code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
from ...configuration_utils import PretrainedConfig
SCREAMING_SNAKE_CASE :Optional[int] = {
'google/tapas-base-finetuned-sqa': (
'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json'
),
'google/tapas-base-finetuned-wtq': (
'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json'
),
'google/tapas-base-finetuned-wikisql-supervised': (
'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json'
),
'google/tapas-base-finetuned-tabfact': (
'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json'
),
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = "tapas"
def __init__( self : List[Any] ,A : Dict=3_05_22 ,A : int=7_68 ,A : List[Any]=12 ,A : Any=12 ,A : str=30_72 ,A : Dict="gelu" ,A : str=0.1 ,A : Any=0.1 ,A : Union[str, Any]=10_24 ,A : Dict=[3, 2_56, 2_56, 2, 2_56, 2_56, 10] ,A : str=0.02 ,A : List[str]=1E-12 ,A : List[Any]=0 ,A : str=10.0 ,A : Any=0 ,A : Optional[int]=1.0 ,A : Optional[Any]=None ,A : Any=1.0 ,A : int=False ,A : str=None ,A : str=1.0 ,A : Optional[Any]=1.0 ,A : List[Any]=False ,A : Any=False ,A : Tuple="ratio" ,A : Optional[int]=None ,A : Any=None ,A : Optional[int]=64 ,A : List[Any]=32 ,A : int=False ,A : List[Any]=True ,A : str=False ,A : Optional[int]=False ,A : Any=True ,A : Tuple=False ,A : Tuple=None ,A : List[str]=None ,**A : Union[str, Any] ,):
super().__init__(pad_token_id=A ,**A )
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
__A = vocab_size
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = hidden_act
__A = intermediate_size
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = max_position_embeddings
__A = type_vocab_sizes
__A = initializer_range
__A = layer_norm_eps
# Fine-tuning task hyperparameters
__A = positive_label_weight
__A = num_aggregation_labels
__A = aggregation_loss_weight
__A = use_answer_as_supervision
__A = answer_loss_importance
__A = use_normalized_answer_loss
__A = huber_loss_delta
__A = temperature
__A = aggregation_temperature
__A = use_gumbel_for_cells
__A = use_gumbel_for_aggregation
__A = average_approximation_function
__A = cell_selection_preference
__A = answer_loss_cutoff
__A = max_num_rows
__A = max_num_columns
__A = average_logits_per_cell
__A = select_one_column
__A = allow_empty_column_selection
__A = init_cell_selection_weights_to_zero
__A = reset_position_index_per_cell
__A = disable_per_token_loss
# Aggregation hyperparameters
__A = aggregation_labels
__A = no_aggregation_label_index
if isinstance(self.aggregation_labels ,A ):
__A = {int(A ): v for k, v in aggregation_labels.items()}
| 55 |
import re
from flax.core.frozen_dict import freeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.experimental import PartitionSpec as P
# Sentinels
SCREAMING_SNAKE_CASE :Union[str, Any] = object()
# For specifying empty leaf dict `{}`
SCREAMING_SNAKE_CASE :List[str] = object()
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
__A = tuple((re.compile(x + "$" ) for x in qs) )
for i in range(len(a_ ) - len(a_ ) + 1 ):
__A = [x.match(a_ ) for x, y in zip(a_ , ks[i:] )]
if matches and all(a_ ):
return True
return False
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
def replace(a_ , a_ ):
for rule, replacement in rules:
if _match(a_ , a_ ):
return replacement
return val
return replace
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
return [
# embeddings
(("transformer", "wpe", "embedding"), P("mp" , a_ )),
(("transformer", "wte", "embedding"), P("mp" , a_ )),
# atention
(("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a_ , "mp" )),
(("attention", "out_proj", "kernel"), P("mp" , a_ )),
(("attention", "out_proj", "bias"), None),
# mlp
(("mlp", "c_fc", "kernel"), P(a_ , "mp" )),
(("mlp", "c_fc", "bias"), P("mp" )),
(("mlp", "c_proj", "kernel"), P("mp" , a_ )),
(("mlp", "c_proj", "bias"), None),
# layer norms
((r"ln_\d+", "bias"), None),
((r"\d+", r"ln_\d+", "scale"), None),
(("ln_f", "bias"), None),
(("ln_f", "scale"), None),
]
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
__A = _get_partition_rules()
__A = _replacement_rules(a_ )
__A = {k: _unmatched for k in flatten_dict(a_ )}
__A = {k: replace(a_ , a_ ) for k, v in initd.items()}
assert _unmatched not in result.values(), "Incomplete partition spec."
return freeze(unflatten_dict(a_ ) )
| 55 | 1 |
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
if n == 1 or not isinstance(a_ , a_ ):
return 0
elif n == 2:
return 1
else:
__A = [0, 1]
for i in range(2 , n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
__A = 0
__A = 2
while digits < n:
index += 1
__A = len(str(fibonacci(a_ ) ) )
return index
def UpperCAmelCase ( a_ = 1_0_0_0 ) -> int:
"""simple docstring"""
return fibonacci_digits_index(a_ )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 55 |
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : List[Any] ,A : Union[str, Any] ,A : List[Any]=13 ,A : Optional[Any]=30 ,A : Union[str, Any]=2 ,A : Union[str, Any]=3 ,A : Any=True ,A : Dict=True ,A : str=32 ,A : Tuple=2 ,A : Optional[int]=4 ,A : Tuple=37 ,A : List[Any]="gelu" ,A : Dict=0.1 ,A : Optional[int]=0.1 ,A : List[Any]=10 ,A : Optional[Any]=0.02 ,A : Dict=3 ,A : Dict=None ,A : List[Any]=2 ,):
__A = parent
__A = batch_size
__A = image_size
__A = patch_size
__A = num_channels
__A = is_training
__A = use_labels
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = type_sequence_label_size
__A = initializer_range
__A = scope
__A = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
__A = (image_size // patch_size) ** 2
__A = num_patches + 2
def UpperCamelCase_ ( self : List[Any] ):
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__A = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self : Optional[int] ):
return DeiTConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,)
def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,A : Optional[int] ,A : Union[str, Any] ):
__A = TFDeiTModel(config=A )
__A = model(A )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self : List[Any] ,A : List[Any] ,A : Optional[Any] ,A : Dict ):
__A = TFDeiTForMaskedImageModeling(config=A )
__A = model(A )
self.parent.assertEqual(
result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__A = 1
__A = TFDeiTForMaskedImageModeling(A )
__A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__A = model(A )
self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) )
def UpperCamelCase_ ( self : Optional[Any] ,A : Union[str, Any] ,A : Dict ,A : Union[str, Any] ):
__A = self.type_sequence_label_size
__A = TFDeiTForImageClassification(A )
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__A = 1
__A = TFDeiTForImageClassification(A )
__A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase_ ( self : str ):
__A = self.prepare_config_and_inputs()
__A , __A , __A = config_and_inputs
__A = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
snake_case_ = (
{
"feature-extraction": TFDeiTModel,
"image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def UpperCamelCase_ ( self : str ):
__A = TFDeiTModelTester(self )
__A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 )
def UpperCamelCase_ ( self : Any ):
self.config_tester.run_common_tests()
@unittest.skip(reason="DeiT does not use inputs_embeds" )
def UpperCamelCase_ ( self : Union[str, Any] ):
pass
def UpperCamelCase_ ( self : List[Any] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) )
__A = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(A ,tf.keras.layers.Dense ) )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
__A = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__A = [*signature.parameters.keys()]
__A = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,A )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
def UpperCamelCase_ ( self : Optional[int] ,A : Union[str, Any] ,A : List[str] ,A : Optional[Any]=False ):
__A = super()._prepare_for_class(A ,A ,return_labels=A )
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def UpperCamelCase_ ( self : Any ):
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = TFDeiTModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> str:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : int ):
return (
DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" )
if is_vision_available()
else None
)
@slow
def UpperCamelCase_ ( self : Optional[int] ):
__A = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="tf" )
# forward pass
__A = model(**A )
# verify the logits
__A = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape ,A )
__A = tf.constant([-1.02_66, 0.19_12, -1.28_61] )
self.assertTrue(np.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
| 55 | 1 |
from numpy import exp, pi, sqrt
def UpperCAmelCase ( a_ , a_ = 0.0 , a_ = 1.0 ) -> int:
"""simple docstring"""
return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 55 |
SCREAMING_SNAKE_CASE :List[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
SCREAMING_SNAKE_CASE :Union[str, Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
SCREAMING_SNAKE_CASE :int = {
0: 'Sunday',
1: 'Monday',
2: 'Tuesday',
3: 'Wednesday',
4: 'Thursday',
5: 'Friday',
6: 'Saturday',
}
def UpperCAmelCase ( a_ , a_ , a_ ) -> str:
"""simple docstring"""
assert len(str(a_ ) ) > 2, "year should be in YYYY format"
assert 1 <= month <= 1_2, "month should be between 1 to 12"
assert 1 <= day <= 3_1, "day should be between 1 to 31"
# Doomsday algorithm:
__A = year // 1_0_0
__A = (5 * (century % 4) + 2) % 7
__A = year % 1_0_0
__A = centurian % 1_2
__A = (
(centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor
) % 7
__A = (
DOOMSDAY_NOT_LEAP[month - 1]
if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0)
else DOOMSDAY_LEAP[month - 1]
)
__A = (dooms_day + day - day_anchor) % 7
return WEEK_DAY_NAMES[week_day]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 55 | 1 |
def UpperCAmelCase ( ) -> list[list[int]]:
"""simple docstring"""
return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )]
SCREAMING_SNAKE_CASE :str = generate_large_matrix()
SCREAMING_SNAKE_CASE :Dict = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def UpperCAmelCase ( a_ ) -> None:
"""simple docstring"""
assert all(row == sorted(a_ , reverse=a_ ) for row in grid )
assert all(list(a_ ) == sorted(a_ , reverse=a_ ) for col in zip(*a_ ) )
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
__A = 0
__A = len(a_ ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
__A = (left + right) // 2
__A = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
__A = mid + 1
else:
__A = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(a_ )
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
__A = 0
__A = len(grid[0] )
for i in range(len(a_ ) ):
__A = find_negative_index(grid[i][:bound] )
total += bound
return (len(a_ ) * len(grid[0] )) - total
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
return len([number for row in grid for number in row if number < 0] )
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
__A = 0
for row in grid:
for i, number in enumerate(a_ ):
if number < 0:
total += len(a_ ) - i
break
return total
def UpperCAmelCase ( ) -> None:
"""simple docstring"""
from timeit import timeit
print("Running benchmarks" )
__A = (
"from __main__ import count_negatives_binary_search, "
"count_negatives_brute_force, count_negatives_brute_force_with_break, grid"
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
__A = timeit(F'''{func}(grid=grid)''' , setup=a_ , number=5_0_0 )
print(F'''{func}() took {time:0.4f} seconds''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 55 |
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError
import requests
def UpperCAmelCase ( a_ = "isbn/0140328726" ) -> dict:
"""simple docstring"""
__A = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes
if new_olid.count("/" ) != 1:
__A = F'''{olid} is not a valid Open Library olid'''
raise ValueError(a_ )
return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json()
def UpperCAmelCase ( a_ ) -> dict:
"""simple docstring"""
__A = {
"title": "Title",
"publish_date": "Publish date",
"authors": "Authors",
"number_of_pages": "Number of pages:",
"first_sentence": "First sentence",
"isbn_10": "ISBN (10)",
"isbn_13": "ISBN (13)",
}
__A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()}
__A = [
get_openlibrary_data(author["key"] )["name"] for author in data["Authors"]
]
__A = data["First sentence"]["value"]
for key, value in data.items():
if isinstance(a_ , a_ ):
__A = ", ".join(a_ )
return data
if __name__ == "__main__":
import doctest
doctest.testmod()
while True:
SCREAMING_SNAKE_CASE :int = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip()
if isbn.lower() in ("", "q", "quit", "exit", "stop"):
break
if len(isbn) not in (10, 13) or not isbn.isdigit():
print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''')
continue
print(f'''\nSearching Open Library for ISBN: {isbn}...\n''')
try:
SCREAMING_SNAKE_CASE :Any = summarize_book(get_openlibrary_data(f'''isbn/{isbn}'''))
print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items()))
except JSONDecodeError: # Workaround for requests.exceptions.RequestException:
print(f'''Sorry, there are no results for ISBN: {isbn}.''')
| 55 | 1 |
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import ScoreSdeVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = 42
snake_case_ = 42
def __init__( self : List[Any] ,A : UNetaDModel ,A : ScoreSdeVeScheduler ):
super().__init__()
self.register_modules(unet=A ,scheduler=A )
@torch.no_grad()
def __call__( self : int ,A : int = 1 ,A : int = 20_00 ,A : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,A : Optional[str] = "pil" ,A : bool = True ,**A : Optional[int] ,):
__A = self.unet.config.sample_size
__A = (batch_size, 3, img_size, img_size)
__A = self.unet
__A = randn_tensor(A ,generator=A ) * self.scheduler.init_noise_sigma
__A = sample.to(self.device )
self.scheduler.set_timesteps(A )
self.scheduler.set_sigmas(A )
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
__A = self.scheduler.sigmas[i] * torch.ones(shape[0] ,device=self.device )
# correction step
for _ in range(self.scheduler.config.correct_steps ):
__A = self.unet(A ,A ).sample
__A = self.scheduler.step_correct(A ,A ,generator=A ).prev_sample
# prediction step
__A = model(A ,A ).sample
__A = self.scheduler.step_pred(A ,A ,A ,generator=A )
__A , __A = output.prev_sample, output.prev_sample_mean
__A = sample_mean.clamp(0 ,1 )
__A = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy()
if output_type == "pil":
__A = self.numpy_to_pil(A )
if not return_dict:
return (sample,)
return ImagePipelineOutput(images=A )
| 55 |
import requests
SCREAMING_SNAKE_CASE :List[str] = 'YOUR API KEY'
def UpperCAmelCase ( a_ , a_ = giphy_api_key ) -> list:
"""simple docstring"""
__A = "+".join(query.split() )
__A = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}'''
__A = requests.get(a_ ).json()["data"]
return [gif["url"] for gif in gifs]
if __name__ == "__main__":
print('\n'.join(get_gifs('space ship')))
| 55 | 1 |
import itertools
import math
def UpperCAmelCase ( a_ ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(a_ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def UpperCAmelCase ( ) -> Optional[Any]:
"""simple docstring"""
__A = 2
while True:
if is_prime(a_ ):
yield num
num += 1
def UpperCAmelCase ( a_ = 1_0_0_0_1 ) -> int:
"""simple docstring"""
return next(itertools.islice(prime_generator() , nth - 1 , a_ ) )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 55 |
import itertools
import math
def UpperCAmelCase ( a_ ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(a_ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def UpperCAmelCase ( ) -> Optional[Any]:
"""simple docstring"""
__A = 2
while True:
if is_prime(a_ ):
yield num
num += 1
def UpperCAmelCase ( a_ = 1_0_0_0_1 ) -> int:
"""simple docstring"""
return next(itertools.islice(prime_generator() , nth - 1 , a_ ) )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 55 | 1 |
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
SCREAMING_SNAKE_CASE :Optional[int] = 2
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Dict ,*, # begin keyword-only arguments
A : Tuple="<s>" ,A : Optional[Any]="<pad>" ,A : Tuple="</s>" ,A : Tuple="<unk>" ,A : Union[str, Any]=None ,):
__A , __A , __A , __A = bos, unk, pad, eos
__A = []
__A = []
__A = {}
__A = self.add_symbol(A )
__A = self.add_symbol(A )
__A = self.add_symbol(A )
__A = self.add_symbol(A )
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(A )
__A = len(self.symbols )
def __eq__( self : Any ,A : str ):
return self.indices == other.indices
def __getitem__( self : int ,A : Tuple ):
if idx < len(self.symbols ):
return self.symbols[idx]
return self.unk_word
def __len__( self : Any ):
return len(self.symbols )
def __contains__( self : Optional[Any] ,A : Optional[int] ):
return sym in self.indices
@classmethod
def UpperCamelCase_ ( cls : Any ,A : Union[str, Any] ):
__A = cls()
d.add_from_file(A )
return d
def UpperCamelCase_ ( self : Union[str, Any] ,A : Optional[Any] ,A : str=1 ,A : int=False ):
if word in self.indices and not overwrite:
__A = self.indices[word]
__A = self.count[idx] + n
return idx
else:
__A = len(self.symbols )
__A = idx
self.symbols.append(A )
self.count.append(A )
return idx
def UpperCamelCase_ ( self : Dict ,A : Optional[int] ):
return 0
def UpperCamelCase_ ( self : Dict ,A : List[Any] ):
if isinstance(A ,A ):
try:
with open(A ,"r" ,encoding="utf-8" ) as fd:
self.add_from_file(A )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(A ) )
return
__A = f.readlines()
__A = self._load_meta(A )
for line in lines[indices_start_line:]:
try:
__A , __A = line.rstrip().rsplit(" " ,1 )
if field == "#fairseq:overwrite":
__A = True
__A , __A = line.rsplit(" " ,1 )
else:
__A = False
__A = int(A )
__A = line
if word in self and not overwrite:
raise RuntimeError(
"Duplicate word found when loading Dictionary: '{}'. "
"Duplicate words can overwrite earlier ones by adding the "
"#fairseq:overwrite flag at the end of the corresponding row "
"in the dictionary file. If using the Camembert model, please "
"download an updated copy of the model file.".format(A ) )
self.add_symbol(A ,n=A ,overwrite=A )
except ValueError:
raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" )
def UpperCAmelCase ( a_ ) -> List[str]:
"""simple docstring"""
__A = dict((re.sub(r"@@$" , "" , a_ ), v) if k.endswith("@@" ) else (re.sub(r"$" , "</w>" , a_ ), v) for k, v in d.items() )
__A = "<s> <pad> </s> <unk>".split()
# restore the special tokens
for k in keep_keys:
del da[F'''{k}</w>''']
__A = d[k] # restore
return da
def UpperCAmelCase ( a_ , a_ ) -> List[str]:
"""simple docstring"""
if not os.path.exists(a_ ):
raise ValueError(F'''path {biogpt_checkpoint_path} does not exist!''' )
os.makedirs(a_ , exist_ok=a_ )
print(F'''Writing results to {pytorch_dump_folder_path}''' )
# handle various types of models
__A = os.path.join(a_ , "checkpoint.pt" )
if not os.path.isfile(a_ ):
raise ValueError(F'''path to the file {checkpoint_file} does not exist!''' )
__A = torch.load(a_ , map_location="cpu" )
__A = chkpt["cfg"]["model"]
# dicts
__A = os.path.join(a_ , "dict.txt" )
if not os.path.isfile(a_ ):
raise ValueError(F'''path to the file {dict_file} does not exist!''' )
__A = Dictionary.load(a_ )
__A = rewrite_dict_keys(src_dict.indices )
__A = len(a_ )
__A = os.path.join(a_ , VOCAB_FILES_NAMES["vocab_file"] )
print(F'''Generating {src_vocab_file} of {src_vocab_size} records''' )
with open(a_ , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(a_ , ensure_ascii=a_ , indent=a_ ) )
# merges_file (bpecodes)
__A = os.path.join(a_ , "bpecodes" )
if not os.path.isfile(a_ ):
raise ValueError(F'''path to the file {bpecodes_file} does not exist!''' )
__A = os.path.join(a_ , VOCAB_FILES_NAMES["merges_file"] )
shutil.copyfile(a_ , a_ )
# model config
__A = os.path.join(a_ , "config.json" )
__A = {
"activation_dropout": args["activation_dropout"],
"architectures": ["BioGptForCausalLM"],
"attention_probs_dropout_prob": args["attention_dropout"],
"bos_token_id": 0,
"eos_token_id": 2,
"hidden_act": args["activation_fn"],
"hidden_dropout_prob": args["dropout"],
"hidden_size": args["decoder_embed_dim"],
"initializer_range": 0.02,
"intermediate_size": args["decoder_ffn_embed_dim"],
"layer_norm_eps": 1E-12,
"layerdrop": args["decoder_layerdrop"],
"max_position_embeddings": args["max_target_positions"],
"model_type": "biogpt",
"num_attention_heads": args["decoder_attention_heads"],
"num_hidden_layers": args["decoder_layers"],
"pad_token_id": 1,
"scale_embedding": not args["no_scale_embedding"],
"tie_word_embeddings": args["share_decoder_input_output_embed"],
"vocab_size": src_vocab_size,
}
# good hparam defaults to start with
print(F'''Generating {biogpt_model_config_file}''' )
with open(a_ , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(a_ , ensure_ascii=a_ , indent=a_ ) )
# tokenizer config
__A = os.path.join(a_ , a_ )
__A = {
"bos_token": "<s>",
"eos_token": "</s>",
"model_max_length": 1_0_2_4,
"pad_token": "<pad>",
"special_tokens_map_file": None,
"tokenizer_class": "BioGptTokenizer",
"unk_token": "<unk>",
}
print(F'''Generating {biogpt_tokenizer_config_file}''' )
with open(a_ , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(a_ , ensure_ascii=a_ , indent=a_ ) )
# model
__A = chkpt["model"]
# remove unneeded keys
__A = [
"decoder.version",
]
for k in ignore_keys:
model_state_dict.pop(a_ , a_ )
__A = list(model_state_dict.keys() )
for layer_name in layer_names:
if layer_name.endswith("output_projection.weight" ):
__A = model_state_dict.pop(a_ )
else:
__A = model_state_dict.pop(a_ )
__A = BioGptConfig.from_pretrained(a_ )
__A = BioGptForCausalLM(a_ )
# check that it loads ok
model_new.load_state_dict(a_ )
# save
__A = os.path.join(a_ , a_ )
print(F'''Generating {pytorch_weights_dump_path}''' )
torch.save(a_ , a_ )
print("Conversion is done!" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--biogpt_checkpoint_path',
default=None,
type=str,
required=True,
help=(
'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,'
' bpecodes, etc.'
),
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
SCREAMING_SNAKE_CASE :List[Any] = parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
| 55 |
import argparse
import os
import numpy as np
import tensorflow as tf
import torch
from transformers import BertModel
def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]:
"""simple docstring"""
__A = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value")
__A = (
("layer.", "layer_"),
("word_embeddings.weight", "word_embeddings"),
("position_embeddings.weight", "position_embeddings"),
("token_type_embeddings.weight", "token_type_embeddings"),
(".", "/"),
("LayerNorm/weight", "LayerNorm/gamma"),
("LayerNorm/bias", "LayerNorm/beta"),
("weight", "kernel"),
)
if not os.path.isdir(a_ ):
os.makedirs(a_ )
__A = model.state_dict()
def to_tf_var_name(a_ ):
for patt, repl in iter(a_ ):
__A = name.replace(a_ , a_ )
return F'''bert/{name}'''
def create_tf_var(a_ , a_ , a_ ):
__A = tf.dtypes.as_dtype(tensor.dtype )
__A = tf.get_variable(dtype=a_ , shape=tensor.shape , name=a_ , initializer=tf.zeros_initializer() )
session.run(tf.variables_initializer([tf_var] ) )
session.run(a_ )
return tf_var
tf.reset_default_graph()
with tf.Session() as session:
for var_name in state_dict:
__A = to_tf_var_name(a_ )
__A = state_dict[var_name].numpy()
if any(x in var_name for x in tensors_to_transpose ):
__A = torch_tensor.T
__A = create_tf_var(tensor=a_ , name=a_ , session=a_ )
tf.keras.backend.set_value(a_ , a_ )
__A = session.run(a_ )
print(F'''Successfully created {tf_name}: {np.allclose(a_ , a_ )}''' )
__A = tf.train.Saver(tf.trainable_variables() )
saver.save(a_ , os.path.join(a_ , model_name.replace("-" , "_" ) + ".ckpt" ) )
def UpperCAmelCase ( a_=None ) -> List[Any]:
"""simple docstring"""
__A = argparse.ArgumentParser()
parser.add_argument("--model_name" , type=a_ , required=a_ , help="model name e.g. bert-base-uncased" )
parser.add_argument(
"--cache_dir" , type=a_ , default=a_ , required=a_ , help="Directory containing pytorch model" )
parser.add_argument("--pytorch_model_path" , type=a_ , required=a_ , help="/path/to/<pytorch-model-name>.bin" )
parser.add_argument("--tf_cache_dir" , type=a_ , required=a_ , help="Directory in which to save tensorflow model" )
__A = parser.parse_args(a_ )
__A = BertModel.from_pretrained(
pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , )
convert_pytorch_checkpoint_to_tf(model=a_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name )
if __name__ == "__main__":
main()
| 55 | 1 |
def UpperCAmelCase ( a_ , a_ ) -> int:
"""simple docstring"""
return int((input_a, input_a).count(1 ) != 0 )
def UpperCAmelCase ( ) -> None:
"""simple docstring"""
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 55 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE :Any = {
'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Any = [
'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST',
'PegasusXForConditionalGeneration',
'PegasusXModel',
'PegasusXPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 55 | 1 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import PoolFormerImageProcessor
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Any ,A : Dict ,A : List[Any]=7 ,A : Any=3 ,A : List[Any]=30 ,A : List[Any]=4_00 ,A : Union[str, Any]=True ,A : List[str]=None ,A : Optional[Any]=0.9 ,A : Any=None ,A : List[Any]=True ,A : List[Any]=[0.5, 0.5, 0.5] ,A : Union[str, Any]=[0.5, 0.5, 0.5] ,):
__A = size if size is not None else {"shortest_edge": 30}
__A = crop_size if crop_size is not None else {"height": 30, "width": 30}
__A = parent
__A = batch_size
__A = num_channels
__A = min_resolution
__A = max_resolution
__A = do_resize_and_center_crop
__A = size
__A = crop_pct
__A = crop_size
__A = do_normalize
__A = image_mean
__A = image_std
def UpperCamelCase_ ( self : Optional[int] ):
return {
"size": self.size,
"do_resize_and_center_crop": self.do_resize_and_center_crop,
"crop_pct": self.crop_pct,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = PoolFormerImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self : Optional[Any] ):
__A = PoolFormerImageProcessingTester(self )
@property
def UpperCamelCase_ ( self : Optional[int] ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self : List[Any] ):
__A = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A ,"do_resize_and_center_crop" ) )
self.assertTrue(hasattr(A ,"size" ) )
self.assertTrue(hasattr(A ,"crop_pct" ) )
self.assertTrue(hasattr(A ,"do_normalize" ) )
self.assertTrue(hasattr(A ,"image_mean" ) )
self.assertTrue(hasattr(A ,"image_std" ) )
def UpperCamelCase_ ( self : Tuple ):
__A = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{"shortest_edge": 30} )
self.assertEqual(image_processor.crop_size ,{"height": 30, "width": 30} )
__A = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 )
self.assertEqual(image_processor.size ,{"shortest_edge": 42} )
self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} )
def UpperCamelCase_ ( self : Optional[Any] ):
pass
def UpperCamelCase_ ( self : str ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A ,Image.Image )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : Union[str, Any] ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A )
for image in image_inputs:
self.assertIsInstance(A ,np.ndarray )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : Any ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A )
for image in image_inputs:
self.assertIsInstance(A ,torch.Tensor )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
| 55 |
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
SCREAMING_SNAKE_CASE :int = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l='
def UpperCAmelCase ( a_ = "mumbai" ) -> Generator[tuple[str, str], None, None]:
"""simple docstring"""
__A = BeautifulSoup(requests.get(url + location ).content , "html.parser" )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ):
__A = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip()
__A = job.find("span" , {"class": "company"} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs('Bangalore'), 1):
print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
| 55 | 1 |
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import List
import timm
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from torch import Tensor
from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification
from transformers.utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE :Any = logging.get_logger()
@dataclass
class UpperCAmelCase :
'''simple docstring'''
snake_case_ = 42
snake_case_ = field(default_factory=__SCREAMING_SNAKE_CASE )
snake_case_ = field(default_factory=__SCREAMING_SNAKE_CASE )
def UpperCamelCase_ ( self : str ,A : Dict ,A : Tensor ,A : Tensor ):
__A = len(list(m.modules() ) ) == 1 or isinstance(A ,nn.Convad ) or isinstance(A ,nn.BatchNormad )
if has_not_submodules:
self.traced.append(A )
def __call__( self : Dict ,A : Tensor ):
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(A )
[x.remove() for x in self.handles]
return self
@property
def UpperCamelCase_ ( self : str ):
# check the len of the state_dict keys to see if we have learnable params
return list(filter(lambda A : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) )
@dataclass
class UpperCAmelCase :
'''simple docstring'''
snake_case_ = 42
snake_case_ = 42
snake_case_ = 0
snake_case_ = field(default_factory=__SCREAMING_SNAKE_CASE )
snake_case_ = field(default_factory=__SCREAMING_SNAKE_CASE )
def __call__( self : Tuple ,A : Tensor ):
__A = Tracker(self.dest )(A ).parametrized
__A = Tracker(self.src )(A ).parametrized
__A = list(filter(lambda A : type(A ) not in self.src_skip ,A ) )
__A = list(filter(lambda A : type(A ) not in self.dest_skip ,A ) )
if len(A ) != len(A ):
raise Exception(
f'''Numbers of operations are different. Source module has {len(A )} operations while'''
f''' destination module has {len(A )}.''' )
for dest_m, src_m in zip(A ,A ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(f'''Transfered from={src_m} to={dest_m}''' )
def UpperCAmelCase ( a_ , a_ , a_ , a_ = True ) -> List[str]:
"""simple docstring"""
print(F'''Converting {name}...''' )
with torch.no_grad():
__A = timm.create_model(a_ , pretrained=a_ ).eval()
__A = ResNetForImageClassification(a_ ).eval()
__A = ModuleTransfer(src=a_ , dest=a_ )
__A = torch.randn((1, 3, 2_2_4, 2_2_4) )
module_transfer(a_ )
assert torch.allclose(from_model(a_ ) , our_model(a_ ).logits ), "The model logits don't match the original one."
__A = F'''resnet{'-'.join(name.split('resnet' ) )}'''
print(a_ )
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name , commit_message="Add model" , use_temp_dir=a_ , )
# we can use the convnext one
__A = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" )
image_processor.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name , commit_message="Add image processor" , use_temp_dir=a_ , )
print(F'''Pushed {checkpoint_name}''' )
def UpperCAmelCase ( a_ , a_ = None , a_ = True ) -> Tuple:
"""simple docstring"""
__A = "imagenet-1k-id2label.json"
__A = 1_0_0_0
__A = (1, num_labels)
__A = "huggingface/label-files"
__A = num_labels
__A = json.load(open(hf_hub_download(a_ , a_ , repo_type="dataset" ) , "r" ) )
__A = {int(a_ ): v for k, v in idalabel.items()}
__A = idalabel
__A = {v: k for k, v in idalabel.items()}
__A = partial(a_ , num_labels=a_ , idalabel=a_ , labelaid=a_ )
__A = {
"resnet18": ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="basic" ),
"resnet26": ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="bottleneck" ),
"resnet34": ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="basic" ),
"resnet50": ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="bottleneck" ),
"resnet101": ImageNetPreTrainedConfig(
depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="bottleneck" ),
"resnet152": ImageNetPreTrainedConfig(
depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="bottleneck" ),
}
if model_name:
convert_weight_and_push(a_ , names_to_config[model_name] , a_ , a_ )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(a_ , a_ , a_ , a_ )
return config, expected_shape
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default=None,
type=str,
help=(
'The name of the model you wish to convert, it must be one of the supported resnet* architecture,'
' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.'
),
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=Path,
required=True,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
default=True,
type=bool,
required=False,
help='If True, push model and image processor to the hub.',
)
SCREAMING_SNAKE_CASE :Union[str, Any] = parser.parse_args()
SCREAMING_SNAKE_CASE :Path = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 55 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : List[str] ):
__A = tempfile.mkdtemp()
__A = BlipImageProcessor()
__A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" )
__A = BlipaProcessor(A ,A )
processor.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self : Dict ,**A : int ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).tokenizer
def UpperCamelCase_ ( self : Dict ,**A : Optional[int] ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor
def UpperCamelCase_ ( self : Dict ):
shutil.rmtree(self.tmpdirname )
def UpperCamelCase_ ( self : Optional[int] ):
__A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )]
__A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def UpperCamelCase_ ( self : Any ):
__A = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__A = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" )
__A = self.get_image_processor(do_normalize=A ,padding_value=1.0 )
__A = BlipaProcessor.from_pretrained(
self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=A ,padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer ,A )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,A )
def UpperCamelCase_ ( self : List[Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = self.prepare_image_inputs()
__A = image_processor(A ,return_tensors="np" )
__A = processor(images=A ,return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 )
def UpperCamelCase_ ( self : Tuple ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = "lower newer"
__A = processor(text=A )
__A = tokenizer(A ,return_token_type_ids=A )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] ,encoded_processor[key] )
def UpperCamelCase_ ( self : int ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = "lower newer"
__A = self.prepare_image_inputs()
__A = processor(text=A ,images=A )
self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(A ):
processor()
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__A = processor.batch_decode(A )
__A = tokenizer.batch_decode(A )
self.assertListEqual(A ,A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = "lower newer"
__A = self.prepare_image_inputs()
__A = processor(text=A ,images=A )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
| 55 | 1 |
import os
import sys
import unittest
SCREAMING_SNAKE_CASE :int = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, 'utils'))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
SCREAMING_SNAKE_CASE :Dict = os.path.join(git_repo_path, 'src', 'transformers')
SCREAMING_SNAKE_CASE :Any = '\n{0} = None\n'
SCREAMING_SNAKE_CASE :Tuple = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n'
SCREAMING_SNAKE_CASE :Optional[Any] = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n'
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Optional[int] ):
__A = find_backend(" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")" )
self.assertIsNone(A )
__A = find_backend(" if not is_tokenizers_available():" )
self.assertEqual(A ,"tokenizers" )
__A = find_backend(" if not is_tensorflow_text_available():" )
self.assertEqual(A ,"tensorflow_text" )
__A = find_backend(" if not (is_sentencepiece_available() and is_tokenizers_available()):" )
self.assertEqual(A ,"sentencepiece_and_tokenizers" )
__A = find_backend(
" if not (is_sentencepiece_available() and is_tensorflow_text_available()):" )
self.assertEqual(A ,"sentencepiece_and_tensorflow_text" )
__A = find_backend(
" if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):" )
self.assertEqual(A ,"sentencepiece_and_tokenizers_and_vision" )
def UpperCamelCase_ ( self : List[str] ):
__A = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn("torch" ,A )
self.assertIn("tensorflow_text" ,A )
self.assertIn("sentencepiece_and_tokenizers" ,A )
# Likewise, we can't assert on the exact content of a key
self.assertIn("BertModel" ,objects["torch"] )
self.assertIn("TFBertModel" ,objects["tf"] )
self.assertIn("FlaxBertModel" ,objects["flax"] )
self.assertIn("BertModel" ,objects["torch"] )
self.assertIn("TFBertTokenizer" ,objects["tensorflow_text"] )
self.assertIn("convert_slow_tokenizer" ,objects["sentencepiece_and_tokenizers"] )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = create_dummy_object("CONSTANT" ,"'torch'" )
self.assertEqual(A ,"\nCONSTANT = None\n" )
__A = create_dummy_object("function" ,"'torch'" )
self.assertEqual(
A ,"\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" )
__A = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n"
__A = create_dummy_object("FakeClass" ,"'torch'" )
self.assertEqual(A ,A )
def UpperCamelCase_ ( self : List[Any] ):
__A = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n"
__A = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} )
self.assertEqual(dummy_files["torch"] ,A )
| 55 |
import logging
import torch
from accelerate import Accelerator
from arguments import EvaluationArguments
from datasets import load_dataset
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : int ,A : Any ,A : List[str] ,A : Union[str, Any]=10_24 ,A : int=10_24 ,A : Optional[Any]=3.6 ):
__A = tokenizer
__A = tokenizer.bos_token_id
__A = dataset
__A = seq_length
__A = seq_length * chars_per_token * num_of_sequences
def __iter__( self : List[Any] ):
__A = iter(self.dataset )
__A = True
while more_examples:
__A , __A = [], 0
while True:
if buffer_len >= self.input_characters:
break
try:
buffer.append(next(A )["content"] )
buffer_len += len(buffer[-1] )
except StopIteration:
__A = False
break
__A = tokenizer(A ,truncation=A )["input_ids"]
__A = []
for tokenized_input in tokenized_inputs:
all_token_ids.extend(tokenized_input + [self.concat_token_id] )
for i in range(0 ,len(A ) ,self.seq_length ):
__A = all_token_ids[i : i + self.seq_length]
if len(A ) == self.seq_length:
yield torch.tensor(A )
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
__A = {"streaming": True}
__A = load_dataset(args.dataset_name , split="train" , **a_ )
__A = ConstantLengthDataset(a_ , a_ , seq_length=args.seq_length )
__A = DataLoader(a_ , batch_size=args.batch_size )
return eval_dataloader
def UpperCAmelCase ( a_ ) -> Union[str, Any]:
"""simple docstring"""
model.eval()
__A = []
for step, batch in enumerate(a_ ):
with torch.no_grad():
__A = model(a_ , labels=a_ )
__A = outputs.loss.repeat(args.batch_size )
losses.append(accelerator.gather(a_ ) )
if args.max_eval_steps > 0 and step >= args.max_eval_steps:
break
__A = torch.mean(torch.cat(a_ ) )
try:
__A = torch.exp(a_ )
except OverflowError:
__A = float("inf" )
return loss.item(), perplexity.item()
# Setup Accelerator
SCREAMING_SNAKE_CASE :Optional[int] = Accelerator()
# Parse configuration
SCREAMING_SNAKE_CASE :str = HfArgumentParser(EvaluationArguments)
SCREAMING_SNAKE_CASE :int = parser.parse_args()
set_seed(args.seed)
# Logging
SCREAMING_SNAKE_CASE :Dict = logging.getLogger(__name__)
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO
)
# Load model and tokenizer
SCREAMING_SNAKE_CASE :List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt)
SCREAMING_SNAKE_CASE :int = AutoTokenizer.from_pretrained(args.model_ckpt)
# Load dataset and dataloader
SCREAMING_SNAKE_CASE :List[str] = create_dataloader(args)
