code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from ...configuration_utils import PretrainedConfig SCREAMING_SNAKE_CASE :Optional[int] = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "tapas" def __init__( self : List[Any] ,A : Dict=3_05_22 ,A : int=7_68 ,A : List[Any]=12 ,A : Any=12 ,A : str=30_72 ,A : Dict="gelu" ,A : str=0.1 ,A : Any=0.1 ,A : Union[str, Any]=10_24 ,A : Dict=[3, 2_56, 2_56, 2, 2_56, 2_56, 10] ,A : str=0.02 ,A : List[str]=1E-12 ,A : List[Any]=0 ,A : str=10.0 ,A : Any=0 ,A : Optional[int]=1.0 ,A : Optional[Any]=None ,A : Any=1.0 ,A : int=False ,A : str=None ,A : str=1.0 ,A : Optional[Any]=1.0 ,A : List[Any]=False ,A : Any=False ,A : Tuple="ratio" ,A : Optional[int]=None ,A : Any=None ,A : Optional[int]=64 ,A : List[Any]=32 ,A : int=False ,A : List[Any]=True ,A : str=False ,A : Optional[int]=False ,A : Any=True ,A : Tuple=False ,A : Tuple=None ,A : List[str]=None ,**A : Union[str, Any] ,): super().__init__(pad_token_id=A ,**A ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = hidden_act __A = intermediate_size __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_sizes __A = initializer_range __A = layer_norm_eps # Fine-tuning task hyperparameters __A = positive_label_weight __A = num_aggregation_labels __A = aggregation_loss_weight __A = use_answer_as_supervision __A = answer_loss_importance __A = use_normalized_answer_loss __A = huber_loss_delta __A = temperature __A = aggregation_temperature __A = use_gumbel_for_cells __A = use_gumbel_for_aggregation __A = average_approximation_function __A = cell_selection_preference __A = answer_loss_cutoff __A = max_num_rows __A = max_num_columns __A = average_logits_per_cell __A = select_one_column __A = allow_empty_column_selection __A = init_cell_selection_weights_to_zero __A = reset_position_index_per_cell __A = disable_per_token_loss # Aggregation hyperparameters __A = aggregation_labels __A = no_aggregation_label_index if isinstance(self.aggregation_labels ,A ): __A = {int(A ): v for k, v in aggregation_labels.items()}
55
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels SCREAMING_SNAKE_CASE :Union[str, Any] = object() # For specifying empty leaf dict `{}` SCREAMING_SNAKE_CASE :List[str] = object() def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" __A = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(a_ ) - len(a_ ) + 1 ): __A = [x.match(a_ ) for x, y in zip(a_ , ks[i:] )] if matches and all(a_ ): return True return False def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" def replace(a_ , a_ ): for rule, replacement in rules: if _match(a_ , a_ ): return replacement return val return replace def UpperCAmelCase ( ) -> int: """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , a_ )), (("transformer", "wte", "embedding"), P("mp" , a_ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a_ , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , a_ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(a_ , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , a_ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" __A = _get_partition_rules() __A = _replacement_rules(a_ ) __A = {k: _unmatched for k in flatten_dict(a_ )} __A = {k: replace(a_ , a_ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(a_ ) )
55
1
def UpperCAmelCase ( a_ ) -> int: """simple docstring""" if n == 1 or not isinstance(a_ , a_ ): return 0 elif n == 2: return 1 else: __A = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def UpperCAmelCase ( a_ ) -> int: """simple docstring""" __A = 0 __A = 2 while digits < n: index += 1 __A = len(str(fibonacci(a_ ) ) ) return index def UpperCAmelCase ( a_ = 1_0_0_0 ) -> int: """simple docstring""" return fibonacci_digits_index(a_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
55
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] ,A : Union[str, Any] ,A : List[Any]=13 ,A : Optional[Any]=30 ,A : Union[str, Any]=2 ,A : Union[str, Any]=3 ,A : Any=True ,A : Dict=True ,A : str=32 ,A : Tuple=2 ,A : Optional[int]=4 ,A : Tuple=37 ,A : List[Any]="gelu" ,A : Dict=0.1 ,A : Optional[int]=0.1 ,A : List[Any]=10 ,A : Optional[Any]=0.02 ,A : Dict=3 ,A : Dict=None ,A : List[Any]=2 ,): __A = parent __A = batch_size __A = image_size __A = patch_size __A = num_channels __A = is_training __A = use_labels __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = type_sequence_label_size __A = initializer_range __A = scope __A = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __A = (image_size // patch_size) ** 2 __A = num_patches + 2 def UpperCamelCase_ ( self : List[Any] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Optional[int] ): return DeiTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,A : Optional[int] ,A : Union[str, Any] ): __A = TFDeiTModel(config=A ) __A = model(A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : List[Any] ,A : List[Any] ,A : Optional[Any] ,A : Dict ): __A = TFDeiTForMaskedImageModeling(config=A ) __A = model(A ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __A = 1 __A = TFDeiTForMaskedImageModeling(A ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(A ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase_ ( self : Optional[Any] ,A : Union[str, Any] ,A : Dict ,A : Union[str, Any] ): __A = self.type_sequence_label_size __A = TFDeiTForImageClassification(A ) __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __A = 1 __A = TFDeiTForImageClassification(A ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) snake_case_ = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : str ): __A = TFDeiTModelTester(self ) __A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 ) def UpperCamelCase_ ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass def UpperCamelCase_ ( self : List[Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) __A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A ,tf.keras.layers.Dense ) ) def UpperCamelCase_ ( self : Union[str, Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCamelCase_ ( self : Optional[int] ,A : Union[str, Any] ,A : List[str] ,A : Optional[Any]=False ): __A = super()._prepare_for_class(A ,A ,return_labels=A ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def UpperCamelCase_ ( self : Any ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = TFDeiTModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> str: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : int ): return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[int] ): __A = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="tf" ) # forward pass __A = model(**A ) # verify the logits __A = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape ,A ) __A = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
1
from numpy import exp, pi, sqrt def UpperCAmelCase ( a_ , a_ = 0.0 , a_ = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
SCREAMING_SNAKE_CASE :List[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE :Union[str, Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE :int = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" assert len(str(a_ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 1_2, "month should be between 1 to 12" assert 1 <= day <= 3_1, "day should be between 1 to 31" # Doomsday algorithm: __A = year // 1_0_0 __A = (5 * (century % 4) + 2) % 7 __A = year % 1_0_0 __A = centurian % 1_2 __A = ( (centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __A = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0) else DOOMSDAY_LEAP[month - 1] ) __A = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
55
1
def UpperCAmelCase ( ) -> list[list[int]]: """simple docstring""" return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] SCREAMING_SNAKE_CASE :str = generate_large_matrix() SCREAMING_SNAKE_CASE :Dict = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCAmelCase ( a_ ) -> None: """simple docstring""" assert all(row == sorted(a_ , reverse=a_ ) for row in grid ) assert all(list(a_ ) == sorted(a_ , reverse=a_ ) for col in zip(*a_ ) ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" __A = 0 __A = len(a_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __A = (left + right) // 2 __A = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __A = mid + 1 else: __A = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(a_ ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" __A = 0 __A = len(grid[0] ) for i in range(len(a_ ) ): __A = find_negative_index(grid[i][:bound] ) total += bound return (len(a_ ) * len(grid[0] )) - total def UpperCAmelCase ( a_ ) -> int: """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" __A = 0 for row in grid: for i, number in enumerate(a_ ): if number < 0: total += len(a_ ) - i break return total def UpperCAmelCase ( ) -> None: """simple docstring""" from timeit import timeit print("Running benchmarks" ) __A = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __A = timeit(F'''{func}(grid=grid)''' , setup=a_ , number=5_0_0 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
55
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def UpperCAmelCase ( a_ = "isbn/0140328726" ) -> dict: """simple docstring""" __A = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes if new_olid.count("/" ) != 1: __A = F'''{olid} is not a valid Open Library olid''' raise ValueError(a_ ) return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json() def UpperCAmelCase ( a_ ) -> dict: """simple docstring""" __A = { "title": "Title", "publish_date": "Publish date", "authors": "Authors", "number_of_pages": "Number of pages:", "first_sentence": "First sentence", "isbn_10": "ISBN (10)", "isbn_13": "ISBN (13)", } __A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __A = [ get_openlibrary_data(author["key"] )["name"] for author in data["Authors"] ] __A = data["First sentence"]["value"] for key, value in data.items(): if isinstance(a_ , a_ ): __A = ", ".join(a_ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: SCREAMING_SNAKE_CASE :int = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: SCREAMING_SNAKE_CASE :Any = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
55
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = 42 snake_case_ = 42 def __init__( self : List[Any] ,A : UNetaDModel ,A : ScoreSdeVeScheduler ): super().__init__() self.register_modules(unet=A ,scheduler=A ) @torch.no_grad() def __call__( self : int ,A : int = 1 ,A : int = 20_00 ,A : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,A : Optional[str] = "pil" ,A : bool = True ,**A : Optional[int] ,): __A = self.unet.config.sample_size __A = (batch_size, 3, img_size, img_size) __A = self.unet __A = randn_tensor(A ,generator=A ) * self.scheduler.init_noise_sigma __A = sample.to(self.device ) self.scheduler.set_timesteps(A ) self.scheduler.set_sigmas(A ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __A = self.scheduler.sigmas[i] * torch.ones(shape[0] ,device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __A = self.unet(A ,A ).sample __A = self.scheduler.step_correct(A ,A ,generator=A ).prev_sample # prediction step __A = model(A ,A ).sample __A = self.scheduler.step_pred(A ,A ,A ,generator=A ) __A , __A = output.prev_sample, output.prev_sample_mean __A = sample_mean.clamp(0 ,1 ) __A = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": __A = self.numpy_to_pil(A ) if not return_dict: return (sample,) return ImagePipelineOutput(images=A )
55
import requests SCREAMING_SNAKE_CASE :List[str] = 'YOUR API KEY' def UpperCAmelCase ( a_ , a_ = giphy_api_key ) -> list: """simple docstring""" __A = "+".join(query.split() ) __A = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' __A = requests.get(a_ ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
55
1
import itertools import math def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" __A = 2 while True: if is_prime(a_ ): yield num num += 1 def UpperCAmelCase ( a_ = 1_0_0_0_1 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , a_ ) ) if __name__ == "__main__": print(f'''{solution() = }''')
55
import itertools import math def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" __A = 2 while True: if is_prime(a_ ): yield num num += 1 def UpperCAmelCase ( a_ = 1_0_0_0_1 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , a_ ) ) if __name__ == "__main__": print(f'''{solution() = }''')
55
1
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() SCREAMING_SNAKE_CASE :Optional[int] = 2 class UpperCAmelCase : '''simple docstring''' def __init__( self : Dict ,*, # begin keyword-only arguments A : Tuple="<s>" ,A : Optional[Any]="<pad>" ,A : Tuple="</s>" ,A : Tuple="<unk>" ,A : Union[str, Any]=None ,): __A , __A , __A , __A = bos, unk, pad, eos __A = [] __A = [] __A = {} __A = self.add_symbol(A ) __A = self.add_symbol(A ) __A = self.add_symbol(A ) __A = self.add_symbol(A ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(A ) __A = len(self.symbols ) def __eq__( self : Any ,A : str ): return self.indices == other.indices def __getitem__( self : int ,A : Tuple ): if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : Any ): return len(self.symbols ) def __contains__( self : Optional[Any] ,A : Optional[int] ): return sym in self.indices @classmethod def UpperCamelCase_ ( cls : Any ,A : Union[str, Any] ): __A = cls() d.add_from_file(A ) return d def UpperCamelCase_ ( self : Union[str, Any] ,A : Optional[Any] ,A : str=1 ,A : int=False ): if word in self.indices and not overwrite: __A = self.indices[word] __A = self.count[idx] + n return idx else: __A = len(self.symbols ) __A = idx self.symbols.append(A ) self.count.append(A ) return idx def UpperCamelCase_ ( self : Dict ,A : Optional[int] ): return 0 def UpperCamelCase_ ( self : Dict ,A : List[Any] ): if isinstance(A ,A ): try: with open(A ,"r" ,encoding="utf-8" ) as fd: self.add_from_file(A ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(A ) ) return __A = f.readlines() __A = self._load_meta(A ) for line in lines[indices_start_line:]: try: __A , __A = line.rstrip().rsplit(" " ,1 ) if field == "#fairseq:overwrite": __A = True __A , __A = line.rsplit(" " ,1 ) else: __A = False __A = int(A ) __A = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#fairseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(A ) ) self.add_symbol(A ,n=A ,overwrite=A ) except ValueError: raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" ) def UpperCAmelCase ( a_ ) -> List[str]: """simple docstring""" __A = dict((re.sub(r"@@$" , "" , a_ ), v) if k.endswith("@@" ) else (re.sub(r"$" , "</w>" , a_ ), v) for k, v in d.items() ) __A = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F'''{k}</w>'''] __A = d[k] # restore return da def UpperCAmelCase ( a_ , a_ ) -> List[str]: """simple docstring""" if not os.path.exists(a_ ): raise ValueError(F'''path {biogpt_checkpoint_path} does not exist!''' ) os.makedirs(a_ , exist_ok=a_ ) print(F'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models __A = os.path.join(a_ , "checkpoint.pt" ) if not os.path.isfile(a_ ): raise ValueError(F'''path to the file {checkpoint_file} does not exist!''' ) __A = torch.load(a_ , map_location="cpu" ) __A = chkpt["cfg"]["model"] # dicts __A = os.path.join(a_ , "dict.txt" ) if not os.path.isfile(a_ ): raise ValueError(F'''path to the file {dict_file} does not exist!''' ) __A = Dictionary.load(a_ ) __A = rewrite_dict_keys(src_dict.indices ) __A = len(a_ ) __A = os.path.join(a_ , VOCAB_FILES_NAMES["vocab_file"] ) print(F'''Generating {src_vocab_file} of {src_vocab_size} records''' ) with open(a_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(a_ , ensure_ascii=a_ , indent=a_ ) ) # merges_file (bpecodes) __A = os.path.join(a_ , "bpecodes" ) if not os.path.isfile(a_ ): raise ValueError(F'''path to the file {bpecodes_file} does not exist!''' ) __A = os.path.join(a_ , VOCAB_FILES_NAMES["merges_file"] ) shutil.copyfile(a_ , a_ ) # model config __A = os.path.join(a_ , "config.json" ) __A = { "activation_dropout": args["activation_dropout"], "architectures": ["BioGptForCausalLM"], "attention_probs_dropout_prob": args["attention_dropout"], "bos_token_id": 0, "eos_token_id": 2, "hidden_act": args["activation_fn"], "hidden_dropout_prob": args["dropout"], "hidden_size": args["decoder_embed_dim"], "initializer_range": 0.02, "intermediate_size": args["decoder_ffn_embed_dim"], "layer_norm_eps": 1E-12, "layerdrop": args["decoder_layerdrop"], "max_position_embeddings": args["max_target_positions"], "model_type": "biogpt", "num_attention_heads": args["decoder_attention_heads"], "num_hidden_layers": args["decoder_layers"], "pad_token_id": 1, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_decoder_input_output_embed"], "vocab_size": src_vocab_size, } # good hparam defaults to start with print(F'''Generating {biogpt_model_config_file}''' ) with open(a_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(a_ , ensure_ascii=a_ , indent=a_ ) ) # tokenizer config __A = os.path.join(a_ , a_ ) __A = { "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 1_0_2_4, "pad_token": "<pad>", "special_tokens_map_file": None, "tokenizer_class": "BioGptTokenizer", "unk_token": "<unk>", } print(F'''Generating {biogpt_tokenizer_config_file}''' ) with open(a_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(a_ , ensure_ascii=a_ , indent=a_ ) ) # model __A = chkpt["model"] # remove unneeded keys __A = [ "decoder.version", ] for k in ignore_keys: model_state_dict.pop(a_ , a_ ) __A = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("output_projection.weight" ): __A = model_state_dict.pop(a_ ) else: __A = model_state_dict.pop(a_ ) __A = BioGptConfig.from_pretrained(a_ ) __A = BioGptForCausalLM(a_ ) # check that it loads ok model_new.load_state_dict(a_ ) # save __A = os.path.join(a_ , a_ ) print(F'''Generating {pytorch_weights_dump_path}''' ) torch.save(a_ , a_ ) print("Conversion is done!" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) SCREAMING_SNAKE_CASE :List[Any] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
55
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]: """simple docstring""" __A = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") __A = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(a_ ): os.makedirs(a_ ) __A = model.state_dict() def to_tf_var_name(a_ ): for patt, repl in iter(a_ ): __A = name.replace(a_ , a_ ) return F'''bert/{name}''' def create_tf_var(a_ , a_ , a_ ): __A = tf.dtypes.as_dtype(tensor.dtype ) __A = tf.get_variable(dtype=a_ , shape=tensor.shape , name=a_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(a_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __A = to_tf_var_name(a_ ) __A = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __A = torch_tensor.T __A = create_tf_var(tensor=a_ , name=a_ , session=a_ ) tf.keras.backend.set_value(a_ , a_ ) __A = session.run(a_ ) print(F'''Successfully created {tf_name}: {np.allclose(a_ , a_ )}''' ) __A = tf.train.Saver(tf.trainable_variables() ) saver.save(a_ , os.path.join(a_ , model_name.replace("-" , "_" ) + ".ckpt" ) ) def UpperCAmelCase ( a_=None ) -> List[Any]: """simple docstring""" __A = argparse.ArgumentParser() parser.add_argument("--model_name" , type=a_ , required=a_ , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=a_ , default=a_ , required=a_ , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=a_ , required=a_ , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=a_ , required=a_ , help="Directory in which to save tensorflow model" ) __A = parser.parse_args(a_ ) __A = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=a_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
55
1
def UpperCAmelCase ( a_ , a_ ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def UpperCAmelCase ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
55
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE :Any = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Any = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : Dict ,A : List[Any]=7 ,A : Any=3 ,A : List[Any]=30 ,A : List[Any]=4_00 ,A : Union[str, Any]=True ,A : List[str]=None ,A : Optional[Any]=0.9 ,A : Any=None ,A : List[Any]=True ,A : List[Any]=[0.5, 0.5, 0.5] ,A : Union[str, Any]=[0.5, 0.5, 0.5] ,): __A = size if size is not None else {"shortest_edge": 30} __A = crop_size if crop_size is not None else {"height": 30, "width": 30} __A = parent __A = batch_size __A = num_channels __A = min_resolution __A = max_resolution __A = do_resize_and_center_crop __A = size __A = crop_pct __A = crop_size __A = do_normalize __A = image_mean __A = image_std def UpperCamelCase_ ( self : Optional[int] ): return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = PoolFormerImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Optional[Any] ): __A = PoolFormerImageProcessingTester(self ) @property def UpperCamelCase_ ( self : Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : List[Any] ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize_and_center_crop" ) ) self.assertTrue(hasattr(A ,"size" ) ) self.assertTrue(hasattr(A ,"crop_pct" ) ) self.assertTrue(hasattr(A ,"do_normalize" ) ) self.assertTrue(hasattr(A ,"image_mean" ) ) self.assertTrue(hasattr(A ,"image_std" ) ) def UpperCamelCase_ ( self : Tuple ): __A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"shortest_edge": 30} ) self.assertEqual(image_processor.crop_size ,{"height": 30, "width": 30} ) __A = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) def UpperCamelCase_ ( self : Optional[Any] ): pass def UpperCamelCase_ ( self : str ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : Union[str, Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : Any ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,)
55
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE :int = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def UpperCAmelCase ( a_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" __A = BeautifulSoup(requests.get(url + location ).content , "html.parser" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ): __A = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip() __A = job.find("span" , {"class": "company"} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
55
1
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE :Any = logging.get_logger() @dataclass class UpperCAmelCase : '''simple docstring''' snake_case_ = 42 snake_case_ = field(default_factory=__SCREAMING_SNAKE_CASE ) snake_case_ = field(default_factory=__SCREAMING_SNAKE_CASE ) def UpperCamelCase_ ( self : str ,A : Dict ,A : Tensor ,A : Tensor ): __A = len(list(m.modules() ) ) == 1 or isinstance(A ,nn.Convad ) or isinstance(A ,nn.BatchNormad ) if has_not_submodules: self.traced.append(A ) def __call__( self : Dict ,A : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(A ) [x.remove() for x in self.handles] return self @property def UpperCamelCase_ ( self : str ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda A : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class UpperCAmelCase : '''simple docstring''' snake_case_ = 42 snake_case_ = 42 snake_case_ = 0 snake_case_ = field(default_factory=__SCREAMING_SNAKE_CASE ) snake_case_ = field(default_factory=__SCREAMING_SNAKE_CASE ) def __call__( self : Tuple ,A : Tensor ): __A = Tracker(self.dest )(A ).parametrized __A = Tracker(self.src )(A ).parametrized __A = list(filter(lambda A : type(A ) not in self.src_skip ,A ) ) __A = list(filter(lambda A : type(A ) not in self.dest_skip ,A ) ) if len(A ) != len(A ): raise Exception( f'''Numbers of operations are different. Source module has {len(A )} operations while''' f''' destination module has {len(A )}.''' ) for dest_m, src_m in zip(A ,A ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'''Transfered from={src_m} to={dest_m}''' ) def UpperCAmelCase ( a_ , a_ , a_ , a_ = True ) -> List[str]: """simple docstring""" print(F'''Converting {name}...''' ) with torch.no_grad(): __A = timm.create_model(a_ , pretrained=a_ ).eval() __A = ResNetForImageClassification(a_ ).eval() __A = ModuleTransfer(src=a_ , dest=a_ ) __A = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(a_ ) assert torch.allclose(from_model(a_ ) , our_model(a_ ).logits ), "The model logits don't match the original one." __A = F'''resnet{'-'.join(name.split('resnet' ) )}''' print(a_ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add model" , use_temp_dir=a_ , ) # we can use the convnext one __A = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add image processor" , use_temp_dir=a_ , ) print(F'''Pushed {checkpoint_name}''' ) def UpperCAmelCase ( a_ , a_ = None , a_ = True ) -> Tuple: """simple docstring""" __A = "imagenet-1k-id2label.json" __A = 1_0_0_0 __A = (1, num_labels) __A = "huggingface/label-files" __A = num_labels __A = json.load(open(hf_hub_download(a_ , a_ , repo_type="dataset" ) , "r" ) ) __A = {int(a_ ): v for k, v in idalabel.items()} __A = idalabel __A = {v: k for k, v in idalabel.items()} __A = partial(a_ , num_labels=a_ , idalabel=a_ , labelaid=a_ ) __A = { "resnet18": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="basic" ), "resnet26": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="bottleneck" ), "resnet34": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="basic" ), "resnet50": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="bottleneck" ), "resnet101": ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="bottleneck" ), "resnet152": ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="bottleneck" ), } if model_name: convert_weight_and_push(a_ , names_to_config[model_name] , a_ , a_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(a_ , a_ , a_ , a_ ) return config, expected_shape if __name__ == "__main__": SCREAMING_SNAKE_CASE :Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) SCREAMING_SNAKE_CASE :Union[str, Any] = parser.parse_args() SCREAMING_SNAKE_CASE :Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
55
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : List[str] ): __A = tempfile.mkdtemp() __A = BlipImageProcessor() __A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) __A = BlipaProcessor(A ,A ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ,**A : int ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).tokenizer def UpperCamelCase_ ( self : Dict ,**A : Optional[int] ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor def UpperCamelCase_ ( self : Dict ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self : Optional[int] ): __A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] __A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self : Any ): __A = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __A = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" ) __A = self.get_image_processor(do_normalize=A ,padding_value=1.0 ) __A = BlipaProcessor.from_pretrained( self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=A ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,A ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = self.prepare_image_inputs() __A = image_processor(A ,return_tensors="np" ) __A = processor(images=A ,return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self : Tuple ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = processor(text=A ) __A = tokenizer(A ,return_token_type_ids=A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self : int ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A = processor.batch_decode(A ) __A = tokenizer.batch_decode(A ) self.assertListEqual(A ,A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
55
1
import os import sys import unittest SCREAMING_SNAKE_CASE :int = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path SCREAMING_SNAKE_CASE :Dict = os.path.join(git_repo_path, 'src', 'transformers') SCREAMING_SNAKE_CASE :Any = '\n{0} = None\n' SCREAMING_SNAKE_CASE :Tuple = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' SCREAMING_SNAKE_CASE :Optional[Any] = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Optional[int] ): __A = find_backend(" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")" ) self.assertIsNone(A ) __A = find_backend(" if not is_tokenizers_available():" ) self.assertEqual(A ,"tokenizers" ) __A = find_backend(" if not is_tensorflow_text_available():" ) self.assertEqual(A ,"tensorflow_text" ) __A = find_backend(" if not (is_sentencepiece_available() and is_tokenizers_available()):" ) self.assertEqual(A ,"sentencepiece_and_tokenizers" ) __A = find_backend( " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" ) self.assertEqual(A ,"sentencepiece_and_tensorflow_text" ) __A = find_backend( " if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):" ) self.assertEqual(A ,"sentencepiece_and_tokenizers_and_vision" ) def UpperCamelCase_ ( self : List[str] ): __A = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" ,A ) self.assertIn("tensorflow_text" ,A ) self.assertIn("sentencepiece_and_tokenizers" ,A ) # Likewise, we can't assert on the exact content of a key self.assertIn("BertModel" ,objects["torch"] ) self.assertIn("TFBertModel" ,objects["tf"] ) self.assertIn("FlaxBertModel" ,objects["flax"] ) self.assertIn("BertModel" ,objects["torch"] ) self.assertIn("TFBertTokenizer" ,objects["tensorflow_text"] ) self.assertIn("convert_slow_tokenizer" ,objects["sentencepiece_and_tokenizers"] ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = create_dummy_object("CONSTANT" ,"'torch'" ) self.assertEqual(A ,"\nCONSTANT = None\n" ) __A = create_dummy_object("function" ,"'torch'" ) self.assertEqual( A ,"\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) __A = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n" __A = create_dummy_object("FakeClass" ,"'torch'" ) self.assertEqual(A ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n" __A = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] ,A )
55
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int ,A : Any ,A : List[str] ,A : Union[str, Any]=10_24 ,A : int=10_24 ,A : Optional[Any]=3.6 ): __A = tokenizer __A = tokenizer.bos_token_id __A = dataset __A = seq_length __A = seq_length * chars_per_token * num_of_sequences def __iter__( self : List[Any] ): __A = iter(self.dataset ) __A = True while more_examples: __A , __A = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: __A = False break __A = tokenizer(A ,truncation=A )["input_ids"] __A = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 ,len(A ) ,self.seq_length ): __A = all_token_ids[i : i + self.seq_length] if len(A ) == self.seq_length: yield torch.tensor(A ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = {"streaming": True} __A = load_dataset(args.dataset_name , split="train" , **a_ ) __A = ConstantLengthDataset(a_ , a_ , seq_length=args.seq_length ) __A = DataLoader(a_ , batch_size=args.batch_size ) return eval_dataloader def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" model.eval() __A = [] for step, batch in enumerate(a_ ): with torch.no_grad(): __A = model(a_ , labels=a_ ) __A = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(a_ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __A = torch.mean(torch.cat(a_ ) ) try: __A = torch.exp(a_ ) except OverflowError: __A = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator SCREAMING_SNAKE_CASE :Optional[int] = Accelerator() # Parse configuration SCREAMING_SNAKE_CASE :str = HfArgumentParser(EvaluationArguments) SCREAMING_SNAKE_CASE :int = parser.parse_args() set_seed(args.seed) # Logging SCREAMING_SNAKE_CASE :Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer SCREAMING_SNAKE_CASE :List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) SCREAMING_SNAKE_CASE :int = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader SCREAMING_SNAKE_CASE :List[str] = create_dataloader(args) # Prepare everything with our `accelerator`. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
55
1
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : Any ,A : Optional[Any] ,A : Optional[int]=13 ,A : Dict=[30, 30] ,A : Tuple=2 ,A : int=3 ,A : Optional[int]=True ,A : Optional[int]=True ,A : str=32 ,A : Optional[int]=5 ,A : List[Any]=4 ,A : Union[str, Any]=37 ,A : int="gelu" ,A : Any=0.1 ,A : Tuple=0.1 ,A : Union[str, Any]=10 ,A : Any=0.02 ,A : List[str]=3 ,A : Optional[Any]=None ,A : Any=8 ,A : List[str]=10 ,): __A = parent __A = batch_size __A = image_size __A = patch_size __A = num_channels __A = is_training __A = use_labels __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = type_sequence_label_size __A = initializer_range __A = num_labels __A = scope __A = n_targets __A = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens __A = (image_size[1] // patch_size) * (image_size[0] // patch_size) __A = num_patches + 1 + self.num_detection_tokens def UpperCamelCase_ ( self : Any ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) __A = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) __A = [] for i in range(self.batch_size ): __A = {} __A = torch.randint( high=self.num_labels ,size=(self.n_targets,) ,device=A ) __A = torch.rand(self.n_targets ,4 ,device=A ) labels.append(A ) __A = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Union[str, Any] ): return YolosConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,num_detection_tokens=self.num_detection_tokens ,num_labels=self.num_labels ,) def UpperCamelCase_ ( self : int ,A : Any ,A : Any ,A : str ): __A = YolosModel(config=A ) model.to(A ) model.eval() __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.expected_seq_len, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple ,A : List[Any] ,A : Union[str, Any] ,A : Optional[int] ): __A = YolosForObjectDetection(A ) model.to(A ) model.eval() __A = model(pixel_values=A ) __A = model(A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape ,(self.batch_size, self.num_detection_tokens, 4) ) __A = model(pixel_values=A ,labels=A ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape ,(self.batch_size, self.num_detection_tokens, 4) ) def UpperCamelCase_ ( self : Tuple ): __A = self.prepare_config_and_inputs() __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = (YolosModel, YolosForObjectDetection) if is_torch_available() else () snake_case_ = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : Optional[int] ,A : Optional[int] ,A : str ,A : Tuple=False ): __A = super()._prepare_for_class(A ,A ,return_labels=A ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": __A = [] for i in range(self.model_tester.batch_size ): __A = {} __A = torch.ones( size=(self.model_tester.n_targets,) ,device=A ,dtype=torch.long ) __A = torch.ones( self.model_tester.n_targets ,4 ,device=A ,dtype=torch.float ) labels.append(A ) __A = labels return inputs_dict def UpperCamelCase_ ( self : List[Any] ): __A = YolosModelTester(self ) __A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 ) def UpperCamelCase_ ( self : int ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : List[str] ): # YOLOS does not use inputs_embeds pass def UpperCamelCase_ ( self : Optional[Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) __A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A ,nn.Linear ) ) def UpperCamelCase_ ( self : int ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : Any ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[int] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() __A = True # in YOLOS, the seq_len is different __A = self.model_tester.expected_seq_len for model_class in self.all_model_classes: __A = True __A = False __A = True __A = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(A ,A ) ) __A = outputs.attentions self.assertEqual(len(A ) ,self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __A = True __A = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(A ,A ) ) __A = outputs.attentions self.assertEqual(len(A ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) __A = len(A ) # Check attention is always last and order is fine __A = True __A = True __A = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(A ,A ) ) __A = 1 self.assertEqual(out_len + added_hidden_states ,len(A ) ) __A = outputs.attentions self.assertEqual(len(A ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) def UpperCamelCase_ ( self : int ): def check_hidden_states_output(A : str ,A : Dict ,A : List[Any] ): __A = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(A ,A ) ) __A = outputs.hidden_states __A = getattr( self.model_tester ,"expected_num_hidden_layers" ,self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(A ) ,A ) # YOLOS has a different seq_length __A = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[seq_length, self.model_tester.hidden_size] ,) __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = True check_hidden_states_output(A ,A ,A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A = True check_hidden_states_output(A ,A ,A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*A ) @slow def UpperCamelCase_ ( self : Any ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = YolosModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> Tuple: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : Any ): return AutoImageProcessor.from_pretrained("hustvl/yolos-small" ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : List[Any] ): __A = YolosForObjectDetection.from_pretrained("hustvl/yolos-small" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): __A = model(inputs.pixel_values ) # verify outputs __A = torch.Size((1, 1_00, 92) ) self.assertEqual(outputs.logits.shape ,A ) __A = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ,device=A ,) __A = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ,device=A ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,A ,atol=1E-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] ,A ,atol=1E-4 ) ) # verify postprocessing __A = image_processor.post_process_object_detection( A ,threshold=0.3 ,target_sizes=[image.size[::-1]] )[0] __A = torch.tensor([0.99_94, 0.97_90, 0.99_64, 0.99_72, 0.98_61] ).to(A ) __A = [75, 75, 17, 63, 17] __A = torch.tensor([3_35.06_09, 79.38_48, 3_75.42_16, 1_87.24_95] ).to(A ) self.assertEqual(len(results["scores"] ) ,5 ) self.assertTrue(torch.allclose(results["scores"] ,A ,atol=1E-4 ) ) self.assertSequenceEqual(results["labels"].tolist() ,A ) self.assertTrue(torch.allclose(results["boxes"][0, :] ,A ) )
55
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = LayoutLMTokenizer snake_case_ = LayoutLMTokenizerFast snake_case_ = True snake_case_ = True def UpperCamelCase_ ( self : Any ): super().setUp() __A = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase_ ( self : Tuple ,**A : int ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**A ) def UpperCamelCase_ ( self : Optional[Any] ,A : Any ): __A = "UNwant\u00E9d,running" __A = "unwanted, running" return input_text, output_text def UpperCamelCase_ ( self : str ): __A = self.tokenizer_class(self.vocab_file ) __A = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(A ,["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[7, 4, 5, 10, 8, 9] ) def UpperCamelCase_ ( self : int ): pass
55
1
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Tuple = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "detr" snake_case_ = ["past_key_values"] snake_case_ = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : int ,A : int=True ,A : List[str]=None ,A : Any=3 ,A : int=1_00 ,A : List[Any]=6 ,A : int=20_48 ,A : str=8 ,A : str=6 ,A : Any=20_48 ,A : int=8 ,A : Dict=0.0 ,A : Tuple=0.0 ,A : Dict=True ,A : str="relu" ,A : List[Any]=2_56 ,A : Tuple=0.1 ,A : Tuple=0.0 ,A : Optional[Any]=0.0 ,A : str=0.02 ,A : Optional[Any]=1.0 ,A : Optional[int]=False ,A : Tuple="sine" ,A : Tuple="resnet50" ,A : Tuple=True ,A : List[str]=False ,A : Optional[Any]=1 ,A : Tuple=5 ,A : Union[str, Any]=2 ,A : List[Any]=1 ,A : Union[str, Any]=1 ,A : List[Any]=5 ,A : List[Any]=2 ,A : Optional[int]=0.1 ,**A : Optional[Any] ,): if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __A = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(A ,A ): __A = backbone_config.get("model_type" ) __A = CONFIG_MAPPING[backbone_model_type] __A = config_class.from_dict(A ) # set timm attributes to None __A , __A , __A = None, None, None __A = use_timm_backbone __A = backbone_config __A = num_channels __A = num_queries __A = d_model __A = encoder_ffn_dim __A = encoder_layers __A = encoder_attention_heads __A = decoder_ffn_dim __A = decoder_layers __A = decoder_attention_heads __A = dropout __A = attention_dropout __A = activation_dropout __A = activation_function __A = init_std __A = init_xavier_std __A = encoder_layerdrop __A = decoder_layerdrop __A = encoder_layers __A = auxiliary_loss __A = position_embedding_type __A = backbone __A = use_pretrained_backbone __A = dilation # Hungarian matcher __A = class_cost __A = bbox_cost __A = giou_cost # Loss coefficients __A = mask_loss_coefficient __A = dice_loss_coefficient __A = bbox_loss_coefficient __A = giou_loss_coefficient __A = eos_coefficient super().__init__(is_encoder_decoder=A ,**A ) @property def UpperCamelCase_ ( self : Optional[Any] ): return self.encoder_attention_heads @property def UpperCamelCase_ ( self : Tuple ): return self.d_model @classmethod def UpperCamelCase_ ( cls : str ,A : PretrainedConfig ,**A : int ): return cls(backbone_config=A ,**A ) def UpperCamelCase_ ( self : List[Any] ): __A = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __A = self.backbone_config.to_dict() __A = self.__class__.model_type return output class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = version.parse("1.11" ) @property def UpperCamelCase_ ( self : Dict ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def UpperCamelCase_ ( self : Dict ): return 1E-5 @property def UpperCamelCase_ ( self : Optional[Any] ): return 12
55
SCREAMING_SNAKE_CASE :int = {str(digit): digit**5 for digit in range(10)} def UpperCAmelCase ( a_ ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(a_ ) ) def UpperCAmelCase ( ) -> int: """simple docstring""" return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(a_ ) ) if __name__ == "__main__": print(solution())
55
1
import qiskit def UpperCAmelCase ( a_ , a_ ) -> qiskit.result.counts.Counts: """simple docstring""" __A = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register __A = qiskit.QuantumCircuit(a_ , a_ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator __A = qiskit.execute(a_ , a_ , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(a_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :int = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
55
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): __A = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A ,"tf_padding" ) ) self.parent.assertTrue(hasattr(A ,"depth_multiplier" ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] ,A : int ,A : List[Any]=13 ,A : int=3 ,A : Optional[Any]=32 ,A : Union[str, Any]=0.25 ,A : Tuple=8 ,A : Optional[int]=True ,A : Union[str, Any]=10_24 ,A : Any=32 ,A : Optional[int]="relu6" ,A : int=0.1 ,A : Optional[Any]=0.02 ,A : Optional[Any]=True ,A : List[str]=True ,A : str=10 ,A : str=None ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = depth_multiplier __A = min_depth __A = tf_padding __A = int(last_hidden_size * depth_multiplier ) __A = output_stride __A = hidden_act __A = classifier_dropout_prob __A = use_labels __A = is_training __A = num_labels __A = initializer_range __A = scope def UpperCamelCase_ ( self : Optional[int] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.num_labels ) __A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) __A = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self : Any ): return MobileNetVaConfig( num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,min_depth=self.min_depth ,tf_padding=self.tf_padding ,hidden_act=self.hidden_act ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,) def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : Tuple ,A : Optional[int] ,A : List[str] ): __A = MobileNetVaModel(config=A ) model.to(A ) model.eval() __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def UpperCamelCase_ ( self : List[Any] ,A : Union[str, Any] ,A : List[Any] ,A : int ,A : Union[str, Any] ): __A = self.num_labels __A = MobileNetVaForImageClassification(A ) model.to(A ) model.eval() __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : Tuple ): __A = self.prepare_config_and_inputs() __A , __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () snake_case_ = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : Any ): __A = MobileNetVaModelTester(self ) __A = MobileNetVaConfigTester(self ,config_class=A ,has_text_modality=A ) def UpperCamelCase_ ( self : str ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def UpperCamelCase_ ( self : Any ): pass def UpperCamelCase_ ( self : Optional[int] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[int] ): def check_hidden_states_output(A : List[Any] ,A : List[Any] ,A : Optional[int] ): __A = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(A ,A ) ) __A = outputs.hidden_states __A = 26 self.assertEqual(len(A ) ,A ) __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = True check_hidden_states_output(A ,A ,A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A = True check_hidden_states_output(A ,A ,A ) def UpperCamelCase_ ( self : Tuple ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def UpperCamelCase_ ( self : Union[str, Any] ): for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = MobileNetVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> str: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : List[str] ): return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[Any] ): __A = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): __A = model(**A ) # verify the logits __A = torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape ,A ) __A = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
1
from bisect import bisect from itertools import accumulate def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> List[Any]: """simple docstring""" __A = sorted(zip(a_ , a_ ) , key=lambda a_ : x[0] / x[1] , reverse=a_ ) __A , __A = [i[0] for i in r], [i[1] for i in r] __A = list(accumulate(a_ ) ) __A = bisect(a_ , a_ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
55
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : str ,A : int ,A : int=2 ,A : Optional[Any]=3 ,A : Dict=4 ,A : Optional[int]=2 ,A : Union[str, Any]=7 ,A : List[str]=True ,A : Union[str, Any]=True ,A : Optional[int]=True ,A : Optional[int]=True ,A : Tuple=99 ,A : Optional[int]=36 ,A : Dict=3 ,A : str=4 ,A : Optional[Any]=37 ,A : Dict="gelu" ,A : Dict=0.1 ,A : Union[str, Any]=0.1 ,A : Union[str, Any]=5_12 ,A : Any=16 ,A : Union[str, Any]=2 ,A : List[Any]=0.02 ,A : List[Any]=6 ,A : Optional[int]=6 ,A : List[Any]=3 ,A : Union[str, Any]=4 ,A : Tuple=None ,A : List[str]=10_00 ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = patch_size __A = text_seq_length __A = is_training __A = use_input_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = coordinate_size __A = shape_size __A = num_labels __A = num_choices __A = scope __A = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __A = text_seq_length __A = (image_size // patch_size) ** 2 + 1 __A = self.text_seq_length + self.image_seq_length def UpperCamelCase_ ( self : int ): __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size ) __A = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __A = bbox[i, j, 3] __A = bbox[i, j, 1] __A = t if bbox[i, j, 2] < bbox[i, j, 0]: __A = bbox[i, j, 2] __A = bbox[i, j, 0] __A = t __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.text_seq_length] ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels ) __A = LayoutLMvaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase_ ( self : Optional[int] ,A : List[str] ,A : Any ,A : Dict ,A : List[Any] ,A : Optional[int] ,A : Any ,A : Dict ,A : List[Any] ): __A = LayoutLMvaModel(config=A ) model.to(A ) model.eval() # text + image __A = model(A ,pixel_values=A ) __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) # text only __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __A = model(pixel_values=A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Optional[int] ,A : Dict ,A : List[str] ,A : Any ,A : List[Any] ,A : Any ,A : Any ,A : Dict ,A : Optional[Any] ): __A = self.num_labels __A = LayoutLMvaForSequenceClassification(A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : str ,A : Optional[Any] ,A : Dict ,A : str ,A : Tuple ,A : Union[str, Any] ,A : List[Any] ,A : Any ,A : Union[str, Any] ): __A = self.num_labels __A = LayoutLMvaForTokenClassification(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : int ,A : str ,A : List[str] ,A : int ,A : List[str] ,A : List[str] ,A : Dict ): __A = LayoutLMvaForQuestionAnswering(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,start_positions=A ,end_positions=A ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = config_and_inputs __A = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) snake_case_ = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def UpperCamelCase_ ( self : str ,A : Any ,A : Any ,A : Tuple ,A : List[Any] ,A : Optional[Any] ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def UpperCamelCase_ ( self : Union[str, Any] ): __A = LayoutLMvaModelTester(self ) __A = ConfigTester(self ,config_class=A ,hidden_size=37 ) def UpperCamelCase_ ( self : List[Any] ,A : int ,A : List[str] ,A : Dict=False ): __A = copy.deepcopy(A ) if model_class in get_values(A ): __A = { k: v.unsqueeze(1 ).expand(-1 ,self.model_tester.num_choices ,-1 ).contiguous() if isinstance(A ,torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A ): __A = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in get_values(A ): __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=A ,) return inputs_dict def UpperCamelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __A = type self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = LayoutLMvaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> Dict: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : Any ): return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : Dict ): __A = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).pixel_values.to(A ) __A = torch.tensor([[1, 2]] ) __A = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __A = model( input_ids=input_ids.to(A ) ,bbox=bbox.to(A ) ,pixel_values=pixel_values.to(A ) ,) # verify the logits __A = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape ,A ) __A = torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,A ,atol=1E-4 ) )
