
"text": {
"type": "plain_text",
"text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.',
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def lowerCAmelCase__ ( self: Optional[Any] ) -> Dict:
'''simple docstring'''
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in'
F' {self.time}.'
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def lowerCAmelCase__ ( self: Tuple ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ =40
UpperCAmelCase_ ={k: v["failed"] for k, v in doc_test_results.items() if isinstance(_lowerCAmelCase , _lowerCAmelCase )}
UpperCAmelCase_ =""
for category, failures in category_failures.items():
if len(_lowerCAmelCase ) == 0:
continue
if report != "":
report += "\n\n"
report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(_lowerCAmelCase )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": F'The following examples had failures:\n\n\n{report}\n',
},
}
@property
def lowerCAmelCase__ ( self: Optional[Any] ) -> str:
'''simple docstring'''
UpperCAmelCase_ =[self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(_lowerCAmelCase )
@staticmethod
def lowerCAmelCase__ ( ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ =[
{
"type": "section",
"text": {
"type": "plain_text",
"text": "There was an issue running the tests.",
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
]
print("Sending the following payload" )
print(json.dumps({"blocks": json.loads(_lowerCAmelCase )} ) )
client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=_lowerCAmelCase , )
def lowerCAmelCase__ ( self: Dict ) -> List[str]:
'''simple docstring'''
print("Sending the following payload" )
print(json.dumps({"blocks": json.loads(self.payload )} ) )
UpperCAmelCase_ =F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else "All tests passed."
UpperCAmelCase_ =client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=_lowerCAmelCase , )
def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: int ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ =""
for key, value in failures.items():
UpperCAmelCase_ =value[:200] + " [Truncated]" if len(_lowerCAmelCase ) > 250 else value
failures_text += F'*{key}*\n_{value}_\n\n'
UpperCAmelCase_ =job_name
UpperCAmelCase_ ={"type": "section", "text": {"type": "mrkdwn", "text": text}}
if job_link is not None:
UpperCAmelCase_ ={
"type": "button",
"text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True},
"url": job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def lowerCAmelCase__ ( self: Any ) -> List[str]:
'''simple docstring'''
if self.thread_ts is None:
raise ValueError("Can only post reply if a post has been made." )
UpperCAmelCase_ =self.doc_test_results.pop("job_link" )
self.doc_test_results.pop("failures" )
self.doc_test_results.pop("success" )
self.doc_test_results.pop("time_spent" )
UpperCAmelCase_ =sorted(self.doc_test_results.items() , key=lambda _lowerCAmelCase : t[0] )
for job, job_result in sorted_dict:
if len(job_result["failures"] ):
UpperCAmelCase_ =F'*Num failures* :{len(job_result["failed"] )} \n'
UpperCAmelCase_ =job_result["failures"]
UpperCAmelCase_ =self.get_reply_blocks(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , text=_lowerCAmelCase )
print("Sending the following reply" )
print(json.dumps({"blocks": blocks} ) )
client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=F'Results for {job}' , blocks=_lowerCAmelCase , thread_ts=self.thread_ts["ts"] , )
time.sleep(1 )
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =os.environ["GITHUB_RUN_ID"]
UpperCAmelCase_ =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100'
UpperCAmelCase_ =requests.get(lowercase__ ).json()
UpperCAmelCase_ ={}
try:
jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} )
UpperCAmelCase_ =math.ceil((result["total_count"] - 1_0_0) / 1_0_0 )
for i in range(lowercase__ ):
UpperCAmelCase_ =requests.get(url + F'&page={i + 2}' ).json()
jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} )
return jobs
except Exception as e:
print("Unknown error, could not fetch links." , lowercase__ )
return {}
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ ={}
if os.path.exists(lowercase__ ):
UpperCAmelCase_ =os.listdir(lowercase__ )
for file in files:
try:
with open(os.path.join(lowercase__ , lowercase__ ) , encoding="utf-8" ) as f:
UpperCAmelCase_ =f.read()
except UnicodeDecodeError as e:
raise ValueError(F'Could not open {os.path.join(lowercase__ , lowercase__ )}.' ) from e
return _artifact
def a__ ( ):
'''simple docstring'''
class A :
def __init__( self: Tuple , _lowerCAmelCase: str ) -> Any:
'''simple docstring'''
UpperCAmelCase_ =name
UpperCAmelCase_ =[]
def __str__( self: Optional[int] ) -> Tuple:
'''simple docstring'''
return self.name
def lowerCAmelCase__ ( self: int , _lowerCAmelCase: str ) -> List[Any]:
'''simple docstring'''
self.paths.append({"name": self.name, "path": path} )
UpperCAmelCase_ ={}
UpperCAmelCase_ =filter(os.path.isdir , os.listdir() )
for directory in directories:
UpperCAmelCase_ =directory
if artifact_name not in _available_artifacts:
UpperCAmelCase_ =Artifact(lowercase__ )
_available_artifacts[artifact_name].add_path(lowercase__ )
return _available_artifacts
if __name__ == "__main__":
__lowercase : str =get_job_links()
__lowercase : Dict =retrieve_available_artifacts()
__lowercase : Optional[int] =collections.OrderedDict(
[
("""*.py""", """API Examples"""),
("""*.md""", """MD Examples"""),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
__lowercase : Any ={
v: {
"""failed""": [],
"""failures""": {},
}
for v in docs.values()
}
# Link to the GitHub Action job
__lowercase : Tuple =github_actions_job_links.get("""run_doctests""")
__lowercase : int =available_artifacts["""doc_tests_gpu_test_reports"""].paths[0]
__lowercase : str =retrieve_artifact(artifact_path["""name"""])
if "stats" in artifact:
__lowercase , __lowercase , __lowercase : Tuple =handle_test_results(artifact["""stats"""])
__lowercase : int =failed
__lowercase : int =success
__lowercase : str =time_spent[1:-1] + """, """
__lowercase : str =extract_first_line_failure(artifact["""failures_short"""])
for line in artifact["summary_short"].split("""\n"""):
if re.search("""FAILED""", line):
__lowercase : int =line.replace("""FAILED """, """""")
__lowercase : List[Any] =line.split()[0].replace("""\n""", """""")
if "::" in line:
__lowercase , __lowercase : Any =line.split("""::""")
else:
__lowercase , __lowercase : Dict =line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
__lowercase : Optional[int] =docs[file_regex]
doc_test_results[category]["failed"].append(test)
__lowercase : Tuple =all_failures[test] if test in all_failures else """N/A"""
__lowercase : Optional[int] =failure
break
__lowercase : Optional[int] =Message("""🤗 Results of the doc tests.""", doc_test_results)
message.post()
message.post_reply()
| 54 | 0 |
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int:
assert column_title.isupper()
_lowercase : Optional[Any] = 0
_lowercase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) - 1
_lowercase : Optional[int] = 0
while index >= 0:
_lowercase : Union[str, Any] = (ord(column_title[index] ) - 64) * pow(26 , SCREAMING_SNAKE_CASE )
answer += value
power += 1
index -= 1
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 66 |
def a__ ( lowercase__ = 2_0_0 ):
'''simple docstring'''
UpperCAmelCase_ =[1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0]
UpperCAmelCase_ =[0] * (pence + 1)
UpperCAmelCase_ =1 # base case: 1 way to make 0 pence
for coin in coins:
for i in range(lowercase__ , pence + 1 , 1 ):
number_of_ways[i] += number_of_ways[i - coin]
return number_of_ways[pence]
if __name__ == "__main__":
assert solution(200) == 7_3682
| 54 | 0 |
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
snake_case = """\
@inproceedings{pillutla-etal:mauve:neurips2021,
title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},
author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},
booktitle = {NeurIPS},
year = {2021}
}
"""
snake_case = """\
MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.
MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.
For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).
This metrics is a wrapper around the official implementation of MAUVE:
https://github.com/krishnap25/mauve
"""
snake_case = """
Calculates MAUVE scores between two lists of generated text and reference text.
Args:
predictions: list of generated text to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
Optional Args:
num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer
pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1
kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9
kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5
kmeans_max_iter: maximum number of k-means iterations. Default 500
featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].
device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU
max_text_length: maximum number of tokens to consider. Default 1024
divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25
mauve_scaling_factor: \"c\" from the paper. Default 5.
verbose: If True (default), print running time updates
seed: random seed to initialize k-means cluster assignments.
Returns:
mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,
frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,
divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,
p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,
q_hist: same as above, but with q_text.
Examples:
>>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest
>>> import datasets
>>> mauve = datasets.load_metric('mauve')
>>> predictions = [\"hello there\", \"general kenobi\"]
>>> references = [\"hello there\", \"general kenobi\"]
>>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP
>>> print(out.mauve) # doctest: +SKIP
1.0
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A_ ( datasets.Metric ):
"""simple docstring"""
def __UpperCAmelCase ( self : Tuple ) -> List[str]:
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,homepage='https://github.com/krishnap25/mauve' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
'predictions': datasets.Value('string' ,id='sequence' ),
'references': datasets.Value('string' ,id='sequence' ),
} ) ,codebase_urls=['https://github.com/krishnap25/mauve'] ,reference_urls=[
'https://arxiv.org/abs/2102.01454',
'https://github.com/krishnap25/mauve',
] ,)
def __UpperCAmelCase ( self : Optional[Any] ,__A : Optional[Any] ,__A : List[str] ,__A : List[str]=None ,__A : List[Any]=None ,__A : Dict=None ,__A : str=None ,__A : int="auto" ,__A : List[str]=-1 ,__A : Union[str, Any]=0.9 ,__A : Dict=5 ,__A : Optional[Any]=500 ,__A : int="gpt2-large" ,__A : List[Any]=-1 ,__A : List[Any]=1024 ,__A : Tuple=25 ,__A : Optional[Any]=5 ,__A : int=True ,__A : int=25 ,) -> List[str]:
_lowercase = compute_mauve(
p_text=__A ,q_text=__A ,p_features=__A ,q_features=__A ,p_tokens=__A ,q_tokens=__A ,num_buckets=__A ,pca_max_data=__A ,kmeans_explained_var=__A ,kmeans_num_redo=__A ,kmeans_max_iter=__A ,featurize_model_name=__A ,device_id=__A ,max_text_length=__A ,divergence_curve_discretization_size=__A ,mauve_scaling_factor=__A ,verbose=__A ,seed=__A ,)
return out
| 67 |
import sys
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =len(lowercase__ )
UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )]
UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )]
for chain_length in range(2 , lowercase__ ):
for a in range(1 , n - chain_length + 1 ):
UpperCAmelCase_ =a + chain_length - 1
UpperCAmelCase_ =sys.maxsize
for c in range(lowercase__ , lowercase__ ):
UpperCAmelCase_ =(
matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b]
)
if cost < matrix[a][b]:
UpperCAmelCase_ =cost
UpperCAmelCase_ =c
return matrix, sol
def a__ ( lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
if i == j:
print("A" + str(lowercase__ ) , end=" " )
else:
print("(" , end=" " )
print_optiomal_solution(lowercase__ , lowercase__ , optimal_solution[i][j] )
print_optiomal_solution(lowercase__ , optimal_solution[i][j] + 1 , lowercase__ )
print(")" , end=" " )
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =[3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5]
UpperCAmelCase_ =len(lowercase__ )
# Size of matrix created from above array will be
# 30*35 35*15 15*5 5*10 10*20 20*25
UpperCAmelCase_ , UpperCAmelCase_ =matrix_chain_order(lowercase__ )
print("No. of Operation required: " + str(matrix[1][n - 1] ) )
print_optiomal_solution(lowercase__ , 1 , n - 1 )
if __name__ == "__main__":
main()
| 54 | 0 |
from ...configuration_utils import PretrainedConfig
__A = {
"google/tapas-base-finetuned-sqa": (
"https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json"
),
"google/tapas-base-finetuned-wtq": (
"https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json"
),
"google/tapas-base-finetuned-wikisql-supervised": (
"https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json"
),
"google/tapas-base-finetuned-tabfact": (
"https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json"
),
}
class _A ( UpperCamelCase ):
"""simple docstring"""
lowerCamelCase : Optional[int] = 'tapas'
def __init__( self : Any , __SCREAMING_SNAKE_CASE : Tuple=30522 , __SCREAMING_SNAKE_CASE : Union[str, Any]=768 , __SCREAMING_SNAKE_CASE : Optional[int]=12 , __SCREAMING_SNAKE_CASE : Optional[int]=12 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3072 , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : Any=0.1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1024 , __SCREAMING_SNAKE_CASE : int=[3, 256, 256, 2, 256, 256, 10] , __SCREAMING_SNAKE_CASE : Any=0.02 , __SCREAMING_SNAKE_CASE : int=1e-12 , __SCREAMING_SNAKE_CASE : Any=0 , __SCREAMING_SNAKE_CASE : Dict=10.0 , __SCREAMING_SNAKE_CASE : List[str]=0 , __SCREAMING_SNAKE_CASE : List[str]=1.0 , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=1.0 , __SCREAMING_SNAKE_CASE : Dict=False , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Optional[int]=1.0 , __SCREAMING_SNAKE_CASE : List[Any]=1.0 , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Union[str, Any]="ratio" , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : int=64 , __SCREAMING_SNAKE_CASE : Any=32 , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Dict=False , __SCREAMING_SNAKE_CASE : Dict=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Dict=None , **__SCREAMING_SNAKE_CASE : Tuple , ) -> int:
super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
__UpperCAmelCase =vocab_size
__UpperCAmelCase =hidden_size
__UpperCAmelCase =num_hidden_layers
__UpperCAmelCase =num_attention_heads
__UpperCAmelCase =hidden_act
__UpperCAmelCase =intermediate_size
__UpperCAmelCase =hidden_dropout_prob
__UpperCAmelCase =attention_probs_dropout_prob
__UpperCAmelCase =max_position_embeddings
__UpperCAmelCase =type_vocab_sizes
__UpperCAmelCase =initializer_range
__UpperCAmelCase =layer_norm_eps
# Fine-tuning task hyperparameters
__UpperCAmelCase =positive_label_weight
__UpperCAmelCase =num_aggregation_labels
__UpperCAmelCase =aggregation_loss_weight
__UpperCAmelCase =use_answer_as_supervision
__UpperCAmelCase =answer_loss_importance
__UpperCAmelCase =use_normalized_answer_loss
__UpperCAmelCase =huber_loss_delta
__UpperCAmelCase =temperature
__UpperCAmelCase =aggregation_temperature
__UpperCAmelCase =use_gumbel_for_cells
__UpperCAmelCase =use_gumbel_for_aggregation
__UpperCAmelCase =average_approximation_function
__UpperCAmelCase =cell_selection_preference
__UpperCAmelCase =answer_loss_cutoff
__UpperCAmelCase =max_num_rows
__UpperCAmelCase =max_num_columns
__UpperCAmelCase =average_logits_per_cell
__UpperCAmelCase =select_one_column
__UpperCAmelCase =allow_empty_column_selection
__UpperCAmelCase =init_cell_selection_weights_to_zero
__UpperCAmelCase =reset_position_index_per_cell
__UpperCAmelCase =disable_per_token_loss
# Aggregation hyperparameters
__UpperCAmelCase =aggregation_labels
__UpperCAmelCase =no_aggregation_label_index
if isinstance(self.aggregation_labels , __SCREAMING_SNAKE_CASE ):
__UpperCAmelCase ={int(__SCREAMING_SNAKE_CASE ): v for k, v in aggregation_labels.items()}
| 68 |
from math import loga
def a__ ( lowercase__ ):
'''simple docstring'''
if a < 0:
raise ValueError("Input value must be a positive integer" )
elif isinstance(lowercase__ , lowercase__ ):
raise TypeError("Input value must be a 'int' type" )
return 0 if (a == 0) else int(loga(a & -a ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 54 | 0 |
'''simple docstring'''
import argparse
import csv
import logging
import os
import random
import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from tqdm import tqdm, trange
from transformers import (
CONFIG_NAME,
WEIGHTS_NAME,
AdamW,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTTokenizer,
get_linear_schedule_with_warmup,
)
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO
)
a : int = logging.getLogger(__name__)
def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : Tuple ) -> Dict:
__snake_case = np.argmax(_UpperCAmelCase , axis=1 )
return np.sum(outputs == labels )
def __UpperCAmelCase ( _UpperCAmelCase : str ) -> Dict:
with open(_UpperCAmelCase , encoding="utf_8" ) as f:
__snake_case = csv.reader(_UpperCAmelCase )
__snake_case = []
next(_UpperCAmelCase ) # skip the first line
for line in tqdm(_UpperCAmelCase ):
output.append((" ".join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) )
return output
def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> List[Any]:
__snake_case = []
for dataset in encoded_datasets:
__snake_case = len(_UpperCAmelCase )
__snake_case = np.zeros((n_batch, 2, input_len) , dtype=np.intaa )
__snake_case = np.zeros((n_batch, 2) , dtype=np.intaa )
__snake_case = np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa )
__snake_case = np.zeros((n_batch,) , dtype=np.intaa )
for (
i,
(story, conta, conta, mc_label),
) in enumerate(_UpperCAmelCase ):
__snake_case = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token]
__snake_case = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token]
__snake_case = with_conta
__snake_case = with_conta
__snake_case = len(_UpperCAmelCase ) - 1
__snake_case = len(_UpperCAmelCase ) - 1
__snake_case = with_conta
__snake_case = with_conta
__snake_case = mc_label
__snake_case = (input_ids, mc_token_ids, lm_labels, mc_labels)
tensor_datasets.append(tuple(torch.tensor(_UpperCAmelCase ) for t in all_inputs ) )
return tensor_datasets
def __UpperCAmelCase ( ) -> Optional[int]:
__snake_case = argparse.ArgumentParser()
parser.add_argument("--model_name" , type=_UpperCAmelCase , default="openai-gpt" , help="pretrained model name" )
parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." )
parser.add_argument("--do_eval" , action="store_true" , help="Whether to run eval on the dev set." )
parser.add_argument(
"--output_dir" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="The output directory where the model predictions and checkpoints will be written." , )
parser.add_argument("--train_dataset" , type=_UpperCAmelCase , default="" )
parser.add_argument("--eval_dataset" , type=_UpperCAmelCase , default="" )
parser.add_argument("--seed" , type=_UpperCAmelCase , default=42 )
parser.add_argument("--num_train_epochs" , type=_UpperCAmelCase , default=3 )
parser.add_argument("--train_batch_size" , type=_UpperCAmelCase , default=8 )
parser.add_argument("--eval_batch_size" , type=_UpperCAmelCase , default=16 )
parser.add_argument("--adam_epsilon" , default=1E-8 , type=_UpperCAmelCase , help="Epsilon for Adam optimizer." )
parser.add_argument("--max_grad_norm" , type=_UpperCAmelCase , default=1 )
parser.add_argument(
"--max_steps" , default=-1 , type=_UpperCAmelCase , help=(
"If > 0: set total number of training steps to perform. Override num_train_epochs."
) , )
parser.add_argument(
"--gradient_accumulation_steps" , type=_UpperCAmelCase , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , )
parser.add_argument("--learning_rate" , type=_UpperCAmelCase , default=6.2_5E-5 )
parser.add_argument("--warmup_steps" , default=0 , type=_UpperCAmelCase , help="Linear warmup over warmup_steps." )
parser.add_argument("--lr_schedule" , type=_UpperCAmelCase , default="warmup_linear" )
parser.add_argument("--weight_decay" , type=_UpperCAmelCase , default=0.01 )
parser.add_argument("--lm_coef" , type=_UpperCAmelCase , default=0.9 )
parser.add_argument("--n_valid" , type=_UpperCAmelCase , default=3_74 )
parser.add_argument("--server_ip" , type=_UpperCAmelCase , default="" , help="Can be used for distant debugging." )
parser.add_argument("--server_port" , type=_UpperCAmelCase , default="" , help="Can be used for distant debugging." )
__snake_case = parser.parse_args()
print(_UpperCAmelCase )
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach" )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_UpperCAmelCase )
ptvsd.wait_for_attach()
random.seed(args.seed )
np.random.seed(args.seed )
torch.manual_seed(args.seed )
torch.cuda.manual_seed_all(args.seed )
__snake_case = torch.device("cuda" if torch.cuda.is_available() else "cpu" )
__snake_case = torch.cuda.device_count()
logger.info("device: {}, n_gpu {}".format(_UpperCAmelCase , _UpperCAmelCase ) )
if not args.do_train and not args.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True." )
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
# Load tokenizer and model
# This loading functions also add new tokens and embeddings called `special tokens`
# These new embeddings will be fine-tuned on the RocStories dataset
__snake_case = ["_start_", "_delimiter_", "_classify_"]
__snake_case = OpenAIGPTTokenizer.from_pretrained(args.model_name )
tokenizer.add_tokens(_UpperCAmelCase )
__snake_case = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
__snake_case = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name )
model.resize_token_embeddings(len(_UpperCAmelCase ) )
model.to(_UpperCAmelCase )
# Load and encode the datasets
def tokenize_and_encode(_UpperCAmelCase : Optional[Any] ):
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(_UpperCAmelCase ) )
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ):
return obj
return [tokenize_and_encode(_UpperCAmelCase ) for o in obj]
logger.info("Encoding dataset..." )
__snake_case = load_rocstories_dataset(args.train_dataset )
__snake_case = load_rocstories_dataset(args.eval_dataset )
__snake_case = (train_dataset, eval_dataset)
__snake_case = tokenize_and_encode(_UpperCAmelCase )
# Compute the max input length for the Transformer
__snake_case = model.config.n_positions // 2 - 2
__snake_case = max(
len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3
for dataset in encoded_datasets
for story, conta, conta, _ in dataset )
__snake_case = min(_UpperCAmelCase , model.config.n_positions ) # Max size of input for the pre-trained model
# Prepare inputs tensors and dataloaders
__snake_case = pre_process_datasets(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase )
__snake_case , __snake_case = tensor_datasets[0], tensor_datasets[1]
__snake_case = TensorDataset(*_UpperCAmelCase )
__snake_case = RandomSampler(_UpperCAmelCase )
__snake_case = DataLoader(_UpperCAmelCase , sampler=_UpperCAmelCase , batch_size=args.train_batch_size )
__snake_case = TensorDataset(*_UpperCAmelCase )
__snake_case = SequentialSampler(_UpperCAmelCase )
__snake_case = DataLoader(_UpperCAmelCase , sampler=_UpperCAmelCase , batch_size=args.eval_batch_size )
# Prepare optimizer
if args.do_train:
if args.max_steps > 0:
__snake_case = args.max_steps
__snake_case = args.max_steps // (len(_UpperCAmelCase ) // args.gradient_accumulation_steps) + 1
else:
__snake_case = len(_UpperCAmelCase ) // args.gradient_accumulation_steps * args.num_train_epochs
__snake_case = list(model.named_parameters() )
__snake_case = ["bias", "LayerNorm.bias", "LayerNorm.weight"]
__snake_case = [
{
"params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )],
"weight_decay": args.weight_decay,
},
{"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], "weight_decay": 0.0},
]
__snake_case = AdamW(_UpperCAmelCase , lr=args.learning_rate , eps=args.adam_epsilon )
__snake_case = get_linear_schedule_with_warmup(
_UpperCAmelCase , num_warmup_steps=args.warmup_steps , num_training_steps=_UpperCAmelCase )
if args.do_train:
__snake_case , __snake_case , __snake_case = 0, 0, None
model.train()
for _ in trange(int(args.num_train_epochs ) , desc="Epoch" ):
__snake_case = 0
__snake_case = 0
__snake_case = tqdm(_UpperCAmelCase , desc="Training" )
for step, batch in enumerate(_UpperCAmelCase ):
__snake_case = tuple(t.to(_UpperCAmelCase ) for t in batch )
__snake_case , __snake_case , __snake_case , __snake_case = batch
__snake_case = model(_UpperCAmelCase , mc_token_ids=_UpperCAmelCase , lm_labels=_UpperCAmelCase , mc_labels=_UpperCAmelCase )
__snake_case = args.lm_coef * losses[0] + losses[1]
loss.backward()
optimizer.step()
scheduler.step()
optimizer.zero_grad()
tr_loss += loss.item()
__snake_case = (
loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item()
)
nb_tr_steps += 1
__snake_case = "Training loss: {:.2e} lr: {:.2e}".format(_UpperCAmelCase , scheduler.get_lr()[0] )
# Save a trained model
if args.do_train:
# Save a trained model, configuration and tokenizer
__snake_case = model.module if hasattr(_UpperCAmelCase , "module" ) else model # Only save the model itself
# If we save using the predefined names, we can load using `from_pretrained`
__snake_case = os.path.join(args.output_dir , _UpperCAmelCase )
__snake_case = os.path.join(args.output_dir , _UpperCAmelCase )
torch.save(model_to_save.state_dict() , _UpperCAmelCase )
model_to_save.config.to_json_file(_UpperCAmelCase )
tokenizer.save_vocabulary(args.output_dir )
# Load a trained model and vocabulary that you have fine-tuned
__snake_case = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir )
__snake_case = OpenAIGPTTokenizer.from_pretrained(args.output_dir )
model.to(_UpperCAmelCase )
if args.do_eval:
model.eval()
__snake_case , __snake_case = 0, 0
__snake_case , __snake_case = 0, 0
for batch in tqdm(_UpperCAmelCase , desc="Evaluating" ):
__snake_case = tuple(t.to(_UpperCAmelCase ) for t in batch )
__snake_case , __snake_case , __snake_case , __snake_case = batch
with torch.no_grad():
__snake_case , __snake_case , __snake_case , __snake_case = model(
_UpperCAmelCase , mc_token_ids=_UpperCAmelCase , lm_labels=_UpperCAmelCase , mc_labels=_UpperCAmelCase )
__snake_case = mc_logits.detach().cpu().numpy()
__snake_case = mc_labels.to("cpu" ).numpy()
__snake_case = accuracy(_UpperCAmelCase , _UpperCAmelCase )
eval_loss += mc_loss.mean().item()
eval_accuracy += tmp_eval_accuracy
nb_eval_examples += input_ids.size(0 )
nb_eval_steps += 1
__snake_case = eval_loss / nb_eval_steps
__snake_case = eval_accuracy / nb_eval_examples
__snake_case = tr_loss / nb_tr_steps if args.do_train else None
__snake_case = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss}
__snake_case = os.path.join(args.output_dir , "eval_results.txt" )
with open(_UpperCAmelCase , "w" ) as writer:
logger.info("***** Eval results *****" )
for key in sorted(result.keys() ):
logger.info(" %s = %s" , _UpperCAmelCase , str(result[key] ) )
writer.write("%s = %s\n" % (key, str(result[key] )) )
if __name__ == "__main__":
main()
| 69 |
import argparse
from pathlib import Path
import torch
from transformers import OPTConfig, OPTModel
from transformers.utils import logging
logging.set_verbosity_info()
__lowercase : Union[str, Any] =logging.get_logger(__name__)
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" )
if "model" in sd.keys():
UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" )["model"]
# pop unnecessary weights
UpperCAmelCase_ =[
"decoder.version",
"decoder.output_projection.weight",
]
for key in keys_to_delete:
if key in sd:
sd.pop(lowercase__ )
UpperCAmelCase_ ={
"decoder.project_in_dim.weight": "decoder.project_in.weight",
"decoder.project_out_dim.weight": "decoder.project_out.weight",
"decoder.layer_norm.weight": "decoder.final_layer_norm.weight",
"decoder.layer_norm.bias": "decoder.final_layer_norm.bias",
}
for old_key, new_key in keys_to_rename.items():
if old_key in sd:
UpperCAmelCase_ =sd.pop(lowercase__ )
UpperCAmelCase_ =list(sd.keys() )
for key in keys:
if ".qkv_proj." in key:
UpperCAmelCase_ =sd[key]
# We split QKV in separate Q,K,V
UpperCAmelCase_ =key.replace(".qkv_proj." , ".q_proj." )
UpperCAmelCase_ =key.replace(".qkv_proj." , ".k_proj." )
UpperCAmelCase_ =key.replace(".qkv_proj." , ".v_proj." )
UpperCAmelCase_ =value.shape[0]
assert depth % 3 == 0
# `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
# https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =torch.split(lowercase__ , depth // 3 , dim=0 )
UpperCAmelCase_ =q
UpperCAmelCase_ =k
UpperCAmelCase_ =v
del sd[key]
return sd
@torch.no_grad()
def a__ ( lowercase__ , lowercase__ , lowercase__=None ):
'''simple docstring'''
UpperCAmelCase_ =load_checkpoint(lowercase__ )
if config is not None:
UpperCAmelCase_ =OPTConfig.from_pretrained(lowercase__ )
else:
UpperCAmelCase_ =OPTConfig()
UpperCAmelCase_ =OPTModel(lowercase__ ).half().eval()
model.load_state_dict(lowercase__ )
# Check results
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
model.save_pretrained(lowercase__ )
if __name__ == "__main__":
__lowercase : List[Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--fairseq_path""",
type=str,
help=(
"""path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:"""
""" https://huggingface.co/models?other=opt_metasq"""
),
)
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""")
__lowercase : str =parser.parse_args()
convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
| 54 | 0 |
import os
import unittest
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import (
VOCAB_FILES_NAMES,
BasicTokenizer,
BertTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class A( UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = BertTokenizer
UpperCamelCase = BertTokenizerFast
UpperCamelCase = True
UpperCamelCase = True
UpperCamelCase = filter_non_english
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
super().setUp()
lowerCamelCase_ = [
'[UNK]',
'[CLS]',
'[SEP]',
'[PAD]',
'[MASK]',
'want',
'##want',
'##ed',
'wa',
'un',
'runn',
'##ing',
',',
'low',
'lowest',
]
lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
def a__ ( self : Tuple , A_ : List[str] ) -> Union[str, Any]:
"""simple docstring"""
lowerCamelCase_ = 'UNwant\u00E9d,running'
lowerCamelCase_ = 'unwanted, running'
return input_text, output_text
def a__ ( self : Any ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ = self.tokenizer_class(self.vocab_file )
lowerCamelCase_ = tokenizer.tokenize('UNwant\u00E9d,running' )
self.assertListEqual(A_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [9, 6, 7, 12, 10, 11] )
def a__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = self.get_rust_tokenizer()
lowerCamelCase_ = 'UNwant\u00E9d,running'
lowerCamelCase_ = tokenizer.tokenize(A_ )
lowerCamelCase_ = rust_tokenizer.tokenize(A_ )
self.assertListEqual(A_ , A_ )
lowerCamelCase_ = tokenizer.encode(A_ , add_special_tokens=A_ )
lowerCamelCase_ = rust_tokenizer.encode(A_ , add_special_tokens=A_ )
self.assertListEqual(A_ , A_ )
lowerCamelCase_ = self.get_rust_tokenizer()
lowerCamelCase_ = tokenizer.encode(A_ )
lowerCamelCase_ = rust_tokenizer.encode(A_ )
self.assertListEqual(A_ , A_ )
# With lower casing
lowerCamelCase_ = self.get_tokenizer(do_lower_case=A_ )
lowerCamelCase_ = self.get_rust_tokenizer(do_lower_case=A_ )
lowerCamelCase_ = 'UNwant\u00E9d,running'
lowerCamelCase_ = tokenizer.tokenize(A_ )
lowerCamelCase_ = rust_tokenizer.tokenize(A_ )
self.assertListEqual(A_ , A_ )
lowerCamelCase_ = tokenizer.encode(A_ , add_special_tokens=A_ )
lowerCamelCase_ = rust_tokenizer.encode(A_ , add_special_tokens=A_ )
self.assertListEqual(A_ , A_ )
lowerCamelCase_ = self.get_rust_tokenizer()
lowerCamelCase_ = tokenizer.encode(A_ )
lowerCamelCase_ = rust_tokenizer.encode(A_ )
self.assertListEqual(A_ , A_ )
def a__ ( self : Any ) -> Dict:
"""simple docstring"""
lowerCamelCase_ = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] )
def a__ ( self : Dict ) -> int:
"""simple docstring"""
lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ )
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] )
def a__ ( self : str ) -> int:
"""simple docstring"""
lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] )
def a__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] )
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] )
def a__ ( self : int ) -> List[Any]:
"""simple docstring"""
lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ )
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] )
def a__ ( self : str ) -> List[str]:
"""simple docstring"""
lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] )
def a__ ( self : Dict ) -> Any:
"""simple docstring"""
lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] )
def a__ ( self : int ) -> Any:
"""simple docstring"""
lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , never_split=['[UNK]'] )
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] )
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
lowerCamelCase_ = BasicTokenizer()
lowerCamelCase_ = 'a\n\'ll !!to?\'d of, can\'t.'
lowerCamelCase_ = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.']
self.assertListEqual(tokenizer.tokenize(A_ ) , A_ )
def a__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
lowerCamelCase_ = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing']
lowerCamelCase_ = {}
for i, token in enumerate(A_ ):
lowerCamelCase_ = i
lowerCamelCase_ = WordpieceTokenizer(vocab=A_ , unk_token='[UNK]' )
self.assertListEqual(tokenizer.tokenize('' ) , [] )
self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] )
self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] )
def a__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
self.assertTrue(_is_whitespace(' ' ) )
self.assertTrue(_is_whitespace('\t' ) )
self.assertTrue(_is_whitespace('\r' ) )
self.assertTrue(_is_whitespace('\n' ) )
self.assertTrue(_is_whitespace('\u00A0' ) )
self.assertFalse(_is_whitespace('A' ) )
self.assertFalse(_is_whitespace('-' ) )
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
self.assertTrue(_is_control('\u0005' ) )
self.assertFalse(_is_control('A' ) )
self.assertFalse(_is_control(' ' ) )
self.assertFalse(_is_control('\t' ) )
self.assertFalse(_is_control('\r' ) )
def a__ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
self.assertTrue(_is_punctuation('-' ) )
self.assertTrue(_is_punctuation('$' ) )
self.assertTrue(_is_punctuation('`' ) )
self.assertTrue(_is_punctuation('.' ) )
self.assertFalse(_is_punctuation('A' ) )
self.assertFalse(_is_punctuation(' ' ) )
def a__ ( self : int ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase_ = self.get_tokenizer()
lowerCamelCase_ = self.get_rust_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] )
self.assertListEqual(
[rust_tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] )
@slow
def a__ ( self : Any ) -> int:
"""simple docstring"""
lowerCamelCase_ = self.tokenizer_class.from_pretrained('bert-base-uncased' )
lowerCamelCase_ = tokenizer.encode('sequence builders' , add_special_tokens=A_ )
lowerCamelCase_ = tokenizer.encode('multi-sequence build' , add_special_tokens=A_ )
lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(A_ )
lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(A_ , A_ )
assert encoded_sentence == [101] + text + [102]
assert encoded_pair == [101] + text + [102] + text_a + [102]
def a__ ( self : str ) -> str:
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(A_ , **A_ )
lowerCamelCase_ = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence."""
lowerCamelCase_ = tokenizer_r.encode_plus(
A_ , return_attention_mask=A_ , return_token_type_ids=A_ , return_offsets_mapping=A_ , add_special_tokens=A_ , )
lowerCamelCase_ = tokenizer_r.do_lower_case if hasattr(A_ , 'do_lower_case' ) else False
lowerCamelCase_ = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), 'A'),
((1, 2), ','),
((3, 5), 'na'),
((5, 6), '##ï'),
((6, 8), '##ve'),
((9, 15), tokenizer_r.mask_token),
((16, 21), 'Allen'),
((21, 23), '##NL'),
((23, 24), '##P'),
((25, 33), 'sentence'),
((33, 34), '.'),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), 'a'),
((1, 2), ','),
((3, 8), 'naive'),
((9, 15), tokenizer_r.mask_token),
((16, 21), 'allen'),
((21, 23), '##nl'),
((23, 24), '##p'),
((25, 33), 'sentence'),
((33, 34), '.'),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) )
self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] )
def a__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
lowerCamelCase_ = ['的', '人', '有']
lowerCamelCase_ = ''.join(A_ )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
lowerCamelCase_ = True
lowerCamelCase_ = self.tokenizer_class.from_pretrained(A_ , **A_ )
lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(A_ , **A_ )
lowerCamelCase_ = tokenizer_p.encode(A_ , add_special_tokens=A_ )
lowerCamelCase_ = tokenizer_r.encode(A_ , add_special_tokens=A_ )
lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(A_ )
lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(A_ )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(A_ , A_ )
self.assertListEqual(A_ , A_ )
lowerCamelCase_ = False
lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(A_ , **A_ )
lowerCamelCase_ = self.tokenizer_class.from_pretrained(A_ , **A_ )
lowerCamelCase_ = tokenizer_r.encode(A_ , add_special_tokens=A_ )
lowerCamelCase_ = tokenizer_p.encode(A_ , add_special_tokens=A_ )
lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(A_ )
lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(A_ )
# it is expected that only the first Chinese character is not preceded by "##".
lowerCamelCase_ = [
f"""##{token}""" if idx != 0 else token for idx, token in enumerate(A_ )
]
self.assertListEqual(A_ , A_ )
self.assertListEqual(A_ , A_ )
| 70 |
import PIL.Image
import PIL.ImageOps
from packaging import version
from PIL import Image
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""):
__lowercase : str ={
"""linear""": PIL.Image.Resampling.BILINEAR,
"""bilinear""": PIL.Image.Resampling.BILINEAR,
"""bicubic""": PIL.Image.Resampling.BICUBIC,
"""lanczos""": PIL.Image.Resampling.LANCZOS,
"""nearest""": PIL.Image.Resampling.NEAREST,
}
else:
__lowercase : Any ={
"""linear""": PIL.Image.LINEAR,
"""bilinear""": PIL.Image.BILINEAR,
"""bicubic""": PIL.Image.BICUBIC,
"""lanczos""": PIL.Image.LANCZOS,
"""nearest""": PIL.Image.NEAREST,
}
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =(images / 2 + 0.5).clamp(0 , 1 )
UpperCAmelCase_ =images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
UpperCAmelCase_ =numpy_to_pil(lowercase__ )
return images
def a__ ( lowercase__ ):
'''simple docstring'''
if images.ndim == 3:
UpperCAmelCase_ =images[None, ...]
UpperCAmelCase_ =(images * 2_5_5).round().astype("uint8" )
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
UpperCAmelCase_ =[Image.fromarray(image.squeeze() , mode="L" ) for image in images]
else:
UpperCAmelCase_ =[Image.fromarray(lowercase__ ) for image in images]
return pil_images
| 54 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase = logging.get_logger(__name__)
class _snake_case (__SCREAMING_SNAKE_CASE):
__A : Optional[int] ="timm_backbone"
def __init__( self ,_snake_case=None ,_snake_case=3 ,_snake_case=True ,_snake_case=True ,_snake_case=None ,**_snake_case ,):
super().__init__(**_snake_case )
UpperCAmelCase_ : Tuple = backbone
UpperCAmelCase_ : List[str] = num_channels
UpperCAmelCase_ : str = features_only
UpperCAmelCase_ : int = use_pretrained_backbone
UpperCAmelCase_ : Tuple = True
UpperCAmelCase_ : str = out_indices if out_indices is not None else (-1,)
| 71 |
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =int(lowercase__ )
if n_element < 1:
UpperCAmelCase_ =ValueError("a should be a positive number" )
raise my_error
UpperCAmelCase_ =[1]
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =(0, 0, 0)
UpperCAmelCase_ =1
while index < n_element:
while hamming_list[i] * 2 <= hamming_list[-1]:
i += 1
while hamming_list[j] * 3 <= hamming_list[-1]:
j += 1
while hamming_list[k] * 5 <= hamming_list[-1]:
k += 1
hamming_list.append(
min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) )
index += 1
return hamming_list
if __name__ == "__main__":
__lowercase : Tuple =input("""Enter the last number (nth term) of the Hamming Number Series: """)
print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""")
__lowercase : Union[str, Any] =hamming(int(n))
print("""-----------------------------------------------------""")
print(f"""The list with nth numbers is: {hamming_numbers}""")
print("""-----------------------------------------------------""")
| 54 | 0 |
'''simple docstring'''
import absl # noqa: F401 # Here to have a nice missing dependency error message early on
import nltk # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import six # noqa: F401 # Here to have a nice missing dependency error message early on
from rouge_score import rouge_scorer, scoring
import datasets
_UpperCAmelCase : Dict = '''\
@inproceedings{lin-2004-rouge,
title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",
author = "Lin, Chin-Yew",
booktitle = "Text Summarization Branches Out",
month = jul,
year = "2004",
address = "Barcelona, Spain",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W04-1013",
pages = "74--81",
}
'''
_UpperCAmelCase : Union[str, Any] = '''\
ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for
evaluating automatic summarization and machine translation software in natural language processing.