# Prepare everything with our `accelerator`.
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = accelerator.prepare(model, eval_dataloader)
# Evaluate and save the last checkpoint
logger.info('Evaluating and saving model after training')
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = evaluate(args)
logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
| 55 | 1 |
import inspect
import unittest
from transformers import YolosConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import YolosForObjectDetection, YolosModel
from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Any ,A : Optional[Any] ,A : Optional[int]=13 ,A : Dict=[30, 30] ,A : Tuple=2 ,A : int=3 ,A : Optional[int]=True ,A : Optional[int]=True ,A : str=32 ,A : Optional[int]=5 ,A : List[Any]=4 ,A : Union[str, Any]=37 ,A : int="gelu" ,A : Any=0.1 ,A : Tuple=0.1 ,A : Union[str, Any]=10 ,A : Any=0.02 ,A : List[str]=3 ,A : Optional[Any]=None ,A : Any=8 ,A : List[str]=10 ,):
__A = parent
__A = batch_size
__A = image_size
__A = patch_size
__A = num_channels
__A = is_training
__A = use_labels
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = type_sequence_label_size
__A = initializer_range
__A = num_labels
__A = scope
__A = n_targets
__A = num_detection_tokens
# we set the expected sequence length (which is used in several tests)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens
__A = (image_size[1] // patch_size) * (image_size[0] // patch_size)
__A = num_patches + 1 + self.num_detection_tokens
def UpperCamelCase_ ( self : Any ):
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] )
__A = None
if self.use_labels:
# labels is a list of Dict (each Dict being the labels for a given example in the batch)
__A = []
for i in range(self.batch_size ):
__A = {}
__A = torch.randint(
high=self.num_labels ,size=(self.n_targets,) ,device=A )
__A = torch.rand(self.n_targets ,4 ,device=A )
labels.append(A )
__A = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self : Union[str, Any] ):
return YolosConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,num_detection_tokens=self.num_detection_tokens ,num_labels=self.num_labels ,)
def UpperCamelCase_ ( self : int ,A : Any ,A : Any ,A : str ):
__A = YolosModel(config=A )
model.to(A )
model.eval()
__A = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.expected_seq_len, self.hidden_size) )
def UpperCamelCase_ ( self : Tuple ,A : List[Any] ,A : Union[str, Any] ,A : Optional[int] ):
__A = YolosForObjectDetection(A )
model.to(A )
model.eval()
__A = model(pixel_values=A )
__A = model(A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_detection_tokens, self.num_labels + 1) )
self.parent.assertEqual(result.pred_boxes.shape ,(self.batch_size, self.num_detection_tokens, 4) )
__A = model(pixel_values=A ,labels=A )
self.parent.assertEqual(result.loss.shape ,() )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_detection_tokens, self.num_labels + 1) )
self.parent.assertEqual(result.pred_boxes.shape ,(self.batch_size, self.num_detection_tokens, 4) )
def UpperCamelCase_ ( self : Tuple ):
__A = self.prepare_config_and_inputs()
__A , __A , __A = config_and_inputs
__A = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (YolosModel, YolosForObjectDetection) if is_torch_available() else ()
snake_case_ = (
{"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def UpperCamelCase_ ( self : Optional[int] ,A : Optional[int] ,A : str ,A : Tuple=False ):
__A = super()._prepare_for_class(A ,A ,return_labels=A )
if return_labels:
if model_class.__name__ == "YolosForObjectDetection":
__A = []
for i in range(self.model_tester.batch_size ):
__A = {}
__A = torch.ones(
size=(self.model_tester.n_targets,) ,device=A ,dtype=torch.long )
__A = torch.ones(
self.model_tester.n_targets ,4 ,device=A ,dtype=torch.float )
labels.append(A )
__A = labels
return inputs_dict
def UpperCamelCase_ ( self : List[Any] ):
__A = YolosModelTester(self )
__A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 )
def UpperCamelCase_ ( self : int ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self : List[str] ):
# YOLOS does not use inputs_embeds
pass
def UpperCamelCase_ ( self : Optional[Any] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) )
__A = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(A ,nn.Linear ) )
def UpperCamelCase_ ( self : int ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
__A = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__A = [*signature.parameters.keys()]
__A = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,A )
def UpperCamelCase_ ( self : Any ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Optional[int] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
__A = True
# in YOLOS, the seq_len is different
__A = self.model_tester.expected_seq_len
for model_class in self.all_model_classes:
__A = True
__A = False
__A = True
__A = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
__A = model(**self._prepare_for_class(A ,A ) )
__A = outputs.attentions
self.assertEqual(len(A ) ,self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__A = True
__A = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
__A = model(**self._prepare_for_class(A ,A ) )
__A = outputs.attentions
self.assertEqual(len(A ) ,self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,)
__A = len(A )
# Check attention is always last and order is fine
__A = True
__A = True
__A = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
__A = model(**self._prepare_for_class(A ,A ) )
__A = 1
self.assertEqual(out_len + added_hidden_states ,len(A ) )
__A = outputs.attentions
self.assertEqual(len(A ) ,self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,)
def UpperCamelCase_ ( self : int ):
def check_hidden_states_output(A : str ,A : Dict ,A : List[Any] ):
__A = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
__A = model(**self._prepare_for_class(A ,A ) )
__A = outputs.hidden_states
__A = getattr(
self.model_tester ,"expected_num_hidden_layers" ,self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(A ) ,A )
# YOLOS has a different seq_length
__A = self.model_tester.expected_seq_len
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) ,[seq_length, self.model_tester.hidden_size] ,)
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = True
check_hidden_states_output(A ,A ,A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__A = True
check_hidden_states_output(A ,A ,A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_object_detection(*A )
@slow
def UpperCamelCase_ ( self : Any ):
for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = YolosModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> Tuple:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : Any ):
return AutoImageProcessor.from_pretrained("hustvl/yolos-small" ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self : List[Any] ):
__A = YolosForObjectDetection.from_pretrained("hustvl/yolos-small" ).to(A )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="pt" ).to(A )
# forward pass
with torch.no_grad():
__A = model(inputs.pixel_values )
# verify outputs
__A = torch.Size((1, 1_00, 92) )
self.assertEqual(outputs.logits.shape ,A )
__A = torch.tensor(
[[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ,device=A ,)
__A = torch.tensor(
[[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ,device=A )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,A ,atol=1E-4 ) )
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] ,A ,atol=1E-4 ) )
# verify postprocessing
__A = image_processor.post_process_object_detection(
A ,threshold=0.3 ,target_sizes=[image.size[::-1]] )[0]
__A = torch.tensor([0.99_94, 0.97_90, 0.99_64, 0.99_72, 0.98_61] ).to(A )
__A = [75, 75, 17, 63, 17]
__A = torch.tensor([3_35.06_09, 79.38_48, 3_75.42_16, 1_87.24_95] ).to(A )
self.assertEqual(len(results["scores"] ) ,5 )
self.assertTrue(torch.allclose(results["scores"] ,A ,atol=1E-4 ) )
self.assertSequenceEqual(results["labels"].tolist() ,A )
self.assertTrue(torch.allclose(results["boxes"][0, :] ,A ) )
| 55 |
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = LayoutLMTokenizer
snake_case_ = LayoutLMTokenizerFast
snake_case_ = True
snake_case_ = True
def UpperCamelCase_ ( self : Any ):
super().setUp()
__A = [
"[UNK]",
"[CLS]",
"[SEP]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
__A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
def UpperCamelCase_ ( self : Tuple ,**A : int ):
return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**A )
def UpperCamelCase_ ( self : Optional[Any] ,A : Any ):
__A = "UNwant\u00E9d,running"
__A = "unwanted, running"
return input_text, output_text
def UpperCamelCase_ ( self : str ):
__A = self.tokenizer_class(self.vocab_file )
__A = tokenizer.tokenize("UNwant\u00E9d,running" )
self.assertListEqual(A ,["un", "##want", "##ed", ",", "runn", "##ing"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[7, 4, 5, 10, 8, 9] )
def UpperCamelCase_ ( self : int ):
pass
| 55 | 1 |
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :Tuple = {
'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json',
# See all DETR models at https://huggingface.co/models?filter=detr
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = "detr"
snake_case_ = ["past_key_values"]
snake_case_ = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self : int ,A : int=True ,A : List[str]=None ,A : Any=3 ,A : int=1_00 ,A : List[Any]=6 ,A : int=20_48 ,A : str=8 ,A : str=6 ,A : Any=20_48 ,A : int=8 ,A : Dict=0.0 ,A : Tuple=0.0 ,A : Dict=True ,A : str="relu" ,A : List[Any]=2_56 ,A : Tuple=0.1 ,A : Tuple=0.0 ,A : Optional[Any]=0.0 ,A : str=0.02 ,A : Optional[Any]=1.0 ,A : Optional[int]=False ,A : Tuple="sine" ,A : Tuple="resnet50" ,A : Tuple=True ,A : List[str]=False ,A : Optional[Any]=1 ,A : Tuple=5 ,A : Union[str, Any]=2 ,A : List[Any]=1 ,A : Union[str, Any]=1 ,A : List[Any]=5 ,A : List[Any]=2 ,A : Optional[int]=0.1 ,**A : Optional[Any] ,):
if backbone_config is not None and use_timm_backbone:
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." )
if not use_timm_backbone:
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
__A = CONFIG_MAPPING["resnet"](out_features=["stage4"] )
elif isinstance(A ,A ):
__A = backbone_config.get("model_type" )
__A = CONFIG_MAPPING[backbone_model_type]
__A = config_class.from_dict(A )
# set timm attributes to None
__A , __A , __A = None, None, None
__A = use_timm_backbone
__A = backbone_config
__A = num_channels
__A = num_queries
__A = d_model
__A = encoder_ffn_dim
__A = encoder_layers
__A = encoder_attention_heads
__A = decoder_ffn_dim
__A = decoder_layers
__A = decoder_attention_heads
__A = dropout
__A = attention_dropout
__A = activation_dropout
__A = activation_function
__A = init_std
__A = init_xavier_std
__A = encoder_layerdrop
__A = decoder_layerdrop
__A = encoder_layers
__A = auxiliary_loss
__A = position_embedding_type
__A = backbone
__A = use_pretrained_backbone
__A = dilation
# Hungarian matcher
__A = class_cost
__A = bbox_cost
__A = giou_cost
# Loss coefficients
__A = mask_loss_coefficient
__A = dice_loss_coefficient
__A = bbox_loss_coefficient
__A = giou_loss_coefficient
__A = eos_coefficient
super().__init__(is_encoder_decoder=A ,**A )
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return self.encoder_attention_heads
@property
def UpperCamelCase_ ( self : Tuple ):
return self.d_model
@classmethod
def UpperCamelCase_ ( cls : str ,A : PretrainedConfig ,**A : int ):
return cls(backbone_config=A ,**A )
def UpperCamelCase_ ( self : List[Any] ):
__A = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
__A = self.backbone_config.to_dict()
__A = self.__class__.model_type
return output
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = version.parse("1.11" )
@property
def UpperCamelCase_ ( self : Dict ):
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("pixel_mask", {0: "batch"}),
] )
@property
def UpperCamelCase_ ( self : Dict ):
return 1E-5
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return 12
| 55 |
SCREAMING_SNAKE_CASE :int = {str(digit): digit**5 for digit in range(10)}
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
return sum(DIGITS_FIFTH_POWER[digit] for digit in str(a_ ) )
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
return sum(
number
for number in range(1_0_0_0 , 1_0_0_0_0_0_0 )
if number == digits_fifth_powers_sum(a_ ) )
if __name__ == "__main__":
print(solution())
| 55 | 1 |
import qiskit
def UpperCAmelCase ( a_ , a_ ) -> qiskit.result.counts.Counts:
"""simple docstring"""
__A = qiskit.Aer.get_backend("aer_simulator" )
# Create a Quantum Circuit acting on the q register
__A = qiskit.QuantumCircuit(a_ , a_ )
# Apply X (NOT) Gate to Qubits 0 & 1
circuit.x(0 )
circuit.x(1 )
# Map the quantum measurement to the classical bits
circuit.measure([0, 1] , [0, 1] )
# Execute the circuit on the qasm simulator
__A = qiskit.execute(a_ , a_ , shots=1_0_0_0 )
# Return the histogram data of the results of the experiment.
return job.result().get_counts(a_ )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :int = single_qubit_measure(2, 2)
print(f'''Total count for various states are: {counts}''')
| 55 |
import inspect
import unittest
from transformers import MobileNetVaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileNetVaForImageClassification, MobileNetVaModel
from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self : Any ):
__A = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(A ,"tf_padding" ) )
self.parent.assertTrue(hasattr(A ,"depth_multiplier" ) )
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Optional[Any] ,A : int ,A : List[Any]=13 ,A : int=3 ,A : Optional[Any]=32 ,A : Union[str, Any]=0.25 ,A : Tuple=8 ,A : Optional[int]=True ,A : Union[str, Any]=10_24 ,A : Any=32 ,A : Optional[int]="relu6" ,A : int=0.1 ,A : Optional[Any]=0.02 ,A : Optional[Any]=True ,A : List[str]=True ,A : str=10 ,A : str=None ,):
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = depth_multiplier
__A = min_depth
__A = tf_padding
__A = int(last_hidden_size * depth_multiplier )
__A = output_stride
__A = hidden_act
__A = classifier_dropout_prob
__A = use_labels
__A = is_training
__A = num_labels
__A = initializer_range
__A = scope
def UpperCamelCase_ ( self : Optional[int] ):
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.num_labels )
__A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels )
__A = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self : Any ):
return MobileNetVaConfig(
num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,min_depth=self.min_depth ,tf_padding=self.tf_padding ,hidden_act=self.hidden_act ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,)
def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : Tuple ,A : Optional[int] ,A : List[str] ):
__A = MobileNetVaModel(config=A )
model.to(A )
model.eval()
__A = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) ,)
def UpperCamelCase_ ( self : List[Any] ,A : Union[str, Any] ,A : List[Any] ,A : int ,A : Union[str, Any] ):
__A = self.num_labels
__A = MobileNetVaForImageClassification(A )
model.to(A )
model.eval()
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : Tuple ):
__A = self.prepare_config_and_inputs()
__A , __A , __A , __A = config_and_inputs
__A = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else ()
snake_case_ = (
{"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification}
if is_torch_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def UpperCamelCase_ ( self : Any ):
__A = MobileNetVaModelTester(self )
__A = MobileNetVaConfigTester(self ,config_class=A ,has_text_modality=A )
def UpperCamelCase_ ( self : str ):
self.config_tester.run_common_tests()
@unittest.skip(reason="MobileNetV1 does not use inputs_embeds" )
def UpperCamelCase_ ( self : Union[str, Any] ):
pass
@unittest.skip(reason="MobileNetV1 does not support input and output embeddings" )
def UpperCamelCase_ ( self : Tuple ):
pass
@unittest.skip(reason="MobileNetV1 does not output attentions" )
def UpperCamelCase_ ( self : Any ):
pass
def UpperCamelCase_ ( self : Optional[int] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
__A = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__A = [*signature.parameters.keys()]
__A = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,A )
def UpperCamelCase_ ( self : List[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Optional[int] ):
def check_hidden_states_output(A : List[Any] ,A : List[Any] ,A : Optional[int] ):
__A = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
__A = model(**self._prepare_for_class(A ,A ) )
__A = outputs.hidden_states
__A = 26
self.assertEqual(len(A ) ,A )
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = True
check_hidden_states_output(A ,A ,A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__A = True
check_hidden_states_output(A ,A ,A )
def UpperCamelCase_ ( self : Tuple ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
@slow
def UpperCamelCase_ ( self : Union[str, Any] ):
for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = MobileNetVaModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> str:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : List[str] ):
return (
MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None
)
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
__A = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(A )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="pt" ).to(A )
# forward pass
with torch.no_grad():
__A = model(**A )
# verify the logits
__A = torch.Size((1, 10_01) )
self.assertEqual(outputs.logits.shape ,A )
__A = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
| 55 | 1 |
from bisect import bisect
from itertools import accumulate
def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> List[Any]:
"""simple docstring"""
__A = sorted(zip(a_ , a_ ) , key=lambda a_ : x[0] / x[1] , reverse=a_ )
__A , __A = [i[0] for i in r], [i[1] for i in r]
__A = list(accumulate(a_ ) )
__A = bisect(a_ , a_ )
return (
0
if k == 0
else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k])
if k != n
else sum(vl[:k] )
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 55 |
import copy
import unittest
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
)
from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : str ,A : int ,A : int=2 ,A : Optional[Any]=3 ,A : Dict=4 ,A : Optional[int]=2 ,A : Union[str, Any]=7 ,A : List[str]=True ,A : Union[str, Any]=True ,A : Optional[int]=True ,A : Optional[int]=True ,A : Tuple=99 ,A : Optional[int]=36 ,A : Dict=3 ,A : str=4 ,A : Optional[Any]=37 ,A : Dict="gelu" ,A : Dict=0.1 ,A : Union[str, Any]=0.1 ,A : Union[str, Any]=5_12 ,A : Any=16 ,A : Union[str, Any]=2 ,A : List[Any]=0.02 ,A : List[Any]=6 ,A : Optional[int]=6 ,A : List[Any]=3 ,A : Union[str, Any]=4 ,A : Tuple=None ,A : List[str]=10_00 ,):
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = patch_size
__A = text_seq_length
__A = is_training
__A = use_input_mask
__A = use_token_type_ids
__A = use_labels
__A = vocab_size
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = max_position_embeddings
__A = type_vocab_size
__A = type_sequence_label_size
__A = initializer_range
__A = coordinate_size
__A = shape_size
__A = num_labels
__A = num_choices
__A = scope
__A = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
__A = text_seq_length
__A = (image_size // patch_size) ** 2 + 1
__A = self.text_seq_length + self.image_seq_length
def UpperCamelCase_ ( self : int ):
__A = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size )
__A = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__A = bbox[i, j, 3]
__A = bbox[i, j, 1]
__A = t
if bbox[i, j, 2] < bbox[i, j, 0]:
__A = bbox[i, j, 2]
__A = bbox[i, j, 0]
__A = t
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
if self.use_input_mask:
__A = random_attention_mask([self.batch_size, self.text_seq_length] )
__A = None
if self.use_token_type_ids:
__A = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size )
__A = None
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__A = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels )
__A = LayoutLMvaConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,)
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def UpperCamelCase_ ( self : Optional[int] ,A : List[str] ,A : Any ,A : Dict ,A : List[Any] ,A : Optional[int] ,A : Any ,A : Dict ,A : List[Any] ):
__A = LayoutLMvaModel(config=A )
model.to(A )
model.eval()
# text + image
__A = model(A ,pixel_values=A )
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A )
__A = model(A ,bbox=A ,pixel_values=A ,token_type_ids=A )
__A = model(A ,bbox=A ,pixel_values=A )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
# text only
__A = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
__A = model(pixel_values=A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) )
def UpperCamelCase_ ( self : Optional[int] ,A : Dict ,A : List[str] ,A : Any ,A : List[Any] ,A : Any ,A : Any ,A : Dict ,A : Optional[Any] ):
__A = self.num_labels
__A = LayoutLMvaForSequenceClassification(A )
model.to(A )
model.eval()
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : str ,A : Optional[Any] ,A : Dict ,A : str ,A : Tuple ,A : Union[str, Any] ,A : List[Any] ,A : Any ,A : Union[str, Any] ):
__A = self.num_labels
__A = LayoutLMvaForTokenClassification(config=A )
model.to(A )
model.eval()
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) )
def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : int ,A : str ,A : List[str] ,A : int ,A : List[str] ,A : List[str] ,A : Dict ):
__A = LayoutLMvaForQuestionAnswering(config=A )
model.to(A )
model.eval()
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,start_positions=A ,end_positions=A ,)
self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) )
def UpperCamelCase_ ( self : str ):
__A = self.prepare_config_and_inputs()
(
(
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) ,
) = config_and_inputs
__A = {
"input_ids": input_ids,
"bbox": bbox,
"pixel_values": pixel_values,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = (
(
LayoutLMvaModel,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaForQuestionAnswering,
)
if is_torch_available()
else ()
)
snake_case_ = (
{"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel}
if is_torch_available()
else {}
)
def UpperCamelCase_ ( self : str ,A : Any ,A : Any ,A : Tuple ,A : List[Any] ,A : Optional[Any] ):
# `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual
# embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has
# the sequence dimension of the text embedding only.
# (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`)
return True
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = LayoutLMvaModelTester(self )
__A = ConfigTester(self ,config_class=A ,hidden_size=37 )
def UpperCamelCase_ ( self : List[Any] ,A : int ,A : List[str] ,A : Dict=False ):
__A = copy.deepcopy(A )
if model_class in get_values(A ):
__A = {
k: v.unsqueeze(1 ).expand(-1 ,self.model_tester.num_choices ,-1 ).contiguous()
if isinstance(A ,torch.Tensor ) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(A ):
__A = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=A )
elif model_class in get_values(A ):
__A = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=A )
__A = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=A )
elif model_class in [
*get_values(A ),
]:
__A = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=A )
elif model_class in [
*get_values(A ),
]:
__A = torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=A ,)
return inputs_dict
def UpperCamelCase_ ( self : List[Any] ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : str ):
__A = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__A = type
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*A )
def UpperCamelCase_ ( self : str ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*A )
@slow
def UpperCamelCase_ ( self : Optional[int] ):
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = LayoutLMvaModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> Dict:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : Any ):
return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self : Dict ):
__A = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(A )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="pt" ).pixel_values.to(A )
__A = torch.tensor([[1, 2]] )
__A = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 )
# forward pass
__A = model(
input_ids=input_ids.to(A ) ,bbox=bbox.to(A ) ,pixel_values=pixel_values.to(A ) ,)
# verify the logits
__A = torch.Size((1, 1_99, 7_68) )
self.assertEqual(outputs.last_hidden_state.shape ,A )
__A = torch.tensor(
[[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(A )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,A ,atol=1E-4 ) )
| 55 | 1 |
from __future__ import annotations
import math
import random
from typing import Any
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Tuple ):
__A = []
__A = 0
__A = 0
def UpperCamelCase_ ( self : List[Any] ):
return self.head == self.tail
def UpperCamelCase_ ( self : Union[str, Any] ,A : Any ):
self.data.append(A )
__A = self.tail + 1
def UpperCamelCase_ ( self : Any ):
__A = self.data[self.head]
__A = self.head + 1
return ret
def UpperCamelCase_ ( self : str ):
return self.tail - self.head
def UpperCamelCase_ ( self : List[str] ):
print(self.data )
print("**************" )
print(self.data[self.head : self.tail] )
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : str ,A : Any ):
__A = data
__A = None
__A = None
__A = 1
def UpperCamelCase_ ( self : Optional[Any] ):
return self.data
def UpperCamelCase_ ( self : Optional[int] ):
return self.left
def UpperCamelCase_ ( self : int ):
return self.right
def UpperCamelCase_ ( self : List[Any] ):
return self.height
def UpperCamelCase_ ( self : Optional[int] ,A : Any ):
__A = data
def UpperCamelCase_ ( self : Any ,A : MyNode | None ):
__A = node
def UpperCamelCase_ ( self : Tuple ,A : MyNode | None ):
__A = node
def UpperCamelCase_ ( self : Dict ,A : int ):
__A = height
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
if node is None:
return 0
return node.get_height()
def UpperCAmelCase ( a_ , a_ ) -> int:
"""simple docstring"""
if a > b:
return a
return b
def UpperCAmelCase ( a_ ) -> MyNode:
"""simple docstring"""
print("left rotation node:" , node.get_data() )
__A = node.get_left()
assert ret is not None
node.set_left(ret.get_right() )
ret.set_right(a_ )
__A = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1
node.set_height(a_ )
__A = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1
ret.set_height(a_ )
return ret
def UpperCAmelCase ( a_ ) -> MyNode:
"""simple docstring"""
print("right rotation node:" , node.get_data() )
__A = node.get_right()
assert ret is not None
node.set_right(ret.get_left() )
ret.set_left(a_ )
__A = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1
node.set_height(a_ )
__A = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1
ret.set_height(a_ )
return ret
def UpperCAmelCase ( a_ ) -> MyNode:
"""simple docstring"""
__A = node.get_left()
assert left_child is not None
node.set_left(left_rotation(a_ ) )
return right_rotation(a_ )
def UpperCAmelCase ( a_ ) -> MyNode:
"""simple docstring"""
__A = node.get_right()
assert right_child is not None
node.set_right(right_rotation(a_ ) )
return left_rotation(a_ )
def UpperCAmelCase ( a_ , a_ ) -> MyNode | None:
"""simple docstring"""
if node is None:
return MyNode(a_ )
if data < node.get_data():
node.set_left(insert_node(node.get_left() , a_ ) )
if (
get_height(node.get_left() ) - get_height(node.get_right() ) == 2
): # an unbalance detected
__A = node.get_left()
assert left_child is not None
if (
data < left_child.get_data()
): # new node is the left child of the left child
__A = right_rotation(a_ )
else:
__A = lr_rotation(a_ )
else:
node.set_right(insert_node(node.get_right() , a_ ) )
if get_height(node.get_right() ) - get_height(node.get_left() ) == 2:
__A = node.get_right()
assert right_child is not None
if data < right_child.get_data():
__A = rl_rotation(a_ )
else:
__A = left_rotation(a_ )
__A = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1
node.set_height(a_ )
return node
def UpperCAmelCase ( a_ ) -> Any:
"""simple docstring"""
while True:
__A = root.get_right()
if right_child is None:
break
__A = right_child
return root.get_data()
def UpperCAmelCase ( a_ ) -> Any:
"""simple docstring"""
while True:
__A = root.get_left()
if left_child is None:
break
__A = left_child
return root.get_data()
def UpperCAmelCase ( a_ , a_ ) -> MyNode | None:
"""simple docstring"""
__A = root.get_left()
__A = root.get_right()
if root.get_data() == data:
if left_child is not None and right_child is not None:
__A = get_left_most(a_ )
root.set_data(a_ )
root.set_right(del_node(a_ , a_ ) )
elif left_child is not None:
__A = left_child
elif right_child is not None:
__A = right_child
else:
return None
elif root.get_data() > data:
if left_child is None:
print("No such data" )
return root
else:
root.set_left(del_node(a_ , a_ ) )
else: # root.get_data() < data
if right_child is None:
return root
else:
root.set_right(del_node(a_ , a_ ) )
if get_height(a_ ) - get_height(a_ ) == 2:
assert right_child is not None
if get_height(right_child.get_right() ) > get_height(right_child.get_left() ):
__A = left_rotation(a_ )
else:
__A = rl_rotation(a_ )
elif get_height(a_ ) - get_height(a_ ) == -2:
assert left_child is not None
if get_height(left_child.get_left() ) > get_height(left_child.get_right() ):
__A = right_rotation(a_ )
else:
__A = lr_rotation(a_ )
__A = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1
root.set_height(a_ )
return root
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : List[Any] ):
__A = None
def UpperCamelCase_ ( self : List[str] ):
return get_height(self.root )
def UpperCamelCase_ ( self : Optional[int] ,A : Any ):
print("insert:" + str(A ) )
__A = insert_node(self.root ,A )
def UpperCamelCase_ ( self : Optional[Any] ,A : Any ):
print("delete:" + str(A ) )
if self.root is None:
print("Tree is empty!" )
return
__A = del_node(self.root ,A )
def __str__( self : Any ,): # a level traversale, gives a more intuitive look on the tree
__A = ""
__A = MyQueue()
q.push(self.root )
__A = self.get_height()
if layer == 0:
return output
__A = 0
while not q.is_empty():
__A = q.pop()
__A = " " * int(math.pow(2 ,layer - 1 ) )
output += space
if node is None:
output += "*"
q.push(A )
q.push(A )
else:
output += str(node.get_data() )
q.push(node.get_left() )
q.push(node.get_right() )
output += space
__A = cnt + 1
for i in range(1_00 ):
if cnt == math.pow(2 ,A ) - 1:
__A = layer - 1
if layer == 0:
output += "\n*************************************"
return output
output += "\n"
break
output += "\n*************************************"
return output
def UpperCAmelCase ( ) -> None:
"""simple docstring"""
import doctest
doctest.testmod()
if __name__ == "__main__":
_test()
SCREAMING_SNAKE_CASE :Dict = AVLtree()
SCREAMING_SNAKE_CASE :Optional[int] = list(range(10))
random.shuffle(lst)
for i in lst:
t.insert(i)
print(str(t))
random.shuffle(lst)
for i in lst:
t.del_node(i)
print(str(t))
| 55 |
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Any ,A : List[str] ,A : str=7 ,A : Optional[Any]=3 ,A : Any=18 ,A : int=30 ,A : int=4_00 ,A : List[str]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=True ,A : Tuple=None ,A : Tuple=True ,A : Union[str, Any]=[0.5, 0.5, 0.5] ,A : str=[0.5, 0.5, 0.5] ,A : List[Any]=False ,):
__A = size if size is not None else {"height": 20, "width": 20}
__A = crop_size if crop_size is not None else {"height": 18, "width": 18}
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = min_resolution
__A = max_resolution
__A = do_resize
__A = size
__A = do_center_crop
__A = crop_size
__A = do_normalize
__A = image_mean
__A = image_std
__A = do_reduce_labels
def UpperCamelCase_ ( self : List[str] ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
__A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
__A = Image.open(dataset[0]["file"] )
__A = Image.open(dataset[1]["file"] )
return image, map
def UpperCAmelCase ( ) -> Optional[int]:
"""simple docstring"""
__A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
__A = Image.open(ds[0]["file"] )
__A = Image.open(ds[1]["file"] )
__A = Image.open(ds[2]["file"] )
__A = Image.open(ds[3]["file"] )
return [imagea, imagea], [mapa, mapa]
@require_torch
@require_vision
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = BeitImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self : List[Any] ):
__A = BeitImageProcessingTester(self )
@property
def UpperCamelCase_ ( self : List[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self : int ):
__A = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A ,"do_resize" ) )
self.assertTrue(hasattr(A ,"size" ) )
self.assertTrue(hasattr(A ,"do_center_crop" ) )
self.assertTrue(hasattr(A ,"center_crop" ) )
self.assertTrue(hasattr(A ,"do_normalize" ) )
self.assertTrue(hasattr(A ,"image_mean" ) )
self.assertTrue(hasattr(A ,"image_std" ) )
def UpperCamelCase_ ( self : List[str] ):
__A = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{"height": 20, "width": 20} )
self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} )
self.assertEqual(image_processor.do_reduce_labels ,A )
__A = self.image_processing_class.from_dict(
self.image_processor_dict ,size=42 ,crop_size=84 ,reduce_labels=A )
self.assertEqual(image_processor.size ,{"height": 42, "width": 42} )
self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} )
self.assertEqual(image_processor.do_reduce_labels ,A )
def UpperCamelCase_ ( self : List[Any] ):
pass
def UpperCamelCase_ ( self : Optional[int] ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A ,Image.Image )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : List[str] ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A )
for image in image_inputs:
self.assertIsInstance(A ,np.ndarray )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : int ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A )
for image in image_inputs:
self.assertIsInstance(A ,torch.Tensor )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : str ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A )
__A = []
for image in image_inputs:
self.assertIsInstance(A ,torch.Tensor )
maps.append(torch.zeros(image.shape[-2:] ).long() )
# Test not batched input
__A = image_processing(image_inputs[0] ,maps[0] ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
1,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
# Test batched
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
# Test not batched input (PIL images)
__A , __A = prepare_semantic_single_inputs()
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
1,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
# Test batched input (PIL images)
__A , __A = prepare_semantic_batch_inputs()
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
2,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
def UpperCamelCase_ ( self : Dict ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
__A , __A = prepare_semantic_single_inputs()
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 1_50 )
__A = True
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
| 55 | 1 |
import logging
import torch
from accelerate import Accelerator
from arguments import EvaluationArguments
from datasets import load_dataset
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : int ,A : Any ,A : List[str] ,A : Union[str, Any]=10_24 ,A : int=10_24 ,A : Optional[Any]=3.6 ):
__A = tokenizer
__A = tokenizer.bos_token_id
__A = dataset
__A = seq_length
__A = seq_length * chars_per_token * num_of_sequences
def __iter__( self : List[Any] ):
__A = iter(self.dataset )
__A = True
while more_examples:
__A , __A = [], 0
while True:
if buffer_len >= self.input_characters:
break
try:
buffer.append(next(A )["content"] )
buffer_len += len(buffer[-1] )
except StopIteration:
__A = False
break
__A = tokenizer(A ,truncation=A )["input_ids"]
__A = []
for tokenized_input in tokenized_inputs:
all_token_ids.extend(tokenized_input + [self.concat_token_id] )
for i in range(0 ,len(A ) ,self.seq_length ):
__A = all_token_ids[i : i + self.seq_length]
if len(A ) == self.seq_length:
yield torch.tensor(A )
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
__A = {"streaming": True}
__A = load_dataset(args.dataset_name , split="train" , **a_ )
__A = ConstantLengthDataset(a_ , a_ , seq_length=args.seq_length )
__A = DataLoader(a_ , batch_size=args.batch_size )
return eval_dataloader
def UpperCAmelCase ( a_ ) -> Union[str, Any]:
"""simple docstring"""
model.eval()
__A = []
for step, batch in enumerate(a_ ):
with torch.no_grad():
__A = model(a_ , labels=a_ )
__A = outputs.loss.repeat(args.batch_size )
losses.append(accelerator.gather(a_ ) )
if args.max_eval_steps > 0 and step >= args.max_eval_steps:
break
__A = torch.mean(torch.cat(a_ ) )
try:
__A = torch.exp(a_ )
except OverflowError:
__A = float("inf" )
return loss.item(), perplexity.item()
# Setup Accelerator
SCREAMING_SNAKE_CASE :Optional[int] = Accelerator()
# Parse configuration
SCREAMING_SNAKE_CASE :str = HfArgumentParser(EvaluationArguments)
SCREAMING_SNAKE_CASE :int = parser.parse_args()
set_seed(args.seed)
# Logging
SCREAMING_SNAKE_CASE :Dict = logging.getLogger(__name__)
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO
)
# Load model and tokenizer
SCREAMING_SNAKE_CASE :List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt)
SCREAMING_SNAKE_CASE :int = AutoTokenizer.from_pretrained(args.model_ckpt)
# Load dataset and dataloader
SCREAMING_SNAKE_CASE :List[str] = create_dataloader(args)