55
1
from __future__ import annotations import math import random from typing import Any class UpperCAmelCase : '''simple docstring''' def __init__( self : Tuple ): __A = [] __A = 0 __A = 0 def UpperCamelCase_ ( self : List[Any] ): return self.head == self.tail def UpperCamelCase_ ( self : Union[str, Any] ,A : Any ): self.data.append(A ) __A = self.tail + 1 def UpperCamelCase_ ( self : Any ): __A = self.data[self.head] __A = self.head + 1 return ret def UpperCamelCase_ ( self : str ): return self.tail - self.head def UpperCamelCase_ ( self : List[str] ): print(self.data ) print("**************" ) print(self.data[self.head : self.tail] ) class UpperCAmelCase : '''simple docstring''' def __init__( self : str ,A : Any ): __A = data __A = None __A = None __A = 1 def UpperCamelCase_ ( self : Optional[Any] ): return self.data def UpperCamelCase_ ( self : Optional[int] ): return self.left def UpperCamelCase_ ( self : int ): return self.right def UpperCamelCase_ ( self : List[Any] ): return self.height def UpperCamelCase_ ( self : Optional[int] ,A : Any ): __A = data def UpperCamelCase_ ( self : Any ,A : MyNode | None ): __A = node def UpperCamelCase_ ( self : Tuple ,A : MyNode | None ): __A = node def UpperCamelCase_ ( self : Dict ,A : int ): __A = height def UpperCAmelCase ( a_ ) -> int: """simple docstring""" if node is None: return 0 return node.get_height() def UpperCAmelCase ( a_ , a_ ) -> int: """simple docstring""" if a > b: return a return b def UpperCAmelCase ( a_ ) -> MyNode: """simple docstring""" print("left rotation node:" , node.get_data() ) __A = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(a_ ) __A = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(a_ ) __A = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(a_ ) return ret def UpperCAmelCase ( a_ ) -> MyNode: """simple docstring""" print("right rotation node:" , node.get_data() ) __A = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(a_ ) __A = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(a_ ) __A = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(a_ ) return ret def UpperCAmelCase ( a_ ) -> MyNode: """simple docstring""" __A = node.get_left() assert left_child is not None node.set_left(left_rotation(a_ ) ) return right_rotation(a_ ) def UpperCAmelCase ( a_ ) -> MyNode: """simple docstring""" __A = node.get_right() assert right_child is not None node.set_right(right_rotation(a_ ) ) return left_rotation(a_ ) def UpperCAmelCase ( a_ , a_ ) -> MyNode | None: """simple docstring""" if node is None: return MyNode(a_ ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , a_ ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected __A = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child __A = right_rotation(a_ ) else: __A = lr_rotation(a_ ) else: node.set_right(insert_node(node.get_right() , a_ ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: __A = node.get_right() assert right_child is not None if data < right_child.get_data(): __A = rl_rotation(a_ ) else: __A = left_rotation(a_ ) __A = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(a_ ) return node def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" while True: __A = root.get_right() if right_child is None: break __A = right_child return root.get_data() def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" while True: __A = root.get_left() if left_child is None: break __A = left_child return root.get_data() def UpperCAmelCase ( a_ , a_ ) -> MyNode | None: """simple docstring""" __A = root.get_left() __A = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: __A = get_left_most(a_ ) root.set_data(a_ ) root.set_right(del_node(a_ , a_ ) ) elif left_child is not None: __A = left_child elif right_child is not None: __A = right_child else: return None elif root.get_data() > data: if left_child is None: print("No such data" ) return root else: root.set_left(del_node(a_ , a_ ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(a_ , a_ ) ) if get_height(a_ ) - get_height(a_ ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): __A = left_rotation(a_ ) else: __A = rl_rotation(a_ ) elif get_height(a_ ) - get_height(a_ ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): __A = right_rotation(a_ ) else: __A = lr_rotation(a_ ) __A = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(a_ ) return root class UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] ): __A = None def UpperCamelCase_ ( self : List[str] ): return get_height(self.root ) def UpperCamelCase_ ( self : Optional[int] ,A : Any ): print("insert:" + str(A ) ) __A = insert_node(self.root ,A ) def UpperCamelCase_ ( self : Optional[Any] ,A : Any ): print("delete:" + str(A ) ) if self.root is None: print("Tree is empty!" ) return __A = del_node(self.root ,A ) def __str__( self : Any ,): # a level traversale, gives a more intuitive look on the tree __A = "" __A = MyQueue() q.push(self.root ) __A = self.get_height() if layer == 0: return output __A = 0 while not q.is_empty(): __A = q.pop() __A = " " * int(math.pow(2 ,layer - 1 ) ) output += space if node is None: output += "*" q.push(A ) q.push(A ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space __A = cnt + 1 for i in range(1_00 ): if cnt == math.pow(2 ,A ) - 1: __A = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def UpperCAmelCase ( ) -> None: """simple docstring""" import doctest doctest.testmod() if __name__ == "__main__": _test() SCREAMING_SNAKE_CASE :Dict = AVLtree() SCREAMING_SNAKE_CASE :Optional[int] = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
55
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : List[str] ,A : str=7 ,A : Optional[Any]=3 ,A : Any=18 ,A : int=30 ,A : int=4_00 ,A : List[str]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=True ,A : Tuple=None ,A : Tuple=True ,A : Union[str, Any]=[0.5, 0.5, 0.5] ,A : str=[0.5, 0.5, 0.5] ,A : List[Any]=False ,): __A = size if size is not None else {"height": 20, "width": 20} __A = crop_size if crop_size is not None else {"height": 18, "width": 18} __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size __A = do_center_crop __A = crop_size __A = do_normalize __A = image_mean __A = image_std __A = do_reduce_labels def UpperCamelCase_ ( self : List[str] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCAmelCase ( ) -> int: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(dataset[0]["file"] ) __A = Image.open(dataset[1]["file"] ) return image, map def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(ds[0]["file"] ) __A = Image.open(ds[1]["file"] ) __A = Image.open(ds[2]["file"] ) __A = Image.open(ds[3]["file"] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = BeitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : List[Any] ): __A = BeitImageProcessingTester(self ) @property def UpperCamelCase_ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : int ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size" ) ) self.assertTrue(hasattr(A ,"do_center_crop" ) ) self.assertTrue(hasattr(A ,"center_crop" ) ) self.assertTrue(hasattr(A ,"do_normalize" ) ) self.assertTrue(hasattr(A ,"image_mean" ) ) self.assertTrue(hasattr(A ,"image_std" ) ) def UpperCamelCase_ ( self : List[str] ): __A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"height": 20, "width": 20} ) self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} ) self.assertEqual(image_processor.do_reduce_labels ,A ) __A = self.image_processing_class.from_dict( self.image_processor_dict ,size=42 ,crop_size=84 ,reduce_labels=A ) self.assertEqual(image_processor.size ,{"height": 42, "width": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) self.assertEqual(image_processor.do_reduce_labels ,A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Optional[int] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : List[str] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : str ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) __A = [] for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __A = image_processing(image_inputs[0] ,maps[0] ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test not batched input (PIL images) __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched input (PIL images) __A , __A = prepare_semantic_batch_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 2, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 1_50 ) __A = True __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 )
55
1
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int ,A : Any ,A : List[str] ,A : Union[str, Any]=10_24 ,A : int=10_24 ,A : Optional[Any]=3.6 ): __A = tokenizer __A = tokenizer.bos_token_id __A = dataset __A = seq_length __A = seq_length * chars_per_token * num_of_sequences def __iter__( self : List[Any] ): __A = iter(self.dataset ) __A = True while more_examples: __A , __A = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: __A = False break __A = tokenizer(A ,truncation=A )["input_ids"] __A = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 ,len(A ) ,self.seq_length ): __A = all_token_ids[i : i + self.seq_length] if len(A ) == self.seq_length: yield torch.tensor(A ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = {"streaming": True} __A = load_dataset(args.dataset_name , split="train" , **a_ ) __A = ConstantLengthDataset(a_ , a_ , seq_length=args.seq_length ) __A = DataLoader(a_ , batch_size=args.batch_size ) return eval_dataloader def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" model.eval() __A = [] for step, batch in enumerate(a_ ): with torch.no_grad(): __A = model(a_ , labels=a_ ) __A = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(a_ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __A = torch.mean(torch.cat(a_ ) ) try: __A = torch.exp(a_ ) except OverflowError: __A = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator SCREAMING_SNAKE_CASE :Optional[int] = Accelerator() # Parse configuration SCREAMING_SNAKE_CASE :str = HfArgumentParser(EvaluationArguments) SCREAMING_SNAKE_CASE :int = parser.parse_args() set_seed(args.seed) # Logging SCREAMING_SNAKE_CASE :Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer SCREAMING_SNAKE_CASE :List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) SCREAMING_SNAKE_CASE :int = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader SCREAMING_SNAKE_CASE :List[str] = create_dataloader(args) # Prepare everything with our `accelerator`. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
55
from numpy import exp, pi, sqrt def UpperCAmelCase ( a_ , a_ = 0.0 , a_ = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = field(default="question-answering-extractive" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case_ = Features({"question": Value("string" ), "context": Value("string" )} ) snake_case_ = Features( { "answers": Sequence( { "text": Value("string" ), "answer_start": Value("int32" ), } ) } ) snake_case_ = "question" snake_case_ = "context" snake_case_ = "answers" @property def UpperCamelCase_ ( self : int ): return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
55
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCamelCase_ ( self : Optional[int] ): __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __A = "xvjiarui/stable-diffusion-2-inpainting" __A , __A = FlaxStableDiffusionInpaintPipeline.from_pretrained(A ,safety_checker=A ) __A = "Face of a yellow cat, high resolution, sitting on a park bench" __A = jax.random.PRNGKey(0 ) __A = 50 __A = jax.device_count() __A = num_samples * [prompt] __A = num_samples * [init_image] __A = num_samples * [mask_image] __A , __A , __A = pipeline.prepare_inputs(A ,A ,A ) # shard inputs and rng __A = replicate(A ) __A = jax.random.split(A ,jax.device_count() ) __A = shard(A ) __A = shard(A ) __A = shard(A ) __A = pipeline( A ,A ,A ,A ,A ,A ,jit=A ) __A = output.images.reshape(A ,5_12 ,5_12 ,3 ) __A = images[0, 2_53:2_56, 2_53:2_56, -1] __A = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __A = jnp.array( [0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
55
1
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" __A = torch.nn.Linear(2 , 4 ) __A = torch.optim.AdamW(model.parameters() , lr=1.0 ) __A = torch.optim.lr_scheduler.OneCycleLR(a_ , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) __A = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) __A = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" __A = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(a_ ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @require_cuda def UpperCamelCase_ ( self : Dict ): __A = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(A ): __A = Accelerator(cpu=A ) def UpperCamelCase_ ( self : Dict ): __A = Accelerator() __A = GradientState() assert state.num_steps == 1 __A = 4 assert state.num_steps == 4 assert state.sync_gradients is True __A = False assert state.sync_gradients is False GradientState._reset_state() def UpperCamelCase_ ( self : str ): __A = Accelerator() __A , __A , __A , __A , __A = create_components() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = accelerator.prepare(A ,A ,A ,A ,A ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def UpperCamelCase_ ( self : Optional[int] ): __A = Accelerator() __A , __A , __A , __A , __A = create_components() accelerator.prepare(A ,A ,A ,A ,A ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def UpperCamelCase_ ( self : str ): PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*A : int ,**A : List[str] ): pass with patch("torch.cuda.set_device" ,A ), patch_environment(ACCELERATE_TORCH_DEVICE="cuda:64" ): __A = Accelerator() self.assertEqual(str(accelerator.state.device ) ,"cuda:64" ) def UpperCamelCase_ ( self : Tuple ): __A = Accelerator() __A , __A , __A , __A , __A = create_components() accelerator.prepare(A ,A ,A ,A ,A ) __A = get_signature(A ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(A ) # make sure random weights don't match load_random_weights(A ) self.assertTrue(abs(model_signature - get_signature(A ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(A ) self.assertTrue(abs(model_signature - get_signature(A ) ) < 1E-3 ) def UpperCamelCase_ ( self : Dict ): __A = Accelerator() __A , __A , __A , __A , __A = create_components() accelerator.prepare(A ,A ,A ,A ,A ) __A = get_signature(A ) # saving hook def save_config(A : Optional[int] ,A : List[Any] ,A : int ): __A = {"class_name": models[0].__class__.__name__} with open(os.path.join(A ,"data.json" ) ,"w" ) as f: json.dump(A ,A ) # loading hook def load_config(A : List[Any] ,A : Any ): with open(os.path.join(A ,"data.json" ) ,"r" ) as f: __A = json.load(A ) __A = config["class_name"] __A = accelerator.register_save_state_pre_hook(A ) __A = accelerator.register_load_state_pre_hook(A ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(A ) # make sure random weights don't match with hooks load_random_weights(A ) self.assertTrue(abs(model_signature - get_signature(A ) ) > 1E-3 ) # random class name to verify correct one is loaded __A = "random" # make sure loaded weights match with hooks accelerator.load_state(A ) self.assertTrue(abs(model_signature - get_signature(A ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(A ) # make sure random weights don't match with hooks removed load_random_weights(A ) self.assertTrue(abs(model_signature - get_signature(A ) ) > 1E-3 ) # random class name to verify correct one is loaded __A = "random" # make sure loaded weights match with hooks removed accelerator.load_state(A ) self.assertTrue(abs(model_signature - get_signature(A ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = Accelerator() __A , __A , __A , __A , __A = create_components() __A = None # This should work __A , __A , __A , __A , __A , __A = accelerator.prepare( A ,A ,A ,A ,A ,A ) self.assertTrue(dummy_obj is None ) def UpperCamelCase_ ( self : Optional[int] ): __A = Accelerator() __A , __A , __A , __A , __A = create_components() __A = [1, 2, 3] # This should work __A , __A , __A , __A , __A , __A = accelerator.prepare( A ,A ,A ,A ,A ,A ) self.assertEqual( getattr(A ,"_is_accelerate_prepared" ,A ) ,A ,"Dummy object should have `_is_accelerate_prepared` set to `True`" ,) self.assertEqual( getattr(A ,"_is_accelerate_prepared" ,A ) ,A ,"Model is missing `_is_accelerator_prepared` or is set to `False`" ,) self.assertEqual( getattr(A ,"_is_accelerate_prepared" ,A ) ,A ,"Optimizer is missing `_is_accelerator_prepared` or is set to `False`" ,) self.assertEqual( getattr(A ,"_is_accelerate_prepared" ,A ) ,A ,"Scheduler is missing `_is_accelerator_prepared` or is set to `False`" ,) self.assertEqual( getattr(A ,"_is_accelerate_prepared" ,A ) ,A ,"Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`" ,) self.assertEqual( getattr(A ,"_is_accelerate_prepared" ,A ) ,A ,"Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`" ,) @slow @require_bnb def UpperCamelCase_ ( self : Tuple ): from transformers import AutoModelForCausalLM __A = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" ,load_in_abit=A ,device_map={"": 0} ,) __A = Accelerator() # This should work __A = accelerator.prepare(A ) @slow @require_bnb def UpperCamelCase_ ( self : Any ): from transformers import AutoModelForCausalLM __A = Accelerator() with init_empty_weights(): __A = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" ,) model.tie_weights() __A = infer_auto_device_map(A ) __A = "cpu" __A = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" ,device_map=A ,load_in_abit=A ,llm_inta_enable_fpaa_cpu_offload=A ) # This should not work and get value error with self.assertRaises(A ): __A = accelerator.prepare(A ) @slow @require_bnb @require_multi_gpu def UpperCamelCase_ ( self : int ): from transformers import AutoModelForCausalLM __A = {"distributed_type": DistributedType.MULTI_GPU} with init_empty_weights(): __A = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" ,) model.tie_weights() __A = infer_auto_device_map(A ) __A = 1 __A = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" ,load_in_abit=A ,device_map=A ,) __A = Accelerator() # This should not work and get value error with self.assertRaises(A ): __A = accelerator.prepare(A ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def UpperCamelCase_ ( self : Dict ): from transformers import AutoModelForCausalLM with init_empty_weights(): __A = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" ,) __A = infer_auto_device_map(A ) __A = 1 __A = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" ,load_in_abit=A ,device_map=A ,) __A = Accelerator() # This should work __A = accelerator.prepare(A ) @require_cuda def UpperCamelCase_ ( self : Optional[Any] ): __A = torch.nn.Linear(10 ,10 ) __A = torch.optim.SGD(model.parameters() ,lr=0.01 ) __A = Accelerator(cpu=A ) __A = accelerator.prepare(A )
55
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : Optional[int] ,A : Optional[int]=7 ,A : Optional[Any]=3 ,A : List[str]=18 ,A : Any=30 ,A : Tuple=4_00 ,A : Union[str, Any]=True ,A : Optional[Any]=32 ,A : Union[str, Any]=True ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size_divisor __A = do_rescale def UpperCamelCase_ ( self : Union[str, Any] ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = GLPNImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : int ): __A = GLPNImageProcessingTester(self ) @property def UpperCamelCase_ ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Any ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size_divisor" ) ) self.assertTrue(hasattr(A ,"resample" ) ) self.assertTrue(hasattr(A ,"do_rescale" ) ) def UpperCamelCase_ ( self : str ): pass def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : Optional[Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
55
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE :Tuple = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Union[str, Any] = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case_ = Features({"image": Image()} ) snake_case_ = Features({"labels": ClassLabel} ) snake_case_ = "image" snake_case_ = "labels" def UpperCamelCase_ ( self : Optional[Any] ,A : Tuple ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] ,A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) __A = copy.deepcopy(self ) __A = self.label_schema.copy() __A = features[self.label_column] __A = label_schema return task_template @property def UpperCamelCase_ ( self : Any ): return { self.image_column: "image", self.label_column: "labels", }
55
1
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('0.12.2'): raise Exception('requires fairseq >= 0.12.2') if version.parse(fairseq.__version__) > version.parse('2'): raise Exception('requires fairseq < v2') logging.set_verbosity_info() SCREAMING_SNAKE_CASE :str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Optional[int] = 'Hello, World!' SCREAMING_SNAKE_CASE :Optional[Any] = 'en_XX' def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[int]: """simple docstring""" __A = Path("data_bin" ) __A = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(a_ ).parent ) , checkpoint_file=Path(a_ ).name , _name="xmod_base" , arch="xmod_base" , task="multilingual_masked_lm" , data_name_or_path=str(a_ ) , bpe="sentencepiece" , sentencepiece_model=str(Path(a_ ).parent / "sentencepiece.bpe.model" ) , src_dict=str(data_dir / "dict.txt" ) , ) xmod.eval() # disable dropout print(a_ ) __A = xmod.model.encoder.sentence_encoder __A = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , "bottleneck" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __A = xmod.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our X-MOD config:" , a_ ) __A = XmodForSequenceClassification(a_ ) if classification_head else XmodForMaskedLM(a_ ) model.eval() # Now let's copy all the weights. # Embeddings __A = xmod_sent_encoder.embed_tokens.weight __A = xmod_sent_encoder.embed_positions.weight __A = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __A = xmod_sent_encoder.layernorm_embedding.weight __A = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __A = model.roberta.encoder.layer[i] __A = xmod_sent_encoder.layers[i] # self attention __A = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("Dimensions of self-attention weights do not match." ) __A = xmod_layer.self_attn.q_proj.weight __A = xmod_layer.self_attn.q_proj.bias __A = xmod_layer.self_attn.k_proj.weight __A = xmod_layer.self_attn.k_proj.bias __A = xmod_layer.self_attn.v_proj.weight __A = xmod_layer.self_attn.v_proj.bias # self-attention output __A = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("Dimensions of self-attention output weights do not match." ) __A = xmod_layer.self_attn.out_proj.weight __A = xmod_layer.self_attn.out_proj.bias __A = xmod_layer.self_attn_layer_norm.weight __A = xmod_layer.self_attn_layer_norm.bias # intermediate __A = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of intermediate weights do not match." ) __A = xmod_layer.fca.weight __A = xmod_layer.fca.bias # output __A = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of feed-forward weights do not match." ) __A = xmod_layer.fca.weight __A = xmod_layer.fca.bias __A = xmod_layer.final_layer_norm.weight __A = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __A = xmod_layer.adapter_layer_norm.weight __A = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("Lists of language adapters do not match." ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __A = bert_output.adapter_modules[lang_code] __A = xmod_layer.adapter_modules[lang_code] __A = from_adapter.fca.weight __A = from_adapter.fca.bias __A = from_adapter.fca.weight __A = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __A = xmod_sent_encoder.layer_norm.weight __A = xmod_sent_encoder.layer_norm.bias if classification_head: __A = xmod.model.classification_heads["mnli"].dense.weight __A = xmod.model.classification_heads["mnli"].dense.bias __A = xmod.model.classification_heads["mnli"].out_proj.weight __A = xmod.model.classification_heads["mnli"].out_proj.bias else: # LM Head __A = xmod.model.encoder.lm_head.dense.weight __A = xmod.model.encoder.lm_head.dense.bias __A = xmod.model.encoder.lm_head.layer_norm.weight __A = xmod.model.encoder.lm_head.layer_norm.bias __A = xmod.model.encoder.lm_head.weight __A = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __A = xmod.encode(a_ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(a_ ) __A = model(a_ )[0] if classification_head: __A = xmod.model.classification_heads["mnli"](xmod.extract_features(a_ ) ) else: __A = xmod.model(a_ , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __A = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 __A = torch.allclose(a_ , a_ , atol=1E-3 ) print("Do both models output the same tensors?" , "🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) Path(a_ ).mkdir(parents=a_ , exist_ok=a_ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(a_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xmod_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) SCREAMING_SNAKE_CASE :str = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
55
from math import sqrt def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' must been an int and positive" __A = True # 0 and 1 are none primes. if number <= 1: __A = False for divisor in range(2 , int(round(sqrt(a_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __A = False break # precondition assert isinstance(a_ , a_ ), "'status' must been from type bool" return status def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __A = list(range(2 , n + 1 ) ) __A = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(a_ ) ): for j in range(i + 1 , len(a_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __A = 0 # filters actual prime numbers. __A = [x for x in begin_list if x != 0] # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" __A = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(a_ ): ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and number >= 0, "'number' must been an int and >= 0" __A = [] # this list will be returns of the function. # potential prime number factors. __A = 2 __A = number if number == 0 or number == 1: ans.append(a_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(a_ ): while quotient != 1: if is_prime(a_ ) and (quotient % factor == 0): ans.append(a_ ) quotient /= factor else: factor += 1 else: ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = max(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = min(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> int: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , a_ ), "compare bust been from type bool" return number % 2 == 0 def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , a_ ), "compare bust been from type bool" return number % 2 != 0 def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and (number > 2) and is_even(a_ ) ), "'number' must been an int, even and > 2" __A = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __A = get_prime_numbers(a_ ) __A = len(a_ ) # run variable for while-loops. __A = 0 __A = None # exit variable. for break up the loops __A = True while i < len_pn and loop: __A = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __A = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(a_ , a_ ) and (len(a_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __A = 0 while numbera != 0: __A = numbera % numbera __A = numbera __A = rest # precondition assert isinstance(a_ , a_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def UpperCAmelCase ( a_ , a_ ) -> List[str]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __A = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __A = prime_factorization(a_ ) __A = prime_factorization(a_ ) elif numbera == 1 or numbera == 1: __A = [] __A = [] __A = max(a_ , a_ ) __A = 0 __A = 0 __A = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __A = prime_fac_a.count(a_ ) __A = prime_fac_a.count(a_ ) for _ in range(max(a_ , a_ ) ): ans *= n else: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # precondition assert isinstance(a_ , a_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'number' must been a positive int" __A = 0 __A = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(a_ ): ans += 1 # precondition assert isinstance(a_ , a_ ) and is_prime( a_ ), "'ans' must been a prime number and from type int" return ans def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" assert ( is_prime(a_ ) and is_prime(a_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __A = p_number_a + 1 # jump to the next number __A = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(a_ ): number += 1 while number < p_number_a: ans.append(a_ ) number += 1 # fetch the next prime number. while not is_prime(a_ ): number += 1 # precondition assert ( isinstance(a_ , a_ ) and ans[0] != p_number_a and ans[len(a_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 1), "'n' must been int and >= 1" __A = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(a_ ) # precondition assert ans[0] == 1 and ans[len(a_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" assert isinstance(a_ , a_ ) and ( number > 1 ), "'number' must been an int and >= 1" __A = get_divisors(a_ ) # precondition assert ( isinstance(a_ , a_ ) and (divisors[0] == 1) and (divisors[len(a_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def UpperCAmelCase ( a_ , a_ ) -> str: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __A = gcd(abs(a_ ) , abs(a_ ) ) # precondition assert ( isinstance(a_ , a_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been a int and >= 0" __A = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been an int and >= 0" __A = 0 __A = 1 __A = 1 # this will be return for _ in range(n - 1 ): __A = ans ans += fiba __A = tmp return ans
55
1
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' snake_case_ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def UpperCamelCase_ ( self : Tuple ,A : List[Any] ,A : int ,A : Any ): __A = hf_hub_download( repo_id="nateraw/video-demo" ,filename="archery.mp4" ,repo_type="dataset" ) __A = VideoClassificationPipeline(model=A ,image_processor=A ,top_k=2 ) __A = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def UpperCamelCase_ ( self : str ,A : Union[str, Any] ,A : Dict ): for example in examples: __A = video_classifier(A ) self.assertEqual( A ,[ {"score": ANY(A ), "label": ANY(A )}, {"score": ANY(A ), "label": ANY(A )}, ] ,) @require_torch def UpperCamelCase_ ( self : Tuple ): __A = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" __A = VideoMAEFeatureExtractor( size={"shortest_edge": 10} ,crop_size={"height": 10, "width": 10} ) __A = pipeline( "video-classification" ,model=A ,feature_extractor=A ,frame_sampling_rate=4 ) __A = hf_hub_download(repo_id="nateraw/video-demo" ,filename="archery.mp4" ,repo_type="dataset" ) __A = video_classifier(A ,top_k=2 ) self.assertEqual( nested_simplify(A ,decimals=4 ) ,[{"score": 0.51_99, "label": "LABEL_0"}, {"score": 0.48_01, "label": "LABEL_1"}] ,) __A = video_classifier( [ video_file_path, video_file_path, ] ,top_k=2 ,) self.assertEqual( nested_simplify(A ,decimals=4 ) ,[ [{"score": 0.51_99, "label": "LABEL_0"}, {"score": 0.48_01, "label": "LABEL_1"}], [{"score": 0.51_99, "label": "LABEL_0"}, {"score": 0.48_01, "label": "LABEL_1"}], ] ,) @require_tf def UpperCamelCase_ ( self : Optional[int] ): pass
55
import os def UpperCAmelCase ( ) -> Any: """simple docstring""" __A = os.path.dirname(os.path.realpath(a_ ) ) __A = os.path.join(a_ , "triangle.txt" ) with open(a_ ) as f: __A = f.readlines() __A = [] for line in triangle: __A = [] for number in line.strip().split(" " ): numbers_from_line.append(int(a_ ) ) a.append(a_ ) for i in range(1 , len(a_ ) ): for j in range(len(a[i] ) ): __A = a[i - 1][j] if j != len(a[i - 1] ) else 0 __A = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(a_ , a_ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
55
1
import random def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[Any]: """simple docstring""" __A = a[left_index] __A = left_index + 1 for j in range(left_index + 1 , a_ ): if a[j] < pivot: __A , __A = a[i], a[j] i += 1 __A , __A = a[i - 1], a[left_index] return i - 1 def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[Any]: """simple docstring""" if left < right: __A = random.randint(a_ , right - 1 ) __A , __A = ( a[left], a[pivot], ) # switches the pivot with the left most bound __A = partition(a_ , a_ , a_ ) quick_sort_random( a_ , a_ , a_ ) # recursive quicksort to the left of the pivot point quick_sort_random( a_ , pivot_index + 1 , a_ ) # recursive quicksort to the right of the pivot point def UpperCAmelCase ( ) -> int: """simple docstring""" __A = input("Enter numbers separated by a comma:\n" ).strip() __A = [int(a_ ) for item in user_input.split("," )] quick_sort_random(a_ , 0 , len(a_ ) ) print(a_ ) if __name__ == "__main__": main()
55
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels SCREAMING_SNAKE_CASE :Union[str, Any] = object() # For specifying empty leaf dict `{}` SCREAMING_SNAKE_CASE :List[str] = object() def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" __A = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(a_ ) - len(a_ ) + 1 ): __A = [x.match(a_ ) for x, y in zip(a_ , ks[i:] )] if matches and all(a_ ): return True return False def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" def replace(a_ , a_ ): for rule, replacement in rules: if _match(a_ , a_ ): return replacement return val return replace def UpperCAmelCase ( ) -> int: """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , a_ )), (("transformer", "wte", "embedding"), P("mp" , a_ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a_ , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , a_ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(a_ , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , a_ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" __A = _get_partition_rules() __A = _replacement_rules(a_ ) __A = {k: _unmatched for k in flatten_dict(a_ )} __A = {k: replace(a_ , a_ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(a_ ) )
55
1
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def UpperCAmelCase ( a_ , a_=False ) -> Dict: """simple docstring""" try: __A = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __A = default else: # KEY is set, convert it to True or False. try: __A = strtobool(a_ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'''If set, {key} must be yes or no.''' ) return _value SCREAMING_SNAKE_CASE :str = parse_flag_from_env('RUN_SLOW', default=False) SCREAMING_SNAKE_CASE :Dict = parse_flag_from_env('RUN_REMOTE', default=False) SCREAMING_SNAKE_CASE :str = parse_flag_from_env('RUN_LOCAL', default=True) SCREAMING_SNAKE_CASE :Any = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression SCREAMING_SNAKE_CASE :str = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') SCREAMING_SNAKE_CASE :Union[str, Any] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') SCREAMING_SNAKE_CASE :Optional[Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio SCREAMING_SNAKE_CASE :str = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam SCREAMING_SNAKE_CASE :Optional[int] = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility SCREAMING_SNAKE_CASE :Dict = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows SCREAMING_SNAKE_CASE :List[Any] = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" try: import faiss # noqa except ImportError: __A = unittest.skip("test requires faiss" )(a_ ) return test_case def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" try: import regex # noqa except ImportError: __A = unittest.skip("test requires regex" )(a_ ) return test_case def UpperCAmelCase ( a_ ) -> List[str]: """simple docstring""" try: import elasticsearch # noqa except ImportError: __A = unittest.skip("test requires elasticsearch" )(a_ ) return test_case def UpperCAmelCase ( a_ ) -> str: """simple docstring""" try: import sqlalchemy # noqa except ImportError: __A = unittest.skip("test requires sqlalchemy" )(a_ ) return test_case def UpperCAmelCase ( a_ ) -> List[str]: """simple docstring""" if not config.TORCH_AVAILABLE: __A = unittest.skip("test requires PyTorch" )(a_ ) return test_case def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" if not config.TF_AVAILABLE: __A = unittest.skip("test requires TensorFlow" )(a_ ) return test_case def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" if not config.JAX_AVAILABLE: __A = unittest.skip("test requires JAX" )(a_ ) return test_case def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" if not config.PIL_AVAILABLE: __A = unittest.skip("test requires Pillow" )(a_ ) return test_case def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip("test requires transformers" )(a_ ) else: return test_case def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip("test requires tiktoken" )(a_ ) else: return test_case def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip("test requires spacy" )(a_ ) else: return test_case def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" def _require_spacy_model(a_ ): try: import spacy # noqa F401 spacy.load(a_ ) except ImportError: return unittest.skip("test requires spacy" )(a_ ) except OSError: return unittest.skip("test requires spacy model '{}'".format(a_ ) )(a_ ) else: return test_case return _require_spacy_model def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip("test requires pyspark" )(a_ ) else: return test_case def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip("test requires joblibspark" )(a_ ) else: return test_case def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: __A = unittest.skip("test is slow" )(a_ ) return test_case def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" if not _run_local_tests or _run_local_tests == 0: __A = unittest.skip("test is local" )(a_ ) return test_case def UpperCAmelCase ( a_ ) -> int: """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: __A = unittest.skip("test is packaged" )(a_ ) return test_case def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: __A = unittest.skip("test requires remote" )(a_ ) return test_case def UpperCAmelCase ( *a_ ) -> Union[str, Any]: """simple docstring""" def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(a_ ) and name.startswith("test" ): for decorator in decorators: __A = decorator(a_ ) setattr(cls , a_ , a_ ) return cls return decorate class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' pass class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = 0 snake_case_ = 1 snake_case_ = 2 @contextmanager def UpperCAmelCase ( a_=OfflineSimulationMode.CONNECTION_FAILS , a_=1E-16 ) -> Any: """simple docstring""" __A = requests.Session().request def timeout_request(a_ , a_ , a_ , **a_ ): # Change the url to an invalid url so that the connection hangs __A = "https://10.255.255.1" if kwargs.get("timeout" ) is None: raise RequestWouldHangIndefinitelyError( F'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''' ) __A = timeout try: return online_request(a_ , a_ , **a_ ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __A = url __A = e.args[0] __A = (max_retry_error.args[0].replace("10.255.255.1" , F'''OfflineMock[{url}]''' ),) __A = (max_retry_error,) raise def raise_connection_error(a_ , a_ , **a_ ): raise requests.ConnectionError("Offline mode is enabled." , request=a_ ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("requests.Session.send" , a_ ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("requests.Session.request" , a_ ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("datasets.config.HF_DATASETS_OFFLINE" , a_ ): yield else: raise ValueError("Please use a value from the OfflineSimulationMode enum." ) @contextmanager def UpperCAmelCase ( *a_ , **a_ ) -> Tuple: """simple docstring""" __A = str(Path().resolve() ) with tempfile.TemporaryDirectory(*a_ , **a_ ) as tmp_dir: try: os.chdir(a_ ) yield finally: os.chdir(a_ ) @contextmanager def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" import gc gc.collect() __A = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def UpperCAmelCase ( ) -> int: """simple docstring""" import gc gc.collect() __A = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" return deepcopy(a_ ).integers(0 , 1_0_0 , 1_0 ).tolist() == deepcopy(a_ ).integers(0 , 1_0_0 , 1_0 ).tolist() def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(a_ , *a_ , **a_ ): try: return func(*a_ , **a_ ) except HTTPError as err: if str(a_ ).startswith("500" ) or str(a_ ).startswith("502" ): pytest.xfail(str(a_ ) ) raise err return decorator.decorator(_wrapper , a_ ) class UpperCAmelCase : '''simple docstring''' def __init__( self : Any ,A : Optional[int] ,A : Union[str, Any] ,A : List[str] ): __A = returncode __A = stdout __A = stderr async def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" while True: __A = await stream.readline() if line: callback(a_ ) else: break async def UpperCAmelCase ( a_ , a_=None , a_=None , a_=None , a_=False , a_=False ) -> _RunOutput: """simple docstring""" if echo: print("\nRunning: " , " ".join(a_ ) ) __A = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=a_ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=a_ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __A = [] __A = [] def tee(a_ , a_ , a_ , a_="" ): __A = line.decode("utf-8" ).rstrip() sink.append(a_ ) if not quiet: print(a_ , a_ , file=a_ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda a_ : tee(a_ , a_ , sys.stdout , label="stdout:" ) ), _read_stream(p.stderr , lambda a_ : tee(a_ , a_ , sys.stderr , label="stderr:" ) ), ] , timeout=a_ , ) return _RunOutput(await p.wait() , a_ , a_ ) def UpperCAmelCase ( a_ , a_=None , a_=None , a_=1_8_0 , a_=False , a_=True ) -> _RunOutput: """simple docstring""" __A = asyncio.get_event_loop() __A = loop.run_until_complete( _stream_subprocess(a_ , env=a_ , stdin=a_ , timeout=a_ , quiet=a_ , echo=a_ ) ) __A = " ".join(a_ ) if result.returncode > 0: __A = "\n".join(result.stderr ) raise RuntimeError( F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' F'''The combined stderr from workers follows:\n{stderr}''' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F'''\'{cmd_str}\' produced no output.''' ) return result def UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" __A = os.environ.get("PYTEST_XDIST_WORKER" , "gw0" ) __A = re.sub(r"^gw" , "" , a_ , 0 , re.M ) return int(a_ ) def UpperCAmelCase ( ) -> int: """simple docstring""" __A = 2_9_5_0_0 __A = pytest_xdist_worker_id() return port + uniq_delta
55
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] ,A : Union[str, Any] ,A : List[Any]=13 ,A : Optional[Any]=30 ,A : Union[str, Any]=2 ,A : Union[str, Any]=3 ,A : Any=True ,A : Dict=True ,A : str=32 ,A : Tuple=2 ,A : Optional[int]=4 ,A : Tuple=37 ,A : List[Any]="gelu" ,A : Dict=0.1 ,A : Optional[int]=0.1 ,A : List[Any]=10 ,A : Optional[Any]=0.02 ,A : Dict=3 ,A : Dict=None ,A : List[Any]=2 ,): __A = parent __A = batch_size __A = image_size __A = patch_size __A = num_channels __A = is_training __A = use_labels __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = type_sequence_label_size __A = initializer_range __A = scope __A = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __A = (image_size // patch_size) ** 2 __A = num_patches + 2 def UpperCamelCase_ ( self : List[Any] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Optional[int] ): return DeiTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,A : Optional[int] ,A : Union[str, Any] ): __A = TFDeiTModel(config=A ) __A = model(A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : List[Any] ,A : List[Any] ,A : Optional[Any] ,A : Dict ): __A = TFDeiTForMaskedImageModeling(config=A ) __A = model(A ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __A = 1 __A = TFDeiTForMaskedImageModeling(A ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(A ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase_ ( self : Optional[Any] ,A : Union[str, Any] ,A : Dict ,A : Union[str, Any] ): __A = self.type_sequence_label_size __A = TFDeiTForImageClassification(A ) __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __A = 1 __A = TFDeiTForImageClassification(A ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) snake_case_ = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : str ): __A = TFDeiTModelTester(self ) __A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 ) def UpperCamelCase_ ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass def UpperCamelCase_ ( self : List[Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) __A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A ,tf.keras.layers.Dense ) ) def UpperCamelCase_ ( self : Union[str, Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCamelCase_ ( self : Optional[int] ,A : Union[str, Any] ,A : List[str] ,A : Optional[Any]=False ): __A = super()._prepare_for_class(A ,A ,return_labels=A ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def UpperCamelCase_ ( self : Any ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = TFDeiTModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> str: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : int ): return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[int] ): __A = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="tf" ) # forward pass __A = model(**A ) # verify the logits __A = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape ,A ) __A = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
1
def UpperCAmelCase ( a_ , a_ ) -> Dict: """simple docstring""" assert x is not None assert y is not None __A = len(a_ ) __A = len(a_ ) # declaring the array for storing the dp values __A = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): __A = 1 if x[i - 1] == y[j - 1] else 0 __A = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) __A = "" __A , __A = m, n while i > 0 and j > 0: __A = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: __A = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": SCREAMING_SNAKE_CASE :Optional[int] = 'AGGTAB' SCREAMING_SNAKE_CASE :List[Any] = 'GXTXAYB' SCREAMING_SNAKE_CASE :str = 4 SCREAMING_SNAKE_CASE :List[str] = 'GTAB' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :Tuple = longest_common_subsequence(a, b) print('len =', ln, ', sub-sequence =', subseq) import doctest doctest.testmod()
55
SCREAMING_SNAKE_CASE :List[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE :Union[str, Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE :int = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" assert len(str(a_ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 1_2, "month should be between 1 to 12" assert 1 <= day <= 3_1, "day should be between 1 to 31" # Doomsday algorithm: __A = year // 1_0_0 __A = (5 * (century % 4) + 2) % 7 __A = year % 1_0_0 __A = centurian % 1_2 __A = ( (centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __A = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0) else DOOMSDAY_LEAP[month - 1] ) __A = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
55
1