The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.
Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.
This metrics is a wrapper around Google Research reimplementation of ROUGE:
https://github.com/google-research/google-research/tree/master/rouge
'''
_UpperCAmelCase : Dict = '''
Calculates average rouge scores for a list of hypotheses and references
Args:
predictions: list of predictions to score. Each prediction
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
rouge_types: A list of rouge types to calculate.
Valid names:
`"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,
`"rougeL"`: Longest common subsequence based scoring.
`"rougeLSum"`: rougeLsum splits text using `"\n"`.
See details in https://github.com/huggingface/datasets/issues/617
use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.
use_aggregator: Return aggregates if this is set to True
Returns:
rouge1: rouge_1 (precision, recall, f1),
rouge2: rouge_2 (precision, recall, f1),
rougeL: rouge_l (precision, recall, f1),
rougeLsum: rouge_lsum (precision, recall, f1)
Examples:
>>> rouge = datasets.load_metric(\'rouge\')
>>> predictions = ["hello there", "general kenobi"]
>>> references = ["hello there", "general kenobi"]
>>> results = rouge.compute(predictions=predictions, references=references)
>>> print(list(results.keys()))
[\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']
>>> print(results["rouge1"])
AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))
>>> print(results["rouge1"].mid.fmeasure)
1.0
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __magic_name__ ( datasets.Metric ):
def _A( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[
'''https://en.wikipedia.org/wiki/ROUGE_(metric)''',
'''https://github.com/google-research/google-research/tree/master/rouge''',
] , )
def _A( self , snake_case_ , snake_case_ , snake_case_=None , snake_case_=True , snake_case_=False ):
if rouge_types is None:
lowercase =['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum''']
lowercase =rouge_scorer.RougeScorer(rouge_types=snake_case_ , use_stemmer=snake_case_ )
if use_aggregator:
lowercase =scoring.BootstrapAggregator()
else:
lowercase =[]
for ref, pred in zip(snake_case_ , snake_case_ ):
lowercase =scorer.score(snake_case_ , snake_case_ )
if use_aggregator:
aggregator.add_scores(snake_case_ )
else:
scores.append(snake_case_ )
if use_aggregator:
lowercase =aggregator.aggregate()
else:
lowercase ={}
for key in scores[0]:
lowercase =[score[key] for score in scores]
return result
| 72 |
import warnings
from ...utils import logging
from .image_processing_glpn import GLPNImageProcessor
__lowercase : List[Any] =logging.get_logger(__name__)
class A ( __lowercase ):
def __init__( self: List[Any] , *_lowerCAmelCase: Optional[Any] , **_lowerCAmelCase: List[str] ) -> None:
'''simple docstring'''
warnings.warn(
"The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use GLPNImageProcessor instead." , _lowerCAmelCase , )
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
| 54 | 0 |
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler')
class _snake_case :
def __init__( self , a , a , a = True , a = False) -> Optional[int]:
SCREAMING_SNAKE_CASE = scheduler
SCREAMING_SNAKE_CASE = optimizers if isinstance(a , (list, tuple)) else [optimizers]
SCREAMING_SNAKE_CASE = split_batches
SCREAMING_SNAKE_CASE = step_with_optimizer
SCREAMING_SNAKE_CASE = GradientState()
def SCREAMING_SNAKE_CASE__ ( self , *a , **a) -> List[Any]:
if not self.step_with_optimizer:
# No link between scheduler and optimizer -> just step
self.scheduler.step(*a , **a)
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
# Split batches -> the training dataloader batch size is not changed so one step per training step
self.scheduler.step(*a , **a)
else:
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
# num_processes steps per training step
SCREAMING_SNAKE_CASE = AcceleratorState().num_processes
for _ in range(a):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler , 'total_steps'):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*a , **a)
else:
self.scheduler.step(*a , **a)
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
return self.scheduler.get_last_lr()
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
return self.scheduler.state_dict()
def SCREAMING_SNAKE_CASE__ ( self , a) -> Optional[Any]:
self.scheduler.load_state_dict(a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
return self.scheduler.get_lr()
def SCREAMING_SNAKE_CASE__ ( self , *a , **a) -> str:
return self.scheduler.print_lr(*a , **a)
| 73 |
import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class A ( __lowercase , unittest.TestCase ):
_snake_case =CanineTokenizer
_snake_case =False
def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]:
'''simple docstring'''
super().setUp()
UpperCAmelCase_ =CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowerCAmelCase__ ( self: Optional[int] ) -> List[str]:
'''simple docstring'''
return CanineTokenizer.from_pretrained("google/canine-s" )
def lowerCAmelCase__ ( self: Union[str, Any] , **_lowerCAmelCase: List[Any] ) -> CanineTokenizer:
'''simple docstring'''
UpperCAmelCase_ =self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
UpperCAmelCase_ =1024
return tokenizer
@require_torch
def lowerCAmelCase__ ( self: int ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ =self.canine_tokenizer
UpperCAmelCase_ =["Life is like a box of chocolates.", "You never know what you're gonna get."]
# fmt: off
UpperCAmelCase_ =[5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0]
# fmt: on
UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase_ =list(batch.input_ids.numpy()[0] )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def lowerCAmelCase__ ( self: int ) -> str:
'''simple docstring'''
UpperCAmelCase_ =self.canine_tokenizer
UpperCAmelCase_ =["Once there was a man.", "He wrote a test in HuggingFace Tranformers."]
UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("input_ids" , _lowerCAmelCase )
self.assertIn("attention_mask" , _lowerCAmelCase )
self.assertIn("token_type_ids" , _lowerCAmelCase )
@require_torch
def lowerCAmelCase__ ( self: str ) -> Any:
'''simple docstring'''
UpperCAmelCase_ =self.canine_tokenizer
UpperCAmelCase_ =[
"What's the weater?",
"It's about 25 degrees.",
]
UpperCAmelCase_ =tokenizer(
text_target=_lowerCAmelCase , max_length=32 , padding="max_length" , truncation=_lowerCAmelCase , return_tensors="pt" )
self.assertEqual(32 , targets["input_ids"].shape[1] )
def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ =self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
UpperCAmelCase_ =self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
UpperCAmelCase_ =tempfile.mkdtemp()
UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running"
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
tokenizer.save_pretrained(_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase )
UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
shutil.rmtree(_lowerCAmelCase )
UpperCAmelCase_ =self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
UpperCAmelCase_ =tempfile.mkdtemp()
UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running"
UpperCAmelCase_ =tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
UpperCAmelCase_ =chr(0xe0_07 )
additional_special_tokens.append(_lowerCAmelCase )
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} )
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
tokenizer.save_pretrained(_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase )
UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertIn(_lowerCAmelCase , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(_lowerCAmelCase )
def lowerCAmelCase__ ( self: int ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
UpperCAmelCase_ , UpperCAmelCase_ =self.get_clean_sequence(_lowerCAmelCase )
# a special token for Canine can be defined as follows:
UpperCAmelCase_ =0xe0_05
UpperCAmelCase_ =chr(_lowerCAmelCase )
tokenizer.add_special_tokens({"cls_token": special_token} )
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertEqual(len(_lowerCAmelCase ) , 1 )
UpperCAmelCase_ =tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , input_encoded + special_token_id )
UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase )
self.assertTrue(special_token not in decoded )
def lowerCAmelCase__ ( self: Any ) -> Any:
'''simple docstring'''
UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
UpperCAmelCase_ =chr(0xe0_05 )
UpperCAmelCase_ =chr(0xe0_06 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=_lowerCAmelCase )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} )
UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase )
self.assertEqual(len(_lowerCAmelCase ) , 1 )
self.assertEqual(len(_lowerCAmelCase ) , 1 )
self.assertEqual(token_a[0] , _lowerCAmelCase )
self.assertEqual(token_a[0] , _lowerCAmelCase )
@require_tokenizers
def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# a special token for Canine can be defined as follows:
UpperCAmelCase_ =0xe0_06
UpperCAmelCase_ =chr(_lowerCAmelCase )
UpperCAmelCase_ =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase )
tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(_lowerCAmelCase )
tokenizer.from_pretrained(_lowerCAmelCase )
def lowerCAmelCase__ ( self: Any ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ =[]
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file:
UpperCAmelCase_ =json.load(_lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file:
UpperCAmelCase_ =json.load(_lowerCAmelCase )
# a special token for Canine can be defined as follows:
UpperCAmelCase_ =0xe0_06
UpperCAmelCase_ =chr(_lowerCAmelCase )
UpperCAmelCase_ =[new_token_a]
UpperCAmelCase_ =[new_token_a]
with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
UpperCAmelCase_ =tokenizer_class.from_pretrained(_lowerCAmelCase , extra_ids=0 )
self.assertIn(_lowerCAmelCase , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
UpperCAmelCase_ =0xe0_07
UpperCAmelCase_ =chr(_lowerCAmelCase )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
UpperCAmelCase_ =[AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase )]
UpperCAmelCase_ =tokenizer_class.from_pretrained(
_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , extra_ids=0 )
self.assertIn(_lowerCAmelCase , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
UpperCAmelCase_ ="hello world"
if self.space_between_special_tokens:
UpperCAmelCase_ ="[CLS] hello world [SEP]"
else:
UpperCAmelCase_ =input
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(_lowerCAmelCase , [output, output.lower()] )
def lowerCAmelCase__ ( self: List[str] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ =self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
UpperCAmelCase_ =[
"bos_token",
"eos_token",
"unk_token",
"sep_token",
"pad_token",
"cls_token",
"mask_token",
]
UpperCAmelCase_ ="a"
UpperCAmelCase_ =ord(_lowerCAmelCase )
for attr in attributes_list:
setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase )
self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase )
self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase )
setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase )
self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase )
self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase )
setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [] )
self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [] )
self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [] )
UpperCAmelCase_ =0xe0_06
UpperCAmelCase_ =chr(_lowerCAmelCase )
setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [additional_special_token_id] )
self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [additional_special_token] )
self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] )
def lowerCAmelCase__ ( self: List[str] ) -> List[str]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: Dict ) -> List[str]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: Any ) -> List[Any]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: List[Any] ) -> List[str]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: Tuple ) -> Union[str, Any]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: str ) -> str:
'''simple docstring'''
pass
| 54 | 0 |
def a__ ( snake_case ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : List[str] = [0 for i in range(len(snake_case ) )]
# initialize interval's left pointer and right pointer
__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = 0, 0
for i in range(1 , len(snake_case ) ):
# case when current index is inside the interval
if i <= right_pointer:
__SCREAMING_SNAKE_CASE : List[Any] = min(right_pointer - i + 1 , z_result[i - left_pointer] )
__SCREAMING_SNAKE_CASE : Dict = min_edge
while go_next(snake_case , snake_case , snake_case ):
z_result[i] += 1
# if new index's result gives us more right interval,
# we've to update left_pointer and right_pointer
if i + z_result[i] - 1 > right_pointer:
__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = i, i + z_result[i] - 1
return z_result
def a__ ( snake_case , snake_case , snake_case ):
"""simple docstring"""
return i + z_result[i] < len(snake_case ) and s[z_result[i]] == s[i + z_result[i]]
def a__ ( snake_case , snake_case ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = 0
# concatenate 'pattern' and 'input_str' and call z_function
# with concatenated string
__SCREAMING_SNAKE_CASE : str = z_function(pattern + input_str )
for val in z_result:
# if value is greater then length of the pattern string
# that means this index is starting position of substring
# which is equal to pattern string
if val >= len(snake_case ):
answer += 1
return answer
if __name__ == "__main__":
import doctest
doctest.testmod()
| 74 |
from typing import Dict, List
from nltk.translate import gleu_score
import datasets
from datasets import MetricInfo
__lowercase : Optional[int] ="""\
@misc{wu2016googles,
title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},
author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey
and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin
Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto
Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and
Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes
and Jeffrey Dean},
year={2016},
eprint={1609.08144},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
__lowercase : Dict ="""\
The BLEU score has some undesirable properties when used for single
sentences, as it was designed to be a corpus measure. We therefore
use a slightly different score for our RL experiments which we call
the 'GLEU score'. For the GLEU score, we record all sub-sequences of
1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then
compute a recall, which is the ratio of the number of matching n-grams
to the number of total n-grams in the target (ground truth) sequence,
and a precision, which is the ratio of the number of matching n-grams
to the number of total n-grams in the generated output sequence. Then
GLEU score is simply the minimum of recall and precision. This GLEU
score's range is always between 0 (no matches) and 1 (all match) and
it is symmetrical when switching output and target. According to
our experiments, GLEU score correlates quite well with the BLEU
metric on a corpus level but does not have its drawbacks for our per
sentence reward objective.
"""
__lowercase : List[str] ="""\
Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.
Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching
tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.
Args:
predictions (list of str): list of translations to score.
Each translation should be tokenized into a list of tokens.
references (list of list of str): list of lists of references for each translation.
Each reference should be tokenized into a list of tokens.
min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.
max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.
Returns:
'google_bleu': google_bleu score
Examples:
Example 1:
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',
... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']
>>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',
... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',
... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
... 'interested', 'in', 'world', 'history']
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
... 'because', 'he', 'read', 'the', 'book']
>>> list_of_references = [[ref1a], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric(\"google_bleu\")
>>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)
>>> print(round(results[\"google_bleu\"], 2))
0.44
Example 2:
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',
... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']
>>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',
... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',
... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']
>>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',
... 'heed', 'the', 'cat', 'commands']
>>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',
... 'of', 'the', 'cat']
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
... 'interested', 'in', 'world', 'history']
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
... 'because', 'he', 'read', 'the', 'book']
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric(\"google_bleu\")
>>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)
>>> print(round(results[\"google_bleu\"], 2))
0.61
Example 3:
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',
... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']
>>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',
... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',
... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']
>>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',
... 'heed', 'the', 'cat', 'commands']
>>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',
... 'of', 'the', 'cat']
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
... 'interested', 'in', 'world', 'history']
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
... 'because', 'he', 'read', 'the', 'book']
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric(\"google_bleu\")
>>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)
>>> print(round(results[\"google_bleu\"], 2))
0.53
Example 4:
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',
... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']
>>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',
... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',
... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']
>>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',
... 'heed', 'the', 'cat', 'commands']
>>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',
... 'of', 'the', 'cat']
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
... 'interested', 'in', 'world', 'history']
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
... 'because', 'he', 'read', 'the', 'book']
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric(\"google_bleu\")
>>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)
>>> print(round(results[\"google_bleu\"], 2))
0.4
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A ( datasets.Metric ):
def lowerCAmelCase__ ( self: int ) -> MetricInfo:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ),
"references": datasets.Sequence(
datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ),
} ) , )
def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: List[List[List[str]]] , _lowerCAmelCase: List[List[str]] , _lowerCAmelCase: int = 1 , _lowerCAmelCase: int = 4 , ) -> Dict[str, float]:
'''simple docstring'''
return {
"google_bleu": gleu_score.corpus_gleu(
list_of_references=_lowerCAmelCase , hypotheses=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase )
}
| 54 | 0 |
'''simple docstring'''
from itertools import product
def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> list[int]:
UpperCAmelCase__ : Optional[Any] = sides_number
UpperCAmelCase__ : Optional[Any] = max_face_number * dice_number
UpperCAmelCase__ : Optional[int] = [0] * (max_total + 1)
UpperCAmelCase__ : Union[str, Any] = 1
UpperCAmelCase__ : List[str] = range(lowerCAmelCase__ , max_face_number + 1 )
for dice_numbers in product(lowerCAmelCase__ , repeat=lowerCAmelCase__ ):
UpperCAmelCase__ : Optional[Any] = sum(lowerCAmelCase__ )
totals_frequencies[total] += 1
return totals_frequencies
def a__ ( ) -> float:
UpperCAmelCase__ : int = total_frequency_distribution(
sides_number=4 , dice_number=9 )
UpperCAmelCase__ : Optional[int] = total_frequency_distribution(
sides_number=6 , dice_number=6 )
UpperCAmelCase__ : Union[str, Any] = 0
UpperCAmelCase__ : str = 9
UpperCAmelCase__ : str = 4 * 9
UpperCAmelCase__ : Tuple = 6
for peter_total in range(lowerCAmelCase__ , max_peter_total + 1 ):
peter_wins_count += peter_totals_frequencies[peter_total] * sum(
colin_totals_frequencies[min_colin_total:peter_total] )
UpperCAmelCase__ : str = (4**9) * (6**6)
UpperCAmelCase__ : Union[str, Any] = peter_wins_count / total_games_number
UpperCAmelCase__ : Any = round(lowerCAmelCase__ , ndigits=7 )
return rounded_peter_win_probability
if __name__ == "__main__":
print(F"""{solution() = }""")
| 75 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaImgaImgPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class A ( __lowercase , unittest.TestCase ):
_snake_case =KandinskyVaaImgaImgPipeline
_snake_case =['''image_embeds''', '''negative_image_embeds''', '''image''']
_snake_case =[
'''image_embeds''',
'''negative_image_embeds''',
'''image''',
]
_snake_case =[
'''generator''',
'''height''',
'''width''',
'''strength''',
'''guidance_scale''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
_snake_case =False
@property
def lowerCAmelCase__ ( self: List[Any] ) -> Dict:
'''simple docstring'''
return 32
@property
def lowerCAmelCase__ ( self: Any ) -> Optional[int]:
'''simple docstring'''
return 32
@property
def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]:
'''simple docstring'''
return self.time_input_dim
@property
def lowerCAmelCase__ ( self: List[str] ) -> Dict:
'''simple docstring'''
return self.time_input_dim * 4
@property
def lowerCAmelCase__ ( self: int ) -> str:
'''simple docstring'''
return 100
@property
def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]:
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase_ ={
"in_channels": 4,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
UpperCAmelCase_ =UNetaDConditionModel(**_lowerCAmelCase )
return model
@property
def lowerCAmelCase__ ( self: Any ) -> Tuple:
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase__ ( self: Union[str, Any] ) -> Any:
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase_ =VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase__ ( self: Dict ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ =self.dummy_unet
UpperCAmelCase_ =self.dummy_movq
UpperCAmelCase_ ={
"num_train_timesteps": 1000,
"beta_schedule": "linear",
"beta_start": 0.0_00_85,
"beta_end": 0.0_12,
"clip_sample": False,
"set_alpha_to_one": False,
"steps_offset": 0,
"prediction_type": "epsilon",
"thresholding": False,
}
UpperCAmelCase_ =DDIMScheduler(**_lowerCAmelCase )
UpperCAmelCase_ ={
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[Any]=0 ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase )
UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
_lowerCAmelCase )
# create init_image
UpperCAmelCase_ =floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase )
UpperCAmelCase_ =image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase_ =Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("RGB" ).resize((256, 256) )
if str(_lowerCAmelCase ).startswith("mps" ):
UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase )
else:
UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase )
UpperCAmelCase_ ={
"image": init_image,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 64,
"width": 64,
"num_inference_steps": 10,
"guidance_scale": 7.0,
"strength": 0.2,
"output_type": "np",
}
return inputs
def lowerCAmelCase__ ( self: int ) -> int:
'''simple docstring'''
UpperCAmelCase_ ="cpu"
UpperCAmelCase_ =self.get_dummy_components()
UpperCAmelCase_ =self.pipeline_class(**_lowerCAmelCase )
UpperCAmelCase_ =pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
UpperCAmelCase_ =pipe(**self.get_dummy_inputs(_lowerCAmelCase ) )
UpperCAmelCase_ =output.images
UpperCAmelCase_ =pipe(
**self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0]
UpperCAmelCase_ =image[0, -3:, -3:, -1]
UpperCAmelCase_ =image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase_ =np.array(
[0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), F' expected_slice {expected_slice}, but got {image_slice.flatten()}'
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'
@slow
@require_torch_gpu
class A ( unittest.TestCase ):
def lowerCAmelCase__ ( self: List[Any] ) -> str:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase__ ( self: int ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ =load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/kandinskyv22_img2img_frog.npy" )
UpperCAmelCase_ =load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
UpperCAmelCase_ ="A red cartoon frog, 4k"
UpperCAmelCase_ =KandinskyVaaPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa )
pipe_prior.to(_lowerCAmelCase )
UpperCAmelCase_ =KandinskyVaaImgaImgPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa )
UpperCAmelCase_ =pipeline.to(_lowerCAmelCase )
pipeline.set_progress_bar_config(disable=_lowerCAmelCase )
UpperCAmelCase_ =torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase_ , UpperCAmelCase_ =pipe_prior(
_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
UpperCAmelCase_ =pipeline(
image=_lowerCAmelCase , image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , )
UpperCAmelCase_ =output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
| 54 | 0 |
"""simple docstring"""
from __future__ import annotations
def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ):
__lowercase : Union[str, Any] = list(range(len(__UpperCamelCase ) ) )
__lowercase : List[Any] = [v / w for v, w in zip(__UpperCamelCase , __UpperCamelCase )]
index.sort(key=lambda __UpperCamelCase : ratio[i] , reverse=__UpperCamelCase )
__lowercase : float = 0
__lowercase : list[float] = [0] * len(__UpperCamelCase )
for i in index:
if weight[i] <= capacity:
__lowercase : Tuple = 1
max_value += value[i]
capacity -= weight[i]
else:
__lowercase : Any = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod()
| 76 |
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class A ( unittest.TestCase ):
def __init__( self: Optional[int] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: Optional[int]=7 , _lowerCAmelCase: Any=True , _lowerCAmelCase: List[Any]=True , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: str=True , _lowerCAmelCase: Optional[int]=99 , _lowerCAmelCase: Any=32 , _lowerCAmelCase: Any=5 , _lowerCAmelCase: Tuple=4 , _lowerCAmelCase: Union[str, Any]=37 , _lowerCAmelCase: List[str]="gelu" , _lowerCAmelCase: Dict=0.1 , _lowerCAmelCase: Tuple=0.1 , _lowerCAmelCase: int=512 , _lowerCAmelCase: Tuple=16 , _lowerCAmelCase: Tuple=2 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=4 , ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ =parent
UpperCAmelCase_ =batch_size
UpperCAmelCase_ =seq_length
UpperCAmelCase_ =is_training
UpperCAmelCase_ =use_attention_mask
UpperCAmelCase_ =use_token_type_ids
UpperCAmelCase_ =use_labels
UpperCAmelCase_ =vocab_size
UpperCAmelCase_ =hidden_size
UpperCAmelCase_ =num_hidden_layers
UpperCAmelCase_ =num_attention_heads
UpperCAmelCase_ =intermediate_size
UpperCAmelCase_ =hidden_act
UpperCAmelCase_ =hidden_dropout_prob
UpperCAmelCase_ =attention_probs_dropout_prob
UpperCAmelCase_ =max_position_embeddings
UpperCAmelCase_ =type_vocab_size
UpperCAmelCase_ =type_sequence_label_size
UpperCAmelCase_ =initializer_range
UpperCAmelCase_ =num_choices
def lowerCAmelCase__ ( self: Dict ) -> Any:
'''simple docstring'''
UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ =None
if self.use_attention_mask:
UpperCAmelCase_ =random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase_ =None
if self.use_token_type_ids:
UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ =RobertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowerCAmelCase__ ( self: str ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ =self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs
UpperCAmelCase_ ={"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
return config, inputs_dict
def lowerCAmelCase__ ( self: Tuple ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ =self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs
UpperCAmelCase_ =True
UpperCAmelCase_ =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class A ( __lowercase , unittest.TestCase ):
_snake_case =True
_snake_case =(
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowerCAmelCase__ ( self: Dict ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ =FlaxRobertaModelTester(self )
@slow
def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
UpperCAmelCase_ =model_class_name.from_pretrained("roberta-base" , from_pt=_lowerCAmelCase )
UpperCAmelCase_ =model(np.ones((1, 1) ) )
self.assertIsNotNone(_lowerCAmelCase )
| 54 | 0 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_nllb import NllbTokenizer
else:
A = None
A = logging.get_logger(__name__)
A = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""}
A = {
"""vocab_file""": {
"""facebook/nllb-200-distilled-600M""": (
"""https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model"""
),
},
"""tokenizer_file""": {
"""facebook/nllb-200-distilled-600M""": (
"""https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json"""
),
},
}
A = {
"""facebook/nllb-large-en-ro""": 1_024,
"""facebook/nllb-200-distilled-600M""": 1_024,
}
# fmt: off
A = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""]
class a__ ( __magic_name__ ):
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = ["input_ids", "attention_mask"]
lowercase_ = NllbTokenizer
lowercase_ = []
lowercase_ = []
def __init__( self : str , UpperCamelCase_ : Any=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : List[str]="<s>" , UpperCamelCase_ : int="</s>" , UpperCamelCase_ : Union[str, Any]="</s>" , UpperCamelCase_ : List[Any]="<s>" , UpperCamelCase_ : Any="<unk>" , UpperCamelCase_ : int="<pad>" , UpperCamelCase_ : int="<mask>" , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Tuple=False , **UpperCamelCase_ : List[Any] , ):
"""simple docstring"""
__UpperCAmelCase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_) if isinstance(UpperCamelCase_ , UpperCamelCase_) else mask_token
__UpperCAmelCase : Tuple = legacy_behaviour
super().__init__(
vocab_file=UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , src_lang=UpperCamelCase_ , tgt_lang=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , legacy_behaviour=UpperCamelCase_ , **UpperCamelCase_ , )
__UpperCAmelCase : List[str] = vocab_file
__UpperCAmelCase : Union[str, Any] = False if not self.vocab_file else True
__UpperCAmelCase : Union[str, Any] = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens])
self.add_special_tokens({"additional_special_tokens": _additional_special_tokens})
__UpperCAmelCase : Any = {
lang_code: self.convert_tokens_to_ids(UpperCamelCase_) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
__UpperCAmelCase : Optional[Any] = src_lang if src_lang is not None else "eng_Latn"
__UpperCAmelCase : List[str] = self.convert_tokens_to_ids(self._src_lang)
__UpperCAmelCase : Tuple = tgt_lang
self.set_src_lang_special_tokens(self._src_lang)
@property
def a_ ( self : str):
"""simple docstring"""
return self._src_lang
@src_lang.setter
def a_ ( self : List[str] , UpperCamelCase_ : str):
"""simple docstring"""
__UpperCAmelCase : Dict = new_src_lang
self.set_src_lang_special_tokens(self._src_lang)
def a_ ( self : List[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None):
"""simple docstring"""
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def a_ ( self : Any , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None):
"""simple docstring"""
__UpperCAmelCase : List[Any] = [self.sep_token_id]
__UpperCAmelCase : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
def a_ ( self : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] , UpperCamelCase_ : Optional[str] , **UpperCamelCase_ : List[Any]):
"""simple docstring"""
if src_lang is None or tgt_lang is None:
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model")
__UpperCAmelCase : Any = src_lang
__UpperCAmelCase : Optional[Any] = self(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_)
__UpperCAmelCase : List[Any] = self.convert_tokens_to_ids(UpperCamelCase_)
__UpperCAmelCase : str = tgt_lang_id
return inputs
def a_ ( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str = "eng_Latn" , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : str = "fra_Latn" , **UpperCamelCase_ : str , ):
"""simple docstring"""
__UpperCAmelCase : List[Any] = src_lang
__UpperCAmelCase : Dict = tgt_lang
return super().prepare_seqaseq_batch(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_)
def a_ ( self : Any):
"""simple docstring"""
return self.set_src_lang_special_tokens(self.src_lang)
def a_ ( self : List[str]):
"""simple docstring"""
return self.set_tgt_lang_special_tokens(self.tgt_lang)
def a_ ( self : str , UpperCamelCase_ : Dict):
"""simple docstring"""
__UpperCAmelCase : List[str] = self.convert_tokens_to_ids(UpperCamelCase_)
if self.legacy_behaviour:
__UpperCAmelCase : List[Any] = []
__UpperCAmelCase : Tuple = [self.eos_token_id, self.cur_lang_code]
else:
__UpperCAmelCase : str = [self.cur_lang_code]
__UpperCAmelCase : int = [self.eos_token_id]
__UpperCAmelCase : str = self.convert_ids_to_tokens(self.prefix_tokens)
__UpperCAmelCase : List[str] = self.convert_ids_to_tokens(self.suffix_tokens)
__UpperCAmelCase : int = processors.TemplateProcessing(
single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , )
def a_ ( self : Union[str, Any] , UpperCamelCase_ : str):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = self.convert_tokens_to_ids(UpperCamelCase_)
if self.legacy_behaviour:
__UpperCAmelCase : str = []
__UpperCAmelCase : Union[str, Any] = [self.eos_token_id, self.cur_lang_code]
else:
__UpperCAmelCase : List[str] = [self.cur_lang_code]
__UpperCAmelCase : Any = [self.eos_token_id]
__UpperCAmelCase : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens)
__UpperCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens)
__UpperCAmelCase : Dict = processors.TemplateProcessing(
single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , )
def a_ ( self : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None):
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer.")
if not os.path.isdir(UpperCamelCase_):
logger.error(F"Vocabulary path ({save_directory}) should be a directory.")
return
__UpperCAmelCase : Union[str, Any] = os.path.join(
UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"])
if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCamelCase_):
copyfile(self.vocab_file , UpperCamelCase_)
return (out_vocab_file,)
| 77 |
from __future__ import annotations
def a__ ( lowercase__ , lowercase__ ):
'''simple docstring'''
if b == 0:
return (1, 0)
((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , a % b )
UpperCAmelCase_ =a // b
return (y, x - k * y)
def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ )
UpperCAmelCase_ =na * na
UpperCAmelCase_ =ra * x * na + ra * y * na
return (n % m + m) % m
def a__ ( lowercase__ , lowercase__ ):
'''simple docstring'''
((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ )
if b < 0:
UpperCAmelCase_ =(b % n + n) % n
return b
def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ =invert_modulo(lowercase__ , lowercase__ ), invert_modulo(lowercase__ , lowercase__ )
UpperCAmelCase_ =na * na
UpperCAmelCase_ =ra * x * na + ra * y * na
return (n % m + m) % m
if __name__ == "__main__":
from doctest import testmod
testmod(name="""chinese_remainder_theorem""", verbose=True)
testmod(name="""chinese_remainder_theorem2""", verbose=True)
testmod(name="""invert_modulo""", verbose=True)
testmod(name="""extended_euclid""", verbose=True)
| 54 | 0 |
'''simple docstring'''
def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> Union[str, Any]:
'''simple docstring'''
if b == 0:
return 1
if (b % 2) == 0:
return actual_power(snake_case_ , int(b / 2 ) ) * actual_power(snake_case_ , int(b / 2 ) )
else:
return a * actual_power(snake_case_ , int(b / 2 ) ) * actual_power(snake_case_ , int(b / 2 ) )
def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> float:
'''simple docstring'''
if b < 0:
return 1 / actual_power(snake_case_ , snake_case_ )
return actual_power(snake_case_ , snake_case_ )
if __name__ == "__main__":
print(power(-2, -3))
| 78 |
import argparse
import logging
import os
import re
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
DataCollatorForLanguageModeling,
PushToHubCallback,
TFAutoModelForMaskedLM,
create_optimizer,
)
__lowercase : Tuple =logging.getLogger(__name__)
__lowercase : Optional[int] =tf.data.AUTOTUNE
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =argparse.ArgumentParser(description="Train a masked language model on TPU." )
parser.add_argument(
"--pretrained_model_config" , type=lowercase__ , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , )
parser.add_argument(
"--tokenizer" , type=lowercase__ , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , )
parser.add_argument(
"--per_replica_batch_size" , type=lowercase__ , default=8 , help="Batch size per TPU core." , )
parser.add_argument(
"--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , )
parser.add_argument(
"--tpu_name" , type=lowercase__ , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , )
parser.add_argument(
"--tpu_zone" , type=lowercase__ , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , )
parser.add_argument(
"--gcp_project" , type=lowercase__ , help="Google cloud project name. Only used for non-Colab TPU nodes." )
parser.add_argument(
"--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , )
parser.add_argument(
"--train_dataset" , type=lowercase__ , help="Path to training dataset to load. If the path begins with `gs://`"
" then the dataset will be loaded from a Google Cloud Storage bucket." , )
parser.add_argument(
"--shuffle_buffer_size" , type=lowercase__ , default=2**1_8 , help="Size of the shuffle buffer (in samples)" , )
parser.add_argument(
"--eval_dataset" , type=lowercase__ , help="Path to evaluation dataset to load. If the path begins with `gs://`"
" then the dataset will be loaded from a Google Cloud Storage bucket." , )
parser.add_argument(
"--num_epochs" , type=lowercase__ , default=1 , help="Number of epochs to train for." , )
parser.add_argument(
"--learning_rate" , type=lowercase__ , default=1E-4 , help="Learning rate to use for training." , )
parser.add_argument(
"--weight_decay_rate" , type=lowercase__ , default=1E-3 , help="Weight decay rate to use for training." , )
parser.add_argument(
"--max_length" , type=lowercase__ , default=5_1_2 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , )
parser.add_argument(
"--mlm_probability" , type=lowercase__ , default=0.15 , help="Fraction of tokens to mask during training." , )
parser.add_argument("--output_dir" , type=lowercase__ , required=lowercase__ , help="Path to save model checkpoints to." )
parser.add_argument("--hub_model_id" , type=lowercase__ , help="Model ID to upload to on the Hugging Face Hub." )
UpperCAmelCase_ =parser.parse_args()
return args
def a__ ( lowercase__ ):
'''simple docstring'''
try:
if args.tpu_name:
UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver(
args.tpu_name , zone=args.tpu_zone , project=args.gcp_project )
else:
UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
raise RuntimeError(
"Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or "
"--gcp_project. When running on a TPU VM, use --tpu_name local." )
tf.config.experimental_connect_to_cluster(lowercase__ )
tf.tpu.experimental.initialize_tpu_system(lowercase__ )
return tpu
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =0
for file in file_list:
UpperCAmelCase_ =file.split("/" )[-1]
UpperCAmelCase_ =re.search(R"-\d+-(\d+)\.tfrecord" , lowercase__ ).group(1 )
UpperCAmelCase_ =int(lowercase__ )
num_samples += sample_count
return num_samples
def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=None ):
'''simple docstring'''
UpperCAmelCase_ =count_samples(lowercase__ )
UpperCAmelCase_ =tf.data.Dataset.from_tensor_slices(lowercase__ )
if shuffle:
UpperCAmelCase_ =dataset.shuffle(len(lowercase__ ) )
UpperCAmelCase_ =tf.data.TFRecordDataset(lowercase__ , num_parallel_reads=lowercase__ )
# TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here
UpperCAmelCase_ =dataset.apply(tf.data.experimental.assert_cardinality(lowercase__ ) )
UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ )
if shuffle:
assert shuffle_buffer_size is not None
UpperCAmelCase_ =dataset.shuffle(args.shuffle_buffer_size )
UpperCAmelCase_ =dataset.batch(lowercase__ , drop_remainder=lowercase__ )
UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ )
UpperCAmelCase_ =dataset.prefetch(lowercase__ )
return dataset
def a__ ( lowercase__ ):
'''simple docstring'''
if not args.no_tpu:
UpperCAmelCase_ =initialize_tpu(lowercase__ )
UpperCAmelCase_ =tf.distribute.TPUStrategy(lowercase__ )
else:
UpperCAmelCase_ =tf.distribute.OneDeviceStrategy(device="/gpu:0" )
if args.bfloataa:
tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" )
UpperCAmelCase_ =AutoTokenizer.from_pretrained(args.tokenizer )
UpperCAmelCase_ =AutoConfig.from_pretrained(args.pretrained_model_config )
UpperCAmelCase_ =tokenizer.vocab_size
UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) )
if not training_records:
raise ValueError(F'No .tfrecord files found in {args.train_dataset}.' )
UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) )
if not eval_records:
raise ValueError(F'No .tfrecord files found in {args.eval_dataset}.' )
UpperCAmelCase_ =count_samples(lowercase__ )
UpperCAmelCase_ =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync)
UpperCAmelCase_ =steps_per_epoch * args.num_epochs
with strategy.scope():
UpperCAmelCase_ =TFAutoModelForMaskedLM.from_config(lowercase__ )
model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built
UpperCAmelCase_ , UpperCAmelCase_ =create_optimizer(
num_train_steps=lowercase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , )
# Transformers models compute the right loss for their task by default when labels are passed, and will
# use this for training unless you specify your own loss function in compile().
model.compile(optimizer=lowercase__ , metrics=["accuracy"] )
def decode_fn(lowercase__ ):
UpperCAmelCase_ ={
"input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ),
"attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ),
}
return tf.io.parse_single_example(lowercase__ , lowercase__ )
# Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can
# use their methods in our data pipeline.
UpperCAmelCase_ =DataCollatorForLanguageModeling(
tokenizer=lowercase__ , mlm_probability=args.mlm_probability , mlm=lowercase__ , return_tensors="tf" )
def mask_with_collator(lowercase__ ):
# TF really needs an isin() function
UpperCAmelCase_ =(
~tf.cast(batch["attention_mask"] , tf.bool )
| (batch["input_ids"] == tokenizer.cls_token_id)
| (batch["input_ids"] == tokenizer.sep_token_id)
)
UpperCAmelCase_ , UpperCAmelCase_ =data_collator.tf_mask_tokens(
batch["input_ids"] , vocab_size=len(lowercase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowercase__ , )
return batch
UpperCAmelCase_ =args.per_replica_batch_size * strategy.num_replicas_in_sync
UpperCAmelCase_ =prepare_dataset(
lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , shuffle_buffer_size=args.shuffle_buffer_size , )
UpperCAmelCase_ =prepare_dataset(
lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , )
UpperCAmelCase_ =[]
if args.hub_model_id:
callbacks.append(
PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowercase__ ) )
model.fit(
lowercase__ , validation_data=lowercase__ , epochs=args.num_epochs , callbacks=lowercase__ , )
model.save_pretrained(args.output_dir )
if __name__ == "__main__":
__lowercase : Union[str, Any] =parse_args()
main(args)
| 54 | 0 |
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
SCREAMING_SNAKE_CASE__ : List[str] = logging.getLogger(__name__)
require_version("""pytorch_lightning>=1.0.4""")
SCREAMING_SNAKE_CASE__ : Optional[int] = {
"""base""": AutoModel,
"""sequence-classification""": AutoModelForSequenceClassification,
"""question-answering""": AutoModelForQuestionAnswering,
"""pretraining""": AutoModelForPreTraining,
"""token-classification""": AutoModelForTokenClassification,
"""language-modeling""": AutoModelWithLMHead,
"""summarization""": AutoModelForSeqaSeqLM,
"""translation""": AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
SCREAMING_SNAKE_CASE__ : List[str] = {
"""linear""": get_linear_schedule_with_warmup,
"""cosine""": get_cosine_schedule_with_warmup,
"""cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup,
"""polynomial""": get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
SCREAMING_SNAKE_CASE__ : Tuple = sorted(arg_to_scheduler.keys())
SCREAMING_SNAKE_CASE__ : Optional[Any] = """{""" + """, """.join(arg_to_scheduler_choices) + """}"""
class UpperCAmelCase_ ( pl.LightningModule ):
def __init__( self , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase="base" , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase , ):
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(_lowerCAmelCase )
UpperCAmelCase__ : int = 0
UpperCAmelCase__ : int = Path(self.hparams.output_dir )
UpperCAmelCase__ : Dict = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
UpperCAmelCase__ : Optional[int] = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"""num_labels""": num_labels} if num_labels is not None else {}) , cache_dir=_lowerCAmelCase , **_lowerCAmelCase , )
else:
UpperCAmelCase__ : PretrainedConfig = config
UpperCAmelCase__ : List[str] = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""")
for p in extra_model_params:
if getattr(self.hparams , _lowerCAmelCase , _lowerCAmelCase ):
assert hasattr(self.config , _lowerCAmelCase ), f"model config doesn't have a `{p}` attribute"
setattr(self.config , _lowerCAmelCase , getattr(self.hparams , _lowerCAmelCase ) )
if tokenizer is None:
UpperCAmelCase__ : str = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_lowerCAmelCase , )
else:
UpperCAmelCase__ : PreTrainedTokenizer = tokenizer
UpperCAmelCase__ : List[str] = MODEL_MODES[mode]
if model is None:
UpperCAmelCase__ : Optional[Any] = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool(""".ckpt""" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=_lowerCAmelCase , )
else:
UpperCAmelCase__ : Tuple = model
def __UpperCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ):
UpperCAmelCase__ : Union[str, Any] = self.model_type.from_pretrained(*_lowerCAmelCase , **_lowerCAmelCase )
def __UpperCAmelCase ( self ):
UpperCAmelCase__ : Tuple = arg_to_scheduler[self.hparams.lr_scheduler]
UpperCAmelCase__ : Optional[int] = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
UpperCAmelCase__ : Union[str, Any] = {"""scheduler""": scheduler, """interval""": """step""", """frequency""": 1}
return scheduler
def __UpperCAmelCase ( self ):
UpperCAmelCase__ : Any = self.model
UpperCAmelCase__ : int = ["""bias""", """LayerNorm.weight"""]
UpperCAmelCase__ : int = [
{
"""params""": [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
"""weight_decay""": self.hparams.weight_decay,
},
{
"""params""": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
"""weight_decay""": 0.0,
},
]
if self.hparams.adafactor:
UpperCAmelCase__ : Dict = Adafactor(
_lowerCAmelCase , lr=self.hparams.learning_rate , scale_parameter=_lowerCAmelCase , relative_step=_lowerCAmelCase )
else:
UpperCAmelCase__ : Union[str, Any] = AdamW(
_lowerCAmelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
UpperCAmelCase__ : Optional[int] = optimizer
UpperCAmelCase__ : int = self.get_lr_scheduler()
return [optimizer], [scheduler]
def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ):
return self.validation_step(_lowerCAmelCase , _lowerCAmelCase )
def __UpperCAmelCase ( self , _lowerCAmelCase ):
return self.validation_end(_lowerCAmelCase )
def __UpperCAmelCase ( self ):
UpperCAmelCase__ : Dict = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
UpperCAmelCase__ : List[Any] = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def __UpperCAmelCase ( self , _lowerCAmelCase ):
if stage == "test":
UpperCAmelCase__ : int = len(self.test_dataloader().dataset )
else:
UpperCAmelCase__ : Optional[Any] = self.get_dataloader("""train""" , self.hparams.train_batch_size , shuffle=_lowerCAmelCase )
UpperCAmelCase__ : Optional[int] = len(self.train_dataloader().dataset )
def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = False ):
raise NotImplementedError("""You must implement this for your task""" )
def __UpperCAmelCase ( self ):
return self.train_loader
def __UpperCAmelCase ( self ):
return self.get_dataloader("""dev""" , self.hparams.eval_batch_size , shuffle=_lowerCAmelCase )
def __UpperCAmelCase ( self ):
return self.get_dataloader("""test""" , self.hparams.eval_batch_size , shuffle=_lowerCAmelCase )
def __UpperCAmelCase ( self , _lowerCAmelCase ):
return os.path.join(
self.hparams.data_dir , """cached_{}_{}_{}""".format(
_lowerCAmelCase , list(filter(_lowerCAmelCase , self.hparams.model_name_or_path.split("""/""" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def __UpperCAmelCase ( self , _lowerCAmelCase ):
UpperCAmelCase__ : Optional[int] = self.output_dir.joinpath("""best_tfmr""" )
UpperCAmelCase__ : List[str] = self.step_count
self.model.save_pretrained(_lowerCAmelCase )
self.tokenizer.save_pretrained(_lowerCAmelCase )
@staticmethod
def __UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase ):
parser.add_argument(
"""--model_name_or_path""" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""Path to pretrained model or model identifier from huggingface.co/models""" , )
parser.add_argument(
"""--config_name""" , default="""""" , type=_lowerCAmelCase , help="""Pretrained config name or path if not the same as model_name""" )
parser.add_argument(
"""--tokenizer_name""" , default=_lowerCAmelCase , type=_lowerCAmelCase , help="""Pretrained tokenizer name or path if not the same as model_name""" , )
parser.add_argument(
"""--cache_dir""" , default=str(Path(_lowerCAmelCase ).parent / """test_run""" / """cache""" ) , type=_lowerCAmelCase , help="""Where do you want to store the pre-trained models downloaded from huggingface.co""" , )
parser.add_argument(
"""--encoder_layerdrop""" , type=_lowerCAmelCase , help="""Encoder layer dropout probability (Optional). Goes into model.config""" , )
parser.add_argument(
"""--decoder_layerdrop""" , type=_lowerCAmelCase , help="""Decoder layer dropout probability (Optional). Goes into model.config""" , )
parser.add_argument(
"""--dropout""" , type=_lowerCAmelCase , help="""Dropout probability (Optional). Goes into model.config""" , )
parser.add_argument(
"""--attention_dropout""" , type=_lowerCAmelCase , help="""Attention dropout probability (Optional). Goes into model.config""" , )
parser.add_argument("""--learning_rate""" , default=5e-5 , type=_lowerCAmelCase , help="""The initial learning rate for Adam.""" )
parser.add_argument(
"""--lr_scheduler""" , default="""linear""" , choices=_lowerCAmelCase , metavar=_lowerCAmelCase , type=_lowerCAmelCase , help="""Learning rate scheduler""" , )
parser.add_argument("""--weight_decay""" , default=0.0 , type=_lowerCAmelCase , help="""Weight decay if we apply some.""" )
parser.add_argument("""--adam_epsilon""" , default=1e-8 , type=_lowerCAmelCase , help="""Epsilon for Adam optimizer.""" )
parser.add_argument("""--warmup_steps""" , default=0 , type=_lowerCAmelCase , help="""Linear warmup over warmup_steps.""" )
parser.add_argument("""--num_workers""" , default=4 , type=_lowerCAmelCase , help="""kwarg passed to DataLoader""" )
parser.add_argument("""--num_train_epochs""" , dest="""max_epochs""" , default=3 , type=_lowerCAmelCase )
parser.add_argument("""--train_batch_size""" , default=32 , type=_lowerCAmelCase )
parser.add_argument("""--eval_batch_size""" , default=32 , type=_lowerCAmelCase )
parser.add_argument("""--adafactor""" , action="""store_true""" )
class UpperCAmelCase_ ( pl.Callback ):
def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ):
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class UpperCAmelCase_ ( pl.Callback ):
def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ):
# print(pl_module.model.rag)
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(_lowerCAmelCase )
class UpperCAmelCase_ ( pl.Callback ):
def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ):
UpperCAmelCase__ : Any = trainer.lr_schedulers[0]["""scheduler"""]
UpperCAmelCase__ : Optional[int] = {f"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(_lowerCAmelCase )
def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ):
rank_zero_info("""***** Validation results *****""" )
UpperCAmelCase__ : Tuple = trainer.callback_metrics
# Log results
for key in sorted(_lowerCAmelCase ):
if key not in ["log", "progress_bar"]:
rank_zero_info("""{} = {}\n""".format(_lowerCAmelCase , str(metrics[key] ) ) )
def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ):
rank_zero_info("""***** Test results *****""" )
UpperCAmelCase__ : Any = trainer.callback_metrics
# Log and save results to file
UpperCAmelCase__ : Optional[Any] = os.path.join(pl_module.hparams.output_dir , """test_results.txt""" )
with open(_lowerCAmelCase , """w""" ) as writer:
for key in sorted(_lowerCAmelCase ):
if key not in ["log", "progress_bar"]:
rank_zero_info("""{} = {}\n""".format(_lowerCAmelCase , str(metrics[key] ) ) )
writer.write("""{} = {}\n""".format(_lowerCAmelCase , str(metrics[key] ) ) )
def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase ) -> None:
'''simple docstring'''
# To allow all pl args uncomment the following line
# parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument(
"""--output_dir""" , default=str(Path(__lowerCamelCase ).parent / """test_run""" / """model_checkpoints""" ) , type=__lowerCamelCase , help="""The output directory where the model predictions and checkpoints will be written.""" , )
parser.add_argument(
"""--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , )
parser.add_argument(
"""--fp16_opt_level""" , type=__lowerCamelCase , default="""O2""" , help=(
"""For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."""
"""See details at https://nvidia.github.io/apex/amp.html"""
) , )
parser.add_argument("""--n_tpu_cores""" , dest="""tpu_cores""" , type=__lowerCamelCase )
parser.add_argument("""--max_grad_norm""" , dest="""gradient_clip_val""" , default=1.0 , type=__lowerCamelCase , help="""Max gradient norm""" )
parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" )
parser.add_argument("""--do_predict""" , action="""store_true""" , help="""Whether to run predictions on the test set.""" )
parser.add_argument(
"""--gradient_accumulation_steps""" , dest="""accumulate_grad_batches""" , type=__lowerCamelCase , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , )
parser.add_argument("""--seed""" , type=__lowerCamelCase , default=42 , help="""random seed for initialization""" )
parser.add_argument(
"""--data_dir""" , default=str(Path(__lowerCamelCase ).parent / """test_run""" / """dummy-train-data""" ) , type=__lowerCamelCase , help="""The input data dir. Should contain the training files for the CoNLL-2003 NER task.""" , )
def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=[] , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase , ) -> Dict:
'''simple docstring'''
pl.seed_everything(args.seed )
# init model
UpperCAmelCase__ : Optional[int] = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=__lowerCamelCase )
# add custom checkpoints
if checkpoint_callback is None:
UpperCAmelCase__ : List[Any] = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir , prefix="""checkpoint""" , monitor="""val_loss""" , mode="""min""" , save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(__lowerCamelCase )
if logging_callback is None:
UpperCAmelCase__ : Optional[Any] = LoggingCallback()
UpperCAmelCase__ : List[str] = {}
if args.fpaa:
UpperCAmelCase__ : List[Any] = 16
if args.gpus > 1:
UpperCAmelCase__ : Dict = """auto"""
UpperCAmelCase__ : str = """ddp"""
UpperCAmelCase__ : Optional[Any] = args.accumulate_grad_batches
UpperCAmelCase__ : List[Any] = None
UpperCAmelCase__ : List[str] = """auto"""
UpperCAmelCase__ : List[str] = pl.Trainer.from_argparse_args(
__lowerCamelCase , weights_summary=__lowerCamelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=__lowerCamelCase , val_check_interval=1 , num_sanity_val_steps=2 , **__lowerCamelCase , )
if args.do_train:
trainer.fit(__lowerCamelCase )
else:
print("""RAG modeling tests with new set functions successfuly executed!""" )
return trainer
| 79 |
import unittest
from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class A :
@staticmethod
def lowerCAmelCase__ ( *_lowerCAmelCase: List[Any] , **_lowerCAmelCase: List[str] ) -> List[str]:
'''simple docstring'''
pass
@is_pipeline_test
@require_torch
@require_vision
class A ( unittest.TestCase ):
_snake_case =MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Tuple ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" )
UpperCAmelCase_ =[
{
"image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ),
"question": "How many cats are there?",
},
{
"image": "./tests/fixtures/tests_samples/COCO/000000039769.png",
"question": "How many cats are there?",
},
]
return vqa_pipeline, examples
def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: str ) -> int:
'''simple docstring'''
UpperCAmelCase_ =vqa_pipeline(_lowerCAmelCase , top_k=1 )
self.assertEqual(
_lowerCAmelCase , [
[{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}],
[{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}],
] , )
@require_torch
def lowerCAmelCase__ ( self: Tuple ) -> str:
'''simple docstring'''
UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" )
UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png"
UpperCAmelCase_ ="How many cats are there?"
UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question="How many cats are there?" , top_k=2 )
self.assertEqual(
_lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] )
UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
_lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] )
@slow
@require_torch
def lowerCAmelCase__ ( self: List[str] ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ =pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" )
UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png"
UpperCAmelCase_ ="How many cats are there?"
UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] )
UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] )
UpperCAmelCase_ =vqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(_lowerCAmelCase , decimals=4 ) , [[{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}]] * 2 , )
@require_tf
@unittest.skip("Visual question answering not implemented in TF" )
def lowerCAmelCase__ ( self: int ) -> List[str]:
'''simple docstring'''
pass
| 54 | 0 |
import inspect
import unittest
from transformers import ViTHybridConfig
from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel
from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class __UpperCamelCase :
def __init__( self : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : str=13 , _lowerCAmelCase : List[Any]=64 , _lowerCAmelCase : int=2 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Optional[Any]=32 , _lowerCAmelCase : int=5 , _lowerCAmelCase : List[Any]=4 , _lowerCAmelCase : int=37 , _lowerCAmelCase : Any="gelu" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Optional[Any]=0.1 , _lowerCAmelCase : List[Any]=10 , _lowerCAmelCase : Union[str, Any]=0.02 , _lowerCAmelCase : Tuple=[1, 16, 4, 4] , _lowerCAmelCase : str=None , ) -> str:
"""simple docstring"""
__lowercase = parent
__lowercase = batch_size
__lowercase = image_size
__lowercase = patch_size
__lowercase = num_channels
__lowercase = is_training
__lowercase = use_labels
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = type_sequence_label_size
__lowercase = initializer_range
__lowercase = scope
__lowercase = backbone_featmap_shape
# in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
# the number of patches is based on the feature map of the backbone, which by default uses an output stride
# of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size
__lowercase = (self.image_size // 32) ** 2
__lowercase = num_patches + 1
def _a ( self : int ) -> List[Any]:
"""simple docstring"""
__lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowercase = self.get_config()
return config, pixel_values, labels
def _a ( self : str ) -> List[str]:
"""simple docstring"""
__lowercase = {
"""global_padding""": """same""",
"""layer_type""": """bottleneck""",
"""depths""": [3, 4, 9],
"""out_features""": ["""stage1""", """stage2""", """stage3"""],
"""embedding_dynamic_padding""": True,
"""hidden_sizes""": [4, 8, 16, 32],
"""num_groups""": 2,
}
return ViTHybridConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=_lowerCAmelCase , )
def _a ( self : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__lowercase = ViTHybridModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
__lowercase = model(_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _a ( self : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] ) -> Any:
"""simple docstring"""
__lowercase = self.type_sequence_label_size
__lowercase = ViTHybridForImageClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
__lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _a ( self : Optional[int] ) -> Any:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
__lowercase , __lowercase , __lowercase = config_and_inputs
__lowercase = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
__snake_case :Union[str, Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else ()
__snake_case :int = (
{'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification}
if is_torch_available()
else {}
)
__snake_case :Optional[Any] = False
__snake_case :Union[str, Any] = False
__snake_case :List[Any] = False
def _a ( self : Optional[int] ) -> str:
"""simple docstring"""
__lowercase = ViTHybridModelTester(self )
__lowercase = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 )
def _a ( self : int ) -> Dict:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViT does not use inputs_embeds""" )
def _a ( self : int ) -> Optional[Any]:
"""simple docstring"""
pass
def _a ( self : str ) -> Any:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = model_class(_lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__lowercase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) )
def _a ( self : Dict ) -> List[Any]:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = model_class(_lowerCAmelCase )
__lowercase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowercase = [*signature.parameters.keys()]
__lowercase = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _lowerCAmelCase )
def _a ( self : List[Any] ) -> List[str]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def _a ( self : Tuple ) -> int:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase )
def _a ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = _config_zero_init(_lowerCAmelCase )
for model_class in self.all_model_classes:
__lowercase = model_class(config=_lowerCAmelCase )
# Skip the check for the backbone
for name, module in model.named_modules():
if module.__class__.__name__ == "ViTHybridPatchEmbeddings":
__lowercase = [F'{name}.{key}' for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , )
@slow
def _a ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = ViTHybridModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
def snake_case ( ):
'''simple docstring'''
__lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __UpperCamelCase ( unittest.TestCase ):
@cached_property
def _a ( self : Optional[int] ) -> str:
"""simple docstring"""
return (
ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def _a ( self : List[Any] ) -> Any:
"""simple docstring"""
__lowercase = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
_lowerCAmelCase )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase )
# forward pass
with torch.no_grad():
__lowercase = model(**_lowerCAmelCase )
# verify the logits
__lowercase = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _lowerCAmelCase )
__lowercase = torch.tensor([-1.9_090, -0.4_993, -0.2_389] ).to(_lowerCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) )
@slow
@require_accelerate
def _a ( self : Optional[Any] ) -> str:
"""simple docstring"""
__lowercase = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" )
__lowercase = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" )
__lowercase = prepare_img()
__lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" )
__lowercase = model(**_lowerCAmelCase )
__lowercase = outputs.logits
# model predicts one of the 1000 ImageNet classes
__lowercase = logits.argmax(-1 ).item()
self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
| 80 |
def a__ ( lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
if len(lowercase__ ) != len(lowercase__ ):
raise ValueError("The length of profit and weight must be same." )
if max_weight <= 0:
raise ValueError("max_weight must greater than zero." )
if any(p < 0 for p in profit ):
raise ValueError("Profit can not be negative." )
if any(w < 0 for w in weight ):
raise ValueError("Weight can not be negative." )
# List created to store profit gained for the 1kg in case of each weight
# respectively. Calculate and append profit/weight for each element.
UpperCAmelCase_ =[p / w for p, w in zip(lowercase__ , lowercase__ )]
# Creating a copy of the list and sorting profit/weight in ascending order
UpperCAmelCase_ =sorted(lowercase__ )
# declaring useful variables
UpperCAmelCase_ =len(lowercase__ )
UpperCAmelCase_ =0
UpperCAmelCase_ =0
UpperCAmelCase_ =0
# loop till the total weight do not reach max limit e.g. 15 kg and till i<length
while limit <= max_weight and i < length:
# flag value for encountered greatest element in sorted_profit_by_weight
UpperCAmelCase_ =sorted_profit_by_weight[length - i - 1]
UpperCAmelCase_ =profit_by_weight.index(lowercase__ )
UpperCAmelCase_ =-1
# check if the weight encountered is less than the total weight
# encountered before.
if max_weight - limit >= weight[index]:
limit += weight[index]
# Adding profit gained for the given weight 1 ===
# weight[index]/weight[index]
gain += 1 * profit[index]
else:
# Since the weight encountered is greater than limit, therefore take the
# required number of remaining kgs and calculate profit for it.
# weight remaining / weight[index]
gain += (max_weight - limit) / weight[index] * profit[index]
break
i += 1
return gain
if __name__ == "__main__":
print(
"""Input profits, weights, and then max_weight (all positive ints) separated by """
"""spaces."""
)
__lowercase : List[str] =[int(x) for x in input("""Input profits separated by spaces: """).split()]
__lowercase : Union[str, Any] =[int(x) for x in input("""Input weights separated by spaces: """).split()]
__lowercase : Tuple =int(input("""Max weight allowed: """))
# Function Call
calc_profit(profit, weight, max_weight)
| 54 | 0 |
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
_snake_case : Tuple = 4
_snake_case : Tuple = 3
class a (_lowerCAmelCase ):
"""simple docstring"""
pass
def lowerCAmelCase_ ( __lowerCamelCase ):
for shard in shards:
for i in range(__lowerCamelCase ):
yield {"i": i, "shard": shard}
def lowerCAmelCase_ ( ):
__snake_case : Optional[Any] = int(os.environ["RANK"] )
__snake_case : Any = int(os.environ["WORLD_SIZE"] )
__snake_case : List[str] = ArgumentParser()
parser.add_argument("--streaming" , type=__lowerCamelCase )
parser.add_argument("--local_rank" , type=__lowerCamelCase )
parser.add_argument("--num_workers" , type=__lowerCamelCase , default=0 )
__snake_case : Optional[Any] = parser.parse_args()
__snake_case : List[Any] = args.streaming
__snake_case : List[str] = args.num_workers
__snake_case : int = {"shards": [F'shard_{shard_idx}' for shard_idx in range(__lowerCamelCase )]}
__snake_case : List[Any] = IterableDataset.from_generator(__lowerCamelCase , gen_kwargs=__lowerCamelCase )
if not streaming:
__snake_case : int = Dataset.from_list(list(__lowerCamelCase ) )
__snake_case : int = split_dataset_by_node(__lowerCamelCase , rank=__lowerCamelCase , world_size=__lowerCamelCase )
__snake_case : Optional[int] = torch.utils.data.DataLoader(__lowerCamelCase , num_workers=__lowerCamelCase )
__snake_case : Optional[Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD
__snake_case : int = full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
__snake_case : int = sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(F'local_size {local_size} != expected_local_size {expected_local_size}' )
if __name__ == "__main__":
main()
| 81 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
__lowercase : Dict ={
"""configuration_blip""": [
"""BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BlipConfig""",
"""BlipTextConfig""",
"""BlipVisionConfig""",
],
"""processing_blip""": ["""BlipProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase : Any =["""BlipImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase : List[Any] =[
"""BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BlipModel""",
"""BlipPreTrainedModel""",
"""BlipForConditionalGeneration""",
"""BlipForQuestionAnswering""",
"""BlipVisionModel""",
"""BlipTextModel""",
"""BlipForImageTextRetrieval""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase : List[Any] =[
"""TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBlipModel""",
"""TFBlipPreTrainedModel""",
"""TFBlipForConditionalGeneration""",
"""TFBlipForQuestionAnswering""",
"""TFBlipVisionModel""",
"""TFBlipTextModel""",
"""TFBlipForImageTextRetrieval""",
]
if TYPE_CHECKING:
from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig
from .processing_blip import BlipProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_blip import BlipImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip import (
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
BlipModel,
BlipPreTrainedModel,
BlipTextModel,
BlipVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blip import (
TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBlipForConditionalGeneration,
TFBlipForImageTextRetrieval,
TFBlipForQuestionAnswering,
TFBlipModel,
TFBlipPreTrainedModel,
TFBlipTextModel,
TFBlipVisionModel,
)
else:
import sys
__lowercase : Union[str, Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 54 | 0 |
"""simple docstring"""
import inspect
import jax
import jax.lax as lax
import jax.numpy as jnp
from ..utils import add_start_docstrings
from ..utils.logging import get_logger
lowerCamelCase = get_logger(__name__)
lowerCamelCase = r"""
Args:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam
search or log softmax for each vocabulary token when using beam search
kwargs (`Dict[str, Any]`, *optional*):
Additional logits processor specific kwargs.
Return:
`jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.
"""
class lowercase__ :
'''simple docstring'''
@add_start_docstrings(_UpperCAmelCase )
def __call__( self : str , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray ) -> jnp.ndarray:
'''simple docstring'''
raise NotImplementedError(
F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" )
class lowercase__ :
'''simple docstring'''
@add_start_docstrings(_UpperCAmelCase )
def __call__( self : Union[str, Any] , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray ) -> jnp.ndarray:
'''simple docstring'''
raise NotImplementedError(
F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" )
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@add_start_docstrings(_UpperCAmelCase )
def __call__( self : Any , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : int , **_UpperCAmelCase : List[str] ) -> jnp.ndarray:
'''simple docstring'''
for processor in self:
UpperCAmelCase_ = inspect.signature(processor.__call__ ).parameters
if len(_UpperCAmelCase ) > 3:
if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ):
raise ValueError(
F"""Make sure that all the required parameters: {list(function_args.keys() )} for """
F"""{processor.__class__} are passed to the logits processor.""" )
UpperCAmelCase_ = processor(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase )
else:
UpperCAmelCase_ = processor(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return scores
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Optional[int] , _UpperCAmelCase : float ) -> List[Any]:
'''simple docstring'''
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not (temperature > 0):
raise ValueError(F"""`temperature` has to be a strictly positive float, but is {temperature}""" )
UpperCAmelCase_ = temperature
def __call__( self : Dict , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : int ) -> jnp.ndarray:
'''simple docstring'''
UpperCAmelCase_ = scores / self.temperature
return scores
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : float , _UpperCAmelCase : float = -float("Inf" ) , _UpperCAmelCase : int = 1 ) -> Optional[int]:
'''simple docstring'''
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or (top_p < 0 or top_p > 1.0):
raise ValueError(F"""`top_p` has to be a float > 0 and < 1, but is {top_p}""" )
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or (min_tokens_to_keep < 1):
raise ValueError(F"""`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}""" )
UpperCAmelCase_ = top_p
UpperCAmelCase_ = filter_value
UpperCAmelCase_ = min_tokens_to_keep
def __call__( self : Optional[int] , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : int ) -> jnp.ndarray:
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ = lax.top_k(_UpperCAmelCase , scores.shape[-1] )
UpperCAmelCase_ = jnp.full_like(_UpperCAmelCase , self.filter_value )
UpperCAmelCase_ = jax.nn.softmax(_UpperCAmelCase , axis=-1 ).cumsum(axis=-1 )
UpperCAmelCase_ = cumulative_probs < self.top_p
# include the token that is higher than top_p as well
UpperCAmelCase_ = jnp.roll(_UpperCAmelCase , 1 )
score_mask |= score_mask.at[:, 0].set(_UpperCAmelCase )
# min tokens to keep
UpperCAmelCase_ = score_mask.at[:, : self.min_tokens_to_keep].set(_UpperCAmelCase )
UpperCAmelCase_ = jnp.where(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase_ = jax.lax.sort_key_val(_UpperCAmelCase , _UpperCAmelCase )[-1]
return next_scores
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : float = -float("Inf" ) , _UpperCAmelCase : int = 1 ) -> Optional[int]:
'''simple docstring'''
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or top_k <= 0:
raise ValueError(F"""`top_k` has to be a strictly positive integer, but is {top_k}""" )
UpperCAmelCase_ = max(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase_ = filter_value
def __call__( self : Union[str, Any] , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : int ) -> jnp.ndarray:
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ = scores.shape
UpperCAmelCase_ = jnp.full(batch_size * vocab_size , self.filter_value )
UpperCAmelCase_ = min(self.top_k , scores.shape[-1] ) # Safety check
UpperCAmelCase_ , UpperCAmelCase_ = lax.top_k(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase_ = jnp.broadcast_to((jnp.arange(_UpperCAmelCase ) * vocab_size)[:, None] , (batch_size, topk) ).flatten()
UpperCAmelCase_ = topk_scores.flatten()
UpperCAmelCase_ = topk_indices.flatten() + shift
UpperCAmelCase_ = next_scores_flat.at[topk_indices_flat].set(_UpperCAmelCase )
UpperCAmelCase_ = next_scores_flat.reshape(_UpperCAmelCase , _UpperCAmelCase )
return next_scores
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : str , _UpperCAmelCase : int ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ = bos_token_id
def __call__( self : Optional[Any] , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : int ) -> jnp.ndarray:
'''simple docstring'''
UpperCAmelCase_ = jnp.full(scores.shape , -float("inf" ) )
UpperCAmelCase_ = 1 - jnp.bool_(cur_len - 1 )
UpperCAmelCase_ = jnp.where(_UpperCAmelCase , new_scores.at[:, self.bos_token_id].set(0 ) , _UpperCAmelCase )
return scores
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = max_length
UpperCAmelCase_ = eos_token_id
def __call__( self : Optional[int] , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : int ) -> jnp.ndarray:
'''simple docstring'''
UpperCAmelCase_ = jnp.full(scores.shape , -float("inf" ) )
UpperCAmelCase_ = 1 - jnp.bool_(cur_len - self.max_length + 1 )
UpperCAmelCase_ = jnp.where(_UpperCAmelCase , new_scores.at[:, self.eos_token_id].set(0 ) , _UpperCAmelCase )
return scores
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[Any]:
'''simple docstring'''
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or min_length < 0:
raise ValueError(F"""`min_length` has to be a positive integer, but is {min_length}""" )
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or eos_token_id < 0:
raise ValueError(F"""`eos_token_id` has to be a positive integer, but is {eos_token_id}""" )
UpperCAmelCase_ = min_length
UpperCAmelCase_ = eos_token_id
def __call__( self : List[str] , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : int ) -> jnp.ndarray:
'''simple docstring'''
UpperCAmelCase_ = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 )
UpperCAmelCase_ = jnp.where(_UpperCAmelCase , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , _UpperCAmelCase )
return scores
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = list(_UpperCAmelCase )
UpperCAmelCase_ = begin_index
def __call__( self : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> Any:
'''simple docstring'''
UpperCAmelCase_ = 1 - jnp.bool_(cur_len - self.begin_index )
UpperCAmelCase_ = jnp.where(_UpperCAmelCase , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , _UpperCAmelCase )
return scores
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : List[str] , _UpperCAmelCase : list ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ = list(_UpperCAmelCase )
def __call__( self : Dict , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : int ) -> jnp.ndarray:
'''simple docstring'''
UpperCAmelCase_ = scores.at[..., self.suppress_tokens].set(-float("inf" ) )
return scores
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Optional[int] , _UpperCAmelCase : str ) -> Any:
'''simple docstring'''
UpperCAmelCase_ = dict(_UpperCAmelCase )
# Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the
# index of the array corresponds to the index of the token to be forced, for XLA compatibility.
# Indexes without forced tokens will have a negative value.
UpperCAmelCase_ = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1
for index, token in force_token_map.items():
if token is not None:
UpperCAmelCase_ = force_token_array.at[index].set(_UpperCAmelCase )
UpperCAmelCase_ = jnp.intaa(_UpperCAmelCase )
def __call__( self : str , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : int ) -> jnp.ndarray:
'''simple docstring'''
def _force_token(_UpperCAmelCase : Optional[Any] ):
UpperCAmelCase_ = scores.shape[0]
UpperCAmelCase_ = self.force_token_array[generation_idx]
UpperCAmelCase_ = jnp.ones_like(_UpperCAmelCase , dtype=scores.dtype ) * -float("inf" )
UpperCAmelCase_ = jnp.zeros((batch_size, 1) , dtype=scores.dtype )
UpperCAmelCase_ = lax.dynamic_update_slice(_UpperCAmelCase , _UpperCAmelCase , (0, current_token) )
return new_scores
UpperCAmelCase_ = lax.cond(
cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond(
self.force_token_array[cur_len] >= 0 , lambda: _force_token(_UpperCAmelCase ) , lambda: scores , ) , )
return scores
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = generate_config.eos_token_id
UpperCAmelCase_ = generate_config.no_timestamps_token_id
UpperCAmelCase_ = generate_config.no_timestamps_token_id + 1
UpperCAmelCase_ = decoder_input_length + 1
if generate_config.is_multilingual:
# room for language token and task token
self.begin_index += 2
if hasattr(_UpperCAmelCase , "max_initial_timestamp_index" ):
UpperCAmelCase_ = generate_config.max_initial_timestamp_index
else:
UpperCAmelCase_ = model_config.vocab_size
if self.max_initial_timestamp_index is None:
UpperCAmelCase_ = model_config.vocab_size
def __call__( self : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) )
def handle_pairs(_UpperCAmelCase : int , _UpperCAmelCase : int ):
UpperCAmelCase_ = jnp.where((cur_len - self.begin_index) >= 1 , _UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase_ = jnp.where(
input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , _UpperCAmelCase , )
UpperCAmelCase_ = jnp.where((cur_len - self.begin_index) < 2 , _UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase_ = jnp.where(
input_ids_k[cur_len - 2] >= self.timestamp_begin , _UpperCAmelCase , _UpperCAmelCase , )
return jnp.where(
_UpperCAmelCase , jnp.where(
penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , _UpperCAmelCase , )
UpperCAmelCase_ = jax.vmap(_UpperCAmelCase )(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase_ = jnp.where(cur_len == self.begin_index , _UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase_ = jnp.where(
self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , _UpperCAmelCase , )
UpperCAmelCase_ = self.timestamp_begin + self.max_initial_timestamp_index
UpperCAmelCase_ = jnp.where(
_UpperCAmelCase , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , _UpperCAmelCase , )
# if sum of probability over timestamps is above any other token, sample timestamp
UpperCAmelCase_ = jax.nn.log_softmax(_UpperCAmelCase , axis=-1 )
def handle_cumulative_probs(_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] ):
UpperCAmelCase_ = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 )
UpperCAmelCase_ = jnp.max(logprobs_k[: self.timestamp_begin] )
return jnp.where(
timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , _UpperCAmelCase , )
UpperCAmelCase_ = jax.vmap(_UpperCAmelCase )(_UpperCAmelCase , _UpperCAmelCase )
return scores
| 82 |
import fire
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer
from utils import SeqaSeqDataset, pickle_save
def a__ ( lowercase__ , lowercase__ , lowercase__=1_0_2_4 , lowercase__=1_0_2_4 , lowercase__=False , **lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =AutoTokenizer.from_pretrained(lowercase__ )
UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="train" , **lowercase__ )
UpperCAmelCase_ =tok.pad_token_id
def get_lens(lowercase__ ):
UpperCAmelCase_ =tqdm(
DataLoader(lowercase__ , batch_size=5_1_2 , num_workers=8 , shuffle=lowercase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , )
UpperCAmelCase_ =[]
for batch in dl:
UpperCAmelCase_ =batch["input_ids"].ne(lowercase__ ).sum(1 ).tolist()
UpperCAmelCase_ =batch["labels"].ne(lowercase__ ).sum(1 ).tolist()
if consider_target:
for src, tgt in zip(lowercase__ , lowercase__ ):
max_lens.append(max(lowercase__ , lowercase__ ) )
else:
max_lens.extend(lowercase__ )
return max_lens
UpperCAmelCase_ =get_lens(lowercase__ )
UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="val" , **lowercase__ )
UpperCAmelCase_ =get_lens(lowercase__ )
pickle_save(lowercase__ , train_ds.len_file )
pickle_save(lowercase__ , val_ds.len_file )
if __name__ == "__main__":
fire.Fire(save_len_file)
| 54 | 0 |
"""simple docstring"""
from pathlib import Path
import fire
def snake_case_ ( A_ : str, A_ : str, A_ : int ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] = Path(A_ )
_lowerCamelCase : int = Path(A_ )
dest_dir.mkdir(exist_ok=A_ )
for path in src_dir.iterdir():
_lowerCamelCase : Optional[Any] = [x.rstrip() for x in list(path.open().readlines() )][:n]
_lowerCamelCase : Any = dest_dir.joinpath(path.name )
print(A_ )
dest_path.open('''w''' ).write('''\n'''.join(A_ ) )
if __name__ == "__main__":
fire.Fire(minify)
| 83 |
from __future__ import annotations
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTForImageClassification, TFViTModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class A :
def __init__( self: Any , _lowerCAmelCase: str , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: List[str]=30 , _lowerCAmelCase: List[Any]=2 , _lowerCAmelCase: List[str]=3 , _lowerCAmelCase: Dict=True , _lowerCAmelCase: int=True , _lowerCAmelCase: Tuple=32 , _lowerCAmelCase: str=2 , _lowerCAmelCase: Dict=4 , _lowerCAmelCase: Dict=37 , _lowerCAmelCase: Optional[Any]="gelu" , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: Union[str, Any]=10 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=3 , _lowerCAmelCase: Optional[int]=None , ) -> Any:
'''simple docstring'''
UpperCAmelCase_ =parent
UpperCAmelCase_ =batch_size
UpperCAmelCase_ =image_size
UpperCAmelCase_ =patch_size
UpperCAmelCase_ =num_channels
UpperCAmelCase_ =is_training
UpperCAmelCase_ =use_labels
UpperCAmelCase_ =hidden_size
UpperCAmelCase_ =num_hidden_layers
UpperCAmelCase_ =num_attention_heads
UpperCAmelCase_ =intermediate_size
UpperCAmelCase_ =hidden_act
UpperCAmelCase_ =hidden_dropout_prob
UpperCAmelCase_ =attention_probs_dropout_prob
UpperCAmelCase_ =type_sequence_label_size
UpperCAmelCase_ =initializer_range
UpperCAmelCase_ =scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCAmelCase_ =(image_size // patch_size) ** 2
UpperCAmelCase_ =num_patches + 1
def lowerCAmelCase__ ( self: Any ) -> int:
'''simple docstring'''
UpperCAmelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ =None
if self.use_labels:
UpperCAmelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ =self.get_config()
return config, pixel_values, labels
def lowerCAmelCase__ ( self: List[Any] ) -> Dict:
'''simple docstring'''
return ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , )
def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Any , _lowerCAmelCase: List[str] ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ =TFViTModel(config=_lowerCAmelCase )
UpperCAmelCase_ =model(_lowerCAmelCase , training=_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# Test with an image with different size than the one specified in config.
UpperCAmelCase_ =self.image_size // 2
UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size]
UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase )
UpperCAmelCase_ =(image_size // self.patch_size) ** 2 + 1
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) )
def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[Any] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ =self.type_sequence_label_size
UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase )
UpperCAmelCase_ =model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# Test with an image with different size than the one specified in config.