# Prepare everything with our `accelerator`.
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = accelerator.prepare(model, eval_dataloader)
# Evaluate and save the last checkpoint
logger.info('Evaluating and saving model after training')
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = evaluate(args)
logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
| 55 |
from numpy import exp, pi, sqrt
def UpperCAmelCase ( a_ , a_ = 0.0 , a_ = 1.0 ) -> int:
"""simple docstring"""
return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 55 | 1 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Sequence, Value
from .base import TaskTemplate
@dataclass(frozen=__SCREAMING_SNAKE_CASE )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = field(default="question-answering-extractive" , metadata={"include_in_asdict_even_if_is_default": True} )
snake_case_ = Features({"question": Value("string" ), "context": Value("string" )} )
snake_case_ = Features(
{
"answers": Sequence(
{
"text": Value("string" ),
"answer_start": Value("int32" ),
} )
} )
snake_case_ = "question"
snake_case_ = "context"
snake_case_ = "answers"
@property
def UpperCamelCase_ ( self : int ):
return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
| 55 |
import gc
import unittest
from diffusers import FlaxStableDiffusionInpaintPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Tuple ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def UpperCamelCase_ ( self : Optional[int] ):
__A = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-inpaint/init_image.png" )
__A = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" )
__A = "xvjiarui/stable-diffusion-2-inpainting"
__A , __A = FlaxStableDiffusionInpaintPipeline.from_pretrained(A ,safety_checker=A )
__A = "Face of a yellow cat, high resolution, sitting on a park bench"
__A = jax.random.PRNGKey(0 )
__A = 50
__A = jax.device_count()
__A = num_samples * [prompt]
__A = num_samples * [init_image]
__A = num_samples * [mask_image]
__A , __A , __A = pipeline.prepare_inputs(A ,A ,A )
# shard inputs and rng
__A = replicate(A )
__A = jax.random.split(A ,jax.device_count() )
__A = shard(A )
__A = shard(A )
__A = shard(A )
__A = pipeline(
A ,A ,A ,A ,A ,A ,jit=A )
__A = output.images.reshape(A ,5_12 ,5_12 ,3 )
__A = images[0, 2_53:2_56, 2_53:2_56, -1]
__A = jnp.asarray(jax.device_get(image_slice.flatten() ) )
__A = jnp.array(
[0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] )
print(f'''output_slice: {output_slice}''' )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
| 55 | 1 |
import json
import os
import tempfile
from unittest.mock import patch
import torch
from torch.utils.data import DataLoader, TensorDataset
from accelerate import DistributedType, infer_auto_device_map, init_empty_weights
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState, PartialState
from accelerate.test_utils import require_bnb, require_multi_gpu, slow
from accelerate.test_utils.testing import AccelerateTestCase, require_cuda
from accelerate.utils import patch_environment
def UpperCAmelCase ( ) -> Optional[int]:
"""simple docstring"""
__A = torch.nn.Linear(2 , 4 )
__A = torch.optim.AdamW(model.parameters() , lr=1.0 )
__A = torch.optim.lr_scheduler.OneCycleLR(a_ , max_lr=0.01 , steps_per_epoch=2 , epochs=1 )
__A = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) )
__A = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) )
return model, optimizer, scheduler, train_dl, valid_dl
def UpperCAmelCase ( a_ ) -> Dict:
"""simple docstring"""
return (model.weight.abs().sum() + model.bias.abs().sum()).item()
def UpperCAmelCase ( a_ ) -> Dict:
"""simple docstring"""
__A = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict()
model.load_state_dict(a_ )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@require_cuda
def UpperCamelCase_ ( self : Dict ):
__A = Accelerator()
assert PartialState._shared_state["_cpu"] is False
assert PartialState._shared_state["device"].type == "cuda"
with self.assertRaises(A ):
__A = Accelerator(cpu=A )
def UpperCamelCase_ ( self : Dict ):
__A = Accelerator()
__A = GradientState()
assert state.num_steps == 1
__A = 4
assert state.num_steps == 4
assert state.sync_gradients is True
__A = False
assert state.sync_gradients is False
GradientState._reset_state()
def UpperCamelCase_ ( self : str ):
__A = Accelerator()
__A , __A , __A , __A , __A = create_components()
(
(
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) ,
) = accelerator.prepare(A ,A ,A ,A ,A )
self.assertTrue(prepared_model in accelerator._models )
self.assertTrue(prepared_optimizer in accelerator._optimizers )
self.assertTrue(prepared_scheduler in accelerator._schedulers )
self.assertTrue(prepared_train_dl in accelerator._dataloaders )
self.assertTrue(prepared_valid_dl in accelerator._dataloaders )
def UpperCamelCase_ ( self : Optional[int] ):
__A = Accelerator()
__A , __A , __A , __A , __A = create_components()
accelerator.prepare(A ,A ,A ,A ,A )
accelerator.free_memory()
self.assertTrue(len(accelerator._models ) == 0 )
self.assertTrue(len(accelerator._optimizers ) == 0 )
self.assertTrue(len(accelerator._schedulers ) == 0 )
self.assertTrue(len(accelerator._dataloaders ) == 0 )
def UpperCamelCase_ ( self : str ):
PartialState._reset_state()
# Mock torch.cuda.set_device to avoid an exception as the device doesn't exist
def noop(*A : int ,**A : List[str] ):
pass
with patch("torch.cuda.set_device" ,A ), patch_environment(ACCELERATE_TORCH_DEVICE="cuda:64" ):
__A = Accelerator()
self.assertEqual(str(accelerator.state.device ) ,"cuda:64" )
def UpperCamelCase_ ( self : Tuple ):
__A = Accelerator()
__A , __A , __A , __A , __A = create_components()
accelerator.prepare(A ,A ,A ,A ,A )
__A = get_signature(A )
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(A )
# make sure random weights don't match
load_random_weights(A )
self.assertTrue(abs(model_signature - get_signature(A ) ) > 1E-3 )
# make sure loaded weights match
accelerator.load_state(A )
self.assertTrue(abs(model_signature - get_signature(A ) ) < 1E-3 )
def UpperCamelCase_ ( self : Dict ):
__A = Accelerator()
__A , __A , __A , __A , __A = create_components()
accelerator.prepare(A ,A ,A ,A ,A )
__A = get_signature(A )
# saving hook
def save_config(A : Optional[int] ,A : List[Any] ,A : int ):
__A = {"class_name": models[0].__class__.__name__}
with open(os.path.join(A ,"data.json" ) ,"w" ) as f:
json.dump(A ,A )
# loading hook
def load_config(A : List[Any] ,A : Any ):
with open(os.path.join(A ,"data.json" ) ,"r" ) as f:
__A = json.load(A )
__A = config["class_name"]
__A = accelerator.register_save_state_pre_hook(A )
__A = accelerator.register_load_state_pre_hook(A )
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(A )
# make sure random weights don't match with hooks
load_random_weights(A )
self.assertTrue(abs(model_signature - get_signature(A ) ) > 1E-3 )
# random class name to verify correct one is loaded
__A = "random"
# make sure loaded weights match with hooks
accelerator.load_state(A )
self.assertTrue(abs(model_signature - get_signature(A ) ) < 1E-3 )
# mode.class_name is loaded from config
self.assertTrue(model.class_name == model.__class__.__name__ )
# remove hooks
save_hook.remove()
load_hook.remove()
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(A )
# make sure random weights don't match with hooks removed
load_random_weights(A )
self.assertTrue(abs(model_signature - get_signature(A ) ) > 1E-3 )
# random class name to verify correct one is loaded
__A = "random"
# make sure loaded weights match with hooks removed
accelerator.load_state(A )
self.assertTrue(abs(model_signature - get_signature(A ) ) < 1E-3 )
# mode.class_name is NOT loaded from config
self.assertTrue(model.class_name != model.__class__.__name__ )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = Accelerator()
__A , __A , __A , __A , __A = create_components()
__A = None
# This should work
__A , __A , __A , __A , __A , __A = accelerator.prepare(
A ,A ,A ,A ,A ,A )
self.assertTrue(dummy_obj is None )
def UpperCamelCase_ ( self : Optional[int] ):
__A = Accelerator()
__A , __A , __A , __A , __A = create_components()
__A = [1, 2, 3]
# This should work
__A , __A , __A , __A , __A , __A = accelerator.prepare(
A ,A ,A ,A ,A ,A )
self.assertEqual(
getattr(A ,"_is_accelerate_prepared" ,A ) ,A ,"Dummy object should have `_is_accelerate_prepared` set to `True`" ,)
self.assertEqual(
getattr(A ,"_is_accelerate_prepared" ,A ) ,A ,"Model is missing `_is_accelerator_prepared` or is set to `False`" ,)
self.assertEqual(
getattr(A ,"_is_accelerate_prepared" ,A ) ,A ,"Optimizer is missing `_is_accelerator_prepared` or is set to `False`" ,)
self.assertEqual(
getattr(A ,"_is_accelerate_prepared" ,A ) ,A ,"Scheduler is missing `_is_accelerator_prepared` or is set to `False`" ,)
self.assertEqual(
getattr(A ,"_is_accelerate_prepared" ,A ) ,A ,"Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`" ,)
self.assertEqual(
getattr(A ,"_is_accelerate_prepared" ,A ) ,A ,"Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`" ,)
@slow
@require_bnb
def UpperCamelCase_ ( self : Tuple ):
from transformers import AutoModelForCausalLM
__A = AutoModelForCausalLM.from_pretrained(
"EleutherAI/gpt-neo-125m" ,load_in_abit=A ,device_map={"": 0} ,)
__A = Accelerator()
# This should work
__A = accelerator.prepare(A )
@slow
@require_bnb
def UpperCamelCase_ ( self : Any ):
from transformers import AutoModelForCausalLM
__A = Accelerator()
with init_empty_weights():
__A = AutoModelForCausalLM.from_pretrained(
"EleutherAI/gpt-neo-125m" ,)
model.tie_weights()
__A = infer_auto_device_map(A )
__A = "cpu"
__A = AutoModelForCausalLM.from_pretrained(
"EleutherAI/gpt-neo-125m" ,device_map=A ,load_in_abit=A ,llm_inta_enable_fpaa_cpu_offload=A )
# This should not work and get value error
with self.assertRaises(A ):
__A = accelerator.prepare(A )
@slow
@require_bnb
@require_multi_gpu
def UpperCamelCase_ ( self : int ):
from transformers import AutoModelForCausalLM
__A = {"distributed_type": DistributedType.MULTI_GPU}
with init_empty_weights():
__A = AutoModelForCausalLM.from_pretrained(
"EleutherAI/gpt-neo-125m" ,)
model.tie_weights()
__A = infer_auto_device_map(A )
__A = 1
__A = AutoModelForCausalLM.from_pretrained(
"EleutherAI/gpt-neo-125m" ,load_in_abit=A ,device_map=A ,)
__A = Accelerator()
# This should not work and get value error
with self.assertRaises(A ):
__A = accelerator.prepare(A )
PartialState._reset_state()
@slow
@require_bnb
@require_multi_gpu
def UpperCamelCase_ ( self : Dict ):
from transformers import AutoModelForCausalLM
with init_empty_weights():
__A = AutoModelForCausalLM.from_pretrained(
"EleutherAI/gpt-neo-125m" ,)
__A = infer_auto_device_map(A )
__A = 1
__A = AutoModelForCausalLM.from_pretrained(
"EleutherAI/gpt-neo-125m" ,load_in_abit=A ,device_map=A ,)
__A = Accelerator()
# This should work
__A = accelerator.prepare(A )
@require_cuda
def UpperCamelCase_ ( self : Optional[Any] ):
__A = torch.nn.Linear(10 ,10 )
__A = torch.optim.SGD(model.parameters() ,lr=0.01 )
__A = Accelerator(cpu=A )
__A = accelerator.prepare(A )
| 55 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import GLPNImageProcessor
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Any ,A : Optional[int] ,A : Optional[int]=7 ,A : Optional[Any]=3 ,A : List[str]=18 ,A : Any=30 ,A : Tuple=4_00 ,A : Union[str, Any]=True ,A : Optional[Any]=32 ,A : Union[str, Any]=True ,):
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = min_resolution
__A = max_resolution
__A = do_resize
__A = size_divisor
__A = do_rescale
def UpperCamelCase_ ( self : Union[str, Any] ):
return {
"do_resize": self.do_resize,
"size_divisor": self.size_divisor,
"do_rescale": self.do_rescale,
}
@require_torch
@require_vision
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = GLPNImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self : int ):
__A = GLPNImageProcessingTester(self )
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self : Any ):
__A = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A ,"do_resize" ) )
self.assertTrue(hasattr(A ,"size_divisor" ) )
self.assertTrue(hasattr(A ,"resample" ) )
self.assertTrue(hasattr(A ,"do_rescale" ) )
def UpperCamelCase_ ( self : str ):
pass
def UpperCamelCase_ ( self : Dict ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A ,Image.Image )
# Test not batched input (GLPNImageProcessor doesn't support batching)
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
def UpperCamelCase_ ( self : Optional[Any] ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A )
for image in image_inputs:
self.assertIsInstance(A ,np.ndarray )
# Test not batched input (GLPNImageProcessor doesn't support batching)
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
def UpperCamelCase_ ( self : int ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A )
for image in image_inputs:
self.assertIsInstance(A ,torch.Tensor )
# Test not batched input (GLPNImageProcessor doesn't support batching)
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
| 55 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
SCREAMING_SNAKE_CASE :Tuple = {
'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Union[str, Any] = [
'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST',
'NezhaForNextSentencePrediction',
'NezhaForMaskedLM',
'NezhaForPreTraining',
'NezhaForMultipleChoice',
'NezhaForQuestionAnswering',
'NezhaForSequenceClassification',
'NezhaForTokenClassification',
'NezhaModel',
'NezhaPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nezha import (
NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
NezhaModel,
NezhaPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE :Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 55 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=__SCREAMING_SNAKE_CASE )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
snake_case_ = Features({"image": Image()} )
snake_case_ = Features({"labels": ClassLabel} )
snake_case_ = "image"
snake_case_ = "labels"
def UpperCamelCase_ ( self : Optional[Any] ,A : Tuple ):
if self.label_column not in features:
raise ValueError(f'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] ,A ):
raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' )
__A = copy.deepcopy(self )
__A = self.label_schema.copy()
__A = features[self.label_column]
__A = label_schema
return task_template
@property
def UpperCamelCase_ ( self : Any ):
return {
self.image_column: "image",
self.label_column: "labels",
}
| 55 | 1 |
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse('0.12.2'):
raise Exception('requires fairseq >= 0.12.2')
if version.parse(fairseq.__version__) > version.parse('2'):
raise Exception('requires fairseq < v2')
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE :str = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :Optional[int] = 'Hello, World!'
SCREAMING_SNAKE_CASE :Optional[Any] = 'en_XX'
def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[int]:
"""simple docstring"""
__A = Path("data_bin" )
__A = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(a_ ).parent ) , checkpoint_file=Path(a_ ).name , _name="xmod_base" , arch="xmod_base" , task="multilingual_masked_lm" , data_name_or_path=str(a_ ) , bpe="sentencepiece" , sentencepiece_model=str(Path(a_ ).parent / "sentencepiece.bpe.model" ) , src_dict=str(data_dir / "dict.txt" ) , )
xmod.eval() # disable dropout
print(a_ )
__A = xmod.model.encoder.sentence_encoder
__A = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , "bottleneck" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
__A = xmod.model.classification_heads["mnli"].out_proj.weight.shape[0]
print("Our X-MOD config:" , a_ )
__A = XmodForSequenceClassification(a_ ) if classification_head else XmodForMaskedLM(a_ )
model.eval()
# Now let's copy all the weights.
# Embeddings
__A = xmod_sent_encoder.embed_tokens.weight
__A = xmod_sent_encoder.embed_positions.weight
__A = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
__A = xmod_sent_encoder.layernorm_embedding.weight
__A = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
__A = model.roberta.encoder.layer[i]
__A = xmod_sent_encoder.layers[i]
# self attention
__A = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError("Dimensions of self-attention weights do not match." )
__A = xmod_layer.self_attn.q_proj.weight
__A = xmod_layer.self_attn.q_proj.bias
__A = xmod_layer.self_attn.k_proj.weight
__A = xmod_layer.self_attn.k_proj.bias
__A = xmod_layer.self_attn.v_proj.weight
__A = xmod_layer.self_attn.v_proj.bias
# self-attention output
__A = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError("Dimensions of self-attention output weights do not match." )
__A = xmod_layer.self_attn.out_proj.weight
__A = xmod_layer.self_attn.out_proj.bias
__A = xmod_layer.self_attn_layer_norm.weight
__A = xmod_layer.self_attn_layer_norm.bias
# intermediate
__A = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError("Dimensions of intermediate weights do not match." )
__A = xmod_layer.fca.weight
__A = xmod_layer.fca.bias
# output
__A = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError("Dimensions of feed-forward weights do not match." )
__A = xmod_layer.fca.weight
__A = xmod_layer.fca.bias
__A = xmod_layer.final_layer_norm.weight
__A = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
__A = xmod_layer.adapter_layer_norm.weight
__A = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError("Lists of language adapters do not match." )
for lang_code, adapter in xmod_layer.adapter_modules.items():
__A = bert_output.adapter_modules[lang_code]
__A = xmod_layer.adapter_modules[lang_code]
__A = from_adapter.fca.weight
__A = from_adapter.fca.bias
__A = from_adapter.fca.weight
__A = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
__A = xmod_sent_encoder.layer_norm.weight
__A = xmod_sent_encoder.layer_norm.bias
if classification_head:
__A = xmod.model.classification_heads["mnli"].dense.weight
__A = xmod.model.classification_heads["mnli"].dense.bias
__A = xmod.model.classification_heads["mnli"].out_proj.weight
__A = xmod.model.classification_heads["mnli"].out_proj.bias
else:
# LM Head
__A = xmod.model.encoder.lm_head.dense.weight
__A = xmod.model.encoder.lm_head.dense.bias
__A = xmod.model.encoder.lm_head.layer_norm.weight
__A = xmod.model.encoder.lm_head.layer_norm.bias
__A = xmod.model.encoder.lm_head.weight
__A = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
__A = xmod.encode(a_ ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(a_ )
__A = model(a_ )[0]
if classification_head:
__A = xmod.model.classification_heads["mnli"](xmod.extract_features(a_ ) )
else:
__A = xmod.model(a_ , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
__A = torch.max(torch.abs(our_output - their_output ) ).item()
print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7
__A = torch.allclose(a_ , a_ , atol=1E-3 )
print("Do both models output the same tensors?" , "🔥" if success else "💩" )
if not success:
raise Exception("Something went wRoNg" )
Path(a_ ).mkdir(parents=a_ , exist_ok=a_ )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(a_ )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--xmod_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--classification_head', action='store_true', help='Whether to convert a final classification head.'
)
SCREAMING_SNAKE_CASE :str = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 55 |
from math import sqrt
def UpperCAmelCase ( a_ ) -> bool:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number >= 0
), "'number' must been an int and positive"
__A = True
# 0 and 1 are none primes.
if number <= 1:
__A = False
for divisor in range(2 , int(round(sqrt(a_ ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
__A = False
break
# precondition
assert isinstance(a_ , a_ ), "'status' must been from type bool"
return status
def UpperCAmelCase ( a_ ) -> Any:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
__A = list(range(2 , n + 1 ) )
__A = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(a_ ) ):
for j in range(i + 1 , len(a_ ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
__A = 0
# filters actual prime numbers.
__A = [x for x in begin_list if x != 0]
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type list"
return ans
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2"
__A = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(a_ ):
ans.append(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type list"
return ans
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and number >= 0, "'number' must been an int and >= 0"
__A = [] # this list will be returns of the function.
# potential prime number factors.
__A = 2
__A = number
if number == 0 or number == 1:
ans.append(a_ )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(a_ ):
while quotient != 1:
if is_prime(a_ ) and (quotient % factor == 0):
ans.append(a_ )
quotient /= factor
else:
factor += 1
else:
ans.append(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type list"
return ans
def UpperCAmelCase ( a_ ) -> Any:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
__A = 0
# prime factorization of 'number'
__A = prime_factorization(a_ )
__A = max(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type int"
return ans
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
__A = 0
# prime factorization of 'number'
__A = prime_factorization(a_ )
__A = min(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type int"
return ans
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
assert isinstance(a_ , a_ ), "'number' must been an int"
assert isinstance(number % 2 == 0 , a_ ), "compare bust been from type bool"
return number % 2 == 0
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
assert isinstance(a_ , a_ ), "'number' must been an int"
assert isinstance(number % 2 != 0 , a_ ), "compare bust been from type bool"
return number % 2 != 0
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
assert (
isinstance(a_ , a_ ) and (number > 2) and is_even(a_ )
), "'number' must been an int, even and > 2"
__A = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
__A = get_prime_numbers(a_ )
__A = len(a_ )
# run variable for while-loops.
__A = 0
__A = None
# exit variable. for break up the loops
__A = True
while i < len_pn and loop:
__A = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
__A = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(a_ , a_ )
and (len(a_ ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]:
"""simple docstring"""
assert (
isinstance(a_ , a_ )
and isinstance(a_ , a_ )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
__A = 0
while numbera != 0:
__A = numbera % numbera
__A = numbera
__A = rest
# precondition
assert isinstance(a_ , a_ ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def UpperCAmelCase ( a_ , a_ ) -> List[str]:
"""simple docstring"""
assert (
isinstance(a_ , a_ )
and isinstance(a_ , a_ )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
__A = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
__A = prime_factorization(a_ )
__A = prime_factorization(a_ )
elif numbera == 1 or numbera == 1:
__A = []
__A = []
__A = max(a_ , a_ )
__A = 0
__A = 0
__A = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
__A = prime_fac_a.count(a_ )
__A = prime_fac_a.count(a_ )
for _ in range(max(a_ , a_ ) ):
ans *= n
else:
__A = prime_fac_a.count(a_ )
for _ in range(a_ ):
ans *= n
done.append(a_ )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
__A = prime_fac_a.count(a_ )
for _ in range(a_ ):
ans *= n
done.append(a_ )
# precondition
assert isinstance(a_ , a_ ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 0), "'number' must been a positive int"
__A = 0
__A = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(a_ ):
ans += 1
# precondition
assert isinstance(a_ , a_ ) and is_prime(
a_ ), "'ans' must been a prime number and from type int"
return ans
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
assert (
is_prime(a_ ) and is_prime(a_ ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
__A = p_number_a + 1 # jump to the next number
__A = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(a_ ):
number += 1
while number < p_number_a:
ans.append(a_ )
number += 1
# fetch the next prime number.
while not is_prime(a_ ):
number += 1
# precondition
assert (
isinstance(a_ , a_ )
and ans[0] != p_number_a
and ans[len(a_ ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 1), "'n' must been int and >= 1"
__A = [] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(a_ )
# precondition
assert ans[0] == 1 and ans[len(a_ ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def UpperCAmelCase ( a_ ) -> Dict:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number > 1
), "'number' must been an int and >= 1"
__A = get_divisors(a_ )
# precondition
assert (
isinstance(a_ , a_ )
and (divisors[0] == 1)
and (divisors[len(a_ ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def UpperCAmelCase ( a_ , a_ ) -> str:
"""simple docstring"""
assert (
isinstance(a_ , a_ )
and isinstance(a_ , a_ )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
__A = gcd(abs(a_ ) , abs(a_ ) )
# precondition
assert (
isinstance(a_ , a_ )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been a int and >= 0"
__A = 1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been an int and >= 0"
__A = 0
__A = 1
__A = 1 # this will be return
for _ in range(n - 1 ):
__A = ans
ans += fiba
__A = tmp
return ans
| 55 | 1 |
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
snake_case_ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def UpperCamelCase_ ( self : Tuple ,A : List[Any] ,A : int ,A : Any ):
__A = hf_hub_download(
repo_id="nateraw/video-demo" ,filename="archery.mp4" ,repo_type="dataset" )
__A = VideoClassificationPipeline(model=A ,image_processor=A ,top_k=2 )
__A = [
example_video_filepath,
"https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4",
]
return video_classifier, examples
def UpperCamelCase_ ( self : str ,A : Union[str, Any] ,A : Dict ):
for example in examples:
__A = video_classifier(A )
self.assertEqual(
A ,[
{"score": ANY(A ), "label": ANY(A )},
{"score": ANY(A ), "label": ANY(A )},
] ,)
@require_torch
def UpperCamelCase_ ( self : Tuple ):
__A = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification"
__A = VideoMAEFeatureExtractor(
size={"shortest_edge": 10} ,crop_size={"height": 10, "width": 10} )
__A = pipeline(
"video-classification" ,model=A ,feature_extractor=A ,frame_sampling_rate=4 )
__A = hf_hub_download(repo_id="nateraw/video-demo" ,filename="archery.mp4" ,repo_type="dataset" )
__A = video_classifier(A ,top_k=2 )
self.assertEqual(
nested_simplify(A ,decimals=4 ) ,[{"score": 0.51_99, "label": "LABEL_0"}, {"score": 0.48_01, "label": "LABEL_1"}] ,)
__A = video_classifier(
[
video_file_path,
video_file_path,
] ,top_k=2 ,)
self.assertEqual(
nested_simplify(A ,decimals=4 ) ,[
[{"score": 0.51_99, "label": "LABEL_0"}, {"score": 0.48_01, "label": "LABEL_1"}],
[{"score": 0.51_99, "label": "LABEL_0"}, {"score": 0.48_01, "label": "LABEL_1"}],
] ,)
@require_tf
def UpperCamelCase_ ( self : Optional[int] ):
pass
| 55 |
import os
def UpperCAmelCase ( ) -> Any:
"""simple docstring"""
__A = os.path.dirname(os.path.realpath(a_ ) )
__A = os.path.join(a_ , "triangle.txt" )
with open(a_ ) as f:
__A = f.readlines()
__A = []
for line in triangle:
__A = []
for number in line.strip().split(" " ):
numbers_from_line.append(int(a_ ) )
a.append(a_ )
for i in range(1 , len(a_ ) ):
for j in range(len(a[i] ) ):
__A = a[i - 1][j] if j != len(a[i - 1] ) else 0
__A = a[i - 1][j - 1] if j > 0 else 0
a[i][j] += max(a_ , a_ )
return max(a[-1] )
if __name__ == "__main__":
print(solution())
| 55 | 1 |
import random
def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[Any]:
"""simple docstring"""
__A = a[left_index]
__A = left_index + 1
for j in range(left_index + 1 , a_ ):
if a[j] < pivot:
__A , __A = a[i], a[j]
i += 1
__A , __A = a[i - 1], a[left_index]
return i - 1
def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[Any]:
"""simple docstring"""
if left < right:
__A = random.randint(a_ , right - 1 )
__A , __A = (
a[left],
a[pivot],
) # switches the pivot with the left most bound
__A = partition(a_ , a_ , a_ )
quick_sort_random(
a_ , a_ , a_ ) # recursive quicksort to the left of the pivot point
quick_sort_random(
a_ , pivot_index + 1 , a_ ) # recursive quicksort to the right of the pivot point
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
__A = input("Enter numbers separated by a comma:\n" ).strip()
__A = [int(a_ ) for item in user_input.split("," )]
quick_sort_random(a_ , 0 , len(a_ ) )
print(a_ )
if __name__ == "__main__":
main()
| 55 |
import re
from flax.core.frozen_dict import freeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.experimental import PartitionSpec as P
# Sentinels
SCREAMING_SNAKE_CASE :Union[str, Any] = object()
# For specifying empty leaf dict `{}`
SCREAMING_SNAKE_CASE :List[str] = object()
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
__A = tuple((re.compile(x + "$" ) for x in qs) )
for i in range(len(a_ ) - len(a_ ) + 1 ):
__A = [x.match(a_ ) for x, y in zip(a_ , ks[i:] )]
if matches and all(a_ ):
return True
return False
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
def replace(a_ , a_ ):
for rule, replacement in rules:
if _match(a_ , a_ ):
return replacement
return val
return replace
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
return [
# embeddings
(("transformer", "wpe", "embedding"), P("mp" , a_ )),
(("transformer", "wte", "embedding"), P("mp" , a_ )),
# atention
(("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a_ , "mp" )),
(("attention", "out_proj", "kernel"), P("mp" , a_ )),
(("attention", "out_proj", "bias"), None),
# mlp
(("mlp", "c_fc", "kernel"), P(a_ , "mp" )),
(("mlp", "c_fc", "bias"), P("mp" )),
(("mlp", "c_proj", "kernel"), P("mp" , a_ )),
(("mlp", "c_proj", "bias"), None),
# layer norms
((r"ln_\d+", "bias"), None),
((r"\d+", r"ln_\d+", "scale"), None),
(("ln_f", "bias"), None),
(("ln_f", "scale"), None),
]
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
__A = _get_partition_rules()
__A = _replacement_rules(a_ )
__A = {k: _unmatched for k in flatten_dict(a_ )}
__A = {k: replace(a_ , a_ ) for k, v in initd.items()}
assert _unmatched not in result.values(), "Incomplete partition spec."
return freeze(unflatten_dict(a_ ) )
| 55 | 1 |
import asyncio
import os
import re
import sys
import tempfile
import unittest
from contextlib import contextmanager
from copy import deepcopy
from distutils.util import strtobool
from enum import Enum
from importlib.util import find_spec
from pathlib import Path
from unittest.mock import patch
import pyarrow as pa
import pytest
import requests
from packaging import version
from datasets import config
if config.PY_VERSION < version.parse('3.8'):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
def UpperCAmelCase ( a_ , a_=False ) -> Dict:
"""simple docstring"""
try:
__A = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
__A = default
else:
# KEY is set, convert it to True or False.
try:
__A = strtobool(a_ )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(F'''If set, {key} must be yes or no.''' )
return _value
SCREAMING_SNAKE_CASE :str = parse_flag_from_env('RUN_SLOW', default=False)
SCREAMING_SNAKE_CASE :Dict = parse_flag_from_env('RUN_REMOTE', default=False)
SCREAMING_SNAKE_CASE :str = parse_flag_from_env('RUN_LOCAL', default=True)
SCREAMING_SNAKE_CASE :Any = parse_flag_from_env('RUN_PACKAGED', default=True)
# Compression
SCREAMING_SNAKE_CASE :str = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4')
SCREAMING_SNAKE_CASE :Union[str, Any] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr')
SCREAMING_SNAKE_CASE :Optional[Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard')
# Audio
SCREAMING_SNAKE_CASE :str = pytest.mark.skipif(
# On Windows and OS X, soundfile installs sndfile
find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'),
reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ',
)
# Beam
SCREAMING_SNAKE_CASE :Optional[int] = pytest.mark.skipif(
not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'),
reason='test requires apache-beam and a compatible dill version',
)
# Dill-cloudpickle compatibility
SCREAMING_SNAKE_CASE :Dict = pytest.mark.skipif(
config.DILL_VERSION <= version.parse('0.3.2'),
reason='test requires dill>0.3.2 for cloudpickle compatibility',
)
# Windows
SCREAMING_SNAKE_CASE :List[Any] = pytest.mark.skipif(
sys.platform == 'win32',
reason='test should not be run on Windows',
)
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
try:
import faiss # noqa
except ImportError:
__A = unittest.skip("test requires faiss" )(a_ )
return test_case
def UpperCAmelCase ( a_ ) -> Tuple:
"""simple docstring"""
try:
import regex # noqa
except ImportError:
__A = unittest.skip("test requires regex" )(a_ )
return test_case
def UpperCAmelCase ( a_ ) -> List[str]:
"""simple docstring"""
try:
import elasticsearch # noqa
except ImportError:
__A = unittest.skip("test requires elasticsearch" )(a_ )
return test_case
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
try:
import sqlalchemy # noqa
except ImportError:
__A = unittest.skip("test requires sqlalchemy" )(a_ )
return test_case
def UpperCAmelCase ( a_ ) -> List[str]:
"""simple docstring"""
if not config.TORCH_AVAILABLE:
__A = unittest.skip("test requires PyTorch" )(a_ )
return test_case
def UpperCAmelCase ( a_ ) -> Tuple:
"""simple docstring"""
if not config.TF_AVAILABLE:
__A = unittest.skip("test requires TensorFlow" )(a_ )
return test_case
def UpperCAmelCase ( a_ ) -> Tuple:
"""simple docstring"""
if not config.JAX_AVAILABLE:
__A = unittest.skip("test requires JAX" )(a_ )
return test_case
def UpperCAmelCase ( a_ ) -> Union[str, Any]:
"""simple docstring"""
if not config.PIL_AVAILABLE:
__A = unittest.skip("test requires Pillow" )(a_ )
return test_case
def UpperCAmelCase ( a_ ) -> Union[str, Any]:
"""simple docstring"""
try:
import transformers # noqa F401
except ImportError:
return unittest.skip("test requires transformers" )(a_ )
else:
return test_case
def UpperCAmelCase ( a_ ) -> Dict:
"""simple docstring"""
try:
import tiktoken # noqa F401
except ImportError:
return unittest.skip("test requires tiktoken" )(a_ )
else:
return test_case
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
try:
import spacy # noqa F401
except ImportError:
return unittest.skip("test requires spacy" )(a_ )
else:
return test_case
def UpperCAmelCase ( a_ ) -> Tuple:
"""simple docstring"""
def _require_spacy_model(a_ ):
try:
import spacy # noqa F401
spacy.load(a_ )
except ImportError:
return unittest.skip("test requires spacy" )(a_ )
except OSError:
return unittest.skip("test requires spacy model '{}'".format(a_ ) )(a_ )
else:
return test_case
return _require_spacy_model
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
try:
import pyspark # noqa F401
except ImportError:
return unittest.skip("test requires pyspark" )(a_ )
else:
return test_case
def UpperCAmelCase ( a_ ) -> Dict:
"""simple docstring"""
try:
import joblibspark # noqa F401
except ImportError:
return unittest.skip("test requires joblibspark" )(a_ )
else:
return test_case
def UpperCAmelCase ( a_ ) -> Union[str, Any]:
"""simple docstring"""
if not _run_slow_tests or _run_slow_tests == 0:
__A = unittest.skip("test is slow" )(a_ )
return test_case
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
if not _run_local_tests or _run_local_tests == 0:
__A = unittest.skip("test is local" )(a_ )
return test_case
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
if not _run_packaged_tests or _run_packaged_tests == 0:
__A = unittest.skip("test is packaged" )(a_ )
return test_case
def UpperCAmelCase ( a_ ) -> Tuple:
"""simple docstring"""
if not _run_remote_tests or _run_remote_tests == 0:
__A = unittest.skip("test requires remote" )(a_ )
return test_case
def UpperCAmelCase ( *a_ ) -> Union[str, Any]:
"""simple docstring"""
def decorate(cls ):
for name, fn in cls.__dict__.items():
if callable(a_ ) and name.startswith("test" ):
for decorator in decorators:
__A = decorator(a_ )
setattr(cls , a_ , a_ )
return cls
return decorate
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
pass
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = 0
snake_case_ = 1
snake_case_ = 2
@contextmanager
def UpperCAmelCase ( a_=OfflineSimulationMode.CONNECTION_FAILS , a_=1E-16 ) -> Any:
"""simple docstring"""
__A = requests.Session().request
def timeout_request(a_ , a_ , a_ , **a_ ):
# Change the url to an invalid url so that the connection hangs
__A = "https://10.255.255.1"
if kwargs.get("timeout" ) is None:
raise RequestWouldHangIndefinitelyError(
F'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''' )
__A = timeout
try:
return online_request(a_ , a_ , **a_ )
except Exception as e:
# The following changes in the error are just here to make the offline timeout error prettier
__A = url
__A = e.args[0]
__A = (max_retry_error.args[0].replace("10.255.255.1" , F'''OfflineMock[{url}]''' ),)
__A = (max_retry_error,)
raise
def raise_connection_error(a_ , a_ , **a_ ):
raise requests.ConnectionError("Offline mode is enabled." , request=a_ )
if mode is OfflineSimulationMode.CONNECTION_FAILS:
with patch("requests.Session.send" , a_ ):
yield
elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT:
# inspired from https://stackoverflow.com/a/904609
with patch("requests.Session.request" , a_ ):
yield
elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1:
with patch("datasets.config.HF_DATASETS_OFFLINE" , a_ ):
yield
else:
raise ValueError("Please use a value from the OfflineSimulationMode enum." )
@contextmanager
def UpperCAmelCase ( *a_ , **a_ ) -> Tuple:
"""simple docstring"""
__A = str(Path().resolve() )
with tempfile.TemporaryDirectory(*a_ , **a_ ) as tmp_dir:
try:
os.chdir(a_ )
yield
finally:
os.chdir(a_ )
@contextmanager
def UpperCAmelCase ( ) -> Optional[int]:
"""simple docstring"""
import gc
gc.collect()
__A = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase."
@contextmanager
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
import gc
gc.collect()
__A = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase."
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
return deepcopy(a_ ).integers(0 , 1_0_0 , 1_0 ).tolist() == deepcopy(a_ ).integers(0 , 1_0_0 , 1_0 ).tolist()
def UpperCAmelCase ( a_ ) -> Any:
"""simple docstring"""
import decorator
from requests.exceptions import HTTPError
def _wrapper(a_ , *a_ , **a_ ):
try:
return func(*a_ , **a_ )
except HTTPError as err:
if str(a_ ).startswith("500" ) or str(a_ ).startswith("502" ):
pytest.xfail(str(a_ ) )
raise err
return decorator.decorator(_wrapper , a_ )
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Any ,A : Optional[int] ,A : Union[str, Any] ,A : List[str] ):
__A = returncode
__A = stdout
__A = stderr
async def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
while True:
__A = await stream.readline()
if line:
callback(a_ )
else:
break
async def UpperCAmelCase ( a_ , a_=None , a_=None , a_=None , a_=False , a_=False ) -> _RunOutput:
"""simple docstring"""
if echo:
print("\nRunning: " , " ".join(a_ ) )
__A = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=a_ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=a_ , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
__A = []
__A = []
def tee(a_ , a_ , a_ , a_="" ):
__A = line.decode("utf-8" ).rstrip()
sink.append(a_ )
if not quiet:
print(a_ , a_ , file=a_ )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
_read_stream(p.stdout , lambda a_ : tee(a_ , a_ , sys.stdout , label="stdout:" ) ),
_read_stream(p.stderr , lambda a_ : tee(a_ , a_ , sys.stderr , label="stderr:" ) ),
] , timeout=a_ , )
return _RunOutput(await p.wait() , a_ , a_ )
def UpperCAmelCase ( a_ , a_=None , a_=None , a_=1_8_0 , a_=False , a_=True ) -> _RunOutput:
"""simple docstring"""
__A = asyncio.get_event_loop()
__A = loop.run_until_complete(
_stream_subprocess(a_ , env=a_ , stdin=a_ , timeout=a_ , quiet=a_ , echo=a_ ) )
__A = " ".join(a_ )
if result.returncode > 0:
__A = "\n".join(result.stderr )
raise RuntimeError(
F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n'''
F'''The combined stderr from workers follows:\n{stderr}''' )
# check that the subprocess actually did run and produced some output, should the test rely on
# the remote side to do the testing
if not result.stdout and not result.stderr:
raise RuntimeError(F'''\'{cmd_str}\' produced no output.''' )
return result
def UpperCAmelCase ( ) -> Union[str, Any]:
"""simple docstring"""
__A = os.environ.get("PYTEST_XDIST_WORKER" , "gw0" )
__A = re.sub(r"^gw" , "" , a_ , 0 , re.M )
return int(a_ )
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
__A = 2_9_5_0_0
__A = pytest_xdist_worker_id()
return port + uniq_delta
| 55 |
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : List[Any] ,A : Union[str, Any] ,A : List[Any]=13 ,A : Optional[Any]=30 ,A : Union[str, Any]=2 ,A : Union[str, Any]=3 ,A : Any=True ,A : Dict=True ,A : str=32 ,A : Tuple=2 ,A : Optional[int]=4 ,A : Tuple=37 ,A : List[Any]="gelu" ,A : Dict=0.1 ,A : Optional[int]=0.1 ,A : List[Any]=10 ,A : Optional[Any]=0.02 ,A : Dict=3 ,A : Dict=None ,A : List[Any]=2 ,):
__A = parent
__A = batch_size
__A = image_size
__A = patch_size
__A = num_channels
__A = is_training
__A = use_labels
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = type_sequence_label_size
__A = initializer_range
__A = scope
__A = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
__A = (image_size // patch_size) ** 2
__A = num_patches + 2
def UpperCamelCase_ ( self : List[Any] ):
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__A = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self : Optional[int] ):
return DeiTConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,)
def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,A : Optional[int] ,A : Union[str, Any] ):
__A = TFDeiTModel(config=A )
__A = model(A )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self : List[Any] ,A : List[Any] ,A : Optional[Any] ,A : Dict ):
__A = TFDeiTForMaskedImageModeling(config=A )
__A = model(A )
self.parent.assertEqual(
result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__A = 1
__A = TFDeiTForMaskedImageModeling(A )
__A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__A = model(A )
self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) )
def UpperCamelCase_ ( self : Optional[Any] ,A : Union[str, Any] ,A : Dict ,A : Union[str, Any] ):
__A = self.type_sequence_label_size
__A = TFDeiTForImageClassification(A )
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__A = 1
__A = TFDeiTForImageClassification(A )
__A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase_ ( self : str ):
__A = self.prepare_config_and_inputs()
__A , __A , __A = config_and_inputs
__A = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
snake_case_ = (
{
"feature-extraction": TFDeiTModel,
"image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def UpperCamelCase_ ( self : str ):
__A = TFDeiTModelTester(self )
__A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 )
def UpperCamelCase_ ( self : Any ):
self.config_tester.run_common_tests()
@unittest.skip(reason="DeiT does not use inputs_embeds" )
def UpperCamelCase_ ( self : Union[str, Any] ):
pass
def UpperCamelCase_ ( self : List[Any] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) )
__A = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(A ,tf.keras.layers.Dense ) )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
__A = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__A = [*signature.parameters.keys()]
__A = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,A )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
def UpperCamelCase_ ( self : Optional[int] ,A : Union[str, Any] ,A : List[str] ,A : Optional[Any]=False ):
__A = super()._prepare_for_class(A ,A ,return_labels=A )
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def UpperCamelCase_ ( self : Any ):
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = TFDeiTModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> str:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : int ):
return (
DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" )
if is_vision_available()
else None
)
@slow
def UpperCamelCase_ ( self : Optional[int] ):
__A = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="tf" )
# forward pass
__A = model(**A )
# verify the logits
__A = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape ,A )
__A = tf.constant([-1.02_66, 0.19_12, -1.28_61] )
self.assertTrue(np.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
| 55 | 1 |
def UpperCAmelCase ( a_ , a_ ) -> Dict:
"""simple docstring"""
assert x is not None
assert y is not None
__A = len(a_ )
__A = len(a_ )
# declaring the array for storing the dp values
__A = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741
for i in range(1 , m + 1 ):
for j in range(1 , n + 1 ):
__A = 1 if x[i - 1] == y[j - 1] else 0
__A = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match )
__A = ""
__A , __A = m, n
while i > 0 and j > 0:
__A = 1 if x[i - 1] == y[j - 1] else 0
if l[i][j] == l[i - 1][j - 1] + match:
if match == 1:
__A = x[i - 1] + seq
i -= 1
j -= 1
elif l[i][j] == l[i - 1][j]:
i -= 1
else:
j -= 1
return l[m][n], seq
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Optional[int] = 'AGGTAB'
SCREAMING_SNAKE_CASE :List[Any] = 'GXTXAYB'
SCREAMING_SNAKE_CASE :str = 4
SCREAMING_SNAKE_CASE :List[str] = 'GTAB'
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :Tuple = longest_common_subsequence(a, b)
print('len =', ln, ', sub-sequence =', subseq)
import doctest
doctest.testmod()
| 55 |
SCREAMING_SNAKE_CASE :List[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
SCREAMING_SNAKE_CASE :Union[str, Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
SCREAMING_SNAKE_CASE :int = {
0: 'Sunday',
1: 'Monday',
2: 'Tuesday',
3: 'Wednesday',
4: 'Thursday',
5: 'Friday',
6: 'Saturday',
}
def UpperCAmelCase ( a_ , a_ , a_ ) -> str:
"""simple docstring"""
assert len(str(a_ ) ) > 2, "year should be in YYYY format"
assert 1 <= month <= 1_2, "month should be between 1 to 12"
assert 1 <= day <= 3_1, "day should be between 1 to 31"
# Doomsday algorithm:
__A = year // 1_0_0
__A = (5 * (century % 4) + 2) % 7
__A = year % 1_0_0
__A = centurian % 1_2
__A = (
(centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor
) % 7
__A = (
DOOMSDAY_NOT_LEAP[month - 1]
if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0)
else DOOMSDAY_LEAP[month - 1]
)
__A = (dooms_day + day - day_anchor) % 7
return WEEK_DAY_NAMES[week_day]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 55 | 1 |
def UpperCAmelCase ( a_ = 1_0 , a_ = 1_0_0_0 , a_ = True ) -> int:
"""simple docstring"""
assert (
isinstance(a_ , a_ )
and isinstance(a_ , a_ )
and isinstance(a_ , a_ )
), "Invalid type of value(s) specified to function!"