def UpperCAmelCase ( a_ = 1_0 , a_ = 1_0_0_0 , a_ = True ) -> int: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and isinstance(a_ , a_ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)" ) return min_val if option else max_val def UpperCAmelCase ( a_ , a_ ) -> int: """simple docstring""" return int((number_a + number_a) / 2 ) def UpperCAmelCase ( a_ , a_ , a_ ) -> None: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and isinstance(a_ , a_ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)" ) if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value" ) def answer(a_ ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started..." ) __A = lower __A = higher __A = [] while True: __A = get_avg(a_ , a_ ) last_numbers.append(a_ ) if answer(a_ ) == "low": __A = number elif answer(a_ ) == "high": __A = number else: break print(F'''guess the number : {last_numbers[-1]}''' ) print(F'''details : {last_numbers!s}''' ) def UpperCAmelCase ( ) -> None: """simple docstring""" __A = int(input("Enter lower value : " ).strip() ) __A = int(input("Enter high value : " ).strip() ) __A = int(input("Enter value to guess : " ).strip() ) guess_the_number(a_ , a_ , a_ ) if __name__ == "__main__": main()
55
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def UpperCAmelCase ( a_ = "isbn/0140328726" ) -> dict: """simple docstring""" __A = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes if new_olid.count("/" ) != 1: __A = F'''{olid} is not a valid Open Library olid''' raise ValueError(a_ ) return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json() def UpperCAmelCase ( a_ ) -> dict: """simple docstring""" __A = { "title": "Title", "publish_date": "Publish date", "authors": "Authors", "number_of_pages": "Number of pages:", "first_sentence": "First sentence", "isbn_10": "ISBN (10)", "isbn_13": "ISBN (13)", } __A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __A = [ get_openlibrary_data(author["key"] )["name"] for author in data["Authors"] ] __A = data["First sentence"]["value"] for key, value in data.items(): if isinstance(a_ , a_ ): __A = ", ".join(a_ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: SCREAMING_SNAKE_CASE :int = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: SCREAMING_SNAKE_CASE :Any = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
55
1
from sklearn.metrics import fa_score import datasets SCREAMING_SNAKE_CASE :Optional[int] = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n' SCREAMING_SNAKE_CASE :int = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n' SCREAMING_SNAKE_CASE :List[str] = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self : str ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) ,reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"] ,) def UpperCamelCase_ ( self : Dict ,A : Dict ,A : str ,A : str=None ,A : Tuple=1 ,A : Any="binary" ,A : List[Any]=None ): __A = fa_score( A ,A ,labels=A ,pos_label=A ,average=A ,sample_weight=A ) return {"f1": float(A ) if score.size == 1 else score}
55
import requests SCREAMING_SNAKE_CASE :List[str] = 'YOUR API KEY' def UpperCAmelCase ( a_ , a_ = giphy_api_key ) -> list: """simple docstring""" __A = "+".join(query.split() ) __A = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' __A = requests.get(a_ ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
55
1
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : Tuple ,A : str ,A : str=13 ,A : Optional[int]=30 ,A : Optional[Any]=2 ,A : int=3 ,A : Union[str, Any]=True ,A : List[str]=True ,A : Tuple=32 ,A : str=5 ,A : List[Any]=4 ,A : Tuple=37 ,A : Optional[Any]="gelu" ,A : Optional[int]=0.1 ,A : List[Any]=0.1 ,A : Dict=10 ,A : Optional[Any]=0.02 ,A : Union[str, Any]=None ,A : List[Any]=2 ,): __A = parent __A = batch_size __A = image_size __A = patch_size __A = num_channels __A = is_training __A = use_labels __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = type_sequence_label_size __A = initializer_range __A = scope __A = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __A = (image_size // patch_size) ** 2 __A = num_patches + 1 def UpperCamelCase_ ( self : Optional[int] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Tuple ): return ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCamelCase_ ( self : List[Any] ,A : Optional[int] ,A : Any ,A : Tuple ): __A = ViTModel(config=A ) model.to(A ) model.eval() __A = model(A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : str ,A : List[Any] ,A : List[str] ,A : str ): __A = ViTForMaskedImageModeling(config=A ) model.to(A ) model.eval() __A = model(A ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __A = 1 __A = ViTForMaskedImageModeling(A ) model.to(A ) model.eval() __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(A ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase_ ( self : Dict ,A : str ,A : Optional[int] ,A : Tuple ): __A = self.type_sequence_label_size __A = ViTForImageClassification(A ) model.to(A ) model.eval() __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __A = 1 __A = ViTForImageClassification(A ) model.to(A ) model.eval() __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : Optional[int] ): __A = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ) = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) snake_case_ = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : Optional[Any] ): __A = ViTModelTester(self ) __A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 ) def UpperCamelCase_ ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Optional[Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) __A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A ,nn.Linear ) ) def UpperCamelCase_ ( self : int ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : Tuple ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A ) def UpperCamelCase_ ( self : Optional[int] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def UpperCamelCase_ ( self : Optional[Any] ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = ViTModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> Any: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : int ): return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : int ): __A = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): __A = model(**A ) # verify the logits __A = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape ,A ) __A = torch.tensor([-0.27_44, 0.82_15, -0.08_36] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : Dict ): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. __A = ViTModel.from_pretrained("facebook/dino-vits8" ).to(A ) __A = ViTImageProcessor.from_pretrained("facebook/dino-vits8" ,size=4_80 ) __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ) __A = inputs.pixel_values.to(A ) # forward pass with torch.no_grad(): __A = model(A ,interpolate_pos_encoding=A ) # verify the logits __A = torch.Size((1, 36_01, 3_84) ) self.assertEqual(outputs.last_hidden_state.shape ,A ) __A = torch.tensor( [[4.23_40, 4.39_06, -6.66_92], [4.54_63, 1.89_28, -6.72_57], [4.44_29, 0.84_96, -5.85_85]] ).to(A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,A ,atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCamelCase_ ( self : List[str] ): __A = ViTModel.from_pretrained("facebook/dino-vits8" ,torch_dtype=torch.floataa ,device_map="auto" ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ) __A = inputs.pixel_values.to(A ) # forward pass to make sure inference works in fp16 with torch.no_grad(): __A = model(A )
55
import itertools import math def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" __A = 2 while True: if is_prime(a_ ): yield num num += 1 def UpperCAmelCase ( a_ = 1_0_0_0_1 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , a_ ) ) if __name__ == "__main__": print(f'''{solution() = }''')
55
1
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) SCREAMING_SNAKE_CASE :List[Any] = pytest.mark.integration @pytest.mark.parametrize("path" , ["paws", "csv"] ) def UpperCAmelCase ( a_ , a_ ) -> int: """simple docstring""" inspect_dataset(a_ , a_ ) __A = path + ".py" assert script_name in os.listdir(a_ ) assert "__pycache__" not in os.listdir(a_ ) @pytest.mark.filterwarnings("ignore:inspect_metric is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.parametrize("path" , ["accuracy"] ) def UpperCAmelCase ( a_ , a_ ) -> Optional[int]: """simple docstring""" inspect_metric(a_ , a_ ) __A = path + ".py" assert script_name in os.listdir(a_ ) assert "__pycache__" not in os.listdir(a_ ) @pytest.mark.parametrize( "path, config_name, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[Any]: """simple docstring""" __A = get_dataset_config_info(a_ , config_name=a_ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def UpperCAmelCase ( a_ , a_ , a_ ) -> Union[str, Any]: """simple docstring""" with pytest.raises(a_ ): get_dataset_config_info(a_ , config_name=a_ ) @pytest.mark.parametrize( "path, expected" , [ ("squad", "plain_text"), ("acronym_identification", "default"), ("lhoestq/squad", "plain_text"), ("lhoestq/test", "default"), ("lhoestq/demo1", "lhoestq--demo1"), ("dalle-mini/wit", "dalle-mini--wit"), ] , ) def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" __A = get_dataset_config_names(a_ ) assert expected in config_names @pytest.mark.parametrize( "path, expected_configs, expected_splits_in_first_config" , [ ("squad", ["plain_text"], ["train", "validation"]), ("dalle-mini/wit", ["dalle-mini--wit"], ["train"]), ("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]), ] , ) def UpperCAmelCase ( a_ , a_ , a_ ) -> int: """simple docstring""" __A = get_dataset_infos(a_ ) assert list(infos.keys() ) == expected_configs __A = expected_configs[0] assert expected_config in infos __A = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( "path, expected_config, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def UpperCAmelCase ( a_ , a_ , a_ ) -> int: """simple docstring""" __A = get_dataset_infos(a_ ) assert expected_config in infos __A = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def UpperCAmelCase ( a_ , a_ , a_ ) -> Union[str, Any]: """simple docstring""" with pytest.raises(a_ ): get_dataset_split_names(a_ , config_name=a_ )
55
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]: """simple docstring""" __A = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") __A = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(a_ ): os.makedirs(a_ ) __A = model.state_dict() def to_tf_var_name(a_ ): for patt, repl in iter(a_ ): __A = name.replace(a_ , a_ ) return F'''bert/{name}''' def create_tf_var(a_ , a_ , a_ ): __A = tf.dtypes.as_dtype(tensor.dtype ) __A = tf.get_variable(dtype=a_ , shape=tensor.shape , name=a_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(a_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __A = to_tf_var_name(a_ ) __A = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __A = torch_tensor.T __A = create_tf_var(tensor=a_ , name=a_ , session=a_ ) tf.keras.backend.set_value(a_ , a_ ) __A = session.run(a_ ) print(F'''Successfully created {tf_name}: {np.allclose(a_ , a_ )}''' ) __A = tf.train.Saver(tf.trainable_variables() ) saver.save(a_ , os.path.join(a_ , model_name.replace("-" , "_" ) + ".ckpt" ) ) def UpperCAmelCase ( a_=None ) -> List[Any]: """simple docstring""" __A = argparse.ArgumentParser() parser.add_argument("--model_name" , type=a_ , required=a_ , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=a_ , default=a_ , required=a_ , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=a_ , required=a_ , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=a_ , required=a_ , help="Directory in which to save tensorflow model" ) __A = parser.parse_args(a_ ) __A = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=a_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
55
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Union[str, Any] = '▁' SCREAMING_SNAKE_CASE :Optional[int] = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE :Dict = { 'vocab_file': { 'google/reformer-crime-and-punishment': ( 'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model' ) } } SCREAMING_SNAKE_CASE :Optional[int] = { 'google/reformer-crime-and-punishment': 52_4288, } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] def __init__( self : Tuple ,A : Any ,A : Any="</s>" ,A : Tuple="<unk>" ,A : Any=[] ,A : Optional[Dict[str, Any]] = None ,**A : List[Any] ,): __A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=A ,unk_token=A ,additional_special_tokens=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,) __A = vocab_file __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def UpperCamelCase_ ( self : Optional[int] ): return self.sp_model.get_piece_size() def UpperCamelCase_ ( self : List[str] ): __A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ): __A = self.__dict__.copy() __A = None return state def __setstate__( self : str ,A : Any ): __A = d # for backward compatibility if not hasattr(self ,"sp_model_kwargs" ): __A = {} __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self : int ,A : str ): return self.sp_model.encode(A ,out_type=A ) def UpperCamelCase_ ( self : str ,A : Tuple ): return self.sp_model.piece_to_id(A ) def UpperCamelCase_ ( self : str ,A : Optional[Any] ): if index < self.sp_model.get_piece_size(): __A = self.sp_model.IdToPiece(A ) return token def UpperCamelCase_ ( self : List[Any] ,A : List[str] ): __A = [] __A = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A ) + token __A = [] else: current_sub_tokens.append(A ) out_string += self.sp_model.decode(A ) return out_string.strip() def UpperCamelCase_ ( self : List[Any] ,A : str ,A : Optional[str] = None ): if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __A = os.path.join( A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A ) elif not os.path.isfile(self.vocab_file ): with open(A ,"wb" ) as fi: __A = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
55
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE :Any = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Any = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
1
import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset SCREAMING_SNAKE_CASE :List[str] = pd.read_csv( 'https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/' 'position_salaries.csv' ) SCREAMING_SNAKE_CASE :List[str] = dataset.iloc[:, 1:2].values SCREAMING_SNAKE_CASE :int = dataset.iloc[:, 2].values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :Optional[Any] = train_test_split(X, y, test_size=0.2, random_state=0) SCREAMING_SNAKE_CASE :Union[str, Any] = PolynomialFeatures(degree=4) SCREAMING_SNAKE_CASE :Tuple = poly_reg.fit_transform(X) SCREAMING_SNAKE_CASE :List[Any] = LinearRegression() pol_reg.fit(X_poly, y) def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" plt.scatter(a_ , a_ , color="red" ) plt.plot(a_ , pol_reg.predict(poly_reg.fit_transform(a_ ) ) , color="blue" ) plt.title("Truth or Bluff (Linear Regression)" ) plt.xlabel("Position level" ) plt.ylabel("Salary" ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
55
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE :int = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def UpperCAmelCase ( a_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" __A = BeautifulSoup(requests.get(url + location ).content , "html.parser" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ): __A = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip() __A = job.find("span" , {"class": "company"} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
55
1
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCAmelCase : '''simple docstring''' snake_case_ = None def UpperCamelCase_ ( self : int ): __A = self.feature_extraction_class(**self.feat_extract_dict ) __A = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] ,A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __A = os.path.join(A ,"feat_extract.json" ) feat_extract_first.to_json_file(A ) __A = self.feature_extraction_class.from_json_file(A ) self.assertEqual(feat_extract_second.to_dict() ,feat_extract_first.to_dict() ) def UpperCamelCase_ ( self : Any ): __A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __A = feat_extract_first.save_pretrained(A )[0] check_json_file_has_correct_format(A ) __A = self.feature_extraction_class.from_pretrained(A ) self.assertEqual(feat_extract_second.to_dict() ,feat_extract_first.to_dict() ) def UpperCamelCase_ ( self : Any ): __A = self.feature_extraction_class() self.assertIsNotNone(A )
55
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : List[str] ): __A = tempfile.mkdtemp() __A = BlipImageProcessor() __A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) __A = BlipaProcessor(A ,A ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ,**A : int ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).tokenizer def UpperCamelCase_ ( self : Dict ,**A : Optional[int] ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor def UpperCamelCase_ ( self : Dict ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self : Optional[int] ): __A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] __A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self : Any ): __A = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __A = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" ) __A = self.get_image_processor(do_normalize=A ,padding_value=1.0 ) __A = BlipaProcessor.from_pretrained( self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=A ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,A ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = self.prepare_image_inputs() __A = image_processor(A ,return_tensors="np" ) __A = processor(images=A ,return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self : Tuple ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = processor(text=A ) __A = tokenizer(A ,return_token_type_ids=A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self : int ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A = processor.batch_decode(A ) __A = tokenizer.batch_decode(A ) self.assertListEqual(A ,A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
55
1
import math def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" return math.sqrt(a_ ) * math.sqrt(a_ ) == num def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" __A = 0 __A = n while left <= right: __A = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: __A = mid - 1 else: __A = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
55
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int ,A : Any ,A : List[str] ,A : Union[str, Any]=10_24 ,A : int=10_24 ,A : Optional[Any]=3.6 ): __A = tokenizer __A = tokenizer.bos_token_id __A = dataset __A = seq_length __A = seq_length * chars_per_token * num_of_sequences def __iter__( self : List[Any] ): __A = iter(self.dataset ) __A = True while more_examples: __A , __A = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: __A = False break __A = tokenizer(A ,truncation=A )["input_ids"] __A = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 ,len(A ) ,self.seq_length ): __A = all_token_ids[i : i + self.seq_length] if len(A ) == self.seq_length: yield torch.tensor(A ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = {"streaming": True} __A = load_dataset(args.dataset_name , split="train" , **a_ ) __A = ConstantLengthDataset(a_ , a_ , seq_length=args.seq_length ) __A = DataLoader(a_ , batch_size=args.batch_size ) return eval_dataloader def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" model.eval() __A = [] for step, batch in enumerate(a_ ): with torch.no_grad(): __A = model(a_ , labels=a_ ) __A = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(a_ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __A = torch.mean(torch.cat(a_ ) ) try: __A = torch.exp(a_ ) except OverflowError: __A = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator SCREAMING_SNAKE_CASE :Optional[int] = Accelerator() # Parse configuration SCREAMING_SNAKE_CASE :str = HfArgumentParser(EvaluationArguments) SCREAMING_SNAKE_CASE :int = parser.parse_args() set_seed(args.seed) # Logging SCREAMING_SNAKE_CASE :Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer SCREAMING_SNAKE_CASE :List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) SCREAMING_SNAKE_CASE :int = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader SCREAMING_SNAKE_CASE :List[str] = create_dataloader(args) # Prepare everything with our `accelerator`. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
55
1
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = TransfoXLTokenizer snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : Union[str, Any] ): super().setUp() __A = [ "<unk>", "[CLS]", "[SEP]", "want", "unwanted", "wa", "un", "running", ",", "low", "l", ] __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase_ ( self : Union[str, Any] ,**A : Optional[Any] ): __A = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname ,**A ) def UpperCamelCase_ ( self : List[Any] ,A : Dict ): __A = "<unk> UNwanted , running" __A = "<unk> unwanted, running" return input_text, output_text def UpperCamelCase_ ( self : str ): __A = TransfoXLTokenizer(vocab_file=self.vocab_file ,lower_case=A ) __A = tokenizer.tokenize("<unk> UNwanted , running" ) self.assertListEqual(A ,["<unk>", "unwanted", ",", "running"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[0, 4, 8, 7] ) def UpperCamelCase_ ( self : Any ): __A = TransfoXLTokenizer(lower_case=A ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo ! how \n Are yoU ? " ) ,["hello", "!", "how", "are", "you", "?"] ) def UpperCamelCase_ ( self : List[str] ): __A = TransfoXLTokenizer(lower_case=A ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo ! how \n Are yoU ? " ) ,["HeLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCamelCase_ ( self : Optional[int] ): __A = TransfoXLTokenizer(lower_case=A ) __A = "Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?" __A = [ "Hello", "(", "bracket", ")", "and", "side", "@-@", "scrolled", "[", "and", "]", "Henry", "'s", "$", "5", "@,@", "000", "with", "3", "@.@", "34", "m", ".", "What", "'s", "up", "!", "?", ] self.assertListEqual(tokenizer.tokenize(A ) ,A ) self.assertEqual(tokenizer.convert_tokens_to_string(A ) ,A ) def UpperCamelCase_ ( self : Optional[int] ): __A = self.get_tokenizer() __A = len(A ) tokenizer.add_tokens(["new1", "new2"] ) tokenizer.move_added_token("new1" ,1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(A ) ,original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("new1" ) ,[1] ) self.assertEqual(tokenizer.decode([1] ) ,"new1" )
55
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = LayoutLMTokenizer snake_case_ = LayoutLMTokenizerFast snake_case_ = True snake_case_ = True def UpperCamelCase_ ( self : Any ): super().setUp() __A = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase_ ( self : Tuple ,**A : int ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**A ) def UpperCamelCase_ ( self : Optional[Any] ,A : Any ): __A = "UNwant\u00E9d,running" __A = "unwanted, running" return input_text, output_text def UpperCamelCase_ ( self : str ): __A = self.tokenizer_class(self.vocab_file ) __A = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(A ,["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[7, 4, 5, 10, 8, 9] ) def UpperCamelCase_ ( self : int ): pass
55
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE :Tuple = { 'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'], 'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :str = ['BertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Any = [ 'BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BertForMaskedLM', 'BertForMultipleChoice', 'BertForNextSentencePrediction', 'BertForPreTraining', 'BertForQuestionAnswering', 'BertForSequenceClassification', 'BertForTokenClassification', 'BertLayer', 'BertLMHeadModel', 'BertModel', 'BertPreTrainedModel', 'load_tf_weights_in_bert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Tuple = [ 'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBertEmbeddings', 'TFBertForMaskedLM', 'TFBertForMultipleChoice', 'TFBertForNextSentencePrediction', 'TFBertForPreTraining', 'TFBertForQuestionAnswering', 'TFBertForSequenceClassification', 'TFBertForTokenClassification', 'TFBertLMHeadModel', 'TFBertMainLayer', 'TFBertModel', 'TFBertPreTrainedModel', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :List[str] = ['TFBertTokenizer'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[int] = [ 'FlaxBertForCausalLM', 'FlaxBertForMaskedLM', 'FlaxBertForMultipleChoice', 'FlaxBertForNextSentencePrediction', 'FlaxBertForPreTraining', 'FlaxBertForQuestionAnswering', 'FlaxBertForSequenceClassification', 'FlaxBertForTokenClassification', 'FlaxBertModel', 'FlaxBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
SCREAMING_SNAKE_CASE :int = {str(digit): digit**5 for digit in range(10)} def UpperCAmelCase ( a_ ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(a_ ) ) def UpperCAmelCase ( ) -> int: """simple docstring""" return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(a_ ) ) if __name__ == "__main__": print(solution())
55
1
import os def UpperCAmelCase ( ) -> Any: """simple docstring""" __A = os.path.dirname(os.path.realpath(a_ ) ) __A = os.path.join(a_ , "triangle.txt" ) with open(a_ ) as f: __A = f.readlines() __A = [] for line in triangle: __A = [] for number in line.strip().split(" " ): numbers_from_line.append(int(a_ ) ) a.append(a_ ) for i in range(1 , len(a_ ) ): for j in range(len(a[i] ) ): __A = a[i - 1][j] if j != len(a[i - 1] ) else 0 __A = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(a_ , a_ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
55
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): __A = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A ,"tf_padding" ) ) self.parent.assertTrue(hasattr(A ,"depth_multiplier" ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] ,A : int ,A : List[Any]=13 ,A : int=3 ,A : Optional[Any]=32 ,A : Union[str, Any]=0.25 ,A : Tuple=8 ,A : Optional[int]=True ,A : Union[str, Any]=10_24 ,A : Any=32 ,A : Optional[int]="relu6" ,A : int=0.1 ,A : Optional[Any]=0.02 ,A : Optional[Any]=True ,A : List[str]=True ,A : str=10 ,A : str=None ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = depth_multiplier __A = min_depth __A = tf_padding __A = int(last_hidden_size * depth_multiplier ) __A = output_stride __A = hidden_act __A = classifier_dropout_prob __A = use_labels __A = is_training __A = num_labels __A = initializer_range __A = scope def UpperCamelCase_ ( self : Optional[int] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.num_labels ) __A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) __A = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self : Any ): return MobileNetVaConfig( num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,min_depth=self.min_depth ,tf_padding=self.tf_padding ,hidden_act=self.hidden_act ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,) def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : Tuple ,A : Optional[int] ,A : List[str] ): __A = MobileNetVaModel(config=A ) model.to(A ) model.eval() __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def UpperCamelCase_ ( self : List[Any] ,A : Union[str, Any] ,A : List[Any] ,A : int ,A : Union[str, Any] ): __A = self.num_labels __A = MobileNetVaForImageClassification(A ) model.to(A ) model.eval() __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : Tuple ): __A = self.prepare_config_and_inputs() __A , __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () snake_case_ = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : Any ): __A = MobileNetVaModelTester(self ) __A = MobileNetVaConfigTester(self ,config_class=A ,has_text_modality=A ) def UpperCamelCase_ ( self : str ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def UpperCamelCase_ ( self : Any ): pass def UpperCamelCase_ ( self : Optional[int] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[int] ): def check_hidden_states_output(A : List[Any] ,A : List[Any] ,A : Optional[int] ): __A = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(A ,A ) ) __A = outputs.hidden_states __A = 26 self.assertEqual(len(A ) ,A ) __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = True check_hidden_states_output(A ,A ,A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A = True check_hidden_states_output(A ,A ,A ) def UpperCamelCase_ ( self : Tuple ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def UpperCamelCase_ ( self : Union[str, Any] ): for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = MobileNetVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> str: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : List[str] ): return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[Any] ): __A = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): __A = model(**A ) # verify the logits __A = torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape ,A ) __A = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE :Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Union[str, Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE :Union[str, Any] = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE :str = { 'gpt-neox-20b': 2048, } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] def __init__( self : str ,A : List[Any]=None ,A : str=None ,A : str=None ,A : Tuple="<|endoftext|>" ,A : Union[str, Any]="<|endoftext|>" ,A : Union[str, Any]="<|endoftext|>" ,A : Union[str, Any]=False ,**A : List[Any] ,): super().__init__( A ,A ,tokenizer_file=A ,unk_token=A ,bos_token=A ,eos_token=A ,add_prefix_space=A ,**A ,) __A = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" ,A ) != add_prefix_space: __A = getattr(A ,pre_tok_state.pop("type" ) ) __A = add_prefix_space __A = pre_tok_class(**A ) __A = add_prefix_space def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : Optional[str] = None ): __A = self._tokenizer.model.save(A ,name=A ) return tuple(A ) def UpperCamelCase_ ( self : Optional[int] ,A : "Conversation" ): __A = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(A ,add_special_tokens=A ) + [self.eos_token_id] ) if len(A ) > self.model_max_length: __A = input_ids[-self.model_max_length :] return input_ids
55
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : str ,A : int ,A : int=2 ,A : Optional[Any]=3 ,A : Dict=4 ,A : Optional[int]=2 ,A : Union[str, Any]=7 ,A : List[str]=True ,A : Union[str, Any]=True ,A : Optional[int]=True ,A : Optional[int]=True ,A : Tuple=99 ,A : Optional[int]=36 ,A : Dict=3 ,A : str=4 ,A : Optional[Any]=37 ,A : Dict="gelu" ,A : Dict=0.1 ,A : Union[str, Any]=0.1 ,A : Union[str, Any]=5_12 ,A : Any=16 ,A : Union[str, Any]=2 ,A : List[Any]=0.02 ,A : List[Any]=6 ,A : Optional[int]=6 ,A : List[Any]=3 ,A : Union[str, Any]=4 ,A : Tuple=None ,A : List[str]=10_00 ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = patch_size __A = text_seq_length __A = is_training __A = use_input_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = coordinate_size __A = shape_size __A = num_labels __A = num_choices __A = scope __A = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __A = text_seq_length __A = (image_size // patch_size) ** 2 + 1 __A = self.text_seq_length + self.image_seq_length def UpperCamelCase_ ( self : int ): __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size ) __A = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __A = bbox[i, j, 3] __A = bbox[i, j, 1] __A = t if bbox[i, j, 2] < bbox[i, j, 0]: __A = bbox[i, j, 2] __A = bbox[i, j, 0] __A = t __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.text_seq_length] ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels ) __A = LayoutLMvaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase_ ( self : Optional[int] ,A : List[str] ,A : Any ,A : Dict ,A : List[Any] ,A : Optional[int] ,A : Any ,A : Dict ,A : List[Any] ): __A = LayoutLMvaModel(config=A ) model.to(A ) model.eval() # text + image __A = model(A ,pixel_values=A ) __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) # text only __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __A = model(pixel_values=A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Optional[int] ,A : Dict ,A : List[str] ,A : Any ,A : List[Any] ,A : Any ,A : Any ,A : Dict ,A : Optional[Any] ): __A = self.num_labels __A = LayoutLMvaForSequenceClassification(A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : str ,A : Optional[Any] ,A : Dict ,A : str ,A : Tuple ,A : Union[str, Any] ,A : List[Any] ,A : Any ,A : Union[str, Any] ): __A = self.num_labels __A = LayoutLMvaForTokenClassification(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : int ,A : str ,A : List[str] ,A : int ,A : List[str] ,A : List[str] ,A : Dict ): __A = LayoutLMvaForQuestionAnswering(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,start_positions=A ,end_positions=A ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = config_and_inputs __A = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) snake_case_ = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def UpperCamelCase_ ( self : str ,A : Any ,A : Any ,A : Tuple ,A : List[Any] ,A : Optional[Any] ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def UpperCamelCase_ ( self : Union[str, Any] ): __A = LayoutLMvaModelTester(self ) __A = ConfigTester(self ,config_class=A ,hidden_size=37 ) def UpperCamelCase_ ( self : List[Any] ,A : int ,A : List[str] ,A : Dict=False ): __A = copy.deepcopy(A ) if model_class in get_values(A ): __A = { k: v.unsqueeze(1 ).expand(-1 ,self.model_tester.num_choices ,-1 ).contiguous() if isinstance(A ,torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A ): __A = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in get_values(A ): __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=A ,) return inputs_dict def UpperCamelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __A = type self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = LayoutLMvaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> Dict: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : Any ): return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : Dict ): __A = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).pixel_values.to(A ) __A = torch.tensor([[1, 2]] ) __A = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __A = model( input_ids=input_ids.to(A ) ,bbox=bbox.to(A ) ,pixel_values=pixel_values.to(A ) ,) # verify the logits __A = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape ,A ) __A = torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,A ,atol=1E-4 ) )
55
1
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class UpperCAmelCase : '''simple docstring''' def __init__( self : int ,A : Dict ,A : int=13 ,A : Dict=7 ,A : Dict=False ,A : List[str]=True ,A : Optional[int]=False ,A : Dict=False ,A : Union[str, Any]=19 ,A : str=32 ,A : int=5 ,A : Any=4 ,A : List[str]=37 ,A : Union[str, Any]="gelu" ,A : int=0.1 ,A : int=0.1 ,A : Tuple=5_12 ,A : List[str]=16 ,A : Optional[int]=2 ,A : Optional[int]=0.02 ,A : str=3 ,A : Optional[int]=4 ,A : Any=None ,): __A = parent __A = batch_size __A = seq_length __A = is_training __A = use_input_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = num_labels __A = num_choices __A = scope def UpperCamelCase_ ( self : int ): __A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.seq_length] ) __A = None __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __A = ids_tensor([self.batch_size] ,self.num_choices ) __A = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self : List[Any] ): __A = EsmConfig( vocab_size=33 ,hidden_size=self.hidden_size ,pad_token_id=1 ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,is_folding_model=A ,esmfold_config={"trunk": {"num_blocks": 2}, "fp16_esm": False} ,) return config def UpperCamelCase_ ( self : Optional[Any] ,A : List[Any] ,A : List[Any] ,A : Optional[int] ,A : Tuple ,A : List[Any] ,A : List[Any] ): __A = EsmForProteinFolding(config=A ).float() model.to(A ) model.eval() __A = model(A ,attention_mask=A ) __A = model(A ) __A = model(A ) self.parent.assertEqual(result.positions.shape ,(8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape ,(8, self.batch_size, self.seq_length, 7, 2) ) def UpperCamelCase_ ( self : Optional[int] ): __A = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = config_and_inputs __A = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = False snake_case_ = (EsmForProteinFolding,) if is_torch_available() else () snake_case_ = () snake_case_ = {} if is_torch_available() else {} snake_case_ = False def UpperCamelCase_ ( self : Any ): __A = EsmFoldModelTester(self ) __A = ConfigTester(self ,config_class=A ,hidden_size=37 ) def UpperCamelCase_ ( self : str ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Optional[int] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) @unittest.skip("Does not support attention outputs" ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip def UpperCamelCase_ ( self : Any ): pass @unittest.skip("Esm does not support embedding resizing" ) def UpperCamelCase_ ( self : Any ): pass @unittest.skip("Esm does not support embedding resizing" ) def UpperCamelCase_ ( self : Optional[int] ): pass @unittest.skip("ESMFold does not support passing input embeds!" ) def UpperCamelCase_ ( self : Optional[int] ): pass @unittest.skip("ESMFold does not support head pruning." ) def UpperCamelCase_ ( self : List[str] ): pass @unittest.skip("ESMFold does not support head pruning." ) def UpperCamelCase_ ( self : List[Any] ): pass @unittest.skip("ESMFold does not support head pruning." ) def UpperCamelCase_ ( self : int ): pass @unittest.skip("ESMFold does not support head pruning." ) def UpperCamelCase_ ( self : List[Any] ): pass @unittest.skip("ESMFold does not support head pruning." ) def UpperCamelCase_ ( self : List[Any] ): pass @unittest.skip("ESMFold does not output hidden states in the normal way." ) def UpperCamelCase_ ( self : Optional[Any] ): pass @unittest.skip("ESMfold does not output hidden states in the normal way." ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip("ESMFold only has one output format." ) def UpperCamelCase_ ( self : int ): pass @unittest.skip("This test doesn't work for ESMFold and doesn't test core functionality" ) def UpperCamelCase_ ( self : List[str] ): pass @unittest.skip("ESMFold does not support input chunking." ) def UpperCamelCase_ ( self : List[Any] ): pass @unittest.skip("ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments." ) def UpperCamelCase_ ( self : List[str] ): pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def UpperCamelCase_ ( self : int ): pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def UpperCamelCase_ ( self : int ): pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def UpperCamelCase_ ( self : int ): pass @unittest.skip("ESMFold doesn't support data parallel." ) def UpperCamelCase_ ( self : Optional[int] ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def UpperCamelCase_ ( self : Tuple ): pass @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @slow def UpperCamelCase_ ( self : str ): __A = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1" ).float() model.eval() __A = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __A = model(A )["positions"] __A = torch.tensor([2.58_28, 0.79_93, -10.93_34] ,dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] ,A ,atol=1E-4 ) )
55
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : List[str] ,A : str=7 ,A : Optional[Any]=3 ,A : Any=18 ,A : int=30 ,A : int=4_00 ,A : List[str]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=True ,A : Tuple=None ,A : Tuple=True ,A : Union[str, Any]=[0.5, 0.5, 0.5] ,A : str=[0.5, 0.5, 0.5] ,A : List[Any]=False ,): __A = size if size is not None else {"height": 20, "width": 20} __A = crop_size if crop_size is not None else {"height": 18, "width": 18} __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size __A = do_center_crop __A = crop_size __A = do_normalize __A = image_mean __A = image_std __A = do_reduce_labels def UpperCamelCase_ ( self : List[str] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCAmelCase ( ) -> int: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(dataset[0]["file"] ) __A = Image.open(dataset[1]["file"] ) return image, map def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(ds[0]["file"] ) __A = Image.open(ds[1]["file"] ) __A = Image.open(ds[2]["file"] ) __A = Image.open(ds[3]["file"] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = BeitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : List[Any] ): __A = BeitImageProcessingTester(self ) @property def UpperCamelCase_ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : int ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size" ) ) self.assertTrue(hasattr(A ,"do_center_crop" ) ) self.assertTrue(hasattr(A ,"center_crop" ) ) self.assertTrue(hasattr(A ,"do_normalize" ) ) self.assertTrue(hasattr(A ,"image_mean" ) ) self.assertTrue(hasattr(A ,"image_std" ) ) def UpperCamelCase_ ( self : List[str] ): __A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"height": 20, "width": 20} ) self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} ) self.assertEqual(image_processor.do_reduce_labels ,A ) __A = self.image_processing_class.from_dict( self.image_processor_dict ,size=42 ,crop_size=84 ,reduce_labels=A ) self.assertEqual(image_processor.size ,{"height": 42, "width": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) self.assertEqual(image_processor.do_reduce_labels ,A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Optional[int] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : List[str] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : str ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) __A = [] for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __A = image_processing(image_inputs[0] ,maps[0] ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test not batched input (PIL images) __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched input (PIL images) __A , __A = prepare_semantic_batch_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 2, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 1_50 ) __A = True __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 )
55
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE :int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :str = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "camembert" def __init__( self : Tuple ,A : Dict=3_05_22 ,A : Any=7_68 ,A : List[Any]=12 ,A : Optional[int]=12 ,A : List[str]=30_72 ,A : Dict="gelu" ,A : Union[str, Any]=0.1 ,A : Union[str, Any]=0.1 ,A : int=5_12 ,A : Any=2 ,A : Optional[Any]=0.02 ,A : Optional[Any]=1E-12 ,A : Any=1 ,A : Optional[Any]=0 ,A : List[Any]=2 ,A : Dict="absolute" ,A : List[Any]=True ,A : Union[str, Any]=None ,**A : List[Any] ,): super().__init__(pad_token_id=A ,bos_token_id=A ,eos_token_id=A ,**A ) __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = hidden_act __A = intermediate_size __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = initializer_range __A = layer_norm_eps __A = position_embedding_type __A = use_cache __A = classifier_dropout class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def UpperCamelCase_ ( self : int ): if self.task == "multiple-choice": __A = {0: "batch", 1: "choice", 2: "sequence"} else: __A = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
55
from numpy import exp, pi, sqrt def UpperCAmelCase ( a_ , a_ = 0.0 , a_ = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE :str = '▁' SCREAMING_SNAKE_CASE :Any = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE :List[str] = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } SCREAMING_SNAKE_CASE :int = { 'google/pegasus-xsum': 512, } SCREAMING_SNAKE_CASE :Tuple = logging.get_logger(__name__) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = VOCAB_FILES_NAMES snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] def __init__( self : Tuple ,A : Union[str, Any] ,A : List[str]="<pad>" ,A : Dict="</s>" ,A : Union[str, Any]="<unk>" ,A : List[str]="<mask_2>" ,A : Optional[int]="<mask_1>" ,A : Union[str, Any]=None ,A : Optional[Any]=1_03 ,A : Optional[Dict[str, Any]] = None ,**A : Dict ,): __A = offset if additional_special_tokens is not None: if not isinstance(A ,A ): raise TypeError( f'''additional_special_tokens should be of type {type(A )}, but is''' f''' {type(A )}''' ) __A = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(A ) ,self.offset - 1 ) ] if len(set(A ) ) != len(A ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) __A = additional_special_tokens_extended else: __A = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 ,self.offset )] __A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=A ,unk_token=A ,mask_token=A ,pad_token=A ,mask_token_sent=A ,offset=A ,additional_special_tokens=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,) __A = mask_token_sent __A = vocab_file __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) # add special tokens to encoder dict __A = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 ,self.offset - 1 )} ) __A = {v: k for k, v in self.encoder.items()} @property def UpperCamelCase_ ( self : Optional[Any] ): return len(self.sp_model ) + self.offset def UpperCamelCase_ ( self : Dict ): __A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): __A = self.__dict__.copy() __A = None return state def __setstate__( self : int ,A : Optional[int] ): __A = d # for backward compatibility if not hasattr(self ,"sp_model_kwargs" ): __A = {} __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self : int ,A : str ): return self.sp_model.encode(A ,out_type=A ) def UpperCamelCase_ ( self : Optional[int] ,A : str ): if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] __A = self.sp_model.piece_to_id(A ) return sp_id + self.offset def UpperCamelCase_ ( self : int ,A : int ): if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: __A = self.sp_model.IdToPiece(index - self.offset ) return token def UpperCamelCase_ ( self : Optional[int] ,A : str ): __A = [] __A = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A ) + token __A = [] else: current_sub_tokens.append(A ) out_string += self.sp_model.decode(A ) return out_string.strip() def UpperCamelCase_ ( self : Union[str, Any] ,A : Optional[Any]=False ): return 1 def UpperCamelCase_ ( self : Optional[Any] ,A : int ): __A = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def UpperCamelCase_ ( self : Optional[Any] ,A : List ,A : Optional[List] = None ,A : bool = False ): if already_has_special_tokens: return self._special_token_mask(A ) elif token_ids_a is None: return self._special_token_mask(A ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def UpperCamelCase_ ( self : List[str] ,A : Any ,A : Union[str, Any]=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCamelCase_ ( self : Tuple ,A : str ,A : Optional[str] = None ): if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __A = os.path.join( A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A ) elif not os.path.isfile(self.vocab_file ): with open(A ,"wb" ) as fi: __A = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
55
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCamelCase_ ( self : Optional[int] ): __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __A = "xvjiarui/stable-diffusion-2-inpainting" __A , __A = FlaxStableDiffusionInpaintPipeline.from_pretrained(A ,safety_checker=A ) __A = "Face of a yellow cat, high resolution, sitting on a park bench" __A = jax.random.PRNGKey(0 ) __A = 50 __A = jax.device_count() __A = num_samples * [prompt] __A = num_samples * [init_image] __A = num_samples * [mask_image] __A , __A , __A = pipeline.prepare_inputs(A ,A ,A ) # shard inputs and rng __A = replicate(A ) __A = jax.random.split(A ,jax.device_count() ) __A = shard(A ) __A = shard(A ) __A = shard(A ) __A = pipeline( A ,A ,A ,A ,A ,A ,jit=A ) __A = output.images.reshape(A ,5_12 ,5_12 ,3 ) __A = images[0, 2_53:2_56, 2_53:2_56, -1] __A = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __A = jnp.array( [0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
55
1
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def UpperCAmelCase ( a_ , a_ , **a_ ) -> int: """simple docstring""" __A = AutoConfig.from_pretrained(a_ , **a_ ) __A = AutoModelForSeqaSeqLM.from_config(a_ ) model.save_pretrained(a_ ) AutoTokenizer.from_pretrained(a_ ).save_pretrained(a_ ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
55
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : Optional[int] ,A : Optional[int]=7 ,A : Optional[Any]=3 ,A : List[str]=18 ,A : Any=30 ,A : Tuple=4_00 ,A : Union[str, Any]=True ,A : Optional[Any]=32 ,A : Union[str, Any]=True ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size_divisor __A = do_rescale def UpperCamelCase_ ( self : Union[str, Any] ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = GLPNImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : int ): __A = GLPNImageProcessingTester(self ) @property def UpperCamelCase_ ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Any ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size_divisor" ) ) self.assertTrue(hasattr(A ,"resample" ) ) self.assertTrue(hasattr(A ,"do_rescale" ) ) def UpperCamelCase_ ( self : str ): pass def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : Optional[Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