UpperCAmelCase_ =self.image_size // 2
UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size]
UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCAmelCase_ =1
UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase )
UpperCAmelCase_ =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase_ =model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowerCAmelCase__ ( self: Any ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ =self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs
UpperCAmelCase_ ={"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class A ( __lowercase , __lowercase , unittest.TestCase ):
_snake_case =(TFViTModel, TFViTForImageClassification) if is_tf_available() else ()
_snake_case =(
{'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification}
if is_tf_available()
else {}
)
_snake_case =False
_snake_case =False
_snake_case =False
def lowerCAmelCase__ ( self: int ) -> int:
'''simple docstring'''
UpperCAmelCase_ =TFViTModelTester(self )
UpperCAmelCase_ =ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 )
def lowerCAmelCase__ ( self: Optional[Any] ) -> str:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="ViT does not use inputs_embeds" )
def lowerCAmelCase__ ( self: Dict ) -> Tuple:
'''simple docstring'''
pass
@unittest.skip(reason="ViT does not use inputs_embeds" )
def lowerCAmelCase__ ( self: int ) -> Optional[Any]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: List[Any] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ =model_class(_lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
UpperCAmelCase_ =model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_lowerCAmelCase , tf.keras.layers.Layer ) )
def lowerCAmelCase__ ( self: List[str] ) -> int:
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ =model_class(_lowerCAmelCase )
UpperCAmelCase_ =inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ =[*signature.parameters.keys()]
UpperCAmelCase_ =["pixel_values"]
self.assertListEqual(arg_names[:1] , _lowerCAmelCase )
def lowerCAmelCase__ ( self: int ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def lowerCAmelCase__ ( self: List[Any] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase )
@slow
def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ =TFViTModel.from_pretrained("google/vit-base-patch16-224" )
self.assertIsNotNone(_lowerCAmelCase )
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class A ( unittest.TestCase ):
@cached_property
def lowerCAmelCase__ ( self: Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None
@slow
def lowerCAmelCase__ ( self: Dict ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ =TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" )
UpperCAmelCase_ =self.default_image_processor
UpperCAmelCase_ =prepare_img()
UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="tf" )
# forward pass
UpperCAmelCase_ =model(**_lowerCAmelCase )
# verify the logits
UpperCAmelCase_ =tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , _lowerCAmelCase )
UpperCAmelCase_ =tf.constant([-0.27_44, 0.82_15, -0.08_36] )
tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 )
| 54 | 0 |
import logging
import sys
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union
import librosa
import torch
from datasets import DatasetDict, load_dataset
from packaging import version
from torch import nn
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaForPreTraining,
is_apex_available,
trainer_utils,
)
from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices
if is_apex_available():
from apex import amp
if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''):
UpperCAmelCase = True
from torch.cuda.amp import autocast
UpperCAmelCase = logging.getLogger(__name__)
@dataclass
class A_ :
'''simple docstring'''
_UpperCamelCase : str = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
_UpperCamelCase : Optional[str] = field(
default=__lowerCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
_UpperCamelCase : Optional[bool] = field(
default=__lowerCamelCase , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} )
_UpperCamelCase : Optional[bool] = field(
default=__lowerCamelCase , metadata={"""help""": """Whether to log verbose messages or not."""} , )
_UpperCamelCase : Optional[float] = field(
default=2.0 , metadata={"""help""": """Maximum temperature for gumbel softmax."""} )
_UpperCamelCase : Optional[float] = field(
default=0.5 , metadata={"""help""": """Minimum temperature for gumbel softmax."""} )
_UpperCamelCase : Optional[float] = field(
default=0.999995 , metadata={"""help""": """Decay of gumbel temperature during training."""} )
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , )
lowercase = logging.WARNING
if model_args.verbose_logging:
lowercase = logging.DEBUG
elif trainer_utils.is_main_process(training_args.local_rank ):
lowercase = logging.INFO
logger.setLevel(__SCREAMING_SNAKE_CASE )
@dataclass
class A_ :
'''simple docstring'''
_UpperCamelCase : str = field(
default=__lowerCamelCase , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} )
_UpperCamelCase : Optional[str] = field(
default=__lowerCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} )
_UpperCamelCase : Optional[str] = field(
default="""train""" , metadata={
"""help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'"""
} , )
_UpperCamelCase : Optional[str] = field(
default="""validation""" , metadata={
"""help""": (
"""The name of the validation data set split to use (via the datasets library). Defaults to 'validation'"""
)
} , )
_UpperCamelCase : Optional[str] = field(
default="""file""" , metadata={"""help""": """Column in the dataset that contains speech file path. Defaults to 'file'"""} , )
_UpperCamelCase : bool = field(
default=__lowerCamelCase , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} )
_UpperCamelCase : Optional[int] = field(
default=1 , metadata={
"""help""": """The percentage of the train set used as validation set in case there's no validation split"""
} , )
_UpperCamelCase : Optional[int] = field(
default=__lowerCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , )
_UpperCamelCase : Optional[float] = field(
default=20.0 , metadata={"""help""": """Filter audio files that are longer than `max_duration_in_seconds` seconds"""} )
@dataclass
class A_ :
'''simple docstring'''
_UpperCamelCase : WavaVecaForPreTraining
_UpperCamelCase : WavaVecaFeatureExtractor
_UpperCamelCase : Union[bool, str] = "longest"
_UpperCamelCase : Optional[int] = None
_UpperCamelCase : Optional[int] = None
def __call__( self , snake_case ):
# reformat list to dict and set to pytorch format
lowercase = self.feature_extractor.pad(
snake_case , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , )
lowercase = self.model._get_feat_extract_output_lengths(batch['input_values'].shape[-1] )
lowercase = batch['input_values'].shape[0]
# make sure that no loss is computed on padded inputs
if batch["attention_mask"] is not None:
# compute real output lengths according to convolution formula
lowercase = self.model._get_feat_extract_output_lengths(batch['attention_mask'].sum(-1 ) ).to(
torch.long )
lowercase = torch.zeros(
(batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch['input_values'].device )
# these two operations makes sure that all values
# before the output lengths indices are attended to
lowercase = 1
lowercase = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool()
# sample randomly masked indices
lowercase = _compute_mask_indices(
(batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=snake_case , min_masks=2 , )
return batch
class A_ ( __lowerCamelCase ):
'''simple docstring'''
def __init__( self , *snake_case , snake_case=1 , snake_case=0 , snake_case=1.0 , **snake_case ):
super().__init__(*snake_case , **snake_case )
lowercase = 0
lowercase = max_gumbel_temp
lowercase = min_gumbel_temp
lowercase = gumbel_temp_decay
def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ):
model.train()
lowercase = self._prepare_inputs(snake_case )
if self.use_amp:
with autocast():
lowercase = self.compute_loss(snake_case , snake_case )
else:
lowercase = self.compute_loss(snake_case , snake_case )
if self.args.n_gpu > 1 or self.deepspeed:
if model.module.config.ctc_loss_reduction == "mean":
lowercase = loss.mean()
elif model.module.config.ctc_loss_reduction == "sum":
lowercase = loss.sum() / (inputs['mask_time_indices']).sum()
else:
raise ValueError(F'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' )
if self.args.gradient_accumulation_steps > 1:
lowercase = loss / self.args.gradient_accumulation_steps
if self.use_amp:
self.scaler.scale(snake_case ).backward()
elif self.use_apex:
with amp.scale_loss(snake_case , self.optimizer ) as scaled_loss:
scaled_loss.backward()
elif self.deepspeed:
self.deepspeed.backward(snake_case )
else:
loss.backward()
self.num_update_step += 1
# make sure gumbel softmax temperature is decayed
if self.args.n_gpu > 1 or self.deepspeed:
model.module.set_gumbel_temperature(
max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) )
else:
model.set_gumbel_temperature(
max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) )
return loss.detach()
def UpperCAmelCase_ ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
lowercase , lowercase , lowercase = parser.parse_args_into_dataclasses()
configure_logger(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Downloading and loading a dataset from the hub.
lowercase = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir )
if "validation" not in datasets.keys():
# make sure only "validation" and "train" keys remain"
lowercase = DatasetDict()
lowercase = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}[:{data_args.validation_split_percentage}%]''' , cache_dir=model_args.cache_dir , )
lowercase = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}[{data_args.validation_split_percentage}%:]''' , cache_dir=model_args.cache_dir , )
else:
# make sure only "validation" and "train" keys remain"
lowercase = DatasetDict()
lowercase = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split='validation' , cache_dir=model_args.cache_dir , )
lowercase = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}''' , cache_dir=model_args.cache_dir , )
# only normalized-inputs-training is supported
lowercase = WavaVecaFeatureExtractor.from_pretrained(
model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=__SCREAMING_SNAKE_CASE )
def prepare_dataset(__SCREAMING_SNAKE_CASE ):
# check that all files have the correct sampling rate
lowercase , lowercase = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate )
return batch
# load audio files into numpy arrays
lowercase = datasets.map(
__SCREAMING_SNAKE_CASE , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['train'].column_names )
# filter audio files that are too long
lowercase = vectorized_datasets.filter(
lambda __SCREAMING_SNAKE_CASE : len(data['speech'] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) )
def normalize(__SCREAMING_SNAKE_CASE ):
return feature_extractor(batch['speech'] , sampling_rate=feature_extractor.sampling_rate )
# normalize and transform to `BatchFeatures`
lowercase = vectorized_datasets.map(
__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['train'].column_names , )
# pretraining is only supported for "newer" stable layer norm architecture
# apply_spec_augment has to be True, mask_feature_prob has to be 0.0
lowercase = WavaVecaConfig.from_pretrained(
model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , )
if not config.do_stable_layer_norm or config.feat_extract_norm != "layer":
raise ValueError(
'PreTraining is only supported for ``config.do_stable_layer_norm=True`` and'
' ``config.feat_extract_norm=\'layer\'' )
lowercase = WavaVecaForPreTraining(__SCREAMING_SNAKE_CASE )
lowercase = DataCollatorForWavaVecaPretraining(model=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE )
lowercase = WavaVecaPreTrainer(
model=__SCREAMING_SNAKE_CASE , data_collator=__SCREAMING_SNAKE_CASE , args=__SCREAMING_SNAKE_CASE , train_dataset=vectorized_datasets['train'] , eval_dataset=vectorized_datasets['validation'] , tokenizer=__SCREAMING_SNAKE_CASE , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , )
trainer.train()
if __name__ == "__main__":
main()
| 84 |
from __future__ import annotations
def a__ ( lowercase__ , lowercase__ ):
'''simple docstring'''
if len(lowercase__ ) == 0:
return False
UpperCAmelCase_ =len(lowercase__ ) // 2
if a_list[midpoint] == item:
return True
if item < a_list[midpoint]:
return binary_search(a_list[:midpoint] , lowercase__ )
else:
return binary_search(a_list[midpoint + 1 :] , lowercase__ )
if __name__ == "__main__":
__lowercase : Tuple =input("""Enter numbers separated by comma:\n""").strip()
__lowercase : Optional[Any] =[int(item.strip()) for item in user_input.split(""",""")]
__lowercase : List[Any] =int(input("""Enter the number to be found in the list:\n""").strip())
__lowercase : Optional[Any] ="""""" if binary_search(sequence, target) else """not """
print(f"""{target} was {not_str}found in {sequence}""")
| 54 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {
"configuration_nllb_moe": [
"NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP",
"NllbMoeConfig",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : str = [
"NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST",
"NllbMoeForConditionalGeneration",
"NllbMoeModel",
"NllbMoePreTrainedModel",
"NllbMoeTop2Router",
"NllbMoeSparseMLP",
]
if TYPE_CHECKING:
from .configuration_nllb_moe import (
NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP,
NllbMoeConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nllb_moe import (
NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,
NllbMoeForConditionalGeneration,
NllbMoeModel,
NllbMoePreTrainedModel,
NllbMoeSparseMLP,
NllbMoeTopaRouter,
)
else:
import sys
SCREAMING_SNAKE_CASE__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 85 |
import os
from itertools import chain
from random import randrange, shuffle
import pytest
from .sola import PokerHand
__lowercase : Any =(
"""4S 3H 2C 7S 5H""",
"""9D 8H 2C 6S 7H""",
"""2D 6D 9D TH 7D""",
"""TC 8C 2S JH 6C""",
"""JH 8S TH AH QH""",
"""TS KS 5S 9S AC""",
"""KD 6S 9D TH AD""",
"""KS 8D 4D 9S 4S""", # pair
"""8C 4S KH JS 4D""", # pair
"""QH 8H KD JH 8S""", # pair
"""KC 4H KS 2H 8D""", # pair
"""KD 4S KC 3H 8S""", # pair
"""AH 8S AS KC JH""", # pair
"""3H 4C 4H 3S 2H""", # 2 pairs
"""5S 5D 2C KH KH""", # 2 pairs
"""3C KH 5D 5S KH""", # 2 pairs
"""AS 3C KH AD KH""", # 2 pairs
"""7C 7S 3S 7H 5S""", # 3 of a kind
"""7C 7S KH 2H 7H""", # 3 of a kind
"""AC KH QH AH AS""", # 3 of a kind
"""2H 4D 3C AS 5S""", # straight (low ace)
"""3C 5C 4C 2C 6H""", # straight
"""6S 8S 7S 5H 9H""", # straight
"""JS QS 9H TS KH""", # straight
"""QC KH TS JS AH""", # straight (high ace)
"""8C 9C 5C 3C TC""", # flush
"""3S 8S 9S 5S KS""", # flush
"""4C 5C 9C 8C KC""", # flush
"""JH 8H AH KH QH""", # flush
"""3D 2H 3H 2C 2D""", # full house
"""2H 2C 3S 3H 3D""", # full house
"""KH KC 3S 3H 3D""", # full house
"""JC 6H JS JD JH""", # 4 of a kind
"""JC 7H JS JD JH""", # 4 of a kind
"""JC KH JS JD JH""", # 4 of a kind
"""2S AS 4S 5S 3S""", # straight flush (low ace)
"""2D 6D 3D 4D 5D""", # straight flush
"""5C 6C 3C 7C 4C""", # straight flush
"""JH 9H TH KH QH""", # straight flush
"""JH AH TH KH QH""", # royal flush (high ace straight flush)
)
__lowercase : Union[str, Any] =(
("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""),
("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""),
("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""),
("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""),
("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""),
("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""),
("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""),
("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""),
("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""),
("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""),
("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""),
("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""),
("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""),
("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""),
("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""),
("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""),
("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""),
("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""),
("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""),
("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""),
("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""),
("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""),
("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""),
("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""),
("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""),
("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""),
("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""),
("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""),
("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""),
("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""),
("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""),
("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""),
("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""),
)
__lowercase : List[str] =(
("""2H 3H 4H 5H 6H""", True),
("""AS AH 2H AD AC""", False),
("""2H 3H 5H 6H 7H""", True),
("""KS AS TS QS JS""", True),
("""8H 9H QS JS TH""", False),
("""AS 3S 4S 8S 2S""", True),
)
__lowercase : str =(
("""2H 3H 4H 5H 6H""", True),
("""AS AH 2H AD AC""", False),
("""2H 3H 5H 6H 7H""", False),
("""KS AS TS QS JS""", True),
("""8H 9H QS JS TH""", True),
)
__lowercase : Union[str, Any] =(
("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]),
("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]),
("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]),
("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]),
)
__lowercase : str =(
("""JH AH TH KH QH""", 0),
("""JH 9H TH KH QH""", 0),
("""JC KH JS JD JH""", 7),
("""KH KC 3S 3H 3D""", 6),
("""8C 9C 5C 3C TC""", 0),
("""JS QS 9H TS KH""", 0),
("""7C 7S KH 2H 7H""", 3),
("""3C KH 5D 5S KH""", 2),
("""QH 8H KD JH 8S""", 1),
("""2D 6D 9D TH 7D""", 0),
)
__lowercase : int =(
("""JH AH TH KH QH""", 23),
("""JH 9H TH KH QH""", 22),
("""JC KH JS JD JH""", 21),
("""KH KC 3S 3H 3D""", 20),
("""8C 9C 5C 3C TC""", 19),
("""JS QS 9H TS KH""", 18),
("""7C 7S KH 2H 7H""", 17),
("""3C KH 5D 5S KH""", 16),
("""QH 8H KD JH 8S""", 15),
("""2D 6D 9D TH 7D""", 14),
)
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ =randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) )
UpperCAmelCase_ =["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)]
UpperCAmelCase_ , UpperCAmelCase_ =SORTED_HANDS[play], SORTED_HANDS[oppo]
return hand, other, expected
def a__ ( lowercase__ = 1_0_0 ):
'''simple docstring'''
return (generate_random_hand() for _ in range(lowercase__ ))
@pytest.mark.parametrize("hand, expected" , lowercase__ )
def a__ ( lowercase__ , lowercase__ ):
'''simple docstring'''
assert PokerHand(lowercase__ )._is_flush() == expected
@pytest.mark.parametrize("hand, expected" , lowercase__ )
def a__ ( lowercase__ , lowercase__ ):
'''simple docstring'''
assert PokerHand(lowercase__ )._is_straight() == expected
@pytest.mark.parametrize("hand, expected, card_values" , lowercase__ )
def a__ ( lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =PokerHand(lowercase__ )
assert player._is_five_high_straight() == expected
assert player._card_values == card_values
@pytest.mark.parametrize("hand, expected" , lowercase__ )
def a__ ( lowercase__ , lowercase__ ):
'''simple docstring'''
assert PokerHand(lowercase__ )._is_same_kind() == expected
@pytest.mark.parametrize("hand, expected" , lowercase__ )
def a__ ( lowercase__ , lowercase__ ):
'''simple docstring'''
assert PokerHand(lowercase__ )._hand_type == expected
@pytest.mark.parametrize("hand, other, expected" , lowercase__ )
def a__ ( lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected
@pytest.mark.parametrize("hand, other, expected" , generate_random_hands() )
def a__ ( lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =[PokerHand(lowercase__ ) for hand in SORTED_HANDS]
UpperCAmelCase_ =poker_hands.copy()
shuffle(lowercase__ )
UpperCAmelCase_ =chain(sorted(lowercase__ ) )
for index, hand in enumerate(lowercase__ ):
assert hand == poker_hands[index]
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =[PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )]
pokerhands.sort(reverse=lowercase__ )
assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C"
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =PokerHand("2C 4S AS 3D 5C" )
UpperCAmelCase_ =True
UpperCAmelCase_ =[5, 4, 3, 2, 1_4]
for _ in range(1_0 ):
assert pokerhand._is_five_high_straight() == expected
assert pokerhand._card_values == expected_card_values
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =0
UpperCAmelCase_ =os.path.abspath(os.path.dirname(lowercase__ ) )
UpperCAmelCase_ =os.path.join(lowercase__ , "poker_hands.txt" )
with open(lowercase__ ) as file_hand:
for line in file_hand:
UpperCAmelCase_ =line[:1_4].strip()
UpperCAmelCase_ =line[1_5:].strip()
UpperCAmelCase_ , UpperCAmelCase_ =PokerHand(lowercase__ ), PokerHand(lowercase__ )
UpperCAmelCase_ =player.compare_with(lowercase__ )
if output == "Win":
answer += 1
assert answer == 3_7_6
| 54 | 0 |
__a :Tuple = '0.21.0'
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich
| 86 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__lowercase : int =logging.get_logger(__name__)
class A ( __lowercase ):
_snake_case =['''pixel_values''']
def __init__( self: List[Any] , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = PILImageResampling.BILINEAR , _lowerCAmelCase: bool = True , _lowerCAmelCase: Union[int, float] = 1 / 255 , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , **_lowerCAmelCase: Optional[int] , ) -> None:
'''simple docstring'''
super().__init__(**_lowerCAmelCase )
UpperCAmelCase_ =size if size is not None else {"shortest_edge": 384}
UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
UpperCAmelCase_ =do_resize
UpperCAmelCase_ =size
# Default value set here for backwards compatibility where the value in config is None
UpperCAmelCase_ =crop_pct if crop_pct is not None else 224 / 256
UpperCAmelCase_ =resample
UpperCAmelCase_ =do_rescale
UpperCAmelCase_ =rescale_factor
UpperCAmelCase_ =do_normalize
UpperCAmelCase_ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase_ =image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: float , _lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Any , ) -> np.ndarray:
'''simple docstring'''
UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
if "shortest_edge" not in size:
raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' )
UpperCAmelCase_ =size["shortest_edge"]
if shortest_edge < 384:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
UpperCAmelCase_ =int(shortest_edge / crop_pct )
UpperCAmelCase_ =get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase )
UpperCAmelCase_ =resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=_lowerCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_lowerCAmelCase , **_lowerCAmelCase )
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
_lowerCAmelCase , size=(shortest_edge, shortest_edge) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[int, float] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: str , ) -> Optional[Any]:
'''simple docstring'''
return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Dict , ) -> np.ndarray:
'''simple docstring'''
return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: ImageInput , _lowerCAmelCase: bool = None , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: float = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: ChannelDimension = ChannelDimension.FIRST , **_lowerCAmelCase: Optional[Any] , ) -> PIL.Image.Image:
'''simple docstring'''
UpperCAmelCase_ =do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ =crop_pct if crop_pct is not None else self.crop_pct
UpperCAmelCase_ =resample if resample is not None else self.resample
UpperCAmelCase_ =do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase_ =do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase_ =image_mean if image_mean is not None else self.image_mean
UpperCAmelCase_ =image_std if image_std is not None else self.image_std
UpperCAmelCase_ =size if size is not None else self.size
UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
UpperCAmelCase_ =make_list_of_images(_lowerCAmelCase )
if not valid_images(_lowerCAmelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_resize and size["shortest_edge"] < 384 and crop_pct is None:
raise ValueError("crop_pct must be specified if size < 384." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
UpperCAmelCase_ =[to_numpy_array(_lowerCAmelCase ) for image in images]
if do_resize:
UpperCAmelCase_ =[self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , crop_pct=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images]
if do_rescale:
UpperCAmelCase_ =[self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images]
if do_normalize:
UpperCAmelCase_ =[self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images]
UpperCAmelCase_ =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images]
UpperCAmelCase_ ={"pixel_values": images}
return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
| 54 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_lowerCamelCase : Tuple = {
"""configuration_whisper""": ["""WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WhisperConfig""", """WhisperOnnxConfig"""],
"""feature_extraction_whisper""": ["""WhisperFeatureExtractor"""],
"""processing_whisper""": ["""WhisperProcessor"""],
"""tokenization_whisper""": ["""WhisperTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Dict = ["""WhisperTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : int = [
"""WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""WhisperForConditionalGeneration""",
"""WhisperModel""",
"""WhisperPreTrainedModel""",
"""WhisperForAudioClassification""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Any = [
"""TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFWhisperForConditionalGeneration""",
"""TFWhisperModel""",
"""TFWhisperPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Union[str, Any] = [
"""FlaxWhisperForConditionalGeneration""",
"""FlaxWhisperModel""",
"""FlaxWhisperPreTrainedModel""",
"""FlaxWhisperForAudioClassification""",
]
if TYPE_CHECKING:
from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig
from .feature_extraction_whisper import WhisperFeatureExtractor
from .processing_whisper import WhisperProcessor
from .tokenization_whisper import WhisperTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_whisper_fast import WhisperTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_whisper import (
WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
WhisperForAudioClassification,
WhisperForConditionalGeneration,
WhisperModel,
WhisperPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_whisper import (
TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWhisperForConditionalGeneration,
TFWhisperModel,
TFWhisperPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_whisper import (
FlaxWhisperForAudioClassification,
FlaxWhisperForConditionalGeneration,
FlaxWhisperModel,
FlaxWhisperPreTrainedModel,
)
else:
import sys
_lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 87 |
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
__lowercase : List[Any] =WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""])
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =test_results.split(" " )
UpperCAmelCase_ =0
UpperCAmelCase_ =0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
UpperCAmelCase_ =expressions[-2] if "=" in expressions[-1] else expressions[-1]
for i, expression in enumerate(lowercase__ ):
if "failed" in expression:
failed += int(expressions[i - 1] )
if "passed" in expression:
success += int(expressions[i - 1] )
return failed, success, time_spent
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ ={}
UpperCAmelCase_ =None
UpperCAmelCase_ =False
for line in failures_short_lines.split("\n" ):
if re.search(R"_ \[doctest\]" , lowercase__ ):
UpperCAmelCase_ =True
UpperCAmelCase_ =line.split(" " )[2]
elif in_error and not line.split(" " )[0].isdigit():
UpperCAmelCase_ =line
UpperCAmelCase_ =False
return failures
class A :
def __init__( self: Optional[Any] , _lowerCAmelCase: str , _lowerCAmelCase: Dict ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ =title
UpperCAmelCase_ =doc_test_results["time_spent"].split("," )[0]
UpperCAmelCase_ =doc_test_results["success"]
UpperCAmelCase_ =doc_test_results["failures"]
UpperCAmelCase_ =self.n_success + self.n_failures
# Failures and success of the modeling tests
UpperCAmelCase_ =doc_test_results
@property
def lowerCAmelCase__ ( self: Optional[Any] ) -> str:
'''simple docstring'''
UpperCAmelCase_ =[self._time_spent]
UpperCAmelCase_ =0
for time in time_spent:
UpperCAmelCase_ =time.split(":" )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(_lowerCAmelCase ) == 1:
UpperCAmelCase_ =[0, 0, time_parts[0]]
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 3600 + minutes * 60 + seconds
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60
return F'{int(_lowerCAmelCase )}h{int(_lowerCAmelCase )}m{int(_lowerCAmelCase )}s'
@property
def lowerCAmelCase__ ( self: int ) -> Dict:
'''simple docstring'''
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict:
'''simple docstring'''
return {
"type": "section",
"text": {
"type": "plain_text",
"text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.',
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def lowerCAmelCase__ ( self: Optional[Any] ) -> Dict:
'''simple docstring'''
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in'
F' {self.time}.'
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def lowerCAmelCase__ ( self: Tuple ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ =40
UpperCAmelCase_ ={k: v["failed"] for k, v in doc_test_results.items() if isinstance(_lowerCAmelCase , _lowerCAmelCase )}
UpperCAmelCase_ =""
for category, failures in category_failures.items():
if len(_lowerCAmelCase ) == 0:
continue
if report != "":
report += "\n\n"
report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(_lowerCAmelCase )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": F'The following examples had failures:\n\n\n{report}\n',
},
}
@property
def lowerCAmelCase__ ( self: Optional[Any] ) -> str:
'''simple docstring'''
UpperCAmelCase_ =[self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(_lowerCAmelCase )
@staticmethod
def lowerCAmelCase__ ( ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ =[
{
"type": "section",
"text": {
"type": "plain_text",
"text": "There was an issue running the tests.",
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
]
print("Sending the following payload" )
print(json.dumps({"blocks": json.loads(_lowerCAmelCase )} ) )
client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=_lowerCAmelCase , )
def lowerCAmelCase__ ( self: Dict ) -> List[str]:
'''simple docstring'''
print("Sending the following payload" )
print(json.dumps({"blocks": json.loads(self.payload )} ) )
UpperCAmelCase_ =F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else "All tests passed."
UpperCAmelCase_ =client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=_lowerCAmelCase , )
def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: int ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ =""
for key, value in failures.items():
UpperCAmelCase_ =value[:200] + " [Truncated]" if len(_lowerCAmelCase ) > 250 else value
failures_text += F'*{key}*\n_{value}_\n\n'
UpperCAmelCase_ =job_name
UpperCAmelCase_ ={"type": "section", "text": {"type": "mrkdwn", "text": text}}
if job_link is not None:
UpperCAmelCase_ ={
"type": "button",
"text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True},
"url": job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def lowerCAmelCase__ ( self: Any ) -> List[str]:
'''simple docstring'''
if self.thread_ts is None:
raise ValueError("Can only post reply if a post has been made." )
UpperCAmelCase_ =self.doc_test_results.pop("job_link" )
self.doc_test_results.pop("failures" )
self.doc_test_results.pop("success" )
self.doc_test_results.pop("time_spent" )
UpperCAmelCase_ =sorted(self.doc_test_results.items() , key=lambda _lowerCAmelCase : t[0] )
for job, job_result in sorted_dict:
if len(job_result["failures"] ):
UpperCAmelCase_ =F'*Num failures* :{len(job_result["failed"] )} \n'
UpperCAmelCase_ =job_result["failures"]
UpperCAmelCase_ =self.get_reply_blocks(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , text=_lowerCAmelCase )
print("Sending the following reply" )
print(json.dumps({"blocks": blocks} ) )
client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=F'Results for {job}' , blocks=_lowerCAmelCase , thread_ts=self.thread_ts["ts"] , )
time.sleep(1 )
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =os.environ["GITHUB_RUN_ID"]
UpperCAmelCase_ =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100'
UpperCAmelCase_ =requests.get(lowercase__ ).json()
UpperCAmelCase_ ={}
try:
jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} )
UpperCAmelCase_ =math.ceil((result["total_count"] - 1_0_0) / 1_0_0 )
for i in range(lowercase__ ):
UpperCAmelCase_ =requests.get(url + F'&page={i + 2}' ).json()
jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} )
return jobs
except Exception as e:
print("Unknown error, could not fetch links." , lowercase__ )
return {}
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ ={}
if os.path.exists(lowercase__ ):
UpperCAmelCase_ =os.listdir(lowercase__ )
for file in files:
try:
with open(os.path.join(lowercase__ , lowercase__ ) , encoding="utf-8" ) as f:
UpperCAmelCase_ =f.read()
except UnicodeDecodeError as e:
raise ValueError(F'Could not open {os.path.join(lowercase__ , lowercase__ )}.' ) from e
return _artifact
def a__ ( ):
'''simple docstring'''
class A :
def __init__( self: Tuple , _lowerCAmelCase: str ) -> Any:
'''simple docstring'''
UpperCAmelCase_ =name
UpperCAmelCase_ =[]
def __str__( self: Optional[int] ) -> Tuple:
'''simple docstring'''
return self.name
def lowerCAmelCase__ ( self: int , _lowerCAmelCase: str ) -> List[Any]:
'''simple docstring'''
self.paths.append({"name": self.name, "path": path} )
UpperCAmelCase_ ={}
UpperCAmelCase_ =filter(os.path.isdir , os.listdir() )
for directory in directories:
UpperCAmelCase_ =directory
if artifact_name not in _available_artifacts:
UpperCAmelCase_ =Artifact(lowercase__ )
_available_artifacts[artifact_name].add_path(lowercase__ )
return _available_artifacts
if __name__ == "__main__":
__lowercase : str =get_job_links()
__lowercase : Dict =retrieve_available_artifacts()
__lowercase : Optional[int] =collections.OrderedDict(
[
("""*.py""", """API Examples"""),
("""*.md""", """MD Examples"""),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
__lowercase : Any ={
v: {
"""failed""": [],
"""failures""": {},
}
for v in docs.values()
}
# Link to the GitHub Action job
__lowercase : Tuple =github_actions_job_links.get("""run_doctests""")
__lowercase : int =available_artifacts["""doc_tests_gpu_test_reports"""].paths[0]
__lowercase : str =retrieve_artifact(artifact_path["""name"""])
if "stats" in artifact:
__lowercase , __lowercase , __lowercase : Tuple =handle_test_results(artifact["""stats"""])
__lowercase : int =failed
__lowercase : int =success
__lowercase : str =time_spent[1:-1] + """, """
__lowercase : str =extract_first_line_failure(artifact["""failures_short"""])
for line in artifact["summary_short"].split("""\n"""):
if re.search("""FAILED""", line):
__lowercase : int =line.replace("""FAILED """, """""")
__lowercase : List[Any] =line.split()[0].replace("""\n""", """""")
if "::" in line:
__lowercase , __lowercase : Any =line.split("""::""")
else:
__lowercase , __lowercase : Dict =line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
__lowercase : Optional[int] =docs[file_regex]
doc_test_results[category]["failed"].append(test)
__lowercase : Tuple =all_failures[test] if test in all_failures else """N/A"""
__lowercase : Optional[int] =failure
break
__lowercase : Optional[int] =Message("""🤗 Results of the doc tests.""", doc_test_results)
message.post()
message.post_reply()
| 54 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase = logging.get_logger(__name__)
UpperCAmelCase = {
"""funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/config.json""",
"""funnel-transformer/small-base""": """https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json""",
"""funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/config.json""",
"""funnel-transformer/medium-base""": """https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json""",
"""funnel-transformer/intermediate""": (
"""https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json"""
),
"""funnel-transformer/intermediate-base""": (
"""https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json"""
),
"""funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/config.json""",
"""funnel-transformer/large-base""": """https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json""",
"""funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json""",
"""funnel-transformer/xlarge-base""": """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json""",
}
class lowercase__ ( A_ ):
__UpperCAmelCase = '''funnel'''
__UpperCAmelCase = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''n_head''',
}
def __init__( self , SCREAMING_SNAKE_CASE=3_0522 , SCREAMING_SNAKE_CASE=[4, 4, 4] , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=64 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE="gelu_new" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=1e-9 , SCREAMING_SNAKE_CASE="mean" , SCREAMING_SNAKE_CASE="relative_shift" , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> Optional[Any]:
_lowerCamelCase : Optional[int] = vocab_size
_lowerCamelCase : Any = block_sizes
_lowerCamelCase : int = [1] * len(SCREAMING_SNAKE_CASE) if block_repeats is None else block_repeats
assert len(SCREAMING_SNAKE_CASE) == len(
self.block_repeats), "`block_sizes` and `block_repeats` should have the same length."
_lowerCamelCase : Tuple = num_decoder_layers
_lowerCamelCase : Dict = d_model
_lowerCamelCase : List[Any] = n_head
_lowerCamelCase : Dict = d_head
_lowerCamelCase : List[str] = d_inner
_lowerCamelCase : Dict = hidden_act
_lowerCamelCase : int = hidden_dropout
_lowerCamelCase : Any = attention_dropout
_lowerCamelCase : int = activation_dropout
_lowerCamelCase : Optional[int] = initializer_range
_lowerCamelCase : str = initializer_std
_lowerCamelCase : Any = layer_norm_eps
assert pooling_type in [
"mean",
"max",
], F'Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.'
_lowerCamelCase : List[str] = pooling_type
assert attention_type in [
"relative_shift",
"factorized",
], F'Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.'
_lowerCamelCase : int = attention_type
_lowerCamelCase : List[str] = separate_cls
_lowerCamelCase : Tuple = truncate_seq
_lowerCamelCase : List[Any] = pool_q_only
super().__init__(**SCREAMING_SNAKE_CASE)
@property
def UpperCamelCase_ ( self) -> Union[str, Any]:
return sum(self.block_sizes)
@num_hidden_layers.setter
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> List[str]:
raise NotImplementedError(
"""This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.""")
@property
def UpperCamelCase_ ( self) -> List[Any]:
return len(self.block_sizes)
@num_blocks.setter
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> Optional[Any]:
raise NotImplementedError("""This model does not support the setting of `num_blocks`. Please set `block_sizes`.""")
| 88 |
def a__ ( lowercase__ = 2_0_0 ):
'''simple docstring'''
UpperCAmelCase_ =[1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0]
UpperCAmelCase_ =[0] * (pence + 1)
UpperCAmelCase_ =1 # base case: 1 way to make 0 pence
for coin in coins:
for i in range(lowercase__ , pence + 1 , 1 ):
number_of_ways[i] += number_of_ways[i - coin]
return number_of_ways[pence]
if __name__ == "__main__":
assert solution(200) == 7_3682
| 54 | 0 |
SCREAMING_SNAKE_CASE : Tuple = "0.21.0"
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich
| 89 |
import sys
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =len(lowercase__ )
UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )]
UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )]
for chain_length in range(2 , lowercase__ ):
for a in range(1 , n - chain_length + 1 ):
UpperCAmelCase_ =a + chain_length - 1
UpperCAmelCase_ =sys.maxsize
for c in range(lowercase__ , lowercase__ ):
UpperCAmelCase_ =(
matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b]
)
if cost < matrix[a][b]:
UpperCAmelCase_ =cost
UpperCAmelCase_ =c
return matrix, sol
def a__ ( lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
if i == j:
print("A" + str(lowercase__ ) , end=" " )
else:
print("(" , end=" " )
print_optiomal_solution(lowercase__ , lowercase__ , optimal_solution[i][j] )
print_optiomal_solution(lowercase__ , optimal_solution[i][j] + 1 , lowercase__ )
print(")" , end=" " )
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =[3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5]
UpperCAmelCase_ =len(lowercase__ )
# Size of matrix created from above array will be
# 30*35 35*15 15*5 5*10 10*20 20*25
UpperCAmelCase_ , UpperCAmelCase_ =matrix_chain_order(lowercase__ )
print("No. of Operation required: " + str(matrix[1][n - 1] ) )
print_optiomal_solution(lowercase__ , 1 , n - 1 )
if __name__ == "__main__":
main()
| 54 | 0 |
'''simple docstring'''
def _snake_case ( A , A ) -> int:
lowerCAmelCase__ = [0 for i in range(r + 1 )]
# nc0 = 1
lowerCAmelCase__ = 1
for i in range(1 , n + 1 ):
# to compute current row from previous row.
lowerCAmelCase__ = min(A , A )
while j > 0:
c[j] += c[j - 1]
j -= 1
return c[r]
print(binomial_coefficient(n=10, r=5))
| 90 |
from math import loga
def a__ ( lowercase__ ):
'''simple docstring'''
if a < 0:
raise ValueError("Input value must be a positive integer" )
elif isinstance(lowercase__ , lowercase__ ):
raise TypeError("Input value must be a 'int' type" )
return 0 if (a == 0) else int(loga(a & -a ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 54 | 0 |
"""simple docstring"""
from typing import Callable, Optional
from .. import Features
from ..packaged_modules.generator.generator import Generator
from .abc import AbstractDatasetInputStream
class lowerCAmelCase_ ( _lowercase ):
'''simple docstring'''
def __init__( self : Any ,A_ : Callable ,A_ : Optional[Features] = None ,A_ : str = None ,A_ : bool = False ,A_ : bool = False ,A_ : Optional[dict] = None ,A_ : Optional[int] = None ,**A_ : int ,) -> str:
super().__init__(
features=A_ ,cache_dir=A_ ,keep_in_memory=A_ ,streaming=A_ ,num_proc=A_ ,**A_ ,)
A = Generator(
cache_dir=A_ ,features=A_ ,generator=A_ ,gen_kwargs=A_ ,**A_ ,)
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]:
# Build iterable dataset
if self.streaming:
A = self.builder.as_streaming_dataset(split='train' )
# Build regular (map-style) dataset
else:
A = None
A = None
A = None
A = None
self.builder.download_and_prepare(
download_config=A_ ,download_mode=A_ ,verification_mode=A_ ,base_path=A_ ,num_proc=self.num_proc ,)
A = self.builder.as_dataset(
split='train' ,verification_mode=A_ ,in_memory=self.keep_in_memory )
return dataset
| 91 |
import argparse
from pathlib import Path
import torch
from transformers import OPTConfig, OPTModel
from transformers.utils import logging
logging.set_verbosity_info()
__lowercase : Union[str, Any] =logging.get_logger(__name__)
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" )
if "model" in sd.keys():
UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" )["model"]
# pop unnecessary weights
UpperCAmelCase_ =[
"decoder.version",
"decoder.output_projection.weight",
]
for key in keys_to_delete:
if key in sd:
sd.pop(lowercase__ )
UpperCAmelCase_ ={
"decoder.project_in_dim.weight": "decoder.project_in.weight",
"decoder.project_out_dim.weight": "decoder.project_out.weight",
"decoder.layer_norm.weight": "decoder.final_layer_norm.weight",
"decoder.layer_norm.bias": "decoder.final_layer_norm.bias",
}
for old_key, new_key in keys_to_rename.items():
if old_key in sd:
UpperCAmelCase_ =sd.pop(lowercase__ )
UpperCAmelCase_ =list(sd.keys() )
for key in keys:
if ".qkv_proj." in key:
UpperCAmelCase_ =sd[key]
# We split QKV in separate Q,K,V
UpperCAmelCase_ =key.replace(".qkv_proj." , ".q_proj." )
UpperCAmelCase_ =key.replace(".qkv_proj." , ".k_proj." )
UpperCAmelCase_ =key.replace(".qkv_proj." , ".v_proj." )
UpperCAmelCase_ =value.shape[0]
assert depth % 3 == 0
# `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
# https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =torch.split(lowercase__ , depth // 3 , dim=0 )
UpperCAmelCase_ =q
UpperCAmelCase_ =k
UpperCAmelCase_ =v
del sd[key]
return sd
@torch.no_grad()
def a__ ( lowercase__ , lowercase__ , lowercase__=None ):
'''simple docstring'''
UpperCAmelCase_ =load_checkpoint(lowercase__ )
if config is not None:
UpperCAmelCase_ =OPTConfig.from_pretrained(lowercase__ )
else:
UpperCAmelCase_ =OPTConfig()
UpperCAmelCase_ =OPTModel(lowercase__ ).half().eval()
model.load_state_dict(lowercase__ )
# Check results
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
model.save_pretrained(lowercase__ )
if __name__ == "__main__":
__lowercase : List[Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--fairseq_path""",
type=str,
help=(
"""path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:"""
""" https://huggingface.co/models?other=opt_metasq"""
),
)
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""")
__lowercase : str =parser.parse_args()
convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
| 54 | 0 |
'''simple docstring'''
import math
import sys
def _lowerCAmelCase ( __magic_name__ : str ) -> str:
lowercase : Tuple =''''''
try:
with open(__magic_name__ , '''rb''' ) as binary_file:
lowercase : Dict =binary_file.read()
for dat in data:
lowercase : Any =f'''{dat:08b}'''
result += curr_byte
return result
except OSError:
print('''File not accessible''' )
sys.exit()
def _lowerCAmelCase ( __magic_name__ : str ) -> str:
lowercase : int ={'''0''': '''0''', '''1''': '''1'''}
lowercase , lowercase : List[str] ='''''', ''''''
lowercase : Union[str, Any] =len(__magic_name__ )
for i in range(len(__magic_name__ ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
lowercase : int =lexicon[curr_string]
result += last_match_id
lowercase : List[str] =last_match_id + '''0'''
if math.loga(__magic_name__ ).is_integer():
lowercase : int ={}
for curr_key in list(__magic_name__ ):
lowercase : int =lexicon.pop(__magic_name__ )
lowercase : Any =new_lex
lowercase : Any =last_match_id + '''1'''
index += 1
lowercase : int =''''''
return result
def _lowerCAmelCase ( __magic_name__ : str , __magic_name__ : str ) -> None:
lowercase : Optional[Any] =8
try:
with open(__magic_name__ , '''wb''' ) as opened_file:
lowercase : Any =[
to_write[i : i + byte_length]
for i in range(0 , len(__magic_name__ ) , __magic_name__ )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append('''10000000''' )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array[:-1]:
opened_file.write(int(__magic_name__ , 2 ).to_bytes(1 , byteorder='''big''' ) )
except OSError:
print('''File not accessible''' )
sys.exit()
def _lowerCAmelCase ( __magic_name__ : str ) -> str:
lowercase : int =0
for letter in data_bits:
if letter == "1":
break
counter += 1
lowercase : List[str] =data_bits[counter:]
lowercase : List[Any] =data_bits[counter + 1 :]
return data_bits
def _lowerCAmelCase ( __magic_name__ : str , __magic_name__ : str ) -> None:
lowercase : Optional[int] =read_file_binary(__magic_name__ )
lowercase : Dict =remove_prefix(__magic_name__ )
lowercase : Optional[Any] =decompress_data(__magic_name__ )
write_file_binary(__magic_name__ , __magic_name__ )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 92 |
import PIL.Image
import PIL.ImageOps
from packaging import version
from PIL import Image
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""):
__lowercase : str ={
"""linear""": PIL.Image.Resampling.BILINEAR,
"""bilinear""": PIL.Image.Resampling.BILINEAR,
"""bicubic""": PIL.Image.Resampling.BICUBIC,
"""lanczos""": PIL.Image.Resampling.LANCZOS,
"""nearest""": PIL.Image.Resampling.NEAREST,
}
else:
__lowercase : Any ={
"""linear""": PIL.Image.LINEAR,
"""bilinear""": PIL.Image.BILINEAR,
"""bicubic""": PIL.Image.BICUBIC,
"""lanczos""": PIL.Image.LANCZOS,
"""nearest""": PIL.Image.NEAREST,
}
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =(images / 2 + 0.5).clamp(0 , 1 )
UpperCAmelCase_ =images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
UpperCAmelCase_ =numpy_to_pil(lowercase__ )
return images
def a__ ( lowercase__ ):
'''simple docstring'''
if images.ndim == 3:
UpperCAmelCase_ =images[None, ...]