if min_val > max_val:
raise ValueError("Invalid value for min_val or max_val (min_value < max_value)" )
return min_val if option else max_val
def UpperCAmelCase ( a_ , a_ ) -> int:
"""simple docstring"""
return int((number_a + number_a) / 2 )
def UpperCAmelCase ( a_ , a_ , a_ ) -> None:
"""simple docstring"""
assert (
isinstance(a_ , a_ ) and isinstance(a_ , a_ ) and isinstance(a_ , a_ )
), 'argument values must be type of "int"'
if lower > higher:
raise ValueError("argument value for lower and higher must be(lower > higher)" )
if not lower < to_guess < higher:
raise ValueError(
"guess value must be within the range of lower and higher value" )
def answer(a_ ) -> str:
if number > to_guess:
return "high"
elif number < to_guess:
return "low"
else:
return "same"
print("started..." )
__A = lower
__A = higher
__A = []
while True:
__A = get_avg(a_ , a_ )
last_numbers.append(a_ )
if answer(a_ ) == "low":
__A = number
elif answer(a_ ) == "high":
__A = number
else:
break
print(F'''guess the number : {last_numbers[-1]}''' )
print(F'''details : {last_numbers!s}''' )
def UpperCAmelCase ( ) -> None:
"""simple docstring"""
__A = int(input("Enter lower value : " ).strip() )
__A = int(input("Enter high value : " ).strip() )
__A = int(input("Enter value to guess : " ).strip() )
guess_the_number(a_ , a_ , a_ )
if __name__ == "__main__":
main()
| 55 |
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError
import requests
def UpperCAmelCase ( a_ = "isbn/0140328726" ) -> dict:
"""simple docstring"""
__A = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes
if new_olid.count("/" ) != 1:
__A = F'''{olid} is not a valid Open Library olid'''
raise ValueError(a_ )
return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json()
def UpperCAmelCase ( a_ ) -> dict:
"""simple docstring"""
__A = {
"title": "Title",
"publish_date": "Publish date",
"authors": "Authors",
"number_of_pages": "Number of pages:",
"first_sentence": "First sentence",
"isbn_10": "ISBN (10)",
"isbn_13": "ISBN (13)",
}
__A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()}
__A = [
get_openlibrary_data(author["key"] )["name"] for author in data["Authors"]
]
__A = data["First sentence"]["value"]
for key, value in data.items():
if isinstance(a_ , a_ ):
__A = ", ".join(a_ )
return data
if __name__ == "__main__":
import doctest
doctest.testmod()
while True:
SCREAMING_SNAKE_CASE :int = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip()
if isbn.lower() in ("", "q", "quit", "exit", "stop"):
break
if len(isbn) not in (10, 13) or not isbn.isdigit():
print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''')
continue
print(f'''\nSearching Open Library for ISBN: {isbn}...\n''')
try:
SCREAMING_SNAKE_CASE :Any = summarize_book(get_openlibrary_data(f'''isbn/{isbn}'''))
print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items()))
except JSONDecodeError: # Workaround for requests.exceptions.RequestException:
print(f'''Sorry, there are no results for ISBN: {isbn}.''')
| 55 | 1 |
from sklearn.metrics import fa_score
import datasets
SCREAMING_SNAKE_CASE :Optional[int] = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n'
SCREAMING_SNAKE_CASE :int = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n'
SCREAMING_SNAKE_CASE :List[str] = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase ( datasets.Metric ):
'''simple docstring'''
def UpperCamelCase_ ( self : str ):
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("int32" ) ),
"references": datasets.Sequence(datasets.Value("int32" ) ),
}
if self.config_name == "multilabel"
else {
"predictions": datasets.Value("int32" ),
"references": datasets.Value("int32" ),
} ) ,reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"] ,)
def UpperCamelCase_ ( self : Dict ,A : Dict ,A : str ,A : str=None ,A : Tuple=1 ,A : Any="binary" ,A : List[Any]=None ):
__A = fa_score(
A ,A ,labels=A ,pos_label=A ,average=A ,sample_weight=A )
return {"f1": float(A ) if score.size == 1 else score}
| 55 |
import requests
SCREAMING_SNAKE_CASE :List[str] = 'YOUR API KEY'
def UpperCAmelCase ( a_ , a_ = giphy_api_key ) -> list:
"""simple docstring"""
__A = "+".join(query.split() )
__A = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}'''
__A = requests.get(a_ ).json()["data"]
return [gif["url"] for gif in gifs]
if __name__ == "__main__":
print('\n'.join(get_gifs('space ship')))
| 55 | 1 |
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import (
require_accelerate,
require_torch,
require_torch_gpu,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel
from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Tuple ,A : str ,A : str=13 ,A : Optional[int]=30 ,A : Optional[Any]=2 ,A : int=3 ,A : Union[str, Any]=True ,A : List[str]=True ,A : Tuple=32 ,A : str=5 ,A : List[Any]=4 ,A : Tuple=37 ,A : Optional[Any]="gelu" ,A : Optional[int]=0.1 ,A : List[Any]=0.1 ,A : Dict=10 ,A : Optional[Any]=0.02 ,A : Union[str, Any]=None ,A : List[Any]=2 ,):
__A = parent
__A = batch_size
__A = image_size
__A = patch_size
__A = num_channels
__A = is_training
__A = use_labels
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = type_sequence_label_size
__A = initializer_range
__A = scope
__A = encoder_stride
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__A = (image_size // patch_size) ** 2
__A = num_patches + 1
def UpperCamelCase_ ( self : Optional[int] ):
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__A = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self : Tuple ):
return ViTConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,)
def UpperCamelCase_ ( self : List[Any] ,A : Optional[int] ,A : Any ,A : Tuple ):
__A = ViTModel(config=A )
model.to(A )
model.eval()
__A = model(A )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self : str ,A : List[Any] ,A : List[str] ,A : str ):
__A = ViTForMaskedImageModeling(config=A )
model.to(A )
model.eval()
__A = model(A )
self.parent.assertEqual(
result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__A = 1
__A = ViTForMaskedImageModeling(A )
model.to(A )
model.eval()
__A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__A = model(A )
self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) )
def UpperCamelCase_ ( self : Dict ,A : str ,A : Optional[int] ,A : Tuple ):
__A = self.type_sequence_label_size
__A = ViTForImageClassification(A )
model.to(A )
model.eval()
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__A = 1
__A = ViTForImageClassification(A )
model.to(A )
model.eval()
__A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__A = model(A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase_ ( self : Optional[int] ):
__A = self.prepare_config_and_inputs()
(
(
__A
) , (
__A
) , (
__A
) ,
) = config_and_inputs
__A = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (
(
ViTModel,
ViTForImageClassification,
ViTForMaskedImageModeling,
)
if is_torch_available()
else ()
)
snake_case_ = (
{"feature-extraction": ViTModel, "image-classification": ViTForImageClassification}
if is_torch_available()
else {}
)
snake_case_ = True
snake_case_ = False
snake_case_ = False
snake_case_ = False
def UpperCamelCase_ ( self : Optional[Any] ):
__A = ViTModelTester(self )
__A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 )
def UpperCamelCase_ ( self : Any ):
self.config_tester.run_common_tests()
@unittest.skip(reason="ViT does not use inputs_embeds" )
def UpperCamelCase_ ( self : List[Any] ):
pass
def UpperCamelCase_ ( self : Optional[Any] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) )
__A = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(A ,nn.Linear ) )
def UpperCamelCase_ ( self : int ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
__A = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__A = [*signature.parameters.keys()]
__A = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,A )
def UpperCamelCase_ ( self : Tuple ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : List[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*A )
def UpperCamelCase_ ( self : Optional[int] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = ViTModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> Any:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : int ):
return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self : int ):
__A = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ).to(A )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="pt" ).to(A )
# forward pass
with torch.no_grad():
__A = model(**A )
# verify the logits
__A = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape ,A )
__A = torch.tensor([-0.27_44, 0.82_15, -0.08_36] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self : Dict ):
# ViT models have an `interpolate_pos_encoding` argument in their forward method,
# allowing to interpolate the pre-trained position embeddings in order to use
# the model on higher resolutions. The DINO model by Facebook AI leverages this
# to visualize self-attention on higher resolution images.
__A = ViTModel.from_pretrained("facebook/dino-vits8" ).to(A )
__A = ViTImageProcessor.from_pretrained("facebook/dino-vits8" ,size=4_80 )
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="pt" )
__A = inputs.pixel_values.to(A )
# forward pass
with torch.no_grad():
__A = model(A ,interpolate_pos_encoding=A )
# verify the logits
__A = torch.Size((1, 36_01, 3_84) )
self.assertEqual(outputs.last_hidden_state.shape ,A )
__A = torch.tensor(
[[4.23_40, 4.39_06, -6.66_92], [4.54_63, 1.89_28, -6.72_57], [4.44_29, 0.84_96, -5.85_85]] ).to(A )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,A ,atol=1E-4 ) )
@slow
@require_accelerate
@require_torch_gpu
def UpperCamelCase_ ( self : List[str] ):
__A = ViTModel.from_pretrained("facebook/dino-vits8" ,torch_dtype=torch.floataa ,device_map="auto" )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="pt" )
__A = inputs.pixel_values.to(A )
# forward pass to make sure inference works in fp16
with torch.no_grad():
__A = model(A )
| 55 |
import itertools
import math
def UpperCAmelCase ( a_ ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(a_ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def UpperCAmelCase ( ) -> Optional[Any]:
"""simple docstring"""
__A = 2
while True:
if is_prime(a_ ):
yield num
num += 1
def UpperCAmelCase ( a_ = 1_0_0_0_1 ) -> int:
"""simple docstring"""
return next(itertools.islice(prime_generator() , nth - 1 , a_ ) )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 55 | 1 |
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
SCREAMING_SNAKE_CASE :List[Any] = pytest.mark.integration
@pytest.mark.parametrize("path" , ["paws", "csv"] )
def UpperCAmelCase ( a_ , a_ ) -> int:
"""simple docstring"""
inspect_dataset(a_ , a_ )
__A = path + ".py"
assert script_name in os.listdir(a_ )
assert "__pycache__" not in os.listdir(a_ )
@pytest.mark.filterwarnings("ignore:inspect_metric is deprecated:FutureWarning" )
@pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" )
@pytest.mark.parametrize("path" , ["accuracy"] )
def UpperCAmelCase ( a_ , a_ ) -> Optional[int]:
"""simple docstring"""
inspect_metric(a_ , a_ )
__A = path + ".py"
assert script_name in os.listdir(a_ )
assert "__pycache__" not in os.listdir(a_ )
@pytest.mark.parametrize(
"path, config_name, expected_splits" , [
("squad", "plain_text", ["train", "validation"]),
("dalle-mini/wit", "dalle-mini--wit", ["train"]),
("paws", "labeled_final", ["train", "test", "validation"]),
] , )
def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[Any]:
"""simple docstring"""
__A = get_dataset_config_info(a_ , config_name=a_ )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"path, config_name, expected_exception" , [
("paws", None, ValueError),
] , )
def UpperCAmelCase ( a_ , a_ , a_ ) -> Union[str, Any]:
"""simple docstring"""
with pytest.raises(a_ ):
get_dataset_config_info(a_ , config_name=a_ )
@pytest.mark.parametrize(
"path, expected" , [
("squad", "plain_text"),
("acronym_identification", "default"),
("lhoestq/squad", "plain_text"),
("lhoestq/test", "default"),
("lhoestq/demo1", "lhoestq--demo1"),
("dalle-mini/wit", "dalle-mini--wit"),
] , )
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
__A = get_dataset_config_names(a_ )
assert expected in config_names
@pytest.mark.parametrize(
"path, expected_configs, expected_splits_in_first_config" , [
("squad", ["plain_text"], ["train", "validation"]),
("dalle-mini/wit", ["dalle-mini--wit"], ["train"]),
("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]),
] , )
def UpperCAmelCase ( a_ , a_ , a_ ) -> int:
"""simple docstring"""
__A = get_dataset_infos(a_ )
assert list(infos.keys() ) == expected_configs
__A = expected_configs[0]
assert expected_config in infos
__A = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
"path, expected_config, expected_splits" , [
("squad", "plain_text", ["train", "validation"]),
("dalle-mini/wit", "dalle-mini--wit", ["train"]),
("paws", "labeled_final", ["train", "test", "validation"]),
] , )
def UpperCAmelCase ( a_ , a_ , a_ ) -> int:
"""simple docstring"""
__A = get_dataset_infos(a_ )
assert expected_config in infos
__A = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"path, config_name, expected_exception" , [
("paws", None, ValueError),
] , )
def UpperCAmelCase ( a_ , a_ , a_ ) -> Union[str, Any]:
"""simple docstring"""
with pytest.raises(a_ ):
get_dataset_split_names(a_ , config_name=a_ )
| 55 |
import argparse
import os
import numpy as np
import tensorflow as tf
import torch
from transformers import BertModel
def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]:
"""simple docstring"""
__A = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value")
__A = (
("layer.", "layer_"),
("word_embeddings.weight", "word_embeddings"),
("position_embeddings.weight", "position_embeddings"),
("token_type_embeddings.weight", "token_type_embeddings"),
(".", "/"),
("LayerNorm/weight", "LayerNorm/gamma"),
("LayerNorm/bias", "LayerNorm/beta"),
("weight", "kernel"),
)
if not os.path.isdir(a_ ):
os.makedirs(a_ )
__A = model.state_dict()
def to_tf_var_name(a_ ):
for patt, repl in iter(a_ ):
__A = name.replace(a_ , a_ )
return F'''bert/{name}'''
def create_tf_var(a_ , a_ , a_ ):
__A = tf.dtypes.as_dtype(tensor.dtype )
__A = tf.get_variable(dtype=a_ , shape=tensor.shape , name=a_ , initializer=tf.zeros_initializer() )
session.run(tf.variables_initializer([tf_var] ) )
session.run(a_ )
return tf_var
tf.reset_default_graph()
with tf.Session() as session:
for var_name in state_dict:
__A = to_tf_var_name(a_ )
__A = state_dict[var_name].numpy()
if any(x in var_name for x in tensors_to_transpose ):
__A = torch_tensor.T
__A = create_tf_var(tensor=a_ , name=a_ , session=a_ )
tf.keras.backend.set_value(a_ , a_ )
__A = session.run(a_ )
print(F'''Successfully created {tf_name}: {np.allclose(a_ , a_ )}''' )
__A = tf.train.Saver(tf.trainable_variables() )
saver.save(a_ , os.path.join(a_ , model_name.replace("-" , "_" ) + ".ckpt" ) )
def UpperCAmelCase ( a_=None ) -> List[Any]:
"""simple docstring"""
__A = argparse.ArgumentParser()
parser.add_argument("--model_name" , type=a_ , required=a_ , help="model name e.g. bert-base-uncased" )
parser.add_argument(
"--cache_dir" , type=a_ , default=a_ , required=a_ , help="Directory containing pytorch model" )
parser.add_argument("--pytorch_model_path" , type=a_ , required=a_ , help="/path/to/<pytorch-model-name>.bin" )
parser.add_argument("--tf_cache_dir" , type=a_ , required=a_ , help="Directory in which to save tensorflow model" )
__A = parser.parse_args(a_ )
__A = BertModel.from_pretrained(
pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , )
convert_pytorch_checkpoint_to_tf(model=a_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name )
if __name__ == "__main__":
main()
| 55 | 1 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :Union[str, Any] = '▁'
SCREAMING_SNAKE_CASE :Optional[int] = {'vocab_file': 'spiece.model'}
SCREAMING_SNAKE_CASE :Dict = {
'vocab_file': {
'google/reformer-crime-and-punishment': (
'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model'
)
}
}
SCREAMING_SNAKE_CASE :Optional[int] = {
'google/reformer-crime-and-punishment': 52_4288,
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = ["input_ids", "attention_mask"]
def __init__( self : Tuple ,A : Any ,A : Any="</s>" ,A : Tuple="<unk>" ,A : Any=[] ,A : Optional[Dict[str, Any]] = None ,**A : List[Any] ,):
__A = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=A ,unk_token=A ,additional_special_tokens=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,)
__A = vocab_file
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(A )
@property
def UpperCamelCase_ ( self : Optional[int] ):
return self.sp_model.get_piece_size()
def UpperCamelCase_ ( self : List[str] ):
__A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : List[Any] ):
__A = self.__dict__.copy()
__A = None
return state
def __setstate__( self : str ,A : Any ):
__A = d
# for backward compatibility
if not hasattr(self ,"sp_model_kwargs" ):
__A = {}
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCamelCase_ ( self : int ,A : str ):
return self.sp_model.encode(A ,out_type=A )
def UpperCamelCase_ ( self : str ,A : Tuple ):
return self.sp_model.piece_to_id(A )
def UpperCamelCase_ ( self : str ,A : Optional[Any] ):
if index < self.sp_model.get_piece_size():
__A = self.sp_model.IdToPiece(A )
return token
def UpperCamelCase_ ( self : List[Any] ,A : List[str] ):
__A = []
__A = ""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(A ) + token
__A = []
else:
current_sub_tokens.append(A )
out_string += self.sp_model.decode(A )
return out_string.strip()
def UpperCamelCase_ ( self : List[Any] ,A : str ,A : Optional[str] = None ):
if not os.path.isdir(A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__A = os.path.join(
A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,A )
elif not os.path.isfile(self.vocab_file ):
with open(A ,"wb" ) as fi:
__A = self.sp_model.serialized_model_proto()
fi.write(A )
return (out_vocab_file,)
| 55 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE :Any = {
'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Any = [
'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST',
'PegasusXForConditionalGeneration',
'PegasusXModel',
'PegasusXPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 55 | 1 |
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
# Importing the dataset
SCREAMING_SNAKE_CASE :List[str] = pd.read_csv(
'https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/'
'position_salaries.csv'
)
SCREAMING_SNAKE_CASE :List[str] = dataset.iloc[:, 1:2].values
SCREAMING_SNAKE_CASE :int = dataset.iloc[:, 2].values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :Optional[Any] = train_test_split(X, y, test_size=0.2, random_state=0)
SCREAMING_SNAKE_CASE :Union[str, Any] = PolynomialFeatures(degree=4)
SCREAMING_SNAKE_CASE :Tuple = poly_reg.fit_transform(X)
SCREAMING_SNAKE_CASE :List[Any] = LinearRegression()
pol_reg.fit(X_poly, y)
def UpperCAmelCase ( ) -> Optional[int]:
"""simple docstring"""
plt.scatter(a_ , a_ , color="red" )
plt.plot(a_ , pol_reg.predict(poly_reg.fit_transform(a_ ) ) , color="blue" )
plt.title("Truth or Bluff (Linear Regression)" )
plt.xlabel("Position level" )
plt.ylabel("Salary" )
plt.show()
if __name__ == "__main__":
viz_polymonial()
# Predicting a new result with Polymonial Regression
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
# output should be 132148.43750003
| 55 |
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
SCREAMING_SNAKE_CASE :int = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l='
def UpperCAmelCase ( a_ = "mumbai" ) -> Generator[tuple[str, str], None, None]:
"""simple docstring"""
__A = BeautifulSoup(requests.get(url + location ).content , "html.parser" )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ):
__A = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip()
__A = job.find("span" , {"class": "company"} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs('Bangalore'), 1):
print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
| 55 | 1 |
import json
import os
import tempfile
from transformers.testing_utils import check_json_file_has_correct_format
class UpperCAmelCase :
'''simple docstring'''
snake_case_ = None
def UpperCamelCase_ ( self : int ):
__A = self.feature_extraction_class(**self.feat_extract_dict )
__A = json.loads(feat_extract.to_json_string() )
for key, value in self.feat_extract_dict.items():
self.assertEqual(obj[key] ,A )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
__A = os.path.join(A ,"feat_extract.json" )
feat_extract_first.to_json_file(A )
__A = self.feature_extraction_class.from_json_file(A )
self.assertEqual(feat_extract_second.to_dict() ,feat_extract_first.to_dict() )
def UpperCamelCase_ ( self : Any ):
__A = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
__A = feat_extract_first.save_pretrained(A )[0]
check_json_file_has_correct_format(A )
__A = self.feature_extraction_class.from_pretrained(A )
self.assertEqual(feat_extract_second.to_dict() ,feat_extract_first.to_dict() )
def UpperCamelCase_ ( self : Any ):
__A = self.feature_extraction_class()
self.assertIsNotNone(A )
| 55 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : List[str] ):
__A = tempfile.mkdtemp()
__A = BlipImageProcessor()
__A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" )
__A = BlipaProcessor(A ,A )
processor.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self : Dict ,**A : int ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).tokenizer
def UpperCamelCase_ ( self : Dict ,**A : Optional[int] ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor
def UpperCamelCase_ ( self : Dict ):
shutil.rmtree(self.tmpdirname )
def UpperCamelCase_ ( self : Optional[int] ):
__A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )]
__A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def UpperCamelCase_ ( self : Any ):
__A = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__A = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" )
__A = self.get_image_processor(do_normalize=A ,padding_value=1.0 )
__A = BlipaProcessor.from_pretrained(
self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=A ,padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer ,A )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,A )
def UpperCamelCase_ ( self : List[Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = self.prepare_image_inputs()
__A = image_processor(A ,return_tensors="np" )
__A = processor(images=A ,return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 )
def UpperCamelCase_ ( self : Tuple ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = "lower newer"
__A = processor(text=A )
__A = tokenizer(A ,return_token_type_ids=A )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] ,encoded_processor[key] )
def UpperCamelCase_ ( self : int ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = "lower newer"
__A = self.prepare_image_inputs()
__A = processor(text=A ,images=A )
self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(A ):
processor()
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__A = processor.batch_decode(A )
__A = tokenizer.batch_decode(A )
self.assertListEqual(A ,A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = "lower newer"
__A = self.prepare_image_inputs()
__A = processor(text=A ,images=A )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
| 55 | 1 |
import math
def UpperCAmelCase ( a_ ) -> bool:
"""simple docstring"""
return math.sqrt(a_ ) * math.sqrt(a_ ) == num
def UpperCAmelCase ( a_ ) -> bool:
"""simple docstring"""
__A = 0
__A = n
while left <= right:
__A = (left + right) // 2
if mid**2 == n:
return True
elif mid**2 > n:
__A = mid - 1
else:
__A = mid + 1
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 55 |
import logging
import torch
from accelerate import Accelerator
from arguments import EvaluationArguments
from datasets import load_dataset
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : int ,A : Any ,A : List[str] ,A : Union[str, Any]=10_24 ,A : int=10_24 ,A : Optional[Any]=3.6 ):
__A = tokenizer
__A = tokenizer.bos_token_id
__A = dataset
__A = seq_length
__A = seq_length * chars_per_token * num_of_sequences
def __iter__( self : List[Any] ):
__A = iter(self.dataset )
__A = True
while more_examples:
__A , __A = [], 0
while True:
if buffer_len >= self.input_characters:
break
try:
buffer.append(next(A )["content"] )
buffer_len += len(buffer[-1] )
except StopIteration:
__A = False
break
__A = tokenizer(A ,truncation=A )["input_ids"]
__A = []
for tokenized_input in tokenized_inputs:
all_token_ids.extend(tokenized_input + [self.concat_token_id] )
for i in range(0 ,len(A ) ,self.seq_length ):
__A = all_token_ids[i : i + self.seq_length]
if len(A ) == self.seq_length:
yield torch.tensor(A )
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
__A = {"streaming": True}
__A = load_dataset(args.dataset_name , split="train" , **a_ )
__A = ConstantLengthDataset(a_ , a_ , seq_length=args.seq_length )
__A = DataLoader(a_ , batch_size=args.batch_size )
return eval_dataloader
def UpperCAmelCase ( a_ ) -> Union[str, Any]:
"""simple docstring"""
model.eval()
__A = []
for step, batch in enumerate(a_ ):
with torch.no_grad():
__A = model(a_ , labels=a_ )
__A = outputs.loss.repeat(args.batch_size )
losses.append(accelerator.gather(a_ ) )
if args.max_eval_steps > 0 and step >= args.max_eval_steps:
break
__A = torch.mean(torch.cat(a_ ) )
try:
__A = torch.exp(a_ )
except OverflowError:
__A = float("inf" )
return loss.item(), perplexity.item()
# Setup Accelerator
SCREAMING_SNAKE_CASE :Optional[int] = Accelerator()
# Parse configuration
SCREAMING_SNAKE_CASE :str = HfArgumentParser(EvaluationArguments)
SCREAMING_SNAKE_CASE :int = parser.parse_args()
set_seed(args.seed)
# Logging
SCREAMING_SNAKE_CASE :Dict = logging.getLogger(__name__)
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO
)
# Load model and tokenizer
SCREAMING_SNAKE_CASE :List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt)
SCREAMING_SNAKE_CASE :int = AutoTokenizer.from_pretrained(args.model_ckpt)
# Load dataset and dataloader
SCREAMING_SNAKE_CASE :List[str] = create_dataloader(args)
# Prepare everything with our `accelerator`.
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = accelerator.prepare(model, eval_dataloader)
# Evaluate and save the last checkpoint
logger.info('Evaluating and saving model after training')
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = evaluate(args)
logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
| 55 | 1 |
import os
import unittest
from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = TransfoXLTokenizer
snake_case_ = False
snake_case_ = False
def UpperCamelCase_ ( self : Union[str, Any] ):
super().setUp()
__A = [
"<unk>",
"[CLS]",
"[SEP]",
"want",
"unwanted",
"wa",
"un",
"running",
",",
"low",
"l",
]
__A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
def UpperCamelCase_ ( self : Union[str, Any] ,**A : Optional[Any] ):
__A = True
return TransfoXLTokenizer.from_pretrained(self.tmpdirname ,**A )
def UpperCamelCase_ ( self : List[Any] ,A : Dict ):
__A = "<unk> UNwanted , running"
__A = "<unk> unwanted, running"
return input_text, output_text
def UpperCamelCase_ ( self : str ):
__A = TransfoXLTokenizer(vocab_file=self.vocab_file ,lower_case=A )
__A = tokenizer.tokenize("<unk> UNwanted , running" )
self.assertListEqual(A ,["<unk>", "unwanted", ",", "running"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[0, 4, 8, 7] )
def UpperCamelCase_ ( self : Any ):
__A = TransfoXLTokenizer(lower_case=A )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo ! how \n Are yoU ? " ) ,["hello", "!", "how", "are", "you", "?"] )
def UpperCamelCase_ ( self : List[str] ):
__A = TransfoXLTokenizer(lower_case=A )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo ! how \n Are yoU ? " ) ,["HeLLo", "!", "how", "Are", "yoU", "?"] )
def UpperCamelCase_ ( self : Optional[int] ):