55
1
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) snake_case_ = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : Union[str, Any] ,A : Any ,A : List[str] ,A : int=False ): __A = super()._prepare_for_class(A ,A ,return_labels=A ) if return_labels: if model_class in get_values(A ): __A = tf.zeros(self.model_tester.batch_size ,dtype=tf.intaa ) return inputs_dict class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int ,A : int ,A : Optional[Any]=13 ,A : List[str]=7 ,A : Union[str, Any]=True ,A : List[str]=True ,A : int=True ,A : Tuple=True ,A : str=99 ,A : Union[str, Any]=32 ,A : Union[str, Any]=32 ,A : int=2 ,A : Tuple=4 ,A : Optional[int]=37 ,A : Any="gelu" ,A : Optional[Any]=0.1 ,A : Optional[int]=0.1 ,A : int=5_12 ,A : Union[str, Any]=16 ,A : str=2 ,A : List[str]=0.02 ,A : List[Any]=3 ,A : List[str]=4 ,A : List[str]=None ,): __A = parent __A = batch_size __A = seq_length __A = is_training __A = use_input_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = num_labels __A = num_choices __A = scope __A = embedding_size def UpperCamelCase_ ( self : Optional[int] ): __A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.seq_length] ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __A = None __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __A = ids_tensor([self.batch_size] ,self.num_choices ) __A = MobileBertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,embedding_size=self.embedding_size ,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self : Dict ,A : Tuple ,A : str ,A : Optional[int] ,A : str ,A : List[str] ,A : int ,A : Any ): __A = TFMobileBertModel(config=A ) __A = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __A = model(A ) __A = [input_ids, input_mask] __A = model(A ) __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self : Optional[Any] ,A : str ,A : str ,A : List[str] ,A : str ,A : List[Any] ,A : Optional[int] ,A : Any ): __A = TFMobileBertForMaskedLM(config=A ) __A = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __A = model(A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : Optional[Any] ,A : str ,A : Tuple ,A : str ,A : Union[str, Any] ,A : Optional[int] ,A : Tuple ,A : List[str] ): __A = TFMobileBertForNextSentencePrediction(config=A ) __A = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __A = model(A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def UpperCamelCase_ ( self : str ,A : List[Any] ,A : List[Any] ,A : List[str] ,A : Dict ,A : Dict ,A : Any ,A : Optional[Any] ): __A = TFMobileBertForPreTraining(config=A ) __A = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __A = model(A ) self.parent.assertEqual( result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def UpperCamelCase_ ( self : Tuple ,A : List[str] ,A : Optional[Any] ,A : Optional[Any] ,A : Optional[int] ,A : Dict ,A : Union[str, Any] ,A : Tuple ): __A = self.num_labels __A = TFMobileBertForSequenceClassification(config=A ) __A = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __A = model(A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : str ,A : Any ,A : str ,A : Optional[int] ,A : Any ,A : Optional[Any] ,A : Optional[Any] ,A : Union[str, Any] ): __A = self.num_choices __A = TFMobileBertForMultipleChoice(config=A ) __A = tf.tile(tf.expand_dims(A ,1 ) ,(1, self.num_choices, 1) ) __A = tf.tile(tf.expand_dims(A ,1 ) ,(1, self.num_choices, 1) ) __A = tf.tile(tf.expand_dims(A ,1 ) ,(1, self.num_choices, 1) ) __A = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } __A = model(A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self : str ,A : Optional[Any] ,A : List[str] ,A : str ,A : int ,A : Any ,A : Optional[int] ,A : Union[str, Any] ): __A = self.num_labels __A = TFMobileBertForTokenClassification(config=A ) __A = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __A = model(A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Optional[int] ,A : Any ,A : Any ,A : Dict ,A : int ,A : List[Any] ,A : Any ,A : List[str] ): __A = TFMobileBertForQuestionAnswering(config=A ) __A = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __A = model(A ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = config_and_inputs __A = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def UpperCamelCase_ ( self : Optional[Any] ): __A = TFMobileBertModelTest.TFMobileBertModelTester(self ) __A = ConfigTester(self ,config_class=A ,hidden_size=37 ) def UpperCamelCase_ ( self : str ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Optional[int] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*A ) def UpperCamelCase_ ( self : Dict ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*A ) def UpperCamelCase_ ( self : Dict ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*A ) def UpperCamelCase_ ( self : Optional[int] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*A ) def UpperCamelCase_ ( self : Dict ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*A ) @slow def UpperCamelCase_ ( self : int ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: __A = TFMobileBertModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self : Any ): __A = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased" ) __A = tf.constant([[0, 1, 2, 3, 4, 5]] ) __A = model(A )[0] __A = [1, 6, 3_05_22] self.assertEqual(output.shape ,A ) __A = tf.constant( [ [ [-4.5_91_95_47, -9.24_82_95, -9.64_52_56], [-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37], [-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73], ] ] ) tf.debugging.assert_near(output[:, :3, :3] ,A ,atol=1E-4 )
55
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case_ = Features({"image": Image()} ) snake_case_ = Features({"labels": ClassLabel} ) snake_case_ = "image" snake_case_ = "labels" def UpperCamelCase_ ( self : Optional[Any] ,A : Tuple ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] ,A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) __A = copy.deepcopy(self ) __A = self.label_schema.copy() __A = features[self.label_column] __A = label_schema return task_template @property def UpperCamelCase_ ( self : Any ): return { self.image_column: "image", self.label_column: "labels", }
55
1
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" __A = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def UpperCAmelCase ( a_ , a_ ) -> int: """simple docstring""" __A = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def UpperCAmelCase ( a_ ) -> str: """simple docstring""" __A = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', "stage2.cls_token") ) return token def UpperCAmelCase ( ) -> Any: """simple docstring""" __A = [] head.append(("layernorm.weight", "norm.weight") ) head.append(("layernorm.bias", "norm.bias") ) head.append(("classifier.weight", "head.weight") ) head.append(("classifier.bias", "head.bias") ) return head def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> Dict: """simple docstring""" __A = "imagenet-1k-id2label.json" __A = 1_0_0_0 __A = "huggingface/label-files" __A = num_labels __A = json.load(open(cached_download(hf_hub_url(a_ , a_ , repo_type="dataset" ) ) , "r" ) ) __A = {int(a_ ): v for k, v in idalabel.items()} __A = idalabel __A = {v: k for k, v in idalabel.items()} __A = __A = CvtConfig(num_labels=a_ , idalabel=a_ , labelaid=a_ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("/" , 1 )[-1][4:6] == "13": __A = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("/" , 1 )[-1][4:6] == "21": __A = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __A = [2, 2, 2_0] __A = [3, 1_2, 1_6] __A = [1_9_2, 7_6_8, 1_0_2_4] __A = CvtForImageClassification(a_ ) __A = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) __A = image_size __A = torch.load(a_ , map_location=torch.device("cpu" ) ) __A = OrderedDict() __A = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: __A = list_of_state_dict + cls_token(a_ ) __A = list_of_state_dict + embeddings(a_ ) for cnt in range(config.depth[idx] ): __A = list_of_state_dict + attention(a_ , a_ ) __A = list_of_state_dict + final() for gg in list_of_state_dict: print(a_ ) for i in range(len(a_ ) ): __A = original_weights[list_of_state_dict[i][1]] model.load_state_dict(a_ ) model.save_pretrained(a_ ) image_processor.save_pretrained(a_ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": SCREAMING_SNAKE_CASE :Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE :List[Any] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
55
from math import sqrt def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' must been an int and positive" __A = True # 0 and 1 are none primes. if number <= 1: __A = False for divisor in range(2 , int(round(sqrt(a_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __A = False break # precondition assert isinstance(a_ , a_ ), "'status' must been from type bool" return status def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __A = list(range(2 , n + 1 ) ) __A = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(a_ ) ): for j in range(i + 1 , len(a_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __A = 0 # filters actual prime numbers. __A = [x for x in begin_list if x != 0] # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" __A = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(a_ ): ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and number >= 0, "'number' must been an int and >= 0" __A = [] # this list will be returns of the function. # potential prime number factors. __A = 2 __A = number if number == 0 or number == 1: ans.append(a_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(a_ ): while quotient != 1: if is_prime(a_ ) and (quotient % factor == 0): ans.append(a_ ) quotient /= factor else: factor += 1 else: ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = max(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = min(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> int: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , a_ ), "compare bust been from type bool" return number % 2 == 0 def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , a_ ), "compare bust been from type bool" return number % 2 != 0 def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and (number > 2) and is_even(a_ ) ), "'number' must been an int, even and > 2" __A = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __A = get_prime_numbers(a_ ) __A = len(a_ ) # run variable for while-loops. __A = 0 __A = None # exit variable. for break up the loops __A = True while i < len_pn and loop: __A = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __A = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(a_ , a_ ) and (len(a_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __A = 0 while numbera != 0: __A = numbera % numbera __A = numbera __A = rest # precondition assert isinstance(a_ , a_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def UpperCAmelCase ( a_ , a_ ) -> List[str]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __A = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __A = prime_factorization(a_ ) __A = prime_factorization(a_ ) elif numbera == 1 or numbera == 1: __A = [] __A = [] __A = max(a_ , a_ ) __A = 0 __A = 0 __A = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __A = prime_fac_a.count(a_ ) __A = prime_fac_a.count(a_ ) for _ in range(max(a_ , a_ ) ): ans *= n else: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # precondition assert isinstance(a_ , a_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'number' must been a positive int" __A = 0 __A = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(a_ ): ans += 1 # precondition assert isinstance(a_ , a_ ) and is_prime( a_ ), "'ans' must been a prime number and from type int" return ans def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" assert ( is_prime(a_ ) and is_prime(a_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __A = p_number_a + 1 # jump to the next number __A = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(a_ ): number += 1 while number < p_number_a: ans.append(a_ ) number += 1 # fetch the next prime number. while not is_prime(a_ ): number += 1 # precondition assert ( isinstance(a_ , a_ ) and ans[0] != p_number_a and ans[len(a_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 1), "'n' must been int and >= 1" __A = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(a_ ) # precondition assert ans[0] == 1 and ans[len(a_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" assert isinstance(a_ , a_ ) and ( number > 1 ), "'number' must been an int and >= 1" __A = get_divisors(a_ ) # precondition assert ( isinstance(a_ , a_ ) and (divisors[0] == 1) and (divisors[len(a_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def UpperCAmelCase ( a_ , a_ ) -> str: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __A = gcd(abs(a_ ) , abs(a_ ) ) # precondition assert ( isinstance(a_ , a_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been a int and >= 0" __A = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been an int and >= 0" __A = 0 __A = 1 __A = 1 # this will be return for _ in range(n - 1 ): __A = ans ans += fiba __A = tmp return ans
55
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : Optional[int] ,A : Optional[int]=7 ,A : Optional[Any]=3 ,A : List[str]=18 ,A : Any=30 ,A : Tuple=4_00 ,A : Union[str, Any]=True ,A : Optional[Any]=32 ,A : Union[str, Any]=True ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size_divisor __A = do_rescale def UpperCamelCase_ ( self : Union[str, Any] ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = GLPNImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : int ): __A = GLPNImageProcessingTester(self ) @property def UpperCamelCase_ ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Any ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size_divisor" ) ) self.assertTrue(hasattr(A ,"resample" ) ) self.assertTrue(hasattr(A ,"do_rescale" ) ) def UpperCamelCase_ ( self : str ): pass def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : Optional[Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
55
import os def UpperCAmelCase ( ) -> Any: """simple docstring""" __A = os.path.dirname(os.path.realpath(a_ ) ) __A = os.path.join(a_ , "triangle.txt" ) with open(a_ ) as f: __A = f.readlines() __A = [] for line in triangle: __A = [] for number in line.strip().split(" " ): numbers_from_line.append(int(a_ ) ) a.append(a_ ) for i in range(1 , len(a_ ) ): for j in range(len(a[i] ) ): __A = a[i - 1][j] if j != len(a[i - 1] ) else 0 __A = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(a_ , a_ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
55
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE :int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :List[str] = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "deformable_detr" snake_case_ = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Dict ,A : str=True ,A : Dict=None ,A : Tuple=3 ,A : Optional[Any]=3_00 ,A : Optional[Any]=10_24 ,A : int=6 ,A : Tuple=10_24 ,A : List[Any]=8 ,A : Any=6 ,A : int=10_24 ,A : int=8 ,A : Tuple=0.0 ,A : int=True ,A : Any="relu" ,A : Dict=2_56 ,A : List[str]=0.1 ,A : Optional[int]=0.0 ,A : List[str]=0.0 ,A : List[Any]=0.02 ,A : Optional[Any]=1.0 ,A : Optional[Any]=True ,A : Optional[Any]=False ,A : Optional[Any]="sine" ,A : int="resnet50" ,A : Dict=True ,A : List[str]=False ,A : Tuple=4 ,A : int=4 ,A : str=4 ,A : Optional[int]=False ,A : Optional[Any]=3_00 ,A : Optional[int]=False ,A : Union[str, Any]=1 ,A : Optional[Any]=5 ,A : List[str]=2 ,A : List[str]=1 ,A : Dict=1 ,A : Union[str, Any]=5 ,A : Optional[int]=2 ,A : Optional[int]=0.1 ,A : Tuple=0.25 ,A : int=False ,**A : Optional[int] ,): if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __A = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(A ,A ): __A = backbone_config.get("model_type" ) __A = CONFIG_MAPPING[backbone_model_type] __A = config_class.from_dict(A ) __A = use_timm_backbone __A = backbone_config __A = num_channels __A = num_queries __A = max_position_embeddings __A = d_model __A = encoder_ffn_dim __A = encoder_layers __A = encoder_attention_heads __A = decoder_ffn_dim __A = decoder_layers __A = decoder_attention_heads __A = dropout __A = attention_dropout __A = activation_dropout __A = activation_function __A = init_std __A = init_xavier_std __A = encoder_layerdrop __A = auxiliary_loss __A = position_embedding_type __A = backbone __A = use_pretrained_backbone __A = dilation # deformable attributes __A = num_feature_levels __A = encoder_n_points __A = decoder_n_points __A = two_stage __A = two_stage_num_proposals __A = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher __A = class_cost __A = bbox_cost __A = giou_cost # Loss coefficients __A = mask_loss_coefficient __A = dice_loss_coefficient __A = bbox_loss_coefficient __A = giou_loss_coefficient __A = eos_coefficient __A = focal_alpha __A = disable_custom_kernels super().__init__(is_encoder_decoder=A ,**A ) @property def UpperCamelCase_ ( self : List[Any] ): return self.encoder_attention_heads @property def UpperCamelCase_ ( self : Optional[Any] ): return self.d_model def UpperCamelCase_ ( self : List[str] ): __A = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __A = self.backbone_config.to_dict() __A = self.__class__.model_type return output
55
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels SCREAMING_SNAKE_CASE :Union[str, Any] = object() # For specifying empty leaf dict `{}` SCREAMING_SNAKE_CASE :List[str] = object() def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" __A = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(a_ ) - len(a_ ) + 1 ): __A = [x.match(a_ ) for x, y in zip(a_ , ks[i:] )] if matches and all(a_ ): return True return False def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" def replace(a_ , a_ ): for rule, replacement in rules: if _match(a_ , a_ ): return replacement return val return replace def UpperCAmelCase ( ) -> int: """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , a_ )), (("transformer", "wte", "embedding"), P("mp" , a_ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a_ , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , a_ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(a_ , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , a_ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" __A = _get_partition_rules() __A = _replacement_rules(a_ ) __A = {k: _unmatched for k in flatten_dict(a_ )} __A = {k: replace(a_ , a_ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(a_ ) )
55
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Any = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "megatron-bert" def __init__( self : Tuple ,A : int=2_90_56 ,A : int=10_24 ,A : Optional[Any]=24 ,A : str=16 ,A : Union[str, Any]=40_96 ,A : Optional[Any]="gelu" ,A : Union[str, Any]=0.1 ,A : Tuple=0.1 ,A : int=5_12 ,A : Dict=2 ,A : List[Any]=0.02 ,A : Union[str, Any]=1E-12 ,A : Any=0 ,A : Union[str, Any]="absolute" ,A : Tuple=True ,**A : int ,): super().__init__(pad_token_id=A ,**A ) __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = hidden_act __A = intermediate_size __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = initializer_range __A = layer_norm_eps __A = position_embedding_type __A = use_cache
55
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] ,A : Union[str, Any] ,A : List[Any]=13 ,A : Optional[Any]=30 ,A : Union[str, Any]=2 ,A : Union[str, Any]=3 ,A : Any=True ,A : Dict=True ,A : str=32 ,A : Tuple=2 ,A : Optional[int]=4 ,A : Tuple=37 ,A : List[Any]="gelu" ,A : Dict=0.1 ,A : Optional[int]=0.1 ,A : List[Any]=10 ,A : Optional[Any]=0.02 ,A : Dict=3 ,A : Dict=None ,A : List[Any]=2 ,): __A = parent __A = batch_size __A = image_size __A = patch_size __A = num_channels __A = is_training __A = use_labels __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = type_sequence_label_size __A = initializer_range __A = scope __A = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __A = (image_size // patch_size) ** 2 __A = num_patches + 2 def UpperCamelCase_ ( self : List[Any] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Optional[int] ): return DeiTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,A : Optional[int] ,A : Union[str, Any] ): __A = TFDeiTModel(config=A ) __A = model(A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : List[Any] ,A : List[Any] ,A : Optional[Any] ,A : Dict ): __A = TFDeiTForMaskedImageModeling(config=A ) __A = model(A ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __A = 1 __A = TFDeiTForMaskedImageModeling(A ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(A ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase_ ( self : Optional[Any] ,A : Union[str, Any] ,A : Dict ,A : Union[str, Any] ): __A = self.type_sequence_label_size __A = TFDeiTForImageClassification(A ) __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __A = 1 __A = TFDeiTForImageClassification(A ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) snake_case_ = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : str ): __A = TFDeiTModelTester(self ) __A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 ) def UpperCamelCase_ ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass def UpperCamelCase_ ( self : List[Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) __A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A ,tf.keras.layers.Dense ) ) def UpperCamelCase_ ( self : Union[str, Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCamelCase_ ( self : Optional[int] ,A : Union[str, Any] ,A : List[str] ,A : Optional[Any]=False ): __A = super()._prepare_for_class(A ,A ,return_labels=A ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def UpperCamelCase_ ( self : Any ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = TFDeiTModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> str: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : int ): return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[int] ): __A = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="tf" ) # forward pass __A = model(**A ) # verify the logits __A = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape ,A ) __A = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
1
from PIL import Image def UpperCAmelCase ( a_ , a_ ) -> Image: """simple docstring""" def brightness(a_ ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError("level must be between -255.0 (black) and 255.0 (white)" ) return img.point(a_ ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 SCREAMING_SNAKE_CASE :Union[str, Any] = change_brightness(img, 100) brigt_img.save('image_data/lena_brightness.png', format='png')
55
SCREAMING_SNAKE_CASE :List[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE :Union[str, Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE :int = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" assert len(str(a_ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 1_2, "month should be between 1 to 12" assert 1 <= day <= 3_1, "day should be between 1 to 31" # Doomsday algorithm: __A = year // 1_0_0 __A = (5 * (century % 4) + 2) % 7 __A = year % 1_0_0 __A = centurian % 1_2 __A = ( (centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __A = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0) else DOOMSDAY_LEAP[month - 1] ) __A = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
55
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : List[str] ): __A = tempfile.mkdtemp() __A = BlipImageProcessor() __A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) __A = BlipaProcessor(A ,A ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ,**A : int ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).tokenizer def UpperCamelCase_ ( self : Dict ,**A : Optional[int] ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor def UpperCamelCase_ ( self : Dict ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self : Optional[int] ): __A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] __A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self : Any ): __A = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __A = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" ) __A = self.get_image_processor(do_normalize=A ,padding_value=1.0 ) __A = BlipaProcessor.from_pretrained( self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=A ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,A ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = self.prepare_image_inputs() __A = image_processor(A ,return_tensors="np" ) __A = processor(images=A ,return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self : Tuple ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = processor(text=A ) __A = tokenizer(A ,return_token_type_ids=A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self : int ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A = processor.batch_decode(A ) __A = tokenizer.batch_decode(A ) self.assertListEqual(A ,A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
55
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def UpperCAmelCase ( a_ = "isbn/0140328726" ) -> dict: """simple docstring""" __A = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes if new_olid.count("/" ) != 1: __A = F'''{olid} is not a valid Open Library olid''' raise ValueError(a_ ) return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json() def UpperCAmelCase ( a_ ) -> dict: """simple docstring""" __A = { "title": "Title", "publish_date": "Publish date", "authors": "Authors", "number_of_pages": "Number of pages:", "first_sentence": "First sentence", "isbn_10": "ISBN (10)", "isbn_13": "ISBN (13)", } __A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __A = [ get_openlibrary_data(author["key"] )["name"] for author in data["Authors"] ] __A = data["First sentence"]["value"] for key, value in data.items(): if isinstance(a_ , a_ ): __A = ", ".join(a_ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: SCREAMING_SNAKE_CASE :int = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: SCREAMING_SNAKE_CASE :Any = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
55
1
SCREAMING_SNAKE_CASE :int = {str(digit): digit**5 for digit in range(10)} def UpperCAmelCase ( a_ ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(a_ ) ) def UpperCAmelCase ( ) -> int: """simple docstring""" return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(a_ ) ) if __name__ == "__main__": print(solution())
55
import requests SCREAMING_SNAKE_CASE :List[str] = 'YOUR API KEY' def UpperCAmelCase ( a_ , a_ = giphy_api_key ) -> list: """simple docstring""" __A = "+".join(query.split() ) __A = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' __A = requests.get(a_ ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
55
1
from collections import deque from math import floor from random import random from time import time class UpperCAmelCase : '''simple docstring''' def __init__( self : Tuple ): __A = {} def UpperCamelCase_ ( self : List[Any] ,A : int ,A : str ,A : Optional[int]=1 ): if self.graph.get(A ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: __A = [[w, v]] if not self.graph.get(A ): __A = [] def UpperCamelCase_ ( self : Any ): return list(self.graph ) def UpperCamelCase_ ( self : Optional[Any] ,A : Union[str, Any] ,A : Dict ): if self.graph.get(A ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A ) def UpperCamelCase_ ( self : List[Any] ,A : str=-2 ,A : List[str]=-1 ): if s == d: return [] __A = [] __A = [] if s == -2: __A = list(self.graph )[0] stack.append(A ) visited.append(A ) __A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A ) return visited else: stack.append(node[1] ) visited.append(node[1] ) __A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A ) != 0: __A = stack[len(A ) - 1] else: __A = ss # check if se have reached the starting point if len(A ) == 0: return visited def UpperCamelCase_ ( self : str ,A : Union[str, Any]=-1 ): if c == -1: __A = floor(random() * 1_00_00 ) + 10 for i in range(A ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): __A = floor(random() * c ) + 1 if n != i: self.add_pair(A ,A ,1 ) def UpperCamelCase_ ( self : int ,A : str=-2 ): __A = deque() __A = [] if s == -2: __A = list(self.graph )[0] d.append(A ) visited.append(A ) while d: __A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def UpperCamelCase_ ( self : Tuple ,A : int ): __A = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def UpperCamelCase_ ( self : Any ,A : List[str] ): return len(self.graph[u] ) def UpperCamelCase_ ( self : Optional[int] ,A : Any=-2 ): __A = [] __A = [] if s == -2: __A = list(self.graph )[0] stack.append(A ) visited.append(A ) __A = s __A = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __A = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(A ) != 0: __A = stack[len(A ) - 1] else: __A = ss # check if se have reached the starting point if len(A ) == 0: return sorted_nodes def UpperCamelCase_ ( self : List[Any] ): __A = [] __A = [] __A = list(self.graph )[0] stack.append(A ) visited.append(A ) __A = -2 __A = [] __A = s __A = False __A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __A = len(A ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __A = node[1] break # check if all the children are visited if s == ss: stack.pop() __A = True if len(A ) != 0: __A = stack[len(A ) - 1] else: __A = False indirect_parents.append(A ) __A = s __A = ss # check if se have reached the starting point if len(A ) == 0: return list(A ) def UpperCamelCase_ ( self : str ): __A = [] __A = [] __A = list(self.graph )[0] stack.append(A ) visited.append(A ) __A = -2 __A = [] __A = s __A = False __A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __A = len(A ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __A = node[1] break # check if all the children are visited if s == ss: stack.pop() __A = True if len(A ) != 0: __A = stack[len(A ) - 1] else: __A = False indirect_parents.append(A ) __A = s __A = ss # check if se have reached the starting point if len(A ) == 0: return False def UpperCamelCase_ ( self : Tuple ,A : Dict=-2 ,A : Any=-1 ): __A = time() self.dfs(A ,A ) __A = time() return end - begin def UpperCamelCase_ ( self : Optional[Any] ,A : List[Any]=-2 ): __A = time() self.bfs(A ) __A = time() return end - begin class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[int] ): __A = {} def UpperCamelCase_ ( self : Optional[Any] ,A : Tuple ,A : Union[str, Any] ,A : Union[str, Any]=1 ): # check if the u exists if self.graph.get(A ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist __A = [[w, v]] # add the other way if self.graph.get(A ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist __A = [[w, u]] def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : Optional[Any] ): if self.graph.get(A ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A ) # the other way round if self.graph.get(A ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(A ) def UpperCamelCase_ ( self : Union[str, Any] ,A : List[Any]=-2 ,A : int=-1 ): if s == d: return [] __A = [] __A = [] if s == -2: __A = list(self.graph )[0] stack.append(A ) visited.append(A ) __A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A ) return visited else: stack.append(node[1] ) visited.append(node[1] ) __A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A ) != 0: __A = stack[len(A ) - 1] else: __A = ss # check if se have reached the starting point if len(A ) == 0: return visited def UpperCamelCase_ ( self : Optional[Any] ,A : Dict=-1 ): if c == -1: __A = floor(random() * 1_00_00 ) + 10 for i in range(A ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): __A = floor(random() * c ) + 1 if n != i: self.add_pair(A ,A ,1 ) def UpperCamelCase_ ( self : List[str] ,A : Union[str, Any]=-2 ): __A = deque() __A = [] if s == -2: __A = list(self.graph )[0] d.append(A ) visited.append(A ) while d: __A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def UpperCamelCase_ ( self : int ,A : Optional[Any] ): return len(self.graph[u] ) def UpperCamelCase_ ( self : str ): __A = [] __A = [] __A = list(self.graph )[0] stack.append(A ) visited.append(A ) __A = -2 __A = [] __A = s __A = False __A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __A = len(A ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __A = node[1] break # check if all the children are visited if s == ss: stack.pop() __A = True if len(A ) != 0: __A = stack[len(A ) - 1] else: __A = False indirect_parents.append(A ) __A = s __A = ss # check if se have reached the starting point if len(A ) == 0: return list(A ) def UpperCamelCase_ ( self : Any ): __A = [] __A = [] __A = list(self.graph )[0] stack.append(A ) visited.append(A ) __A = -2 __A = [] __A = s __A = False __A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __A = len(A ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __A = node[1] break # check if all the children are visited if s == ss: stack.pop() __A = True if len(A ) != 0: __A = stack[len(A ) - 1] else: __A = False indirect_parents.append(A ) __A = s __A = ss # check if se have reached the starting point if len(A ) == 0: return False def UpperCamelCase_ ( self : Union[str, Any] ): return list(self.graph ) def UpperCamelCase_ ( self : Dict ,A : Any=-2 ,A : int=-1 ): __A = time() self.dfs(A ,A ) __A = time() return end - begin def UpperCamelCase_ ( self : str ,A : List[str]=-2 ): __A = time() self.bfs(A ) __A = time() return end - begin
55
import itertools import math def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" __A = 2 while True: if is_prime(a_ ): yield num num += 1 def UpperCAmelCase ( a_ = 1_0_0_0_1 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , a_ ) ) if __name__ == "__main__": print(f'''{solution() = }''')
55
1
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE :Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :str = { 'nielsr/canine-s': 2048, } # Unicode defines 1,114,112 total “codepoints” SCREAMING_SNAKE_CASE :int = 111_4112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py SCREAMING_SNAKE_CASE :int = 0 SCREAMING_SNAKE_CASE :Optional[int] = 0xe_000 SCREAMING_SNAKE_CASE :Dict = 0xe_001 SCREAMING_SNAKE_CASE :List[Any] = 0xe_002 SCREAMING_SNAKE_CASE :int = 0xe_003 SCREAMING_SNAKE_CASE :Any = 0xe_004 # Maps special codepoints to human-readable names. SCREAMING_SNAKE_CASE :Dict[int, str] = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. SCREAMING_SNAKE_CASE :Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] ,A : Union[str, Any]=chr(A ) ,A : Optional[Any]=chr(A ) ,A : List[str]=chr(A ) ,A : Optional[int]=chr(A ) ,A : Any=chr(A ) ,A : int=chr(A ) ,A : int=False ,A : List[str]=20_48 ,**A : Any ,): __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else bos_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else eos_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else sep_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else cls_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token super().__init__( bos_token=A ,eos_token=A ,sep_token=A ,cls_token=A ,pad_token=A ,mask_token=A ,add_prefix_space=A ,model_max_length=A ,**A ,) # Creates a mapping for looking up the IDs of special symbols. __A = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): __A = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. __A = { codepoint: name for name, codepoint in self._special_codepoints.items() } __A = UNICODE_VOCAB_SIZE __A = len(self._special_codepoints ) @property def UpperCamelCase_ ( self : Any ): return self._unicode_vocab_size def UpperCamelCase_ ( self : Dict ,A : str ): return list(A ) def UpperCamelCase_ ( self : Any ,A : str ): try: return ord(A ) except TypeError: raise ValueError(f'''invalid token: \'{token}\'''' ) def UpperCamelCase_ ( self : Union[str, Any] ,A : int ): try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(A ) except TypeError: raise ValueError(f'''invalid id: {index}''' ) def UpperCamelCase_ ( self : Optional[int] ,A : Optional[int] ): return "".join(A ) def UpperCamelCase_ ( self : Any ,A : List[int] ,A : Optional[List[int]] = None ): __A = [self.sep_token_id] __A = [self.cls_token_id] __A = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def UpperCamelCase_ ( self : int ,A : List[int] ,A : Optional[List[int]] = None ,A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A ) __A = [1] + ([0] * len(A )) + [1] if token_ids_a is not None: result += ([0] * len(A )) + [1] return result def UpperCamelCase_ ( self : Tuple ,A : List[int] ,A : Optional[List[int]] = None ): __A = [self.sep_token_id] __A = [self.cls_token_id] __A = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def UpperCamelCase_ ( self : Dict ,A : str ,A : Optional[str] = None ): return ()
55
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]: """simple docstring""" __A = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") __A = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(a_ ): os.makedirs(a_ ) __A = model.state_dict() def to_tf_var_name(a_ ): for patt, repl in iter(a_ ): __A = name.replace(a_ , a_ ) return F'''bert/{name}''' def create_tf_var(a_ , a_ , a_ ): __A = tf.dtypes.as_dtype(tensor.dtype ) __A = tf.get_variable(dtype=a_ , shape=tensor.shape , name=a_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(a_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __A = to_tf_var_name(a_ ) __A = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __A = torch_tensor.T __A = create_tf_var(tensor=a_ , name=a_ , session=a_ ) tf.keras.backend.set_value(a_ , a_ ) __A = session.run(a_ ) print(F'''Successfully created {tf_name}: {np.allclose(a_ , a_ )}''' ) __A = tf.train.Saver(tf.trainable_variables() ) saver.save(a_ , os.path.join(a_ , model_name.replace("-" , "_" ) + ".ckpt" ) ) def UpperCAmelCase ( a_=None ) -> List[Any]: """simple docstring""" __A = argparse.ArgumentParser() parser.add_argument("--model_name" , type=a_ , required=a_ , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=a_ , default=a_ , required=a_ , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=a_ , required=a_ , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=a_ , required=a_ , help="Directory in which to save tensorflow model" ) __A = parser.parse_args(a_ ) __A = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=a_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
55
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @slow @require_torch def UpperCamelCase_ ( self : Optional[int] ): __A = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" ,"prajjwal1/bert-tiny" ) __A = BertTokenizer.from_pretrained("bert-base-uncased" ) __A = bertabert.config.encoder.vocab_size __A = tokenizer.sep_token_id __A = tokenizer.cls_token_id __A = 1_28 __A = datasets.load_dataset("cnn_dailymail" ,"3.0.0" ,split="train[:1%]" ) __A = datasets.load_dataset("cnn_dailymail" ,"3.0.0" ,split="validation[:1%]" ) __A = train_dataset.select(range(32 ) ) __A = val_dataset.select(range(16 ) ) __A = 4 def _map_to_encoder_decoder_inputs(A : str ): # Tokenizer will automatically set [BOS] <text> [EOS] __A = tokenizer(batch["article"] ,padding="max_length" ,truncation=A ,max_length=5_12 ) __A = tokenizer(batch["highlights"] ,padding="max_length" ,truncation=A ,max_length=1_28 ) __A = inputs.input_ids __A = inputs.attention_mask __A = outputs.input_ids __A = outputs.input_ids.copy() __A = [ [-1_00 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] __A = outputs.attention_mask assert all(len(A ) == 5_12 for x in inputs.input_ids ) assert all(len(A ) == 1_28 for x in outputs.input_ids ) return batch def _compute_metrics(A : Union[str, Any] ): __A = pred.label_ids __A = pred.predictions # all unnecessary tokens are removed __A = tokenizer.batch_decode(A ,skip_special_tokens=A ) __A = tokenizer.batch_decode(A ,skip_special_tokens=A ) __A = sum([int(pred_str[i] == label_str[i] ) for i in range(len(A ) )] ) / len(A ) return {"accuracy": accuracy} # map train dataset __A = train_dataset.map( _map_to_encoder_decoder_inputs ,batched=A ,batch_size=A ,remove_columns=["article", "highlights"] ,) train_dataset.set_format( type="torch" ,columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] ,) # same for validation dataset __A = val_dataset.map( _map_to_encoder_decoder_inputs ,batched=A ,batch_size=A ,remove_columns=["article", "highlights"] ,) val_dataset.set_format( type="torch" ,columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] ,) __A = self.get_auto_remove_tmp_dir() __A = SeqaSeqTrainingArguments( output_dir=A ,per_device_train_batch_size=A ,per_device_eval_batch_size=A ,predict_with_generate=A ,evaluation_strategy="steps" ,do_train=A ,do_eval=A ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,) # instantiate trainer __A = SeqaSeqTrainer( model=A ,args=A ,compute_metrics=_compute_metrics ,train_dataset=A ,eval_dataset=A ,tokenizer=A ,) # start training trainer.train()
55
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE :Any = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Any = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
1
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def UpperCAmelCase ( a_ , a_=False ) -> str: """simple docstring""" try: __A = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __A = default else: # KEY is set, convert it to True or False. try: __A = strtobool(a_ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'''If set, {key} must be yes or no.''' ) return _value SCREAMING_SNAKE_CASE :List[Any] = parse_flag_from_env('RUN_SLOW', default=False) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" return unittest.skip("Test was skipped" )(a_ ) def UpperCAmelCase ( a_ ) -> List[str]: """simple docstring""" return unittest.skipUnless(_run_slow_tests , "test is slow" )(a_ ) def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU" )(a_ ) def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU" )(a_ ) def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(is_xpu_available() , "test requires a XPU" )(a_ ) def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`" )(a_ ) def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite" )(a_ ) def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library" )(a_ ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , "test requires TPU" )(a_ ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU" )(a_ ) def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU" )(a_ ) def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs" )(a_ ) def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs" )(a_ ) def UpperCAmelCase ( a_ ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , "test requires safetensors" )(a_ ) def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed" )(a_ ) def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(is_torch_version(">=" , "1.12.0" ) , "test requires torch version >= 1.12.0" )(a_ ) def UpperCAmelCase ( a_=None , a_=None ) -> Dict: """simple docstring""" if test_case is None: return partial(a_ , version=a_ ) return unittest.skipUnless(is_torch_version(">=" , a_ ) , F'''test requires torch version >= {version}''' )(a_ ) def UpperCAmelCase ( a_ ) -> str: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard" )(a_ ) def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(is_wandb_available() , "test requires wandb" )(a_ ) def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml" )(a_ ) SCREAMING_SNAKE_CASE :Optional[int] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(a_ ) class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' snake_case_ = True @classmethod def UpperCamelCase_ ( cls : Any ): __A = tempfile.mkdtemp() @classmethod def UpperCamelCase_ ( cls : Optional[Any] ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def UpperCamelCase_ ( self : Tuple ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob("**/*" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(A ) class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Optional[Any] ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Optional[Any] ,A : Union[mock.Mock, List[mock.Mock]] ): __A = mocks if isinstance(A ,(tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = AcceleratorState() __A = tensor[None].clone().to(state.device ) __A = gather(a_ ).cpu() __A = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , a_ ): return False return True class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[int] ,A : List[str] ,A : Tuple ,A : Dict ): __A = returncode __A = stdout __A = stderr async def UpperCAmelCase ( a_ , a_ ) -> Union[str, Any]: """simple docstring""" while True: __A = await stream.readline() if line: callback(a_ ) else: break async def UpperCAmelCase ( a_ , a_=None , a_=None , a_=None , a_=False , a_=False ) -> _RunOutput: """simple docstring""" if echo: print("\nRunning: " , " ".join(a_ ) ) __A = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=a_ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=a_ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __A = [] __A = [] def tee(a_ , a_ , a_ , a_="" ): __A = line.decode("utf-8" ).rstrip() sink.append(a_ ) if not quiet: print(a_ , a_ , file=a_ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda a_ : tee(a_ , a_ , sys.stdout , label="stdout:" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda a_ : tee(a_ , a_ , sys.stderr , label="stderr:" ) ) ), ] , timeout=a_ , ) return _RunOutput(await p.wait() , a_ , a_ ) def UpperCAmelCase ( a_ , a_=None , a_=None , a_=1_8_0 , a_=False , a_=True ) -> _RunOutput: """simple docstring""" __A = asyncio.get_event_loop() __A = loop.run_until_complete( _stream_subprocess(a_ , env=a_ , stdin=a_ , timeout=a_ , quiet=a_ , echo=a_ ) ) __A = " ".join(a_ ) if result.returncode > 0: __A = "\n".join(result.stderr ) raise RuntimeError( F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' F'''The combined stderr from workers follows:\n{stderr}''' ) return result class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' pass def UpperCAmelCase ( a_ , a_=False ) -> Dict: """simple docstring""" try: __A = subprocess.check_output(a_ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(a_ , "decode" ): __A = output.decode("utf-8" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F'''Command `{' '.join(a_ )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
55
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE :int = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def UpperCAmelCase ( a_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" __A = BeautifulSoup(requests.get(url + location ).content , "html.parser" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ): __A = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip() __A = job.find("span" , {"class": "company"} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
55
1
from __future__ import annotations import bisect def UpperCAmelCase ( a_ , a_ , a_ = 0 , a_ = -1 ) -> int: """simple docstring""" if hi < 0: __A = len(a_ ) while lo < hi: __A = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __A = mid + 1 else: __A = mid return lo def UpperCAmelCase ( a_ , a_ , a_ = 0 , a_ = -1 ) -> int: """simple docstring""" if hi < 0: __A = len(a_ ) while lo < hi: __A = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __A = mid + 1 else: __A = mid return lo def UpperCAmelCase ( a_ , a_ , a_ = 0 , a_ = -1 ) -> None: """simple docstring""" sorted_collection.insert(bisect_left(a_ , a_ , a_ , a_ ) , a_ ) def UpperCAmelCase ( a_ , a_ , a_ = 0 , a_ = -1 ) -> None: """simple docstring""" sorted_collection.insert(bisect_right(a_ , a_ , a_ , a_ ) , a_ ) def UpperCAmelCase ( a_ , a_ ) -> int | None: """simple docstring""" __A = 0 __A = len(a_ ) - 1 while left <= right: __A = left + (right - left) // 2 __A = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __A = midpoint - 1 else: __A = midpoint + 1 return None def UpperCAmelCase ( a_ , a_ ) -> int | None: """simple docstring""" __A = bisect.bisect_left(a_ , a_ ) if index != len(a_ ) and sorted_collection[index] == item: return index return None def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int | None: """simple docstring""" if right < left: return None __A = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(a_ , a_ , a_ , midpoint - 1 ) else: return binary_search_by_recursion(a_ , a_ , midpoint + 1 , a_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :List[str] = input('Enter numbers separated by comma:\n').strip() SCREAMING_SNAKE_CASE :Tuple = sorted(int(item) for item in user_input.split(',')) SCREAMING_SNAKE_CASE :List[str] = int(input('Enter a single number to be found in the list:\n')) SCREAMING_SNAKE_CASE :List[Any] = binary_search(collection, target) if result is None: print(f'''{target} was not found in {collection}.''') else: print(f'''{target} was found at position {result} in {collection}.''')