UpperCAmelCase_ =(images * 2_5_5).round().astype("uint8" )
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
UpperCAmelCase_ =[Image.fromarray(image.squeeze() , mode="L" ) for image in images]
else:
UpperCAmelCase_ =[Image.fromarray(lowercase__ ) for image in images]
return pil_images
| 54 | 0 |
"""simple docstring"""
from PIL import Image
def __A (_SCREAMING_SNAKE_CASE ) ->Image:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ :Dict = image.size
lowerCAmelCase__ :Dict = 0
lowerCAmelCase__ :Tuple = image.load()
for i in range(_SCREAMING_SNAKE_CASE ):
for j in range(_SCREAMING_SNAKE_CASE ):
lowerCAmelCase__ :Optional[int] = pixels[j, i]
mean += pixel
mean //= width * height
for j in range(_SCREAMING_SNAKE_CASE ):
for i in range(_SCREAMING_SNAKE_CASE ):
lowerCAmelCase__ :Dict = 255 if pixels[i, j] > mean else 0
return image
if __name__ == "__main__":
__A = mean_threshold(Image.open("""path_to_image""").convert("""L"""))
image.save("""output_image_path""")
| 93 |
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =int(lowercase__ )
if n_element < 1:
UpperCAmelCase_ =ValueError("a should be a positive number" )
raise my_error
UpperCAmelCase_ =[1]
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =(0, 0, 0)
UpperCAmelCase_ =1
while index < n_element:
while hamming_list[i] * 2 <= hamming_list[-1]:
i += 1
while hamming_list[j] * 3 <= hamming_list[-1]:
j += 1
while hamming_list[k] * 5 <= hamming_list[-1]:
k += 1
hamming_list.append(
min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) )
index += 1
return hamming_list
if __name__ == "__main__":
__lowercase : Tuple =input("""Enter the last number (nth term) of the Hamming Number Series: """)
print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""")
__lowercase : Union[str, Any] =hamming(int(n))
print("""-----------------------------------------------------""")
print(f"""The list with nth numbers is: {hamming_numbers}""")
print("""-----------------------------------------------------""")
| 54 | 0 |
'''simple docstring'''
import inspect
import unittest
from math import floor
from transformers import CvtConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import CvtForImageClassification, CvtModel
from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
def A__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
lowercase : Any =self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(UpperCAmelCase , '''embed_dim''' ) )
self.parent.assertTrue(hasattr(UpperCAmelCase , '''num_heads''' ) )
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any=13 , UpperCAmelCase : Tuple=64 , UpperCAmelCase : int=3 , UpperCAmelCase : Dict=[16, 48, 96] , UpperCAmelCase : Tuple=[1, 3, 6] , UpperCAmelCase : Optional[int]=[1, 2, 10] , UpperCAmelCase : List[str]=[7, 3, 3] , UpperCAmelCase : Any=[4, 2, 2] , UpperCAmelCase : Dict=[2, 1, 1] , UpperCAmelCase : int=[2, 2, 2] , UpperCAmelCase : str=[False, False, True] , UpperCAmelCase : Tuple=[0.0, 0.0, 0.0] , UpperCAmelCase : str=0.0_2 , UpperCAmelCase : Any=1e-12 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Optional[Any]=2 , ) -> List[str]:
'''simple docstring'''
lowercase : int =parent
lowercase : Tuple =batch_size
lowercase : Optional[int] =image_size
lowercase : Optional[Any] =patch_sizes
lowercase : int =patch_stride
lowercase : Optional[int] =patch_padding
lowercase : Tuple =is_training
lowercase : Union[str, Any] =use_labels
lowercase : Optional[Any] =num_labels
lowercase : Any =num_channels
lowercase : Tuple =embed_dim
lowercase : int =num_heads
lowercase : Optional[Any] =stride_kv
lowercase : List[str] =depth
lowercase : Dict =cls_token
lowercase : Dict =attention_drop_rate
lowercase : List[Any] =initializer_range
lowercase : Optional[int] =layer_norm_eps
def A__ ( self : str ) -> List[Any]:
'''simple docstring'''
lowercase : str =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase : List[Any] =None
if self.use_labels:
lowercase : List[str] =ids_tensor([self.batch_size] , self.num_labels )
lowercase : int =self.get_config()
return config, pixel_values, labels
def A__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
return CvtConfig(
image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , )
def A__ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> List[Any]:
'''simple docstring'''
lowercase : str =CvtModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowercase : Optional[int] =model(UpperCAmelCase )
lowercase : str =(self.image_size, self.image_size)
lowercase , lowercase : Any =image_size[0], image_size[1]
for i in range(len(self.depth ) ):
lowercase : str =floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
lowercase : str =floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) )
def A__ ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Tuple ) -> str:
'''simple docstring'''
lowercase : List[Any] =self.num_labels
lowercase : str =CvtForImageClassification(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowercase : int =model(UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A__ ( self : Any ) -> Any:
'''simple docstring'''
lowercase : int =self.prepare_config_and_inputs()
lowercase , lowercase , lowercase : Optional[Any] =config_and_inputs
lowercase : Tuple ={'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ ( __A , __A , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ = (CvtModel, CvtForImageClassification) if is_torch_available() else ()
UpperCamelCase_ = (
{'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification}
if is_torch_available()
else {}
)
UpperCamelCase_ = False
UpperCamelCase_ = False
UpperCamelCase_ = False
UpperCamelCase_ = False
UpperCamelCase_ = False
def A__ ( self : Any ) -> List[str]:
'''simple docstring'''
lowercase : int =CvtModelTester(self )
lowercase : str =ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 )
def A__ ( self : Tuple ) -> Tuple:
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def A__ ( self : Dict ) -> Tuple:
'''simple docstring'''
return
@unittest.skip(reason='''Cvt does not output attentions''' )
def A__ ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
pass
@unittest.skip(reason='''Cvt does not use inputs_embeds''' )
def A__ ( self : str ) -> int:
'''simple docstring'''
pass
@unittest.skip(reason='''Cvt does not support input and output embeddings''' )
def A__ ( self : Any ) -> Dict:
'''simple docstring'''
pass
def A__ ( self : List[str] ) -> int:
'''simple docstring'''
lowercase , lowercase : int =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase : Tuple =model_class(UpperCAmelCase )
lowercase : List[Any] =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase : Tuple =[*signature.parameters.keys()]
lowercase : str =['''pixel_values''']
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
def A__ ( self : str ) -> Dict:
'''simple docstring'''
lowercase : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def A__ ( self : Tuple ) -> int:
'''simple docstring'''
def check_hidden_states_output(UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] ):
lowercase : List[str] =model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
lowercase : Tuple =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
lowercase : List[str] =outputs.hidden_states
lowercase : str =len(self.model_tester.depth )
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:] ) , [
self.model_tester.embed_dim[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
] , )
lowercase , lowercase : str =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase : Dict =True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase : str =True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def A__ ( self : int ) -> Optional[int]:
'''simple docstring'''
lowercase : Union[str, Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase )
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def A__ ( self : Tuple ) -> Any:
'''simple docstring'''
pass
@slow
def A__ ( self : Dict ) -> Tuple:
'''simple docstring'''
for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase : List[str] =CvtModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def lowercase_ ( ) -> List[str]:
"""simple docstring"""
lowercase : Tuple =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def A__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def A__ ( self : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
lowercase : Any =CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(UpperCAmelCase )
lowercase : Tuple =self.default_image_processor
lowercase : str =prepare_img()
lowercase : List[str] =image_processor(images=UpperCAmelCase , return_tensors='''pt''' ).to(UpperCAmelCase )
# forward pass
with torch.no_grad():
lowercase : Optional[Any] =model(**UpperCAmelCase )
# verify the logits
lowercase : List[str] =torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
lowercase : Optional[int] =torch.tensor([0.9_2_8_5, 0.9_0_1_5, -0.3_1_5_0] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) )
| 94 |
import warnings
from ...utils import logging
from .image_processing_glpn import GLPNImageProcessor
__lowercase : List[Any] =logging.get_logger(__name__)
class A ( __lowercase ):
def __init__( self: List[Any] , *_lowerCAmelCase: Optional[Any] , **_lowerCAmelCase: List[str] ) -> None:
'''simple docstring'''
warnings.warn(
"The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use GLPNImageProcessor instead." , _lowerCAmelCase , )
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
| 54 | 0 |
"""simple docstring"""
import os
import pytest
import yaml
from datasets.features.features import Features, Value
from datasets.info import DatasetInfo, DatasetInfosDict
@pytest.mark.parametrize(
"files" ,[
["full:README.md", "dataset_infos.json"],
["empty:README.md", "dataset_infos.json"],
["dataset_infos.json"],
["full:README.md"],
] ,)
def snake_case ( A__ ,A__ ):
UpperCAmelCase_ : List[str] = tmp_path_factory.mktemp("dset_infos_dir" )
if "full:README.md" in files:
with open(dataset_infos_dir / "README.md" ,"w" ) as f:
f.write("---\ndataset_info:\n dataset_size: 42\n---" )
if "empty:README.md" in files:
with open(dataset_infos_dir / "README.md" ,"w" ) as f:
f.write("" )
# we want to support dataset_infos.json for backward compatibility
if "dataset_infos.json" in files:
with open(dataset_infos_dir / "dataset_infos.json" ,"w" ) as f:
f.write("{\"default\": {\"dataset_size\": 42}}" )
UpperCAmelCase_ : List[Any] = DatasetInfosDict.from_directory(A__ )
assert dataset_infos
assert dataset_infos["default"].dataset_size == 42
@pytest.mark.parametrize(
"dataset_info" ,[
DatasetInfo(),
DatasetInfo(
description="foo" ,features=Features({"a": Value("int32" )} ) ,builder_name="builder" ,config_name="config" ,version="1.0.0" ,splits=[{"name": "train"}] ,download_size=42 ,),
] ,)
def snake_case ( A__ ,A__ ):
UpperCAmelCase_ : Tuple = str(A__ )
dataset_info.write_to_directory(A__ )
UpperCAmelCase_ : Dict = DatasetInfo.from_directory(A__ )
assert dataset_info == reloaded
assert os.path.exists(os.path.join(A__ ,"dataset_info.json" ) )
def snake_case ( ):
UpperCAmelCase_ : List[Any] = DatasetInfo(
description="foo" ,citation="bar" ,homepage="https://foo.bar" ,license="CC0" ,features=Features({"a": Value("int32" )} ) ,post_processed={} ,supervised_keys=() ,task_templates=[] ,builder_name="builder" ,config_name="config" ,version="1.0.0" ,splits=[{"name": "train", "num_examples": 42}] ,download_checksums={} ,download_size=13_37 ,post_processing_size=4_42 ,dataset_size=12_34 ,size_in_bytes=13_37 + 4_42 + 12_34 ,)
UpperCAmelCase_ : List[Any] = dataset_info._to_yaml_dict()
assert sorted(A__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML )
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
assert key in dataset_info_yaml_dict
assert isinstance(dataset_info_yaml_dict[key] ,(list, dict, int, str) )
UpperCAmelCase_ : List[Any] = yaml.safe_dump(A__ )
UpperCAmelCase_ : Union[str, Any] = yaml.safe_load(A__ )
assert dataset_info_yaml_dict == reloaded
def snake_case ( ):
UpperCAmelCase_ : Tuple = DatasetInfo()
UpperCAmelCase_ : List[Any] = dataset_info._to_yaml_dict()
assert dataset_info_yaml_dict == {}
@pytest.mark.parametrize(
"dataset_infos_dict" ,[
DatasetInfosDict(),
DatasetInfosDict({"default": DatasetInfo()} ),
DatasetInfosDict({"my_config_name": DatasetInfo()} ),
DatasetInfosDict(
{
"default": DatasetInfo(
description="foo" ,features=Features({"a": Value("int32" )} ) ,builder_name="builder" ,config_name="config" ,version="1.0.0" ,splits=[{"name": "train"}] ,download_size=42 ,)
} ),
DatasetInfosDict(
{
"v1": DatasetInfo(dataset_size=42 ),
"v2": DatasetInfo(dataset_size=13_37 ),
} ),
] ,)
def snake_case ( A__ ,A__ ):
UpperCAmelCase_ : List[Any] = str(A__ )
dataset_infos_dict.write_to_directory(A__ )
UpperCAmelCase_ : Tuple = DatasetInfosDict.from_directory(A__ )
# the config_name of the dataset_infos_dict take over the attribute
for config_name, dataset_info in dataset_infos_dict.items():
UpperCAmelCase_ : List[str] = config_name
# the yaml representation doesn't include fields like description or citation
# so we just test that we can recover what we can from the yaml
UpperCAmelCase_ : Union[str, Any] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() )
assert dataset_infos_dict == reloaded
if dataset_infos_dict:
assert os.path.exists(os.path.join(A__ ,"README.md" ) )
| 95 |
import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class A ( __lowercase , unittest.TestCase ):
_snake_case =CanineTokenizer
_snake_case =False
def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]:
'''simple docstring'''
super().setUp()
UpperCAmelCase_ =CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowerCAmelCase__ ( self: Optional[int] ) -> List[str]:
'''simple docstring'''
return CanineTokenizer.from_pretrained("google/canine-s" )
def lowerCAmelCase__ ( self: Union[str, Any] , **_lowerCAmelCase: List[Any] ) -> CanineTokenizer:
'''simple docstring'''
UpperCAmelCase_ =self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
UpperCAmelCase_ =1024
return tokenizer
@require_torch
def lowerCAmelCase__ ( self: int ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ =self.canine_tokenizer
UpperCAmelCase_ =["Life is like a box of chocolates.", "You never know what you're gonna get."]
# fmt: off
UpperCAmelCase_ =[5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0]
# fmt: on
UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase_ =list(batch.input_ids.numpy()[0] )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def lowerCAmelCase__ ( self: int ) -> str:
'''simple docstring'''
UpperCAmelCase_ =self.canine_tokenizer
UpperCAmelCase_ =["Once there was a man.", "He wrote a test in HuggingFace Tranformers."]
UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("input_ids" , _lowerCAmelCase )
self.assertIn("attention_mask" , _lowerCAmelCase )
self.assertIn("token_type_ids" , _lowerCAmelCase )
@require_torch
def lowerCAmelCase__ ( self: str ) -> Any:
'''simple docstring'''
UpperCAmelCase_ =self.canine_tokenizer
UpperCAmelCase_ =[
"What's the weater?",
"It's about 25 degrees.",
]
UpperCAmelCase_ =tokenizer(
text_target=_lowerCAmelCase , max_length=32 , padding="max_length" , truncation=_lowerCAmelCase , return_tensors="pt" )
self.assertEqual(32 , targets["input_ids"].shape[1] )
def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ =self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
UpperCAmelCase_ =self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
UpperCAmelCase_ =tempfile.mkdtemp()
UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running"
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
tokenizer.save_pretrained(_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase )
UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
shutil.rmtree(_lowerCAmelCase )
UpperCAmelCase_ =self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
UpperCAmelCase_ =tempfile.mkdtemp()
UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running"
UpperCAmelCase_ =tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
UpperCAmelCase_ =chr(0xe0_07 )
additional_special_tokens.append(_lowerCAmelCase )
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} )
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
tokenizer.save_pretrained(_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase )
UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertIn(_lowerCAmelCase , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(_lowerCAmelCase )
def lowerCAmelCase__ ( self: int ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
UpperCAmelCase_ , UpperCAmelCase_ =self.get_clean_sequence(_lowerCAmelCase )
# a special token for Canine can be defined as follows:
UpperCAmelCase_ =0xe0_05
UpperCAmelCase_ =chr(_lowerCAmelCase )
tokenizer.add_special_tokens({"cls_token": special_token} )
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertEqual(len(_lowerCAmelCase ) , 1 )
UpperCAmelCase_ =tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , input_encoded + special_token_id )
UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase )
self.assertTrue(special_token not in decoded )
def lowerCAmelCase__ ( self: Any ) -> Any:
'''simple docstring'''
UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
UpperCAmelCase_ =chr(0xe0_05 )
UpperCAmelCase_ =chr(0xe0_06 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=_lowerCAmelCase )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} )
UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase )
self.assertEqual(len(_lowerCAmelCase ) , 1 )
self.assertEqual(len(_lowerCAmelCase ) , 1 )
self.assertEqual(token_a[0] , _lowerCAmelCase )
self.assertEqual(token_a[0] , _lowerCAmelCase )
@require_tokenizers
def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# a special token for Canine can be defined as follows:
UpperCAmelCase_ =0xe0_06
UpperCAmelCase_ =chr(_lowerCAmelCase )
UpperCAmelCase_ =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase )
tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(_lowerCAmelCase )
tokenizer.from_pretrained(_lowerCAmelCase )
def lowerCAmelCase__ ( self: Any ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ =[]
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file:
UpperCAmelCase_ =json.load(_lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file:
UpperCAmelCase_ =json.load(_lowerCAmelCase )
# a special token for Canine can be defined as follows:
UpperCAmelCase_ =0xe0_06
UpperCAmelCase_ =chr(_lowerCAmelCase )
UpperCAmelCase_ =[new_token_a]
UpperCAmelCase_ =[new_token_a]
with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
UpperCAmelCase_ =tokenizer_class.from_pretrained(_lowerCAmelCase , extra_ids=0 )
self.assertIn(_lowerCAmelCase , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
UpperCAmelCase_ =0xe0_07
UpperCAmelCase_ =chr(_lowerCAmelCase )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
UpperCAmelCase_ =[AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase )]
UpperCAmelCase_ =tokenizer_class.from_pretrained(
_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , extra_ids=0 )
self.assertIn(_lowerCAmelCase , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
UpperCAmelCase_ ="hello world"
if self.space_between_special_tokens:
UpperCAmelCase_ ="[CLS] hello world [SEP]"
else:
UpperCAmelCase_ =input
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(_lowerCAmelCase , [output, output.lower()] )
def lowerCAmelCase__ ( self: List[str] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ =self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
UpperCAmelCase_ =[
"bos_token",
"eos_token",
"unk_token",
"sep_token",
"pad_token",
"cls_token",
"mask_token",
]
UpperCAmelCase_ ="a"
UpperCAmelCase_ =ord(_lowerCAmelCase )
for attr in attributes_list:
setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase )
self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase )
self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase )
setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase )
self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase )
self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase )
setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [] )
self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [] )
self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [] )
UpperCAmelCase_ =0xe0_06
UpperCAmelCase_ =chr(_lowerCAmelCase )
setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [additional_special_token_id] )
self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [additional_special_token] )
self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] )
def lowerCAmelCase__ ( self: List[str] ) -> List[str]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: Dict ) -> List[str]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: Any ) -> List[Any]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: List[Any] ) -> List[str]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: Tuple ) -> Union[str, Any]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: str ) -> str:
'''simple docstring'''
pass
| 54 | 0 |
"""simple docstring"""
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, Features, Value
from .base import TaskTemplate
@dataclass(frozen=SCREAMING_SNAKE_CASE_ )
class __A ( SCREAMING_SNAKE_CASE_ ):
UpperCAmelCase__ = field(default="automatic-speech-recognition" ,metadata={"include_in_asdict_even_if_is_default": True} )
UpperCAmelCase__ = Features({"audio": Audio()} )
UpperCAmelCase__ = Features({"transcription": Value("string" )} )
UpperCAmelCase__ = "audio"
UpperCAmelCase__ = "transcription"
def lowerCamelCase__ ( self : Optional[Any] , __snake_case : Union[str, Any] ) -> Any:
if self.audio_column not in features:
raise ValueError(F'Column {self.audio_column} is not present in features.' )
if not isinstance(features[self.audio_column] , __snake_case ):
raise ValueError(F'Column {self.audio_column} is not an Audio type.' )
__magic_name__: List[str] = copy.deepcopy(self )
__magic_name__: Tuple = self.input_schema.copy()
__magic_name__: Dict = features[self.audio_column]
__magic_name__: List[str] = input_schema
return task_template
@property
def lowerCamelCase__ ( self : List[str] ) -> Dict[str, str]:
return {self.audio_column: "audio", self.transcription_column: "transcription"}
| 96 |
from typing import Dict, List
from nltk.translate import gleu_score
import datasets
from datasets import MetricInfo
__lowercase : Optional[int] ="""\
@misc{wu2016googles,
title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},
author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey
and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin
Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto
Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and
Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes
and Jeffrey Dean},
year={2016},
eprint={1609.08144},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
__lowercase : Dict ="""\
The BLEU score has some undesirable properties when used for single
sentences, as it was designed to be a corpus measure. We therefore
use a slightly different score for our RL experiments which we call
the 'GLEU score'. For the GLEU score, we record all sub-sequences of
1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then
compute a recall, which is the ratio of the number of matching n-grams
to the number of total n-grams in the target (ground truth) sequence,
and a precision, which is the ratio of the number of matching n-grams
to the number of total n-grams in the generated output sequence. Then
GLEU score is simply the minimum of recall and precision. This GLEU
score's range is always between 0 (no matches) and 1 (all match) and
it is symmetrical when switching output and target. According to
our experiments, GLEU score correlates quite well with the BLEU
metric on a corpus level but does not have its drawbacks for our per
sentence reward objective.
"""
__lowercase : List[str] ="""\
Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.
Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching
tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.
Args:
predictions (list of str): list of translations to score.
Each translation should be tokenized into a list of tokens.
references (list of list of str): list of lists of references for each translation.
Each reference should be tokenized into a list of tokens.
min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.
max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.
Returns:
'google_bleu': google_bleu score
Examples:
Example 1:
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',
... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']
>>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',
... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',
... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
... 'interested', 'in', 'world', 'history']
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
... 'because', 'he', 'read', 'the', 'book']
>>> list_of_references = [[ref1a], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric(\"google_bleu\")
>>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)
>>> print(round(results[\"google_bleu\"], 2))
0.44
Example 2:
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',
... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']
>>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',
... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',
... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']
>>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',
... 'heed', 'the', 'cat', 'commands']
>>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',
... 'of', 'the', 'cat']
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
... 'interested', 'in', 'world', 'history']
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
... 'because', 'he', 'read', 'the', 'book']
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric(\"google_bleu\")
>>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)
>>> print(round(results[\"google_bleu\"], 2))
0.61
Example 3:
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',
... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']
>>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',
... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',
... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']
>>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',
... 'heed', 'the', 'cat', 'commands']
>>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',
... 'of', 'the', 'cat']
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
... 'interested', 'in', 'world', 'history']
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
... 'because', 'he', 'read', 'the', 'book']
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric(\"google_bleu\")
>>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)
>>> print(round(results[\"google_bleu\"], 2))
0.53
Example 4:
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',
... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']
>>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',
... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',
... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']
>>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',
... 'heed', 'the', 'cat', 'commands']
>>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',
... 'of', 'the', 'cat']
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
... 'interested', 'in', 'world', 'history']
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
... 'because', 'he', 'read', 'the', 'book']
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric(\"google_bleu\")
>>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)
>>> print(round(results[\"google_bleu\"], 2))
0.4
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A ( datasets.Metric ):
def lowerCAmelCase__ ( self: int ) -> MetricInfo:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ),
"references": datasets.Sequence(
datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ),
} ) , )
def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: List[List[List[str]]] , _lowerCAmelCase: List[List[str]] , _lowerCAmelCase: int = 1 , _lowerCAmelCase: int = 4 , ) -> Dict[str, float]:
'''simple docstring'''
return {
"google_bleu": gleu_score.corpus_gleu(
list_of_references=_lowerCAmelCase , hypotheses=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase )
}
| 54 | 0 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__a = {'configuration_focalnet': ['FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FocalNetConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
'FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'FocalNetForImageClassification',
'FocalNetForMaskedImageModeling',
'FocalNetBackbone',
'FocalNetModel',
'FocalNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_focalnet import (
FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
FocalNetPreTrainedModel,
)
else:
import sys
__a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 97 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaImgaImgPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class A ( __lowercase , unittest.TestCase ):
_snake_case =KandinskyVaaImgaImgPipeline
_snake_case =['''image_embeds''', '''negative_image_embeds''', '''image''']
_snake_case =[
'''image_embeds''',
'''negative_image_embeds''',
'''image''',
]
_snake_case =[
'''generator''',
'''height''',
'''width''',
'''strength''',
'''guidance_scale''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
_snake_case =False
@property
def lowerCAmelCase__ ( self: List[Any] ) -> Dict:
'''simple docstring'''
return 32
@property
def lowerCAmelCase__ ( self: Any ) -> Optional[int]:
'''simple docstring'''
return 32
@property
def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]:
'''simple docstring'''
return self.time_input_dim
@property
def lowerCAmelCase__ ( self: List[str] ) -> Dict:
'''simple docstring'''
return self.time_input_dim * 4
@property
def lowerCAmelCase__ ( self: int ) -> str:
'''simple docstring'''
return 100
@property
def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]:
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase_ ={
"in_channels": 4,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
UpperCAmelCase_ =UNetaDConditionModel(**_lowerCAmelCase )
return model
@property
def lowerCAmelCase__ ( self: Any ) -> Tuple:
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase__ ( self: Union[str, Any] ) -> Any:
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase_ =VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase__ ( self: Dict ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ =self.dummy_unet
UpperCAmelCase_ =self.dummy_movq
UpperCAmelCase_ ={
"num_train_timesteps": 1000,
"beta_schedule": "linear",
"beta_start": 0.0_00_85,
"beta_end": 0.0_12,
"clip_sample": False,
"set_alpha_to_one": False,
"steps_offset": 0,
"prediction_type": "epsilon",
"thresholding": False,
}
UpperCAmelCase_ =DDIMScheduler(**_lowerCAmelCase )
UpperCAmelCase_ ={
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[Any]=0 ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase )
UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
_lowerCAmelCase )
# create init_image
UpperCAmelCase_ =floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase )
UpperCAmelCase_ =image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase_ =Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("RGB" ).resize((256, 256) )
if str(_lowerCAmelCase ).startswith("mps" ):
UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase )
else:
UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase )
UpperCAmelCase_ ={
"image": init_image,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 64,
"width": 64,
"num_inference_steps": 10,
"guidance_scale": 7.0,
"strength": 0.2,
"output_type": "np",
}
return inputs
def lowerCAmelCase__ ( self: int ) -> int:
'''simple docstring'''
UpperCAmelCase_ ="cpu"
UpperCAmelCase_ =self.get_dummy_components()
UpperCAmelCase_ =self.pipeline_class(**_lowerCAmelCase )
UpperCAmelCase_ =pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
UpperCAmelCase_ =pipe(**self.get_dummy_inputs(_lowerCAmelCase ) )
UpperCAmelCase_ =output.images
UpperCAmelCase_ =pipe(
**self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0]
UpperCAmelCase_ =image[0, -3:, -3:, -1]
UpperCAmelCase_ =image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase_ =np.array(
[0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), F' expected_slice {expected_slice}, but got {image_slice.flatten()}'
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'
@slow
@require_torch_gpu
class A ( unittest.TestCase ):
def lowerCAmelCase__ ( self: List[Any] ) -> str:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase__ ( self: int ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ =load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/kandinskyv22_img2img_frog.npy" )
UpperCAmelCase_ =load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
UpperCAmelCase_ ="A red cartoon frog, 4k"
UpperCAmelCase_ =KandinskyVaaPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa )
pipe_prior.to(_lowerCAmelCase )
UpperCAmelCase_ =KandinskyVaaImgaImgPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa )
UpperCAmelCase_ =pipeline.to(_lowerCAmelCase )
pipeline.set_progress_bar_config(disable=_lowerCAmelCase )
UpperCAmelCase_ =torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase_ , UpperCAmelCase_ =pipe_prior(
_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
UpperCAmelCase_ =pipeline(
image=_lowerCAmelCase , image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , )
UpperCAmelCase_ =output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
| 54 | 0 |
'''simple docstring'''
import math
def a__ ( lowercase : int = 100 ) -> int:
"""simple docstring"""
_UpperCamelCase = sum(i * i for i in range(1, n + 1 ) )
_UpperCamelCase = int(math.pow(sum(range(1, n + 1 ) ), 2 ) )
return square_of_sum - sum_of_squares
if __name__ == "__main__":
print(F"""{solution() = }""")
| 98 |
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class A ( unittest.TestCase ):
def __init__( self: Optional[int] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: Optional[int]=7 , _lowerCAmelCase: Any=True , _lowerCAmelCase: List[Any]=True , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: str=True , _lowerCAmelCase: Optional[int]=99 , _lowerCAmelCase: Any=32 , _lowerCAmelCase: Any=5 , _lowerCAmelCase: Tuple=4 , _lowerCAmelCase: Union[str, Any]=37 , _lowerCAmelCase: List[str]="gelu" , _lowerCAmelCase: Dict=0.1 , _lowerCAmelCase: Tuple=0.1 , _lowerCAmelCase: int=512 , _lowerCAmelCase: Tuple=16 , _lowerCAmelCase: Tuple=2 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=4 , ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ =parent
UpperCAmelCase_ =batch_size
UpperCAmelCase_ =seq_length
UpperCAmelCase_ =is_training
UpperCAmelCase_ =use_attention_mask
UpperCAmelCase_ =use_token_type_ids
UpperCAmelCase_ =use_labels
UpperCAmelCase_ =vocab_size
UpperCAmelCase_ =hidden_size
UpperCAmelCase_ =num_hidden_layers
UpperCAmelCase_ =num_attention_heads
UpperCAmelCase_ =intermediate_size
UpperCAmelCase_ =hidden_act
UpperCAmelCase_ =hidden_dropout_prob
UpperCAmelCase_ =attention_probs_dropout_prob
UpperCAmelCase_ =max_position_embeddings
UpperCAmelCase_ =type_vocab_size
UpperCAmelCase_ =type_sequence_label_size
UpperCAmelCase_ =initializer_range
UpperCAmelCase_ =num_choices
def lowerCAmelCase__ ( self: Dict ) -> Any:
'''simple docstring'''
UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ =None
if self.use_attention_mask:
UpperCAmelCase_ =random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase_ =None
if self.use_token_type_ids:
UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ =RobertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowerCAmelCase__ ( self: str ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ =self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs
UpperCAmelCase_ ={"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
return config, inputs_dict
def lowerCAmelCase__ ( self: Tuple ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ =self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs
UpperCAmelCase_ =True
UpperCAmelCase_ =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class A ( __lowercase , unittest.TestCase ):
_snake_case =True
_snake_case =(
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowerCAmelCase__ ( self: Dict ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ =FlaxRobertaModelTester(self )
@slow
def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
UpperCAmelCase_ =model_class_name.from_pretrained("roberta-base" , from_pt=_lowerCAmelCase )
UpperCAmelCase_ =model(np.ones((1, 1) ) )
self.assertIsNotNone(_lowerCAmelCase )
| 54 | 0 |
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class __UpperCAmelCase ( __A ):
"""simple docstring"""
_lowerCamelCase = 42
class __UpperCAmelCase ( __A , __A ):
"""simple docstring"""
@register_to_config
def __init__( self , __A = 32 , __A = 64 , __A = 20 , __A = 768 , __A=77 , __A=4 , __A = 0.0 , __A = "silu" , __A = None , __A = None , __A = "linear" , __A = "prd" , __A = None , __A = None , __A = None , ):
super().__init__()
__a = num_attention_heads
__a = attention_head_dim
__a = num_attention_heads * attention_head_dim
__a = additional_embeddings
__a = time_embed_dim or inner_dim
__a = embedding_proj_dim or embedding_dim
__a = clip_embed_dim or embedding_dim
__a = Timesteps(__A , __A , 0 )
__a = TimestepEmbedding(__A , __A , out_dim=__A , act_fn=__A )
__a = nn.Linear(__A , __A )
if embedding_proj_norm_type is None:
__a = None
elif embedding_proj_norm_type == "layer":
__a = nn.LayerNorm(__A )
else:
raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' )
__a = nn.Linear(__A , __A )
if encoder_hid_proj_type is None:
__a = None
elif encoder_hid_proj_type == "linear":
__a = nn.Linear(__A , __A )
else:
raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' )
__a = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , __A ) )
if added_emb_type == "prd":
__a = nn.Parameter(torch.zeros(1 , 1 , __A ) )
elif added_emb_type is None:
__a = None
else:
raise ValueError(
f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' )
__a = nn.ModuleList(
[
BasicTransformerBlock(
__A , __A , __A , dropout=__A , activation_fn="""gelu""" , attention_bias=__A , )
for d in range(__A )
] )
if norm_in_type == "layer":
__a = nn.LayerNorm(__A )
elif norm_in_type is None:
__a = None
else:
raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' )
__a = nn.LayerNorm(__A )
__a = nn.Linear(__A , __A )
__a = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 )
causal_attention_mask.triu_(1 )
__a = causal_attention_mask[None, ...]
self.register_buffer("""causal_attention_mask""" , __A , persistent=__A )
__a = nn.Parameter(torch.zeros(1 , __A ) )
__a = nn.Parameter(torch.zeros(1 , __A ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def snake_case_ ( self ):
__a = {}
def fn_recursive_add_processors(__A , __A , __A ):
if hasattr(__A , """set_processor""" ):
__a = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(f'''{name}.{sub_name}''' , __A , __A )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(__A , __A , __A )
return processors
def snake_case_ ( self , __A ):
__a = len(self.attn_processors.keys() )
if isinstance(__A , __A ) and len(__A ) != count:
raise ValueError(
f'''A dict of processors was passed, but the number of processors {len(__A )} does not match the'''
f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' )
def fn_recursive_attn_processor(__A , __A , __A ):
if hasattr(__A , """set_processor""" ):
if not isinstance(__A , __A ):
module.set_processor(__A )
else:
module.set_processor(processor.pop(f'''{name}.processor''' ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f'''{name}.{sub_name}''' , __A , __A )
for name, module in self.named_children():
fn_recursive_attn_processor(__A , __A , __A )
def snake_case_ ( self ):
self.set_attn_processor(AttnProcessor() )
def snake_case_ ( self , __A , __A , __A , __A = None , __A = None , __A = True , ):
__a = hidden_states.shape[0]
__a = timestep
if not torch.is_tensor(__A ):
__a = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device )
elif torch.is_tensor(__A ) and len(timesteps.shape ) == 0:
__a = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
__a = timesteps * torch.ones(__A , dtype=timesteps.dtype , device=timesteps.device )
__a = self.time_proj(__A )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
__a = timesteps_projected.to(dtype=self.dtype )
__a = self.time_embedding(__A )
if self.embedding_proj_norm is not None:
__a = self.embedding_proj_norm(__A )
__a = self.embedding_proj(__A )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
__a = self.encoder_hidden_states_proj(__A )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" )
__a = self.proj_in(__A )
__a = self.positional_embedding.to(hidden_states.dtype )
__a = []
__a = 0
if encoder_hidden_states is not None:
additional_embeds.append(__A )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
__a = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
__a = hidden_states[:, None, :]
__a = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
__a = self.prd_embedding.to(hidden_states.dtype ).expand(__A , -1 , -1 )
additional_embeds.append(__A )
__a = torch.cat(
__A , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
__a = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
__a = F.pad(
__A , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
__a = hidden_states + positional_embeddings
if attention_mask is not None:
__a = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0
__a = F.pad(__A , (0, self.additional_embeddings) , value=0.0 )
__a = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
__a = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 )
if self.norm_in is not None:
__a = self.norm_in(__A )
for block in self.transformer_blocks:
__a = block(__A , attention_mask=__A )
__a = self.norm_out(__A )
if self.prd_embedding is not None:
__a = hidden_states[:, -1]
else:
__a = hidden_states[:, additional_embeddings_len:]
__a = self.proj_to_clip_embeddings(__A )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=__A )
def snake_case_ ( self , __A ):
__a = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 99 |
from __future__ import annotations
def a__ ( lowercase__ , lowercase__ ):
'''simple docstring'''
if b == 0:
return (1, 0)
((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , a % b )
UpperCAmelCase_ =a // b
return (y, x - k * y)
def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ )
UpperCAmelCase_ =na * na
UpperCAmelCase_ =ra * x * na + ra * y * na
return (n % m + m) % m
def a__ ( lowercase__ , lowercase__ ):
'''simple docstring'''
((UpperCAmelCase_) , (UpperCAmelCase_)) =extended_euclid(lowercase__ , lowercase__ )
if b < 0:
UpperCAmelCase_ =(b % n + n) % n
return b
def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ =invert_modulo(lowercase__ , lowercase__ ), invert_modulo(lowercase__ , lowercase__ )
UpperCAmelCase_ =na * na
UpperCAmelCase_ =ra * x * na + ra * y * na
return (n % m + m) % m
if __name__ == "__main__":
from doctest import testmod
testmod(name="""chinese_remainder_theorem""", verbose=True)
testmod(name="""chinese_remainder_theorem2""", verbose=True)
testmod(name="""invert_modulo""", verbose=True)
testmod(name="""extended_euclid""", verbose=True)
| 54 | 0 |
# Function to print upper half of diamond (pyramid)
def __snake_case ( lowerCAmelCase_ ) -> List[Any]:
for i in range(0 , lowerCAmelCase_ ):
for _ in range(0 , n - i - 1 ): # printing spaces
print(''' ''' , end='''''' )
for _ in range(0 , i + 1 ): # printing stars
print('''* ''' , end='''''' )
print()
def __snake_case ( lowerCAmelCase_ ) -> Tuple:
for i in range(lowerCAmelCase_ , 0 , -1 ):
for _ in range(lowerCAmelCase_ , 0 , -1 ): # printing stars
print('''* ''' , end='''''' )
print()
for _ in range(n - i + 1 , 0 , -1 ): # printing spaces
print(''' ''' , end='''''' )
def __snake_case ( lowerCAmelCase_ ) -> Tuple:
if n <= 0:
print(''' ... .... nothing printing :(''' )
return
floyd(lowerCAmelCase_ ) # upper half
reverse_floyd(lowerCAmelCase_ ) # lower half
if __name__ == "__main__":
print(r"""| /\ | |- | |- |--| |\ /| |-""")
print(r"""|/ \| |- |_ |_ |__| | \/ | |_""")
_A : str = 1
while K:
_A : str = int(input("""enter the number and , and see the magic : """))
print()
pretty_print(user_number)
_A : Dict = int(input("""press 0 to exit... and 1 to continue..."""))