__A = TransfoXLTokenizer(lower_case=A )
__A = "Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?"
__A = [
"Hello",
"(",
"bracket",
")",
"and",
"side",
"@-@",
"scrolled",
"[",
"and",
"]",
"Henry",
"'s",
"$",
"5",
"@,@",
"000",
"with",
"3",
"@.@",
"34",
"m",
".",
"What",
"'s",
"up",
"!",
"?",
]
self.assertListEqual(tokenizer.tokenize(A ) ,A )
self.assertEqual(tokenizer.convert_tokens_to_string(A ) ,A )
def UpperCamelCase_ ( self : Optional[int] ):
__A = self.get_tokenizer()
__A = len(A )
tokenizer.add_tokens(["new1", "new2"] )
tokenizer.move_added_token("new1" ,1 )
# Check that moved token is not copied (duplicate)
self.assertEqual(len(A ) ,original_len + 2 )
# Check that token is moved to specified id
self.assertEqual(tokenizer.encode("new1" ) ,[1] )
self.assertEqual(tokenizer.decode([1] ) ,"new1" )
| 55 |
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = LayoutLMTokenizer
snake_case_ = LayoutLMTokenizerFast
snake_case_ = True
snake_case_ = True
def UpperCamelCase_ ( self : Any ):
super().setUp()
__A = [
"[UNK]",
"[CLS]",
"[SEP]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
__A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
def UpperCamelCase_ ( self : Tuple ,**A : int ):
return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**A )
def UpperCamelCase_ ( self : Optional[Any] ,A : Any ):
__A = "UNwant\u00E9d,running"
__A = "unwanted, running"
return input_text, output_text
def UpperCamelCase_ ( self : str ):
__A = self.tokenizer_class(self.vocab_file )
__A = tokenizer.tokenize("UNwant\u00E9d,running" )
self.assertListEqual(A ,["un", "##want", "##ed", ",", "runn", "##ing"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[7, 4, 5, 10, 8, 9] )
def UpperCamelCase_ ( self : int ):
pass
| 55 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tensorflow_text_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE :Tuple = {
'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'],
'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :str = ['BertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Any = [
'BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BertForMaskedLM',
'BertForMultipleChoice',
'BertForNextSentencePrediction',
'BertForPreTraining',
'BertForQuestionAnswering',
'BertForSequenceClassification',
'BertForTokenClassification',
'BertLayer',
'BertLMHeadModel',
'BertModel',
'BertPreTrainedModel',
'load_tf_weights_in_bert',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Tuple = [
'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFBertEmbeddings',
'TFBertForMaskedLM',
'TFBertForMultipleChoice',
'TFBertForNextSentencePrediction',
'TFBertForPreTraining',
'TFBertForQuestionAnswering',
'TFBertForSequenceClassification',
'TFBertForTokenClassification',
'TFBertLMHeadModel',
'TFBertMainLayer',
'TFBertModel',
'TFBertPreTrainedModel',
]
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :List[str] = ['TFBertTokenizer']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Optional[int] = [
'FlaxBertForCausalLM',
'FlaxBertForMaskedLM',
'FlaxBertForMultipleChoice',
'FlaxBertForNextSentencePrediction',
'FlaxBertForPreTraining',
'FlaxBertForQuestionAnswering',
'FlaxBertForSequenceClassification',
'FlaxBertForTokenClassification',
'FlaxBertModel',
'FlaxBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_fast import BertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bert import (
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
BertForMaskedLM,
BertForMultipleChoice,
BertForNextSentencePrediction,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
BertLayer,
BertLMHeadModel,
BertModel,
BertPreTrainedModel,
load_tf_weights_in_bert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_bert import (
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBertEmbeddings,
TFBertForMaskedLM,
TFBertForMultipleChoice,
TFBertForNextSentencePrediction,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertForTokenClassification,
TFBertLMHeadModel,
TFBertMainLayer,
TFBertModel,
TFBertPreTrainedModel,
)
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_tf import TFBertTokenizer
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_bert import (
FlaxBertForCausalLM,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
FlaxBertPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE :Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 55 |
SCREAMING_SNAKE_CASE :int = {str(digit): digit**5 for digit in range(10)}
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
return sum(DIGITS_FIFTH_POWER[digit] for digit in str(a_ ) )
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
return sum(
number
for number in range(1_0_0_0 , 1_0_0_0_0_0_0 )
if number == digits_fifth_powers_sum(a_ ) )
if __name__ == "__main__":
print(solution())
| 55 | 1 |
import os
def UpperCAmelCase ( ) -> Any:
"""simple docstring"""
__A = os.path.dirname(os.path.realpath(a_ ) )
__A = os.path.join(a_ , "triangle.txt" )
with open(a_ ) as f:
__A = f.readlines()
__A = []
for line in triangle:
__A = []
for number in line.strip().split(" " ):
numbers_from_line.append(int(a_ ) )
a.append(a_ )
for i in range(1 , len(a_ ) ):
for j in range(len(a[i] ) ):
__A = a[i - 1][j] if j != len(a[i - 1] ) else 0
__A = a[i - 1][j - 1] if j > 0 else 0
a[i][j] += max(a_ , a_ )
return max(a[-1] )
if __name__ == "__main__":
print(solution())
| 55 |
import inspect
import unittest
from transformers import MobileNetVaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileNetVaForImageClassification, MobileNetVaModel
from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self : Any ):
__A = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(A ,"tf_padding" ) )
self.parent.assertTrue(hasattr(A ,"depth_multiplier" ) )
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Optional[Any] ,A : int ,A : List[Any]=13 ,A : int=3 ,A : Optional[Any]=32 ,A : Union[str, Any]=0.25 ,A : Tuple=8 ,A : Optional[int]=True ,A : Union[str, Any]=10_24 ,A : Any=32 ,A : Optional[int]="relu6" ,A : int=0.1 ,A : Optional[Any]=0.02 ,A : Optional[Any]=True ,A : List[str]=True ,A : str=10 ,A : str=None ,):
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = depth_multiplier
__A = min_depth
__A = tf_padding
__A = int(last_hidden_size * depth_multiplier )
__A = output_stride
__A = hidden_act
__A = classifier_dropout_prob
__A = use_labels
__A = is_training
__A = num_labels
__A = initializer_range
__A = scope
def UpperCamelCase_ ( self : Optional[int] ):
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.num_labels )
__A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels )
__A = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self : Any ):
return MobileNetVaConfig(
num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,min_depth=self.min_depth ,tf_padding=self.tf_padding ,hidden_act=self.hidden_act ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,)
def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : Tuple ,A : Optional[int] ,A : List[str] ):
__A = MobileNetVaModel(config=A )
model.to(A )
model.eval()
__A = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) ,)
def UpperCamelCase_ ( self : List[Any] ,A : Union[str, Any] ,A : List[Any] ,A : int ,A : Union[str, Any] ):
__A = self.num_labels
__A = MobileNetVaForImageClassification(A )
model.to(A )
model.eval()
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : Tuple ):
__A = self.prepare_config_and_inputs()
__A , __A , __A , __A = config_and_inputs
__A = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else ()
snake_case_ = (
{"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification}
if is_torch_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def UpperCamelCase_ ( self : Any ):
__A = MobileNetVaModelTester(self )
__A = MobileNetVaConfigTester(self ,config_class=A ,has_text_modality=A )
def UpperCamelCase_ ( self : str ):
self.config_tester.run_common_tests()
@unittest.skip(reason="MobileNetV1 does not use inputs_embeds" )
def UpperCamelCase_ ( self : Union[str, Any] ):
pass
@unittest.skip(reason="MobileNetV1 does not support input and output embeddings" )
def UpperCamelCase_ ( self : Tuple ):
pass
@unittest.skip(reason="MobileNetV1 does not output attentions" )
def UpperCamelCase_ ( self : Any ):
pass
def UpperCamelCase_ ( self : Optional[int] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
__A = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__A = [*signature.parameters.keys()]
__A = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,A )
def UpperCamelCase_ ( self : List[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Optional[int] ):
def check_hidden_states_output(A : List[Any] ,A : List[Any] ,A : Optional[int] ):
__A = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
__A = model(**self._prepare_for_class(A ,A ) )
__A = outputs.hidden_states
__A = 26
self.assertEqual(len(A ) ,A )
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = True
check_hidden_states_output(A ,A ,A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__A = True
check_hidden_states_output(A ,A ,A )
def UpperCamelCase_ ( self : Tuple ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
@slow
def UpperCamelCase_ ( self : Union[str, Any] ):
for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = MobileNetVaModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> str:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : List[str] ):
return (
MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None
)
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
__A = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(A )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="pt" ).to(A )
# forward pass
with torch.no_grad():
__A = model(**A )
# verify the logits
__A = torch.Size((1, 10_01) )
self.assertEqual(outputs.logits.shape ,A )
__A = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
| 55 | 1 |
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
SCREAMING_SNAKE_CASE :Any = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :Union[str, Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
SCREAMING_SNAKE_CASE :Union[str, Any] = {
'tokenizer_file': {
'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json',
},
}
SCREAMING_SNAKE_CASE :str = {
'gpt-neox-20b': 2048,
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = ["input_ids", "attention_mask"]
def __init__( self : str ,A : List[Any]=None ,A : str=None ,A : str=None ,A : Tuple="<|endoftext|>" ,A : Union[str, Any]="<|endoftext|>" ,A : Union[str, Any]="<|endoftext|>" ,A : Union[str, Any]=False ,**A : List[Any] ,):
super().__init__(
A ,A ,tokenizer_file=A ,unk_token=A ,bos_token=A ,eos_token=A ,add_prefix_space=A ,**A ,)
__A = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("add_prefix_space" ,A ) != add_prefix_space:
__A = getattr(A ,pre_tok_state.pop("type" ) )
__A = add_prefix_space
__A = pre_tok_class(**A )
__A = add_prefix_space
def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : Optional[str] = None ):
__A = self._tokenizer.model.save(A ,name=A )
return tuple(A )
def UpperCamelCase_ ( self : Optional[int] ,A : "Conversation" ):
__A = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(A ,add_special_tokens=A ) + [self.eos_token_id] )
if len(A ) > self.model_max_length:
__A = input_ids[-self.model_max_length :]
return input_ids
| 55 |
import copy
import unittest
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
)
from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : str ,A : int ,A : int=2 ,A : Optional[Any]=3 ,A : Dict=4 ,A : Optional[int]=2 ,A : Union[str, Any]=7 ,A : List[str]=True ,A : Union[str, Any]=True ,A : Optional[int]=True ,A : Optional[int]=True ,A : Tuple=99 ,A : Optional[int]=36 ,A : Dict=3 ,A : str=4 ,A : Optional[Any]=37 ,A : Dict="gelu" ,A : Dict=0.1 ,A : Union[str, Any]=0.1 ,A : Union[str, Any]=5_12 ,A : Any=16 ,A : Union[str, Any]=2 ,A : List[Any]=0.02 ,A : List[Any]=6 ,A : Optional[int]=6 ,A : List[Any]=3 ,A : Union[str, Any]=4 ,A : Tuple=None ,A : List[str]=10_00 ,):
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = patch_size
__A = text_seq_length
__A = is_training
__A = use_input_mask
__A = use_token_type_ids
__A = use_labels
__A = vocab_size
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = max_position_embeddings
__A = type_vocab_size
__A = type_sequence_label_size
__A = initializer_range
__A = coordinate_size
__A = shape_size
__A = num_labels
__A = num_choices
__A = scope
__A = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
__A = text_seq_length
__A = (image_size // patch_size) ** 2 + 1
__A = self.text_seq_length + self.image_seq_length
def UpperCamelCase_ ( self : int ):
__A = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size )
__A = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__A = bbox[i, j, 3]
__A = bbox[i, j, 1]
__A = t
if bbox[i, j, 2] < bbox[i, j, 0]:
__A = bbox[i, j, 2]
__A = bbox[i, j, 0]
__A = t
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
if self.use_input_mask:
__A = random_attention_mask([self.batch_size, self.text_seq_length] )
__A = None
if self.use_token_type_ids:
__A = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size )
__A = None
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__A = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels )
__A = LayoutLMvaConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,)
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def UpperCamelCase_ ( self : Optional[int] ,A : List[str] ,A : Any ,A : Dict ,A : List[Any] ,A : Optional[int] ,A : Any ,A : Dict ,A : List[Any] ):
__A = LayoutLMvaModel(config=A )
model.to(A )
model.eval()
# text + image
__A = model(A ,pixel_values=A )
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A )
__A = model(A ,bbox=A ,pixel_values=A ,token_type_ids=A )
__A = model(A ,bbox=A ,pixel_values=A )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
# text only
__A = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
__A = model(pixel_values=A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) )
def UpperCamelCase_ ( self : Optional[int] ,A : Dict ,A : List[str] ,A : Any ,A : List[Any] ,A : Any ,A : Any ,A : Dict ,A : Optional[Any] ):
__A = self.num_labels
__A = LayoutLMvaForSequenceClassification(A )
model.to(A )
model.eval()
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : str ,A : Optional[Any] ,A : Dict ,A : str ,A : Tuple ,A : Union[str, Any] ,A : List[Any] ,A : Any ,A : Union[str, Any] ):
__A = self.num_labels
__A = LayoutLMvaForTokenClassification(config=A )
model.to(A )
model.eval()
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) )
def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : int ,A : str ,A : List[str] ,A : int ,A : List[str] ,A : List[str] ,A : Dict ):
__A = LayoutLMvaForQuestionAnswering(config=A )
model.to(A )
model.eval()
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,start_positions=A ,end_positions=A ,)
self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) )
def UpperCamelCase_ ( self : str ):
__A = self.prepare_config_and_inputs()
(
(
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) ,
) = config_and_inputs
__A = {
"input_ids": input_ids,
"bbox": bbox,
"pixel_values": pixel_values,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = (
(
LayoutLMvaModel,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaForQuestionAnswering,
)
if is_torch_available()
else ()
)
snake_case_ = (
{"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel}
if is_torch_available()
else {}
)
def UpperCamelCase_ ( self : str ,A : Any ,A : Any ,A : Tuple ,A : List[Any] ,A : Optional[Any] ):
# `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual
# embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has
# the sequence dimension of the text embedding only.
# (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`)
return True
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = LayoutLMvaModelTester(self )
__A = ConfigTester(self ,config_class=A ,hidden_size=37 )
def UpperCamelCase_ ( self : List[Any] ,A : int ,A : List[str] ,A : Dict=False ):
__A = copy.deepcopy(A )
if model_class in get_values(A ):
__A = {
k: v.unsqueeze(1 ).expand(-1 ,self.model_tester.num_choices ,-1 ).contiguous()
if isinstance(A ,torch.Tensor ) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(A ):
__A = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=A )
elif model_class in get_values(A ):
__A = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=A )
__A = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=A )
elif model_class in [
*get_values(A ),
]:
__A = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=A )
elif model_class in [
*get_values(A ),
]:
__A = torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=A ,)
return inputs_dict
def UpperCamelCase_ ( self : List[Any] ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : str ):
__A = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__A = type
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*A )
def UpperCamelCase_ ( self : str ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*A )
@slow
def UpperCamelCase_ ( self : Optional[int] ):
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = LayoutLMvaModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> Dict:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : Any ):
return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self : Dict ):
__A = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(A )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="pt" ).pixel_values.to(A )
__A = torch.tensor([[1, 2]] )
__A = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 )
# forward pass
__A = model(
input_ids=input_ids.to(A ) ,bbox=bbox.to(A ) ,pixel_values=pixel_values.to(A ) ,)
# verify the logits
__A = torch.Size((1, 1_99, 7_68) )
self.assertEqual(outputs.last_hidden_state.shape ,A )
__A = torch.tensor(
[[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(A )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,A ,atol=1E-4 ) )
| 55 | 1 |
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.esm.modeling_esmfold import EsmForProteinFolding
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : int ,A : Dict ,A : int=13 ,A : Dict=7 ,A : Dict=False ,A : List[str]=True ,A : Optional[int]=False ,A : Dict=False ,A : Union[str, Any]=19 ,A : str=32 ,A : int=5 ,A : Any=4 ,A : List[str]=37 ,A : Union[str, Any]="gelu" ,A : int=0.1 ,A : int=0.1 ,A : Tuple=5_12 ,A : List[str]=16 ,A : Optional[int]=2 ,A : Optional[int]=0.02 ,A : str=3 ,A : Optional[int]=4 ,A : Any=None ,):
__A = parent
__A = batch_size
__A = seq_length
__A = is_training
__A = use_input_mask
__A = use_token_type_ids
__A = use_labels
__A = vocab_size
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = max_position_embeddings
__A = type_vocab_size
__A = type_sequence_label_size
__A = initializer_range
__A = num_labels
__A = num_choices
__A = scope
def UpperCamelCase_ ( self : int ):
__A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
__A = None
if self.use_input_mask:
__A = random_attention_mask([self.batch_size, self.seq_length] )
__A = None
__A = None
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
__A = ids_tensor([self.batch_size] ,self.num_choices )
__A = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase_ ( self : List[Any] ):
__A = EsmConfig(
vocab_size=33 ,hidden_size=self.hidden_size ,pad_token_id=1 ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,is_folding_model=A ,esmfold_config={"trunk": {"num_blocks": 2}, "fp16_esm": False} ,)
return config
def UpperCamelCase_ ( self : Optional[Any] ,A : List[Any] ,A : List[Any] ,A : Optional[int] ,A : Tuple ,A : List[Any] ,A : List[Any] ):
__A = EsmForProteinFolding(config=A ).float()
model.to(A )
model.eval()
__A = model(A ,attention_mask=A )
__A = model(A )
__A = model(A )
self.parent.assertEqual(result.positions.shape ,(8, self.batch_size, self.seq_length, 14, 3) )
self.parent.assertEqual(result.angles.shape ,(8, self.batch_size, self.seq_length, 7, 2) )
def UpperCamelCase_ ( self : Optional[int] ):
__A = self.prepare_config_and_inputs()
(
(
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) ,
) = config_and_inputs
__A = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = False
snake_case_ = (EsmForProteinFolding,) if is_torch_available() else ()
snake_case_ = ()
snake_case_ = {} if is_torch_available() else {}
snake_case_ = False
def UpperCamelCase_ ( self : Any ):
__A = EsmFoldModelTester(self )
__A = ConfigTester(self ,config_class=A ,hidden_size=37 )
def UpperCamelCase_ ( self : str ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self : Optional[int] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
@unittest.skip("Does not support attention outputs" )
def UpperCamelCase_ ( self : Dict ):
pass
@unittest.skip
def UpperCamelCase_ ( self : Any ):
pass
@unittest.skip("Esm does not support embedding resizing" )
def UpperCamelCase_ ( self : Any ):
pass
@unittest.skip("Esm does not support embedding resizing" )
def UpperCamelCase_ ( self : Optional[int] ):
pass
@unittest.skip("ESMFold does not support passing input embeds!" )
def UpperCamelCase_ ( self : Optional[int] ):
pass
@unittest.skip("ESMFold does not support head pruning." )
def UpperCamelCase_ ( self : List[str] ):
pass
@unittest.skip("ESMFold does not support head pruning." )
def UpperCamelCase_ ( self : List[Any] ):
pass
@unittest.skip("ESMFold does not support head pruning." )
def UpperCamelCase_ ( self : int ):
pass
@unittest.skip("ESMFold does not support head pruning." )
def UpperCamelCase_ ( self : List[Any] ):
pass
@unittest.skip("ESMFold does not support head pruning." )
def UpperCamelCase_ ( self : List[Any] ):
pass
@unittest.skip("ESMFold does not output hidden states in the normal way." )
def UpperCamelCase_ ( self : Optional[Any] ):
pass
@unittest.skip("ESMfold does not output hidden states in the normal way." )
def UpperCamelCase_ ( self : Dict ):
pass
@unittest.skip("ESMFold only has one output format." )
def UpperCamelCase_ ( self : int ):
pass
@unittest.skip("This test doesn't work for ESMFold and doesn't test core functionality" )
def UpperCamelCase_ ( self : List[str] ):
pass
@unittest.skip("ESMFold does not support input chunking." )
def UpperCamelCase_ ( self : List[Any] ):
pass
@unittest.skip("ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments." )
def UpperCamelCase_ ( self : List[str] ):
pass
@unittest.skip("ESMFold doesn't support torchscript compilation." )
def UpperCamelCase_ ( self : int ):
pass
@unittest.skip("ESMFold doesn't support torchscript compilation." )
def UpperCamelCase_ ( self : int ):
pass
@unittest.skip("ESMFold doesn't support torchscript compilation." )
def UpperCamelCase_ ( self : int ):
pass
@unittest.skip("ESMFold doesn't support data parallel." )
def UpperCamelCase_ ( self : Optional[int] ):
pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def UpperCamelCase_ ( self : Tuple ):
pass
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@slow
def UpperCamelCase_ ( self : str ):
__A = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1" ).float()
model.eval()
__A = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
__A = model(A )["positions"]
__A = torch.tensor([2.58_28, 0.79_93, -10.93_34] ,dtype=torch.floataa )
self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] ,A ,atol=1E-4 ) )
| 55 |
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Any ,A : List[str] ,A : str=7 ,A : Optional[Any]=3 ,A : Any=18 ,A : int=30 ,A : int=4_00 ,A : List[str]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=True ,A : Tuple=None ,A : Tuple=True ,A : Union[str, Any]=[0.5, 0.5, 0.5] ,A : str=[0.5, 0.5, 0.5] ,A : List[Any]=False ,):
__A = size if size is not None else {"height": 20, "width": 20}
__A = crop_size if crop_size is not None else {"height": 18, "width": 18}
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = min_resolution
__A = max_resolution
__A = do_resize
__A = size
__A = do_center_crop
__A = crop_size
__A = do_normalize
__A = image_mean
__A = image_std
__A = do_reduce_labels
def UpperCamelCase_ ( self : List[str] ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
__A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
__A = Image.open(dataset[0]["file"] )
__A = Image.open(dataset[1]["file"] )
return image, map
def UpperCAmelCase ( ) -> Optional[int]:
"""simple docstring"""
__A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
__A = Image.open(ds[0]["file"] )
__A = Image.open(ds[1]["file"] )
__A = Image.open(ds[2]["file"] )
__A = Image.open(ds[3]["file"] )
return [imagea, imagea], [mapa, mapa]
@require_torch
@require_vision
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = BeitImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self : List[Any] ):
__A = BeitImageProcessingTester(self )
@property
def UpperCamelCase_ ( self : List[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self : int ):
__A = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A ,"do_resize" ) )
self.assertTrue(hasattr(A ,"size" ) )
self.assertTrue(hasattr(A ,"do_center_crop" ) )
self.assertTrue(hasattr(A ,"center_crop" ) )
self.assertTrue(hasattr(A ,"do_normalize" ) )
self.assertTrue(hasattr(A ,"image_mean" ) )
self.assertTrue(hasattr(A ,"image_std" ) )
def UpperCamelCase_ ( self : List[str] ):
__A = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{"height": 20, "width": 20} )
self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} )
self.assertEqual(image_processor.do_reduce_labels ,A )
__A = self.image_processing_class.from_dict(
self.image_processor_dict ,size=42 ,crop_size=84 ,reduce_labels=A )
self.assertEqual(image_processor.size ,{"height": 42, "width": 42} )
self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} )
self.assertEqual(image_processor.do_reduce_labels ,A )
def UpperCamelCase_ ( self : List[Any] ):
pass
def UpperCamelCase_ ( self : Optional[int] ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A ,Image.Image )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : List[str] ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A )
for image in image_inputs:
self.assertIsInstance(A ,np.ndarray )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : int ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A )
for image in image_inputs:
self.assertIsInstance(A ,torch.Tensor )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : str ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A )
__A = []
for image in image_inputs:
self.assertIsInstance(A ,torch.Tensor )
maps.append(torch.zeros(image.shape[-2:] ).long() )
# Test not batched input
__A = image_processing(image_inputs[0] ,maps[0] ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
1,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
# Test batched
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
# Test not batched input (PIL images)
__A , __A = prepare_semantic_single_inputs()
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
1,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
# Test batched input (PIL images)
__A , __A = prepare_semantic_batch_inputs()
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
2,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
def UpperCamelCase_ ( self : Dict ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
__A , __A = prepare_semantic_single_inputs()
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 1_50 )
__A = True
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
| 55 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
SCREAMING_SNAKE_CASE :int = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :str = {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json',
'umberto-commoncrawl-cased-v1': (
'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json'
),
'umberto-wikipedia-uncased-v1': (
'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json'
),
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = "camembert"
def __init__( self : Tuple ,A : Dict=3_05_22 ,A : Any=7_68 ,A : List[Any]=12 ,A : Optional[int]=12 ,A : List[str]=30_72 ,A : Dict="gelu" ,A : Union[str, Any]=0.1 ,A : Union[str, Any]=0.1 ,A : int=5_12 ,A : Any=2 ,A : Optional[Any]=0.02 ,A : Optional[Any]=1E-12 ,A : Any=1 ,A : Optional[Any]=0 ,A : List[Any]=2 ,A : Dict="absolute" ,A : List[Any]=True ,A : Union[str, Any]=None ,**A : List[Any] ,):
super().__init__(pad_token_id=A ,bos_token_id=A ,eos_token_id=A ,**A )
__A = vocab_size
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = hidden_act
__A = intermediate_size
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = max_position_embeddings
__A = type_vocab_size
__A = initializer_range
__A = layer_norm_eps
__A = position_embedding_type
__A = use_cache
__A = classifier_dropout
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@property
def UpperCamelCase_ ( self : int ):
if self.task == "multiple-choice":
__A = {0: "batch", 1: "choice", 2: "sequence"}
else:
__A = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 55 |
from numpy import exp, pi, sqrt
def UpperCAmelCase ( a_ , a_ = 0.0 , a_ = 1.0 ) -> int:
"""simple docstring"""
return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 55 | 1 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE :str = '▁'
SCREAMING_SNAKE_CASE :Any = {'vocab_file': 'spiece.model'}
SCREAMING_SNAKE_CASE :List[str] = {
'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}
}
SCREAMING_SNAKE_CASE :int = {
'google/pegasus-xsum': 512,
}
SCREAMING_SNAKE_CASE :Tuple = logging.get_logger(__name__)
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = ["input_ids", "attention_mask"]
def __init__( self : Tuple ,A : Union[str, Any] ,A : List[str]="<pad>" ,A : Dict="</s>" ,A : Union[str, Any]="<unk>" ,A : List[str]="<mask_2>" ,A : Optional[int]="<mask_1>" ,A : Union[str, Any]=None ,A : Optional[Any]=1_03 ,A : Optional[Dict[str, Any]] = None ,**A : Dict ,):
__A = offset
if additional_special_tokens is not None:
if not isinstance(A ,A ):
raise TypeError(
f'''additional_special_tokens should be of type {type(A )}, but is'''
f''' {type(A )}''' )
__A = (
([mask_token_sent] + additional_special_tokens)
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
else additional_special_tokens
)
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
additional_special_tokens_extended += [
f'''<unk_{i}>''' for i in range(len(A ) ,self.offset - 1 )
]
if len(set(A ) ) != len(A ):
raise ValueError(
"Please make sure that the provided additional_special_tokens do not contain an incorrectly"
f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' )
__A = additional_special_tokens_extended
else:
__A = [mask_token_sent] if mask_token_sent is not None else []
additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 ,self.offset )]
__A = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=A ,unk_token=A ,mask_token=A ,pad_token=A ,mask_token_sent=A ,offset=A ,additional_special_tokens=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,)
__A = mask_token_sent
__A = vocab_file
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(A )
# add special tokens to encoder dict
__A = {
0: self.pad_token,
1: self.eos_token,
}
if self.mask_token_sent is not None:
self.encoder.update(
{
2: self.mask_token_sent,
3: self.mask_token,
} )
if self.offset > 0:
# entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102
# mask_token_sent is already added to list -> so start at 1
self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 ,self.offset - 1 )} )
__A = {v: k for k, v in self.encoder.items()}
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return len(self.sp_model ) + self.offset
def UpperCamelCase_ ( self : Dict ):
__A = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Tuple ):
__A = self.__dict__.copy()
__A = None
return state
def __setstate__( self : int ,A : Optional[int] ):
__A = d
# for backward compatibility
if not hasattr(self ,"sp_model_kwargs" ):
__A = {}
__A = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCamelCase_ ( self : int ,A : str ):
return self.sp_model.encode(A ,out_type=A )
def UpperCamelCase_ ( self : Optional[int] ,A : str ):
if token in self.decoder:
return self.decoder[token]
elif token in self.added_tokens_decoder:
return self.added_tokens_decoder[token]
__A = self.sp_model.piece_to_id(A )
return sp_id + self.offset
def UpperCamelCase_ ( self : int ,A : int ):
if index in self.encoder:
return self.encoder[index]
elif index in self.added_tokens_encoder:
return self.added_tokens_encoder[index]
else:
__A = self.sp_model.IdToPiece(index - self.offset )
return token
def UpperCamelCase_ ( self : Optional[int] ,A : str ):
__A = []
__A = ""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(A ) + token
__A = []
else:
current_sub_tokens.append(A )
out_string += self.sp_model.decode(A )
return out_string.strip()
def UpperCamelCase_ ( self : Union[str, Any] ,A : Optional[Any]=False ):
return 1
def UpperCamelCase_ ( self : Optional[Any] ,A : int ):
__A = set(self.all_special_ids ) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special
return [1 if x in all_special_ids else 0 for x in seq]
def UpperCamelCase_ ( self : Optional[Any] ,A : List ,A : Optional[List] = None ,A : bool = False ):
if already_has_special_tokens:
return self._special_token_mask(A )
elif token_ids_a is None:
return self._special_token_mask(A ) + [1]
else:
return self._special_token_mask(token_ids_a + token_ids_a ) + [1]
def UpperCamelCase_ ( self : List[str] ,A : Any ,A : Union[str, Any]=None ):
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def UpperCamelCase_ ( self : Tuple ,A : str ,A : Optional[str] = None ):
if not os.path.isdir(A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__A = os.path.join(
A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,A )
elif not os.path.isfile(self.vocab_file ):
with open(A ,"wb" ) as fi:
__A = self.sp_model.serialized_model_proto()
fi.write(A )
return (out_vocab_file,)
| 55 |
import gc
import unittest
from diffusers import FlaxStableDiffusionInpaintPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Tuple ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def UpperCamelCase_ ( self : Optional[int] ):
__A = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-inpaint/init_image.png" )
__A = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" )
__A = "xvjiarui/stable-diffusion-2-inpainting"
__A , __A = FlaxStableDiffusionInpaintPipeline.from_pretrained(A ,safety_checker=A )
__A = "Face of a yellow cat, high resolution, sitting on a park bench"
__A = jax.random.PRNGKey(0 )
__A = 50
__A = jax.device_count()
__A = num_samples * [prompt]
__A = num_samples * [init_image]
__A = num_samples * [mask_image]
__A , __A , __A = pipeline.prepare_inputs(A ,A ,A )
# shard inputs and rng
__A = replicate(A )
__A = jax.random.split(A ,jax.device_count() )
__A = shard(A )
__A = shard(A )
__A = shard(A )
__A = pipeline(
A ,A ,A ,A ,A ,A ,jit=A )
__A = output.images.reshape(A ,5_12 ,5_12 ,3 )
__A = images[0, 2_53:2_56, 2_53:2_56, -1]
__A = jnp.asarray(jax.device_get(image_slice.flatten() ) )
__A = jnp.array(
[0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] )
print(f'''output_slice: {output_slice}''' )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
| 55 | 1 |
import fire
from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer
def UpperCAmelCase ( a_ , a_ , **a_ ) -> int:
"""simple docstring"""
__A = AutoConfig.from_pretrained(a_ , **a_ )
__A = AutoModelForSeqaSeqLM.from_config(a_ )
model.save_pretrained(a_ )
AutoTokenizer.from_pretrained(a_ ).save_pretrained(a_ )
return model
if __name__ == "__main__":
fire.Fire(save_randomly_initialized_version)
| 55 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import GLPNImageProcessor
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Any ,A : Optional[int] ,A : Optional[int]=7 ,A : Optional[Any]=3 ,A : List[str]=18 ,A : Any=30 ,A : Tuple=4_00 ,A : Union[str, Any]=True ,A : Optional[Any]=32 ,A : Union[str, Any]=True ,):
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = min_resolution
__A = max_resolution
__A = do_resize
__A = size_divisor
__A = do_rescale
def UpperCamelCase_ ( self : Union[str, Any] ):
return {
"do_resize": self.do_resize,
"size_divisor": self.size_divisor,
"do_rescale": self.do_rescale,
}
@require_torch
@require_vision
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = GLPNImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self : int ):
__A = GLPNImageProcessingTester(self )
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self : Any ):
__A = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A ,"do_resize" ) )
self.assertTrue(hasattr(A ,"size_divisor" ) )
self.assertTrue(hasattr(A ,"resample" ) )
self.assertTrue(hasattr(A ,"do_rescale" ) )
def UpperCamelCase_ ( self : str ):
pass
def UpperCamelCase_ ( self : Dict ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A ,Image.Image )
# Test not batched input (GLPNImageProcessor doesn't support batching)
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
def UpperCamelCase_ ( self : Optional[Any] ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A )
for image in image_inputs:
self.assertIsInstance(A ,np.ndarray )
# Test not batched input (GLPNImageProcessor doesn't support batching)
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
def UpperCamelCase_ ( self : int ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A )
for image in image_inputs:
self.assertIsInstance(A ,torch.Tensor )
# Test not batched input (GLPNImageProcessor doesn't support batching)
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
| 55 | 1 |
from __future__ import annotations
import unittest
from transformers import MobileBertConfig, is_tf_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_MODEL_FOR_PRETRAINING_MAPPING,
TFMobileBertForMaskedLM,
TFMobileBertForMultipleChoice,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertModel,
)
@require_tf
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (
(
TFMobileBertModel,
TFMobileBertForMaskedLM,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertForMultipleChoice,
)
if is_tf_available()
else ()
)
snake_case_ = (
{
"feature-extraction": TFMobileBertModel,
"fill-mask": TFMobileBertForMaskedLM,
"question-answering": TFMobileBertForQuestionAnswering,
"text-classification": TFMobileBertForSequenceClassification,
"token-classification": TFMobileBertForTokenClassification,
"zero-shot": TFMobileBertForSequenceClassification,
}
if is_tf_available()
else {}
)
snake_case_ = False
snake_case_ = False
def UpperCamelCase_ ( self : Union[str, Any] ,A : Any ,A : List[str] ,A : int=False ):
__A = super()._prepare_for_class(A ,A ,return_labels=A )
if return_labels:
if model_class in get_values(A ):
__A = tf.zeros(self.model_tester.batch_size ,dtype=tf.intaa )
return inputs_dict
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : int ,A : int ,A : Optional[Any]=13 ,A : List[str]=7 ,A : Union[str, Any]=True ,A : List[str]=True ,A : int=True ,A : Tuple=True ,A : str=99 ,A : Union[str, Any]=32 ,A : Union[str, Any]=32 ,A : int=2 ,A : Tuple=4 ,A : Optional[int]=37 ,A : Any="gelu" ,A : Optional[Any]=0.1 ,A : Optional[int]=0.1 ,A : int=5_12 ,A : Union[str, Any]=16 ,A : str=2 ,A : List[str]=0.02 ,A : List[Any]=3 ,A : List[str]=4 ,A : List[str]=None ,):
__A = parent
__A = batch_size
__A = seq_length
__A = is_training
__A = use_input_mask
__A = use_token_type_ids
__A = use_labels
__A = vocab_size
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = max_position_embeddings
__A = type_vocab_size
__A = type_sequence_label_size
__A = initializer_range
__A = num_labels
__A = num_choices
__A = scope
__A = embedding_size
def UpperCamelCase_ ( self : Optional[int] ):
__A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
__A = None
if self.use_input_mask:
__A = random_attention_mask([self.batch_size, self.seq_length] )
__A = None
if self.use_token_type_ids:
__A = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size )
__A = None
__A = None
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__A = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
__A = ids_tensor([self.batch_size] ,self.num_choices )
__A = MobileBertConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,embedding_size=self.embedding_size ,)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase_ ( self : Dict ,A : Tuple ,A : str ,A : Optional[int] ,A : str ,A : List[str] ,A : int ,A : Any ):
__A = TFMobileBertModel(config=A )
__A = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
__A = model(A )
__A = [input_ids, input_mask]
__A = model(A )
__A = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) )
def UpperCamelCase_ ( self : Optional[Any] ,A : str ,A : str ,A : List[str] ,A : str ,A : List[Any] ,A : Optional[int] ,A : Any ):
__A = TFMobileBertForMaskedLM(config=A )
__A = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
__A = model(A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase_ ( self : Optional[Any] ,A : str ,A : Tuple ,A : str ,A : Union[str, Any] ,A : Optional[int] ,A : Tuple ,A : List[str] ):
__A = TFMobileBertForNextSentencePrediction(config=A )
__A = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
__A = model(A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) )
def UpperCamelCase_ ( self : str ,A : List[Any] ,A : List[Any] ,A : List[str] ,A : Dict ,A : Dict ,A : Any ,A : Optional[Any] ):
__A = TFMobileBertForPreTraining(config=A )
__A = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
__A = model(A )
self.parent.assertEqual(
result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) )
def UpperCamelCase_ ( self : Tuple ,A : List[str] ,A : Optional[Any] ,A : Optional[Any] ,A : Optional[int] ,A : Dict ,A : Union[str, Any] ,A : Tuple ):
__A = self.num_labels
__A = TFMobileBertForSequenceClassification(config=A )
__A = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
__A = model(A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : str ,A : Any ,A : str ,A : Optional[int] ,A : Any ,A : Optional[Any] ,A : Optional[Any] ,A : Union[str, Any] ):
__A = self.num_choices
__A = TFMobileBertForMultipleChoice(config=A )
__A = tf.tile(tf.expand_dims(A ,1 ) ,(1, self.num_choices, 1) )
__A = tf.tile(tf.expand_dims(A ,1 ) ,(1, self.num_choices, 1) )
__A = tf.tile(tf.expand_dims(A ,1 ) ,(1, self.num_choices, 1) )
__A = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
__A = model(A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) )
def UpperCamelCase_ ( self : str ,A : Optional[Any] ,A : List[str] ,A : str ,A : int ,A : Any ,A : Optional[int] ,A : Union[str, Any] ):
__A = self.num_labels
__A = TFMobileBertForTokenClassification(config=A )
__A = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
__A = model(A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase_ ( self : Optional[int] ,A : Any ,A : Any ,A : Dict ,A : int ,A : List[Any] ,A : Any ,A : List[str] ):
__A = TFMobileBertForQuestionAnswering(config=A )
__A = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
__A = model(A )
self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.prepare_config_and_inputs()
(
(
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) ,
) = config_and_inputs
__A = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
def UpperCamelCase_ ( self : Optional[Any] ):
__A = TFMobileBertModelTest.TFMobileBertModelTester(self )
__A = ConfigTester(self ,config_class=A ,hidden_size=37 )
def UpperCamelCase_ ( self : str ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self : Optional[int] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_model(*A )
def UpperCamelCase_ ( self : Dict ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_masked_lm(*A )
def UpperCamelCase_ ( self : Dict ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_multiple_choice(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*A )
def UpperCamelCase_ ( self : Optional[int] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_pretraining(*A )
def UpperCamelCase_ ( self : str ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_question_answering(*A )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_sequence_classification(*A )
def UpperCamelCase_ ( self : Dict ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_token_classification(*A )
@slow
def UpperCamelCase_ ( self : int ):
# for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["google/mobilebert-uncased"]:
__A = TFMobileBertModel.from_pretrained(A )
self.assertIsNotNone(A )
@require_tf
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase_ ( self : Any ):
__A = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased" )
__A = tf.constant([[0, 1, 2, 3, 4, 5]] )
__A = model(A )[0]
__A = [1, 6, 3_05_22]
self.assertEqual(output.shape ,A )
__A = tf.constant(
[
[
[-4.5_91_95_47, -9.24_82_95, -9.64_52_56],
[-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37],
[-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73],
]
] )
tf.debugging.assert_near(output[:, :3, :3] ,A ,atol=1E-4 )
| 55 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=__SCREAMING_SNAKE_CASE )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
snake_case_ = Features({"image": Image()} )
snake_case_ = Features({"labels": ClassLabel} )
snake_case_ = "image"
snake_case_ = "labels"
def UpperCamelCase_ ( self : Optional[Any] ,A : Tuple ):
if self.label_column not in features:
raise ValueError(f'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] ,A ):
raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' )
__A = copy.deepcopy(self )
__A = self.label_schema.copy()
__A = features[self.label_column]
__A = label_schema
return task_template
@property
def UpperCamelCase_ ( self : Any ):
return {
self.image_column: "image",
self.label_column: "labels",
}
| 55 | 1 |
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
__A = []
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''',
F'''stage{idx}.patch_embed.proj.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''',
F'''stage{idx}.patch_embed.proj.bias''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''',
F'''stage{idx}.patch_embed.norm.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''',
F'''stage{idx}.patch_embed.norm.bias''',
) )
return embed
def UpperCAmelCase ( a_ , a_ ) -> int:
"""simple docstring"""
__A = []
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj.bias''',
) )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') )
return attention_weights
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
__A = []
token.append((F'''cvt.encoder.stages.{idx}.cls_token''', "stage2.cls_token") )
return token
def UpperCAmelCase ( ) -> Any:
"""simple docstring"""
__A = []
head.append(("layernorm.weight", "norm.weight") )
head.append(("layernorm.bias", "norm.bias") )
head.append(("classifier.weight", "head.weight") )
head.append(("classifier.bias", "head.bias") )
return head
def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> Dict:
"""simple docstring"""
__A = "imagenet-1k-id2label.json"
__A = 1_0_0_0
__A = "huggingface/label-files"
__A = num_labels
__A = json.load(open(cached_download(hf_hub_url(a_ , a_ , repo_type="dataset" ) ) , "r" ) )
__A = {int(a_ ): v for k, v in idalabel.items()}
__A = idalabel
__A = {v: k for k, v in idalabel.items()}
__A = __A = CvtConfig(num_labels=a_ , idalabel=a_ , labelaid=a_ )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit("/" , 1 )[-1][4:6] == "13":
__A = [1, 2, 1_0]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit("/" , 1 )[-1][4:6] == "21":
__A = [1, 4, 1_6]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
__A = [2, 2, 2_0]
__A = [3, 1_2, 1_6]
__A = [1_9_2, 7_6_8, 1_0_2_4]
__A = CvtForImageClassification(a_ )
__A = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" )
__A = image_size
__A = torch.load(a_ , map_location=torch.device("cpu" ) )
__A = OrderedDict()
__A = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
__A = list_of_state_dict + cls_token(a_ )
__A = list_of_state_dict + embeddings(a_ )
for cnt in range(config.depth[idx] ):
__A = list_of_state_dict + attention(a_ , a_ )
__A = list_of_state_dict + final()
for gg in list_of_state_dict:
print(a_ )
for i in range(len(a_ ) ):
__A = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(a_ )
model.save_pretrained(a_ )
image_processor.save_pretrained(a_ )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
'--cvt_model',
default='cvt-w24',
type=str,
help='Name of the cvt model you\'d like to convert.',
)
parser.add_argument(
'--image_size',
default=384,
type=int,
help='Input Image Size',
)
parser.add_argument(
'--cvt_file_name',
default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth',
type=str,
help='Input Image Size',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
SCREAMING_SNAKE_CASE :List[Any] = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 55 |
from math import sqrt
def UpperCAmelCase ( a_ ) -> bool:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number >= 0
), "'number' must been an int and positive"
__A = True
# 0 and 1 are none primes.
if number <= 1:
__A = False
for divisor in range(2 , int(round(sqrt(a_ ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
__A = False
break
# precondition
assert isinstance(a_ , a_ ), "'status' must been from type bool"
return status
def UpperCAmelCase ( a_ ) -> Any:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
__A = list(range(2 , n + 1 ) )
__A = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(a_ ) ):
for j in range(i + 1 , len(a_ ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