55
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : List[str] ): __A = tempfile.mkdtemp() __A = BlipImageProcessor() __A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) __A = BlipaProcessor(A ,A ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ,**A : int ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).tokenizer def UpperCamelCase_ ( self : Dict ,**A : Optional[int] ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor def UpperCamelCase_ ( self : Dict ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self : Optional[int] ): __A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] __A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self : Any ): __A = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __A = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" ) __A = self.get_image_processor(do_normalize=A ,padding_value=1.0 ) __A = BlipaProcessor.from_pretrained( self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=A ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,A ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = self.prepare_image_inputs() __A = image_processor(A ,return_tensors="np" ) __A = processor(images=A ,return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self : Tuple ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = processor(text=A ) __A = tokenizer(A ,return_token_type_ids=A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self : int ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A = processor.batch_decode(A ) __A = tokenizer.batch_decode(A ) self.assertListEqual(A ,A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
55
1
def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" __A = set() # To detect a back edge, keep track of vertices currently in the recursion stack __A = set() return any( node not in visited and depth_first_search(a_ , a_ , a_ , a_ ) for node in graph ) def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> bool: """simple docstring""" visited.add(a_ ) rec_stk.add(a_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(a_ , a_ , a_ , a_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(a_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
55
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int ,A : Any ,A : List[str] ,A : Union[str, Any]=10_24 ,A : int=10_24 ,A : Optional[Any]=3.6 ): __A = tokenizer __A = tokenizer.bos_token_id __A = dataset __A = seq_length __A = seq_length * chars_per_token * num_of_sequences def __iter__( self : List[Any] ): __A = iter(self.dataset ) __A = True while more_examples: __A , __A = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: __A = False break __A = tokenizer(A ,truncation=A )["input_ids"] __A = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 ,len(A ) ,self.seq_length ): __A = all_token_ids[i : i + self.seq_length] if len(A ) == self.seq_length: yield torch.tensor(A ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = {"streaming": True} __A = load_dataset(args.dataset_name , split="train" , **a_ ) __A = ConstantLengthDataset(a_ , a_ , seq_length=args.seq_length ) __A = DataLoader(a_ , batch_size=args.batch_size ) return eval_dataloader def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" model.eval() __A = [] for step, batch in enumerate(a_ ): with torch.no_grad(): __A = model(a_ , labels=a_ ) __A = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(a_ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __A = torch.mean(torch.cat(a_ ) ) try: __A = torch.exp(a_ ) except OverflowError: __A = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator SCREAMING_SNAKE_CASE :Optional[int] = Accelerator() # Parse configuration SCREAMING_SNAKE_CASE :str = HfArgumentParser(EvaluationArguments) SCREAMING_SNAKE_CASE :int = parser.parse_args() set_seed(args.seed) # Logging SCREAMING_SNAKE_CASE :Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer SCREAMING_SNAKE_CASE :List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) SCREAMING_SNAKE_CASE :int = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader SCREAMING_SNAKE_CASE :List[str] = create_dataloader(args) # Prepare everything with our `accelerator`. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
55
1
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = ["image_processor", "tokenizer"] snake_case_ = "BlipImageProcessor" snake_case_ = "AutoTokenizer" def __init__( self : List[str] ,A : Dict ,A : Optional[int] ,A : List[Any] ): super().__init__(A ,A ) # add QFormer tokenizer __A = qformer_tokenizer def __call__( self : List[Any] ,A : ImageInput = None ,A : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,A : bool = True ,A : Union[bool, str, PaddingStrategy] = False ,A : Union[bool, str, TruncationStrategy] = None ,A : Optional[int] = None ,A : int = 0 ,A : Optional[int] = None ,A : Optional[bool] = None ,A : bool = False ,A : bool = False ,A : bool = False ,A : bool = False ,A : bool = False ,A : bool = True ,A : Optional[Union[str, TensorType]] = None ,**A : Tuple ,): if images is None and text is None: raise ValueError("You have to specify at least images or text." ) __A = BatchFeature() if text is not None: __A = self.tokenizer( text=A ,add_special_tokens=A ,padding=A ,truncation=A ,max_length=A ,stride=A ,pad_to_multiple_of=A ,return_attention_mask=A ,return_overflowing_tokens=A ,return_special_tokens_mask=A ,return_offsets_mapping=A ,return_token_type_ids=A ,return_length=A ,verbose=A ,return_tensors=A ,**A ,) encoding.update(A ) __A = self.qformer_tokenizer( text=A ,add_special_tokens=A ,padding=A ,truncation=A ,max_length=A ,stride=A ,pad_to_multiple_of=A ,return_attention_mask=A ,return_overflowing_tokens=A ,return_special_tokens_mask=A ,return_offsets_mapping=A ,return_token_type_ids=A ,return_length=A ,verbose=A ,return_tensors=A ,**A ,) __A = qformer_text_encoding.pop("input_ids" ) __A = qformer_text_encoding.pop("attention_mask" ) if images is not None: __A = self.image_processor(A ,return_tensors=A ) encoding.update(A ) return encoding def UpperCamelCase_ ( self : int ,*A : Optional[Any] ,**A : Any ): return self.tokenizer.batch_decode(*A ,**A ) def UpperCamelCase_ ( self : Optional[Any] ,*A : Union[str, Any] ,**A : Optional[int] ): return self.tokenizer.decode(*A ,**A ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def UpperCamelCase_ ( self : List[Any] ): __A = self.tokenizer.model_input_names __A = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def UpperCamelCase_ ( self : List[str] ,A : Tuple ,**A : Tuple ): if os.path.isfile(A ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(A ,exist_ok=A ) __A = os.path.join(A ,"qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(A ) return super().save_pretrained(A ,**A ) @classmethod def UpperCamelCase_ ( cls : Optional[Any] ,A : str ,**A : List[str] ): __A = AutoTokenizer.from_pretrained(A ,subfolder="qformer_tokenizer" ) __A = cls._get_arguments_from_pretrained(A ,**A ) args.append(A ) return cls(*A )
55
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = LayoutLMTokenizer snake_case_ = LayoutLMTokenizerFast snake_case_ = True snake_case_ = True def UpperCamelCase_ ( self : Any ): super().setUp() __A = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase_ ( self : Tuple ,**A : int ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**A ) def UpperCamelCase_ ( self : Optional[Any] ,A : Any ): __A = "UNwant\u00E9d,running" __A = "unwanted, running" return input_text, output_text def UpperCamelCase_ ( self : str ): __A = self.tokenizer_class(self.vocab_file ) __A = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(A ,["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[7, 4, 5, 10, 8, 9] ) def UpperCamelCase_ ( self : int ): pass
55
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE :List[str] = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :List[Any] = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
SCREAMING_SNAKE_CASE :int = {str(digit): digit**5 for digit in range(10)} def UpperCAmelCase ( a_ ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(a_ ) ) def UpperCAmelCase ( ) -> int: """simple docstring""" return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(a_ ) ) if __name__ == "__main__": print(solution())
55
1
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class UpperCAmelCase ( pl.LightningModule ): '''simple docstring''' def __init__( self : List[str] ,A : Union[str, Any] ): super().__init__() __A = model __A = 2 __A = nn.Linear(self.model.config.hidden_size ,self.num_labels ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCAmelCase ( a_ , a_ , a_ ) -> Dict: """simple docstring""" __A = LongformerModel.from_pretrained(a_ ) __A = LightningModel(a_ ) __A = torch.load(a_ , map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model __A = LongformerForQuestionAnswering.from_pretrained(a_ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(a_ ) print(F'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) SCREAMING_SNAKE_CASE :Optional[Any] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
55
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): __A = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A ,"tf_padding" ) ) self.parent.assertTrue(hasattr(A ,"depth_multiplier" ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] ,A : int ,A : List[Any]=13 ,A : int=3 ,A : Optional[Any]=32 ,A : Union[str, Any]=0.25 ,A : Tuple=8 ,A : Optional[int]=True ,A : Union[str, Any]=10_24 ,A : Any=32 ,A : Optional[int]="relu6" ,A : int=0.1 ,A : Optional[Any]=0.02 ,A : Optional[Any]=True ,A : List[str]=True ,A : str=10 ,A : str=None ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = depth_multiplier __A = min_depth __A = tf_padding __A = int(last_hidden_size * depth_multiplier ) __A = output_stride __A = hidden_act __A = classifier_dropout_prob __A = use_labels __A = is_training __A = num_labels __A = initializer_range __A = scope def UpperCamelCase_ ( self : Optional[int] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.num_labels ) __A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) __A = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self : Any ): return MobileNetVaConfig( num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,min_depth=self.min_depth ,tf_padding=self.tf_padding ,hidden_act=self.hidden_act ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,) def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : Tuple ,A : Optional[int] ,A : List[str] ): __A = MobileNetVaModel(config=A ) model.to(A ) model.eval() __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def UpperCamelCase_ ( self : List[Any] ,A : Union[str, Any] ,A : List[Any] ,A : int ,A : Union[str, Any] ): __A = self.num_labels __A = MobileNetVaForImageClassification(A ) model.to(A ) model.eval() __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : Tuple ): __A = self.prepare_config_and_inputs() __A , __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () snake_case_ = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : Any ): __A = MobileNetVaModelTester(self ) __A = MobileNetVaConfigTester(self ,config_class=A ,has_text_modality=A ) def UpperCamelCase_ ( self : str ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def UpperCamelCase_ ( self : Any ): pass def UpperCamelCase_ ( self : Optional[int] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[int] ): def check_hidden_states_output(A : List[Any] ,A : List[Any] ,A : Optional[int] ): __A = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(A ,A ) ) __A = outputs.hidden_states __A = 26 self.assertEqual(len(A ) ,A ) __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = True check_hidden_states_output(A ,A ,A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A = True check_hidden_states_output(A ,A ,A ) def UpperCamelCase_ ( self : Tuple ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def UpperCamelCase_ ( self : Union[str, Any] ): for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = MobileNetVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> str: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : List[str] ): return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[Any] ): __A = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): __A = model(**A ) # verify the logits __A = torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape ,A ) __A = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__) @dataclass class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self : Any ,**A : Tuple ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __A = deprecated_arg[3:] __A = not kwargs.pop(A ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) __A = kwargs.pop("tpu_name" ,self.tpu_name ) __A = kwargs.pop("device_idx" ,self.device_idx ) __A = kwargs.pop("eager_mode" ,self.eager_mode ) __A = kwargs.pop("use_xla" ,self.use_xla ) super().__init__(**A ) snake_case_ = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Name of TPU"} , ) snake_case_ = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) snake_case_ = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Benchmark models in eager model."} ) snake_case_ = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def UpperCamelCase_ ( self : Any ): requires_backends(self ,["tf"] ) __A = None if self.tpu: try: if self.tpu_name: __A = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: __A = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: __A = None return tpu @cached_property def UpperCamelCase_ ( self : int ): requires_backends(self ,["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) __A = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] ,"GPU" ) __A = tf.distribute.OneDeviceStrategy(device=f'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] ,"GPU" ) # disable GPU __A = tf.distribute.OneDeviceStrategy(device=f'''/cpu:{self.device_idx}''' ) return strategy @property def UpperCamelCase_ ( self : Optional[Any] ): requires_backends(self ,["tf"] ) return self._setup_tpu is not None @property def UpperCamelCase_ ( self : Optional[Any] ): requires_backends(self ,["tf"] ) return self._setup_strategy @property def UpperCamelCase_ ( self : int ): requires_backends(self ,["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def UpperCamelCase_ ( self : Union[str, Any] ): requires_backends(self ,["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def UpperCamelCase_ ( self : Tuple ): return self.n_gpu > 0
55
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : str ,A : int ,A : int=2 ,A : Optional[Any]=3 ,A : Dict=4 ,A : Optional[int]=2 ,A : Union[str, Any]=7 ,A : List[str]=True ,A : Union[str, Any]=True ,A : Optional[int]=True ,A : Optional[int]=True ,A : Tuple=99 ,A : Optional[int]=36 ,A : Dict=3 ,A : str=4 ,A : Optional[Any]=37 ,A : Dict="gelu" ,A : Dict=0.1 ,A : Union[str, Any]=0.1 ,A : Union[str, Any]=5_12 ,A : Any=16 ,A : Union[str, Any]=2 ,A : List[Any]=0.02 ,A : List[Any]=6 ,A : Optional[int]=6 ,A : List[Any]=3 ,A : Union[str, Any]=4 ,A : Tuple=None ,A : List[str]=10_00 ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = patch_size __A = text_seq_length __A = is_training __A = use_input_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = coordinate_size __A = shape_size __A = num_labels __A = num_choices __A = scope __A = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __A = text_seq_length __A = (image_size // patch_size) ** 2 + 1 __A = self.text_seq_length + self.image_seq_length def UpperCamelCase_ ( self : int ): __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size ) __A = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __A = bbox[i, j, 3] __A = bbox[i, j, 1] __A = t if bbox[i, j, 2] < bbox[i, j, 0]: __A = bbox[i, j, 2] __A = bbox[i, j, 0] __A = t __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.text_seq_length] ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels ) __A = LayoutLMvaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase_ ( self : Optional[int] ,A : List[str] ,A : Any ,A : Dict ,A : List[Any] ,A : Optional[int] ,A : Any ,A : Dict ,A : List[Any] ): __A = LayoutLMvaModel(config=A ) model.to(A ) model.eval() # text + image __A = model(A ,pixel_values=A ) __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) # text only __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __A = model(pixel_values=A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Optional[int] ,A : Dict ,A : List[str] ,A : Any ,A : List[Any] ,A : Any ,A : Any ,A : Dict ,A : Optional[Any] ): __A = self.num_labels __A = LayoutLMvaForSequenceClassification(A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : str ,A : Optional[Any] ,A : Dict ,A : str ,A : Tuple ,A : Union[str, Any] ,A : List[Any] ,A : Any ,A : Union[str, Any] ): __A = self.num_labels __A = LayoutLMvaForTokenClassification(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : int ,A : str ,A : List[str] ,A : int ,A : List[str] ,A : List[str] ,A : Dict ): __A = LayoutLMvaForQuestionAnswering(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,start_positions=A ,end_positions=A ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = config_and_inputs __A = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) snake_case_ = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def UpperCamelCase_ ( self : str ,A : Any ,A : Any ,A : Tuple ,A : List[Any] ,A : Optional[Any] ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def UpperCamelCase_ ( self : Union[str, Any] ): __A = LayoutLMvaModelTester(self ) __A = ConfigTester(self ,config_class=A ,hidden_size=37 ) def UpperCamelCase_ ( self : List[Any] ,A : int ,A : List[str] ,A : Dict=False ): __A = copy.deepcopy(A ) if model_class in get_values(A ): __A = { k: v.unsqueeze(1 ).expand(-1 ,self.model_tester.num_choices ,-1 ).contiguous() if isinstance(A ,torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A ): __A = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in get_values(A ): __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=A ,) return inputs_dict def UpperCamelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __A = type self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = LayoutLMvaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> Dict: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : Any ): return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : Dict ): __A = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).pixel_values.to(A ) __A = torch.tensor([[1, 2]] ) __A = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __A = model( input_ids=input_ids.to(A ) ,bbox=bbox.to(A ) ,pixel_values=pixel_values.to(A ) ,) # verify the logits __A = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape ,A ) __A = torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,A ,atol=1E-4 ) )
55
1
def UpperCAmelCase ( a_ = "The quick brown fox jumps over the lazy dog" , ) -> bool: """simple docstring""" __A = set() # Replace all the whitespace in our sentence __A = input_str.replace(" " , "" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(a_ ) == 2_6 def UpperCAmelCase ( a_ = "The quick brown fox jumps over the lazy dog" , ) -> bool: """simple docstring""" __A = [False] * 2_6 for char in input_str: if char.islower(): __A = True elif char.isupper(): __A = True return all(a_ ) def UpperCAmelCase ( a_ = "The quick brown fox jumps over the lazy dog" , ) -> bool: """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def UpperCAmelCase ( ) -> None: """simple docstring""" from timeit import timeit __A = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit("is_pangram()" , setup=a_ ) ) print(timeit("is_pangram_faster()" , setup=a_ ) ) print(timeit("is_pangram_fastest()" , setup=a_ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
55
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : List[str] ,A : str=7 ,A : Optional[Any]=3 ,A : Any=18 ,A : int=30 ,A : int=4_00 ,A : List[str]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=True ,A : Tuple=None ,A : Tuple=True ,A : Union[str, Any]=[0.5, 0.5, 0.5] ,A : str=[0.5, 0.5, 0.5] ,A : List[Any]=False ,): __A = size if size is not None else {"height": 20, "width": 20} __A = crop_size if crop_size is not None else {"height": 18, "width": 18} __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size __A = do_center_crop __A = crop_size __A = do_normalize __A = image_mean __A = image_std __A = do_reduce_labels def UpperCamelCase_ ( self : List[str] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCAmelCase ( ) -> int: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(dataset[0]["file"] ) __A = Image.open(dataset[1]["file"] ) return image, map def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(ds[0]["file"] ) __A = Image.open(ds[1]["file"] ) __A = Image.open(ds[2]["file"] ) __A = Image.open(ds[3]["file"] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = BeitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : List[Any] ): __A = BeitImageProcessingTester(self ) @property def UpperCamelCase_ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : int ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size" ) ) self.assertTrue(hasattr(A ,"do_center_crop" ) ) self.assertTrue(hasattr(A ,"center_crop" ) ) self.assertTrue(hasattr(A ,"do_normalize" ) ) self.assertTrue(hasattr(A ,"image_mean" ) ) self.assertTrue(hasattr(A ,"image_std" ) ) def UpperCamelCase_ ( self : List[str] ): __A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"height": 20, "width": 20} ) self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} ) self.assertEqual(image_processor.do_reduce_labels ,A ) __A = self.image_processing_class.from_dict( self.image_processor_dict ,size=42 ,crop_size=84 ,reduce_labels=A ) self.assertEqual(image_processor.size ,{"height": 42, "width": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) self.assertEqual(image_processor.do_reduce_labels ,A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Optional[int] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : List[str] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : str ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) __A = [] for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __A = image_processing(image_inputs[0] ,maps[0] ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test not batched input (PIL images) __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched input (PIL images) __A , __A = prepare_semantic_batch_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 2, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 1_50 ) __A = True __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 )
55
1
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" __A , __A = image.size __A , __A = (x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32 __A = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) __A = np.array(a_ ).astype(np.floataa ) / 255.0 __A = image[None].transpose(0 , 3 , 1 , 2 ) __A = torch.from_numpy(a_ ) return 2.0 * image - 1.0 class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Tuple ,A : VQModel ,A : UNetaDModel ,A : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] ,): super().__init__() self.register_modules(vqvae=A ,unet=A ,scheduler=A ) @torch.no_grad() def __call__( self : Optional[Any] ,A : Union[torch.Tensor, PIL.Image.Image] = None ,A : Optional[int] = 1 ,A : Optional[int] = 1_00 ,A : Optional[float] = 0.0 ,A : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,A : Optional[str] = "pil" ,A : bool = True ,): if isinstance(A ,PIL.Image.Image ): __A = 1 elif isinstance(A ,torch.Tensor ): __A = image.shape[0] else: raise ValueError(f'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(A )}''' ) if isinstance(A ,PIL.Image.Image ): __A = preprocess(A ) __A , __A = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image __A = (batch_size, self.unet.config.in_channels // 2, height, width) __A = next(self.unet.parameters() ).dtype __A = randn_tensor(A ,generator=A ,device=self.device ,dtype=A ) __A = image.to(device=self.device ,dtype=A ) # set timesteps and move to the correct device self.scheduler.set_timesteps(A ,device=self.device ) __A = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler __A = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __A = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __A = {} if accepts_eta: __A = eta for t in self.progress_bar(A ): # concat latents and low resolution image in the channel dimension. __A = torch.cat([latents, image] ,dim=1 ) __A = self.scheduler.scale_model_input(A ,A ) # predict the noise residual __A = self.unet(A ,A ).sample # compute the previous noisy sample x_t -> x_t-1 __A = self.scheduler.step(A ,A ,A ,**A ).prev_sample # decode the image latents with the VQVAE __A = self.vqvae.decode(A ).sample __A = torch.clamp(A ,-1.0 ,1.0 ) __A = image / 2 + 0.5 __A = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": __A = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A )
55
from numpy import exp, pi, sqrt def UpperCAmelCase ( a_ , a_ = 0.0 , a_ = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__) def UpperCAmelCase ( a_ , a_=False , a_=False ) -> str: """simple docstring""" __A = "backbone." if is_semantic else "" __A = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''{prefix}blocks.{i}.norm1.weight''', F'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm1.bias''', F'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.weight''', F'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.bias''', F'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.weight''', F'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.bias''', F'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.weight''', F'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.bias''', F'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.weight''', F'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.bias''', F'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (F'''{prefix}cls_token''', "beit.embeddings.cls_token"), (F'''{prefix}patch_embed.proj.weight''', "beit.embeddings.patch_embeddings.projection.weight"), (F'''{prefix}patch_embed.proj.bias''', "beit.embeddings.patch_embeddings.projection.bias"), (F'''{prefix}pos_embed''', "beit.embeddings.position_embeddings"), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("mask_token", "beit.embeddings.mask_token"), ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) else: # layernorm + classification head rename_keys.extend( [ ("fc_norm.weight", "beit.pooler.layernorm.weight"), ("fc_norm.bias", "beit.pooler.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def UpperCAmelCase ( a_ , a_ , a_=False , a_=False ) -> List[str]: """simple docstring""" for i in range(config.num_hidden_layers ): __A = "backbone." if is_semantic else "" # queries, keys and values __A = state_dict.pop(F'''{prefix}blocks.{i}.attn.qkv.weight''' ) __A = state_dict.pop(F'''{prefix}blocks.{i}.attn.q_bias''' ) __A = state_dict.pop(F'''{prefix}blocks.{i}.attn.v_bias''' ) __A = in_proj_weight[ : config.hidden_size, : ] __A = q_bias __A = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __A = in_proj_weight[ -config.hidden_size :, : ] __A = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained __A = state_dict.pop(F'''{prefix}blocks.{i}.gamma_1''' ) __A = state_dict.pop(F'''{prefix}blocks.{i}.gamma_2''' ) __A = gamma_a __A = gamma_a def UpperCAmelCase ( a_ , a_ , a_ ) -> Tuple: """simple docstring""" __A = dct.pop(a_ ) __A = val def UpperCAmelCase ( ) -> int: """simple docstring""" __A = "http://images.cocodataset.org/val2017/000000039769.jpg" __A = Image.open(requests.get(a_ , stream=a_ ).raw ) return im @torch.no_grad() def UpperCAmelCase ( a_ , a_ , a_=False ) -> List[Any]: """simple docstring""" __A = False if "rvlcdip" in checkpoint_url else True __A = BeitConfig(use_absolute_position_embeddings=a_ , use_mask_token=a_ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: __A = 1_0_2_4 __A = 4_0_9_6 __A = 2_4 __A = 1_6 # labels if "rvlcdip" in checkpoint_url: __A = 1_6 __A = "huggingface/label-files" __A = "rvlcdip-id2label.json" __A = json.load(open(hf_hub_download(a_ , a_ , repo_type="dataset" ) , "r" ) ) __A = {int(a_ ): v for k, v in idalabel.items()} __A = idalabel __A = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys __A = torch.hub.load_state_dict_from_url(a_ , map_location="cpu" )["model"] __A = create_rename_keys(a_ , has_lm_head=a_ ) for src, dest in rename_keys: rename_key(a_ , a_ , a_ ) read_in_q_k_v(a_ , a_ , has_lm_head=a_ ) # load HuggingFace model __A = BeitForMaskedImageModeling(a_ ) if has_lm_head else BeitForImageClassification(a_ ) model.eval() model.load_state_dict(a_ ) # Check outputs on an image __A = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=a_ ) __A = prepare_img() __A = image_processor(images=a_ , return_tensors="pt" ) __A = encoding["pixel_values"] __A = model(a_ ) __A = outputs.logits # verify logits __A = [1, 1_6] if "rvlcdip" in checkpoint_url else [1, 1_9_6, 8_1_9_2] assert logits.shape == torch.Size(a_ ), "Shape of logits not as expected" Path(a_ ).mkdir(exist_ok=a_ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(a_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(a_ ) if push_to_hub: if has_lm_head: __A = "dit-base" if "base" in checkpoint_url else "dit-large" else: __A = "dit-base-finetuned-rvlcdip" if "dit-b" in checkpoint_url else "dit-large-finetuned-rvlcdip" image_processor.push_to_hub( repo_path_or_name=Path(a_ , a_ ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=a_ , ) model.push_to_hub( repo_path_or_name=Path(a_ , a_ ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=a_ , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :int = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth', type=str, help='URL to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', ) SCREAMING_SNAKE_CASE :Optional[Any] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
55
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCamelCase_ ( self : Optional[int] ): __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __A = "xvjiarui/stable-diffusion-2-inpainting" __A , __A = FlaxStableDiffusionInpaintPipeline.from_pretrained(A ,safety_checker=A ) __A = "Face of a yellow cat, high resolution, sitting on a park bench" __A = jax.random.PRNGKey(0 ) __A = 50 __A = jax.device_count() __A = num_samples * [prompt] __A = num_samples * [init_image] __A = num_samples * [mask_image] __A , __A , __A = pipeline.prepare_inputs(A ,A ,A ) # shard inputs and rng __A = replicate(A ) __A = jax.random.split(A ,jax.device_count() ) __A = shard(A ) __A = shard(A ) __A = shard(A ) __A = pipeline( A ,A ,A ,A ,A ,A ,jit=A ) __A = output.images.reshape(A ,5_12 ,5_12 ,3 ) __A = images[0, 2_53:2_56, 2_53:2_56, -1] __A = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __A = jnp.array( [0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
55
1
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self : Any ): for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(A ): __A = AutoConfig.from_pretrained(A ) self.assertIsNotNone(A ) self.assertIsInstance(A ,A ) __A = FlaxAutoModel.from_pretrained(A ) self.assertIsNotNone(A ) self.assertIsInstance(A ,A ) @slow def UpperCamelCase_ ( self : Tuple ): for model_name in ["roberta-base", "roberta-large"]: with self.subTest(A ): __A = AutoConfig.from_pretrained(A ) self.assertIsNotNone(A ) self.assertIsInstance(A ,A ) __A = FlaxAutoModel.from_pretrained(A ) self.assertIsNotNone(A ) self.assertIsInstance(A ,A ) @slow def UpperCamelCase_ ( self : Any ): for model_name in ["bert-base-cased", "bert-large-uncased"]: __A = AutoTokenizer.from_pretrained(A ) __A = FlaxBertModel.from_pretrained(A ) __A = tokenizer("Do you support jax jitted function?" ,return_tensors=TensorType.JAX ) @jax.jit def eval(**A : Optional[int] ): return model(**A ) eval(**A ).block_until_ready() @slow def UpperCamelCase_ ( self : Any ): for model_name in ["roberta-base", "roberta-large"]: __A = AutoTokenizer.from_pretrained(A ) __A = FlaxRobertaModel.from_pretrained(A ) __A = tokenizer("Do you support jax jitted function?" ,return_tensors=TensorType.JAX ) @jax.jit def eval(**A : Optional[int] ): return model(**A ) eval(**A ).block_until_ready() def UpperCamelCase_ ( self : Optional[int] ): with self.assertRaisesRegex( A ,"bert-base is not a local folder and is not a valid model identifier" ): __A = FlaxAutoModel.from_pretrained("bert-base" ) def UpperCamelCase_ ( self : List[str] ): with self.assertRaisesRegex( A ,R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): __A = FlaxAutoModel.from_pretrained(A ,revision="aaaaaa" ) def UpperCamelCase_ ( self : List[str] ): with self.assertRaisesRegex( A ,"hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack" ,): __A = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def UpperCamelCase_ ( self : Any ): with self.assertRaisesRegex(A ,"Use `from_pt=True` to load this model" ): __A = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
55
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : Optional[int] ,A : Optional[int]=7 ,A : Optional[Any]=3 ,A : List[str]=18 ,A : Any=30 ,A : Tuple=4_00 ,A : Union[str, Any]=True ,A : Optional[Any]=32 ,A : Union[str, Any]=True ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size_divisor __A = do_rescale def UpperCamelCase_ ( self : Union[str, Any] ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = GLPNImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : int ): __A = GLPNImageProcessingTester(self ) @property def UpperCamelCase_ ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Any ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size_divisor" ) ) self.assertTrue(hasattr(A ,"resample" ) ) self.assertTrue(hasattr(A ,"do_rescale" ) ) def UpperCamelCase_ ( self : str ): pass def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : Optional[Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
55
1
def UpperCAmelCase ( a_ ) -> str: """simple docstring""" __A = 0 __A = len(a_ ) for i in range(n - 1 ): for j in range(i + 1 , a_ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" if len(a_ ) <= 1: return arr, 0 __A = len(a_ ) // 2 __A = arr[0:mid] __A = arr[mid:] __A , __A = count_inversions_recursive(a_ ) __A , __A = count_inversions_recursive(a_ ) __A , __A = _count_cross_inversions(a_ , a_ ) __A = inversion_p + inversions_q + cross_inversions return c, num_inversions def UpperCAmelCase ( a_ , a_ ) -> Union[str, Any]: """simple docstring""" __A = [] __A = __A = __A = 0 while i < len(a_ ) and j < len(a_ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(a_ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(a_ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" __A = [1_0, 2, 1, 5, 5, 2, 1_1] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __A = count_inversions_bf(a_ ) __A , __A = count_inversions_recursive(a_ ) assert num_inversions_bf == num_inversions_recursive == 8 print("number of inversions = " , a_ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __A = count_inversions_bf(a_ ) __A , __A = count_inversions_recursive(a_ ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " , a_ ) # an empty list should also have zero inversions __A = [] __A = count_inversions_bf(a_ ) __A , __A = count_inversions_recursive(a_ ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " , a_ ) if __name__ == "__main__": main()
55
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case_ = Features({"image": Image()} ) snake_case_ = Features({"labels": ClassLabel} ) snake_case_ = "image" snake_case_ = "labels" def UpperCamelCase_ ( self : Optional[Any] ,A : Tuple ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] ,A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) __A = copy.deepcopy(self ) __A = self.label_schema.copy() __A = features[self.label_column] __A = label_schema return task_template @property def UpperCamelCase_ ( self : Any ): return { self.image_column: "image", self.label_column: "labels", }
55
1
def UpperCAmelCase ( a_ = 1_0_0_0 ) -> int: """simple docstring""" __A , __A = 1, 1 __A = [] for i in range(1 , n + 1 ): __A = prev_numerator + 2 * prev_denominator __A = prev_numerator + prev_denominator if len(str(a_ ) ) > len(str(a_ ) ): result.append(a_ ) __A = numerator __A = denominator return len(a_ ) if __name__ == "__main__": print(f'''{solution() = }''')
55
from math import sqrt def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' must been an int and positive" __A = True # 0 and 1 are none primes. if number <= 1: __A = False for divisor in range(2 , int(round(sqrt(a_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __A = False break # precondition assert isinstance(a_ , a_ ), "'status' must been from type bool" return status def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __A = list(range(2 , n + 1 ) ) __A = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(a_ ) ): for j in range(i + 1 , len(a_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __A = 0 # filters actual prime numbers. __A = [x for x in begin_list if x != 0] # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" __A = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(a_ ): ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and number >= 0, "'number' must been an int and >= 0" __A = [] # this list will be returns of the function. # potential prime number factors. __A = 2 __A = number if number == 0 or number == 1: ans.append(a_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(a_ ): while quotient != 1: if is_prime(a_ ) and (quotient % factor == 0): ans.append(a_ ) quotient /= factor else: factor += 1 else: ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = max(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = min(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> int: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , a_ ), "compare bust been from type bool" return number % 2 == 0 def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , a_ ), "compare bust been from type bool" return number % 2 != 0 def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and (number > 2) and is_even(a_ ) ), "'number' must been an int, even and > 2" __A = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __A = get_prime_numbers(a_ ) __A = len(a_ ) # run variable for while-loops. __A = 0 __A = None # exit variable. for break up the loops __A = True while i < len_pn and loop: __A = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __A = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(a_ , a_ ) and (len(a_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __A = 0 while numbera != 0: __A = numbera % numbera __A = numbera __A = rest # precondition assert isinstance(a_ , a_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def UpperCAmelCase ( a_ , a_ ) -> List[str]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __A = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __A = prime_factorization(a_ ) __A = prime_factorization(a_ ) elif numbera == 1 or numbera == 1: __A = [] __A = [] __A = max(a_ , a_ ) __A = 0 __A = 0 __A = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __A = prime_fac_a.count(a_ ) __A = prime_fac_a.count(a_ ) for _ in range(max(a_ , a_ ) ): ans *= n else: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # precondition assert isinstance(a_ , a_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'number' must been a positive int" __A = 0 __A = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(a_ ): ans += 1 # precondition assert isinstance(a_ , a_ ) and is_prime( a_ ), "'ans' must been a prime number and from type int" return ans def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" assert ( is_prime(a_ ) and is_prime(a_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __A = p_number_a + 1 # jump to the next number __A = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(a_ ): number += 1 while number < p_number_a: ans.append(a_ ) number += 1 # fetch the next prime number. while not is_prime(a_ ): number += 1 # precondition assert ( isinstance(a_ , a_ ) and ans[0] != p_number_a and ans[len(a_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 1), "'n' must been int and >= 1" __A = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(a_ ) # precondition assert ans[0] == 1 and ans[len(a_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" assert isinstance(a_ , a_ ) and ( number > 1 ), "'number' must been an int and >= 1" __A = get_divisors(a_ ) # precondition assert ( isinstance(a_ , a_ ) and (divisors[0] == 1) and (divisors[len(a_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def UpperCAmelCase ( a_ , a_ ) -> str: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __A = gcd(abs(a_ ) , abs(a_ ) ) # precondition assert ( isinstance(a_ , a_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been a int and >= 0" __A = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been an int and >= 0" __A = 0 __A = 1 __A = 1 # this will be return for _ in range(n - 1 ): __A = ans ans += fiba __A = tmp return ans
55
1
SCREAMING_SNAKE_CASE :Union[str, Any] = [0, 2, 4, 6, 8] SCREAMING_SNAKE_CASE :Tuple = [1, 3, 5, 7, 9] def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int: """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 1_0 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __A = 0 for digit in range(1_0 ): __A = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 1_0 , a_ , a_ ) return result __A = 0 for digita in range(1_0 ): __A = digita if (remainder + digita) % 2 == 0: __A = ODD_DIGITS else: __A = EVEN_DIGITS for digita in other_parity_digits: __A = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 1_0 , a_ , a_ , ) return result def UpperCAmelCase ( a_ = 9 ) -> int: """simple docstring""" __A = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(a_ , 0 , [0] * length , a_ ) return result if __name__ == "__main__": print(f'''{solution() = }''')
55
import os def UpperCAmelCase ( ) -> Any: """simple docstring""" __A = os.path.dirname(os.path.realpath(a_ ) ) __A = os.path.join(a_ , "triangle.txt" ) with open(a_ ) as f: __A = f.readlines() __A = [] for line in triangle: __A = [] for number in line.strip().split(" " ): numbers_from_line.append(int(a_ ) ) a.append(a_ ) for i in range(1 , len(a_ ) ): for j in range(len(a[i] ) ): __A = a[i - 1][j] if j != len(a[i - 1] ) else 0 __A = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(a_ , a_ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
55
1
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" if ( (cp >= 0x4_e_0_0 and cp <= 0x9_f_f_f) or (cp >= 0x3_4_0_0 and cp <= 0x4_d_b_f) # or (cp >= 0x2_0_0_0_0 and cp <= 0x2_a_6_d_f) # or (cp >= 0x2_a_7_0_0 and cp <= 0x2_b_7_3_f) # or (cp >= 0x2_b_7_4_0 and cp <= 0x2_b_8_1_f) # or (cp >= 0x2_b_8_2_0 and cp <= 0x2_c_e_a_f) # or (cp >= 0xf_9_0_0 and cp <= 0xf_a_f_f) or (cp >= 0x2_f_8_0_0 and cp <= 0x2_f_a_1_f) # ): # return True return False def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" for char in word: __A = ord(a_ ) if not _is_chinese_char(a_ ): return 0 return 1 def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" __A = set() for token in tokens: __A = len(a_ ) > 1 and is_chinese(a_ ) if chinese_word: word_set.add(a_ ) __A = list(a_ ) return word_list def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]: """simple docstring""" if not chinese_word_set: return bert_tokens __A = max([len(a_ ) for w in chinese_word_set] ) __A = bert_tokens __A , __A = 0, len(a_ ) while start < end: __A = True if is_chinese(bert_word[start] ): __A = min(end - start , a_ ) for i in range(a_ , 1 , -1 ): __A = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): __A = "##" + bert_word[j] __A = start + i __A = False break if single_word: start += 1 return bert_word def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[int]: """simple docstring""" __A = [] for i in range(0 , len(a_ ) , 1_0_0 ): __A = ltp_tokenizer.pipeline(lines[i : i + 1_0_0] , tasks=["cws"] ).cws __A = [get_chinese_word(a_ ) for r in res] ltp_res.extend(a_ ) assert len(a_ ) == len(a_ ) __A = [] for i in range(0 , len(a_ ) , 1_0_0 ): __A = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=a_ , truncation=a_ , max_length=5_1_2 ) bert_res.extend(res["input_ids"] ) assert len(a_ ) == len(a_ ) __A = [] for input_ids, chinese_word in zip(a_ , a_ ): __A = [] for id in input_ids: __A = bert_tokenizer._convert_id_to_token(a_ ) input_tokens.append(a_ ) __A = add_sub_symbol(a_ , a_ ) __A = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(a_ ): if token[:2] == "##": __A = token[2:] # save chinese tokens' pos if len(a_ ) == 1 and _is_chinese_char(ord(a_ ) ): ref_id.append(a_ ) ref_ids.append(a_ ) assert len(a_ ) == len(a_ ) return ref_ids def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" with open(args.file_name , "r" , encoding="utf-8" ) as f: __A = f.readlines() __A = [line.strip() for line in data if len(a_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __A = LTP(args.ltp ) # faster in GPU device __A = BertTokenizer.from_pretrained(args.bert ) __A = prepare_ref(a_ , a_ , a_ ) with open(args.save_path , "w" , encoding="utf-8" ) as f: __A = [json.dumps(a_ ) + "\n" for ref in ref_ids] f.writelines(a_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :List[Any] = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', required=False, type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', required=False, type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path', ) parser.add_argument( '--bert', required=False, type=str, default='./resources/robert', help='resources for Bert tokenizer', ) parser.add_argument( '--save_path', required=False, type=str, default='./resources/ref.txt', help='path to save res', ) SCREAMING_SNAKE_CASE :Optional[int] = parser.parse_args() main(args)
55
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels SCREAMING_SNAKE_CASE :Union[str, Any] = object() # For specifying empty leaf dict `{}` SCREAMING_SNAKE_CASE :List[str] = object() def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" __A = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(a_ ) - len(a_ ) + 1 ): __A = [x.match(a_ ) for x, y in zip(a_ , ks[i:] )] if matches and all(a_ ): return True return False def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" def replace(a_ , a_ ): for rule, replacement in rules: if _match(a_ , a_ ): return replacement return val return replace def UpperCAmelCase ( ) -> int: """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , a_ )), (("transformer", "wte", "embedding"), P("mp" , a_ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a_ , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , a_ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(a_ , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , a_ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" __A = _get_partition_rules() __A = _replacement_rules(a_ ) __A = {k: _unmatched for k in flatten_dict(a_ )} __A = {k: replace(a_ , a_ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(a_ ) )
55
1