print("""Good Bye...""")
| 100 |
import argparse
import logging
import os
import re
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
DataCollatorForLanguageModeling,
PushToHubCallback,
TFAutoModelForMaskedLM,
create_optimizer,
)
__lowercase : Tuple =logging.getLogger(__name__)
__lowercase : Optional[int] =tf.data.AUTOTUNE
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =argparse.ArgumentParser(description="Train a masked language model on TPU." )
parser.add_argument(
"--pretrained_model_config" , type=lowercase__ , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , )
parser.add_argument(
"--tokenizer" , type=lowercase__ , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , )
parser.add_argument(
"--per_replica_batch_size" , type=lowercase__ , default=8 , help="Batch size per TPU core." , )
parser.add_argument(
"--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , )
parser.add_argument(
"--tpu_name" , type=lowercase__ , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , )
parser.add_argument(
"--tpu_zone" , type=lowercase__ , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , )
parser.add_argument(
"--gcp_project" , type=lowercase__ , help="Google cloud project name. Only used for non-Colab TPU nodes." )
parser.add_argument(
"--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , )
parser.add_argument(
"--train_dataset" , type=lowercase__ , help="Path to training dataset to load. If the path begins with `gs://`"
" then the dataset will be loaded from a Google Cloud Storage bucket." , )
parser.add_argument(
"--shuffle_buffer_size" , type=lowercase__ , default=2**1_8 , help="Size of the shuffle buffer (in samples)" , )
parser.add_argument(
"--eval_dataset" , type=lowercase__ , help="Path to evaluation dataset to load. If the path begins with `gs://`"
" then the dataset will be loaded from a Google Cloud Storage bucket." , )
parser.add_argument(
"--num_epochs" , type=lowercase__ , default=1 , help="Number of epochs to train for." , )
parser.add_argument(
"--learning_rate" , type=lowercase__ , default=1E-4 , help="Learning rate to use for training." , )
parser.add_argument(
"--weight_decay_rate" , type=lowercase__ , default=1E-3 , help="Weight decay rate to use for training." , )
parser.add_argument(
"--max_length" , type=lowercase__ , default=5_1_2 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , )
parser.add_argument(
"--mlm_probability" , type=lowercase__ , default=0.15 , help="Fraction of tokens to mask during training." , )
parser.add_argument("--output_dir" , type=lowercase__ , required=lowercase__ , help="Path to save model checkpoints to." )
parser.add_argument("--hub_model_id" , type=lowercase__ , help="Model ID to upload to on the Hugging Face Hub." )
UpperCAmelCase_ =parser.parse_args()
return args
def a__ ( lowercase__ ):
'''simple docstring'''
try:
if args.tpu_name:
UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver(
args.tpu_name , zone=args.tpu_zone , project=args.gcp_project )
else:
UpperCAmelCase_ =tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
raise RuntimeError(
"Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or "
"--gcp_project. When running on a TPU VM, use --tpu_name local." )
tf.config.experimental_connect_to_cluster(lowercase__ )
tf.tpu.experimental.initialize_tpu_system(lowercase__ )
return tpu
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =0
for file in file_list:
UpperCAmelCase_ =file.split("/" )[-1]
UpperCAmelCase_ =re.search(R"-\d+-(\d+)\.tfrecord" , lowercase__ ).group(1 )
UpperCAmelCase_ =int(lowercase__ )
num_samples += sample_count
return num_samples
def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=None ):
'''simple docstring'''
UpperCAmelCase_ =count_samples(lowercase__ )
UpperCAmelCase_ =tf.data.Dataset.from_tensor_slices(lowercase__ )
if shuffle:
UpperCAmelCase_ =dataset.shuffle(len(lowercase__ ) )
UpperCAmelCase_ =tf.data.TFRecordDataset(lowercase__ , num_parallel_reads=lowercase__ )
# TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here
UpperCAmelCase_ =dataset.apply(tf.data.experimental.assert_cardinality(lowercase__ ) )
UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ )
if shuffle:
assert shuffle_buffer_size is not None
UpperCAmelCase_ =dataset.shuffle(args.shuffle_buffer_size )
UpperCAmelCase_ =dataset.batch(lowercase__ , drop_remainder=lowercase__ )
UpperCAmelCase_ =dataset.map(lowercase__ , num_parallel_calls=lowercase__ )
UpperCAmelCase_ =dataset.prefetch(lowercase__ )
return dataset
def a__ ( lowercase__ ):
'''simple docstring'''
if not args.no_tpu:
UpperCAmelCase_ =initialize_tpu(lowercase__ )
UpperCAmelCase_ =tf.distribute.TPUStrategy(lowercase__ )
else:
UpperCAmelCase_ =tf.distribute.OneDeviceStrategy(device="/gpu:0" )
if args.bfloataa:
tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" )
UpperCAmelCase_ =AutoTokenizer.from_pretrained(args.tokenizer )
UpperCAmelCase_ =AutoConfig.from_pretrained(args.pretrained_model_config )
UpperCAmelCase_ =tokenizer.vocab_size
UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) )
if not training_records:
raise ValueError(F'No .tfrecord files found in {args.train_dataset}.' )
UpperCAmelCase_ =tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) )
if not eval_records:
raise ValueError(F'No .tfrecord files found in {args.eval_dataset}.' )
UpperCAmelCase_ =count_samples(lowercase__ )
UpperCAmelCase_ =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync)
UpperCAmelCase_ =steps_per_epoch * args.num_epochs
with strategy.scope():
UpperCAmelCase_ =TFAutoModelForMaskedLM.from_config(lowercase__ )
model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built
UpperCAmelCase_ , UpperCAmelCase_ =create_optimizer(
num_train_steps=lowercase__ , num_warmup_steps=total_train_steps // 2_0 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , )
# Transformers models compute the right loss for their task by default when labels are passed, and will
# use this for training unless you specify your own loss function in compile().
model.compile(optimizer=lowercase__ , metrics=["accuracy"] )
def decode_fn(lowercase__ ):
UpperCAmelCase_ ={
"input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ),
"attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ),
}
return tf.io.parse_single_example(lowercase__ , lowercase__ )
# Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can
# use their methods in our data pipeline.
UpperCAmelCase_ =DataCollatorForLanguageModeling(
tokenizer=lowercase__ , mlm_probability=args.mlm_probability , mlm=lowercase__ , return_tensors="tf" )
def mask_with_collator(lowercase__ ):
# TF really needs an isin() function
UpperCAmelCase_ =(
~tf.cast(batch["attention_mask"] , tf.bool )
| (batch["input_ids"] == tokenizer.cls_token_id)
| (batch["input_ids"] == tokenizer.sep_token_id)
)
UpperCAmelCase_ , UpperCAmelCase_ =data_collator.tf_mask_tokens(
batch["input_ids"] , vocab_size=len(lowercase__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=lowercase__ , )
return batch
UpperCAmelCase_ =args.per_replica_batch_size * strategy.num_replicas_in_sync
UpperCAmelCase_ =prepare_dataset(
lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , shuffle_buffer_size=args.shuffle_buffer_size , )
UpperCAmelCase_ =prepare_dataset(
lowercase__ , decode_fn=lowercase__ , mask_fn=lowercase__ , batch_size=lowercase__ , shuffle=lowercase__ , )
UpperCAmelCase_ =[]
if args.hub_model_id:
callbacks.append(
PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=lowercase__ ) )
model.fit(
lowercase__ , validation_data=lowercase__ , epochs=args.num_epochs , callbacks=lowercase__ , )
model.save_pretrained(args.output_dir )
if __name__ == "__main__":
__lowercase : Union[str, Any] =parse_args()
main(args)
| 54 | 0 |
from math import log
from scipy.constants import Boltzmann, physical_constants
lowerCAmelCase__ : List[str] =3_00 # TEMPERATURE (unit = K)
def a__ ( A__, A__, A__, ):
if donor_conc <= 0:
raise ValueError('Donor concentration should be positive' )
elif acceptor_conc <= 0:
raise ValueError('Acceptor concentration should be positive' )
elif intrinsic_conc <= 0:
raise ValueError('Intrinsic concentration should be positive' )
elif donor_conc <= intrinsic_conc:
raise ValueError(
'Donor concentration should be greater than intrinsic concentration' )
elif acceptor_conc <= intrinsic_conc:
raise ValueError(
'Acceptor concentration should be greater than intrinsic concentration' )
else:
return (
Boltzmann
* T
* log((donor_conc * acceptor_conc) / intrinsic_conc**2 )
/ physical_constants["electron volt"][0]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 101 |
import unittest
from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class A :
@staticmethod
def lowerCAmelCase__ ( *_lowerCAmelCase: List[Any] , **_lowerCAmelCase: List[str] ) -> List[str]:
'''simple docstring'''
pass
@is_pipeline_test
@require_torch
@require_vision
class A ( unittest.TestCase ):
_snake_case =MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Tuple ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" )
UpperCAmelCase_ =[
{
"image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ),
"question": "How many cats are there?",
},
{
"image": "./tests/fixtures/tests_samples/COCO/000000039769.png",
"question": "How many cats are there?",
},
]
return vqa_pipeline, examples
def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: str ) -> int:
'''simple docstring'''
UpperCAmelCase_ =vqa_pipeline(_lowerCAmelCase , top_k=1 )
self.assertEqual(
_lowerCAmelCase , [
[{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}],
[{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}],
] , )
@require_torch
def lowerCAmelCase__ ( self: Tuple ) -> str:
'''simple docstring'''
UpperCAmelCase_ =pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" )
UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png"
UpperCAmelCase_ ="How many cats are there?"
UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question="How many cats are there?" , top_k=2 )
self.assertEqual(
_lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] )
UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
_lowerCAmelCase , [{"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}, {"score": ANY(_lowerCAmelCase ), "answer": ANY(_lowerCAmelCase )}] )
@slow
@require_torch
def lowerCAmelCase__ ( self: List[str] ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ =pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" )
UpperCAmelCase_ ="./tests/fixtures/tests_samples/COCO/000000039769.png"
UpperCAmelCase_ ="How many cats are there?"
UpperCAmelCase_ =vqa_pipeline(image=_lowerCAmelCase , question=_lowerCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] )
UpperCAmelCase_ =vqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(_lowerCAmelCase , decimals=4 ) , [{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}] )
UpperCAmelCase_ =vqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(_lowerCAmelCase , decimals=4 ) , [[{"score": 0.87_99, "answer": "2"}, {"score": 0.2_96, "answer": "1"}]] * 2 , )
@require_tf
@unittest.skip("Visual question answering not implemented in TF" )
def lowerCAmelCase__ ( self: int ) -> List[str]:
'''simple docstring'''
pass
| 54 | 0 |
"""simple docstring"""
import os
import sys
import tempfile
import torch
from .state import AcceleratorState
from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment
def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=() , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="no" , SCREAMING_SNAKE_CASE="29500" ):
UpperCamelCase : Any = False
UpperCamelCase : List[Any] = False
if any(key.startswith("""KAGGLE""" ) for key in os.environ.keys() ):
UpperCamelCase : List[str] = True
elif "IPython" in sys.modules:
UpperCamelCase : Any = """google.colab""" in str(sys.modules["""IPython"""].get_ipython() )
try:
UpperCamelCase : Union[str, Any] = PrecisionType(mixed_precision.lower() )
except ValueError:
raise ValueError(
f"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" )
if (in_colab or in_kaggle) and (os.environ.get("""TPU_NAME""" , SCREAMING_SNAKE_CASE ) is not None):
# TPU launch
import torch_xla.distributed.xla_multiprocessing as xmp
if len(AcceleratorState._shared_state ) > 0:
raise ValueError(
"""To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside """
"""your training function. Restart your notebook and make sure no cells initializes an """
"""`Accelerator`.""" )
if num_processes is None:
UpperCamelCase : List[str] = 8
UpperCamelCase : Any = PrepareForLaunch(SCREAMING_SNAKE_CASE , distributed_type="""TPU""" )
print(f"""Launching a training on {num_processes} TPU cores.""" )
xmp.spawn(SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , nprocs=SCREAMING_SNAKE_CASE , start_method="""fork""" )
elif in_colab:
# No need for a distributed launch otherwise as it's either CPU or one GPU.
if torch.cuda.is_available():
print("""Launching training on one GPU.""" )
else:
print("""Launching training on one CPU.""" )
function(*SCREAMING_SNAKE_CASE )
else:
if num_processes is None:
raise ValueError(
"""You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.""" )
if num_processes > 1:
# Multi-GPU launch
from torch.multiprocessing import start_processes
from torch.multiprocessing.spawn import ProcessRaisedException
if len(AcceleratorState._shared_state ) > 0:
raise ValueError(
"""To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized """
"""inside your training function. Restart your notebook and make sure no cells initializes an """
"""`Accelerator`.""" )
if torch.cuda.is_initialized():
raise ValueError(
"""To launch a multi-GPU training from your notebook, you need to avoid running any instruction """
"""using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA """
"""function.""" )
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
# process here (the other ones will be set be the launcher).
with patch_environment(
world_size=SCREAMING_SNAKE_CASE , master_addr="""127.0.01""" , master_port=SCREAMING_SNAKE_CASE , mixed_precision=SCREAMING_SNAKE_CASE ):
UpperCamelCase : Optional[int] = PrepareForLaunch(SCREAMING_SNAKE_CASE , distributed_type="""MULTI_GPU""" )
print(f"""Launching training on {num_processes} GPUs.""" )
try:
start_processes(SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , nprocs=SCREAMING_SNAKE_CASE , start_method="""fork""" )
except ProcessRaisedException as e:
if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]:
raise RuntimeError(
"""CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. """
"""This likely stems from an outside import causing issues once the `notebook_launcher()` is called. """
"""Please review your imports and test them when running the `notebook_launcher()` to identify """
"""which one is problematic.""" ) from e
else:
# No need for a distributed launch otherwise as it's either CPU, GPU or MPS.
if is_mps_available():
UpperCamelCase : List[str] = """1"""
print("""Launching training on MPS.""" )
elif torch.cuda.is_available():
print("""Launching training on one GPU.""" )
else:
print("""Launching training on CPU.""" )
function(*SCREAMING_SNAKE_CASE )
def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=() , SCREAMING_SNAKE_CASE=2 ):
from torch.multiprocessing import start_processes
with tempfile.NamedTemporaryFile() as tmp_file:
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
# process here (the other ones will be set be the launcher).
with patch_environment(
world_size=SCREAMING_SNAKE_CASE , master_addr="""127.0.01""" , master_port="""29500""" , accelerate_mixed_precision="""no""" , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu="""yes""" , ):
UpperCamelCase : Union[str, Any] = PrepareForLaunch(SCREAMING_SNAKE_CASE , debug=SCREAMING_SNAKE_CASE )
start_processes(SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , nprocs=SCREAMING_SNAKE_CASE , start_method="""fork""" )
| 102 |
def a__ ( lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
if len(lowercase__ ) != len(lowercase__ ):
raise ValueError("The length of profit and weight must be same." )
if max_weight <= 0:
raise ValueError("max_weight must greater than zero." )
if any(p < 0 for p in profit ):
raise ValueError("Profit can not be negative." )
if any(w < 0 for w in weight ):
raise ValueError("Weight can not be negative." )
# List created to store profit gained for the 1kg in case of each weight
# respectively. Calculate and append profit/weight for each element.
UpperCAmelCase_ =[p / w for p, w in zip(lowercase__ , lowercase__ )]
# Creating a copy of the list and sorting profit/weight in ascending order
UpperCAmelCase_ =sorted(lowercase__ )
# declaring useful variables
UpperCAmelCase_ =len(lowercase__ )
UpperCAmelCase_ =0
UpperCAmelCase_ =0
UpperCAmelCase_ =0
# loop till the total weight do not reach max limit e.g. 15 kg and till i<length
while limit <= max_weight and i < length:
# flag value for encountered greatest element in sorted_profit_by_weight
UpperCAmelCase_ =sorted_profit_by_weight[length - i - 1]
UpperCAmelCase_ =profit_by_weight.index(lowercase__ )
UpperCAmelCase_ =-1
# check if the weight encountered is less than the total weight
# encountered before.
if max_weight - limit >= weight[index]:
limit += weight[index]
# Adding profit gained for the given weight 1 ===
# weight[index]/weight[index]
gain += 1 * profit[index]
else:
# Since the weight encountered is greater than limit, therefore take the
# required number of remaining kgs and calculate profit for it.
# weight remaining / weight[index]
gain += (max_weight - limit) / weight[index] * profit[index]
break
i += 1
return gain
if __name__ == "__main__":
print(
"""Input profits, weights, and then max_weight (all positive ints) separated by """
"""spaces."""
)
__lowercase : List[str] =[int(x) for x in input("""Input profits separated by spaces: """).split()]
__lowercase : Union[str, Any] =[int(x) for x in input("""Input weights separated by spaces: """).split()]
__lowercase : Tuple =int(input("""Max weight allowed: """))
# Function Call
calc_profit(profit, weight, max_weight)
| 54 | 0 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_mobilebert import MobileBertTokenizer
snake_case = logging.get_logger(__name__)
snake_case = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
snake_case = {
'''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''},
'''tokenizer_file''': {
'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json'''
},
}
snake_case = {'''mobilebert-uncased''': 5_1_2}
snake_case = {}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
A__ : List[str] = VOCAB_FILES_NAMES
A__ : List[str] = PRETRAINED_VOCAB_FILES_MAP
A__ : int = PRETRAINED_INIT_CONFIGURATION
A__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ : Tuple = MobileBertTokenizer
def __init__( self : List[str] , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Any=None , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Union[str, Any]="[UNK]" , __lowerCamelCase : List[Any]="[SEP]" , __lowerCamelCase : Optional[int]="[PAD]" , __lowerCamelCase : str="[CLS]" , __lowerCamelCase : List[Any]="[MASK]" , __lowerCamelCase : List[Any]=True , __lowerCamelCase : List[Any]=None , **__lowerCamelCase : List[Any] , ):
"""simple docstring"""
super().__init__(
__lowerCamelCase , tokenizer_file=__lowerCamelCase , do_lower_case=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , tokenize_chinese_chars=__lowerCamelCase , strip_accents=__lowerCamelCase , **__lowerCamelCase , )
_snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , __lowerCamelCase ) != do_lower_case
or normalizer_state.get('''strip_accents''' , __lowerCamelCase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , __lowerCamelCase ) != tokenize_chinese_chars
):
_snake_case = getattr(__lowerCamelCase , normalizer_state.pop('''type''' ) )
_snake_case = do_lower_case
_snake_case = strip_accents
_snake_case = tokenize_chinese_chars
_snake_case = normalizer_class(**__lowerCamelCase )
_snake_case = do_lower_case
def __UpperCAmelCase ( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Dict=None ):
"""simple docstring"""
_snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
"""simple docstring"""
_snake_case = [self.sep_token_id]
_snake_case = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ):
"""simple docstring"""
_snake_case = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase )
return tuple(__lowerCamelCase )
| 103 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
__lowercase : Dict ={
"""configuration_blip""": [
"""BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BlipConfig""",
"""BlipTextConfig""",
"""BlipVisionConfig""",
],
"""processing_blip""": ["""BlipProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase : Any =["""BlipImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase : List[Any] =[
"""BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BlipModel""",
"""BlipPreTrainedModel""",
"""BlipForConditionalGeneration""",
"""BlipForQuestionAnswering""",
"""BlipVisionModel""",
"""BlipTextModel""",
"""BlipForImageTextRetrieval""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowercase : List[Any] =[
"""TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBlipModel""",
"""TFBlipPreTrainedModel""",
"""TFBlipForConditionalGeneration""",
"""TFBlipForQuestionAnswering""",
"""TFBlipVisionModel""",
"""TFBlipTextModel""",
"""TFBlipForImageTextRetrieval""",
]
if TYPE_CHECKING:
from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig
from .processing_blip import BlipProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_blip import BlipImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip import (
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
BlipModel,
BlipPreTrainedModel,
BlipTextModel,
BlipVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blip import (
TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBlipForConditionalGeneration,
TFBlipForImageTextRetrieval,
TFBlipForQuestionAnswering,
TFBlipModel,
TFBlipPreTrainedModel,
TFBlipTextModel,
TFBlipVisionModel,
)
else:
import sys
__lowercase : Union[str, Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 54 | 0 |
"""simple docstring"""
import mpmath # for roots of unity
import numpy as np
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ) -> Optional[Any]:
# Input as list
A__ = list(poly_a or [0] )[:]
A__ = list(poly_b or [0] )[:]
# Remove leading zero coefficients
while self.polyA[-1] == 0:
self.polyA.pop()
A__ = len(self.polyA )
while self.polyB[-1] == 0:
self.polyB.pop()
A__ = len(self.polyB )
# Add 0 to make lengths equal a power of 2
A__ = int(
2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) )
while len(self.polyA ) < self.c_max_length:
self.polyA.append(0 )
while len(self.polyB ) < self.c_max_length:
self.polyB.append(0 )
# A complex root used for the fourier transform
A__ = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) )
# The product
A__ = self.__multiply()
def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> Optional[int]:
A__ = [[x] for x in self.polyA] if which == "A" else [[x] for x in self.polyB]
# Corner case
if len(SCREAMING_SNAKE_CASE__ ) <= 1:
return dft[0]
#
A__ = self.c_max_length // 2
while next_ncol > 0:
A__ = [[] for i in range(SCREAMING_SNAKE_CASE__ )]
A__ = self.root**next_ncol
# First half of next step
A__ = 1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(SCREAMING_SNAKE_CASE__ ):
new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] )
current_root *= root
# Second half of next step
A__ = 1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(SCREAMING_SNAKE_CASE__ ):
new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] )
current_root *= root
# Update
A__ = new_dft
A__ = next_ncol // 2
return dft[0]
def snake_case__ ( self ) -> int:
A__ = self.__dft("A" )
A__ = self.__dft("B" )
A__ = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]]
del dft_a
del dft_b
# Corner Case
if len(inverce_c[0] ) <= 1:
return inverce_c[0]
# Inverse DFT
A__ = 2
while next_ncol <= self.c_max_length:
A__ = [[] for i in range(SCREAMING_SNAKE_CASE__ )]
A__ = self.root ** (next_ncol // 2)
A__ = 1
# First half of next step
for j in range(self.c_max_length // next_ncol ):
for i in range(next_ncol // 2 ):
# Even positions
new_inverse_c[i].append(
(
inverce_c[i][j]
+ inverce_c[i][j + self.c_max_length // next_ncol]
)
/ 2 )
# Odd positions
new_inverse_c[i + next_ncol // 2].append(
(
inverce_c[i][j]
- inverce_c[i][j + self.c_max_length // next_ncol]
)
/ (2 * current_root) )
current_root *= root
# Update
A__ = new_inverse_c
next_ncol *= 2
# Unpack
A__ = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c]
# Remove leading 0's
while inverce_c[-1] == 0:
inverce_c.pop()
return inverce_c
def __str__( self ) -> Optional[Any]:
A__ = "A = " + " + ".join(
f"""{coef}*x^{i}""" for coef, i in enumerate(self.polyA[: self.len_A] ) )
A__ = "B = " + " + ".join(
f"""{coef}*x^{i}""" for coef, i in enumerate(self.polyB[: self.len_B] ) )
A__ = "A*B = " + " + ".join(
f"""{coef}*x^{i}""" for coef, i in enumerate(self.product ) )
return f"""{a}\n{b}\n{c}"""
# Unit tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 104 |
import fire
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer
from utils import SeqaSeqDataset, pickle_save
def a__ ( lowercase__ , lowercase__ , lowercase__=1_0_2_4 , lowercase__=1_0_2_4 , lowercase__=False , **lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =AutoTokenizer.from_pretrained(lowercase__ )
UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="train" , **lowercase__ )
UpperCAmelCase_ =tok.pad_token_id
def get_lens(lowercase__ ):
UpperCAmelCase_ =tqdm(
DataLoader(lowercase__ , batch_size=5_1_2 , num_workers=8 , shuffle=lowercase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , )
UpperCAmelCase_ =[]
for batch in dl:
UpperCAmelCase_ =batch["input_ids"].ne(lowercase__ ).sum(1 ).tolist()
UpperCAmelCase_ =batch["labels"].ne(lowercase__ ).sum(1 ).tolist()
if consider_target:
for src, tgt in zip(lowercase__ , lowercase__ ):
max_lens.append(max(lowercase__ , lowercase__ ) )
else:
max_lens.extend(lowercase__ )
return max_lens
UpperCAmelCase_ =get_lens(lowercase__ )
UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="val" , **lowercase__ )
UpperCAmelCase_ =get_lens(lowercase__ )
pickle_save(lowercase__ , train_ds.len_file )
pickle_save(lowercase__ , val_ds.len_file )
if __name__ == "__main__":
fire.Fire(save_len_file)
| 54 | 0 |
def __UpperCAmelCase ( lowerCamelCase_ : str ) -> bool:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = 0
for ch in input_str:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = ord(lowerCamelCase_ )
SCREAMING_SNAKE_CASE_ : Tuple = pow(2 , lowerCamelCase_ )
# If we already turned on bit for current character's unicode
if bitmap >> ch_unicode & 1 == 1:
return False
bitmap |= ch_bit_index_on
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 105 |
from __future__ import annotations
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTForImageClassification, TFViTModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class A :
def __init__( self: Any , _lowerCAmelCase: str , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: List[str]=30 , _lowerCAmelCase: List[Any]=2 , _lowerCAmelCase: List[str]=3 , _lowerCAmelCase: Dict=True , _lowerCAmelCase: int=True , _lowerCAmelCase: Tuple=32 , _lowerCAmelCase: str=2 , _lowerCAmelCase: Dict=4 , _lowerCAmelCase: Dict=37 , _lowerCAmelCase: Optional[Any]="gelu" , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: Union[str, Any]=10 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=3 , _lowerCAmelCase: Optional[int]=None , ) -> Any:
'''simple docstring'''
UpperCAmelCase_ =parent
UpperCAmelCase_ =batch_size
UpperCAmelCase_ =image_size
UpperCAmelCase_ =patch_size
UpperCAmelCase_ =num_channels
UpperCAmelCase_ =is_training
UpperCAmelCase_ =use_labels
UpperCAmelCase_ =hidden_size
UpperCAmelCase_ =num_hidden_layers
UpperCAmelCase_ =num_attention_heads
UpperCAmelCase_ =intermediate_size
UpperCAmelCase_ =hidden_act
UpperCAmelCase_ =hidden_dropout_prob
UpperCAmelCase_ =attention_probs_dropout_prob
UpperCAmelCase_ =type_sequence_label_size
UpperCAmelCase_ =initializer_range
UpperCAmelCase_ =scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCAmelCase_ =(image_size // patch_size) ** 2
UpperCAmelCase_ =num_patches + 1
def lowerCAmelCase__ ( self: Any ) -> int:
'''simple docstring'''
UpperCAmelCase_ =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ =None
if self.use_labels:
UpperCAmelCase_ =ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ =self.get_config()
return config, pixel_values, labels
def lowerCAmelCase__ ( self: List[Any] ) -> Dict:
'''simple docstring'''
return ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , )
def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: int , _lowerCAmelCase: Any , _lowerCAmelCase: List[str] ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ =TFViTModel(config=_lowerCAmelCase )
UpperCAmelCase_ =model(_lowerCAmelCase , training=_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# Test with an image with different size than the one specified in config.
UpperCAmelCase_ =self.image_size // 2
UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size]
UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase )
UpperCAmelCase_ =(image_size // self.patch_size) ** 2 + 1
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) )
def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[Any] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ =self.type_sequence_label_size
UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase )
UpperCAmelCase_ =model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# Test with an image with different size than the one specified in config.