__A = 0
# filters actual prime numbers.
__A = [x for x in begin_list if x != 0]
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type list"
return ans
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2"
__A = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(a_ ):
ans.append(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type list"
return ans
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and number >= 0, "'number' must been an int and >= 0"
__A = [] # this list will be returns of the function.
# potential prime number factors.
__A = 2
__A = number
if number == 0 or number == 1:
ans.append(a_ )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(a_ ):
while quotient != 1:
if is_prime(a_ ) and (quotient % factor == 0):
ans.append(a_ )
quotient /= factor
else:
factor += 1
else:
ans.append(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type list"
return ans
def UpperCAmelCase ( a_ ) -> Any:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
__A = 0
# prime factorization of 'number'
__A = prime_factorization(a_ )
__A = max(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type int"
return ans
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
__A = 0
# prime factorization of 'number'
__A = prime_factorization(a_ )
__A = min(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type int"
return ans
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
assert isinstance(a_ , a_ ), "'number' must been an int"
assert isinstance(number % 2 == 0 , a_ ), "compare bust been from type bool"
return number % 2 == 0
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
assert isinstance(a_ , a_ ), "'number' must been an int"
assert isinstance(number % 2 != 0 , a_ ), "compare bust been from type bool"
return number % 2 != 0
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
assert (
isinstance(a_ , a_ ) and (number > 2) and is_even(a_ )
), "'number' must been an int, even and > 2"
__A = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
__A = get_prime_numbers(a_ )
__A = len(a_ )
# run variable for while-loops.
__A = 0
__A = None
# exit variable. for break up the loops
__A = True
while i < len_pn and loop:
__A = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
__A = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(a_ , a_ )
and (len(a_ ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]:
"""simple docstring"""
assert (
isinstance(a_ , a_ )
and isinstance(a_ , a_ )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
__A = 0
while numbera != 0:
__A = numbera % numbera
__A = numbera
__A = rest
# precondition
assert isinstance(a_ , a_ ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def UpperCAmelCase ( a_ , a_ ) -> List[str]:
"""simple docstring"""
assert (
isinstance(a_ , a_ )
and isinstance(a_ , a_ )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
__A = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
__A = prime_factorization(a_ )
__A = prime_factorization(a_ )
elif numbera == 1 or numbera == 1:
__A = []
__A = []
__A = max(a_ , a_ )
__A = 0
__A = 0
__A = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
__A = prime_fac_a.count(a_ )
__A = prime_fac_a.count(a_ )
for _ in range(max(a_ , a_ ) ):
ans *= n
else:
__A = prime_fac_a.count(a_ )
for _ in range(a_ ):
ans *= n
done.append(a_ )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
__A = prime_fac_a.count(a_ )
for _ in range(a_ ):
ans *= n
done.append(a_ )
# precondition
assert isinstance(a_ , a_ ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 0), "'number' must been a positive int"
__A = 0
__A = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(a_ ):
ans += 1
# precondition
assert isinstance(a_ , a_ ) and is_prime(
a_ ), "'ans' must been a prime number and from type int"
return ans
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
assert (
is_prime(a_ ) and is_prime(a_ ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
__A = p_number_a + 1 # jump to the next number
__A = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(a_ ):
number += 1
while number < p_number_a:
ans.append(a_ )
number += 1
# fetch the next prime number.
while not is_prime(a_ ):
number += 1
# precondition
assert (
isinstance(a_ , a_ )
and ans[0] != p_number_a
and ans[len(a_ ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 1), "'n' must been int and >= 1"
__A = [] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(a_ )
# precondition
assert ans[0] == 1 and ans[len(a_ ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def UpperCAmelCase ( a_ ) -> Dict:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number > 1
), "'number' must been an int and >= 1"
__A = get_divisors(a_ )
# precondition
assert (
isinstance(a_ , a_ )
and (divisors[0] == 1)
and (divisors[len(a_ ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def UpperCAmelCase ( a_ , a_ ) -> str:
"""simple docstring"""
assert (
isinstance(a_ , a_ )
and isinstance(a_ , a_ )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
__A = gcd(abs(a_ ) , abs(a_ ) )
# precondition
assert (
isinstance(a_ , a_ )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been a int and >= 0"
__A = 1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been an int and >= 0"
__A = 0
__A = 1
__A = 1 # this will be return
for _ in range(n - 1 ):
__A = ans
ans += fiba
__A = tmp
return ans
| 55 | 1 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import GLPNImageProcessor
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Any ,A : Optional[int] ,A : Optional[int]=7 ,A : Optional[Any]=3 ,A : List[str]=18 ,A : Any=30 ,A : Tuple=4_00 ,A : Union[str, Any]=True ,A : Optional[Any]=32 ,A : Union[str, Any]=True ,):
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = min_resolution
__A = max_resolution
__A = do_resize
__A = size_divisor
__A = do_rescale
def UpperCamelCase_ ( self : Union[str, Any] ):
return {
"do_resize": self.do_resize,
"size_divisor": self.size_divisor,
"do_rescale": self.do_rescale,
}
@require_torch
@require_vision
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = GLPNImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self : int ):
__A = GLPNImageProcessingTester(self )
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self : Any ):
__A = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A ,"do_resize" ) )
self.assertTrue(hasattr(A ,"size_divisor" ) )
self.assertTrue(hasattr(A ,"resample" ) )
self.assertTrue(hasattr(A ,"do_rescale" ) )
def UpperCamelCase_ ( self : str ):
pass
def UpperCamelCase_ ( self : Dict ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A ,Image.Image )
# Test not batched input (GLPNImageProcessor doesn't support batching)
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
def UpperCamelCase_ ( self : Optional[Any] ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A )
for image in image_inputs:
self.assertIsInstance(A ,np.ndarray )
# Test not batched input (GLPNImageProcessor doesn't support batching)
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
def UpperCamelCase_ ( self : int ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A )
for image in image_inputs:
self.assertIsInstance(A ,torch.Tensor )
# Test not batched input (GLPNImageProcessor doesn't support batching)
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
| 55 |
import os
def UpperCAmelCase ( ) -> Any:
"""simple docstring"""
__A = os.path.dirname(os.path.realpath(a_ ) )
__A = os.path.join(a_ , "triangle.txt" )
with open(a_ ) as f:
__A = f.readlines()
__A = []
for line in triangle:
__A = []
for number in line.strip().split(" " ):
numbers_from_line.append(int(a_ ) )
a.append(a_ )
for i in range(1 , len(a_ ) ):
for j in range(len(a[i] ) ):
__A = a[i - 1][j] if j != len(a[i - 1] ) else 0
__A = a[i - 1][j - 1] if j > 0 else 0
a[i][j] += max(a_ , a_ )
return max(a[-1] )
if __name__ == "__main__":
print(solution())
| 55 | 1 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
SCREAMING_SNAKE_CASE :int = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :List[str] = {
'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json',
# See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = "deformable_detr"
snake_case_ = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self : Dict ,A : str=True ,A : Dict=None ,A : Tuple=3 ,A : Optional[Any]=3_00 ,A : Optional[Any]=10_24 ,A : int=6 ,A : Tuple=10_24 ,A : List[Any]=8 ,A : Any=6 ,A : int=10_24 ,A : int=8 ,A : Tuple=0.0 ,A : int=True ,A : Any="relu" ,A : Dict=2_56 ,A : List[str]=0.1 ,A : Optional[int]=0.0 ,A : List[str]=0.0 ,A : List[Any]=0.02 ,A : Optional[Any]=1.0 ,A : Optional[Any]=True ,A : Optional[Any]=False ,A : Optional[Any]="sine" ,A : int="resnet50" ,A : Dict=True ,A : List[str]=False ,A : Tuple=4 ,A : int=4 ,A : str=4 ,A : Optional[int]=False ,A : Optional[Any]=3_00 ,A : Optional[int]=False ,A : Union[str, Any]=1 ,A : Optional[Any]=5 ,A : List[str]=2 ,A : List[str]=1 ,A : Dict=1 ,A : Union[str, Any]=5 ,A : Optional[int]=2 ,A : Optional[int]=0.1 ,A : Tuple=0.25 ,A : int=False ,**A : Optional[int] ,):
if backbone_config is not None and use_timm_backbone:
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." )
if not use_timm_backbone:
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
__A = CONFIG_MAPPING["resnet"](out_features=["stage4"] )
elif isinstance(A ,A ):
__A = backbone_config.get("model_type" )
__A = CONFIG_MAPPING[backbone_model_type]
__A = config_class.from_dict(A )
__A = use_timm_backbone
__A = backbone_config
__A = num_channels
__A = num_queries
__A = max_position_embeddings
__A = d_model
__A = encoder_ffn_dim
__A = encoder_layers
__A = encoder_attention_heads
__A = decoder_ffn_dim
__A = decoder_layers
__A = decoder_attention_heads
__A = dropout
__A = attention_dropout
__A = activation_dropout
__A = activation_function
__A = init_std
__A = init_xavier_std
__A = encoder_layerdrop
__A = auxiliary_loss
__A = position_embedding_type
__A = backbone
__A = use_pretrained_backbone
__A = dilation
# deformable attributes
__A = num_feature_levels
__A = encoder_n_points
__A = decoder_n_points
__A = two_stage
__A = two_stage_num_proposals
__A = with_box_refine
if two_stage is True and with_box_refine is False:
raise ValueError("If two_stage is True, with_box_refine must be True." )
# Hungarian matcher
__A = class_cost
__A = bbox_cost
__A = giou_cost
# Loss coefficients
__A = mask_loss_coefficient
__A = dice_loss_coefficient
__A = bbox_loss_coefficient
__A = giou_loss_coefficient
__A = eos_coefficient
__A = focal_alpha
__A = disable_custom_kernels
super().__init__(is_encoder_decoder=A ,**A )
@property
def UpperCamelCase_ ( self : List[Any] ):
return self.encoder_attention_heads
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return self.d_model
def UpperCamelCase_ ( self : List[str] ):
__A = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
__A = self.backbone_config.to_dict()
__A = self.__class__.model_type
return output
| 55 |
import re
from flax.core.frozen_dict import freeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.experimental import PartitionSpec as P
# Sentinels
SCREAMING_SNAKE_CASE :Union[str, Any] = object()
# For specifying empty leaf dict `{}`
SCREAMING_SNAKE_CASE :List[str] = object()
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
__A = tuple((re.compile(x + "$" ) for x in qs) )
for i in range(len(a_ ) - len(a_ ) + 1 ):
__A = [x.match(a_ ) for x, y in zip(a_ , ks[i:] )]
if matches and all(a_ ):
return True
return False
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
def replace(a_ , a_ ):
for rule, replacement in rules:
if _match(a_ , a_ ):
return replacement
return val
return replace
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
return [
# embeddings
(("transformer", "wpe", "embedding"), P("mp" , a_ )),
(("transformer", "wte", "embedding"), P("mp" , a_ )),
# atention
(("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a_ , "mp" )),
(("attention", "out_proj", "kernel"), P("mp" , a_ )),
(("attention", "out_proj", "bias"), None),
# mlp
(("mlp", "c_fc", "kernel"), P(a_ , "mp" )),
(("mlp", "c_fc", "bias"), P("mp" )),
(("mlp", "c_proj", "kernel"), P("mp" , a_ )),
(("mlp", "c_proj", "bias"), None),
# layer norms
((r"ln_\d+", "bias"), None),
((r"\d+", r"ln_\d+", "scale"), None),
(("ln_f", "bias"), None),
(("ln_f", "scale"), None),
]
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
__A = _get_partition_rules()
__A = _replacement_rules(a_ )
__A = {k: _unmatched for k in flatten_dict(a_ )}
__A = {k: replace(a_ , a_ ) for k, v in initd.items()}
assert _unmatched not in result.values(), "Incomplete partition spec."
return freeze(unflatten_dict(a_ ) )
| 55 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :Any = {
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = "megatron-bert"
def __init__( self : Tuple ,A : int=2_90_56 ,A : int=10_24 ,A : Optional[Any]=24 ,A : str=16 ,A : Union[str, Any]=40_96 ,A : Optional[Any]="gelu" ,A : Union[str, Any]=0.1 ,A : Tuple=0.1 ,A : int=5_12 ,A : Dict=2 ,A : List[Any]=0.02 ,A : Union[str, Any]=1E-12 ,A : Any=0 ,A : Union[str, Any]="absolute" ,A : Tuple=True ,**A : int ,):
super().__init__(pad_token_id=A ,**A )
__A = vocab_size
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = hidden_act
__A = intermediate_size
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = max_position_embeddings
__A = type_vocab_size
__A = initializer_range
__A = layer_norm_eps
__A = position_embedding_type
__A = use_cache
| 55 |
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : List[Any] ,A : Union[str, Any] ,A : List[Any]=13 ,A : Optional[Any]=30 ,A : Union[str, Any]=2 ,A : Union[str, Any]=3 ,A : Any=True ,A : Dict=True ,A : str=32 ,A : Tuple=2 ,A : Optional[int]=4 ,A : Tuple=37 ,A : List[Any]="gelu" ,A : Dict=0.1 ,A : Optional[int]=0.1 ,A : List[Any]=10 ,A : Optional[Any]=0.02 ,A : Dict=3 ,A : Dict=None ,A : List[Any]=2 ,):
__A = parent
__A = batch_size
__A = image_size
__A = patch_size
__A = num_channels
__A = is_training
__A = use_labels
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = type_sequence_label_size
__A = initializer_range
__A = scope
__A = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
__A = (image_size // patch_size) ** 2
__A = num_patches + 2
def UpperCamelCase_ ( self : List[Any] ):
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__A = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self : Optional[int] ):
return DeiTConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,)
def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,A : Optional[int] ,A : Union[str, Any] ):
__A = TFDeiTModel(config=A )
__A = model(A )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self : List[Any] ,A : List[Any] ,A : Optional[Any] ,A : Dict ):
__A = TFDeiTForMaskedImageModeling(config=A )
__A = model(A )
self.parent.assertEqual(
result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__A = 1
__A = TFDeiTForMaskedImageModeling(A )
__A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__A = model(A )
self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) )
def UpperCamelCase_ ( self : Optional[Any] ,A : Union[str, Any] ,A : Dict ,A : Union[str, Any] ):
__A = self.type_sequence_label_size
__A = TFDeiTForImageClassification(A )
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__A = 1
__A = TFDeiTForImageClassification(A )
__A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase_ ( self : str ):
__A = self.prepare_config_and_inputs()
__A , __A , __A = config_and_inputs
__A = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
snake_case_ = (
{
"feature-extraction": TFDeiTModel,
"image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def UpperCamelCase_ ( self : str ):
__A = TFDeiTModelTester(self )
__A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 )
def UpperCamelCase_ ( self : Any ):
self.config_tester.run_common_tests()
@unittest.skip(reason="DeiT does not use inputs_embeds" )
def UpperCamelCase_ ( self : Union[str, Any] ):
pass
def UpperCamelCase_ ( self : List[Any] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) )
__A = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(A ,tf.keras.layers.Dense ) )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
__A = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__A = [*signature.parameters.keys()]
__A = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,A )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
def UpperCamelCase_ ( self : Optional[int] ,A : Union[str, Any] ,A : List[str] ,A : Optional[Any]=False ):
__A = super()._prepare_for_class(A ,A ,return_labels=A )
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def UpperCamelCase_ ( self : Any ):
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = TFDeiTModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> str:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : int ):
return (
DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" )
if is_vision_available()
else None
)
@slow
def UpperCamelCase_ ( self : Optional[int] ):
__A = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="tf" )
# forward pass
__A = model(**A )
# verify the logits
__A = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape ,A )
__A = tf.constant([-1.02_66, 0.19_12, -1.28_61] )
self.assertTrue(np.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
| 55 | 1 |
from PIL import Image
def UpperCAmelCase ( a_ , a_ ) -> Image:
"""simple docstring"""
def brightness(a_ ) -> float:
return 1_2_8 + level + (c - 1_2_8)
if not -255.0 <= level <= 255.0:
raise ValueError("level must be between -255.0 (black) and 255.0 (white)" )
return img.point(a_ )
if __name__ == "__main__":
# Load image
with Image.open('image_data/lena.jpg') as img:
# Change brightness to 100
SCREAMING_SNAKE_CASE :Union[str, Any] = change_brightness(img, 100)
brigt_img.save('image_data/lena_brightness.png', format='png')
| 55 |
SCREAMING_SNAKE_CASE :List[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
SCREAMING_SNAKE_CASE :Union[str, Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
SCREAMING_SNAKE_CASE :int = {
0: 'Sunday',
1: 'Monday',
2: 'Tuesday',
3: 'Wednesday',
4: 'Thursday',
5: 'Friday',
6: 'Saturday',
}
def UpperCAmelCase ( a_ , a_ , a_ ) -> str:
"""simple docstring"""
assert len(str(a_ ) ) > 2, "year should be in YYYY format"
assert 1 <= month <= 1_2, "month should be between 1 to 12"
assert 1 <= day <= 3_1, "day should be between 1 to 31"
# Doomsday algorithm:
__A = year // 1_0_0
__A = (5 * (century % 4) + 2) % 7
__A = year % 1_0_0
__A = centurian % 1_2
__A = (
(centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor
) % 7
__A = (
DOOMSDAY_NOT_LEAP[month - 1]
if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0)
else DOOMSDAY_LEAP[month - 1]
)
__A = (dooms_day + day - day_anchor) % 7
return WEEK_DAY_NAMES[week_day]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 55 | 1 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : List[str] ):
__A = tempfile.mkdtemp()
__A = BlipImageProcessor()
__A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" )
__A = BlipaProcessor(A ,A )
processor.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self : Dict ,**A : int ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).tokenizer
def UpperCamelCase_ ( self : Dict ,**A : Optional[int] ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor
def UpperCamelCase_ ( self : Dict ):
shutil.rmtree(self.tmpdirname )
def UpperCamelCase_ ( self : Optional[int] ):
__A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )]
__A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def UpperCamelCase_ ( self : Any ):
__A = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__A = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" )
__A = self.get_image_processor(do_normalize=A ,padding_value=1.0 )
__A = BlipaProcessor.from_pretrained(
self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=A ,padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer ,A )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,A )
def UpperCamelCase_ ( self : List[Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = self.prepare_image_inputs()
__A = image_processor(A ,return_tensors="np" )
__A = processor(images=A ,return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 )
def UpperCamelCase_ ( self : Tuple ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = "lower newer"
__A = processor(text=A )
__A = tokenizer(A ,return_token_type_ids=A )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] ,encoded_processor[key] )
def UpperCamelCase_ ( self : int ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = "lower newer"
__A = self.prepare_image_inputs()
__A = processor(text=A ,images=A )
self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(A ):
processor()
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__A = processor.batch_decode(A )
__A = tokenizer.batch_decode(A )
self.assertListEqual(A ,A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = "lower newer"
__A = self.prepare_image_inputs()
__A = processor(text=A ,images=A )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
| 55 |
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError
import requests
def UpperCAmelCase ( a_ = "isbn/0140328726" ) -> dict:
"""simple docstring"""
__A = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes
if new_olid.count("/" ) != 1:
__A = F'''{olid} is not a valid Open Library olid'''
raise ValueError(a_ )
return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json()
def UpperCAmelCase ( a_ ) -> dict:
"""simple docstring"""
__A = {
"title": "Title",
"publish_date": "Publish date",
"authors": "Authors",
"number_of_pages": "Number of pages:",
"first_sentence": "First sentence",
"isbn_10": "ISBN (10)",
"isbn_13": "ISBN (13)",
}
__A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()}
__A = [
get_openlibrary_data(author["key"] )["name"] for author in data["Authors"]
]
__A = data["First sentence"]["value"]
for key, value in data.items():
if isinstance(a_ , a_ ):
__A = ", ".join(a_ )
return data
if __name__ == "__main__":
import doctest
doctest.testmod()
while True:
SCREAMING_SNAKE_CASE :int = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip()
if isbn.lower() in ("", "q", "quit", "exit", "stop"):
break
if len(isbn) not in (10, 13) or not isbn.isdigit():
print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''')
continue
print(f'''\nSearching Open Library for ISBN: {isbn}...\n''')
try:
SCREAMING_SNAKE_CASE :Any = summarize_book(get_openlibrary_data(f'''isbn/{isbn}'''))
print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items()))
except JSONDecodeError: # Workaround for requests.exceptions.RequestException:
print(f'''Sorry, there are no results for ISBN: {isbn}.''')
| 55 | 1 |
SCREAMING_SNAKE_CASE :int = {str(digit): digit**5 for digit in range(10)}
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
return sum(DIGITS_FIFTH_POWER[digit] for digit in str(a_ ) )
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
return sum(
number
for number in range(1_0_0_0 , 1_0_0_0_0_0_0 )
if number == digits_fifth_powers_sum(a_ ) )
if __name__ == "__main__":
print(solution())
| 55 |
import requests
SCREAMING_SNAKE_CASE :List[str] = 'YOUR API KEY'
def UpperCAmelCase ( a_ , a_ = giphy_api_key ) -> list:
"""simple docstring"""
__A = "+".join(query.split() )
__A = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}'''
__A = requests.get(a_ ).json()["data"]
return [gif["url"] for gif in gifs]
if __name__ == "__main__":
print('\n'.join(get_gifs('space ship')))
| 55 | 1 |
from collections import deque
from math import floor
from random import random
from time import time
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Tuple ):
__A = {}
def UpperCamelCase_ ( self : List[Any] ,A : int ,A : str ,A : Optional[int]=1 ):
if self.graph.get(A ):
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
__A = [[w, v]]
if not self.graph.get(A ):
__A = []
def UpperCamelCase_ ( self : Any ):
return list(self.graph )
def UpperCamelCase_ ( self : Optional[Any] ,A : Union[str, Any] ,A : Dict ):
if self.graph.get(A ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(A )
def UpperCamelCase_ ( self : List[Any] ,A : str=-2 ,A : List[str]=-1 ):
if s == d:
return []
__A = []
__A = []
if s == -2:
__A = list(self.graph )[0]
stack.append(A )
visited.append(A )
__A = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
__A = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(A )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
__A = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(A ) != 0:
__A = stack[len(A ) - 1]
else:
__A = ss
# check if se have reached the starting point
if len(A ) == 0:
return visited
def UpperCamelCase_ ( self : str ,A : Union[str, Any]=-1 ):
if c == -1:
__A = floor(random() * 1_00_00 ) + 10
for i in range(A ):
# every vertex has max 100 edges
for _ in range(floor(random() * 1_02 ) + 1 ):
__A = floor(random() * c ) + 1
if n != i:
self.add_pair(A ,A ,1 )
def UpperCamelCase_ ( self : int ,A : str=-2 ):
__A = deque()
__A = []
if s == -2:
__A = list(self.graph )[0]
d.append(A )
visited.append(A )
while d:
__A = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def UpperCamelCase_ ( self : Tuple ,A : int ):
__A = 0
for x in self.graph:
for y in self.graph[x]:
if y[1] == u:
count += 1
return count
def UpperCamelCase_ ( self : Any ,A : List[str] ):
return len(self.graph[u] )
def UpperCamelCase_ ( self : Optional[int] ,A : Any=-2 ):
__A = []
__A = []
if s == -2:
__A = list(self.graph )[0]
stack.append(A )
visited.append(A )
__A = s
__A = []
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
__A = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
__A = node[1]
break
# check if all the children are visited
if s == ss:
sorted_nodes.append(stack.pop() )
if len(A ) != 0:
__A = stack[len(A ) - 1]
else:
__A = ss
# check if se have reached the starting point
if len(A ) == 0:
return sorted_nodes
def UpperCamelCase_ ( self : List[Any] ):
__A = []
__A = []
__A = list(self.graph )[0]
stack.append(A )
visited.append(A )
__A = -2
__A = []
__A = s
__A = False
__A = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
__A = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
__A = len(A ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
__A = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
__A = True
if len(A ) != 0:
__A = stack[len(A ) - 1]
else:
__A = False
indirect_parents.append(A )
__A = s
__A = ss
# check if se have reached the starting point
if len(A ) == 0:
return list(A )
def UpperCamelCase_ ( self : str ):
__A = []
__A = []
__A = list(self.graph )[0]
stack.append(A )
visited.append(A )
__A = -2
__A = []
__A = s
__A = False
__A = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
__A = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
__A = len(A ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
__A = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
__A = True
if len(A ) != 0:
__A = stack[len(A ) - 1]
else:
__A = False
indirect_parents.append(A )
__A = s
__A = ss
# check if se have reached the starting point
if len(A ) == 0:
return False
def UpperCamelCase_ ( self : Tuple ,A : Dict=-2 ,A : Any=-1 ):
__A = time()
self.dfs(A ,A )
__A = time()
return end - begin
def UpperCamelCase_ ( self : Optional[Any] ,A : List[Any]=-2 ):
__A = time()
self.bfs(A )
__A = time()
return end - begin
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Optional[int] ):
__A = {}
def UpperCamelCase_ ( self : Optional[Any] ,A : Tuple ,A : Union[str, Any] ,A : Union[str, Any]=1 ):
# check if the u exists
if self.graph.get(A ):
# if there already is a edge
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
# if u does not exist
__A = [[w, v]]
# add the other way
if self.graph.get(A ):
# if there already is a edge
if self.graph[v].count([w, u] ) == 0:
self.graph[v].append([w, u] )
else:
# if u does not exist
__A = [[w, u]]
def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : Optional[Any] ):
if self.graph.get(A ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(A )
# the other way round
if self.graph.get(A ):
for _ in self.graph[v]:
if _[1] == u:
self.graph[v].remove(A )
def UpperCamelCase_ ( self : Union[str, Any] ,A : List[Any]=-2 ,A : int=-1 ):
if s == d:
return []
__A = []
__A = []
if s == -2:
__A = list(self.graph )[0]
stack.append(A )
visited.append(A )
__A = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
__A = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(A )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
__A = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(A ) != 0:
__A = stack[len(A ) - 1]
else:
__A = ss
# check if se have reached the starting point
if len(A ) == 0:
return visited
def UpperCamelCase_ ( self : Optional[Any] ,A : Dict=-1 ):
if c == -1:
__A = floor(random() * 1_00_00 ) + 10
for i in range(A ):
# every vertex has max 100 edges
for _ in range(floor(random() * 1_02 ) + 1 ):
__A = floor(random() * c ) + 1
if n != i:
self.add_pair(A ,A ,1 )
def UpperCamelCase_ ( self : List[str] ,A : Union[str, Any]=-2 ):
__A = deque()
__A = []
if s == -2:
__A = list(self.graph )[0]
d.append(A )
visited.append(A )
while d:
__A = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def UpperCamelCase_ ( self : int ,A : Optional[Any] ):
return len(self.graph[u] )
def UpperCamelCase_ ( self : str ):
__A = []
__A = []
__A = list(self.graph )[0]
stack.append(A )
visited.append(A )
__A = -2
__A = []
__A = s
__A = False
__A = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
__A = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
__A = len(A ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
__A = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
__A = True
if len(A ) != 0:
__A = stack[len(A ) - 1]
else:
__A = False
indirect_parents.append(A )
__A = s
__A = ss
# check if se have reached the starting point
if len(A ) == 0:
return list(A )
def UpperCamelCase_ ( self : Any ):
__A = []
__A = []
__A = list(self.graph )[0]
stack.append(A )
visited.append(A )
__A = -2
__A = []
__A = s
__A = False
__A = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
__A = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
__A = len(A ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
__A = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
__A = True
if len(A ) != 0:
__A = stack[len(A ) - 1]
else:
__A = False
indirect_parents.append(A )
__A = s
__A = ss
# check if se have reached the starting point
if len(A ) == 0:
return False
def UpperCamelCase_ ( self : Union[str, Any] ):
return list(self.graph )
def UpperCamelCase_ ( self : Dict ,A : Any=-2 ,A : int=-1 ):
__A = time()
self.dfs(A ,A )
__A = time()
return end - begin
def UpperCamelCase_ ( self : str ,A : List[str]=-2 ):
__A = time()
self.bfs(A )
__A = time()
return end - begin
| 55 |
import itertools
import math
def UpperCAmelCase ( a_ ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(a_ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def UpperCAmelCase ( ) -> Optional[Any]:
"""simple docstring"""
__A = 2
while True:
if is_prime(a_ ):
yield num
num += 1
def UpperCAmelCase ( a_ = 1_0_0_0_1 ) -> int:
"""simple docstring"""
return next(itertools.islice(prime_generator() , nth - 1 , a_ ) )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 55 | 1 |
from typing import Dict, List, Optional
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE :Dict = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :str = {
'nielsr/canine-s': 2048,
}
# Unicode defines 1,114,112 total “codepoints”
SCREAMING_SNAKE_CASE :int = 111_4112
# Below: Constants defining canonical codepoints for special, pseudo-characters.
# Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py
SCREAMING_SNAKE_CASE :int = 0
SCREAMING_SNAKE_CASE :Optional[int] = 0xe_000
SCREAMING_SNAKE_CASE :Dict = 0xe_001
SCREAMING_SNAKE_CASE :List[Any] = 0xe_002
SCREAMING_SNAKE_CASE :int = 0xe_003
SCREAMING_SNAKE_CASE :Any = 0xe_004
# Maps special codepoints to human-readable names.
SCREAMING_SNAKE_CASE :Dict[int, str] = {
# Special symbols are represented using codepoints values that are valid,
# but designated as "Private Use", meaning that they will never be assigned
# characters by the Unicode Consortium, and are thus safe for use here.
#
# NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly
# excluded and should fail with a hard error.
CLS: "[CLS]",
SEP: "[SEP]",
BOS: "[BOS]",
MASK: "[MASK]",
PAD: "[PAD]",
RESERVED: "[RESERVED]",
}
# Maps special codepoint human-readable names to their codepoint values.
SCREAMING_SNAKE_CASE :Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Union[str, Any] ,A : Union[str, Any]=chr(A ) ,A : Optional[Any]=chr(A ) ,A : List[str]=chr(A ) ,A : Optional[int]=chr(A ) ,A : Any=chr(A ) ,A : int=chr(A ) ,A : int=False ,A : List[str]=20_48 ,**A : Any ,):
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else bos_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else eos_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else sep_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else cls_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token
super().__init__(
bos_token=A ,eos_token=A ,sep_token=A ,cls_token=A ,pad_token=A ,mask_token=A ,add_prefix_space=A ,model_max_length=A ,**A ,)
# Creates a mapping for looking up the IDs of special symbols.
__A = {}
for codepoint, name in SPECIAL_CODEPOINTS.items():
__A = codepoint
# Creates a mapping for looking up the string forms of special symbol IDs.
__A = {
codepoint: name for name, codepoint in self._special_codepoints.items()
}
__A = UNICODE_VOCAB_SIZE
__A = len(self._special_codepoints )
@property
def UpperCamelCase_ ( self : Any ):
return self._unicode_vocab_size
def UpperCamelCase_ ( self : Dict ,A : str ):
return list(A )
def UpperCamelCase_ ( self : Any ,A : str ):
try:
return ord(A )
except TypeError:
raise ValueError(f'''invalid token: \'{token}\'''' )
def UpperCamelCase_ ( self : Union[str, Any] ,A : int ):
try:
if index in SPECIAL_CODEPOINTS:
return SPECIAL_CODEPOINTS[index]
return chr(A )
except TypeError:
raise ValueError(f'''invalid id: {index}''' )
def UpperCamelCase_ ( self : Optional[int] ,A : Optional[int] ):
return "".join(A )
def UpperCamelCase_ ( self : Any ,A : List[int] ,A : Optional[List[int]] = None ):
__A = [self.sep_token_id]
__A = [self.cls_token_id]
__A = cls + token_ids_a + sep
if token_ids_a is not None:
result += token_ids_a + sep
return result
def UpperCamelCase_ ( self : int ,A : List[int] ,A : Optional[List[int]] = None ,A : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A )
__A = [1] + ([0] * len(A )) + [1]
if token_ids_a is not None:
result += ([0] * len(A )) + [1]
return result
def UpperCamelCase_ ( self : Tuple ,A : List[int] ,A : Optional[List[int]] = None ):
__A = [self.sep_token_id]
__A = [self.cls_token_id]
__A = len(cls + token_ids_a + sep ) * [0]
if token_ids_a is not None:
result += len(token_ids_a + sep ) * [1]
return result
def UpperCamelCase_ ( self : Dict ,A : str ,A : Optional[str] = None ):
return ()
| 55 |
import argparse
import os
import numpy as np
import tensorflow as tf
import torch
from transformers import BertModel
def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]:
"""simple docstring"""
__A = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value")
__A = (
("layer.", "layer_"),
("word_embeddings.weight", "word_embeddings"),
("position_embeddings.weight", "position_embeddings"),
("token_type_embeddings.weight", "token_type_embeddings"),
(".", "/"),
("LayerNorm/weight", "LayerNorm/gamma"),
("LayerNorm/bias", "LayerNorm/beta"),
("weight", "kernel"),
)
if not os.path.isdir(a_ ):
os.makedirs(a_ )
__A = model.state_dict()
def to_tf_var_name(a_ ):
for patt, repl in iter(a_ ):
__A = name.replace(a_ , a_ )
return F'''bert/{name}'''
def create_tf_var(a_ , a_ , a_ ):
__A = tf.dtypes.as_dtype(tensor.dtype )
__A = tf.get_variable(dtype=a_ , shape=tensor.shape , name=a_ , initializer=tf.zeros_initializer() )
session.run(tf.variables_initializer([tf_var] ) )
session.run(a_ )
return tf_var
tf.reset_default_graph()
with tf.Session() as session:
for var_name in state_dict:
__A = to_tf_var_name(a_ )
__A = state_dict[var_name].numpy()
if any(x in var_name for x in tensors_to_transpose ):
__A = torch_tensor.T
__A = create_tf_var(tensor=a_ , name=a_ , session=a_ )
tf.keras.backend.set_value(a_ , a_ )
__A = session.run(a_ )
print(F'''Successfully created {tf_name}: {np.allclose(a_ , a_ )}''' )
__A = tf.train.Saver(tf.trainable_variables() )
saver.save(a_ , os.path.join(a_ , model_name.replace("-" , "_" ) + ".ckpt" ) )
def UpperCAmelCase ( a_=None ) -> List[Any]:
"""simple docstring"""
__A = argparse.ArgumentParser()
parser.add_argument("--model_name" , type=a_ , required=a_ , help="model name e.g. bert-base-uncased" )
parser.add_argument(
"--cache_dir" , type=a_ , default=a_ , required=a_ , help="Directory containing pytorch model" )
parser.add_argument("--pytorch_model_path" , type=a_ , required=a_ , help="/path/to/<pytorch-model-name>.bin" )
parser.add_argument("--tf_cache_dir" , type=a_ , required=a_ , help="Directory in which to save tensorflow model" )
__A = parser.parse_args(a_ )
__A = BertModel.from_pretrained(
pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , )
convert_pytorch_checkpoint_to_tf(model=a_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name )
if __name__ == "__main__":
main()
| 55 | 1 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@slow
@require_torch
def UpperCamelCase_ ( self : Optional[int] ):
__A = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" ,"prajjwal1/bert-tiny" )
__A = BertTokenizer.from_pretrained("bert-base-uncased" )
__A = bertabert.config.encoder.vocab_size
__A = tokenizer.sep_token_id
__A = tokenizer.cls_token_id
__A = 1_28
__A = datasets.load_dataset("cnn_dailymail" ,"3.0.0" ,split="train[:1%]" )
__A = datasets.load_dataset("cnn_dailymail" ,"3.0.0" ,split="validation[:1%]" )
__A = train_dataset.select(range(32 ) )
__A = val_dataset.select(range(16 ) )
__A = 4
def _map_to_encoder_decoder_inputs(A : str ):
# Tokenizer will automatically set [BOS] <text> [EOS]
__A = tokenizer(batch["article"] ,padding="max_length" ,truncation=A ,max_length=5_12 )
__A = tokenizer(batch["highlights"] ,padding="max_length" ,truncation=A ,max_length=1_28 )
__A = inputs.input_ids
__A = inputs.attention_mask
__A = outputs.input_ids
__A = outputs.input_ids.copy()
__A = [
[-1_00 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"]
]
__A = outputs.attention_mask
assert all(len(A ) == 5_12 for x in inputs.input_ids )
assert all(len(A ) == 1_28 for x in outputs.input_ids )
return batch
def _compute_metrics(A : Union[str, Any] ):
__A = pred.label_ids
__A = pred.predictions
# all unnecessary tokens are removed
__A = tokenizer.batch_decode(A ,skip_special_tokens=A )
__A = tokenizer.batch_decode(A ,skip_special_tokens=A )
__A = sum([int(pred_str[i] == label_str[i] ) for i in range(len(A ) )] ) / len(A )
return {"accuracy": accuracy}
# map train dataset
__A = train_dataset.map(
_map_to_encoder_decoder_inputs ,batched=A ,batch_size=A ,remove_columns=["article", "highlights"] ,)
train_dataset.set_format(
type="torch" ,columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] ,)
# same for validation dataset
__A = val_dataset.map(
_map_to_encoder_decoder_inputs ,batched=A ,batch_size=A ,remove_columns=["article", "highlights"] ,)
val_dataset.set_format(
type="torch" ,columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] ,)
__A = self.get_auto_remove_tmp_dir()
__A = SeqaSeqTrainingArguments(
output_dir=A ,per_device_train_batch_size=A ,per_device_eval_batch_size=A ,predict_with_generate=A ,evaluation_strategy="steps" ,do_train=A ,do_eval=A ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,)
# instantiate trainer
__A = SeqaSeqTrainer(
model=A ,args=A ,compute_metrics=_compute_metrics ,train_dataset=A ,eval_dataset=A ,tokenizer=A ,)
# start training
trainer.train()
| 55 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE :Any = {
'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Any = [
'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST',
'PegasusXForConditionalGeneration',
'PegasusXModel',
'PegasusXPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 55 | 1 |
import asyncio
import os
import shutil
import subprocess
import sys
import tempfile
import unittest
from distutils.util import strtobool
from functools import partial
from pathlib import Path
from typing import List, Union
from unittest import mock
import torch
from ..state import AcceleratorState, PartialState
from ..utils import (
gather,
is_bnb_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_mps_available,
is_safetensors_available,
is_tensorboard_available,
is_torch_version,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
def UpperCAmelCase ( a_ , a_=False ) -> str:
"""simple docstring"""
try:
__A = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
__A = default
else:
# KEY is set, convert it to True or False.
try:
__A = strtobool(a_ )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(F'''If set, {key} must be yes or no.''' )
return _value
SCREAMING_SNAKE_CASE :List[Any] = parse_flag_from_env('RUN_SLOW', default=False)
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
return unittest.skip("Test was skipped" )(a_ )
def UpperCAmelCase ( a_ ) -> List[str]:
"""simple docstring"""
return unittest.skipUnless(_run_slow_tests , "test is slow" )(a_ )
def UpperCAmelCase ( a_ ) -> Dict:
"""simple docstring"""
return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU" )(a_ )
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU" )(a_ )
def UpperCAmelCase ( a_ ) -> Union[str, Any]:
"""simple docstring"""
return unittest.skipUnless(is_xpu_available() , "test requires a XPU" )(a_ )
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`" )(a_ )
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
return unittest.skipUnless(
is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite" )(a_ )
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library" )(a_ )
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
return unittest.skipUnless(is_tpu_available() , "test requires TPU" )(a_ )
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU" )(a_ )
def UpperCAmelCase ( a_ ) -> Union[str, Any]:
"""simple docstring"""
return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU" )(a_ )
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs" )(a_ )
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs" )(a_ )
def UpperCAmelCase ( a_ ) -> List[str]:
"""simple docstring"""
return unittest.skipUnless(is_safetensors_available() , "test requires safetensors" )(a_ )
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed" )(a_ )
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
return unittest.skipUnless(is_torch_version(">=" , "1.12.0" ) , "test requires torch version >= 1.12.0" )(a_ )
def UpperCAmelCase ( a_=None , a_=None ) -> Dict:
"""simple docstring"""
if test_case is None:
return partial(a_ , version=a_ )
return unittest.skipUnless(is_torch_version(">=" , a_ ) , F'''test requires torch version >= {version}''' )(a_ )
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard" )(a_ )
def UpperCAmelCase ( a_ ) -> Union[str, Any]:
"""simple docstring"""
return unittest.skipUnless(is_wandb_available() , "test requires wandb" )(a_ )
def UpperCAmelCase ( a_ ) -> Tuple:
"""simple docstring"""
return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml" )(a_ )
SCREAMING_SNAKE_CASE :Optional[int] = (
any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available()
)
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
return unittest.skipUnless(
_atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(a_ )
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
snake_case_ = True
@classmethod
def UpperCamelCase_ ( cls : Any ):
__A = tempfile.mkdtemp()
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] ):
if os.path.exists(cls.tmpdir ):
shutil.rmtree(cls.tmpdir )
def UpperCamelCase_ ( self : Tuple ):
if self.clear_on_setup:
for path in Path(self.tmpdir ).glob("**/*" ):
if path.is_file():
path.unlink()
elif path.is_dir():
shutil.rmtree(A )
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Optional[Any] ):
super().tearDown()