from collections import namedtuple import requests from lxml import html # type: ignore SCREAMING_SNAKE_CASE :int = namedtuple('covid_data', 'cases deaths recovered') def UpperCAmelCase ( a_ = "https://www.worldometers.info/coronavirus/" ) -> covid_data: """simple docstring""" __A = "//div[@class = \"maincounter-number\"]/span/text()" return covid_data(*html.fromstring(requests.get(a_ ).content ).xpath(a_ ) ) SCREAMING_SNAKE_CASE :List[str] = 'Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}' print(fmt.format(*covid_stats()))
55
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] ,A : Union[str, Any] ,A : List[Any]=13 ,A : Optional[Any]=30 ,A : Union[str, Any]=2 ,A : Union[str, Any]=3 ,A : Any=True ,A : Dict=True ,A : str=32 ,A : Tuple=2 ,A : Optional[int]=4 ,A : Tuple=37 ,A : List[Any]="gelu" ,A : Dict=0.1 ,A : Optional[int]=0.1 ,A : List[Any]=10 ,A : Optional[Any]=0.02 ,A : Dict=3 ,A : Dict=None ,A : List[Any]=2 ,): __A = parent __A = batch_size __A = image_size __A = patch_size __A = num_channels __A = is_training __A = use_labels __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = type_sequence_label_size __A = initializer_range __A = scope __A = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __A = (image_size // patch_size) ** 2 __A = num_patches + 2 def UpperCamelCase_ ( self : List[Any] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Optional[int] ): return DeiTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,A : Optional[int] ,A : Union[str, Any] ): __A = TFDeiTModel(config=A ) __A = model(A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : List[Any] ,A : List[Any] ,A : Optional[Any] ,A : Dict ): __A = TFDeiTForMaskedImageModeling(config=A ) __A = model(A ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __A = 1 __A = TFDeiTForMaskedImageModeling(A ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(A ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase_ ( self : Optional[Any] ,A : Union[str, Any] ,A : Dict ,A : Union[str, Any] ): __A = self.type_sequence_label_size __A = TFDeiTForImageClassification(A ) __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __A = 1 __A = TFDeiTForImageClassification(A ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) snake_case_ = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : str ): __A = TFDeiTModelTester(self ) __A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 ) def UpperCamelCase_ ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass def UpperCamelCase_ ( self : List[Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) __A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A ,tf.keras.layers.Dense ) ) def UpperCamelCase_ ( self : Union[str, Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCamelCase_ ( self : Optional[int] ,A : Union[str, Any] ,A : List[str] ,A : Optional[Any]=False ): __A = super()._prepare_for_class(A ,A ,return_labels=A ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def UpperCamelCase_ ( self : Any ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = TFDeiTModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> str: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : int ): return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[int] ): __A = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="tf" ) # forward pass __A = model(**A ) # verify the logits __A = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape ,A ) __A = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
1
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) SCREAMING_SNAKE_CASE :List[Any] = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n' class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod def UpperCamelCase_ ( A : ArgumentParser ): __A = parser.add_parser( "convert" ,help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints." ,) train_parser.add_argument("--model_type" ,type=A ,required=A ,help="Model's type." ) train_parser.add_argument( "--tf_checkpoint" ,type=A ,required=A ,help="TensorFlow checkpoint path or folder." ) train_parser.add_argument( "--pytorch_dump_output" ,type=A ,required=A ,help="Path to the PyTorch saved model output." ) train_parser.add_argument("--config" ,type=A ,default="" ,help="Configuration file path or folder." ) train_parser.add_argument( "--finetuning_task_name" ,type=A ,default=A ,help="Optional fine-tuning task name if the TF model was a finetuned model." ,) train_parser.set_defaults(func=A ) def __init__( self : Optional[int] ,A : str ,A : str ,A : str ,A : str ,A : str ,*A : Any ,): __A = logging.get_logger("transformers-cli/converting" ) self._logger.info(f'''Loading model {model_type}''' ) __A = model_type __A = tf_checkpoint __A = pytorch_dump_output __A = config __A = finetuning_task_name def UpperCamelCase_ ( self : Tuple ): if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(A ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) if "ckpt" in self._tf_checkpoint.lower(): __A = self._tf_checkpoint __A = "" else: __A = self._tf_checkpoint __A = "" convert_transfo_xl_checkpoint_to_pytorch( A ,self._config ,self._pytorch_dump_output ,A ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint ,self._config ,self._pytorch_dump_output ,self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint ,self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint ,self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) else: raise ValueError( "--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]" )
55
SCREAMING_SNAKE_CASE :List[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE :Union[str, Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE :int = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" assert len(str(a_ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 1_2, "month should be between 1 to 12" assert 1 <= day <= 3_1, "day should be between 1 to 31" # Doomsday algorithm: __A = year // 1_0_0 __A = (5 * (century % 4) + 2) % 7 __A = year % 1_0_0 __A = centurian % 1_2 __A = ( (centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __A = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0) else DOOMSDAY_LEAP[month - 1] ) __A = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
55
1
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :int = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] SCREAMING_SNAKE_CASE :List[str] = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = torch.load(a_ , map_location="cpu" ) return sd def UpperCAmelCase ( a_ , a_ , a_=rename_keys_prefix ) -> Dict: """simple docstring""" __A = OrderedDict() __A = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __A = key for name_pair in rename_keys_prefix: __A = new_key.replace(name_pair[0] , name_pair[1] ) __A = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __A = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def UpperCAmelCase ( a_ , a_ ) -> Optional[int]: """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: __A = "pretraining" if "vcr" in checkpoint_path: __A = {"visual_embedding_dim": 5_1_2} elif "vqa_advanced" in checkpoint_path: __A = {"visual_embedding_dim": 2_0_4_8} elif "vqa" in checkpoint_path: __A = {"visual_embedding_dim": 2_0_4_8} elif "nlvr" in checkpoint_path: __A = {"visual_embedding_dim": 1_0_2_4} else: raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: __A = {"visual_embedding_dim": 5_1_2} __A = "multichoice" elif "vqa_advanced" in checkpoint_path: __A = {"visual_embedding_dim": 2_0_4_8} __A = "vqa_advanced" elif "vqa" in checkpoint_path: __A = {"visual_embedding_dim": 2_0_4_8, "num_labels": 3_1_2_9} __A = "vqa" elif "nlvr" in checkpoint_path: __A = { "visual_embedding_dim": 1_0_2_4, "num_labels": 2, } __A = "nlvr" __A = VisualBertConfig(**a_ ) # Load State Dict __A = load_state_dict(a_ ) __A = get_new_dict(a_ , a_ ) if model_type == "pretraining": __A = VisualBertForPreTraining(a_ ) elif model_type == "vqa": __A = VisualBertForQuestionAnswering(a_ ) elif model_type == "nlvr": __A = VisualBertForVisualReasoning(a_ ) elif model_type == "multichoice": __A = VisualBertForMultipleChoice(a_ ) model.load_state_dict(a_ ) # Save Checkpoints Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') SCREAMING_SNAKE_CASE :Optional[int] = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
55
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def UpperCAmelCase ( a_ = "isbn/0140328726" ) -> dict: """simple docstring""" __A = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes if new_olid.count("/" ) != 1: __A = F'''{olid} is not a valid Open Library olid''' raise ValueError(a_ ) return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json() def UpperCAmelCase ( a_ ) -> dict: """simple docstring""" __A = { "title": "Title", "publish_date": "Publish date", "authors": "Authors", "number_of_pages": "Number of pages:", "first_sentence": "First sentence", "isbn_10": "ISBN (10)", "isbn_13": "ISBN (13)", } __A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __A = [ get_openlibrary_data(author["key"] )["name"] for author in data["Authors"] ] __A = data["First sentence"]["value"] for key, value in data.items(): if isinstance(a_ , a_ ): __A = ", ".join(a_ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: SCREAMING_SNAKE_CASE :int = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: SCREAMING_SNAKE_CASE :Any = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
55
1
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = LayoutLMTokenizer snake_case_ = LayoutLMTokenizerFast snake_case_ = True snake_case_ = True def UpperCamelCase_ ( self : Any ): super().setUp() __A = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase_ ( self : Tuple ,**A : int ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**A ) def UpperCamelCase_ ( self : Optional[Any] ,A : Any ): __A = "UNwant\u00E9d,running" __A = "unwanted, running" return input_text, output_text def UpperCamelCase_ ( self : str ): __A = self.tokenizer_class(self.vocab_file ) __A = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(A ,["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[7, 4, 5, 10, 8, 9] ) def UpperCamelCase_ ( self : int ): pass
55
import requests SCREAMING_SNAKE_CASE :List[str] = 'YOUR API KEY' def UpperCAmelCase ( a_ , a_ = giphy_api_key ) -> list: """simple docstring""" __A = "+".join(query.split() ) __A = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' __A = requests.get(a_ ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
55
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class UpperCAmelCase : '''simple docstring''' def __init__( self : int ,A : List[str] ,A : List[Any]=13 ,A : str=2 ,A : int=24 ,A : Any=16 ,A : Tuple=True ,A : Optional[int]=True ,A : int=32 ,A : int=5 ,A : Optional[Any]=4 ,A : str=37 ,A : Union[str, Any]="gelu" ,A : Union[str, Any]=0.1 ,A : List[str]=0.1 ,A : Tuple=10 ,A : str=0.02 ,A : Tuple=None ,A : List[str]=2 ,A : str=2 ,): __A = parent __A = batch_size __A = patch_size __A = max_length __A = num_mel_bins __A = is_training __A = use_labels __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = type_sequence_label_size __A = initializer_range __A = scope __A = frequency_stride __A = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __A = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 __A = (self.max_length - self.patch_size) // self.time_stride + 1 __A = frequency_out_dimension * time_out_dimension __A = num_patches + 2 def UpperCamelCase_ ( self : Optional[Any] ): __A = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = self.get_config() return config, input_values, labels def UpperCamelCase_ ( self : str ): return ASTConfig( patch_size=self.patch_size ,max_length=self.max_length ,num_mel_bins=self.num_mel_bins ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,frequency_stride=self.frequency_stride ,time_stride=self.time_stride ,) def UpperCamelCase_ ( self : Tuple ,A : Dict ,A : str ,A : List[str] ): __A = ASTModel(config=A ) model.to(A ) model.eval() __A = model(A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : int ): __A = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ) = config_and_inputs __A = {"input_values": input_values} return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) snake_case_ = ( {"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : str ,A : Union[str, Any] ,A : Optional[Any] ,A : List[str] ,A : List[str] ,A : List[Any] ): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def UpperCamelCase_ ( self : Optional[int] ): __A = ASTModelTester(self ) __A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 ) def UpperCamelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="AST does not use inputs_embeds" ) def UpperCamelCase_ ( self : int ): pass def UpperCamelCase_ ( self : Optional[int] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) __A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A ,nn.Linear ) ) def UpperCamelCase_ ( self : Optional[int] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["input_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : Tuple ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) @slow def UpperCamelCase_ ( self : str ): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = ASTModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> int: """simple docstring""" __A = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" ) __A , __A = torchaudio.load(a_ ) return audio, sampling_rate @require_torch @require_torchaudio class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : int ): return ( ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ) if is_torchaudio_available() else None ) @slow def UpperCamelCase_ ( self : Optional[Any] ): __A = self.default_feature_extractor __A = ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ).to(A ) __A = self.default_feature_extractor __A , __A = prepare_audio() __A = audio.squeeze().numpy() __A = feature_extractor(A ,sampling_rate=A ,return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): __A = model(**A ) # verify the logits __A = torch.Size((1, 5_27) ) self.assertEqual(outputs.logits.shape ,A ) __A = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
import itertools import math def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" __A = 2 while True: if is_prime(a_ ): yield num num += 1 def UpperCAmelCase ( a_ = 1_0_0_0_1 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , a_ ) ) if __name__ == "__main__": print(f'''{solution() = }''')
55
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer SCREAMING_SNAKE_CASE :str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Dict = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE :Optional[Any] = { 'vocab_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/vocab.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/vocab.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/vocab.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json' ), }, 'merges_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/merges.txt', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/merges.txt', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/merges.txt', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt' ), }, 'tokenizer_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/tokenizer.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/tokenizer.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json', 'roberta-base-openai-detector': ( 'https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json' ), 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json' ), }, } SCREAMING_SNAKE_CASE :List[Any] = { 'roberta-base': 512, 'roberta-large': 512, 'roberta-large-mnli': 512, 'distilroberta-base': 512, 'roberta-base-openai-detector': 512, 'roberta-large-openai-detector': 512, } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] snake_case_ = RobertaTokenizer def __init__( self : Union[str, Any] ,A : List[str]=None ,A : Union[str, Any]=None ,A : Union[str, Any]=None ,A : Any="replace" ,A : str="<s>" ,A : List[Any]="</s>" ,A : Any="</s>" ,A : Optional[int]="<s>" ,A : Union[str, Any]="<unk>" ,A : Dict="<pad>" ,A : Union[str, Any]="<mask>" ,A : str=False ,A : List[str]=True ,**A : Optional[int] ,): super().__init__( A ,A ,tokenizer_file=A ,errors=A ,bos_token=A ,eos_token=A ,sep_token=A ,cls_token=A ,unk_token=A ,pad_token=A ,mask_token=A ,add_prefix_space=A ,trim_offsets=A ,**A ,) __A = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" ,A ) != add_prefix_space: __A = getattr(A ,pre_tok_state.pop("type" ) ) __A = add_prefix_space __A = pre_tok_class(**A ) __A = add_prefix_space __A = "post_processor" __A = getattr(self.backend_tokenizer ,A ,A ) if tokenizer_component_instance: __A = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __A = tuple(state["sep"] ) if "cls" in state: __A = tuple(state["cls"] ) __A = False if state.get("add_prefix_space" ,A ) != add_prefix_space: __A = add_prefix_space __A = True if state.get("trim_offsets" ,A ) != trim_offsets: __A = trim_offsets __A = True if changes_to_apply: __A = getattr(A ,state.pop("type" ) ) __A = component_class(**A ) setattr(self.backend_tokenizer ,A ,A ) @property def UpperCamelCase_ ( self : Tuple ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def UpperCamelCase_ ( self : Optional[int] ,A : List[Any] ): __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else value __A = value def UpperCamelCase_ ( self : Union[str, Any] ,*A : List[str] ,**A : Optional[int] ): __A = kwargs.get("is_split_into_words" ,A ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A ,**A ) def UpperCamelCase_ ( self : int ,*A : str ,**A : Optional[Any] ): __A = kwargs.get("is_split_into_words" ,A ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*A ,**A ) def UpperCamelCase_ ( self : int ,A : str ,A : Optional[str] = None ): __A = self._tokenizer.model.save(A ,name=A ) return tuple(A ) def UpperCamelCase_ ( self : Any ,A : Any ,A : Any=None ): __A = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase_ ( self : Optional[int] ,A : List[int] ,A : Optional[List[int]] = None ): __A = [self.sep_token_id] __A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
55
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]: """simple docstring""" __A = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") __A = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(a_ ): os.makedirs(a_ ) __A = model.state_dict() def to_tf_var_name(a_ ): for patt, repl in iter(a_ ): __A = name.replace(a_ , a_ ) return F'''bert/{name}''' def create_tf_var(a_ , a_ , a_ ): __A = tf.dtypes.as_dtype(tensor.dtype ) __A = tf.get_variable(dtype=a_ , shape=tensor.shape , name=a_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(a_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __A = to_tf_var_name(a_ ) __A = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __A = torch_tensor.T __A = create_tf_var(tensor=a_ , name=a_ , session=a_ ) tf.keras.backend.set_value(a_ , a_ ) __A = session.run(a_ ) print(F'''Successfully created {tf_name}: {np.allclose(a_ , a_ )}''' ) __A = tf.train.Saver(tf.trainable_variables() ) saver.save(a_ , os.path.join(a_ , model_name.replace("-" , "_" ) + ".ckpt" ) ) def UpperCAmelCase ( a_=None ) -> List[Any]: """simple docstring""" __A = argparse.ArgumentParser() parser.add_argument("--model_name" , type=a_ , required=a_ , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=a_ , default=a_ , required=a_ , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=a_ , required=a_ , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=a_ , required=a_ , help="Directory in which to save tensorflow model" ) __A = parser.parse_args(a_ ) __A = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=a_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
55
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE :int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Optional[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} SCREAMING_SNAKE_CASE :List[str] = { 'vocab_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json' ), }, 'merges_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt' ), }, } SCREAMING_SNAKE_CASE :int = { 'allenai/longformer-base-4096': 4096, 'allenai/longformer-large-4096': 4096, 'allenai/longformer-large-4096-finetuned-triviaqa': 4096, 'allenai/longformer-base-4096-extra.pos.embd.only': 4096, 'allenai/longformer-large-4096-extra.pos.embd.only': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCAmelCase ( ) -> List[str]: """simple docstring""" __A = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __A = bs[:] __A = 0 for b in range(2**8 ): if b not in bs: bs.append(a_ ) cs.append(2**8 + n ) n += 1 __A = [chr(a_ ) for n in cs] return dict(zip(a_ , a_ ) ) def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" __A = set() __A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __A = char return pairs class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["input_ids", "attention_mask"] def __init__( self : Any ,A : Optional[Any] ,A : str ,A : Union[str, Any]="replace" ,A : Tuple="<s>" ,A : Optional[Any]="</s>" ,A : Any="</s>" ,A : Optional[Any]="<s>" ,A : List[str]="<unk>" ,A : int="<pad>" ,A : List[str]="<mask>" ,A : Any=False ,**A : Dict ,): __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else bos_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else eos_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else sep_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else cls_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else unk_token __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token super().__init__( errors=A ,bos_token=A ,eos_token=A ,unk_token=A ,sep_token=A ,cls_token=A ,pad_token=A ,mask_token=A ,add_prefix_space=A ,**A ,) with open(A ,encoding="utf-8" ) as vocab_handle: __A = json.load(A ) __A = {v: k for k, v in self.encoder.items()} __A = errors # how to handle errors in decoding __A = bytes_to_unicode() __A = {v: k for k, v in self.byte_encoder.items()} with open(A ,encoding="utf-8" ) as merges_handle: __A = merges_handle.read().split("\n" )[1:-1] __A = [tuple(merge.split() ) for merge in bpe_merges] __A = dict(zip(A ,range(len(A ) ) ) ) __A = {} __A = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __A = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def UpperCamelCase_ ( self : Tuple ): return len(self.encoder ) def UpperCamelCase_ ( self : Union[str, Any] ): return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCamelCase_ ( self : int ,A : Any ): if token in self.cache: return self.cache[token] __A = tuple(A ) __A = get_pairs(A ) if not pairs: return token while True: __A = min(A ,key=lambda A : self.bpe_ranks.get(A ,float("inf" ) ) ) if bigram not in self.bpe_ranks: break __A , __A = bigram __A = [] __A = 0 while i < len(A ): try: __A = word.index(A ,A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __A = j if word[i] == first and i < len(A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __A = tuple(A ) __A = new_word if len(A ) == 1: break else: __A = get_pairs(A ) __A = " ".join(A ) __A = word return word def UpperCamelCase_ ( self : int ,A : Dict ): __A = [] for token in re.findall(self.pat ,A ): __A = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A ).split(" " ) ) return bpe_tokens def UpperCamelCase_ ( self : List[str] ,A : Union[str, Any] ): return self.encoder.get(A ,self.encoder.get(self.unk_token ) ) def UpperCamelCase_ ( self : Any ,A : str ): return self.decoder.get(A ) def UpperCamelCase_ ( self : Optional[int] ,A : Dict ): __A = "".join(A ) __A = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" ,errors=self.errors ) return text def UpperCamelCase_ ( self : List[str] ,A : str ,A : Optional[str] = None ): if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __A = os.path.join( A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __A = os.path.join( A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(A ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=A ,ensure_ascii=A ) + "\n" ) __A = 0 with open(A ,"w" ,encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda A : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) __A = token_index writer.write(" ".join(A ) + "\n" ) index += 1 return vocab_file, merge_file def UpperCamelCase_ ( self : Any ,A : List[int] ,A : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A = [self.cls_token_id] __A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self : int ,A : List[int] ,A : Optional[List[int]] = None ,A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def UpperCamelCase_ ( self : int ,A : List[int] ,A : Optional[List[int]] = None ): __A = [self.sep_token_id] __A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase_ ( self : Tuple ,A : Optional[Any] ,A : Optional[Any]=False ,**A : Optional[int] ): __A = kwargs.pop("add_prefix_space" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A ) > 0 and not text[0].isspace()): __A = " " + text return (text, kwargs)
55
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE :Any = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Any = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
1
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class UpperCAmelCase : '''simple docstring''' @property def UpperCamelCase_ ( self : str ): return self.get_dummy_input() @property def UpperCamelCase_ ( self : int ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def UpperCamelCase_ ( self : List[str] ,A : Optional[Any]=True ,A : Optional[Any]=False ,A : List[str]=False ,A : Optional[Any]=False ,): __A = 4 __A = 32 __A = (32, 32) __A = torch.manual_seed(0 ) __A = torch.device(A ) __A = (batch_size, num_channels) + sizes __A = randn_tensor(A ,generator=A ,device=A ) __A = {"hidden_states": hidden_states} if include_temb: __A = 1_28 __A = randn_tensor((batch_size, temb_channels) ,generator=A ,device=A ) if include_res_hidden_states_tuple: __A = torch.manual_seed(1 ) __A = (randn_tensor(A ,generator=A ,device=A ),) if include_encoder_hidden_states: __A = floats_tensor((batch_size, 32, 32) ).to(A ) if include_skip_sample: __A = randn_tensor(((batch_size, 3) + sizes) ,generator=A ,device=A ) return dummy_input def UpperCamelCase_ ( self : Optional[Any] ): __A = { "in_channels": 32, "out_channels": 32, "temb_channels": 1_28, } if self.block_type == "up": __A = 32 if self.block_type == "mid": init_dict.pop("out_channels" ) __A = self.dummy_input return init_dict, inputs_dict def UpperCamelCase_ ( self : Dict ,A : Tuple ): __A , __A = self.prepare_init_args_and_inputs_for_common() __A = self.block_class(**A ) unet_block.to(A ) unet_block.eval() with torch.no_grad(): __A = unet_block(**A ) if isinstance(A ,A ): __A = output[0] self.assertEqual(output.shape ,self.output_shape ) __A = output[0, -1, -3:, -3:] __A = torch.tensor(A ).to(A ) assert torch_all_close(output_slice.flatten() ,A ,atol=5E-3 ) @unittest.skipIf(torch_device == "mps" ,"Training is not supported in mps" ) def UpperCamelCase_ ( self : Optional[int] ): __A , __A = self.prepare_init_args_and_inputs_for_common() __A = self.block_class(**A ) model.to(A ) model.train() __A = model(**A ) if isinstance(A ,A ): __A = output[0] __A = torch.device(A ) __A = randn_tensor(output.shape ,device=A ) __A = torch.nn.functional.mse_loss(A ,A ) loss.backward()
55
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE :int = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def UpperCAmelCase ( a_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" __A = BeautifulSoup(requests.get(url + location ).content , "html.parser" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ): __A = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip() __A = job.find("span" , {"class": "company"} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
55
1
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels SCREAMING_SNAKE_CASE :Union[str, Any] = object() # For specifying empty leaf dict `{}` SCREAMING_SNAKE_CASE :List[str] = object() def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" __A = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(a_ ) - len(a_ ) + 1 ): __A = [x.match(a_ ) for x, y in zip(a_ , ks[i:] )] if matches and all(a_ ): return True return False def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" def replace(a_ , a_ ): for rule, replacement in rules: if _match(a_ , a_ ): return replacement return val return replace def UpperCAmelCase ( ) -> int: """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , a_ )), (("transformer", "wte", "embedding"), P("mp" , a_ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a_ , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , a_ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(a_ , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , a_ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" __A = _get_partition_rules() __A = _replacement_rules(a_ ) __A = {k: _unmatched for k in flatten_dict(a_ )} __A = {k: replace(a_ , a_ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(a_ ) )
55
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : List[str] ): __A = tempfile.mkdtemp() __A = BlipImageProcessor() __A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) __A = BlipaProcessor(A ,A ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ,**A : int ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).tokenizer def UpperCamelCase_ ( self : Dict ,**A : Optional[int] ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor def UpperCamelCase_ ( self : Dict ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self : Optional[int] ): __A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] __A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self : Any ): __A = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __A = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" ) __A = self.get_image_processor(do_normalize=A ,padding_value=1.0 ) __A = BlipaProcessor.from_pretrained( self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=A ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,A ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = self.prepare_image_inputs() __A = image_processor(A ,return_tensors="np" ) __A = processor(images=A ,return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self : Tuple ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = processor(text=A ) __A = tokenizer(A ,return_token_type_ids=A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self : int ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A = processor.batch_decode(A ) __A = tokenizer.batch_decode(A ) self.assertListEqual(A ,A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
55
1
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] ,A : Collection[float] | None = None ): if components is None: __A = [] __A = list(A ) def __len__( self : Dict ): return len(self.__components ) def __str__( self : Optional[int] ): return "(" + ",".join(map(A ,self.__components ) ) + ")" def __add__( self : Optional[int] ,A : Vector ): __A = len(self ) if size == len(A ): __A = [self.__components[i] + other.component(A ) for i in range(A )] return Vector(A ) else: raise Exception("must have the same size" ) def __sub__( self : int ,A : Vector ): __A = len(self ) if size == len(A ): __A = [self.__components[i] - other.component(A ) for i in range(A )] return Vector(A ) else: # error case raise Exception("must have the same size" ) @overload def __mul__( self : List[Any] ,A : float ): ... @overload def __mul__( self : List[Any] ,A : Vector ): ... def __mul__( self : Any ,A : float | Vector ): if isinstance(A ,(float, int) ): __A = [c * other for c in self.__components] return Vector(A ) elif isinstance(A ,A ) and len(self ) == len(A ): __A = len(self ) __A = [self.__components[i] * other.component(A ) for i in range(A )] return sum(A ) else: # error case raise Exception("invalid operand!" ) def UpperCamelCase_ ( self : Tuple ): return Vector(self.__components ) def UpperCamelCase_ ( self : List[Any] ,A : int ): if isinstance(A ,A ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("index out of range" ) def UpperCamelCase_ ( self : List[str] ,A : int ,A : float ): assert -len(self.__components ) <= pos < len(self.__components ) __A = value def UpperCamelCase_ ( self : List[Any] ): if len(self.__components ) == 0: raise Exception("Vector is empty" ) __A = [c**2 for c in self.__components] return math.sqrt(sum(A ) ) def UpperCamelCase_ ( self : Tuple ,A : Vector ,A : bool = False ): __A = self * other __A = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def UpperCAmelCase ( a_ ) -> Vector: """simple docstring""" assert isinstance(a_ , a_ ) return Vector([0] * dimension ) def UpperCAmelCase ( a_ , a_ ) -> Vector: """simple docstring""" assert isinstance(a_ , a_ ) and (isinstance(a_ , a_ )) __A = [0] * dimension __A = 1 return Vector(a_ ) def UpperCAmelCase ( a_ , a_ , a_ ) -> Vector: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (isinstance(a_ , (int, float) )) ) return x * scalar + y def UpperCAmelCase ( a_ , a_ , a_ ) -> Vector: """simple docstring""" random.seed(a_ ) __A = [random.randint(a_ , a_ ) for _ in range(a_ )] return Vector(a_ ) class UpperCAmelCase : '''simple docstring''' def __init__( self : int ,A : list[list[float]] ,A : int ,A : int ): __A = matrix __A = w __A = h def __str__( self : Optional[int] ): __A = "" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : int ,A : Matrix ): if self.__width == other.width() and self.__height == other.height(): __A = [] for i in range(self.__height ): __A = [ self.__matrix[i][j] + other.component(A ,A ) for j in range(self.__width ) ] matrix.append(A ) return Matrix(A ,self.__width ,self.__height ) else: raise Exception("matrix must have the same dimension!" ) def __sub__( self : List[Any] ,A : Matrix ): if self.__width == other.width() and self.__height == other.height(): __A = [] for i in range(self.__height ): __A = [ self.__matrix[i][j] - other.component(A ,A ) for j in range(self.__width ) ] matrix.append(A ) return Matrix(A ,self.__width ,self.__height ) else: raise Exception("matrices must have the same dimension!" ) @overload def __mul__( self : List[Any] ,A : float ): ... @overload def __mul__( self : Any ,A : Vector ): ... def __mul__( self : Dict ,A : float | Vector ): if isinstance(A ,A ): # matrix-vector if len(A ) == self.__width: __A = zero_vector(self.__height ) for i in range(self.__height ): __A = [ self.__matrix[i][j] * other.component(A ) for j in range(self.__width ) ] ans.change_component(A ,sum(A ) ) return ans else: raise Exception( "vector must have the same size as the " "number of columns of the matrix!" ) elif isinstance(A ,(int, float) ): # matrix-scalar __A = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(A ,self.__width ,self.__height ) return None def UpperCamelCase_ ( self : Union[str, Any] ): return self.__height def UpperCamelCase_ ( self : List[Any] ): return self.__width def UpperCamelCase_ ( self : str ,A : int ,A : int ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("change_component: indices out of bounds" ) def UpperCamelCase_ ( self : List[Any] ,A : int ,A : int ,A : float ): if 0 <= x < self.__height and 0 <= y < self.__width: __A = value else: raise Exception("change_component: indices out of bounds" ) def UpperCamelCase_ ( self : str ,A : int ,A : int ): if self.__height != self.__width: raise Exception("Matrix is not square" ) __A = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(A ) ): __A = minor[i][:y] + minor[i][y + 1 :] return Matrix(A ,self.__width - 1 ,self.__height - 1 ).determinant() def UpperCamelCase_ ( self : Tuple ,A : int ,A : int ): if self.__height != self.__width: raise Exception("Matrix is not square" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(A ,A ) else: raise Exception("Indices out of bounds" ) def UpperCamelCase_ ( self : Optional[int] ): if self.__height != self.__width: raise Exception("Matrix is not square" ) if self.__height < 1: raise Exception("Matrix has no element" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __A = [ self.__matrix[0][y] * self.cofactor(0 ,A ) for y in range(self.__width ) ] return sum(A ) def UpperCAmelCase ( a_ ) -> Matrix: """simple docstring""" __A = [[0] * n for _ in range(a_ )] return Matrix(a_ , a_ , a_ ) def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> Matrix: """simple docstring""" random.seed(a_ ) __A = [ [random.randint(a_ , a_ ) for _ in range(a_ )] for _ in range(a_ ) ] return Matrix(a_ , a_ , a_ )
55
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int ,A : Any ,A : List[str] ,A : Union[str, Any]=10_24 ,A : int=10_24 ,A : Optional[Any]=3.6 ): __A = tokenizer __A = tokenizer.bos_token_id __A = dataset __A = seq_length __A = seq_length * chars_per_token * num_of_sequences def __iter__( self : List[Any] ): __A = iter(self.dataset ) __A = True while more_examples: __A , __A = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: __A = False break __A = tokenizer(A ,truncation=A )["input_ids"] __A = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 ,len(A ) ,self.seq_length ): __A = all_token_ids[i : i + self.seq_length] if len(A ) == self.seq_length: yield torch.tensor(A ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = {"streaming": True} __A = load_dataset(args.dataset_name , split="train" , **a_ ) __A = ConstantLengthDataset(a_ , a_ , seq_length=args.seq_length ) __A = DataLoader(a_ , batch_size=args.batch_size ) return eval_dataloader def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" model.eval() __A = [] for step, batch in enumerate(a_ ): with torch.no_grad(): __A = model(a_ , labels=a_ ) __A = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(a_ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __A = torch.mean(torch.cat(a_ ) ) try: __A = torch.exp(a_ ) except OverflowError: __A = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator SCREAMING_SNAKE_CASE :Optional[int] = Accelerator() # Parse configuration SCREAMING_SNAKE_CASE :str = HfArgumentParser(EvaluationArguments) SCREAMING_SNAKE_CASE :int = parser.parse_args() set_seed(args.seed) # Logging SCREAMING_SNAKE_CASE :Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer SCREAMING_SNAKE_CASE :List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) SCREAMING_SNAKE_CASE :int = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader SCREAMING_SNAKE_CASE :List[str] = create_dataloader(args) # Prepare everything with our `accelerator`. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
55
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE :Tuple = {'configuration_sew': ['SEW_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SEWConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :List[Any] = [ 'SEW_PRETRAINED_MODEL_ARCHIVE_LIST', 'SEWForCTC', 'SEWForSequenceClassification', 'SEWModel', 'SEWPreTrainedModel', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = LayoutLMTokenizer snake_case_ = LayoutLMTokenizerFast snake_case_ = True snake_case_ = True def UpperCamelCase_ ( self : Any ): super().setUp() __A = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase_ ( self : Tuple ,**A : int ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**A ) def UpperCamelCase_ ( self : Optional[Any] ,A : Any ): __A = "UNwant\u00E9d,running" __A = "unwanted, running" return input_text, output_text def UpperCamelCase_ ( self : str ): __A = self.tokenizer_class(self.vocab_file ) __A = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(A ,["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[7, 4, 5, 10, 8, 9] ) def UpperCamelCase_ ( self : int ): pass
55
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): __A = tempfile.mkdtemp() __A = BlipImageProcessor() __A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) __A = BertTokenizerFast.from_pretrained("hf-internal-testing/tiny-random-bert" ) __A = InstructBlipProcessor(A ,A ,A ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Optional[Any] ,**A : Optional[Any] ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).tokenizer def UpperCamelCase_ ( self : Optional[Any] ,**A : Tuple ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor def UpperCamelCase_ ( self : Tuple ,**A : Tuple ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).qformer_tokenizer def UpperCamelCase_ ( self : Optional[int] ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ): __A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] __A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self : Union[str, Any] ): __A = InstructBlipProcessor( tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ,qformer_tokenizer=self.get_qformer_tokenizer() ,) processor.save_pretrained(self.tmpdirname ) __A = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" ) __A = self.get_image_processor(do_normalize=A ,padding_value=1.0 ) __A = InstructBlipProcessor.from_pretrained( self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=A ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,A ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,A ) self.assertIsInstance(processor.qformer_tokenizer ,A ) def UpperCamelCase_ ( self : Tuple ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = self.get_qformer_tokenizer() __A = InstructBlipProcessor( tokenizer=A ,image_processor=A ,qformer_tokenizer=A ) __A = self.prepare_image_inputs() __A = image_processor(A ,return_tensors="np" ) __A = processor(images=A ,return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = self.get_qformer_tokenizer() __A = InstructBlipProcessor( tokenizer=A ,image_processor=A ,qformer_tokenizer=A ) __A = "lower newer" __A = processor(text=A ) __A = tokenizer(A ,return_token_type_ids=A ) __A = qformer_tokenizer(A ,return_token_type_ids=A ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] ,encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] ,encoded_processor["qformer_" + key] ) def UpperCamelCase_ ( self : int ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = self.get_qformer_tokenizer() __A = InstructBlipProcessor( tokenizer=A ,image_processor=A ,qformer_tokenizer=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) self.assertListEqual( list(inputs.keys() ) ,["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] ,) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCamelCase_ ( self : Dict ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = self.get_qformer_tokenizer() __A = InstructBlipProcessor( tokenizer=A ,image_processor=A ,qformer_tokenizer=A ) __A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A = processor.batch_decode(A ) __A = tokenizer.batch_decode(A ) self.assertListEqual(A ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = self.get_qformer_tokenizer() __A = InstructBlipProcessor( tokenizer=A ,image_processor=A ,qformer_tokenizer=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) self.assertListEqual( list(inputs.keys() ) ,["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] ,)
55
SCREAMING_SNAKE_CASE :int = {str(digit): digit**5 for digit in range(10)} def UpperCAmelCase ( a_ ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(a_ ) ) def UpperCAmelCase ( ) -> int: """simple docstring""" return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(a_ ) ) if __name__ == "__main__": print(solution())
55
1
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = RoCBertTokenizer snake_case_ = None snake_case_ = False snake_case_ = True snake_case_ = filter_non_english def UpperCamelCase_ ( self : List[Any] ): super().setUp() __A = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"] __A = {} __A = {} for i, value in enumerate(A ): __A = i __A = i __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["word_shape_file"] ) __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["word_pronunciation_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.word_shape_file ,"w" ,encoding="utf-8" ) as word_shape_writer: json.dump(A ,A ,ensure_ascii=A ) with open(self.word_pronunciation_file ,"w" ,encoding="utf-8" ) as word_pronunciation_writer: json.dump(A ,A ,ensure_ascii=A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.tokenizer_class(self.vocab_file ,self.word_shape_file ,self.word_pronunciation_file ) __A = tokenizer.tokenize("你好[SEP]你是谁" ) self.assertListEqual(A ,["你", "好", "[SEP]", "你", "是", "谁"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(A ) ,[5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(A ) ,[5, 6, 2, 5, 7, 8] ) def UpperCamelCase_ ( self : str ): __A = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) ,["ah", "\u535A", "\u63A8", "zz"] ) def UpperCamelCase_ ( self : Optional[int] ): __A = RoCBertBasicTokenizer(do_lower_case=A ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) ,["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) ,["hello"] ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = RoCBertBasicTokenizer(do_lower_case=A ,strip_accents=A ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) ,["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) ,["h\u00E9llo"] ) def UpperCamelCase_ ( self : Optional[int] ): __A = RoCBertBasicTokenizer(do_lower_case=A ,strip_accents=A ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) ,["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) ,["hello"] ) def UpperCamelCase_ ( self : int ): __A = RoCBertBasicTokenizer(do_lower_case=A ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) ,["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) ,["hello"] ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = RoCBertBasicTokenizer(do_lower_case=A ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) ,["HeLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCamelCase_ ( self : str ): __A = RoCBertBasicTokenizer(do_lower_case=A ,strip_accents=A ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) ,["HäLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCamelCase_ ( self : List[str] ): __A = RoCBertBasicTokenizer(do_lower_case=A ,strip_accents=A ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) ,["HaLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCamelCase_ ( self : Any ): __A = RoCBertBasicTokenizer(do_lower_case=A ,never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) ,["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def UpperCamelCase_ ( self : Any ): __A = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] __A = {} for i, token in enumerate(A ): __A = i __A = RoCBertWordpieceTokenizer(vocab=A ,unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) ,[] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) ,["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) ,["[UNK]", "runn", "##ing"] ) def UpperCamelCase_ ( self : Union[str, Any] ): self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def UpperCamelCase_ ( self : Dict ): self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def UpperCamelCase_ ( self : Optional[Any] ): self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A ) for t in ["Test", "\xad", "test"]] ,[["[UNK]"], [], ["[UNK]"]] ) if self.test_rust_tokenizer: __A = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(A ) for t in ["Test", "\xad", "test"]] ,[["[UNK]"], [], ["[UNK]"]] ) def UpperCamelCase_ ( self : Dict ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __A = self.rust_tokenizer_class.from_pretrained(A ,**A ) __A = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' __A = tokenizer_r.encode_plus( A ,return_attention_mask=A ,return_token_type_ids=A ,return_offsets_mapping=A ,add_special_tokens=A ,) __A = tokenizer_r.do_lower_case if hasattr(A ,"do_lower_case" ) else False __A = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] ,tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] ,tokens["offset_mapping"] ) def UpperCamelCase_ ( self : List[str] ): __A = ["的", "人", "有"] __A = "".join(A ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __A = True __A = self.tokenizer_class.from_pretrained(A ,**A ) __A = self.rust_tokenizer_class.from_pretrained(A ,**A ) __A = tokenizer_p.encode(A ,add_special_tokens=A ) __A = tokenizer_r.encode(A ,add_special_tokens=A ) __A = tokenizer_r.convert_ids_to_tokens(A ) __A = tokenizer_p.convert_ids_to_tokens(A ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A ,A ) self.assertListEqual(A ,A ) __A = False __A = self.rust_tokenizer_class.from_pretrained(A ,**A ) __A = self.tokenizer_class.from_pretrained(A ,**A ) __A = tokenizer_r.encode(A ,add_special_tokens=A ) __A = tokenizer_p.encode(A ,add_special_tokens=A ) __A = tokenizer_r.convert_ids_to_tokens(A ) __A = tokenizer_p.convert_ids_to_tokens(A ) # it is expected that only the first Chinese character is not preceded by "##". __A = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(A ) ] self.assertListEqual(A ,A ) self.assertListEqual(A ,A ) @slow def UpperCamelCase_ ( self : Tuple ): __A = self.tokenizer_class(self.vocab_file ,self.word_shape_file ,self.word_pronunciation_file ) __A = tokenizer.encode("你好" ,add_special_tokens=A ) __A = tokenizer.encode("你是谁" ,add_special_tokens=A ) __A = tokenizer.build_inputs_with_special_tokens(A ) __A = tokenizer.build_inputs_with_special_tokens(A ,A ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_tokenizers(do_lower_case=A ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __A = "你好,你是谁" __A = tokenizer.tokenize(A ) __A = tokenizer.convert_tokens_to_ids(A ) __A = tokenizer.convert_tokens_to_shape_ids(A ) __A = tokenizer.convert_tokens_to_pronunciation_ids(A ) __A = tokenizer.prepare_for_model( A ,A ,A ,add_special_tokens=A ) __A = tokenizer.encode_plus(A ,add_special_tokens=A ) self.assertEqual(A ,A )