UpperCAmelCase_ =self.image_size // 2
UpperCAmelCase_ =pixel_values[:, :, :image_size, :image_size]
UpperCAmelCase_ =model(_lowerCAmelCase , interpolate_pos_encoding=_lowerCAmelCase , training=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCAmelCase_ =1
UpperCAmelCase_ =TFViTForImageClassification(_lowerCAmelCase )
UpperCAmelCase_ =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase_ =model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowerCAmelCase__ ( self: Any ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ =self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs
UpperCAmelCase_ ={"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class A ( __lowercase , __lowercase , unittest.TestCase ):
_snake_case =(TFViTModel, TFViTForImageClassification) if is_tf_available() else ()
_snake_case =(
{'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification}
if is_tf_available()
else {}
)
_snake_case =False
_snake_case =False
_snake_case =False
def lowerCAmelCase__ ( self: int ) -> int:
'''simple docstring'''
UpperCAmelCase_ =TFViTModelTester(self )
UpperCAmelCase_ =ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 )
def lowerCAmelCase__ ( self: Optional[Any] ) -> str:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="ViT does not use inputs_embeds" )
def lowerCAmelCase__ ( self: Dict ) -> Tuple:
'''simple docstring'''
pass
@unittest.skip(reason="ViT does not use inputs_embeds" )
def lowerCAmelCase__ ( self: int ) -> Optional[Any]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: List[Any] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ =model_class(_lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
UpperCAmelCase_ =model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_lowerCAmelCase , tf.keras.layers.Layer ) )
def lowerCAmelCase__ ( self: List[str] ) -> int:
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ =model_class(_lowerCAmelCase )
UpperCAmelCase_ =inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ =[*signature.parameters.keys()]
UpperCAmelCase_ =["pixel_values"]
self.assertListEqual(arg_names[:1] , _lowerCAmelCase )
def lowerCAmelCase__ ( self: int ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def lowerCAmelCase__ ( self: List[Any] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase )
@slow
def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ =TFViTModel.from_pretrained("google/vit-base-patch16-224" )
self.assertIsNotNone(_lowerCAmelCase )
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class A ( unittest.TestCase ):
@cached_property
def lowerCAmelCase__ ( self: Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None
@slow
def lowerCAmelCase__ ( self: Dict ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ =TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" )
UpperCAmelCase_ =self.default_image_processor
UpperCAmelCase_ =prepare_img()
UpperCAmelCase_ =image_processor(images=_lowerCAmelCase , return_tensors="tf" )
# forward pass
UpperCAmelCase_ =model(**_lowerCAmelCase )
# verify the logits
UpperCAmelCase_ =tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , _lowerCAmelCase )
UpperCAmelCase_ =tf.constant([-0.27_44, 0.82_15, -0.08_36] )
tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 )
| 54 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__snake_case :Tuple ={
'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'],
'tokenization_convbert': ['ConvBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case :Dict =['ConvBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case :Optional[int] =[
'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'ConvBertForMaskedLM',
'ConvBertForMultipleChoice',
'ConvBertForQuestionAnswering',
'ConvBertForSequenceClassification',
'ConvBertForTokenClassification',
'ConvBertLayer',
'ConvBertModel',
'ConvBertPreTrainedModel',
'load_tf_weights_in_convbert',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case :Optional[Any] =[
'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFConvBertForMaskedLM',
'TFConvBertForMultipleChoice',
'TFConvBertForQuestionAnswering',
'TFConvBertForSequenceClassification',
'TFConvBertForTokenClassification',
'TFConvBertLayer',
'TFConvBertModel',
'TFConvBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig
from .tokenization_convbert import ConvBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_convbert_fast import ConvBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convbert import (
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertLayer,
ConvBertModel,
ConvBertPreTrainedModel,
load_tf_weights_in_convbert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convbert import (
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertLayer,
TFConvBertModel,
TFConvBertPreTrainedModel,
)
else:
import sys
__snake_case :Dict =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 106 |
from __future__ import annotations
def a__ ( lowercase__ , lowercase__ ):
'''simple docstring'''
if len(lowercase__ ) == 0:
return False
UpperCAmelCase_ =len(lowercase__ ) // 2
if a_list[midpoint] == item:
return True
if item < a_list[midpoint]:
return binary_search(a_list[:midpoint] , lowercase__ )
else:
return binary_search(a_list[midpoint + 1 :] , lowercase__ )
if __name__ == "__main__":
__lowercase : Tuple =input("""Enter numbers separated by comma:\n""").strip()
__lowercase : Optional[Any] =[int(item.strip()) for item in user_input.split(""",""")]
__lowercase : List[Any] =int(input("""Enter the number to be found in the list:\n""").strip())
__lowercase : Optional[Any] ="""""" if binary_search(sequence, target) else """not """
print(f"""{target} was {not_str}found in {sequence}""")
| 54 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCAmelCase : List[Any] = logging.get_logger(__name__)
_UpperCAmelCase : int = {
'''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''',
'''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''',
'''uclanlp/visualbert-vqa-coco-pre''': (
'''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json'''
),
'''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''',
'''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''',
'''uclanlp/visualbert-vcr-coco-pre''': (
'''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json'''
),
'''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''',
'''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''',
'''uclanlp/visualbert-nlvr2-coco-pre''': (
'''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json'''
)
# See all VisualBERT models at https://huggingface.co/models?filter=visual_bert
}
class lowercase_ ( _UpperCamelCase ):
"""simple docstring"""
__lowerCAmelCase = "visual_bert"
def __init__( self : Union[str, Any], UpperCamelCase__ : Any=3_05_22, UpperCamelCase__ : Union[str, Any]=7_68, UpperCamelCase__ : Optional[Any]=5_12, UpperCamelCase__ : Tuple=12, UpperCamelCase__ : Union[str, Any]=12, UpperCamelCase__ : int=30_72, UpperCamelCase__ : List[str]="gelu", UpperCamelCase__ : int=0.1, UpperCamelCase__ : List[Any]=0.1, UpperCamelCase__ : Any=5_12, UpperCamelCase__ : int=2, UpperCamelCase__ : Any=0.02, UpperCamelCase__ : Union[str, Any]=1e-12, UpperCamelCase__ : int=False, UpperCamelCase__ : int=True, UpperCamelCase__ : Optional[Any]=1, UpperCamelCase__ : Tuple=0, UpperCamelCase__ : Optional[Any]=2, **UpperCamelCase__ : str, ) -> List[Any]:
super().__init__(pad_token_id=UpperCamelCase__, bos_token_id=UpperCamelCase__, eos_token_id=UpperCamelCase__, **UpperCamelCase__ )
_A = vocab_size
_A = max_position_embeddings
_A = hidden_size
_A = visual_embedding_dim
_A = num_hidden_layers
_A = num_attention_heads
_A = intermediate_size
_A = hidden_act
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = initializer_range
_A = type_vocab_size
_A = layer_norm_eps
_A = bypass_transformer
_A = special_visual_initialize
| 107 |
import os
from itertools import chain
from random import randrange, shuffle
import pytest
from .sola import PokerHand
__lowercase : Any =(
"""4S 3H 2C 7S 5H""",
"""9D 8H 2C 6S 7H""",
"""2D 6D 9D TH 7D""",
"""TC 8C 2S JH 6C""",
"""JH 8S TH AH QH""",
"""TS KS 5S 9S AC""",
"""KD 6S 9D TH AD""",
"""KS 8D 4D 9S 4S""", # pair
"""8C 4S KH JS 4D""", # pair
"""QH 8H KD JH 8S""", # pair
"""KC 4H KS 2H 8D""", # pair
"""KD 4S KC 3H 8S""", # pair
"""AH 8S AS KC JH""", # pair
"""3H 4C 4H 3S 2H""", # 2 pairs
"""5S 5D 2C KH KH""", # 2 pairs
"""3C KH 5D 5S KH""", # 2 pairs
"""AS 3C KH AD KH""", # 2 pairs
"""7C 7S 3S 7H 5S""", # 3 of a kind
"""7C 7S KH 2H 7H""", # 3 of a kind
"""AC KH QH AH AS""", # 3 of a kind
"""2H 4D 3C AS 5S""", # straight (low ace)
"""3C 5C 4C 2C 6H""", # straight
"""6S 8S 7S 5H 9H""", # straight
"""JS QS 9H TS KH""", # straight
"""QC KH TS JS AH""", # straight (high ace)
"""8C 9C 5C 3C TC""", # flush
"""3S 8S 9S 5S KS""", # flush
"""4C 5C 9C 8C KC""", # flush
"""JH 8H AH KH QH""", # flush
"""3D 2H 3H 2C 2D""", # full house
"""2H 2C 3S 3H 3D""", # full house
"""KH KC 3S 3H 3D""", # full house
"""JC 6H JS JD JH""", # 4 of a kind
"""JC 7H JS JD JH""", # 4 of a kind
"""JC KH JS JD JH""", # 4 of a kind
"""2S AS 4S 5S 3S""", # straight flush (low ace)
"""2D 6D 3D 4D 5D""", # straight flush
"""5C 6C 3C 7C 4C""", # straight flush
"""JH 9H TH KH QH""", # straight flush
"""JH AH TH KH QH""", # royal flush (high ace straight flush)
)
__lowercase : Union[str, Any] =(
("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""),
("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""),
("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""),
("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""),
("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""),
("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""),
("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""),
("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""),
("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""),
("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""),
("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""),
("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""),
("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""),
("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""),
("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""),
("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""),
("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""),
("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""),
("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""),
("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""),
("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""),
("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""),
("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""),
("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""),
("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""),
("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""),
("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""),
("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""),
("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""),
("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""),
("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""),
("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""),
("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""),
)
__lowercase : List[str] =(
("""2H 3H 4H 5H 6H""", True),
("""AS AH 2H AD AC""", False),
("""2H 3H 5H 6H 7H""", True),
("""KS AS TS QS JS""", True),
("""8H 9H QS JS TH""", False),
("""AS 3S 4S 8S 2S""", True),
)
__lowercase : str =(
("""2H 3H 4H 5H 6H""", True),
("""AS AH 2H AD AC""", False),
("""2H 3H 5H 6H 7H""", False),
("""KS AS TS QS JS""", True),
("""8H 9H QS JS TH""", True),
)
__lowercase : Union[str, Any] =(
("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]),
("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]),
("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]),
("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]),
)
__lowercase : str =(
("""JH AH TH KH QH""", 0),
("""JH 9H TH KH QH""", 0),
("""JC KH JS JD JH""", 7),
("""KH KC 3S 3H 3D""", 6),
("""8C 9C 5C 3C TC""", 0),
("""JS QS 9H TS KH""", 0),
("""7C 7S KH 2H 7H""", 3),
("""3C KH 5D 5S KH""", 2),
("""QH 8H KD JH 8S""", 1),
("""2D 6D 9D TH 7D""", 0),
)
__lowercase : int =(
("""JH AH TH KH QH""", 23),
("""JH 9H TH KH QH""", 22),
("""JC KH JS JD JH""", 21),
("""KH KC 3S 3H 3D""", 20),
("""8C 9C 5C 3C TC""", 19),
("""JS QS 9H TS KH""", 18),
("""7C 7S KH 2H 7H""", 17),
("""3C KH 5D 5S KH""", 16),
("""QH 8H KD JH 8S""", 15),
("""2D 6D 9D TH 7D""", 14),
)
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ =randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) )
UpperCAmelCase_ =["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)]
UpperCAmelCase_ , UpperCAmelCase_ =SORTED_HANDS[play], SORTED_HANDS[oppo]
return hand, other, expected
def a__ ( lowercase__ = 1_0_0 ):
'''simple docstring'''
return (generate_random_hand() for _ in range(lowercase__ ))
@pytest.mark.parametrize("hand, expected" , lowercase__ )
def a__ ( lowercase__ , lowercase__ ):
'''simple docstring'''
assert PokerHand(lowercase__ )._is_flush() == expected
@pytest.mark.parametrize("hand, expected" , lowercase__ )
def a__ ( lowercase__ , lowercase__ ):
'''simple docstring'''
assert PokerHand(lowercase__ )._is_straight() == expected
@pytest.mark.parametrize("hand, expected, card_values" , lowercase__ )
def a__ ( lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =PokerHand(lowercase__ )
assert player._is_five_high_straight() == expected
assert player._card_values == card_values
@pytest.mark.parametrize("hand, expected" , lowercase__ )
def a__ ( lowercase__ , lowercase__ ):
'''simple docstring'''
assert PokerHand(lowercase__ )._is_same_kind() == expected
@pytest.mark.parametrize("hand, expected" , lowercase__ )
def a__ ( lowercase__ , lowercase__ ):
'''simple docstring'''
assert PokerHand(lowercase__ )._hand_type == expected
@pytest.mark.parametrize("hand, other, expected" , lowercase__ )
def a__ ( lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected
@pytest.mark.parametrize("hand, other, expected" , generate_random_hands() )
def a__ ( lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =[PokerHand(lowercase__ ) for hand in SORTED_HANDS]
UpperCAmelCase_ =poker_hands.copy()
shuffle(lowercase__ )
UpperCAmelCase_ =chain(sorted(lowercase__ ) )
for index, hand in enumerate(lowercase__ ):
assert hand == poker_hands[index]
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =[PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )]
pokerhands.sort(reverse=lowercase__ )
assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C"
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =PokerHand("2C 4S AS 3D 5C" )
UpperCAmelCase_ =True
UpperCAmelCase_ =[5, 4, 3, 2, 1_4]
for _ in range(1_0 ):
assert pokerhand._is_five_high_straight() == expected
assert pokerhand._card_values == expected_card_values
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =0
UpperCAmelCase_ =os.path.abspath(os.path.dirname(lowercase__ ) )
UpperCAmelCase_ =os.path.join(lowercase__ , "poker_hands.txt" )
with open(lowercase__ ) as file_hand:
for line in file_hand:
UpperCAmelCase_ =line[:1_4].strip()
UpperCAmelCase_ =line[1_5:].strip()
UpperCAmelCase_ , UpperCAmelCase_ =PokerHand(lowercase__ ), PokerHand(lowercase__ )
UpperCAmelCase_ =player.compare_with(lowercase__ )
if output == "Win":
answer += 1
assert answer == 3_7_6
| 54 | 0 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor
@require_vision
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
'''simple docstring'''
def lowerCamelCase ( self : Dict ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = tempfile.mkdtemp()
_UpperCAmelCase = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""[PAD]""",
"""[MASK]""",
"""的""",
"""价""",
"""格""",
"""是""",
"""15""",
"""便""",
"""alex""",
"""##andra""",
""",""",
"""。""",
"""-""",
"""t""",
"""shirt""",
]
_UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
_UpperCAmelCase = {
"""do_resize""": True,
"""size""": {"""height""": 224, """width""": 224},
"""do_center_crop""": True,
"""crop_size""": {"""height""": 18, """width""": 18},
"""do_normalize""": True,
"""image_mean""": [0.4814_5466, 0.457_8275, 0.4082_1073],
"""image_std""": [0.2686_2954, 0.2613_0258, 0.2757_7711],
"""do_convert_rgb""": True,
}
_UpperCAmelCase = os.path.join(self.tmpdirname , lowerCamelCase )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(lowerCamelCase , lowerCamelCase )
def lowerCamelCase ( self : List[Any] , **lowerCamelCase : List[str] ) -> Tuple:
"""simple docstring"""
return BertTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase )
def lowerCamelCase ( self : Optional[int] , **lowerCamelCase : List[str] ) -> Union[str, Any]:
"""simple docstring"""
return BertTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase )
def lowerCamelCase ( self : Optional[Any] , **lowerCamelCase : List[Any] ) -> int:
"""simple docstring"""
return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase )
def lowerCamelCase ( self : Union[str, Any] ) -> int:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def lowerCamelCase ( self : Tuple ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
_UpperCAmelCase = [Image.fromarray(np.moveaxis(lowerCamelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowerCamelCase ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = self.get_rust_tokenizer()
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = ChineseCLIPProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase )
processor_slow.save_pretrained(self.tmpdirname )
_UpperCAmelCase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCamelCase )
_UpperCAmelCase = ChineseCLIPProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase )
processor_fast.save_pretrained(self.tmpdirname )
_UpperCAmelCase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , lowerCamelCase )
self.assertIsInstance(processor_fast.tokenizer , lowerCamelCase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , lowerCamelCase )
self.assertIsInstance(processor_fast.image_processor , lowerCamelCase )
def lowerCamelCase ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
_UpperCAmelCase = self.get_tokenizer(cls_token="""(CLS)""" , sep_token="""(SEP)""" )
_UpperCAmelCase = self.get_image_processor(do_normalize=lowerCamelCase )
_UpperCAmelCase = ChineseCLIPProcessor.from_pretrained(
self.tmpdirname , cls_token="""(CLS)""" , sep_token="""(SEP)""" , do_normalize=lowerCamelCase )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , lowerCamelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , lowerCamelCase )
def lowerCamelCase ( self : List[str] ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = ChineseCLIPProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase )
_UpperCAmelCase = self.prepare_image_inputs()
_UpperCAmelCase = image_processor(lowerCamelCase , return_tensors="""np""" )
_UpperCAmelCase = processor(images=lowerCamelCase , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowerCamelCase ( self : Tuple ) -> Any:
"""simple docstring"""
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = ChineseCLIPProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase )
_UpperCAmelCase = """Alexandra,T-shirt的价格是15便士。"""
_UpperCAmelCase = processor(text=lowerCamelCase )
_UpperCAmelCase = tokenizer(lowerCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowerCamelCase ( self : Any ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = ChineseCLIPProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase )
_UpperCAmelCase = """Alexandra,T-shirt的价格是15便士。"""
_UpperCAmelCase = self.prepare_image_inputs()
_UpperCAmelCase = processor(text=lowerCamelCase , images=lowerCamelCase )
self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] )
# test if it raises when no input is passed
with pytest.raises(lowerCamelCase ):
processor()
def lowerCamelCase ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = ChineseCLIPProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase )
_UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
_UpperCAmelCase = processor.batch_decode(lowerCamelCase )
_UpperCAmelCase = tokenizer.batch_decode(lowerCamelCase )
self.assertListEqual(lowerCamelCase , lowerCamelCase )
def lowerCamelCase ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = ChineseCLIPProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase )
_UpperCAmelCase = """Alexandra,T-shirt的价格是15便士。"""
_UpperCAmelCase = self.prepare_image_inputs()
_UpperCAmelCase = processor(text=lowerCamelCase , images=lowerCamelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 108 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__lowercase : int =logging.get_logger(__name__)
class A ( __lowercase ):
_snake_case =['''pixel_values''']
def __init__( self: List[Any] , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = PILImageResampling.BILINEAR , _lowerCAmelCase: bool = True , _lowerCAmelCase: Union[int, float] = 1 / 255 , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , **_lowerCAmelCase: Optional[int] , ) -> None:
'''simple docstring'''
super().__init__(**_lowerCAmelCase )
UpperCAmelCase_ =size if size is not None else {"shortest_edge": 384}
UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
UpperCAmelCase_ =do_resize
UpperCAmelCase_ =size
# Default value set here for backwards compatibility where the value in config is None
UpperCAmelCase_ =crop_pct if crop_pct is not None else 224 / 256
UpperCAmelCase_ =resample
UpperCAmelCase_ =do_rescale
UpperCAmelCase_ =rescale_factor
UpperCAmelCase_ =do_normalize
UpperCAmelCase_ =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase_ =image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: float , _lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Any , ) -> np.ndarray:
'''simple docstring'''
UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
if "shortest_edge" not in size:
raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' )
UpperCAmelCase_ =size["shortest_edge"]
if shortest_edge < 384:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
UpperCAmelCase_ =int(shortest_edge / crop_pct )
UpperCAmelCase_ =get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase )
UpperCAmelCase_ =resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=_lowerCAmelCase , size=(shortest_edge, shortest_edge) , data_format=_lowerCAmelCase , **_lowerCAmelCase )
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
_lowerCAmelCase , size=(shortest_edge, shortest_edge) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[int, float] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: str , ) -> Optional[Any]:
'''simple docstring'''
return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Dict , ) -> np.ndarray:
'''simple docstring'''
return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase )
def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: ImageInput , _lowerCAmelCase: bool = None , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: float = None , _lowerCAmelCase: PILImageResampling = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: float = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: ChannelDimension = ChannelDimension.FIRST , **_lowerCAmelCase: Optional[Any] , ) -> PIL.Image.Image:
'''simple docstring'''
UpperCAmelCase_ =do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ =crop_pct if crop_pct is not None else self.crop_pct
UpperCAmelCase_ =resample if resample is not None else self.resample
UpperCAmelCase_ =do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase_ =do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase_ =image_mean if image_mean is not None else self.image_mean
UpperCAmelCase_ =image_std if image_std is not None else self.image_std
UpperCAmelCase_ =size if size is not None else self.size
UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase )
UpperCAmelCase_ =make_list_of_images(_lowerCAmelCase )
if not valid_images(_lowerCAmelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_resize and size["shortest_edge"] < 384 and crop_pct is None:
raise ValueError("crop_pct must be specified if size < 384." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
UpperCAmelCase_ =[to_numpy_array(_lowerCAmelCase ) for image in images]
if do_resize:
UpperCAmelCase_ =[self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , crop_pct=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images]
if do_rescale:
UpperCAmelCase_ =[self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images]
if do_normalize:
UpperCAmelCase_ =[self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images]
UpperCAmelCase_ =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images]
UpperCAmelCase_ ={"pixel_values": images}
return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
| 54 | 0 |
'''simple docstring'''
def __magic_name__ ( __UpperCAmelCase ) -> list[int]:
'''simple docstring'''
if num <= 0:
raise ValueError("""Input must be a positive integer""" )
__SCREAMING_SNAKE_CASE = [True] * (num + 1)
__SCREAMING_SNAKE_CASE = 2
while p * p <= num:
if primes[p]:
for i in range(p * p , num + 1 , __UpperCAmelCase ):
__SCREAMING_SNAKE_CASE = False
p += 1
return [prime for prime in range(2 , num + 1 ) if primes[prime]]
if __name__ == "__main__":
import doctest
doctest.testmod()
a = int(input("Enter a positive integer: ").strip())
print(prime_sieve_eratosthenes(user_num))
| 109 |
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
__lowercase : List[Any] =WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""])
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =test_results.split(" " )
UpperCAmelCase_ =0
UpperCAmelCase_ =0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
UpperCAmelCase_ =expressions[-2] if "=" in expressions[-1] else expressions[-1]
for i, expression in enumerate(lowercase__ ):
if "failed" in expression:
failed += int(expressions[i - 1] )
if "passed" in expression:
success += int(expressions[i - 1] )
return failed, success, time_spent
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ ={}
UpperCAmelCase_ =None
UpperCAmelCase_ =False
for line in failures_short_lines.split("\n" ):
if re.search(R"_ \[doctest\]" , lowercase__ ):
UpperCAmelCase_ =True
UpperCAmelCase_ =line.split(" " )[2]
elif in_error and not line.split(" " )[0].isdigit():
UpperCAmelCase_ =line
UpperCAmelCase_ =False
return failures
class A :
def __init__( self: Optional[Any] , _lowerCAmelCase: str , _lowerCAmelCase: Dict ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ =title
UpperCAmelCase_ =doc_test_results["time_spent"].split("," )[0]
UpperCAmelCase_ =doc_test_results["success"]
UpperCAmelCase_ =doc_test_results["failures"]
UpperCAmelCase_ =self.n_success + self.n_failures
# Failures and success of the modeling tests
UpperCAmelCase_ =doc_test_results
@property
def lowerCAmelCase__ ( self: Optional[Any] ) -> str:
'''simple docstring'''
UpperCAmelCase_ =[self._time_spent]
UpperCAmelCase_ =0
for time in time_spent:
UpperCAmelCase_ =time.split(":" )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(_lowerCAmelCase ) == 1:
UpperCAmelCase_ =[0, 0, time_parts[0]]
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 3600 + minutes * 60 + seconds
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60
return F'{int(_lowerCAmelCase )}h{int(_lowerCAmelCase )}m{int(_lowerCAmelCase )}s'
@property
def lowerCAmelCase__ ( self: int ) -> Dict:
'''simple docstring'''
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict:
'''simple docstring'''
return {
"type": "section",
"text": {
"type": "plain_text",
"text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.',
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def lowerCAmelCase__ ( self: Optional[Any] ) -> Dict:
'''simple docstring'''
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in'
F' {self.time}.'
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def lowerCAmelCase__ ( self: Tuple ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ =40
UpperCAmelCase_ ={k: v["failed"] for k, v in doc_test_results.items() if isinstance(_lowerCAmelCase , _lowerCAmelCase )}
UpperCAmelCase_ =""
for category, failures in category_failures.items():
if len(_lowerCAmelCase ) == 0:
continue
if report != "":
report += "\n\n"
report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(_lowerCAmelCase )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": F'The following examples had failures:\n\n\n{report}\n',
},
}
@property
def lowerCAmelCase__ ( self: Optional[Any] ) -> str:
'''simple docstring'''
UpperCAmelCase_ =[self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(_lowerCAmelCase )
@staticmethod
def lowerCAmelCase__ ( ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ =[
{
"type": "section",
"text": {
"type": "plain_text",
"text": "There was an issue running the tests.",
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
]
print("Sending the following payload" )
print(json.dumps({"blocks": json.loads(_lowerCAmelCase )} ) )
client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=_lowerCAmelCase , )
def lowerCAmelCase__ ( self: Dict ) -> List[str]:
'''simple docstring'''
print("Sending the following payload" )
print(json.dumps({"blocks": json.loads(self.payload )} ) )
UpperCAmelCase_ =F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else "All tests passed."
UpperCAmelCase_ =client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=_lowerCAmelCase , )
def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: int ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ =""
for key, value in failures.items():
UpperCAmelCase_ =value[:200] + " [Truncated]" if len(_lowerCAmelCase ) > 250 else value
failures_text += F'*{key}*\n_{value}_\n\n'
UpperCAmelCase_ =job_name
UpperCAmelCase_ ={"type": "section", "text": {"type": "mrkdwn", "text": text}}
if job_link is not None:
UpperCAmelCase_ ={
"type": "button",
"text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True},
"url": job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def lowerCAmelCase__ ( self: Any ) -> List[str]:
'''simple docstring'''
if self.thread_ts is None:
raise ValueError("Can only post reply if a post has been made." )
UpperCAmelCase_ =self.doc_test_results.pop("job_link" )
self.doc_test_results.pop("failures" )
self.doc_test_results.pop("success" )
self.doc_test_results.pop("time_spent" )
UpperCAmelCase_ =sorted(self.doc_test_results.items() , key=lambda _lowerCAmelCase : t[0] )
for job, job_result in sorted_dict:
if len(job_result["failures"] ):
UpperCAmelCase_ =F'*Num failures* :{len(job_result["failed"] )} \n'
UpperCAmelCase_ =job_result["failures"]
UpperCAmelCase_ =self.get_reply_blocks(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , text=_lowerCAmelCase )
print("Sending the following reply" )
print(json.dumps({"blocks": blocks} ) )
client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=F'Results for {job}' , blocks=_lowerCAmelCase , thread_ts=self.thread_ts["ts"] , )
time.sleep(1 )
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =os.environ["GITHUB_RUN_ID"]
UpperCAmelCase_ =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100'
UpperCAmelCase_ =requests.get(lowercase__ ).json()
UpperCAmelCase_ ={}
try:
jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} )
UpperCAmelCase_ =math.ceil((result["total_count"] - 1_0_0) / 1_0_0 )
for i in range(lowercase__ ):
UpperCAmelCase_ =requests.get(url + F'&page={i + 2}' ).json()
jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} )
return jobs
except Exception as e:
print("Unknown error, could not fetch links." , lowercase__ )
return {}
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ ={}
if os.path.exists(lowercase__ ):
UpperCAmelCase_ =os.listdir(lowercase__ )
for file in files:
try:
with open(os.path.join(lowercase__ , lowercase__ ) , encoding="utf-8" ) as f:
UpperCAmelCase_ =f.read()
except UnicodeDecodeError as e:
raise ValueError(F'Could not open {os.path.join(lowercase__ , lowercase__ )}.' ) from e
return _artifact
def a__ ( ):
'''simple docstring'''
class A :
def __init__( self: Tuple , _lowerCAmelCase: str ) -> Any:
'''simple docstring'''
UpperCAmelCase_ =name
UpperCAmelCase_ =[]
def __str__( self: Optional[int] ) -> Tuple:
'''simple docstring'''
return self.name
def lowerCAmelCase__ ( self: int , _lowerCAmelCase: str ) -> List[Any]:
'''simple docstring'''
self.paths.append({"name": self.name, "path": path} )
UpperCAmelCase_ ={}
UpperCAmelCase_ =filter(os.path.isdir , os.listdir() )
for directory in directories:
UpperCAmelCase_ =directory
if artifact_name not in _available_artifacts:
UpperCAmelCase_ =Artifact(lowercase__ )
_available_artifacts[artifact_name].add_path(lowercase__ )
return _available_artifacts
if __name__ == "__main__":
__lowercase : str =get_job_links()
__lowercase : Dict =retrieve_available_artifacts()
__lowercase : Optional[int] =collections.OrderedDict(
[
("""*.py""", """API Examples"""),
("""*.md""", """MD Examples"""),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
__lowercase : Any ={
v: {
"""failed""": [],
"""failures""": {},
}
for v in docs.values()
}
# Link to the GitHub Action job
__lowercase : Tuple =github_actions_job_links.get("""run_doctests""")
__lowercase : int =available_artifacts["""doc_tests_gpu_test_reports"""].paths[0]
__lowercase : str =retrieve_artifact(artifact_path["""name"""])
if "stats" in artifact:
__lowercase , __lowercase , __lowercase : Tuple =handle_test_results(artifact["""stats"""])
__lowercase : int =failed
__lowercase : int =success
__lowercase : str =time_spent[1:-1] + """, """
__lowercase : str =extract_first_line_failure(artifact["""failures_short"""])
for line in artifact["summary_short"].split("""\n"""):
if re.search("""FAILED""", line):
__lowercase : int =line.replace("""FAILED """, """""")
__lowercase : List[Any] =line.split()[0].replace("""\n""", """""")
if "::" in line:
__lowercase , __lowercase : Any =line.split("""::""")
else:
__lowercase , __lowercase : Dict =line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
__lowercase : Optional[int] =docs[file_regex]
doc_test_results[category]["failed"].append(test)
__lowercase : Tuple =all_failures[test] if test in all_failures else """N/A"""
__lowercase : Optional[int] =failure
break
__lowercase : Optional[int] =Message("""🤗 Results of the doc tests.""", doc_test_results)
message.post()
message.post_reply()
| 54 | 0 |
"""simple docstring"""
import tempfile
import unittest
import numpy as np
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import BertConfig, is_flax_available
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax
if is_flax_available():
import os
from flax.core.frozen_dict import unfreeze
from flax.traverse_util import flatten_dict
from transformers import FlaxBertModel
UpperCamelCase__ = '0.12' # assumed parallelism: 8
@require_flax
@is_staging_test
class a ( unittest.TestCase ):
@classmethod
def __snake_case ( cls ):
UpperCAmelCase__ : Optional[Any] = TOKEN
HfFolder.save_token(UpperCamelCase_ )
@classmethod
def __snake_case ( cls ):
try:
delete_repo(token=cls._token , repo_id='test-model-flax' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='valid_org/test-model-flax-org' )
except HTTPError:
pass
def __snake_case ( self ):
UpperCAmelCase__ : Optional[int] = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
UpperCAmelCase__ : List[str] = FlaxBertModel(UpperCamelCase_ )
model.push_to_hub('test-model-flax' , use_auth_token=self._token )
UpperCAmelCase__ : Any = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' )
UpperCAmelCase__ : List[str] = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase__ : List[Any] = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase__ : Dict = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(UpperCamelCase_ , 1E-3 , msg=F'''{key} not identical''' )
# Reset repo
delete_repo(token=self._token , repo_id='test-model-flax' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(UpperCamelCase_ , repo_id='test-model-flax' , push_to_hub=UpperCamelCase_ , use_auth_token=self._token )
UpperCAmelCase__ : Dict = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' )
UpperCAmelCase__ : Any = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase__ : Optional[int] = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase__ : Tuple = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(UpperCamelCase_ , 1E-3 , msg=F'''{key} not identical''' )
def __snake_case ( self ):
UpperCAmelCase__ : Dict = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
UpperCAmelCase__ : Dict = FlaxBertModel(UpperCamelCase_ )
model.push_to_hub('valid_org/test-model-flax-org' , use_auth_token=self._token )
UpperCAmelCase__ : Optional[int] = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' )
UpperCAmelCase__ : Tuple = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase__ : Union[str, Any] = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase__ : Any = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(UpperCamelCase_ , 1E-3 , msg=F'''{key} not identical''' )
# Reset repo
delete_repo(token=self._token , repo_id='valid_org/test-model-flax-org' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(
UpperCamelCase_ , repo_id='valid_org/test-model-flax-org' , push_to_hub=UpperCamelCase_ , use_auth_token=self._token )
UpperCAmelCase__ : Any = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' )
UpperCAmelCase__ : Optional[int] = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase__ : int = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase__ : List[str] = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(UpperCamelCase_ , 1E-3 , msg=F'''{key} not identical''' )
def lowerCamelCase ( _snake_case ,_snake_case ):
UpperCAmelCase__ : List[str] = True
UpperCAmelCase__ : Optional[int] = flatten_dict(modela.params )
UpperCAmelCase__ : int = flatten_dict(modela.params )
for key in flat_params_a.keys():
if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4:
UpperCAmelCase__ : str = False
return models_are_equal
@require_flax
class a ( unittest.TestCase ):
def __snake_case ( self ):
UpperCAmelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' )
UpperCAmelCase__ : Optional[int] = FlaxBertModel(UpperCamelCase_ )
UpperCAmelCase__ : Dict = 'bert'
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) )
with self.assertRaises(UpperCamelCase_ ):
UpperCAmelCase__ : Optional[Any] = FlaxBertModel.from_pretrained(UpperCamelCase_ )
UpperCAmelCase__ : Optional[Any] = FlaxBertModel.from_pretrained(UpperCamelCase_ , subfolder=UpperCamelCase_ )
self.assertTrue(check_models_equal(UpperCamelCase_ , UpperCamelCase_ ) )
def __snake_case ( self ):
UpperCAmelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' )
UpperCAmelCase__ : Optional[Any] = FlaxBertModel(UpperCamelCase_ )
UpperCAmelCase__ : Union[str, Any] = 'bert'
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , max_shard_size='10KB' )
with self.assertRaises(UpperCamelCase_ ):
UpperCAmelCase__ : Optional[Any] = FlaxBertModel.from_pretrained(UpperCamelCase_ )
UpperCAmelCase__ : List[str] = FlaxBertModel.from_pretrained(UpperCamelCase_ , subfolder=UpperCamelCase_ )
self.assertTrue(check_models_equal(UpperCamelCase_ , UpperCamelCase_ ) )
def __snake_case ( self ):
UpperCAmelCase__ : int = 'bert'
UpperCAmelCase__ : Dict = 'hf-internal-testing/tiny-random-bert-subfolder'
with self.assertRaises(UpperCamelCase_ ):
UpperCAmelCase__ : Any = FlaxBertModel.from_pretrained(UpperCamelCase_ )
UpperCAmelCase__ : Dict = FlaxBertModel.from_pretrained(UpperCamelCase_ , subfolder=UpperCamelCase_ )
self.assertIsNotNone(UpperCamelCase_ )
def __snake_case ( self ):
UpperCAmelCase__ : str = 'bert'
UpperCAmelCase__ : Optional[int] = 'hf-internal-testing/tiny-random-bert-sharded-subfolder'
with self.assertRaises(UpperCamelCase_ ):
UpperCAmelCase__ : Tuple = FlaxBertModel.from_pretrained(UpperCamelCase_ )
UpperCAmelCase__ : List[Any] = FlaxBertModel.from_pretrained(UpperCamelCase_ , subfolder=UpperCamelCase_ )
self.assertIsNotNone(UpperCamelCase_ )
| 110 |
def a__ ( lowercase__ = 2_0_0 ):
'''simple docstring'''
UpperCAmelCase_ =[1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0]
UpperCAmelCase_ =[0] * (pence + 1)
UpperCAmelCase_ =1 # base case: 1 way to make 0 pence
for coin in coins:
for i in range(lowercase__ , pence + 1 , 1 ):
number_of_ways[i] += number_of_ways[i - coin]
return number_of_ways[pence]
if __name__ == "__main__":
assert solution(200) == 7_3682
| 54 | 0 |
import copy
import os
from typing import TYPE_CHECKING, List, Union
if TYPE_CHECKING:
pass
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase__ = logging.get_logger(__name__)
UpperCamelCase__ = {
"""kakaobrain/align-base""": """https://huggingface.co/kakaobrain/align-base/resolve/main/config.json""",
}
class UpperCAmelCase__ ( __lowercase ):
'''simple docstring'''
UpperCAmelCase_ = '''align_text_model'''
def __init__( self : Optional[Any] , UpperCamelCase : Optional[Any]=3_05_22 , UpperCamelCase : int=7_68 , UpperCamelCase : List[str]=12 , UpperCamelCase : Dict=12 , UpperCamelCase : Optional[Any]=30_72 , UpperCamelCase : Tuple="gelu" , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Union[str, Any]=0.1 , UpperCamelCase : Dict=5_12 , UpperCamelCase : Optional[int]=2 , UpperCamelCase : Any=0.02 , UpperCamelCase : Union[str, Any]=1E-12 , UpperCamelCase : Tuple=0 , UpperCamelCase : Tuple="absolute" , UpperCamelCase : int=True , **UpperCamelCase : Tuple , ):
"""simple docstring"""
super().__init__(**_lowerCAmelCase )
_lowercase : Optional[int] = vocab_size
_lowercase : Optional[int] = hidden_size
_lowercase : Optional[int] = num_hidden_layers
_lowercase : Any = num_attention_heads
_lowercase : Union[str, Any] = hidden_act
_lowercase : Any = intermediate_size
_lowercase : Union[str, Any] = hidden_dropout_prob
_lowercase : str = attention_probs_dropout_prob
_lowercase : Tuple = max_position_embeddings
_lowercase : Optional[Any] = type_vocab_size
_lowercase : int = initializer_range
_lowercase : List[str] = layer_norm_eps
_lowercase : Tuple = position_embedding_type
_lowercase : Any = use_cache
_lowercase : Union[str, Any] = pad_token_id
@classmethod
def lowerCAmelCase_ ( cls : str , UpperCamelCase : Union[str, os.PathLike] , **UpperCamelCase : Any ):
"""simple docstring"""
cls._set_token_in_kwargs(_lowerCAmelCase )
_lowercase , _lowercase : List[str] = cls.get_config_dict(_lowerCAmelCase , **_lowerCAmelCase )
# get the text config dict if we are loading from AlignConfig
if config_dict.get('''model_type''' ) == "align":
_lowercase : Dict = config_dict['''text_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(_lowerCAmelCase , **_lowerCAmelCase )
class UpperCAmelCase__ ( __lowercase ):
'''simple docstring'''
UpperCAmelCase_ = '''align_vision_model'''
def __init__( self : int , UpperCamelCase : int = 3 , UpperCamelCase : int = 6_00 , UpperCamelCase : float = 2.0 , UpperCamelCase : float = 3.1 , UpperCamelCase : int = 8 , UpperCamelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , UpperCamelCase : List[int] = [32, 16, 24, 40, 80, 1_12, 1_92] , UpperCamelCase : List[int] = [16, 24, 40, 80, 1_12, 1_92, 3_20] , UpperCamelCase : List[int] = [] , UpperCamelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , UpperCamelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , UpperCamelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , UpperCamelCase : float = 0.25 , UpperCamelCase : str = "swish" , UpperCamelCase : int = 25_60 , UpperCamelCase : str = "mean" , UpperCamelCase : float = 0.02 , UpperCamelCase : float = 0.001 , UpperCamelCase : float = 0.99 , UpperCamelCase : float = 0.2 , **UpperCamelCase : str , ):
"""simple docstring"""
super().__init__(**_lowerCAmelCase )
_lowercase : Any = num_channels
_lowercase : Tuple = image_size
_lowercase : Optional[Any] = width_coefficient
_lowercase : Tuple = depth_coefficient
_lowercase : int = depth_divisor
_lowercase : Optional[Any] = kernel_sizes
_lowercase : List[Any] = in_channels
_lowercase : Optional[Any] = out_channels
_lowercase : int = depthwise_padding
_lowercase : Any = strides
_lowercase : Union[str, Any] = num_block_repeats
_lowercase : Union[str, Any] = expand_ratios
_lowercase : List[str] = squeeze_expansion_ratio
_lowercase : List[str] = hidden_act
_lowercase : Union[str, Any] = hidden_dim
_lowercase : Any = pooling_type
_lowercase : str = initializer_range
_lowercase : str = batch_norm_eps
_lowercase : Optional[Any] = batch_norm_momentum
_lowercase : Optional[int] = drop_connect_rate
_lowercase : Optional[Any] = sum(_lowerCAmelCase ) * 4
@classmethod
def lowerCAmelCase_ ( cls : Optional[Any] , UpperCamelCase : Union[str, os.PathLike] , **UpperCamelCase : Optional[int] ):
"""simple docstring"""
cls._set_token_in_kwargs(_lowerCAmelCase )
_lowercase , _lowercase : List[Any] = cls.get_config_dict(_lowerCAmelCase , **_lowerCAmelCase )
# get the vision config dict if we are loading from AlignConfig
if config_dict.get('''model_type''' ) == "align":
_lowercase : Union[str, Any] = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(_lowerCAmelCase , **_lowerCAmelCase )
class UpperCAmelCase__ ( __lowercase ):
'''simple docstring'''
UpperCAmelCase_ = '''align'''
UpperCAmelCase_ = True
def __init__( self : str , UpperCamelCase : Optional[Any]=None , UpperCamelCase : List[str]=None , UpperCamelCase : List[Any]=6_40 , UpperCamelCase : Any=1.0 , UpperCamelCase : Tuple=0.02 , **UpperCamelCase : List[Any] , ):
"""simple docstring"""
super().__init__(**_lowerCAmelCase )
if text_config is None:
_lowercase : Optional[int] = {}
logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''' )
if vision_config is None:
_lowercase : Optional[Any] = {}
logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''' )
_lowercase : Tuple = AlignTextConfig(**_lowerCAmelCase )
_lowercase : Tuple = AlignVisionConfig(**_lowerCAmelCase )
_lowercase : List[str] = projection_dim
_lowercase : Tuple = temperature_init_value
_lowercase : Dict = initializer_range
@classmethod
def lowerCAmelCase_ ( cls : Any , UpperCamelCase : AlignTextConfig , UpperCamelCase : AlignVisionConfig , **UpperCamelCase : Optional[Any] ):
"""simple docstring"""
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_lowerCAmelCase )
def lowerCAmelCase_ ( self : Optional[Any] ):
"""simple docstring"""
_lowercase : List[Any] = copy.deepcopy(self.__dict__ )
_lowercase : List[str] = self.text_config.to_dict()
_lowercase : List[str] = self.vision_config.to_dict()
_lowercase : Tuple = self.__class__.model_type
return output
| 322 |
import sys
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =len(lowercase__ )
UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )]
UpperCAmelCase_ =[[0 for x in range(lowercase__ )] for x in range(lowercase__ )]
for chain_length in range(2 , lowercase__ ):
for a in range(1 , n - chain_length + 1 ):
UpperCAmelCase_ =a + chain_length - 1
UpperCAmelCase_ =sys.maxsize
for c in range(lowercase__ , lowercase__ ):
UpperCAmelCase_ =(
matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b]
)
if cost < matrix[a][b]:
UpperCAmelCase_ =cost
UpperCAmelCase_ =c
return matrix, sol
def a__ ( lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
if i == j:
print("A" + str(lowercase__ ) , end=" " )
else:
print("(" , end=" " )
print_optiomal_solution(lowercase__ , lowercase__ , optimal_solution[i][j] )
print_optiomal_solution(lowercase__ , optimal_solution[i][j] + 1 , lowercase__ )
print(")" , end=" " )
def a__ ( ):
'''simple docstring'''
UpperCAmelCase_ =[3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5]
UpperCAmelCase_ =len(lowercase__ )
# Size of matrix created from above array will be
# 30*35 35*15 15*5 5*10 10*20 20*25
UpperCAmelCase_ , UpperCAmelCase_ =matrix_chain_order(lowercase__ )
print("No. of Operation required: " + str(matrix[1][n - 1] ) )
print_optiomal_solution(lowercase__ , 1 , n - 1 )
if __name__ == "__main__":
main()
| 54 | 0 |
"""simple docstring"""
from __future__ import absolute_import, division, print_function, unicode_literals
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers import RobertaConfig
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.roberta.modeling_roberta import (
ROBERTA_INPUTS_DOCSTRING,
ROBERTA_START_DOCSTRING,
RobertaEmbeddings,
)
from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy
@add_start_docstrings(
'''The RoBERTa Model transformer with early exiting (DeeRoBERTa). ''' , __lowercase , )
class __magic_name__ ( __lowercase ):
UpperCamelCase_ = RobertaConfig
UpperCamelCase_ = '''roberta'''
def __init__( self , A_ ) -> Any:
"""simple docstring"""
super().__init__(_lowerCAmelCase )
_lowercase: Dict = RobertaEmbeddings(_lowerCAmelCase )
self.init_weights()
@add_start_docstrings(
'''RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,
also takes care of multi-layer training. ''' , __lowercase , )
class __magic_name__ ( __lowercase ):
UpperCamelCase_ = RobertaConfig
UpperCamelCase_ = '''roberta'''
def __init__( self , A_ ) -> Any:
"""simple docstring"""
super().__init__(_lowerCAmelCase )
_lowercase: Optional[int] = config.num_labels
_lowercase: str = config.num_hidden_layers
_lowercase: Tuple = DeeRobertaModel(_lowerCAmelCase )
_lowercase: str = nn.Dropout(config.hidden_dropout_prob )
_lowercase: str = nn.Linear(config.hidden_size , self.config.num_labels )
@add_start_docstrings_to_model_forward(_lowerCAmelCase )
def lowercase_ ( self , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , A_=-1 , A_=False , ) -> List[str]:
"""simple docstring"""
_lowercase: List[Any] = self.num_layers
try:
_lowercase: Any = self.roberta(
_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , position_ids=_lowerCAmelCase , head_mask=_lowerCAmelCase , inputs_embeds=_lowerCAmelCase , )
_lowercase: Any = outputs[1]
_lowercase: int = self.dropout(_lowerCAmelCase )
_lowercase: List[str] = self.classifier(_lowerCAmelCase )
_lowercase: int = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
_lowercase: Tuple = e.message
_lowercase: Optional[Any] = e.exit_layer
_lowercase: List[str] = outputs[0]
if not self.training:
_lowercase: List[Any] = entropy(_lowerCAmelCase )
_lowercase: Optional[Any] = []
_lowercase: List[str] = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
_lowercase: Dict = MSELoss()
_lowercase: Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) )
else:
_lowercase: List[str] = CrossEntropyLoss()
_lowercase: Optional[Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
# work with highway exits
_lowercase: int = []
for highway_exit in outputs[-1]:
_lowercase: Optional[Any] = highway_exit[0]
if not self.training:
highway_logits_all.append(_lowerCAmelCase )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
_lowercase: List[str] = MSELoss()
_lowercase: Any = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) )
else:
_lowercase: Union[str, Any] = CrossEntropyLoss()
_lowercase: Dict = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
highway_losses.append(_lowerCAmelCase )
if train_highway:
_lowercase: List[Any] = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
_lowercase: Union[str, Any] = (loss,) + outputs
if not self.training:
_lowercase: List[Any] = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
_lowercase: List[str] = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), entropy
| 353 |
from math import loga
def a__ ( lowercase__ ):
'''simple docstring'''
if a < 0:
raise ValueError("Input value must be a positive integer" )
elif isinstance(lowercase__ , lowercase__ ):
raise TypeError("Input value must be a 'int' type" )
return 0 if (a == 0) else int(loga(a & -a ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 54 | 0 |
def lowercase__ ( A_: Dict = 200 ) -> Union[str, Any]:
"""simple docstring"""
__UpperCAmelCase =[1, 2, 5, 10, 20, 50, 100, 200]
__UpperCAmelCase =[0] * (pence + 1)
__UpperCAmelCase =1 # base case: 1 way to make 0 pence
for coin in coins:
for i in range(lowercase__ , pence + 1 , 1 ):
number_of_ways[i] += number_of_ways[i - coin]
return number_of_ways[pence]
if __name__ == "__main__":
assert solution(2_00) == 7_36_82
| 68 |
import argparse
from pathlib import Path
import torch
from transformers import OPTConfig, OPTModel
from transformers.utils import logging
logging.set_verbosity_info()
__lowercase : Union[str, Any] =logging.get_logger(__name__)
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" )
if "model" in sd.keys():
UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" )["model"]
# pop unnecessary weights
UpperCAmelCase_ =[
"decoder.version",
"decoder.output_projection.weight",
]
for key in keys_to_delete:
if key in sd:
sd.pop(lowercase__ )
UpperCAmelCase_ ={
"decoder.project_in_dim.weight": "decoder.project_in.weight",
"decoder.project_out_dim.weight": "decoder.project_out.weight",
"decoder.layer_norm.weight": "decoder.final_layer_norm.weight",
"decoder.layer_norm.bias": "decoder.final_layer_norm.bias",
}
for old_key, new_key in keys_to_rename.items():
if old_key in sd:
UpperCAmelCase_ =sd.pop(lowercase__ )
UpperCAmelCase_ =list(sd.keys() )
for key in keys:
if ".qkv_proj." in key:
UpperCAmelCase_ =sd[key]
# We split QKV in separate Q,K,V
UpperCAmelCase_ =key.replace(".qkv_proj." , ".q_proj." )
UpperCAmelCase_ =key.replace(".qkv_proj." , ".k_proj." )
UpperCAmelCase_ =key.replace(".qkv_proj." , ".v_proj." )
UpperCAmelCase_ =value.shape[0]
assert depth % 3 == 0
# `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
# https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =torch.split(lowercase__ , depth // 3 , dim=0 )
UpperCAmelCase_ =q
UpperCAmelCase_ =k
UpperCAmelCase_ =v
del sd[key]
return sd
@torch.no_grad()
def a__ ( lowercase__ , lowercase__ , lowercase__=None ):
'''simple docstring'''
UpperCAmelCase_ =load_checkpoint(lowercase__ )
if config is not None:
UpperCAmelCase_ =OPTConfig.from_pretrained(lowercase__ )
else:
UpperCAmelCase_ =OPTConfig()
UpperCAmelCase_ =OPTModel(lowercase__ ).half().eval()
model.load_state_dict(lowercase__ )
# Check results
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
model.save_pretrained(lowercase__ )
if __name__ == "__main__":
__lowercase : List[Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--fairseq_path""",
type=str,
help=(
"""path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:"""
""" https://huggingface.co/models?other=opt_metasq"""
),
)
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""")
__lowercase : str =parser.parse_args()
convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
| 54 | 0 |
import inspect
import unittest
from transformers import ConvNextConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel
from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowerCamelCase_ :
def __init__( self , __lowerCAmelCase , __lowerCAmelCase=1_3 , __lowerCAmelCase=3_2 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=[1_0, 2_0, 3_0, 4_0] , __lowerCAmelCase=[2, 2, 3, 2] , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=3_7 , __lowerCAmelCase="gelu" , __lowerCAmelCase=1_0 , __lowerCAmelCase=0.02 , __lowerCAmelCase=["stage2", "stage3", "stage4"] , __lowerCAmelCase=[2, 3, 4] , __lowerCAmelCase=None , ):
"""simple docstring"""
__magic_name__ :List[str] = parent
__magic_name__ :Any = batch_size
__magic_name__ :List[Any] = image_size
__magic_name__ :List[str] = num_channels
__magic_name__ :Union[str, Any] = num_stages
__magic_name__ :Any = hidden_sizes
__magic_name__ :Union[str, Any] = depths
__magic_name__ :Any = is_training
__magic_name__ :Optional[int] = use_labels
__magic_name__ :Dict = intermediate_size
__magic_name__ :str = hidden_act
__magic_name__ :List[str] = num_labels
__magic_name__ :List[str] = initializer_range
__magic_name__ :int = out_features
__magic_name__ :Optional[int] = out_indices
__magic_name__ :List[Any] = scope
def A ( self ):
"""simple docstring"""
__magic_name__ :Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__magic_name__ :str = None
if self.use_labels:
__magic_name__ :Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels )
__magic_name__ :str = self.get_config()
return config, pixel_values, labels
def A ( self ):
"""simple docstring"""
return ConvNextConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :List[Any] = ConvNextModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
__magic_name__ :Optional[Any] = model(_lowerCAmelCase )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , )
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Dict = ConvNextForImageClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
__magic_name__ :Union[str, Any] = model(_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Tuple = ConvNextBackbone(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
__magic_name__ :Optional[int] = model(_lowerCAmelCase )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
__magic_name__ :Tuple = None
__magic_name__ :List[Any] = ConvNextBackbone(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
__magic_name__ :Dict = model(_lowerCAmelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def A ( self ):
"""simple docstring"""
__magic_name__ :List[str] = self.prepare_config_and_inputs()
__magic_name__ , __magic_name__ , __magic_name__ :Optional[Any] = config_and_inputs
__magic_name__ :int = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class lowerCamelCase_ ( __lowercase , __lowercase , unittest.TestCase ):
a__ = (
(
ConvNextModel,
ConvNextForImageClassification,
ConvNextBackbone,
)
if is_torch_available()
else ()
)
a__ = (
{'''feature-extraction''': ConvNextModel, '''image-classification''': ConvNextForImageClassification}
if is_torch_available()
else {}
)
a__ = True
a__ = False
a__ = False
a__ = False
a__ = False
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[Any] = ConvNextModelTester(self )
__magic_name__ :Union[str, Any] = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=3_7 )
def A ( self ):
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def A ( self ):
"""simple docstring"""
return
@unittest.skip(reason='''ConvNext does not use inputs_embeds''' )
def A ( self ):
"""simple docstring"""
pass
@unittest.skip(reason='''ConvNext does not support input and output embeddings''' )
def A ( self ):
"""simple docstring"""
pass
@unittest.skip(reason='''ConvNext does not use feedforward chunking''' )
def A ( self ):
"""simple docstring"""
pass
def A ( self ):
"""simple docstring"""
__magic_name__ , __magic_name__ :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ :List[Any] = model_class(_lowerCAmelCase )
__magic_name__ :List[str] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__magic_name__ :List[Any] = [*signature.parameters.keys()]
__magic_name__ :str = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_lowerCAmelCase )
def A ( self ):
"""simple docstring"""
def check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
__magic_name__ :List[str] = model_class(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
with torch.no_grad():
__magic_name__ :List[Any] = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) )
__magic_name__ :Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__magic_name__ :Optional[int] = self.model_tester.num_stages
self.assertEqual(len(_lowerCAmelCase ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
__magic_name__ , __magic_name__ :Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ :str = True
check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__magic_name__ :Dict = True
check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def A ( self ):
"""simple docstring"""
__magic_name__ :List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase )
@slow
def A ( self ):
"""simple docstring"""
for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ :Dict = ConvNextModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
def __lowercase ( ):
"""simple docstring"""
__magic_name__ :str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class lowerCamelCase_ ( unittest.TestCase ):
@cached_property
def A ( self ):
"""simple docstring"""
return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None
@slow
def A ( self ):
"""simple docstring"""
__magic_name__ :Optional[Any] = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(_lowerCAmelCase )
__magic_name__ :str = self.default_image_processor
__magic_name__ :Optional[int] = prepare_img()
__magic_name__ :List[Any] = image_processor(images=_lowerCAmelCase , return_tensors='''pt''' ).to(_lowerCAmelCase )
# forward pass
with torch.no_grad():
__magic_name__ :Any = model(**_lowerCAmelCase )
# verify the logits
__magic_name__ :List[str] = torch.Size((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , _lowerCAmelCase )
__magic_name__ :Union[str, Any] = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(_lowerCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
@require_torch
class lowerCamelCase_ ( unittest.TestCase , __lowercase ):
a__ = (ConvNextBackbone,) if is_torch_available() else ()
a__ = ConvNextConfig
a__ = False
def A ( self ):
"""simple docstring"""
__magic_name__ :List[Any] = ConvNextModelTester(self )
| 0 |
import PIL.Image
import PIL.ImageOps
from packaging import version
from PIL import Image
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""):
__lowercase : str ={
"""linear""": PIL.Image.Resampling.BILINEAR,
"""bilinear""": PIL.Image.Resampling.BILINEAR,
"""bicubic""": PIL.Image.Resampling.BICUBIC,
"""lanczos""": PIL.Image.Resampling.LANCZOS,
"""nearest""": PIL.Image.Resampling.NEAREST,
}
else:
__lowercase : Any ={
"""linear""": PIL.Image.LINEAR,
"""bilinear""": PIL.Image.BILINEAR,
"""bicubic""": PIL.Image.BICUBIC,
"""lanczos""": PIL.Image.LANCZOS,
"""nearest""": PIL.Image.NEAREST,
}
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =(images / 2 + 0.5).clamp(0 , 1 )
UpperCAmelCase_ =images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
UpperCAmelCase_ =numpy_to_pil(lowercase__ )
return images
def a__ ( lowercase__ ):
'''simple docstring'''
if images.ndim == 3:
UpperCAmelCase_ =images[None, ...]