# Reset the state of the AcceleratorState singleton.
AcceleratorState._reset_state()
PartialState._reset_state()
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Optional[Any] ,A : Union[mock.Mock, List[mock.Mock]] ):
__A = mocks if isinstance(A ,(tuple, list) ) else [mocks]
for m in self.mocks:
m.start()
self.addCleanup(m.stop )
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
__A = AcceleratorState()
__A = tensor[None].clone().to(state.device )
__A = gather(a_ ).cpu()
__A = tensor[0].cpu()
for i in range(tensors.shape[0] ):
if not torch.equal(tensors[i] , a_ ):
return False
return True
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Optional[int] ,A : List[str] ,A : Tuple ,A : Dict ):
__A = returncode
__A = stdout
__A = stderr
async def UpperCAmelCase ( a_ , a_ ) -> Union[str, Any]:
"""simple docstring"""
while True:
__A = await stream.readline()
if line:
callback(a_ )
else:
break
async def UpperCAmelCase ( a_ , a_=None , a_=None , a_=None , a_=False , a_=False ) -> _RunOutput:
"""simple docstring"""
if echo:
print("\nRunning: " , " ".join(a_ ) )
__A = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=a_ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=a_ , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
__A = []
__A = []
def tee(a_ , a_ , a_ , a_="" ):
__A = line.decode("utf-8" ).rstrip()
sink.append(a_ )
if not quiet:
print(a_ , a_ , file=a_ )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
asyncio.create_task(_read_stream(p.stdout , lambda a_ : tee(a_ , a_ , sys.stdout , label="stdout:" ) ) ),
asyncio.create_task(_read_stream(p.stderr , lambda a_ : tee(a_ , a_ , sys.stderr , label="stderr:" ) ) ),
] , timeout=a_ , )
return _RunOutput(await p.wait() , a_ , a_ )
def UpperCAmelCase ( a_ , a_=None , a_=None , a_=1_8_0 , a_=False , a_=True ) -> _RunOutput:
"""simple docstring"""
__A = asyncio.get_event_loop()
__A = loop.run_until_complete(
_stream_subprocess(a_ , env=a_ , stdin=a_ , timeout=a_ , quiet=a_ , echo=a_ ) )
__A = " ".join(a_ )
if result.returncode > 0:
__A = "\n".join(result.stderr )
raise RuntimeError(
F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n'''
F'''The combined stderr from workers follows:\n{stderr}''' )
return result
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
pass
def UpperCAmelCase ( a_ , a_=False ) -> Dict:
"""simple docstring"""
try:
__A = subprocess.check_output(a_ , stderr=subprocess.STDOUT )
if return_stdout:
if hasattr(a_ , "decode" ):
__A = output.decode("utf-8" )
return output
except subprocess.CalledProcessError as e:
raise SubprocessCallException(
F'''Command `{' '.join(a_ )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
| 55 |
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
SCREAMING_SNAKE_CASE :int = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l='
def UpperCAmelCase ( a_ = "mumbai" ) -> Generator[tuple[str, str], None, None]:
"""simple docstring"""
__A = BeautifulSoup(requests.get(url + location ).content , "html.parser" )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ):
__A = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip()
__A = job.find("span" , {"class": "company"} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs('Bangalore'), 1):
print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
| 55 | 1 |
from __future__ import annotations
import bisect
def UpperCAmelCase ( a_ , a_ , a_ = 0 , a_ = -1 ) -> int:
"""simple docstring"""
if hi < 0:
__A = len(a_ )
while lo < hi:
__A = lo + (hi - lo) // 2
if sorted_collection[mid] < item:
__A = mid + 1
else:
__A = mid
return lo
def UpperCAmelCase ( a_ , a_ , a_ = 0 , a_ = -1 ) -> int:
"""simple docstring"""
if hi < 0:
__A = len(a_ )
while lo < hi:
__A = lo + (hi - lo) // 2
if sorted_collection[mid] <= item:
__A = mid + 1
else:
__A = mid
return lo
def UpperCAmelCase ( a_ , a_ , a_ = 0 , a_ = -1 ) -> None:
"""simple docstring"""
sorted_collection.insert(bisect_left(a_ , a_ , a_ , a_ ) , a_ )
def UpperCAmelCase ( a_ , a_ , a_ = 0 , a_ = -1 ) -> None:
"""simple docstring"""
sorted_collection.insert(bisect_right(a_ , a_ , a_ , a_ ) , a_ )
def UpperCAmelCase ( a_ , a_ ) -> int | None:
"""simple docstring"""
__A = 0
__A = len(a_ ) - 1
while left <= right:
__A = left + (right - left) // 2
__A = sorted_collection[midpoint]
if current_item == item:
return midpoint
elif item < current_item:
__A = midpoint - 1
else:
__A = midpoint + 1
return None
def UpperCAmelCase ( a_ , a_ ) -> int | None:
"""simple docstring"""
__A = bisect.bisect_left(a_ , a_ )
if index != len(a_ ) and sorted_collection[index] == item:
return index
return None
def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int | None:
"""simple docstring"""
if right < left:
return None
__A = left + (right - left) // 2
if sorted_collection[midpoint] == item:
return midpoint
elif sorted_collection[midpoint] > item:
return binary_search_by_recursion(a_ , a_ , a_ , midpoint - 1 )
else:
return binary_search_by_recursion(a_ , a_ , midpoint + 1 , a_ )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :List[str] = input('Enter numbers separated by comma:\n').strip()
SCREAMING_SNAKE_CASE :Tuple = sorted(int(item) for item in user_input.split(','))
SCREAMING_SNAKE_CASE :List[str] = int(input('Enter a single number to be found in the list:\n'))
SCREAMING_SNAKE_CASE :List[Any] = binary_search(collection, target)
if result is None:
print(f'''{target} was not found in {collection}.''')
else:
print(f'''{target} was found at position {result} in {collection}.''')
| 55 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : List[str] ):
__A = tempfile.mkdtemp()
__A = BlipImageProcessor()
__A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" )
__A = BlipaProcessor(A ,A )
processor.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self : Dict ,**A : int ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).tokenizer
def UpperCamelCase_ ( self : Dict ,**A : Optional[int] ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor
def UpperCamelCase_ ( self : Dict ):
shutil.rmtree(self.tmpdirname )
def UpperCamelCase_ ( self : Optional[int] ):
__A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )]
__A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def UpperCamelCase_ ( self : Any ):
__A = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__A = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" )
__A = self.get_image_processor(do_normalize=A ,padding_value=1.0 )
__A = BlipaProcessor.from_pretrained(
self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=A ,padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer ,A )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,A )
def UpperCamelCase_ ( self : List[Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = self.prepare_image_inputs()
__A = image_processor(A ,return_tensors="np" )
__A = processor(images=A ,return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 )
def UpperCamelCase_ ( self : Tuple ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = "lower newer"
__A = processor(text=A )
__A = tokenizer(A ,return_token_type_ids=A )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] ,encoded_processor[key] )
def UpperCamelCase_ ( self : int ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = "lower newer"
__A = self.prepare_image_inputs()
__A = processor(text=A ,images=A )
self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(A ):
processor()
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__A = processor.batch_decode(A )
__A = tokenizer.batch_decode(A )
self.assertListEqual(A ,A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = "lower newer"
__A = self.prepare_image_inputs()
__A = processor(text=A ,images=A )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
| 55 | 1 |
def UpperCAmelCase ( a_ ) -> bool:
"""simple docstring"""
__A = set()
# To detect a back edge, keep track of vertices currently in the recursion stack
__A = set()
return any(
node not in visited and depth_first_search(a_ , a_ , a_ , a_ )
for node in graph )
def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> bool:
"""simple docstring"""
visited.add(a_ )
rec_stk.add(a_ )
for node in graph[vertex]:
if node not in visited:
if depth_first_search(a_ , a_ , a_ , a_ ):
return True
elif node in rec_stk:
return True
# The node needs to be removed from recursion stack before function ends
rec_stk.remove(a_ )
return False
if __name__ == "__main__":
from doctest import testmod
testmod()
| 55 |
import logging
import torch
from accelerate import Accelerator
from arguments import EvaluationArguments
from datasets import load_dataset
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : int ,A : Any ,A : List[str] ,A : Union[str, Any]=10_24 ,A : int=10_24 ,A : Optional[Any]=3.6 ):
__A = tokenizer
__A = tokenizer.bos_token_id
__A = dataset
__A = seq_length
__A = seq_length * chars_per_token * num_of_sequences
def __iter__( self : List[Any] ):
__A = iter(self.dataset )
__A = True
while more_examples:
__A , __A = [], 0
while True:
if buffer_len >= self.input_characters:
break
try:
buffer.append(next(A )["content"] )
buffer_len += len(buffer[-1] )
except StopIteration:
__A = False
break
__A = tokenizer(A ,truncation=A )["input_ids"]
__A = []
for tokenized_input in tokenized_inputs:
all_token_ids.extend(tokenized_input + [self.concat_token_id] )
for i in range(0 ,len(A ) ,self.seq_length ):
__A = all_token_ids[i : i + self.seq_length]
if len(A ) == self.seq_length:
yield torch.tensor(A )
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
__A = {"streaming": True}
__A = load_dataset(args.dataset_name , split="train" , **a_ )
__A = ConstantLengthDataset(a_ , a_ , seq_length=args.seq_length )
__A = DataLoader(a_ , batch_size=args.batch_size )
return eval_dataloader
def UpperCAmelCase ( a_ ) -> Union[str, Any]:
"""simple docstring"""
model.eval()
__A = []
for step, batch in enumerate(a_ ):
with torch.no_grad():
__A = model(a_ , labels=a_ )
__A = outputs.loss.repeat(args.batch_size )
losses.append(accelerator.gather(a_ ) )
if args.max_eval_steps > 0 and step >= args.max_eval_steps:
break
__A = torch.mean(torch.cat(a_ ) )
try:
__A = torch.exp(a_ )
except OverflowError:
__A = float("inf" )
return loss.item(), perplexity.item()
# Setup Accelerator
SCREAMING_SNAKE_CASE :Optional[int] = Accelerator()
# Parse configuration
SCREAMING_SNAKE_CASE :str = HfArgumentParser(EvaluationArguments)
SCREAMING_SNAKE_CASE :int = parser.parse_args()
set_seed(args.seed)
# Logging
SCREAMING_SNAKE_CASE :Dict = logging.getLogger(__name__)
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO
)
# Load model and tokenizer
SCREAMING_SNAKE_CASE :List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt)
SCREAMING_SNAKE_CASE :int = AutoTokenizer.from_pretrained(args.model_ckpt)
# Load dataset and dataloader
SCREAMING_SNAKE_CASE :List[str] = create_dataloader(args)
# Prepare everything with our `accelerator`.
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = accelerator.prepare(model, eval_dataloader)
# Evaluate and save the last checkpoint
logger.info('Evaluating and saving model after training')
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = evaluate(args)
logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
| 55 | 1 |
import os
from typing import List, Optional, Union
from ...image_processing_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
from ..auto import AutoTokenizer
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = ["image_processor", "tokenizer"]
snake_case_ = "BlipImageProcessor"
snake_case_ = "AutoTokenizer"
def __init__( self : List[str] ,A : Dict ,A : Optional[int] ,A : List[Any] ):
super().__init__(A ,A )
# add QFormer tokenizer
__A = qformer_tokenizer
def __call__( self : List[Any] ,A : ImageInput = None ,A : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,A : bool = True ,A : Union[bool, str, PaddingStrategy] = False ,A : Union[bool, str, TruncationStrategy] = None ,A : Optional[int] = None ,A : int = 0 ,A : Optional[int] = None ,A : Optional[bool] = None ,A : bool = False ,A : bool = False ,A : bool = False ,A : bool = False ,A : bool = False ,A : bool = True ,A : Optional[Union[str, TensorType]] = None ,**A : Tuple ,):
if images is None and text is None:
raise ValueError("You have to specify at least images or text." )
__A = BatchFeature()
if text is not None:
__A = self.tokenizer(
text=A ,add_special_tokens=A ,padding=A ,truncation=A ,max_length=A ,stride=A ,pad_to_multiple_of=A ,return_attention_mask=A ,return_overflowing_tokens=A ,return_special_tokens_mask=A ,return_offsets_mapping=A ,return_token_type_ids=A ,return_length=A ,verbose=A ,return_tensors=A ,**A ,)
encoding.update(A )
__A = self.qformer_tokenizer(
text=A ,add_special_tokens=A ,padding=A ,truncation=A ,max_length=A ,stride=A ,pad_to_multiple_of=A ,return_attention_mask=A ,return_overflowing_tokens=A ,return_special_tokens_mask=A ,return_offsets_mapping=A ,return_token_type_ids=A ,return_length=A ,verbose=A ,return_tensors=A ,**A ,)
__A = qformer_text_encoding.pop("input_ids" )
__A = qformer_text_encoding.pop("attention_mask" )
if images is not None:
__A = self.image_processor(A ,return_tensors=A )
encoding.update(A )
return encoding
def UpperCamelCase_ ( self : int ,*A : Optional[Any] ,**A : Any ):
return self.tokenizer.batch_decode(*A ,**A )
def UpperCamelCase_ ( self : Optional[Any] ,*A : Union[str, Any] ,**A : Optional[int] ):
return self.tokenizer.decode(*A ,**A )
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def UpperCamelCase_ ( self : List[Any] ):
__A = self.tokenizer.model_input_names
__A = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
def UpperCamelCase_ ( self : List[str] ,A : Tuple ,**A : Tuple ):
if os.path.isfile(A ):
raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' )
os.makedirs(A ,exist_ok=A )
__A = os.path.join(A ,"qformer_tokenizer" )
self.qformer_tokenizer.save_pretrained(A )
return super().save_pretrained(A ,**A )
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] ,A : str ,**A : List[str] ):
__A = AutoTokenizer.from_pretrained(A ,subfolder="qformer_tokenizer" )
__A = cls._get_arguments_from_pretrained(A ,**A )
args.append(A )
return cls(*A )
| 55 |
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = LayoutLMTokenizer
snake_case_ = LayoutLMTokenizerFast
snake_case_ = True
snake_case_ = True
def UpperCamelCase_ ( self : Any ):
super().setUp()
__A = [
"[UNK]",
"[CLS]",
"[SEP]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
__A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
def UpperCamelCase_ ( self : Tuple ,**A : int ):
return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**A )
def UpperCamelCase_ ( self : Optional[Any] ,A : Any ):
__A = "UNwant\u00E9d,running"
__A = "unwanted, running"
return input_text, output_text
def UpperCamelCase_ ( self : str ):
__A = self.tokenizer_class(self.vocab_file )
__A = tokenizer.tokenize("UNwant\u00E9d,running" )
self.assertListEqual(A ,["un", "##want", "##ed", ",", "runn", "##ing"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[7, 4, 5, 10, 8, 9] )
def UpperCamelCase_ ( self : int ):
pass
| 55 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE :List[str] = {
'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :List[Any] = [
'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST',
'Swinv2ForImageClassification',
'Swinv2ForMaskedImageModeling',
'Swinv2Model',
'Swinv2PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 55 |
SCREAMING_SNAKE_CASE :int = {str(digit): digit**5 for digit in range(10)}
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
return sum(DIGITS_FIFTH_POWER[digit] for digit in str(a_ ) )
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
return sum(
number
for number in range(1_0_0_0 , 1_0_0_0_0_0_0 )
if number == digits_fifth_powers_sum(a_ ) )
if __name__ == "__main__":
print(solution())
| 55 | 1 |
import argparse
import pytorch_lightning as pl
import torch
from torch import nn
from transformers import LongformerForQuestionAnswering, LongformerModel
class UpperCAmelCase ( pl.LightningModule ):
'''simple docstring'''
def __init__( self : List[str] ,A : Union[str, Any] ):
super().__init__()
__A = model
__A = 2
__A = nn.Linear(self.model.config.hidden_size ,self.num_labels )
def UpperCamelCase_ ( self : List[Any] ):
pass
def UpperCAmelCase ( a_ , a_ , a_ ) -> Dict:
"""simple docstring"""
__A = LongformerModel.from_pretrained(a_ )
__A = LightningModel(a_ )
__A = torch.load(a_ , map_location=torch.device("cpu" ) )
lightning_model.load_state_dict(ckpt["state_dict"] )
# init longformer question answering model
__A = LongformerForQuestionAnswering.from_pretrained(a_ )
# transfer weights
longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() )
longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() )
longformer_for_qa.eval()
# save model
longformer_for_qa.save_pretrained(a_ )
print(F'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--longformer_model',
default=None,
type=str,
required=True,
help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.',
)
parser.add_argument(
'--longformer_question_answering_ckpt_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch Lightning Checkpoint.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
SCREAMING_SNAKE_CASE :Optional[Any] = parser.parse_args()
convert_longformer_qa_checkpoint_to_pytorch(
args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path
)
| 55 |
import inspect
import unittest
from transformers import MobileNetVaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileNetVaForImageClassification, MobileNetVaModel
from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self : Any ):
__A = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(A ,"tf_padding" ) )
self.parent.assertTrue(hasattr(A ,"depth_multiplier" ) )
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Optional[Any] ,A : int ,A : List[Any]=13 ,A : int=3 ,A : Optional[Any]=32 ,A : Union[str, Any]=0.25 ,A : Tuple=8 ,A : Optional[int]=True ,A : Union[str, Any]=10_24 ,A : Any=32 ,A : Optional[int]="relu6" ,A : int=0.1 ,A : Optional[Any]=0.02 ,A : Optional[Any]=True ,A : List[str]=True ,A : str=10 ,A : str=None ,):
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = depth_multiplier
__A = min_depth
__A = tf_padding
__A = int(last_hidden_size * depth_multiplier )
__A = output_stride
__A = hidden_act
__A = classifier_dropout_prob
__A = use_labels
__A = is_training
__A = num_labels
__A = initializer_range
__A = scope
def UpperCamelCase_ ( self : Optional[int] ):
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.num_labels )
__A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels )
__A = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self : Any ):
return MobileNetVaConfig(
num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,min_depth=self.min_depth ,tf_padding=self.tf_padding ,hidden_act=self.hidden_act ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,)
def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : Tuple ,A : Optional[int] ,A : List[str] ):
__A = MobileNetVaModel(config=A )
model.to(A )
model.eval()
__A = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) ,)
def UpperCamelCase_ ( self : List[Any] ,A : Union[str, Any] ,A : List[Any] ,A : int ,A : Union[str, Any] ):
__A = self.num_labels
__A = MobileNetVaForImageClassification(A )
model.to(A )
model.eval()
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : Tuple ):
__A = self.prepare_config_and_inputs()
__A , __A , __A , __A = config_and_inputs
__A = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else ()
snake_case_ = (
{"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification}
if is_torch_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def UpperCamelCase_ ( self : Any ):
__A = MobileNetVaModelTester(self )
__A = MobileNetVaConfigTester(self ,config_class=A ,has_text_modality=A )
def UpperCamelCase_ ( self : str ):
self.config_tester.run_common_tests()
@unittest.skip(reason="MobileNetV1 does not use inputs_embeds" )
def UpperCamelCase_ ( self : Union[str, Any] ):
pass
@unittest.skip(reason="MobileNetV1 does not support input and output embeddings" )
def UpperCamelCase_ ( self : Tuple ):
pass
@unittest.skip(reason="MobileNetV1 does not output attentions" )
def UpperCamelCase_ ( self : Any ):
pass
def UpperCamelCase_ ( self : Optional[int] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
__A = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__A = [*signature.parameters.keys()]
__A = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,A )
def UpperCamelCase_ ( self : List[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Optional[int] ):
def check_hidden_states_output(A : List[Any] ,A : List[Any] ,A : Optional[int] ):
__A = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
__A = model(**self._prepare_for_class(A ,A ) )
__A = outputs.hidden_states
__A = 26
self.assertEqual(len(A ) ,A )
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = True
check_hidden_states_output(A ,A ,A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__A = True
check_hidden_states_output(A ,A ,A )
def UpperCamelCase_ ( self : Tuple ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
@slow
def UpperCamelCase_ ( self : Union[str, Any] ):
for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = MobileNetVaModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> str:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : List[str] ):
return (
MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None
)
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
__A = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(A )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="pt" ).to(A )
# forward pass
with torch.no_grad():
__A = model(**A )
# verify the logits
__A = torch.Size((1, 10_01) )
self.assertEqual(outputs.logits.shape ,A )
__A = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
| 55 | 1 |
from dataclasses import dataclass, field
from typing import Tuple
from ..utils import cached_property, is_tf_available, logging, requires_backends
from .benchmark_args_utils import BenchmarkArguments
if is_tf_available():
import tensorflow as tf
SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__)
@dataclass
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = [
"no_inference",
"no_cuda",
"no_tpu",
"no_speed",
"no_memory",
"no_env_print",
"no_multi_process",
]
def __init__( self : Any ,**A : Tuple ):
for deprecated_arg in self.deprecated_args:
if deprecated_arg in kwargs:
__A = deprecated_arg[3:]
__A = not kwargs.pop(A )
logger.warning(
f'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or'''
f''' {positive_arg}={kwargs[positive_arg]}''' )
__A = kwargs.pop("tpu_name" ,self.tpu_name )
__A = kwargs.pop("device_idx" ,self.device_idx )
__A = kwargs.pop("eager_mode" ,self.eager_mode )
__A = kwargs.pop("use_xla" ,self.use_xla )
super().__init__(**A )
snake_case_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "Name of TPU"} , )
snake_case_ = field(
default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , )
snake_case_ = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Benchmark models in eager model."} )
snake_case_ = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`."
} , )
@cached_property
def UpperCamelCase_ ( self : Any ):
requires_backends(self ,["tf"] )
__A = None
if self.tpu:
try:
if self.tpu_name:
__A = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name )
else:
__A = tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
__A = None
return tpu
@cached_property
def UpperCamelCase_ ( self : int ):
requires_backends(self ,["tf"] )
if self.is_tpu:
tf.config.experimental_connect_to_cluster(self._setup_tpu )
tf.tpu.experimental.initialize_tpu_system(self._setup_tpu )
__A = tf.distribute.TPUStrategy(self._setup_tpu )
else:
# currently no multi gpu is allowed
if self.is_gpu:
# TODO: Currently only single GPU is supported
tf.config.set_visible_devices(self.gpu_list[self.device_idx] ,"GPU" )
__A = tf.distribute.OneDeviceStrategy(device=f'''/gpu:{self.device_idx}''' )
else:
tf.config.set_visible_devices([] ,"GPU" ) # disable GPU
__A = tf.distribute.OneDeviceStrategy(device=f'''/cpu:{self.device_idx}''' )
return strategy
@property
def UpperCamelCase_ ( self : Optional[Any] ):
requires_backends(self ,["tf"] )
return self._setup_tpu is not None
@property
def UpperCamelCase_ ( self : Optional[Any] ):
requires_backends(self ,["tf"] )
return self._setup_strategy
@property
def UpperCamelCase_ ( self : int ):
requires_backends(self ,["tf"] )
return tf.config.list_physical_devices("GPU" )
@property
def UpperCamelCase_ ( self : Union[str, Any] ):
requires_backends(self ,["tf"] )
if self.cuda:
return len(self.gpu_list )
return 0
@property
def UpperCamelCase_ ( self : Tuple ):
return self.n_gpu > 0
| 55 |
import copy
import unittest
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
)
from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : str ,A : int ,A : int=2 ,A : Optional[Any]=3 ,A : Dict=4 ,A : Optional[int]=2 ,A : Union[str, Any]=7 ,A : List[str]=True ,A : Union[str, Any]=True ,A : Optional[int]=True ,A : Optional[int]=True ,A : Tuple=99 ,A : Optional[int]=36 ,A : Dict=3 ,A : str=4 ,A : Optional[Any]=37 ,A : Dict="gelu" ,A : Dict=0.1 ,A : Union[str, Any]=0.1 ,A : Union[str, Any]=5_12 ,A : Any=16 ,A : Union[str, Any]=2 ,A : List[Any]=0.02 ,A : List[Any]=6 ,A : Optional[int]=6 ,A : List[Any]=3 ,A : Union[str, Any]=4 ,A : Tuple=None ,A : List[str]=10_00 ,):
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = patch_size
__A = text_seq_length
__A = is_training
__A = use_input_mask
__A = use_token_type_ids
__A = use_labels
__A = vocab_size
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = max_position_embeddings
__A = type_vocab_size
__A = type_sequence_label_size
__A = initializer_range
__A = coordinate_size
__A = shape_size
__A = num_labels
__A = num_choices
__A = scope
__A = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
__A = text_seq_length
__A = (image_size // patch_size) ** 2 + 1
__A = self.text_seq_length + self.image_seq_length
def UpperCamelCase_ ( self : int ):
__A = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size )
__A = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__A = bbox[i, j, 3]
__A = bbox[i, j, 1]
__A = t
if bbox[i, j, 2] < bbox[i, j, 0]:
__A = bbox[i, j, 2]
__A = bbox[i, j, 0]
__A = t
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
if self.use_input_mask:
__A = random_attention_mask([self.batch_size, self.text_seq_length] )
__A = None
if self.use_token_type_ids:
__A = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size )
__A = None
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__A = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels )
__A = LayoutLMvaConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,)
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def UpperCamelCase_ ( self : Optional[int] ,A : List[str] ,A : Any ,A : Dict ,A : List[Any] ,A : Optional[int] ,A : Any ,A : Dict ,A : List[Any] ):
__A = LayoutLMvaModel(config=A )
model.to(A )
model.eval()
# text + image
__A = model(A ,pixel_values=A )
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A )
__A = model(A ,bbox=A ,pixel_values=A ,token_type_ids=A )
__A = model(A ,bbox=A ,pixel_values=A )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
# text only
__A = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
__A = model(pixel_values=A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) )
def UpperCamelCase_ ( self : Optional[int] ,A : Dict ,A : List[str] ,A : Any ,A : List[Any] ,A : Any ,A : Any ,A : Dict ,A : Optional[Any] ):
__A = self.num_labels
__A = LayoutLMvaForSequenceClassification(A )
model.to(A )
model.eval()
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : str ,A : Optional[Any] ,A : Dict ,A : str ,A : Tuple ,A : Union[str, Any] ,A : List[Any] ,A : Any ,A : Union[str, Any] ):
__A = self.num_labels
__A = LayoutLMvaForTokenClassification(config=A )
model.to(A )
model.eval()
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) )
def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : int ,A : str ,A : List[str] ,A : int ,A : List[str] ,A : List[str] ,A : Dict ):
__A = LayoutLMvaForQuestionAnswering(config=A )
model.to(A )
model.eval()
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,start_positions=A ,end_positions=A ,)
self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) )
def UpperCamelCase_ ( self : str ):
__A = self.prepare_config_and_inputs()
(
(
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) ,
) = config_and_inputs
__A = {
"input_ids": input_ids,
"bbox": bbox,
"pixel_values": pixel_values,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = (
(
LayoutLMvaModel,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaForQuestionAnswering,
)
if is_torch_available()
else ()
)
snake_case_ = (
{"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel}
if is_torch_available()
else {}
)
def UpperCamelCase_ ( self : str ,A : Any ,A : Any ,A : Tuple ,A : List[Any] ,A : Optional[Any] ):
# `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual
# embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has
# the sequence dimension of the text embedding only.
# (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`)
return True
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = LayoutLMvaModelTester(self )
__A = ConfigTester(self ,config_class=A ,hidden_size=37 )
def UpperCamelCase_ ( self : List[Any] ,A : int ,A : List[str] ,A : Dict=False ):
__A = copy.deepcopy(A )
if model_class in get_values(A ):
__A = {
k: v.unsqueeze(1 ).expand(-1 ,self.model_tester.num_choices ,-1 ).contiguous()
if isinstance(A ,torch.Tensor ) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(A ):
__A = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=A )
elif model_class in get_values(A ):
__A = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=A )
__A = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=A )
elif model_class in [
*get_values(A ),
]:
__A = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=A )
elif model_class in [
*get_values(A ),
]:
__A = torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=A ,)
return inputs_dict
def UpperCamelCase_ ( self : List[Any] ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : str ):
__A = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__A = type
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*A )
def UpperCamelCase_ ( self : str ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*A )
@slow
def UpperCamelCase_ ( self : Optional[int] ):
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = LayoutLMvaModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> Dict:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : Any ):
return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self : Dict ):
__A = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(A )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="pt" ).pixel_values.to(A )
__A = torch.tensor([[1, 2]] )
__A = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 )
# forward pass
__A = model(
input_ids=input_ids.to(A ) ,bbox=bbox.to(A ) ,pixel_values=pixel_values.to(A ) ,)
# verify the logits
__A = torch.Size((1, 1_99, 7_68) )
self.assertEqual(outputs.last_hidden_state.shape ,A )
__A = torch.tensor(
[[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(A )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,A ,atol=1E-4 ) )
| 55 | 1 |
def UpperCAmelCase ( a_ = "The quick brown fox jumps over the lazy dog" , ) -> bool:
"""simple docstring"""
__A = set()
# Replace all the whitespace in our sentence
__A = input_str.replace(" " , "" )
for alpha in input_str:
if "a" <= alpha.lower() <= "z":
frequency.add(alpha.lower() )
return len(a_ ) == 2_6
def UpperCAmelCase ( a_ = "The quick brown fox jumps over the lazy dog" , ) -> bool:
"""simple docstring"""
__A = [False] * 2_6
for char in input_str:
if char.islower():
__A = True
elif char.isupper():
__A = True
return all(a_ )
def UpperCAmelCase ( a_ = "The quick brown fox jumps over the lazy dog" , ) -> bool:
"""simple docstring"""
return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6
def UpperCAmelCase ( ) -> None:
"""simple docstring"""
from timeit import timeit
__A = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest"
print(timeit("is_pangram()" , setup=a_ ) )
print(timeit("is_pangram_faster()" , setup=a_ ) )
print(timeit("is_pangram_fastest()" , setup=a_ ) )
# 5.348480500048026, 2.6477354579837993, 1.8470395830227062
# 5.036091582966037, 2.644472333951853, 1.8869528750656173
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 55 |
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Any ,A : List[str] ,A : str=7 ,A : Optional[Any]=3 ,A : Any=18 ,A : int=30 ,A : int=4_00 ,A : List[str]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=True ,A : Tuple=None ,A : Tuple=True ,A : Union[str, Any]=[0.5, 0.5, 0.5] ,A : str=[0.5, 0.5, 0.5] ,A : List[Any]=False ,):
__A = size if size is not None else {"height": 20, "width": 20}
__A = crop_size if crop_size is not None else {"height": 18, "width": 18}
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = min_resolution
__A = max_resolution
__A = do_resize
__A = size
__A = do_center_crop
__A = crop_size
__A = do_normalize
__A = image_mean
__A = image_std
__A = do_reduce_labels
def UpperCamelCase_ ( self : List[str] ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
__A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
__A = Image.open(dataset[0]["file"] )
__A = Image.open(dataset[1]["file"] )
return image, map
def UpperCAmelCase ( ) -> Optional[int]:
"""simple docstring"""
__A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
__A = Image.open(ds[0]["file"] )
__A = Image.open(ds[1]["file"] )
__A = Image.open(ds[2]["file"] )
__A = Image.open(ds[3]["file"] )
return [imagea, imagea], [mapa, mapa]
@require_torch
@require_vision
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = BeitImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self : List[Any] ):
__A = BeitImageProcessingTester(self )
@property
def UpperCamelCase_ ( self : List[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self : int ):
__A = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A ,"do_resize" ) )
self.assertTrue(hasattr(A ,"size" ) )
self.assertTrue(hasattr(A ,"do_center_crop" ) )
self.assertTrue(hasattr(A ,"center_crop" ) )
self.assertTrue(hasattr(A ,"do_normalize" ) )
self.assertTrue(hasattr(A ,"image_mean" ) )
self.assertTrue(hasattr(A ,"image_std" ) )
def UpperCamelCase_ ( self : List[str] ):
__A = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{"height": 20, "width": 20} )
self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} )
self.assertEqual(image_processor.do_reduce_labels ,A )
__A = self.image_processing_class.from_dict(
self.image_processor_dict ,size=42 ,crop_size=84 ,reduce_labels=A )
self.assertEqual(image_processor.size ,{"height": 42, "width": 42} )
self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} )
self.assertEqual(image_processor.do_reduce_labels ,A )
def UpperCamelCase_ ( self : List[Any] ):
pass
def UpperCamelCase_ ( self : Optional[int] ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A ,Image.Image )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : List[str] ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A )
for image in image_inputs:
self.assertIsInstance(A ,np.ndarray )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : int ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A )
for image in image_inputs:
self.assertIsInstance(A ,torch.Tensor )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : str ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A )
__A = []
for image in image_inputs:
self.assertIsInstance(A ,torch.Tensor )
maps.append(torch.zeros(image.shape[-2:] ).long() )
# Test not batched input
__A = image_processing(image_inputs[0] ,maps[0] ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
1,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
# Test batched
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
# Test not batched input (PIL images)
__A , __A = prepare_semantic_single_inputs()
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
1,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
# Test batched input (PIL images)
__A , __A = prepare_semantic_batch_inputs()
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
2,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
def UpperCamelCase_ ( self : Dict ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
__A , __A = prepare_semantic_single_inputs()
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 1_50 )
__A = True
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
| 55 | 1 |
import inspect
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.utils.checkpoint
from ...models import UNetaDModel, VQModel
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
def UpperCAmelCase ( a_ ) -> Dict:
"""simple docstring"""
__A , __A = image.size
__A , __A = (x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32
__A = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] )
__A = np.array(a_ ).astype(np.floataa ) / 255.0
__A = image[None].transpose(0 , 3 , 1 , 2 )
__A = torch.from_numpy(a_ )
return 2.0 * image - 1.0
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Tuple ,A : VQModel ,A : UNetaDModel ,A : Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
] ,):
super().__init__()
self.register_modules(vqvae=A ,unet=A ,scheduler=A )
@torch.no_grad()
def __call__( self : Optional[Any] ,A : Union[torch.Tensor, PIL.Image.Image] = None ,A : Optional[int] = 1 ,A : Optional[int] = 1_00 ,A : Optional[float] = 0.0 ,A : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,A : Optional[str] = "pil" ,A : bool = True ,):
if isinstance(A ,PIL.Image.Image ):
__A = 1
elif isinstance(A ,torch.Tensor ):
__A = image.shape[0]
else:
raise ValueError(f'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(A )}''' )
if isinstance(A ,PIL.Image.Image ):
__A = preprocess(A )
__A , __A = image.shape[-2:]
# in_channels should be 6: 3 for latents, 3 for low resolution image
__A = (batch_size, self.unet.config.in_channels // 2, height, width)
__A = next(self.unet.parameters() ).dtype
__A = randn_tensor(A ,generator=A ,device=self.device ,dtype=A )
__A = image.to(device=self.device ,dtype=A )
# set timesteps and move to the correct device
self.scheduler.set_timesteps(A ,device=self.device )
__A = self.scheduler.timesteps
# scale the initial noise by the standard deviation required by the scheduler
__A = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__A = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
__A = {}
if accepts_eta:
__A = eta
for t in self.progress_bar(A ):