55
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): __A = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A ,"tf_padding" ) ) self.parent.assertTrue(hasattr(A ,"depth_multiplier" ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] ,A : int ,A : List[Any]=13 ,A : int=3 ,A : Optional[Any]=32 ,A : Union[str, Any]=0.25 ,A : Tuple=8 ,A : Optional[int]=True ,A : Union[str, Any]=10_24 ,A : Any=32 ,A : Optional[int]="relu6" ,A : int=0.1 ,A : Optional[Any]=0.02 ,A : Optional[Any]=True ,A : List[str]=True ,A : str=10 ,A : str=None ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = depth_multiplier __A = min_depth __A = tf_padding __A = int(last_hidden_size * depth_multiplier ) __A = output_stride __A = hidden_act __A = classifier_dropout_prob __A = use_labels __A = is_training __A = num_labels __A = initializer_range __A = scope def UpperCamelCase_ ( self : Optional[int] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.num_labels ) __A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) __A = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self : Any ): return MobileNetVaConfig( num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,min_depth=self.min_depth ,tf_padding=self.tf_padding ,hidden_act=self.hidden_act ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,) def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : Tuple ,A : Optional[int] ,A : List[str] ): __A = MobileNetVaModel(config=A ) model.to(A ) model.eval() __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def UpperCamelCase_ ( self : List[Any] ,A : Union[str, Any] ,A : List[Any] ,A : int ,A : Union[str, Any] ): __A = self.num_labels __A = MobileNetVaForImageClassification(A ) model.to(A ) model.eval() __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : Tuple ): __A = self.prepare_config_and_inputs() __A , __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () snake_case_ = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : Any ): __A = MobileNetVaModelTester(self ) __A = MobileNetVaConfigTester(self ,config_class=A ,has_text_modality=A ) def UpperCamelCase_ ( self : str ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def UpperCamelCase_ ( self : Any ): pass def UpperCamelCase_ ( self : Optional[int] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[int] ): def check_hidden_states_output(A : List[Any] ,A : List[Any] ,A : Optional[int] ): __A = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(A ,A ) ) __A = outputs.hidden_states __A = 26 self.assertEqual(len(A ) ,A ) __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = True check_hidden_states_output(A ,A ,A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A = True check_hidden_states_output(A ,A ,A ) def UpperCamelCase_ ( self : Tuple ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def UpperCamelCase_ ( self : Union[str, Any] ): for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = MobileNetVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> str: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : List[str] ): return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[Any] ): __A = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): __A = model(**A ) # verify the logits __A = torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape ,A ) __A = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer SCREAMING_SNAKE_CASE :Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :List[str] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE :str = [ 'small', 'small-base', 'medium', 'medium-base', 'intermediate', 'intermediate-base', 'large', 'large-base', 'xlarge', 'xlarge-base', ] SCREAMING_SNAKE_CASE :Dict = { 'vocab_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json', 'funnel-transformer/small-base': ( 'https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json' ), 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json', 'funnel-transformer/large-base': ( 'https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json' ), 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json' ), }, } SCREAMING_SNAKE_CASE :Union[str, Any] = {f'''funnel-transformer/{name}''': 512 for name in _model_names} SCREAMING_SNAKE_CASE :Union[str, Any] = {f'''funnel-transformer/{name}''': {'do_lower_case': True} for name in _model_names} class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_INIT_CONFIGURATION snake_case_ = FunnelTokenizer snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = 2 def __init__( self : List[Any] ,A : Optional[int]=None ,A : List[str]=None ,A : Tuple=True ,A : str="<unk>" ,A : int="<sep>" ,A : Any="<pad>" ,A : List[str]="<cls>" ,A : str="<mask>" ,A : Any="<s>" ,A : int="</s>" ,A : Union[str, Any]=True ,A : List[str]=True ,A : Optional[int]=None ,A : Optional[int]="##" ,**A : str ,): super().__init__( A ,tokenizer_file=A ,do_lower_case=A ,unk_token=A ,sep_token=A ,pad_token=A ,cls_token=A ,mask_token=A ,bos_token=A ,eos_token=A ,clean_text=A ,tokenize_chinese_chars=A ,strip_accents=A ,wordpieces_prefix=A ,**A ,) __A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" ,A ) != do_lower_case or normalizer_state.get("strip_accents" ,A ) != strip_accents or normalizer_state.get("handle_chinese_chars" ,A ) != tokenize_chinese_chars ): __A = getattr(A ,normalizer_state.pop("type" ) ) __A = do_lower_case __A = strip_accents __A = tokenize_chinese_chars __A = normalizer_class(**A ) __A = do_lower_case def UpperCamelCase_ ( self : str ,A : Any ,A : List[Any]=None ): __A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : Optional[int] ,A : List[int] ,A : Optional[List[int]] = None ): __A = [self.sep_token_id] __A = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : int ,A : str ,A : Optional[str] = None ): __A = self._tokenizer.model.save(A ,name=A ) return tuple(A )
55
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : str ,A : int ,A : int=2 ,A : Optional[Any]=3 ,A : Dict=4 ,A : Optional[int]=2 ,A : Union[str, Any]=7 ,A : List[str]=True ,A : Union[str, Any]=True ,A : Optional[int]=True ,A : Optional[int]=True ,A : Tuple=99 ,A : Optional[int]=36 ,A : Dict=3 ,A : str=4 ,A : Optional[Any]=37 ,A : Dict="gelu" ,A : Dict=0.1 ,A : Union[str, Any]=0.1 ,A : Union[str, Any]=5_12 ,A : Any=16 ,A : Union[str, Any]=2 ,A : List[Any]=0.02 ,A : List[Any]=6 ,A : Optional[int]=6 ,A : List[Any]=3 ,A : Union[str, Any]=4 ,A : Tuple=None ,A : List[str]=10_00 ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = patch_size __A = text_seq_length __A = is_training __A = use_input_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = coordinate_size __A = shape_size __A = num_labels __A = num_choices __A = scope __A = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __A = text_seq_length __A = (image_size // patch_size) ** 2 + 1 __A = self.text_seq_length + self.image_seq_length def UpperCamelCase_ ( self : int ): __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size ) __A = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __A = bbox[i, j, 3] __A = bbox[i, j, 1] __A = t if bbox[i, j, 2] < bbox[i, j, 0]: __A = bbox[i, j, 2] __A = bbox[i, j, 0] __A = t __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.text_seq_length] ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels ) __A = LayoutLMvaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase_ ( self : Optional[int] ,A : List[str] ,A : Any ,A : Dict ,A : List[Any] ,A : Optional[int] ,A : Any ,A : Dict ,A : List[Any] ): __A = LayoutLMvaModel(config=A ) model.to(A ) model.eval() # text + image __A = model(A ,pixel_values=A ) __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) # text only __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __A = model(pixel_values=A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Optional[int] ,A : Dict ,A : List[str] ,A : Any ,A : List[Any] ,A : Any ,A : Any ,A : Dict ,A : Optional[Any] ): __A = self.num_labels __A = LayoutLMvaForSequenceClassification(A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : str ,A : Optional[Any] ,A : Dict ,A : str ,A : Tuple ,A : Union[str, Any] ,A : List[Any] ,A : Any ,A : Union[str, Any] ): __A = self.num_labels __A = LayoutLMvaForTokenClassification(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : int ,A : str ,A : List[str] ,A : int ,A : List[str] ,A : List[str] ,A : Dict ): __A = LayoutLMvaForQuestionAnswering(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,start_positions=A ,end_positions=A ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = config_and_inputs __A = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) snake_case_ = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def UpperCamelCase_ ( self : str ,A : Any ,A : Any ,A : Tuple ,A : List[Any] ,A : Optional[Any] ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def UpperCamelCase_ ( self : Union[str, Any] ): __A = LayoutLMvaModelTester(self ) __A = ConfigTester(self ,config_class=A ,hidden_size=37 ) def UpperCamelCase_ ( self : List[Any] ,A : int ,A : List[str] ,A : Dict=False ): __A = copy.deepcopy(A ) if model_class in get_values(A ): __A = { k: v.unsqueeze(1 ).expand(-1 ,self.model_tester.num_choices ,-1 ).contiguous() if isinstance(A ,torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A ): __A = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in get_values(A ): __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=A ,) return inputs_dict def UpperCamelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __A = type self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = LayoutLMvaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> Dict: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : Any ): return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : Dict ): __A = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).pixel_values.to(A ) __A = torch.tensor([[1, 2]] ) __A = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __A = model( input_ids=input_ids.to(A ) ,bbox=bbox.to(A ) ,pixel_values=pixel_values.to(A ) ,) # verify the logits __A = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape ,A ) __A = torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,A ,atol=1E-4 ) )
55
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = ShapEPipeline snake_case_ = ["prompt"] snake_case_ = ["prompt"] snake_case_ = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] snake_case_ = False @property def UpperCamelCase_ ( self : List[Any] ): return 32 @property def UpperCamelCase_ ( self : Optional[int] ): return 32 @property def UpperCamelCase_ ( self : Tuple ): return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Union[str, Any] ): return 8 @property def UpperCamelCase_ ( self : Tuple ): __A = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def UpperCamelCase_ ( self : int ): torch.manual_seed(0 ) __A = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,) return CLIPTextModelWithProjection(A ) @property def UpperCamelCase_ ( self : List[Any] ): torch.manual_seed(0 ) __A = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } __A = PriorTransformer(**A ) return model @property def UpperCamelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) __A = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } __A = ShapERenderer(**A ) return model def UpperCamelCase_ ( self : List[str] ): __A = self.dummy_prior __A = self.dummy_text_encoder __A = self.dummy_tokenizer __A = self.dummy_renderer __A = HeunDiscreteScheduler( beta_schedule="exp" ,num_train_timesteps=10_24 ,prediction_type="sample" ,use_karras_sigmas=A ,clip_sample=A ,clip_sample_range=1.0 ,) __A = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def UpperCamelCase_ ( self : Dict ,A : Optional[Any] ,A : Any=0 ): if str(A ).startswith("mps" ): __A = torch.manual_seed(A ) else: __A = torch.Generator(device=A ).manual_seed(A ) __A = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def UpperCamelCase_ ( self : List[str] ): __A = "cpu" __A = self.get_dummy_components() __A = self.pipeline_class(**A ) __A = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) __A = pipe(**self.get_dummy_inputs(A ) ) __A = output.images[0] __A = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __A = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self : Optional[Any] ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase_ ( self : int ): __A = torch_device == "cpu" __A = True self._test_inference_batch_single_identical( batch_size=2 ,test_max_difference=A ,relax_max_difference=A ,) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_dummy_components() __A = self.pipeline_class(**A ) __A = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) __A = 1 __A = 2 __A = self.get_dummy_inputs(A ) for key in inputs.keys(): if key in self.batch_params: __A = batch_size * [inputs[key]] __A = pipe(**A ,num_images_per_prompt=A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : Optional[int] ): __A = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy" ) __A = ShapEPipeline.from_pretrained("openai/shap-e" ) __A = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) __A = torch.Generator(device=A ).manual_seed(0 ) __A = pipe( "a shark" ,generator=A ,guidance_scale=15.0 ,num_inference_steps=64 ,frame_size=64 ,output_type="np" ,).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(A ,A )
55
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : List[str] ,A : str=7 ,A : Optional[Any]=3 ,A : Any=18 ,A : int=30 ,A : int=4_00 ,A : List[str]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=True ,A : Tuple=None ,A : Tuple=True ,A : Union[str, Any]=[0.5, 0.5, 0.5] ,A : str=[0.5, 0.5, 0.5] ,A : List[Any]=False ,): __A = size if size is not None else {"height": 20, "width": 20} __A = crop_size if crop_size is not None else {"height": 18, "width": 18} __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size __A = do_center_crop __A = crop_size __A = do_normalize __A = image_mean __A = image_std __A = do_reduce_labels def UpperCamelCase_ ( self : List[str] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCAmelCase ( ) -> int: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(dataset[0]["file"] ) __A = Image.open(dataset[1]["file"] ) return image, map def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" __A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __A = Image.open(ds[0]["file"] ) __A = Image.open(ds[1]["file"] ) __A = Image.open(ds[2]["file"] ) __A = Image.open(ds[3]["file"] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = BeitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : List[Any] ): __A = BeitImageProcessingTester(self ) @property def UpperCamelCase_ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : int ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size" ) ) self.assertTrue(hasattr(A ,"do_center_crop" ) ) self.assertTrue(hasattr(A ,"center_crop" ) ) self.assertTrue(hasattr(A ,"do_normalize" ) ) self.assertTrue(hasattr(A ,"image_mean" ) ) self.assertTrue(hasattr(A ,"image_std" ) ) def UpperCamelCase_ ( self : List[str] ): __A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"height": 20, "width": 20} ) self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} ) self.assertEqual(image_processor.do_reduce_labels ,A ) __A = self.image_processing_class.from_dict( self.image_processor_dict ,size=42 ,crop_size=84 ,reduce_labels=A ) self.assertEqual(image_processor.size ,{"height": 42, "width": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) self.assertEqual(image_processor.do_reduce_labels ,A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Optional[int] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : List[str] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : str ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) __A = [] for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __A = image_processing(image_inputs[0] ,maps[0] ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test not batched input (PIL images) __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched input (PIL images) __A , __A = prepare_semantic_batch_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 2, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __A , __A = prepare_semantic_single_inputs() __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 1_50 ) __A = True __A = image_processing(A ,A ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 )
55
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE :Optional[Any] = { 'configuration_lxmert': ['LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LxmertConfig'], 'tokenization_lxmert': ['LxmertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Tuple = ['LxmertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :List[str] = [ 'LxmertEncoder', 'LxmertForPreTraining', 'LxmertForQuestionAnswering', 'LxmertModel', 'LxmertPreTrainedModel', 'LxmertVisualFeatureEncoder', 'LxmertXLayer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[Any] = [ 'TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLxmertForPreTraining', 'TFLxmertMainLayer', 'TFLxmertModel', 'TFLxmertPreTrainedModel', 'TFLxmertVisualFeatureEncoder', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys SCREAMING_SNAKE_CASE :List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
from numpy import exp, pi, sqrt def UpperCAmelCase ( a_ , a_ = 0.0 , a_ = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
1
from queue import PriorityQueue from typing import Any import numpy as np def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ) -> float | int: """simple docstring""" for nxt, d in graph[v]: if nxt in visited_forward: continue __A = cst_fwd.get(a_ , np.inf ) __A = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) __A = new_cost_f __A = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: __A = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int: """simple docstring""" __A = -1 __A = set() __A = set() __A = {source: 0} __A = {destination: 0} __A = {source: None} __A = {destination: None} __A = PriorityQueue() __A = PriorityQueue() __A = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): __A , __A = queue_forward.get() visited_forward.add(a_ ) __A , __A = queue_backward.get() visited_backward.add(a_ ) __A = pass_and_relaxation( a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ) __A = pass_and_relaxation( a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: __A = shortest_distance return shortest_path_distance SCREAMING_SNAKE_CASE :List[str] = { 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } SCREAMING_SNAKE_CASE :str = { 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
55
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCamelCase_ ( self : Optional[int] ): __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __A = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __A = "xvjiarui/stable-diffusion-2-inpainting" __A , __A = FlaxStableDiffusionInpaintPipeline.from_pretrained(A ,safety_checker=A ) __A = "Face of a yellow cat, high resolution, sitting on a park bench" __A = jax.random.PRNGKey(0 ) __A = 50 __A = jax.device_count() __A = num_samples * [prompt] __A = num_samples * [init_image] __A = num_samples * [mask_image] __A , __A , __A = pipeline.prepare_inputs(A ,A ,A ) # shard inputs and rng __A = replicate(A ) __A = jax.random.split(A ,jax.device_count() ) __A = shard(A ) __A = shard(A ) __A = shard(A ) __A = pipeline( A ,A ,A ,A ,A ,A ,jit=A ) __A = output.images.reshape(A ,5_12 ,5_12 ,3 ) __A = images[0, 2_53:2_56, 2_53:2_56, -1] __A = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __A = jnp.array( [0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
55
1
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin SCREAMING_SNAKE_CASE :Union[str, Any] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] ,A : Any ,A : Optional[Any]=16 ,A : Optional[int]=13 ,A : int=7 ,A : int=14 ,A : Optional[Any]=10 ,A : Dict=19 ,A : Optional[Any]=5 ,A : Union[str, Any]=4 ,A : List[Any]=True ,A : Any=16 ,A : List[Any]=2 ,A : Any=4 ,A : Dict=4 ,A : str="gelu" ,A : int=0.1 ,A : List[Any]=0.1 ,A : str=[1, 2, 3, 4, 5] ,A : List[Any]=25 ,A : Optional[Any]=5 ,): __A = d_model __A = parent __A = batch_size __A = prediction_length __A = context_length __A = cardinality __A = num_time_features __A = lags_sequence __A = embedding_dimension __A = is_training __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = context_length __A = prediction_length + label_length __A = label_length __A = moving_average __A = autocorrelation_factor def UpperCamelCase_ ( self : List[str] ): return AutoformerConfig( d_model=self.d_model ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,prediction_length=self.prediction_length ,context_length=self.context_length ,label_length=self.label_length ,lags_sequence=self.lags_sequence ,num_time_features=self.num_time_features ,num_static_categorical_features=1 ,cardinality=[self.cardinality] ,embedding_dimension=[self.embedding_dimension] ,moving_average=self.moving_average ,) def UpperCamelCase_ ( self : Optional[Any] ,A : Optional[Any] ): __A = config.context_length + max(config.lags_sequence ) __A = ids_tensor([self.batch_size, 1] ,config.cardinality[0] ) __A = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __A = floats_tensor([self.batch_size, _past_length] ) __A = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __A = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __A = floats_tensor([self.batch_size, config.prediction_length] ) __A = { "past_values": past_values, "static_categorical_features": static_categorical_features, "past_time_features": past_time_features, "past_observed_mask": past_observed_mask, "future_time_features": future_time_features, "future_values": future_values, } return inputs_dict def UpperCamelCase_ ( self : Optional[int] ): __A = self.get_config() __A = self.prepare_autoformer_inputs_dict(A ) return config, inputs_dict def UpperCamelCase_ ( self : Optional[int] ): __A , __A = self.prepare_config_and_inputs() return config, inputs_dict def UpperCamelCase_ ( self : Tuple ,A : Optional[Any] ,A : Optional[int] ): __A = AutoformerModel(config=A ).to(A ).eval() __A = model(**A ) __A = outputs.encoder_last_hidden_state __A = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __A = model.get_encoder() encoder.save_pretrained(A ) __A = AutoformerEncoder.from_pretrained(A ).to(A ) __A , __A , __A , __A , __A = model.create_network_inputs(**A ) __A , __A = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __A = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) ,dim=-1 ,) __A = encoder(inputs_embeds=A )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) __A = ( torch.mean(transformer_inputs[:, : config.context_length, ...] ,dim=1 ) .unsqueeze(1 ) .repeat(1 ,config.prediction_length ,1 ) ) __A = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] ,device=enc_input.device ,) __A = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) ,dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) ,dim=-1 ,) __A = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) ,dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) ,dim=-1 ,) with tempfile.TemporaryDirectory() as tmpdirname: __A = model.get_decoder() decoder.save_pretrained(A ) __A = AutoformerDecoder.from_pretrained(A ).to(A ) __A = decoder( trend=A ,inputs_embeds=A ,encoder_hidden_states=A ,)[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () snake_case_ = (AutoformerForPrediction,) if is_torch_available() else () snake_case_ = {"feature-extraction": AutoformerModel} if is_torch_available() else {} snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : List[str] ): __A = AutoformerModelTester(self ) __A = ConfigTester(self ,config_class=A ,has_text_modality=A ) def UpperCamelCase_ ( self : Any ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Union[str, Any] ): __A , __A = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __A = model_class(A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A ) __A , __A = model_class.from_pretrained(A ,output_loading_info=A ) self.assertEqual(info["missing_keys"] ,[] ) def UpperCamelCase_ ( self : Dict ): __A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*A ) @unittest.skip(reason="Model has no tokens embeddings" ) def UpperCamelCase_ ( self : str ): pass def UpperCamelCase_ ( self : List[str] ): __A = inspect.signature(getattr(A ,"forward" ) ) # The main input is the name of the argument after `self` __A = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name ,A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = [ "past_values", "past_time_features", "past_observed_mask", "static_categorical_features", "static_real_features", "future_values", "future_time_features", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("future_observed_mask" ) expected_arg_names.extend( [ "decoder_attention_mask", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs", "past_key_values", "output_hidden_states", "output_attentions", "use_cache", "return_dict", ] ) self.assertListEqual(arg_names[: len(A )] ,A ) def UpperCamelCase_ ( self : str ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() __A = True __A = getattr(self.model_tester ,"seq_length" ,A ) __A = getattr(self.model_tester ,"decoder_seq_length" ,A ) __A = getattr(self.model_tester ,"encoder_seq_length" ,A ) __A = getattr(self.model_tester ,"d_model" ,A ) __A = getattr(self.model_tester ,"num_attention_heads" ,A ) __A = d_model // num_attention_heads for model_class in self.all_model_classes: __A = True __A = False __A = True __A = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(A ,A ) ) __A = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A ) ,self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __A = True __A = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(A ,A ) ) __A = outputs.encoder_attentions self.assertEqual(len(A ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, encoder_seq_length, dim] ,) __A = len(A ) __A = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(A ,A ) # decoder attentions __A = outputs.decoder_attentions self.assertIsInstance(A ,(list, tuple) ) self.assertEqual(len(A ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, decoder_seq_length, dim] ,) # cross attentions __A = outputs.cross_attentions self.assertIsInstance(A ,(list, tuple) ) self.assertEqual(len(A ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, decoder_seq_length, dim] ,) # Check attention is always last and order is fine __A = True __A = True __A = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(A ,A ) ) self.assertEqual(out_len + 2 ,len(A ) ) __A = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, encoder_seq_length, dim] ,) @is_flaky() def UpperCamelCase_ ( self : Dict ): super().test_retain_grad_hidden_states_attentions() def UpperCAmelCase ( a_="train-batch.pt" ) -> List[Any]: """simple docstring""" __A = hf_hub_download(repo_id="hf-internal-testing/tourism-monthly-batch" , filename=a_ , repo_type="dataset" ) __A = torch.load(a_ , map_location=a_ ) return batch @require_torch @slow class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Tuple ): __A = AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(A ) __A = prepare_batch() with torch.no_grad(): __A = model( past_values=batch["past_values"] ,past_time_features=batch["past_time_features"] ,past_observed_mask=batch["past_observed_mask"] ,static_categorical_features=batch["static_categorical_features"] ,future_values=batch["future_values"] ,future_time_features=batch["future_time_features"] ,)[0] __A = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape ,A ) __A = torch.tensor( [[0.35_93, -1.33_98, 0.63_30], [0.22_79, 1.53_96, -0.17_92], [0.04_50, 1.32_25, -0.23_35]] ,device=A ) self.assertTrue(torch.allclose(output[0, :3, :3] ,A ,atol=A ) ) def UpperCamelCase_ ( self : Any ): __A = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(A ) __A = prepare_batch("val-batch.pt" ) with torch.no_grad(): __A = model( past_values=batch["past_values"] ,past_time_features=batch["past_time_features"] ,past_observed_mask=batch["past_observed_mask"] ,static_categorical_features=batch["static_categorical_features"] ,).encoder_last_hidden_state __A = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape ,A ) __A = torch.tensor( [[-0.07_34, -0.90_36, 0.83_58], [4.71_86, 2.41_13, 1.95_81], [1.79_53, 2.35_58, 1.29_70]] ,device=A ) self.assertTrue(torch.allclose(output[0, :3, :3] ,A ,atol=A ) ) def UpperCamelCase_ ( self : Tuple ): __A = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(A ) __A = prepare_batch("val-batch.pt" ) with torch.no_grad(): __A = model.generate( static_categorical_features=batch["static_categorical_features"] ,past_time_features=batch["past_time_features"] ,past_values=batch["past_values"] ,future_time_features=batch["future_time_features"] ,past_observed_mask=batch["past_observed_mask"] ,) __A = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape ,A ) __A = torch.tensor([31_30.67_63, 40_56.52_93, 70_53.07_86] ,device=A ) __A = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] ,A ,rtol=1E-1 ) )
55
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : Optional[int] ,A : Optional[int]=7 ,A : Optional[Any]=3 ,A : List[str]=18 ,A : Any=30 ,A : Tuple=4_00 ,A : Union[str, Any]=True ,A : Optional[Any]=32 ,A : Union[str, Any]=True ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size_divisor __A = do_rescale def UpperCamelCase_ ( self : Union[str, Any] ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = GLPNImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : int ): __A = GLPNImageProcessingTester(self ) @property def UpperCamelCase_ ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Any ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size_divisor" ) ) self.assertTrue(hasattr(A ,"resample" ) ) self.assertTrue(hasattr(A ,"do_rescale" ) ) def UpperCamelCase_ ( self : str ): pass def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : Optional[Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
55
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE :List[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Optional[int] = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "falcon" snake_case_ = ["past_key_values"] def __init__( self : Optional[int] ,A : Tuple=6_50_24 ,A : int=45_44 ,A : int=32 ,A : str=71 ,A : Optional[int]=1E-5 ,A : List[Any]=0.02 ,A : str=True ,A : str=0.0 ,A : Any=0.0 ,A : Any=None ,A : List[str]=False ,A : Dict=False ,A : Union[str, Any]=True ,A : List[Any]=True ,A : Optional[int]=False ,A : Optional[Any]=11 ,A : str=11 ,**A : Union[str, Any] ,): __A = vocab_size # Backward compatibility with n_embed kwarg __A = kwargs.pop("n_embed" ,A ) __A = hidden_size if n_embed is None else n_embed __A = num_hidden_layers __A = num_attention_heads __A = layer_norm_epsilon __A = initializer_range __A = use_cache __A = hidden_dropout __A = attention_dropout __A = bos_token_id __A = eos_token_id __A = num_attention_heads if num_kv_heads is None else num_kv_heads __A = alibi __A = new_decoder_architecture __A = multi_query # Ignored when new_decoder_architecture is True __A = parallel_attn __A = bias super().__init__(bos_token_id=A ,eos_token_id=A ,**A ) @property def UpperCamelCase_ ( self : Optional[int] ): return self.hidden_size // self.num_attention_heads @property def UpperCamelCase_ ( self : List[str] ): return not self.alibi
55
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case_ = Features({"image": Image()} ) snake_case_ = Features({"labels": ClassLabel} ) snake_case_ = "image" snake_case_ = "labels" def UpperCamelCase_ ( self : Optional[Any] ,A : Tuple ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] ,A ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) __A = copy.deepcopy(self ) __A = self.label_schema.copy() __A = features[self.label_column] __A = label_schema return task_template @property def UpperCamelCase_ ( self : Any ): return { self.image_column: "image", self.label_column: "labels", }
55
1
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]: """simple docstring""" __A = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") __A = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(a_ ): os.makedirs(a_ ) __A = model.state_dict() def to_tf_var_name(a_ ): for patt, repl in iter(a_ ): __A = name.replace(a_ , a_ ) return F'''bert/{name}''' def create_tf_var(a_ , a_ , a_ ): __A = tf.dtypes.as_dtype(tensor.dtype ) __A = tf.get_variable(dtype=a_ , shape=tensor.shape , name=a_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(a_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __A = to_tf_var_name(a_ ) __A = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __A = torch_tensor.T __A = create_tf_var(tensor=a_ , name=a_ , session=a_ ) tf.keras.backend.set_value(a_ , a_ ) __A = session.run(a_ ) print(F'''Successfully created {tf_name}: {np.allclose(a_ , a_ )}''' ) __A = tf.train.Saver(tf.trainable_variables() ) saver.save(a_ , os.path.join(a_ , model_name.replace("-" , "_" ) + ".ckpt" ) ) def UpperCAmelCase ( a_=None ) -> List[Any]: """simple docstring""" __A = argparse.ArgumentParser() parser.add_argument("--model_name" , type=a_ , required=a_ , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=a_ , default=a_ , required=a_ , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=a_ , required=a_ , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=a_ , required=a_ , help="Directory in which to save tensorflow model" ) __A = parser.parse_args(a_ ) __A = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=a_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
55
from math import sqrt def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' must been an int and positive" __A = True # 0 and 1 are none primes. if number <= 1: __A = False for divisor in range(2 , int(round(sqrt(a_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __A = False break # precondition assert isinstance(a_ , a_ ), "'status' must been from type bool" return status def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __A = list(range(2 , n + 1 ) ) __A = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(a_ ) ): for j in range(i + 1 , len(a_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __A = 0 # filters actual prime numbers. __A = [x for x in begin_list if x != 0] # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2" __A = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(a_ ): ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and number >= 0, "'number' must been an int and >= 0" __A = [] # this list will be returns of the function. # potential prime number factors. __A = 2 __A = number if number == 0 or number == 1: ans.append(a_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(a_ ): while quotient != 1: if is_prime(a_ ) and (quotient % factor == 0): ans.append(a_ ) quotient /= factor else: factor += 1 else: ans.append(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type list" return ans def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = max(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A = 0 # prime factorization of 'number' __A = prime_factorization(a_ ) __A = min(a_ ) # precondition assert isinstance(a_ , a_ ), "'ans' must been from type int" return ans def UpperCAmelCase ( a_ ) -> int: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , a_ ), "compare bust been from type bool" return number % 2 == 0 def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , a_ ), "compare bust been from type bool" return number % 2 != 0 def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and (number > 2) and is_even(a_ ) ), "'number' must been an int, even and > 2" __A = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __A = get_prime_numbers(a_ ) __A = len(a_ ) # run variable for while-loops. __A = 0 __A = None # exit variable. for break up the loops __A = True while i < len_pn and loop: __A = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __A = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(a_ , a_ ) and (len(a_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __A = 0 while numbera != 0: __A = numbera % numbera __A = numbera __A = rest # precondition assert isinstance(a_ , a_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def UpperCAmelCase ( a_ , a_ ) -> List[str]: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __A = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __A = prime_factorization(a_ ) __A = prime_factorization(a_ ) elif numbera == 1 or numbera == 1: __A = [] __A = [] __A = max(a_ , a_ ) __A = 0 __A = 0 __A = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __A = prime_fac_a.count(a_ ) __A = prime_fac_a.count(a_ ) for _ in range(max(a_ , a_ ) ): ans *= n else: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __A = prime_fac_a.count(a_ ) for _ in range(a_ ): ans *= n done.append(a_ ) # precondition assert isinstance(a_ , a_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'number' must been a positive int" __A = 0 __A = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(a_ ): ans += 1 # precondition assert isinstance(a_ , a_ ) and is_prime( a_ ), "'ans' must been a prime number and from type int" return ans def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" assert ( is_prime(a_ ) and is_prime(a_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __A = p_number_a + 1 # jump to the next number __A = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(a_ ): number += 1 while number < p_number_a: ans.append(a_ ) number += 1 # fetch the next prime number. while not is_prime(a_ ): number += 1 # precondition assert ( isinstance(a_ , a_ ) and ans[0] != p_number_a and ans[len(a_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def UpperCAmelCase ( a_ ) -> str: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 1), "'n' must been int and >= 1" __A = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(a_ ) # precondition assert ans[0] == 1 and ans[len(a_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" assert isinstance(a_ , a_ ) and ( number > 1 ), "'number' must been an int and >= 1" __A = get_divisors(a_ ) # precondition assert ( isinstance(a_ , a_ ) and (divisors[0] == 1) and (divisors[len(a_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def UpperCAmelCase ( a_ , a_ ) -> str: """simple docstring""" assert ( isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __A = gcd(abs(a_ ) , abs(a_ ) ) # precondition assert ( isinstance(a_ , a_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been a int and >= 0" __A = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been an int and >= 0" __A = 0 __A = 1 __A = 1 # this will be return for _ in range(n - 1 ): __A = ans ans += fiba __A = tmp return ans
55
1
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A ,"width_multiplier" ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self : int ,A : Optional[int] ,A : int=13 ,A : int=64 ,A : List[Any]=2 ,A : List[Any]=3 ,A : List[Any]="swish" ,A : Any=3 ,A : Optional[Any]=32 ,A : Union[str, Any]=0.1 ,A : Union[str, Any]=0.02 ,A : Any=True ,A : Optional[Any]=True ,A : List[Any]=10 ,A : Union[str, Any]=None ,A : Any=0.25 ,A : int=0.0 ,A : Tuple=0.0 ,): __A = parent __A = batch_size __A = image_size __A = patch_size __A = num_channels __A = make_divisible(5_12 * width_multiplier ,divisor=8 ) __A = hidden_act __A = conv_kernel_size __A = output_stride __A = classifier_dropout_prob __A = use_labels __A = is_training __A = num_labels __A = initializer_range __A = scope __A = width_multiplier __A = ffn_dropout __A = attn_dropout def UpperCamelCase_ ( self : List[Any] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.num_labels ) __A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) __A = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self : Tuple ): return MobileViTVaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_act=self.hidden_act ,conv_kernel_size=self.conv_kernel_size ,output_stride=self.output_stride ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,width_multiplier=self.width_multiplier ,ffn_dropout=self.ffn_dropout_prob ,attn_dropout=self.attn_dropout_prob ,) def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,A : List[str] ,A : Optional[Any] ,A : List[str] ): __A = MobileViTVaModel(config=A ) model.to(A ) model.eval() __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def UpperCamelCase_ ( self : List[Any] ,A : Dict ,A : str ,A : Any ,A : Tuple ): __A = self.num_labels __A = MobileViTVaForImageClassification(A ) model.to(A ) model.eval() __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : Dict ,A : str ,A : Tuple ,A : int ,A : Dict ): __A = self.num_labels __A = MobileViTVaForSemanticSegmentation(A ) model.to(A ) model.eval() __A = model(A ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) __A = model(A ,labels=A ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def UpperCamelCase_ ( self : Optional[int] ): __A = self.prepare_config_and_inputs() __A , __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) snake_case_ = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : Dict ): __A = MobileViTVaModelTester(self ) __A = MobileViTVaConfigTester(self ,config_class=A ,has_text_modality=A ) def UpperCamelCase_ ( self : Optional[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def UpperCamelCase_ ( self : List[Any] ): pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def UpperCamelCase_ ( self : Any ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def UpperCamelCase_ ( self : Union[str, Any] ): pass def UpperCamelCase_ ( self : Any ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : List[Any] ): def check_hidden_states_output(A : Union[str, Any] ,A : int ,A : List[Any] ): __A = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(A ,A ) ) __A = outputs.hidden_states __A = 5 self.assertEqual(len(A ) ,A ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __A = 2 for i in range(len(A ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) ,[self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] ,) divisor *= 2 self.assertEqual(self.model_tester.output_stride ,divisor // 2 ) __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = True check_hidden_states_output(A ,A ,A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A = True check_hidden_states_output(A ,A ,A ) def UpperCamelCase_ ( self : Optional[int] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCamelCase_ ( self : List[str] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A ) @slow def UpperCamelCase_ ( self : List[Any] ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = MobileViTVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : List[Any] ): return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Any ): __A = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): __A = model(**A ) # verify the logits __A = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape ,A ) __A = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : List[str] ): __A = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) __A = model.to(A ) __A = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): __A = model(**A ) __A = outputs.logits # verify the logits __A = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape ,A ) __A = torch.tensor( [ [[7.08_63, 7.15_25, 6.82_01], [6.69_31, 6.87_70, 6.89_33], [6.29_78, 7.03_66, 6.96_36]], [[-3.71_34, -3.67_12, -3.66_75], [-3.58_25, -3.35_49, -3.47_77], [-3.34_35, -3.39_79, -3.28_57]], [[-2.93_29, -2.80_03, -2.73_69], [-3.05_64, -2.47_80, -2.02_07], [-2.68_89, -1.92_98, -1.76_40]], ] ,device=A ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,A ,atol=1E-4 ) ) @slow def UpperCamelCase_ ( self : Optional[Any] ): __A = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) __A = model.to(A ) __A = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): __A = model(**A ) __A = outputs.logits.detach().cpu() __A = image_processor.post_process_semantic_segmentation(outputs=A ,target_sizes=[(50, 60)] ) __A = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape ,A ) __A = image_processor.post_process_semantic_segmentation(outputs=A ) __A = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape ,A )
55
import os def UpperCAmelCase ( ) -> Any: """simple docstring""" __A = os.path.dirname(os.path.realpath(a_ ) ) __A = os.path.join(a_ , "triangle.txt" ) with open(a_ ) as f: __A = f.readlines() __A = [] for line in triangle: __A = [] for number in line.strip().split(" " ): numbers_from_line.append(int(a_ ) ) a.append(a_ ) for i in range(1 , len(a_ ) ): for j in range(len(a[i] ) ): __A = a[i - 1][j] if j != len(a[i - 1] ) else 0 __A = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(a_ , a_ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
55