UpperCAmelCase_ =(images * 2_5_5).round().astype("uint8" )
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
UpperCAmelCase_ =[Image.fromarray(image.squeeze() , mode="L" ) for image in images]
else:
UpperCAmelCase_ =[Image.fromarray(lowercase__ ) for image in images]
return pil_images
| 54 | 0 |
import re
from filelock import FileLock
try:
import nltk
A_ = True
except (ImportError, ModuleNotFoundError):
A_ = False
if NLTK_AVAILABLE:
with FileLock(".lock") as lock:
nltk.download("punkt", quiet=True)
def __UpperCAmelCase ( UpperCAmelCase )-> Dict:
"""simple docstring"""
re.sub('''<n>''', '''''', lowercase__ ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(lowercase__ ) )
| 604 |
def a__ ( lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =int(lowercase__ )
if n_element < 1:
UpperCAmelCase_ =ValueError("a should be a positive number" )
raise my_error
UpperCAmelCase_ =[1]
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =(0, 0, 0)
UpperCAmelCase_ =1
while index < n_element:
while hamming_list[i] * 2 <= hamming_list[-1]:
i += 1
while hamming_list[j] * 3 <= hamming_list[-1]:
j += 1
while hamming_list[k] * 5 <= hamming_list[-1]:
k += 1
hamming_list.append(
min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) )
index += 1
return hamming_list
if __name__ == "__main__":
__lowercase : Tuple =input("""Enter the last number (nth term) of the Hamming Number Series: """)
print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""")
__lowercase : Union[str, Any] =hamming(int(n))
print("""-----------------------------------------------------""")
print(f"""The list with nth numbers is: {hamming_numbers}""")
print("""-----------------------------------------------------""")
| 54 | 0 |
"""simple docstring"""
from .testing import (
are_the_same_tensors,
execute_subprocess_async,
require_bnb,
require_cpu,
require_cuda,
require_huggingface_suite,
require_mps,
require_multi_gpu,
require_multi_xpu,
require_safetensors,
require_single_gpu,
require_single_xpu,
require_torch_min_version,
require_tpu,
require_xpu,
skip,
slow,
)
from .training import RegressionDataset, RegressionModel, RegressionModelaXPU
from .scripts import test_script, test_sync, test_ops # isort: skip
| 624 |
import warnings
from ...utils import logging
from .image_processing_glpn import GLPNImageProcessor
__lowercase : List[Any] =logging.get_logger(__name__)
class A ( __lowercase ):
def __init__( self: List[Any] , *_lowerCAmelCase: Optional[Any] , **_lowerCAmelCase: List[str] ) -> None:
'''simple docstring'''
warnings.warn(
"The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use GLPNImageProcessor instead." , _lowerCAmelCase , )
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
| 54 | 0 |
"""simple docstring"""
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import (
AutoProcessor,
BertTokenizerFast,
BlipImageProcessor,
GPTaTokenizer,
InstructBlipProcessor,
PreTrainedTokenizerFast,
)
@require_vision
class _A ( unittest.TestCase ):
def A__ ( self ):
"""simple docstring"""
lowercase = tempfile.mkdtemp()
lowercase = BlipImageProcessor()
lowercase = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" )
lowercase = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
lowercase = InstructBlipProcessor(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
processor.save_pretrained(self.tmpdirname )
def A__ ( self , **__lowerCAmelCase ):
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ).tokenizer
def A__ ( self , **__lowerCAmelCase ):
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ).image_processor
def A__ ( self , **__lowerCAmelCase ):
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ).qformer_tokenizer
def A__ ( self ):
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def A__ ( self ):
"""simple docstring"""
lowercase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
lowercase = [Image.fromarray(np.moveaxis(_lowerCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def A__ ( self ):
"""simple docstring"""
lowercase = InstructBlipProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , )
processor.save_pretrained(self.tmpdirname )
lowercase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
lowercase = self.get_image_processor(do_normalize=_lowerCAmelCase , padding_value=1.0 )
lowercase = InstructBlipProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_lowerCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , _lowerCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _lowerCAmelCase )
self.assertIsInstance(processor.qformer_tokenizer , _lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase = self.get_image_processor()
lowercase = self.get_tokenizer()
lowercase = self.get_qformer_tokenizer()
lowercase = InstructBlipProcessor(
tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase )
lowercase = self.prepare_image_inputs()
lowercase = image_processor(_lowerCAmelCase , return_tensors="""np""" )
lowercase = processor(images=_lowerCAmelCase , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def A__ ( self ):
"""simple docstring"""
lowercase = self.get_image_processor()
lowercase = self.get_tokenizer()
lowercase = self.get_qformer_tokenizer()
lowercase = InstructBlipProcessor(
tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase )
lowercase = """lower newer"""
lowercase = processor(text=_lowerCAmelCase )
lowercase = tokenizer(_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase )
lowercase = qformer_tokenizer(_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase )
for key in encoded_tokens.keys():
self.assertListEqual(encoded_tokens[key] , encoded_processor[key] )
for key in encoded_tokens_qformer.keys():
self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] )
def A__ ( self ):
"""simple docstring"""
lowercase = self.get_image_processor()
lowercase = self.get_tokenizer()
lowercase = self.get_qformer_tokenizer()
lowercase = InstructBlipProcessor(
tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase )
lowercase = """lower newer"""
lowercase = self.prepare_image_inputs()
lowercase = processor(text=_lowerCAmelCase , images=_lowerCAmelCase )
self.assertListEqual(
list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
# test if it raises when no input is passed
with pytest.raises(_lowerCAmelCase ):
processor()
def A__ ( self ):
"""simple docstring"""
lowercase = self.get_image_processor()
lowercase = self.get_tokenizer()
lowercase = self.get_qformer_tokenizer()
lowercase = InstructBlipProcessor(
tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase )
lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowercase = processor.batch_decode(_lowerCAmelCase )
lowercase = tokenizer.batch_decode(_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
def A__ ( self ):
"""simple docstring"""
lowercase = self.get_image_processor()
lowercase = self.get_tokenizer()
lowercase = self.get_qformer_tokenizer()
lowercase = InstructBlipProcessor(
tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase , qformer_tokenizer=_lowerCAmelCase )
lowercase = """lower newer"""
lowercase = self.prepare_image_inputs()
lowercase = processor(text=_lowerCAmelCase , images=_lowerCAmelCase )
self.assertListEqual(
list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
| 359 |
import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class A ( __lowercase , unittest.TestCase ):
_snake_case =CanineTokenizer
_snake_case =False
def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]:
'''simple docstring'''
super().setUp()
UpperCAmelCase_ =CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowerCAmelCase__ ( self: Optional[int] ) -> List[str]:
'''simple docstring'''
return CanineTokenizer.from_pretrained("google/canine-s" )
def lowerCAmelCase__ ( self: Union[str, Any] , **_lowerCAmelCase: List[Any] ) -> CanineTokenizer:
'''simple docstring'''
UpperCAmelCase_ =self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase )
UpperCAmelCase_ =1024
return tokenizer
@require_torch
def lowerCAmelCase__ ( self: int ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ =self.canine_tokenizer
UpperCAmelCase_ =["Life is like a box of chocolates.", "You never know what you're gonna get."]
# fmt: off
UpperCAmelCase_ =[5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0]
# fmt: on
UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" )
self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase_ =list(batch.input_ids.numpy()[0] )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def lowerCAmelCase__ ( self: int ) -> str:
'''simple docstring'''
UpperCAmelCase_ =self.canine_tokenizer
UpperCAmelCase_ =["Once there was a man.", "He wrote a test in HuggingFace Tranformers."]
UpperCAmelCase_ =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="pt" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("input_ids" , _lowerCAmelCase )
self.assertIn("attention_mask" , _lowerCAmelCase )
self.assertIn("token_type_ids" , _lowerCAmelCase )
@require_torch
def lowerCAmelCase__ ( self: str ) -> Any:
'''simple docstring'''
UpperCAmelCase_ =self.canine_tokenizer
UpperCAmelCase_ =[
"What's the weater?",
"It's about 25 degrees.",
]
UpperCAmelCase_ =tokenizer(
text_target=_lowerCAmelCase , max_length=32 , padding="max_length" , truncation=_lowerCAmelCase , return_tensors="pt" )
self.assertEqual(32 , targets["input_ids"].shape[1] )
def lowerCAmelCase__ ( self: Optional[int] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ =self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
UpperCAmelCase_ =self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
UpperCAmelCase_ =tempfile.mkdtemp()
UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running"
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
tokenizer.save_pretrained(_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase )
UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
shutil.rmtree(_lowerCAmelCase )
UpperCAmelCase_ =self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
UpperCAmelCase_ =tempfile.mkdtemp()
UpperCAmelCase_ =" He is very happy, UNwant\u00E9d,running"
UpperCAmelCase_ =tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
UpperCAmelCase_ =chr(0xe0_07 )
additional_special_tokens.append(_lowerCAmelCase )
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} )
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
tokenizer.save_pretrained(_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase )
UpperCAmelCase_ =after_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
self.assertIn(_lowerCAmelCase , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
UpperCAmelCase_ =tokenizer.__class__.from_pretrained(_lowerCAmelCase , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(_lowerCAmelCase )
def lowerCAmelCase__ ( self: int ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
UpperCAmelCase_ , UpperCAmelCase_ =self.get_clean_sequence(_lowerCAmelCase )
# a special token for Canine can be defined as follows:
UpperCAmelCase_ =0xe0_05
UpperCAmelCase_ =chr(_lowerCAmelCase )
tokenizer.add_special_tokens({"cls_token": special_token} )
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertEqual(len(_lowerCAmelCase ) , 1 )
UpperCAmelCase_ =tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
self.assertEqual(_lowerCAmelCase , input_encoded + special_token_id )
UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase )
self.assertTrue(special_token not in decoded )
def lowerCAmelCase__ ( self: Any ) -> Any:
'''simple docstring'''
UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
UpperCAmelCase_ =chr(0xe0_05 )
UpperCAmelCase_ =chr(0xe0_06 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=_lowerCAmelCase )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} )
UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase )
self.assertEqual(len(_lowerCAmelCase ) , 1 )
self.assertEqual(len(_lowerCAmelCase ) , 1 )
self.assertEqual(token_a[0] , _lowerCAmelCase )
self.assertEqual(token_a[0] , _lowerCAmelCase )
@require_tokenizers
def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# a special token for Canine can be defined as follows:
UpperCAmelCase_ =0xe0_06
UpperCAmelCase_ =chr(_lowerCAmelCase )
UpperCAmelCase_ =AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase )
tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(_lowerCAmelCase )
tokenizer.from_pretrained(_lowerCAmelCase )
def lowerCAmelCase__ ( self: Any ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ =[]
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file:
UpperCAmelCase_ =json.load(_lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file:
UpperCAmelCase_ =json.load(_lowerCAmelCase )
# a special token for Canine can be defined as follows:
UpperCAmelCase_ =0xe0_06
UpperCAmelCase_ =chr(_lowerCAmelCase )
UpperCAmelCase_ =[new_token_a]
UpperCAmelCase_ =[new_token_a]
with open(os.path.join(_lowerCAmelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
with open(os.path.join(_lowerCAmelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile:
json.dump(_lowerCAmelCase , _lowerCAmelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
UpperCAmelCase_ =tokenizer_class.from_pretrained(_lowerCAmelCase , extra_ids=0 )
self.assertIn(_lowerCAmelCase , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
UpperCAmelCase_ =0xe0_07
UpperCAmelCase_ =chr(_lowerCAmelCase )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
UpperCAmelCase_ =[AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase )]
UpperCAmelCase_ =tokenizer_class.from_pretrained(
_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , extra_ids=0 )
self.assertIn(_lowerCAmelCase , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def lowerCAmelCase__ ( self: Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
UpperCAmelCase_ ="hello world"
if self.space_between_special_tokens:
UpperCAmelCase_ ="[CLS] hello world [SEP]"
else:
UpperCAmelCase_ =input
UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase )
UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(_lowerCAmelCase , [output, output.lower()] )
def lowerCAmelCase__ ( self: List[str] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ =self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
UpperCAmelCase_ =[
"bos_token",
"eos_token",
"unk_token",
"sep_token",
"pad_token",
"cls_token",
"mask_token",
]
UpperCAmelCase_ ="a"
UpperCAmelCase_ =ord(_lowerCAmelCase )
for attr in attributes_list:
setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase )
self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase )
self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase )
setattr(_lowerCAmelCase , attr + "_id" , _lowerCAmelCase )
self.assertEqual(getattr(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase )
self.assertEqual(getattr(_lowerCAmelCase , attr + "_id" ) , _lowerCAmelCase )
setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [] )
self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [] )
self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [] )
UpperCAmelCase_ =0xe0_06
UpperCAmelCase_ =chr(_lowerCAmelCase )
setattr(_lowerCAmelCase , "additional_special_tokens_ids" , [additional_special_token_id] )
self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens" ) , [additional_special_token] )
self.assertListEqual(getattr(_lowerCAmelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] )
def lowerCAmelCase__ ( self: List[str] ) -> List[str]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: Dict ) -> List[str]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: Union[str, Any] ) -> Dict:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: Any ) -> List[Any]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: List[Any] ) -> List[str]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: Tuple ) -> Union[str, Any]:
'''simple docstring'''
pass
def lowerCAmelCase__ ( self: str ) -> str:
'''simple docstring'''
pass
| 54 | 0 |
"""simple docstring"""
import argparse
import os
import re
import packaging.version
A_ : Tuple = """examples/"""
A_ : Optional[Any] = {
"""examples""": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), """check_min_version(\"VERSION\")\n"""),
"""init""": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), """__version__ = \"VERSION\"\n"""),
"""setup""": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"""\1version=\"VERSION\","""),
"""doc""": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), """release = \"VERSION\"\n"""),
}
A_ : Union[str, Any] = {
"""init""": """src/transformers/__init__.py""",
"""setup""": """setup.py""",
}
A_ : Any = """README.md"""
def A ( snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
with open(lowercase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
SCREAMING_SNAKE_CASE__ = f.read()
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = REPLACE_PATTERNS[pattern]
SCREAMING_SNAKE_CASE__ = replace.replace("""VERSION""" , lowercase__ )
SCREAMING_SNAKE_CASE__ = re_pattern.sub(lowercase__ , lowercase__ )
with open(lowercase__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.write(lowercase__ )
def A ( snake_case__ ):
'''simple docstring'''
for folder, directories, fnames in os.walk(lowercase__ ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove("""research_projects""" )
if "legacy" in directories:
directories.remove("""legacy""" )
for fname in fnames:
if fname.endswith(""".py""" ):
update_version_in_file(os.path.join(lowercase__ , lowercase__ ) , lowercase__ , pattern="""examples""" )
def A ( snake_case__ , snake_case__=False ):
'''simple docstring'''
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(lowercase__ , lowercase__ , lowercase__ )
if not patch:
update_version_in_examples(lowercase__ )
def A ( ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = """🤗 Transformers currently provides the following architectures"""
SCREAMING_SNAKE_CASE__ = """1. Want to contribute a new model?"""
with open(lowercase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
SCREAMING_SNAKE_CASE__ = f.readlines()
# Find the start of the list.
SCREAMING_SNAKE_CASE__ = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
SCREAMING_SNAKE_CASE__ = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith("""1.""" ):
SCREAMING_SNAKE_CASE__ = lines[index].replace(
"""https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , )
index += 1
with open(lowercase__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(lowercase__ )
def A ( ):
'''simple docstring'''
with open(REPLACE_FILES["""init"""] , """r""" ) as f:
SCREAMING_SNAKE_CASE__ = f.read()
SCREAMING_SNAKE_CASE__ = REPLACE_PATTERNS["""init"""][0].search(lowercase__ ).groups()[0]
return packaging.version.parse(lowercase__ )
def A ( snake_case__=False ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = get_version()
if patch and default_version.is_devrelease:
raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" )
if default_version.is_devrelease:
SCREAMING_SNAKE_CASE__ = default_version.base_version
elif patch:
SCREAMING_SNAKE_CASE__ = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}"""
else:
SCREAMING_SNAKE_CASE__ = f"""{default_version.major}.{default_version.minor + 1}.0"""
# Now let's ask nicely if that's the right one.
SCREAMING_SNAKE_CASE__ = input(f"""Which version are you releasing? [{default_version}]""" )
if len(lowercase__ ) == 0:
SCREAMING_SNAKE_CASE__ = default_version
print(f"""Updating version to {version}.""" )
global_version_update(lowercase__ , patch=lowercase__ )
if not patch:
print("""Cleaning main README, don't forget to run `make fix-copies`.""" )
clean_main_ref_in_model_list()
def A ( ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = get_version()
SCREAMING_SNAKE_CASE__ = f"""{current_version.major}.{current_version.minor + 1}.0.dev0"""
SCREAMING_SNAKE_CASE__ = current_version.base_version
# Check with the user we got that right.
SCREAMING_SNAKE_CASE__ = input(f"""Which version are we developing now? [{dev_version}]""" )
if len(lowercase__ ) == 0:
SCREAMING_SNAKE_CASE__ = dev_version
print(f"""Updating version to {version}.""" )
global_version_update(lowercase__ )
print("""Cleaning main README, don't forget to run `make fix-copies`.""" )
clean_main_ref_in_model_list()
if __name__ == "__main__":
A_ : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.")
parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.")
A_ : List[Any] = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print("Nothing to do after a patch :-)")
else:
post_release_work()
| 196 |
from typing import Dict, List
from nltk.translate import gleu_score
import datasets
from datasets import MetricInfo
__lowercase : Optional[int] ="""\
@misc{wu2016googles,
title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},
author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey
and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin
Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto
Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and
Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes
and Jeffrey Dean},
year={2016},
eprint={1609.08144},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
__lowercase : Dict ="""\
The BLEU score has some undesirable properties when used for single
sentences, as it was designed to be a corpus measure. We therefore
use a slightly different score for our RL experiments which we call
the 'GLEU score'. For the GLEU score, we record all sub-sequences of
1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then
compute a recall, which is the ratio of the number of matching n-grams
to the number of total n-grams in the target (ground truth) sequence,
and a precision, which is the ratio of the number of matching n-grams
to the number of total n-grams in the generated output sequence. Then
GLEU score is simply the minimum of recall and precision. This GLEU
score's range is always between 0 (no matches) and 1 (all match) and
it is symmetrical when switching output and target. According to
our experiments, GLEU score correlates quite well with the BLEU
metric on a corpus level but does not have its drawbacks for our per
sentence reward objective.
"""
__lowercase : List[str] ="""\
Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.
Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching
tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.
Args:
predictions (list of str): list of translations to score.
Each translation should be tokenized into a list of tokens.
references (list of list of str): list of lists of references for each translation.
Each reference should be tokenized into a list of tokens.
min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.
max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.
Returns:
'google_bleu': google_bleu score
Examples:
Example 1:
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',
... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']
>>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',
... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',
... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
... 'interested', 'in', 'world', 'history']
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
... 'because', 'he', 'read', 'the', 'book']
>>> list_of_references = [[ref1a], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric(\"google_bleu\")
>>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)
>>> print(round(results[\"google_bleu\"], 2))
0.44
Example 2:
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',
... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']
>>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',
... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',
... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']
>>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',
... 'heed', 'the', 'cat', 'commands']
>>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',
... 'of', 'the', 'cat']
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
... 'interested', 'in', 'world', 'history']
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
... 'because', 'he', 'read', 'the', 'book']
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric(\"google_bleu\")
>>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)
>>> print(round(results[\"google_bleu\"], 2))
0.61
Example 3:
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',
... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']
>>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',
... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',
... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']
>>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',
... 'heed', 'the', 'cat', 'commands']
>>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',
... 'of', 'the', 'cat']
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
... 'interested', 'in', 'world', 'history']
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
... 'because', 'he', 'read', 'the', 'book']
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric(\"google_bleu\")
>>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)
>>> print(round(results[\"google_bleu\"], 2))
0.53
Example 4:
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',
... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']
>>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',
... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',
... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']
>>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',
... 'heed', 'the', 'cat', 'commands']
>>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',
... 'of', 'the', 'cat']
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
... 'interested', 'in', 'world', 'history']
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
... 'because', 'he', 'read', 'the', 'book']
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> google_bleu = datasets.load_metric(\"google_bleu\")
>>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)
>>> print(round(results[\"google_bleu\"], 2))
0.4
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A ( datasets.Metric ):
def lowerCAmelCase__ ( self: int ) -> MetricInfo:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ),
"references": datasets.Sequence(
datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ),
} ) , )
def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: List[List[List[str]]] , _lowerCAmelCase: List[List[str]] , _lowerCAmelCase: int = 1 , _lowerCAmelCase: int = 4 , ) -> Dict[str, float]:
'''simple docstring'''
return {
"google_bleu": gleu_score.corpus_gleu(
list_of_references=_lowerCAmelCase , hypotheses=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase )
}
| 54 | 0 |
"""simple docstring"""
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
class __UpperCamelCase ( __lowercase ):
_UpperCAmelCase = 42
_UpperCAmelCase = 42
_UpperCAmelCase = None
class __UpperCamelCase ( __lowercase , __lowercase ):
_UpperCAmelCase = 2
@register_to_config
def __init__( self ,_A = 0.0_2 ,_A = 100 ,_A = 1.0_0_7 ,_A = 80 ,_A = 0.0_5 ,_A = 50 ,):
'''simple docstring'''
_lowerCAmelCase : str = sigma_max
# setable values
_lowerCAmelCase : List[Any] = None
_lowerCAmelCase : Dict = None
_lowerCAmelCase : Union[str, Any] = None # sigma(t_i)
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
return sample
def __lowerCamelCase ( self ,_A ,_A = None ):
'''simple docstring'''
_lowerCAmelCase : str = num_inference_steps
_lowerCAmelCase : List[Any] = np.arange(0 ,self.num_inference_steps )[::-1].copy()
_lowerCAmelCase : List[Any] = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase )
_lowerCAmelCase : List[str] = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in self.timesteps
]
_lowerCAmelCase : Any = torch.tensor(_lowerCAmelCase ,dtype=torch.floataa ,device=_lowerCAmelCase )
def __lowerCamelCase ( self ,_A ,_A ,_A = None ):
'''simple docstring'''
if self.config.s_min <= sigma <= self.config.s_max:
_lowerCAmelCase : List[str] = min(self.config.s_churn / self.num_inference_steps ,2**0.5 - 1 )
else:
_lowerCAmelCase : Any = 0
# sample eps ~ N(0, S_noise^2 * I)
_lowerCAmelCase : Optional[Any] = self.config.s_noise * randn_tensor(sample.shape ,generator=_lowerCAmelCase ).to(sample.device )
_lowerCAmelCase : List[Any] = sigma + gamma * sigma
_lowerCAmelCase : str = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A = True ,):
'''simple docstring'''
_lowerCAmelCase : int = sample_hat + sigma_hat * model_output
_lowerCAmelCase : str = (sample_hat - pred_original_sample) / sigma_hat
_lowerCAmelCase : Optional[Any] = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=_lowerCAmelCase ,derivative=_lowerCAmelCase ,pred_original_sample=_lowerCAmelCase )
def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A = True ,):
'''simple docstring'''
_lowerCAmelCase : Dict = sample_prev + sigma_prev * model_output
_lowerCAmelCase : int = (sample_prev - pred_original_sample) / sigma_prev
_lowerCAmelCase : Tuple = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=_lowerCAmelCase ,derivative=_lowerCAmelCase ,pred_original_sample=_lowerCAmelCase )
def __lowerCamelCase ( self ,_A ,_A ,_A ):
'''simple docstring'''
raise NotImplementedError()
| 259 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaImgaImgPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class A ( __lowercase , unittest.TestCase ):
_snake_case =KandinskyVaaImgaImgPipeline
_snake_case =['''image_embeds''', '''negative_image_embeds''', '''image''']
_snake_case =[
'''image_embeds''',
'''negative_image_embeds''',
'''image''',
]
_snake_case =[
'''generator''',
'''height''',
'''width''',
'''strength''',
'''guidance_scale''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
_snake_case =False
@property
def lowerCAmelCase__ ( self: List[Any] ) -> Dict:
'''simple docstring'''
return 32
@property
def lowerCAmelCase__ ( self: Any ) -> Optional[int]:
'''simple docstring'''
return 32
@property
def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]:
'''simple docstring'''
return self.time_input_dim
@property
def lowerCAmelCase__ ( self: List[str] ) -> Dict:
'''simple docstring'''
return self.time_input_dim * 4
@property
def lowerCAmelCase__ ( self: int ) -> str:
'''simple docstring'''
return 100
@property
def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]:
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase_ ={
"in_channels": 4,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
UpperCAmelCase_ =UNetaDConditionModel(**_lowerCAmelCase )
return model
@property
def lowerCAmelCase__ ( self: Any ) -> Tuple:
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase__ ( self: Union[str, Any] ) -> Any:
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase_ =VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase__ ( self: Dict ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ =self.dummy_unet
UpperCAmelCase_ =self.dummy_movq
UpperCAmelCase_ ={
"num_train_timesteps": 1000,
"beta_schedule": "linear",
"beta_start": 0.0_00_85,
"beta_end": 0.0_12,
"clip_sample": False,
"set_alpha_to_one": False,
"steps_offset": 0,
"prediction_type": "epsilon",
"thresholding": False,
}
UpperCAmelCase_ =DDIMScheduler(**_lowerCAmelCase )
UpperCAmelCase_ ={
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[Any]=0 ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase )
UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
_lowerCAmelCase )
# create init_image
UpperCAmelCase_ =floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase )
UpperCAmelCase_ =image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase_ =Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("RGB" ).resize((256, 256) )
if str(_lowerCAmelCase ).startswith("mps" ):
UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase )
else:
UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase )
UpperCAmelCase_ ={
"image": init_image,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 64,
"width": 64,
"num_inference_steps": 10,
"guidance_scale": 7.0,
"strength": 0.2,
"output_type": "np",
}
return inputs
def lowerCAmelCase__ ( self: int ) -> int:
'''simple docstring'''
UpperCAmelCase_ ="cpu"
UpperCAmelCase_ =self.get_dummy_components()
UpperCAmelCase_ =self.pipeline_class(**_lowerCAmelCase )
UpperCAmelCase_ =pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
UpperCAmelCase_ =pipe(**self.get_dummy_inputs(_lowerCAmelCase ) )
UpperCAmelCase_ =output.images
UpperCAmelCase_ =pipe(
**self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0]
UpperCAmelCase_ =image[0, -3:, -3:, -1]
UpperCAmelCase_ =image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase_ =np.array(
[0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), F' expected_slice {expected_slice}, but got {image_slice.flatten()}'
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'
@slow
@require_torch_gpu
class A ( unittest.TestCase ):
def lowerCAmelCase__ ( self: List[Any] ) -> str:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase__ ( self: int ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ =load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/kandinskyv22_img2img_frog.npy" )
UpperCAmelCase_ =load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
UpperCAmelCase_ ="A red cartoon frog, 4k"
UpperCAmelCase_ =KandinskyVaaPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa )
pipe_prior.to(_lowerCAmelCase )
UpperCAmelCase_ =KandinskyVaaImgaImgPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa )
UpperCAmelCase_ =pipeline.to(_lowerCAmelCase )
pipeline.set_progress_bar_config(disable=_lowerCAmelCase )
UpperCAmelCase_ =torch.Generator(device="cpu" ).manual_seed(0 )
UpperCAmelCase_ , UpperCAmelCase_ =pipe_prior(
_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
UpperCAmelCase_ =pipeline(
image=_lowerCAmelCase , image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , )
UpperCAmelCase_ =output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
| 54 | 0 |
class __snake_case :
def __init__( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
_lowerCAmelCase : str = {}
def SCREAMING_SNAKE_CASE ( self : str ) -> None:
'''simple docstring'''
print(self.vertex )
for i in self.vertex:
print(_lowerCAmelCase , """ -> """ , """ -> """.join([str(_lowerCAmelCase ) for j in self.vertex[i]] ) )
def SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> None:
'''simple docstring'''
if from_vertex in self.vertex:
self.vertex[from_vertex].append(_lowerCAmelCase )
else:
# else make a new vertex
_lowerCAmelCase : Optional[int] = [to_vertex]
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> None:
'''simple docstring'''
_lowerCAmelCase : Any = [False] * len(self.vertex )
# call the recursive helper function
for i in range(len(self.vertex ) ):
if not visited[i]:
self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase )
def SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : list ) -> None:
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = True
print(_lowerCAmelCase , end=""" """ )
# Recur for all the vertices that are adjacent to this node
for i in self.vertex:
if not visited[i]:
self.dfs_recursive(_lowerCAmelCase , _lowerCAmelCase )
if __name__ == "__main__":
_lowerCamelCase : Dict = Graph()
g.add_edge(0, 1)
g.add_edge(0, 2)
g.add_edge(1, 2)
g.add_edge(2, 0)
g.add_edge(2, 3)
g.add_edge(3, 3)
g.print_graph()
print("DFS:")
g.dfs()
# OUTPUT:
# 0 -> 1 -> 2
# 1 -> 2
# 2 -> 0 -> 3
# 3 -> 3
# DFS:
# 0 1 2 3
| 429 |
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class A ( unittest.TestCase ):
def __init__( self: Optional[int] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[Any]=13 , _lowerCAmelCase: Optional[int]=7 , _lowerCAmelCase: Any=True , _lowerCAmelCase: List[Any]=True , _lowerCAmelCase: List[str]=True , _lowerCAmelCase: str=True , _lowerCAmelCase: Optional[int]=99 , _lowerCAmelCase: Any=32 , _lowerCAmelCase: Any=5 , _lowerCAmelCase: Tuple=4 , _lowerCAmelCase: Union[str, Any]=37 , _lowerCAmelCase: List[str]="gelu" , _lowerCAmelCase: Dict=0.1 , _lowerCAmelCase: Tuple=0.1 , _lowerCAmelCase: int=512 , _lowerCAmelCase: Tuple=16 , _lowerCAmelCase: Tuple=2 , _lowerCAmelCase: str=0.02 , _lowerCAmelCase: Optional[Any]=4 , ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ =parent
UpperCAmelCase_ =batch_size
UpperCAmelCase_ =seq_length
UpperCAmelCase_ =is_training
UpperCAmelCase_ =use_attention_mask
UpperCAmelCase_ =use_token_type_ids
UpperCAmelCase_ =use_labels
UpperCAmelCase_ =vocab_size
UpperCAmelCase_ =hidden_size
UpperCAmelCase_ =num_hidden_layers
UpperCAmelCase_ =num_attention_heads
UpperCAmelCase_ =intermediate_size
UpperCAmelCase_ =hidden_act
UpperCAmelCase_ =hidden_dropout_prob
UpperCAmelCase_ =attention_probs_dropout_prob
UpperCAmelCase_ =max_position_embeddings
UpperCAmelCase_ =type_vocab_size
UpperCAmelCase_ =type_sequence_label_size
UpperCAmelCase_ =initializer_range
UpperCAmelCase_ =num_choices
def lowerCAmelCase__ ( self: Dict ) -> Any:
'''simple docstring'''
UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ =None
if self.use_attention_mask:
UpperCAmelCase_ =random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase_ =None
if self.use_token_type_ids:
UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ =RobertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowerCAmelCase__ ( self: str ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ =self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs
UpperCAmelCase_ ={"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
return config, inputs_dict
def lowerCAmelCase__ ( self: Tuple ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ =self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ =config_and_inputs
UpperCAmelCase_ =True
UpperCAmelCase_ =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase_ =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class A ( __lowercase , unittest.TestCase ):
_snake_case =True
_snake_case =(
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowerCAmelCase__ ( self: Dict ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ =FlaxRobertaModelTester(self )
@slow
def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
UpperCAmelCase_ =model_class_name.from_pretrained("roberta-base" , from_pt=_lowerCAmelCase )
UpperCAmelCase_ =model(np.ones((1, 1) ) )
self.assertIsNotNone(_lowerCAmelCase )
| 54 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.