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE :Any = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Any = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels SCREAMING_SNAKE_CASE :Union[str, Any] = object() # For specifying empty leaf dict `{}` SCREAMING_SNAKE_CASE :List[str] = object() def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" __A = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(a_ ) - len(a_ ) + 1 ): __A = [x.match(a_ ) for x, y in zip(a_ , ks[i:] )] if matches and all(a_ ): return True return False def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" def replace(a_ , a_ ): for rule, replacement in rules: if _match(a_ , a_ ): return replacement return val return replace def UpperCAmelCase ( ) -> int: """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , a_ )), (("transformer", "wte", "embedding"), P("mp" , a_ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a_ , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , a_ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(a_ , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , a_ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" __A = _get_partition_rules() __A = _replacement_rules(a_ ) __A = {k: _unmatched for k in flatten_dict(a_ )} __A = {k: replace(a_ , a_ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(a_ ) )
55
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = (UniPCMultistepScheduler,) snake_case_ = (("num_inference_steps", 25),) def UpperCamelCase_ ( self : int ,**A : List[Any] ): __A = { "num_train_timesteps": 10_00, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "solver_type": "bh2", } config.update(**A ) return config def UpperCamelCase_ ( self : List[Any] ,A : Dict=0 ,**A : List[Any] ): __A = dict(self.forward_default_kwargs ) __A = kwargs.pop("num_inference_steps" ,A ) __A = self.dummy_sample __A = 0.1 * sample __A = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __A = self.get_scheduler_config(**A ) __A = scheduler_class(**A ) scheduler.set_timesteps(A ) # copy over dummy past residuals __A = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A ) __A = scheduler_class.from_pretrained(A ) new_scheduler.set_timesteps(A ) # copy over dummy past residuals __A = dummy_past_residuals[: new_scheduler.config.solver_order] __A , __A = sample, sample for t in range(A ,time_step + scheduler.config.solver_order + 1 ): __A = scheduler.step(A ,A ,A ,**A ).prev_sample __A = new_scheduler.step(A ,A ,A ,**A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self : str ,A : Optional[Any]=0 ,**A : Union[str, Any] ): __A = dict(self.forward_default_kwargs ) __A = kwargs.pop("num_inference_steps" ,A ) __A = self.dummy_sample __A = 0.1 * sample __A = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __A = self.get_scheduler_config() __A = scheduler_class(**A ) scheduler.set_timesteps(A ) # copy over dummy past residuals (must be after setting timesteps) __A = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A ) __A = scheduler_class.from_pretrained(A ) # copy over dummy past residuals new_scheduler.set_timesteps(A ) # copy over dummy past residual (must be after setting timesteps) __A = dummy_past_residuals[: new_scheduler.config.solver_order] __A = scheduler.step(A ,A ,A ,**A ).prev_sample __A = new_scheduler.step(A ,A ,A ,**A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self : Union[str, Any] ,A : Tuple=None ,**A : Tuple ): if scheduler is None: __A = self.scheduler_classes[0] __A = self.get_scheduler_config(**A ) __A = scheduler_class(**A ) __A = self.scheduler_classes[0] __A = self.get_scheduler_config(**A ) __A = scheduler_class(**A ) __A = 10 __A = self.dummy_model() __A = self.dummy_sample_deter scheduler.set_timesteps(A ) for i, t in enumerate(scheduler.timesteps ): __A = model(A ,A ) __A = scheduler.step(A ,A ,A ).prev_sample return sample def UpperCamelCase_ ( self : str ): __A = dict(self.forward_default_kwargs ) __A = kwargs.pop("num_inference_steps" ,A ) for scheduler_class in self.scheduler_classes: __A = self.get_scheduler_config() __A = scheduler_class(**A ) __A = self.dummy_sample __A = 0.1 * sample if num_inference_steps is not None and hasattr(A ,"set_timesteps" ): scheduler.set_timesteps(A ) elif num_inference_steps is not None and not hasattr(A ,"set_timesteps" ): __A = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __A = [residual + 0.2, residual + 0.15, residual + 0.10] __A = dummy_past_residuals[: scheduler.config.solver_order] __A = scheduler.timesteps[5] __A = scheduler.timesteps[6] __A = scheduler.step(A ,A ,A ,**A ).prev_sample __A = scheduler.step(A ,A ,A ,**A ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def UpperCamelCase_ ( self : Dict ): # make sure that iterating over schedulers with same config names gives same results # for defaults __A = UniPCMultistepScheduler(**self.get_scheduler_config() ) __A = self.full_loop(scheduler=A ) __A = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.24_64 ) < 1E-3 __A = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __A = DEISMultistepScheduler.from_config(scheduler.config ) __A = DPMSolverMultistepScheduler.from_config(scheduler.config ) __A = UniPCMultistepScheduler.from_config(scheduler.config ) __A = self.full_loop(scheduler=A ) __A = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.24_64 ) < 1E-3 def UpperCamelCase_ ( self : int ): for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=A ) def UpperCamelCase_ ( self : Union[str, Any] ): self.check_over_configs(thresholding=A ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=A ,prediction_type=A ,sample_max_value=A ,solver_order=A ,solver_type=A ,) def UpperCamelCase_ ( self : Union[str, Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A ) def UpperCamelCase_ ( self : int ): for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=A ,solver_type=A ,prediction_type=A ,) __A = self.full_loop( solver_order=A ,solver_type=A ,prediction_type=A ,) assert not torch.isnan(A ).any(), "Samples have nan numbers" def UpperCamelCase_ ( self : int ): self.check_over_configs(lower_order_final=A ) self.check_over_configs(lower_order_final=A ) def UpperCamelCase_ ( self : List[str] ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=A ,time_step=0 ) def UpperCamelCase_ ( self : Optional[int] ): __A = self.full_loop() __A = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.24_64 ) < 1E-3 def UpperCamelCase_ ( self : Any ): __A = self.full_loop(prediction_type="v_prediction" ) __A = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.10_14 ) < 1E-3 def UpperCamelCase_ ( self : Tuple ): __A = self.scheduler_classes[0] __A = self.get_scheduler_config(thresholding=A ,dynamic_thresholding_ratio=0 ) __A = scheduler_class(**A ) __A = 10 __A = self.dummy_model() __A = self.dummy_sample_deter.half() scheduler.set_timesteps(A ) for i, t in enumerate(scheduler.timesteps ): __A = model(A ,A ) __A = scheduler.step(A ,A ,A ).prev_sample assert sample.dtype == torch.floataa def UpperCamelCase_ ( self : int ,**A : Tuple ): for scheduler_class in self.scheduler_classes: __A = self.get_scheduler_config(**A ) __A = scheduler_class(**A ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
55
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] ,A : Union[str, Any] ,A : List[Any]=13 ,A : Optional[Any]=30 ,A : Union[str, Any]=2 ,A : Union[str, Any]=3 ,A : Any=True ,A : Dict=True ,A : str=32 ,A : Tuple=2 ,A : Optional[int]=4 ,A : Tuple=37 ,A : List[Any]="gelu" ,A : Dict=0.1 ,A : Optional[int]=0.1 ,A : List[Any]=10 ,A : Optional[Any]=0.02 ,A : Dict=3 ,A : Dict=None ,A : List[Any]=2 ,): __A = parent __A = batch_size __A = image_size __A = patch_size __A = num_channels __A = is_training __A = use_labels __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = type_sequence_label_size __A = initializer_range __A = scope __A = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __A = (image_size // patch_size) ** 2 __A = num_patches + 2 def UpperCamelCase_ ( self : List[Any] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Optional[int] ): return DeiTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,A : Optional[int] ,A : Union[str, Any] ): __A = TFDeiTModel(config=A ) __A = model(A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : List[Any] ,A : List[Any] ,A : Optional[Any] ,A : Dict ): __A = TFDeiTForMaskedImageModeling(config=A ) __A = model(A ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __A = 1 __A = TFDeiTForMaskedImageModeling(A ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(A ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase_ ( self : Optional[Any] ,A : Union[str, Any] ,A : Dict ,A : Union[str, Any] ): __A = self.type_sequence_label_size __A = TFDeiTForImageClassification(A ) __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __A = 1 __A = TFDeiTForImageClassification(A ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) snake_case_ = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : str ): __A = TFDeiTModelTester(self ) __A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 ) def UpperCamelCase_ ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass def UpperCamelCase_ ( self : List[Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) __A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A ,tf.keras.layers.Dense ) ) def UpperCamelCase_ ( self : Union[str, Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCamelCase_ ( self : Optional[int] ,A : Union[str, Any] ,A : List[str] ,A : Optional[Any]=False ): __A = super()._prepare_for_class(A ,A ,return_labels=A ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def UpperCamelCase_ ( self : Any ): for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = TFDeiTModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> str: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : int ): return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[int] ): __A = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="tf" ) # forward pass __A = model(**A ) # verify the logits __A = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape ,A ) __A = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
1
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class UpperCAmelCase : '''simple docstring''' def __init__( self : str ): __A = "" __A = "" __A = [] __A = 0 __A = 2_56 __A = 0 __A = 0 __A = 0 __A = 0 def UpperCamelCase_ ( self : Union[str, Any] ,A : Dict ): __A = cva.imread(A ,0 ) __A = copy.deepcopy(self.img ) __A , __A , __A = plt.hist(self.img.ravel() ,2_56 ,[0, 2_56] ,label="x" ) __A = np.sum(A ) for i in range(len(A ) ): __A = x[i] / self.k self.sk += prk __A = (self.L - 1) * self.sk if self.rem != 0: __A = int(last % last ) __A = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(A ) __A = int(np.ma.count(self.img ) / self.img[1].size ) __A = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): __A = self.img[j][i] if num != self.last_list[num]: __A = self.last_list[num] cva.imwrite("output_data/output.jpg" ,self.img ) def UpperCamelCase_ ( self : Optional[Any] ): plt.hist(self.img.ravel() ,2_56 ,[0, 2_56] ) def UpperCamelCase_ ( self : Any ): cva.imshow("Output-Image" ,self.img ) cva.imshow("Input-Image" ,self.original_image ) cva.waitKey(50_00 ) cva.destroyAllWindows() if __name__ == "__main__": SCREAMING_SNAKE_CASE :Union[str, Any] = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') SCREAMING_SNAKE_CASE :Tuple = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
55
SCREAMING_SNAKE_CASE :List[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE :Union[str, Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE :int = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" assert len(str(a_ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 1_2, "month should be between 1 to 12" assert 1 <= day <= 3_1, "day should be between 1 to 31" # Doomsday algorithm: __A = year // 1_0_0 __A = (5 * (century % 4) + 2) % 7 __A = year % 1_0_0 __A = centurian % 1_2 __A = ( (centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __A = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0) else DOOMSDAY_LEAP[month - 1] ) __A = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
55
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE :Dict = logging.get_logger(__name__) def UpperCAmelCase ( a_ , a_=False ) -> List[str]: """simple docstring""" __A = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __A = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def UpperCAmelCase ( a_ , a_ , a_=False ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: __A = "" else: __A = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __A = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) __A = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __A = in_proj_weight[ : config.hidden_size, : ] __A = in_proj_bias[: config.hidden_size] __A = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __A = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __A = in_proj_weight[ -config.hidden_size :, : ] __A = in_proj_bias[-config.hidden_size :] def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" __A = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(a_ , a_ ) def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[Any]: """simple docstring""" __A = dct.pop(a_ ) __A = val def UpperCAmelCase ( ) -> Tuple: """simple docstring""" __A = "http://images.cocodataset.org/val2017/000000039769.jpg" __A = Image.open(requests.get(a_ , stream=a_ ).raw ) return im @torch.no_grad() def UpperCAmelCase ( a_ , a_ ) -> Dict: """simple docstring""" __A = ViTConfig() __A = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": __A = True __A = int(vit_name[-1_2:-1_0] ) __A = int(vit_name[-9:-6] ) else: __A = 1_0_0_0 __A = "huggingface/label-files" __A = "imagenet-1k-id2label.json" __A = json.load(open(hf_hub_download(a_ , a_ , repo_type="dataset" ) , "r" ) ) __A = {int(a_ ): v for k, v in idalabel.items()} __A = idalabel __A = {v: k for k, v in idalabel.items()} __A = int(vit_name[-6:-4] ) __A = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): __A = 1_9_2 __A = 7_6_8 __A = 1_2 __A = 3 elif vit_name[9:].startswith("small" ): __A = 3_8_4 __A = 1_5_3_6 __A = 1_2 __A = 6 else: pass else: if vit_name[4:].startswith("small" ): __A = 7_6_8 __A = 2_3_0_4 __A = 8 __A = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): __A = 1_0_2_4 __A = 4_0_9_6 __A = 2_4 __A = 1_6 elif vit_name[4:].startswith("huge" ): __A = 1_2_8_0 __A = 5_1_2_0 __A = 3_2 __A = 1_6 # load original model from timm __A = timm.create_model(a_ , pretrained=a_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys __A = timm_model.state_dict() if base_model: remove_classification_head_(a_ ) __A = create_rename_keys(a_ , a_ ) for src, dest in rename_keys: rename_key(a_ , a_ , a_ ) read_in_q_k_v(a_ , a_ , a_ ) # load HuggingFace model if vit_name[-5:] == "in21k": __A = ViTModel(a_ ).eval() else: __A = ViTForImageClassification(a_ ).eval() model.load_state_dict(a_ ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: __A = DeiTImageProcessor(size=config.image_size ) else: __A = ViTImageProcessor(size=config.image_size ) __A = image_processor(images=prepare_img() , return_tensors="pt" ) __A = encoding["pixel_values"] __A = model(a_ ) if base_model: __A = timm_model.forward_features(a_ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(a_ , outputs.pooler_output , atol=1E-3 ) else: __A = timm_model(a_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(a_ , outputs.logits , atol=1E-3 ) Path(a_ ).mkdir(exist_ok=a_ ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(a_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(a_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE :Optional[int] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
55
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def UpperCAmelCase ( a_ = "isbn/0140328726" ) -> dict: """simple docstring""" __A = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes if new_olid.count("/" ) != 1: __A = F'''{olid} is not a valid Open Library olid''' raise ValueError(a_ ) return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json() def UpperCAmelCase ( a_ ) -> dict: """simple docstring""" __A = { "title": "Title", "publish_date": "Publish date", "authors": "Authors", "number_of_pages": "Number of pages:", "first_sentence": "First sentence", "isbn_10": "ISBN (10)", "isbn_13": "ISBN (13)", } __A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __A = [ get_openlibrary_data(author["key"] )["name"] for author in data["Authors"] ] __A = data["First sentence"]["value"] for key, value in data.items(): if isinstance(a_ , a_ ): __A = ", ".join(a_ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: SCREAMING_SNAKE_CASE :int = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: SCREAMING_SNAKE_CASE :Any = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
55
1
import collections import importlib.util import os import re from pathlib import Path SCREAMING_SNAKE_CASE :str = 'src/transformers' # Matches is_xxx_available() SCREAMING_SNAKE_CASE :List[str] = re.compile(R'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} SCREAMING_SNAKE_CASE :Any = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] SCREAMING_SNAKE_CASE :Optional[int] = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available SCREAMING_SNAKE_CASE :List[str] = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") SCREAMING_SNAKE_CASE :Tuple = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] SCREAMING_SNAKE_CASE :List[Any] = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", SCREAMING_SNAKE_CASE :int = re.compile('^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], SCREAMING_SNAKE_CASE :Tuple = re.compile('^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo SCREAMING_SNAKE_CASE :Union[str, Any] = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: SCREAMING_SNAKE_CASE :Union[str, Any] = re.compile(R'^\s*try:') # Catches a line with else: SCREAMING_SNAKE_CASE :Dict = re.compile(R'^\s*else:') def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" if _re_test_backend.search(a_ ) is None: return None __A = [b[0] for b in _re_backend.findall(a_ )] backends.sort() return "_and_".join(a_ ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" with open(a_ , "r" , encoding="utf-8" , newline="\n" ) as f: __A = f.readlines() __A = 0 while line_index < len(a_ ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(a_ ): return None # First grab the objects without a specific backend in _import_structure __A = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: __A = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(a_ ): __A = _re_one_line_import_struct.search(a_ ).groups()[0] __A = re.findall("\[([^\]]+)\]" , a_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue __A = _re_import_struct_key_value.search(a_ ) if single_line_import_search is not None: __A = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(a_ ) > 0] objects.extend(a_ ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 __A = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. __A = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __A = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): __A = lines[line_index] if _re_import_struct_add_one.search(a_ ) is not None: objects.append(_re_import_struct_add_one.search(a_ ).groups()[0] ) elif _re_import_struct_add_many.search(a_ ) is not None: __A = _re_import_struct_add_many.search(a_ ).groups()[0].split(", " ) __A = [obj[1:-1] for obj in imports if len(a_ ) > 0] objects.extend(a_ ) elif _re_between_brackets.search(a_ ) is not None: __A = _re_between_brackets.search(a_ ).groups()[0].split(", " ) __A = [obj[1:-1] for obj in imports if len(a_ ) > 0] objects.extend(a_ ) elif _re_quote_object.search(a_ ) is not None: objects.append(_re_quote_object.search(a_ ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 1_2 + "\"" ): objects.append(line[1_3:-3] ) line_index += 1 __A = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __A = [] while ( line_index < len(a_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): __A = lines[line_index] __A = _re_import.search(a_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 __A = {"none": objects} # Let's continue with backend-specific objects while line_index < len(a_ ): # If the line is an if is_backend_available, we grab all objects associated. __A = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __A = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): __A = lines[line_index] __A = _re_import.search(a_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 1_2 ): objects.append(line[1_2:-2] ) line_index += 1 __A = objects else: line_index += 1 return import_dict_objects, type_hint_objects def UpperCAmelCase ( a_ , a_ ) -> int: """simple docstring""" def find_duplicates(a_ ): return [k for k, v in collections.Counter(a_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __A = [] for key in import_dict_objects.keys(): __A = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) __A = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __A = "base imports" if key == "none" else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def UpperCAmelCase ( ) -> str: """simple docstring""" __A = [] for root, _, files in os.walk(a_ ): if "__init__.py" in files: __A = os.path.join(a_ , "__init__.py" ) __A = parse_init(a_ ) if objects is not None: __A = analyze_results(*a_ ) if len(a_ ) > 0: __A = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("\n".join(a_ ) ) if len(a_ ) > 0: raise ValueError("\n\n".join(a_ ) ) def UpperCAmelCase ( ) -> List[str]: """simple docstring""" __A = [] for path, directories, files in os.walk(a_ ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(a_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(a_ ) / folder).glob("*.py" ) ) ) == 0: continue __A = str((Path(a_ ) / folder).relative_to(a_ ) ) __A = short_path.replace(os.path.sep , "." ) submodules.append(a_ ) for fname in files: if fname == "__init__.py": continue __A = str((Path(a_ ) / fname).relative_to(a_ ) ) __A = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(a_ ) return submodules SCREAMING_SNAKE_CASE :Tuple = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" __A = importlib.util.spec_from_file_location( "transformers" , os.path.join(a_ , "__init__.py" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) __A = spec.loader.load_module() __A = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(a_ ) > 0: __A = "\n".join(F'''- {module}''' for module in module_not_registered ) raise ValueError( "The following submodules are not properly registered in the main init of Transformers:\n" F'''{list_of_modules}\n''' "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
55
import requests SCREAMING_SNAKE_CASE :List[str] = 'YOUR API KEY' def UpperCAmelCase ( a_ , a_ = giphy_api_key ) -> list: """simple docstring""" __A = "+".join(query.split() ) __A = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' __A = requests.get(a_ ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
55
1
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : str ,A : int ,A : int=2 ,A : Optional[Any]=3 ,A : Dict=4 ,A : Optional[int]=2 ,A : Union[str, Any]=7 ,A : List[str]=True ,A : Union[str, Any]=True ,A : Optional[int]=True ,A : Optional[int]=True ,A : Tuple=99 ,A : Optional[int]=36 ,A : Dict=3 ,A : str=4 ,A : Optional[Any]=37 ,A : Dict="gelu" ,A : Dict=0.1 ,A : Union[str, Any]=0.1 ,A : Union[str, Any]=5_12 ,A : Any=16 ,A : Union[str, Any]=2 ,A : List[Any]=0.02 ,A : List[Any]=6 ,A : Optional[int]=6 ,A : List[Any]=3 ,A : Union[str, Any]=4 ,A : Tuple=None ,A : List[str]=10_00 ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = patch_size __A = text_seq_length __A = is_training __A = use_input_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = coordinate_size __A = shape_size __A = num_labels __A = num_choices __A = scope __A = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __A = text_seq_length __A = (image_size // patch_size) ** 2 + 1 __A = self.text_seq_length + self.image_seq_length def UpperCamelCase_ ( self : int ): __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size ) __A = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __A = bbox[i, j, 3] __A = bbox[i, j, 1] __A = t if bbox[i, j, 2] < bbox[i, j, 0]: __A = bbox[i, j, 2] __A = bbox[i, j, 0] __A = t __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.text_seq_length] ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels ) __A = LayoutLMvaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase_ ( self : Optional[int] ,A : List[str] ,A : Any ,A : Dict ,A : List[Any] ,A : Optional[int] ,A : Any ,A : Dict ,A : List[Any] ): __A = LayoutLMvaModel(config=A ) model.to(A ) model.eval() # text + image __A = model(A ,pixel_values=A ) __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) # text only __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __A = model(pixel_values=A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Optional[int] ,A : Dict ,A : List[str] ,A : Any ,A : List[Any] ,A : Any ,A : Any ,A : Dict ,A : Optional[Any] ): __A = self.num_labels __A = LayoutLMvaForSequenceClassification(A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : str ,A : Optional[Any] ,A : Dict ,A : str ,A : Tuple ,A : Union[str, Any] ,A : List[Any] ,A : Any ,A : Union[str, Any] ): __A = self.num_labels __A = LayoutLMvaForTokenClassification(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : int ,A : str ,A : List[str] ,A : int ,A : List[str] ,A : List[str] ,A : Dict ): __A = LayoutLMvaForQuestionAnswering(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,start_positions=A ,end_positions=A ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = config_and_inputs __A = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) snake_case_ = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def UpperCamelCase_ ( self : str ,A : Any ,A : Any ,A : Tuple ,A : List[Any] ,A : Optional[Any] ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def UpperCamelCase_ ( self : Union[str, Any] ): __A = LayoutLMvaModelTester(self ) __A = ConfigTester(self ,config_class=A ,hidden_size=37 ) def UpperCamelCase_ ( self : List[Any] ,A : int ,A : List[str] ,A : Dict=False ): __A = copy.deepcopy(A ) if model_class in get_values(A ): __A = { k: v.unsqueeze(1 ).expand(-1 ,self.model_tester.num_choices ,-1 ).contiguous() if isinstance(A ,torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A ): __A = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in get_values(A ): __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=A ,) return inputs_dict def UpperCamelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __A = type self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = LayoutLMvaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> Dict: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : Any ): return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : Dict ): __A = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).pixel_values.to(A ) __A = torch.tensor([[1, 2]] ) __A = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __A = model( input_ids=input_ids.to(A ) ,bbox=bbox.to(A ) ,pixel_values=pixel_values.to(A ) ,) # verify the logits __A = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape ,A ) __A = torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,A ,atol=1E-4 ) )
55
import itertools import math def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" __A = 2 while True: if is_prime(a_ ): yield num num += 1 def UpperCAmelCase ( a_ = 1_0_0_0_1 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , a_ ) ) if __name__ == "__main__": print(f'''{solution() = }''')
55
1
def UpperCAmelCase ( a_ , a_ ) -> int: """simple docstring""" if len(a_ ) != len(a_ ): raise ValueError("String lengths must match!" ) __A = 0 for chara, chara in zip(a_ , a_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
55
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]: """simple docstring""" __A = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") __A = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(a_ ): os.makedirs(a_ ) __A = model.state_dict() def to_tf_var_name(a_ ): for patt, repl in iter(a_ ): __A = name.replace(a_ , a_ ) return F'''bert/{name}''' def create_tf_var(a_ , a_ , a_ ): __A = tf.dtypes.as_dtype(tensor.dtype ) __A = tf.get_variable(dtype=a_ , shape=tensor.shape , name=a_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(a_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __A = to_tf_var_name(a_ ) __A = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __A = torch_tensor.T __A = create_tf_var(tensor=a_ , name=a_ , session=a_ ) tf.keras.backend.set_value(a_ , a_ ) __A = session.run(a_ ) print(F'''Successfully created {tf_name}: {np.allclose(a_ , a_ )}''' ) __A = tf.train.Saver(tf.trainable_variables() ) saver.save(a_ , os.path.join(a_ , model_name.replace("-" , "_" ) + ".ckpt" ) ) def UpperCAmelCase ( a_=None ) -> List[Any]: """simple docstring""" __A = argparse.ArgumentParser() parser.add_argument("--model_name" , type=a_ , required=a_ , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=a_ , default=a_ , required=a_ , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=a_ , required=a_ , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=a_ , required=a_ , help="Directory in which to save tensorflow model" ) __A = parser.parse_args(a_ ) __A = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=a_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
55
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE :str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Tuple = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "swin2sr" snake_case_ = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : List[str] ,A : str=64 ,A : Union[str, Any]=1 ,A : List[Any]=3 ,A : Dict=1_80 ,A : List[str]=[6, 6, 6, 6, 6, 6] ,A : Any=[6, 6, 6, 6, 6, 6] ,A : int=8 ,A : Dict=2.0 ,A : List[str]=True ,A : Dict=0.0 ,A : Tuple=0.0 ,A : Dict=0.1 ,A : List[Any]="gelu" ,A : int=False ,A : Optional[Any]=0.02 ,A : str=1E-5 ,A : List[Any]=2 ,A : Union[str, Any]=1.0 ,A : Any="1conv" ,A : Optional[int]="pixelshuffle" ,**A : Union[str, Any] ,): super().__init__(**A ) __A = image_size __A = patch_size __A = num_channels __A = embed_dim __A = depths __A = len(A ) __A = num_heads __A = window_size __A = mlp_ratio __A = qkv_bias __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = drop_path_rate __A = hidden_act __A = use_absolute_embeddings __A = layer_norm_eps __A = initializer_range __A = upscale __A = img_range __A = resi_connection __A = upsampler
55
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE :Any = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Any = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def UpperCAmelCase ( a_ ) -> int: """simple docstring""" __A = 3_8_4 if "tiny" in model_name: __A = [3, 3, 9, 3] __A = [9_6, 1_9_2, 3_8_4, 7_6_8] if "small" in model_name: __A = [3, 3, 2_7, 3] __A = [9_6, 1_9_2, 3_8_4, 7_6_8] if "base" in model_name: __A = [3, 3, 2_7, 3] __A = [1_2_8, 2_5_6, 5_1_2, 1_0_2_4] __A = 5_1_2 if "large" in model_name: __A = [3, 3, 2_7, 3] __A = [1_9_2, 3_8_4, 7_6_8, 1_5_3_6] __A = 7_6_8 if "xlarge" in model_name: __A = [3, 3, 2_7, 3] __A = [2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] __A = 1_0_2_4 # set label information __A = 1_5_0 __A = "huggingface/label-files" __A = "ade20k-id2label.json" __A = json.load(open(hf_hub_download(a_ , a_ , repo_type="dataset" ) , "r" ) ) __A = {int(a_ ): v for k, v in idalabel.items()} __A = {v: k for k, v in idalabel.items()} __A = ConvNextConfig( depths=a_ , hidden_sizes=a_ , out_features=["stage1", "stage2", "stage3", "stage4"] ) __A = UperNetConfig( backbone_config=a_ , auxiliary_in_channels=a_ , num_labels=a_ , idalabel=a_ , labelaid=a_ , ) return config def UpperCAmelCase ( a_ ) -> List[str]: """simple docstring""" __A = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.{j}.gamma''', F'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((F'''backbone.downsample_layers.{i}.0.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.0.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[int]: """simple docstring""" __A = dct.pop(a_ ) __A = val def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]: """simple docstring""" __A = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } __A = model_name_to_url[model_name] __A = torch.hub.load_state_dict_from_url(a_ , map_location="cpu" )["state_dict"] __A = get_upernet_config(a_ ) __A = UperNetForSemanticSegmentation(a_ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __A = state_dict.pop(a_ ) if "bn" in key: __A = key.replace("bn" , "batch_norm" ) __A = val # rename keys __A = create_rename_keys(a_ ) for src, dest in rename_keys: rename_key(a_ , a_ , a_ ) model.load_state_dict(a_ ) # verify on image __A = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" __A = Image.open(requests.get(a_ , stream=a_ ).raw ).convert("RGB" ) __A = SegformerImageProcessor() __A = processor(a_ , return_tensors="pt" ).pixel_values with torch.no_grad(): __A = model(a_ ) if model_name == "upernet-convnext-tiny": __A = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": __A = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": __A = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": __A = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": __A = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , a_ , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(a_ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(a_ ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-convnext-tiny', type=str, choices=[f'''upernet-convnext-{size}''' for size in ['tiny', 'small', 'base', 'large', 'xlarge']], help='Name of the ConvNext UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) SCREAMING_SNAKE_CASE :List[str] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
55
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE :int = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def UpperCAmelCase ( a_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" __A = BeautifulSoup(requests.get(url + location ).content , "html.parser" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ): __A = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip() __A = job.find("span" , {"class": "company"} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
55
1
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch SCREAMING_SNAKE_CASE :Dict = logging.get_logger(__name__) @add_end_docstrings( __SCREAMING_SNAKE_CASE , R"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : Optional[int] ,A : GenericTensor ): if self.framework == "tf": __A = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": __A = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=A ) else: raise ValueError("Unsupported framework" ) return masked_index def UpperCamelCase_ ( self : Optional[Any] ,A : GenericTensor ): __A = self.get_masked_index(A ) __A = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( "fill-mask" ,self.model.base_model_prefix ,f'''No mask_token ({self.tokenizer.mask_token}) found on the input''' ,) def UpperCamelCase_ ( self : str ,A : GenericTensor ): if isinstance(A ,A ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["input_ids"][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(A ) def UpperCamelCase_ ( self : List[str] ,A : int ,A : Tuple=None ,**A : List[str] ): if return_tensors is None: __A = self.framework __A = self.tokenizer(A ,return_tensors=A ) self.ensure_exactly_one_mask_token(A ) return model_inputs def UpperCamelCase_ ( self : List[str] ,A : Optional[int] ): __A = self.model(**A ) __A = model_inputs["input_ids"] return model_outputs def UpperCamelCase_ ( self : Optional[Any] ,A : int ,A : str=5 ,A : Optional[int]=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: __A = target_ids.shape[0] __A = model_outputs["input_ids"][0] __A = model_outputs["logits"] if self.framework == "tf": __A = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] __A = outputs.numpy() __A = outputs[0, masked_index, :] __A = stable_softmax(A ,axis=-1 ) if target_ids is not None: __A = tf.gather_nd(tf.squeeze(A ,0 ) ,target_ids.reshape(-1 ,1 ) ) __A = tf.expand_dims(A ,0 ) __A = tf.math.top_k(A ,k=A ) __A , __A = topk.values.numpy(), topk.indices.numpy() else: __A = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=A ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample __A = outputs[0, masked_index, :] __A = logits.softmax(dim=-1 ) if target_ids is not None: __A = probs[..., target_ids] __A , __A = probs.topk(A ) __A = [] __A = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() ,predictions.tolist() ) ): __A = [] for v, p in zip(_values ,_predictions ): # Copy is important since we're going to modify this array in place __A = input_ids.numpy().copy() if target_ids is not None: __A = target_ids[p].tolist() __A = p # Filter padding out: __A = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back __A = self.tokenizer.decode(A ,skip_special_tokens=A ) __A = {"score": v, "token": p, "token_str": self.tokenizer.decode([p] ), "sequence": sequence} row.append(A ) result.append(A ) if single_mask: return result[0] return result def UpperCamelCase_ ( self : Any ,A : Optional[int] ,A : int=None ): if isinstance(A ,A ): __A = [targets] try: __A = self.tokenizer.get_vocab() except Exception: __A = {} __A = [] for target in targets: __A = vocab.get(A ,A ) if id_ is None: __A = self.tokenizer( A ,add_special_tokens=A ,return_attention_mask=A ,return_token_type_ids=A ,max_length=1 ,truncation=A ,)["input_ids"] if len(A ) == 0: logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' "We cannot replace it with anything meaningful, ignoring it" ) continue __A = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' f'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' ) target_ids.append(id_ ) __A = list(set(A ) ) if len(A ) == 0: raise ValueError("At least one target must be provided when passed." ) __A = np.array(A ) return target_ids def UpperCamelCase_ ( self : Any ,A : str=None ,A : List[str]=None ): __A = {} if targets is not None: __A = self.get_target_ids(A ,A ) __A = target_ids if top_k is not None: __A = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( "fill-mask" ,self.model.base_model_prefix ,"The tokenizer does not define a `mask_token`." ) return {}, {}, postprocess_params def __call__( self : Optional[int] ,A : Tuple ,*A : Optional[int] ,**A : str ): __A = super().__call__(A ,**A ) if isinstance(A ,A ) and len(A ) == 1: return outputs[0] return outputs
55
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : List[str] ): __A = tempfile.mkdtemp() __A = BlipImageProcessor() __A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) __A = BlipaProcessor(A ,A ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Dict ,**A : int ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).tokenizer def UpperCamelCase_ ( self : Dict ,**A : Optional[int] ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor def UpperCamelCase_ ( self : Dict ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self : Optional[int] ): __A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] __A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self : Any ): __A = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __A = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" ) __A = self.get_image_processor(do_normalize=A ,padding_value=1.0 ) __A = BlipaProcessor.from_pretrained( self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=A ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,A ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = self.prepare_image_inputs() __A = image_processor(A ,return_tensors="np" ) __A = processor(images=A ,return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self : Tuple ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = processor(text=A ) __A = tokenizer(A ,return_token_type_ids=A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self : int ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A = processor.batch_decode(A ) __A = tokenizer.batch_decode(A ) self.assertListEqual(A ,A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipaProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
55
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE :List[str] = { 'configuration_deberta': ['DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DebertaConfig', 'DebertaOnnxConfig'], 'tokenization_deberta': ['DebertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :List[Any] = ['DebertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[int] = [ 'DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'DebertaForMaskedLM', 'DebertaForQuestionAnswering', 'DebertaForSequenceClassification', 'DebertaForTokenClassification', 'DebertaModel', 'DebertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[int] = [ 'TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDebertaForMaskedLM', 'TFDebertaForQuestionAnswering', 'TFDebertaForSequenceClassification', 'TFDebertaForTokenClassification', 'TFDebertaModel', 'TFDebertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int ,A : Any ,A : List[str] ,A : Union[str, Any]=10_24 ,A : int=10_24 ,A : Optional[Any]=3.6 ): __A = tokenizer __A = tokenizer.bos_token_id __A = dataset __A = seq_length __A = seq_length * chars_per_token * num_of_sequences def __iter__( self : List[Any] ): __A = iter(self.dataset ) __A = True while more_examples: __A , __A = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: __A = False break __A = tokenizer(A ,truncation=A )["input_ids"] __A = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 ,len(A ) ,self.seq_length ): __A = all_token_ids[i : i + self.seq_length] if len(A ) == self.seq_length: yield torch.tensor(A ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = {"streaming": True} __A = load_dataset(args.dataset_name , split="train" , **a_ ) __A = ConstantLengthDataset(a_ , a_ , seq_length=args.seq_length ) __A = DataLoader(a_ , batch_size=args.batch_size ) return eval_dataloader def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" model.eval() __A = [] for step, batch in enumerate(a_ ): with torch.no_grad(): __A = model(a_ , labels=a_ ) __A = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(a_ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __A = torch.mean(torch.cat(a_ ) ) try: __A = torch.exp(a_ ) except OverflowError: __A = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator SCREAMING_SNAKE_CASE :Optional[int] = Accelerator() # Parse configuration SCREAMING_SNAKE_CASE :str = HfArgumentParser(EvaluationArguments) SCREAMING_SNAKE_CASE :int = parser.parse_args() set_seed(args.seed) # Logging SCREAMING_SNAKE_CASE :Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer SCREAMING_SNAKE_CASE :List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) SCREAMING_SNAKE_CASE :int = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader SCREAMING_SNAKE_CASE :List[str] = create_dataloader(args) # Prepare everything with our `accelerator`. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
55
1
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( "compression_format, is_archive" , [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ] , ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ) -> List[Any]: """simple docstring""" __A = { "7z": (seven_zip_file, SevenZipExtractor), "bz2": (bza_file, BzipaExtractor), "gzip": (gz_file, GzipExtractor), "lz4": (lza_file, LzaExtractor), "tar": (tar_file, TarExtractor), "xz": (xz_file, XzExtractor), "zip": (zip_file, ZipExtractor), "zstd": (zstd_file, ZstdExtractor), } __A , __A = input_paths_and_base_extractors[compression_format] if input_path is None: __A = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(a_ ) assert base_extractor.is_extractable(a_ ) __A = tmp_path / ("extracted" if is_archive else "extracted.txt") base_extractor.extract(a_ , a_ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __A = file_path.read_text(encoding="utf-8" ) else: __A = output_path.read_text(encoding="utf-8" ) __A = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( "compression_format, is_archive" , [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ] , ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ) -> Optional[int]: """simple docstring""" __A = { "7z": seven_zip_file, "bz2": bza_file, "gzip": gz_file, "lz4": lza_file, "tar": tar_file, "xz": xz_file, "zip": zip_file, "zstd": zstd_file, } __A = input_paths[compression_format] if input_path is None: __A = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(a_ ) __A = Extractor.infer_extractor_format(a_ ) assert extractor_format is not None __A = tmp_path / ("extracted" if is_archive else "extracted.txt") Extractor.extract(a_ , a_ , a_ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __A = file_path.read_text(encoding="utf-8" ) else: __A = output_path.read_text(encoding="utf-8" ) __A = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.fixture def UpperCAmelCase ( a_ , a_ ) -> List[Any]: """simple docstring""" import tarfile __A = tmp_path / "data_dot_dot" directory.mkdir() __A = directory / "tar_file_with_dot_dot.tar" with tarfile.TarFile(a_ , "w" ) as f: f.add(a_ , arcname=os.path.join(".." , text_file.name ) ) return path @pytest.fixture def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" import tarfile __A = tmp_path / "data_sym_link" directory.mkdir() __A = directory / "tar_file_with_sym_link.tar" os.symlink(".." , directory / "subdir" , target_is_directory=a_ ) with tarfile.TarFile(a_ , "w" ) as f: f.add(str(directory / "subdir" ) , arcname="subdir" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( "insecure_tar_file, error_log" , [("tar_file_with_dot_dot", "illegal path"), ("tar_file_with_sym_link", "Symlink")] , ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ ) -> int: """simple docstring""" __A = { "tar_file_with_dot_dot": tar_file_with_dot_dot, "tar_file_with_sym_link": tar_file_with_sym_link, } __A = insecure_tar_files[insecure_tar_file] __A = tmp_path / "extracted" TarExtractor.extract(a_ , a_ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" __A = tmpdir / "not_a_zip_file" # From: https://github.com/python/cpython/pull/5053 __A = ( b"\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00" b"\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I" b"DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07" b"\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82" ) with not_a_zip_file.open("wb" ) as f: f.write(a_ ) assert zipfile.is_zipfile(str(a_ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(a_ ) # but we're right
55
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = LayoutLMTokenizer snake_case_ = LayoutLMTokenizerFast snake_case_ = True snake_case_ = True def UpperCamelCase_ ( self : Any ): super().setUp() __A = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase_ ( self : Tuple ,**A : int ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**A ) def UpperCamelCase_ ( self : Optional[Any] ,A : Any ): __A = "UNwant\u00E9d,running" __A = "unwanted, running" return input_text, output_text def UpperCamelCase_ ( self : str ): __A = self.tokenizer_class(self.vocab_file ) __A = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(A ,["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[7, 4, 5, 10, 8, 9] ) def UpperCamelCase_ ( self : int ): pass
55
1