# concat latents and low resolution image in the channel dimension.
__A = torch.cat([latents, image] ,dim=1 )
__A = self.scheduler.scale_model_input(A ,A )
# predict the noise residual
__A = self.unet(A ,A ).sample
# compute the previous noisy sample x_t -> x_t-1
__A = self.scheduler.step(A ,A ,A ,**A ).prev_sample
# decode the image latents with the VQVAE
__A = self.vqvae.decode(A ).sample
__A = torch.clamp(A ,-1.0 ,1.0 )
__A = image / 2 + 0.5
__A = image.cpu().permute(0 ,2 ,3 ,1 ).numpy()
if output_type == "pil":
__A = self.numpy_to_pil(A )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=A )
| 55 |
from numpy import exp, pi, sqrt
def UpperCAmelCase ( a_ , a_ = 0.0 , a_ = 1.0 ) -> int:
"""simple docstring"""
return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 55 | 1 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__)
def UpperCAmelCase ( a_ , a_=False , a_=False ) -> str:
"""simple docstring"""
__A = "backbone." if is_semantic else ""
__A = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'''{prefix}blocks.{i}.norm1.weight''', F'''beit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.norm1.bias''', F'''beit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(F'''{prefix}blocks.{i}.attn.proj.weight''', F'''beit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append(
(F'''{prefix}blocks.{i}.attn.proj.bias''', F'''beit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((F'''{prefix}blocks.{i}.norm2.weight''', F'''beit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.norm2.bias''', F'''beit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.weight''', F'''beit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.bias''', F'''beit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.weight''', F'''beit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.bias''', F'''beit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
(F'''{prefix}cls_token''', "beit.embeddings.cls_token"),
(F'''{prefix}patch_embed.proj.weight''', "beit.embeddings.patch_embeddings.projection.weight"),
(F'''{prefix}patch_embed.proj.bias''', "beit.embeddings.patch_embeddings.projection.bias"),
(F'''{prefix}pos_embed''', "beit.embeddings.position_embeddings"),
] )
if has_lm_head:
# mask token + layernorm
rename_keys.extend(
[
("mask_token", "beit.embeddings.mask_token"),
("norm.weight", "layernorm.weight"),
("norm.bias", "layernorm.bias"),
] )
else:
# layernorm + classification head
rename_keys.extend(
[
("fc_norm.weight", "beit.pooler.layernorm.weight"),
("fc_norm.bias", "beit.pooler.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
] )
return rename_keys
def UpperCAmelCase ( a_ , a_ , a_=False , a_=False ) -> List[str]:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
__A = "backbone." if is_semantic else ""
# queries, keys and values
__A = state_dict.pop(F'''{prefix}blocks.{i}.attn.qkv.weight''' )
__A = state_dict.pop(F'''{prefix}blocks.{i}.attn.q_bias''' )
__A = state_dict.pop(F'''{prefix}blocks.{i}.attn.v_bias''' )
__A = in_proj_weight[
: config.hidden_size, :
]
__A = q_bias
__A = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
__A = in_proj_weight[
-config.hidden_size :, :
]
__A = v_bias
# gamma_1 and gamma_2
# we call them lambda because otherwise they are renamed when using .from_pretrained
__A = state_dict.pop(F'''{prefix}blocks.{i}.gamma_1''' )
__A = state_dict.pop(F'''{prefix}blocks.{i}.gamma_2''' )
__A = gamma_a
__A = gamma_a
def UpperCAmelCase ( a_ , a_ , a_ ) -> Tuple:
"""simple docstring"""
__A = dct.pop(a_ )
__A = val
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
__A = "http://images.cocodataset.org/val2017/000000039769.jpg"
__A = Image.open(requests.get(a_ , stream=a_ ).raw )
return im
@torch.no_grad()
def UpperCAmelCase ( a_ , a_ , a_=False ) -> List[Any]:
"""simple docstring"""
__A = False if "rvlcdip" in checkpoint_url else True
__A = BeitConfig(use_absolute_position_embeddings=a_ , use_mask_token=a_ )
# size of the architecture
if "large" in checkpoint_url or "dit-l" in checkpoint_url:
__A = 1_0_2_4
__A = 4_0_9_6
__A = 2_4
__A = 1_6
# labels
if "rvlcdip" in checkpoint_url:
__A = 1_6
__A = "huggingface/label-files"
__A = "rvlcdip-id2label.json"
__A = json.load(open(hf_hub_download(a_ , a_ , repo_type="dataset" ) , "r" ) )
__A = {int(a_ ): v for k, v in idalabel.items()}
__A = idalabel
__A = {v: k for k, v in idalabel.items()}
# load state_dict of original model, remove and rename some keys
__A = torch.hub.load_state_dict_from_url(a_ , map_location="cpu" )["model"]
__A = create_rename_keys(a_ , has_lm_head=a_ )
for src, dest in rename_keys:
rename_key(a_ , a_ , a_ )
read_in_q_k_v(a_ , a_ , has_lm_head=a_ )
# load HuggingFace model
__A = BeitForMaskedImageModeling(a_ ) if has_lm_head else BeitForImageClassification(a_ )
model.eval()
model.load_state_dict(a_ )
# Check outputs on an image
__A = BeitImageProcessor(
size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=a_ )
__A = prepare_img()
__A = image_processor(images=a_ , return_tensors="pt" )
__A = encoding["pixel_values"]
__A = model(a_ )
__A = outputs.logits
# verify logits
__A = [1, 1_6] if "rvlcdip" in checkpoint_url else [1, 1_9_6, 8_1_9_2]
assert logits.shape == torch.Size(a_ ), "Shape of logits not as expected"
Path(a_ ).mkdir(exist_ok=a_ )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(a_ )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(a_ )
if push_to_hub:
if has_lm_head:
__A = "dit-base" if "base" in checkpoint_url else "dit-large"
else:
__A = "dit-base-finetuned-rvlcdip" if "dit-b" in checkpoint_url else "dit-large-finetuned-rvlcdip"
image_processor.push_to_hub(
repo_path_or_name=Path(a_ , a_ ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=a_ , )
model.push_to_hub(
repo_path_or_name=Path(a_ , a_ ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=a_ , )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :int = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_url',
default='https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth',
type=str,
help='URL to the original PyTorch checkpoint (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
parser.add_argument(
'--push_to_hub',
action='store_true',
)
SCREAMING_SNAKE_CASE :Optional[Any] = parser.parse_args()
convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 55 |
import gc
import unittest
from diffusers import FlaxStableDiffusionInpaintPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Tuple ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def UpperCamelCase_ ( self : Optional[int] ):
__A = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-inpaint/init_image.png" )
__A = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" )
__A = "xvjiarui/stable-diffusion-2-inpainting"
__A , __A = FlaxStableDiffusionInpaintPipeline.from_pretrained(A ,safety_checker=A )
__A = "Face of a yellow cat, high resolution, sitting on a park bench"
__A = jax.random.PRNGKey(0 )
__A = 50
__A = jax.device_count()
__A = num_samples * [prompt]
__A = num_samples * [init_image]
__A = num_samples * [mask_image]
__A , __A , __A = pipeline.prepare_inputs(A ,A ,A )
# shard inputs and rng
__A = replicate(A )
__A = jax.random.split(A ,jax.device_count() )
__A = shard(A )
__A = shard(A )
__A = shard(A )
__A = pipeline(
A ,A ,A ,A ,A ,A ,jit=A )
__A = output.images.reshape(A ,5_12 ,5_12 ,3 )
__A = images[0, 2_53:2_56, 2_53:2_56, -1]
__A = jnp.asarray(jax.device_get(image_slice.flatten() ) )
__A = jnp.array(
[0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] )
print(f'''output_slice: {output_slice}''' )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
| 55 | 1 |
import unittest
from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow
if is_flax_available():
import jax
from transformers.models.auto.modeling_flax_auto import FlaxAutoModel
from transformers.models.bert.modeling_flax_bert import FlaxBertModel
from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel
@require_flax
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase_ ( self : Any ):
for model_name in ["bert-base-cased", "bert-large-uncased"]:
with self.subTest(A ):
__A = AutoConfig.from_pretrained(A )
self.assertIsNotNone(A )
self.assertIsInstance(A ,A )
__A = FlaxAutoModel.from_pretrained(A )
self.assertIsNotNone(A )
self.assertIsInstance(A ,A )
@slow
def UpperCamelCase_ ( self : Tuple ):
for model_name in ["roberta-base", "roberta-large"]:
with self.subTest(A ):
__A = AutoConfig.from_pretrained(A )
self.assertIsNotNone(A )
self.assertIsInstance(A ,A )
__A = FlaxAutoModel.from_pretrained(A )
self.assertIsNotNone(A )
self.assertIsInstance(A ,A )
@slow
def UpperCamelCase_ ( self : Any ):
for model_name in ["bert-base-cased", "bert-large-uncased"]:
__A = AutoTokenizer.from_pretrained(A )
__A = FlaxBertModel.from_pretrained(A )
__A = tokenizer("Do you support jax jitted function?" ,return_tensors=TensorType.JAX )
@jax.jit
def eval(**A : Optional[int] ):
return model(**A )
eval(**A ).block_until_ready()
@slow
def UpperCamelCase_ ( self : Any ):
for model_name in ["roberta-base", "roberta-large"]:
__A = AutoTokenizer.from_pretrained(A )
__A = FlaxRobertaModel.from_pretrained(A )
__A = tokenizer("Do you support jax jitted function?" ,return_tensors=TensorType.JAX )
@jax.jit
def eval(**A : Optional[int] ):
return model(**A )
eval(**A ).block_until_ready()
def UpperCamelCase_ ( self : Optional[int] ):
with self.assertRaisesRegex(
A ,"bert-base is not a local folder and is not a valid model identifier" ):
__A = FlaxAutoModel.from_pretrained("bert-base" )
def UpperCamelCase_ ( self : List[str] ):
with self.assertRaisesRegex(
A ,R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ):
__A = FlaxAutoModel.from_pretrained(A ,revision="aaaaaa" )
def UpperCamelCase_ ( self : List[str] ):
with self.assertRaisesRegex(
A ,"hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack" ,):
__A = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" )
def UpperCamelCase_ ( self : Any ):
with self.assertRaisesRegex(A ,"Use `from_pt=True` to load this model" ):
__A = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
| 55 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import GLPNImageProcessor
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Any ,A : Optional[int] ,A : Optional[int]=7 ,A : Optional[Any]=3 ,A : List[str]=18 ,A : Any=30 ,A : Tuple=4_00 ,A : Union[str, Any]=True ,A : Optional[Any]=32 ,A : Union[str, Any]=True ,):
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = min_resolution
__A = max_resolution
__A = do_resize
__A = size_divisor
__A = do_rescale
def UpperCamelCase_ ( self : Union[str, Any] ):
return {
"do_resize": self.do_resize,
"size_divisor": self.size_divisor,
"do_rescale": self.do_rescale,
}
@require_torch
@require_vision
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = GLPNImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self : int ):
__A = GLPNImageProcessingTester(self )
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self : Any ):
__A = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A ,"do_resize" ) )
self.assertTrue(hasattr(A ,"size_divisor" ) )
self.assertTrue(hasattr(A ,"resample" ) )
self.assertTrue(hasattr(A ,"do_rescale" ) )
def UpperCamelCase_ ( self : str ):
pass
def UpperCamelCase_ ( self : Dict ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A ,Image.Image )
# Test not batched input (GLPNImageProcessor doesn't support batching)
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
def UpperCamelCase_ ( self : Optional[Any] ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A )
for image in image_inputs:
self.assertIsInstance(A ,np.ndarray )
# Test not batched input (GLPNImageProcessor doesn't support batching)
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
def UpperCamelCase_ ( self : int ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A )
for image in image_inputs:
self.assertIsInstance(A ,torch.Tensor )
# Test not batched input (GLPNImageProcessor doesn't support batching)
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
| 55 | 1 |
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
__A = 0
__A = len(a_ )
for i in range(n - 1 ):
for j in range(i + 1 , a_ ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
if len(a_ ) <= 1:
return arr, 0
__A = len(a_ ) // 2
__A = arr[0:mid]
__A = arr[mid:]
__A , __A = count_inversions_recursive(a_ )
__A , __A = count_inversions_recursive(a_ )
__A , __A = _count_cross_inversions(a_ , a_ )
__A = inversion_p + inversions_q + cross_inversions
return c, num_inversions
def UpperCAmelCase ( a_ , a_ ) -> Union[str, Any]:
"""simple docstring"""
__A = []
__A = __A = __A = 0
while i < len(a_ ) and j < len(a_ ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(a_ ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(a_ ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def UpperCAmelCase ( ) -> Optional[int]:
"""simple docstring"""
__A = [1_0, 2, 1, 5, 5, 2, 1_1]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
__A = count_inversions_bf(a_ )
__A , __A = count_inversions_recursive(a_ )
assert num_inversions_bf == num_inversions_recursive == 8
print("number of inversions = " , a_ )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
__A = count_inversions_bf(a_ )
__A , __A = count_inversions_recursive(a_ )
assert num_inversions_bf == num_inversions_recursive == 0
print("number of inversions = " , a_ )
# an empty list should also have zero inversions
__A = []
__A = count_inversions_bf(a_ )
__A , __A = count_inversions_recursive(a_ )
assert num_inversions_bf == num_inversions_recursive == 0
print("number of inversions = " , a_ )
if __name__ == "__main__":
main()
| 55 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=__SCREAMING_SNAKE_CASE )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
snake_case_ = Features({"image": Image()} )
snake_case_ = Features({"labels": ClassLabel} )
snake_case_ = "image"
snake_case_ = "labels"
def UpperCamelCase_ ( self : Optional[Any] ,A : Tuple ):
if self.label_column not in features:
raise ValueError(f'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] ,A ):
raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' )
__A = copy.deepcopy(self )
__A = self.label_schema.copy()
__A = features[self.label_column]
__A = label_schema
return task_template
@property
def UpperCamelCase_ ( self : Any ):
return {
self.image_column: "image",
self.label_column: "labels",
}
| 55 | 1 |
def UpperCAmelCase ( a_ = 1_0_0_0 ) -> int:
"""simple docstring"""
__A , __A = 1, 1
__A = []
for i in range(1 , n + 1 ):
__A = prev_numerator + 2 * prev_denominator
__A = prev_numerator + prev_denominator
if len(str(a_ ) ) > len(str(a_ ) ):
result.append(a_ )
__A = numerator
__A = denominator
return len(a_ )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 55 |
from math import sqrt
def UpperCAmelCase ( a_ ) -> bool:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number >= 0
), "'number' must been an int and positive"
__A = True
# 0 and 1 are none primes.
if number <= 1:
__A = False
for divisor in range(2 , int(round(sqrt(a_ ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
__A = False
break
# precondition
assert isinstance(a_ , a_ ), "'status' must been from type bool"
return status
def UpperCAmelCase ( a_ ) -> Any:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
__A = list(range(2 , n + 1 ) )
__A = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(a_ ) ):
for j in range(i + 1 , len(a_ ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
__A = 0
# filters actual prime numbers.
__A = [x for x in begin_list if x != 0]
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type list"
return ans
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2"
__A = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(a_ ):
ans.append(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type list"
return ans
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and number >= 0, "'number' must been an int and >= 0"
__A = [] # this list will be returns of the function.
# potential prime number factors.
__A = 2
__A = number
if number == 0 or number == 1:
ans.append(a_ )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(a_ ):
while quotient != 1:
if is_prime(a_ ) and (quotient % factor == 0):
ans.append(a_ )
quotient /= factor
else:
factor += 1
else:
ans.append(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type list"
return ans
def UpperCAmelCase ( a_ ) -> Any:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
__A = 0
# prime factorization of 'number'
__A = prime_factorization(a_ )
__A = max(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type int"
return ans
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
__A = 0
# prime factorization of 'number'
__A = prime_factorization(a_ )
__A = min(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type int"
return ans
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
assert isinstance(a_ , a_ ), "'number' must been an int"
assert isinstance(number % 2 == 0 , a_ ), "compare bust been from type bool"
return number % 2 == 0
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
assert isinstance(a_ , a_ ), "'number' must been an int"
assert isinstance(number % 2 != 0 , a_ ), "compare bust been from type bool"
return number % 2 != 0
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
assert (
isinstance(a_ , a_ ) and (number > 2) and is_even(a_ )
), "'number' must been an int, even and > 2"
__A = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
__A = get_prime_numbers(a_ )
__A = len(a_ )
# run variable for while-loops.
__A = 0
__A = None
# exit variable. for break up the loops
__A = True
while i < len_pn and loop:
__A = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
__A = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(a_ , a_ )
and (len(a_ ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]:
"""simple docstring"""
assert (
isinstance(a_ , a_ )
and isinstance(a_ , a_ )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
__A = 0
while numbera != 0:
__A = numbera % numbera
__A = numbera
__A = rest
# precondition
assert isinstance(a_ , a_ ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def UpperCAmelCase ( a_ , a_ ) -> List[str]:
"""simple docstring"""
assert (
isinstance(a_ , a_ )
and isinstance(a_ , a_ )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
__A = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
__A = prime_factorization(a_ )
__A = prime_factorization(a_ )
elif numbera == 1 or numbera == 1:
__A = []
__A = []
__A = max(a_ , a_ )
__A = 0
__A = 0
__A = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
__A = prime_fac_a.count(a_ )
__A = prime_fac_a.count(a_ )
for _ in range(max(a_ , a_ ) ):
ans *= n
else:
__A = prime_fac_a.count(a_ )
for _ in range(a_ ):
ans *= n
done.append(a_ )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
__A = prime_fac_a.count(a_ )
for _ in range(a_ ):
ans *= n
done.append(a_ )
# precondition
assert isinstance(a_ , a_ ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 0), "'number' must been a positive int"
__A = 0
__A = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(a_ ):
ans += 1
# precondition
assert isinstance(a_ , a_ ) and is_prime(
a_ ), "'ans' must been a prime number and from type int"
return ans
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
assert (
is_prime(a_ ) and is_prime(a_ ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
__A = p_number_a + 1 # jump to the next number
__A = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(a_ ):
number += 1
while number < p_number_a:
ans.append(a_ )
number += 1
# fetch the next prime number.
while not is_prime(a_ ):
number += 1
# precondition
assert (
isinstance(a_ , a_ )
and ans[0] != p_number_a
and ans[len(a_ ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 1), "'n' must been int and >= 1"
__A = [] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(a_ )
# precondition
assert ans[0] == 1 and ans[len(a_ ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def UpperCAmelCase ( a_ ) -> Dict:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number > 1
), "'number' must been an int and >= 1"
__A = get_divisors(a_ )
# precondition
assert (
isinstance(a_ , a_ )
and (divisors[0] == 1)
and (divisors[len(a_ ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def UpperCAmelCase ( a_ , a_ ) -> str:
"""simple docstring"""
assert (
isinstance(a_ , a_ )
and isinstance(a_ , a_ )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
__A = gcd(abs(a_ ) , abs(a_ ) )
# precondition
assert (
isinstance(a_ , a_ )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been a int and >= 0"
__A = 1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been an int and >= 0"
__A = 0
__A = 1
__A = 1 # this will be return
for _ in range(n - 1 ):
__A = ans
ans += fiba
__A = tmp
return ans
| 55 | 1 |
SCREAMING_SNAKE_CASE :Union[str, Any] = [0, 2, 4, 6, 8]
SCREAMING_SNAKE_CASE :Tuple = [1, 3, 5, 7, 9]
def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int:
"""simple docstring"""
if remaining_length == 0:
if digits[0] == 0 or digits[-1] == 0:
return 0
for i in range(length // 2 - 1 , -1 , -1 ):
remainder += digits[i] + digits[length - i - 1]
if remainder % 2 == 0:
return 0
remainder //= 1_0
return 1
if remaining_length == 1:
if remainder % 2 == 0:
return 0
__A = 0
for digit in range(1_0 ):
__A = digit
result += reversible_numbers(
0 , (remainder + 2 * digit) // 1_0 , a_ , a_ )
return result
__A = 0
for digita in range(1_0 ):
__A = digita
if (remainder + digita) % 2 == 0:
__A = ODD_DIGITS
else:
__A = EVEN_DIGITS
for digita in other_parity_digits:
__A = digita
result += reversible_numbers(
remaining_length - 2 , (remainder + digita + digita) // 1_0 , a_ , a_ , )
return result
def UpperCAmelCase ( a_ = 9 ) -> int:
"""simple docstring"""
__A = 0
for length in range(1 , max_power + 1 ):
result += reversible_numbers(a_ , 0 , [0] * length , a_ )
return result
if __name__ == "__main__":
print(f'''{solution() = }''')
| 55 |
import os
def UpperCAmelCase ( ) -> Any:
"""simple docstring"""
__A = os.path.dirname(os.path.realpath(a_ ) )
__A = os.path.join(a_ , "triangle.txt" )
with open(a_ ) as f:
__A = f.readlines()
__A = []
for line in triangle:
__A = []
for number in line.strip().split(" " ):
numbers_from_line.append(int(a_ ) )
a.append(a_ )
for i in range(1 , len(a_ ) ):
for j in range(len(a[i] ) ):
__A = a[i - 1][j] if j != len(a[i - 1] ) else 0
__A = a[i - 1][j - 1] if j > 0 else 0
a[i][j] += max(a_ , a_ )
return max(a[-1] )
if __name__ == "__main__":
print(solution())
| 55 | 1 |
import argparse
import json
from typing import List
from ltp import LTP
from transformers.models.bert.tokenization_bert import BertTokenizer
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
if (
(cp >= 0x4_e_0_0 and cp <= 0x9_f_f_f)
or (cp >= 0x3_4_0_0 and cp <= 0x4_d_b_f) #
or (cp >= 0x2_0_0_0_0 and cp <= 0x2_a_6_d_f) #
or (cp >= 0x2_a_7_0_0 and cp <= 0x2_b_7_3_f) #
or (cp >= 0x2_b_7_4_0 and cp <= 0x2_b_8_1_f) #
or (cp >= 0x2_b_8_2_0 and cp <= 0x2_c_e_a_f) #
or (cp >= 0xf_9_0_0 and cp <= 0xf_a_f_f)
or (cp >= 0x2_f_8_0_0 and cp <= 0x2_f_a_1_f) #
): #
return True
return False
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
for char in word:
__A = ord(a_ )
if not _is_chinese_char(a_ ):
return 0
return 1
def UpperCAmelCase ( a_ ) -> Tuple:
"""simple docstring"""
__A = set()
for token in tokens:
__A = len(a_ ) > 1 and is_chinese(a_ )
if chinese_word:
word_set.add(a_ )
__A = list(a_ )
return word_list
def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]:
"""simple docstring"""
if not chinese_word_set:
return bert_tokens
__A = max([len(a_ ) for w in chinese_word_set] )
__A = bert_tokens
__A , __A = 0, len(a_ )
while start < end:
__A = True
if is_chinese(bert_word[start] ):
__A = min(end - start , a_ )
for i in range(a_ , 1 , -1 ):
__A = "".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
__A = "##" + bert_word[j]
__A = start + i
__A = False
break
if single_word:
start += 1
return bert_word
def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[int]:
"""simple docstring"""
__A = []
for i in range(0 , len(a_ ) , 1_0_0 ):
__A = ltp_tokenizer.pipeline(lines[i : i + 1_0_0] , tasks=["cws"] ).cws
__A = [get_chinese_word(a_ ) for r in res]
ltp_res.extend(a_ )
assert len(a_ ) == len(a_ )
__A = []
for i in range(0 , len(a_ ) , 1_0_0 ):
__A = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=a_ , truncation=a_ , max_length=5_1_2 )
bert_res.extend(res["input_ids"] )
assert len(a_ ) == len(a_ )
__A = []
for input_ids, chinese_word in zip(a_ , a_ ):
__A = []
for id in input_ids:
__A = bert_tokenizer._convert_id_to_token(a_ )
input_tokens.append(a_ )
__A = add_sub_symbol(a_ , a_ )
__A = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(a_ ):
if token[:2] == "##":
__A = token[2:]
# save chinese tokens' pos
if len(a_ ) == 1 and _is_chinese_char(ord(a_ ) ):
ref_id.append(a_ )
ref_ids.append(a_ )
assert len(a_ ) == len(a_ )
return ref_ids
def UpperCAmelCase ( a_ ) -> Tuple:
"""simple docstring"""
with open(args.file_name , "r" , encoding="utf-8" ) as f:
__A = f.readlines()
__A = [line.strip() for line in data if len(a_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
__A = LTP(args.ltp ) # faster in GPU device
__A = BertTokenizer.from_pretrained(args.bert )
__A = prepare_ref(a_ , a_ , a_ )
with open(args.save_path , "w" , encoding="utf-8" ) as f:
__A = [json.dumps(a_ ) + "\n" for ref in ref_ids]
f.writelines(a_ )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :List[Any] = argparse.ArgumentParser(description='prepare_chinese_ref')
parser.add_argument(
'--file_name',
required=False,
type=str,
default='./resources/chinese-demo.txt',
help='file need process, same as training data in lm',
)
parser.add_argument(
'--ltp',
required=False,
type=str,
default='./resources/ltp',
help='resources for LTP tokenizer, usually a path',
)
parser.add_argument(
'--bert',
required=False,
type=str,
default='./resources/robert',
help='resources for Bert tokenizer',
)
parser.add_argument(
'--save_path',
required=False,
type=str,
default='./resources/ref.txt',
help='path to save res',
)
SCREAMING_SNAKE_CASE :Optional[int] = parser.parse_args()
main(args)
| 55 |
import re
from flax.core.frozen_dict import freeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.experimental import PartitionSpec as P
# Sentinels
SCREAMING_SNAKE_CASE :Union[str, Any] = object()
# For specifying empty leaf dict `{}`
SCREAMING_SNAKE_CASE :List[str] = object()
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
__A = tuple((re.compile(x + "$" ) for x in qs) )
for i in range(len(a_ ) - len(a_ ) + 1 ):
__A = [x.match(a_ ) for x, y in zip(a_ , ks[i:] )]
if matches and all(a_ ):
return True
return False
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
def replace(a_ , a_ ):
for rule, replacement in rules:
if _match(a_ , a_ ):
return replacement
return val
return replace
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
return [
# embeddings
(("transformer", "wpe", "embedding"), P("mp" , a_ )),
(("transformer", "wte", "embedding"), P("mp" , a_ )),
# atention
(("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a_ , "mp" )),
(("attention", "out_proj", "kernel"), P("mp" , a_ )),
(("attention", "out_proj", "bias"), None),
# mlp
(("mlp", "c_fc", "kernel"), P(a_ , "mp" )),
(("mlp", "c_fc", "bias"), P("mp" )),
(("mlp", "c_proj", "kernel"), P("mp" , a_ )),
(("mlp", "c_proj", "bias"), None),
# layer norms
((r"ln_\d+", "bias"), None),
((r"\d+", r"ln_\d+", "scale"), None),
(("ln_f", "bias"), None),
(("ln_f", "scale"), None),
]
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
__A = _get_partition_rules()
__A = _replacement_rules(a_ )
__A = {k: _unmatched for k in flatten_dict(a_ )}
__A = {k: replace(a_ , a_ ) for k, v in initd.items()}
assert _unmatched not in result.values(), "Incomplete partition spec."
return freeze(unflatten_dict(a_ ) )
| 55 | 1 |
from collections import namedtuple
import requests
from lxml import html # type: ignore
SCREAMING_SNAKE_CASE :int = namedtuple('covid_data', 'cases deaths recovered')
def UpperCAmelCase ( a_ = "https://www.worldometers.info/coronavirus/" ) -> covid_data:
"""simple docstring"""
__A = "//div[@class = \"maincounter-number\"]/span/text()"
return covid_data(*html.fromstring(requests.get(a_ ).content ).xpath(a_ ) )
SCREAMING_SNAKE_CASE :List[str] = 'Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}'
print(fmt.format(*covid_stats()))
| 55 |
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : List[Any] ,A : Union[str, Any] ,A : List[Any]=13 ,A : Optional[Any]=30 ,A : Union[str, Any]=2 ,A : Union[str, Any]=3 ,A : Any=True ,A : Dict=True ,A : str=32 ,A : Tuple=2 ,A : Optional[int]=4 ,A : Tuple=37 ,A : List[Any]="gelu" ,A : Dict=0.1 ,A : Optional[int]=0.1 ,A : List[Any]=10 ,A : Optional[Any]=0.02 ,A : Dict=3 ,A : Dict=None ,A : List[Any]=2 ,):
__A = parent
__A = batch_size
__A = image_size
__A = patch_size
__A = num_channels
__A = is_training
__A = use_labels
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = type_sequence_label_size
__A = initializer_range
__A = scope
__A = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
__A = (image_size // patch_size) ** 2
__A = num_patches + 2
def UpperCamelCase_ ( self : List[Any] ):
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__A = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self : Optional[int] ):
return DeiTConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,)
def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,A : Optional[int] ,A : Union[str, Any] ):
__A = TFDeiTModel(config=A )
__A = model(A )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self : List[Any] ,A : List[Any] ,A : Optional[Any] ,A : Dict ):
__A = TFDeiTForMaskedImageModeling(config=A )
__A = model(A )
self.parent.assertEqual(
result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__A = 1
__A = TFDeiTForMaskedImageModeling(A )
__A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__A = model(A )
self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) )
def UpperCamelCase_ ( self : Optional[Any] ,A : Union[str, Any] ,A : Dict ,A : Union[str, Any] ):
__A = self.type_sequence_label_size
__A = TFDeiTForImageClassification(A )
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__A = 1
__A = TFDeiTForImageClassification(A )
__A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase_ ( self : str ):
__A = self.prepare_config_and_inputs()
__A , __A , __A = config_and_inputs
__A = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
snake_case_ = (
{
"feature-extraction": TFDeiTModel,
"image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def UpperCamelCase_ ( self : str ):
__A = TFDeiTModelTester(self )
__A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 )
def UpperCamelCase_ ( self : Any ):
self.config_tester.run_common_tests()
@unittest.skip(reason="DeiT does not use inputs_embeds" )
def UpperCamelCase_ ( self : Union[str, Any] ):
pass
def UpperCamelCase_ ( self : List[Any] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) )
__A = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(A ,tf.keras.layers.Dense ) )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
__A = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__A = [*signature.parameters.keys()]
__A = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,A )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
def UpperCamelCase_ ( self : Optional[int] ,A : Union[str, Any] ,A : List[str] ,A : Optional[Any]=False ):
__A = super()._prepare_for_class(A ,A ,return_labels=A )
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def UpperCamelCase_ ( self : Any ):
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = TFDeiTModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> str:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : int ):
return (
DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" )
if is_vision_available()
else None
)
@slow
def UpperCamelCase_ ( self : Optional[int] ):
__A = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="tf" )
# forward pass
__A = model(**A )
# verify the logits
__A = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape ,A )
__A = tf.constant([-1.02_66, 0.19_12, -1.28_61] )
self.assertTrue(np.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
| 55 | 1 |
from argparse import ArgumentParser, Namespace
from ..utils import logging
from . import BaseTransformersCLICommand
def UpperCAmelCase ( a_ ) -> Union[str, Any]:
"""simple docstring"""
return ConvertCommand(
args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name )
SCREAMING_SNAKE_CASE :List[Any] = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n'
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@staticmethod
def UpperCamelCase_ ( A : ArgumentParser ):
__A = parser.add_parser(
"convert" ,help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints." ,)
train_parser.add_argument("--model_type" ,type=A ,required=A ,help="Model's type." )
train_parser.add_argument(
"--tf_checkpoint" ,type=A ,required=A ,help="TensorFlow checkpoint path or folder." )
train_parser.add_argument(
"--pytorch_dump_output" ,type=A ,required=A ,help="Path to the PyTorch saved model output." )
train_parser.add_argument("--config" ,type=A ,default="" ,help="Configuration file path or folder." )
train_parser.add_argument(
"--finetuning_task_name" ,type=A ,default=A ,help="Optional fine-tuning task name if the TF model was a finetuned model." ,)
train_parser.set_defaults(func=A )
def __init__( self : Optional[int] ,A : str ,A : str ,A : str ,A : str ,A : str ,*A : Any ,):
__A = logging.get_logger("transformers-cli/converting" )
self._logger.info(f'''Loading model {model_type}''' )
__A = model_type
__A = tf_checkpoint
__A = pytorch_dump_output
__A = config
__A = finetuning_task_name
def UpperCamelCase_ ( self : Tuple ):
if self._model_type == "albert":
try:
from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(A )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output )
elif self._model_type == "bert":
try:
from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(A )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output )
elif self._model_type == "funnel":
try:
from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(A )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output )
elif self._model_type == "t5":
try:
from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
except ImportError:
raise ImportError(A )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output )
elif self._model_type == "gpt":
from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import (
convert_openai_checkpoint_to_pytorch,
)
convert_openai_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output )
elif self._model_type == "transfo_xl":
try:
from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import (
convert_transfo_xl_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(A )
if "ckpt" in self._tf_checkpoint.lower():
__A = self._tf_checkpoint
__A = ""
else:
__A = self._tf_checkpoint
__A = ""
convert_transfo_xl_checkpoint_to_pytorch(
A ,self._config ,self._pytorch_dump_output ,A )
elif self._model_type == "gpt2":
try:
from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import (
convert_gpta_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(A )
convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output )
elif self._model_type == "xlnet":
try:
from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import (
convert_xlnet_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(A )
convert_xlnet_checkpoint_to_pytorch(
self._tf_checkpoint ,self._config ,self._pytorch_dump_output ,self._finetuning_task_name )
elif self._model_type == "xlm":
from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import (
convert_xlm_checkpoint_to_pytorch,
)
convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint ,self._pytorch_dump_output )
elif self._model_type == "lxmert":
from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import (
convert_lxmert_checkpoint_to_pytorch,
)
convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint ,self._pytorch_dump_output )
elif self._model_type == "rembert":
from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import (
convert_rembert_tf_checkpoint_to_pytorch,
)
convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output )
else:
raise ValueError(
"--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]" )
| 55 |
SCREAMING_SNAKE_CASE :List[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
SCREAMING_SNAKE_CASE :Union[str, Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
SCREAMING_SNAKE_CASE :int = {
0: 'Sunday',
1: 'Monday',
2: 'Tuesday',
3: 'Wednesday',
4: 'Thursday',
5: 'Friday',
6: 'Saturday',
}
def UpperCAmelCase ( a_ , a_ , a_ ) -> str:
"""simple docstring"""
assert len(str(a_ ) ) > 2, "year should be in YYYY format"
assert 1 <= month <= 1_2, "month should be between 1 to 12"
assert 1 <= day <= 3_1, "day should be between 1 to 31"
# Doomsday algorithm:
__A = year // 1_0_0
__A = (5 * (century % 4) + 2) % 7
__A = year % 1_0_0
__A = centurian % 1_2
__A = (
(centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor
) % 7
__A = (
DOOMSDAY_NOT_LEAP[month - 1]
if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0)
else DOOMSDAY_LEAP[month - 1]
)
__A = (dooms_day + day - day_anchor) % 7
return WEEK_DAY_NAMES[week_day]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 55 | 1 |
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :int = [
('bert.bert', 'visual_bert'),
('bert.cls', 'cls'),
('bert.classifier', 'cls'),
('token_type_embeddings_visual', 'visual_token_type_embeddings'),
('position_embeddings_visual', 'visual_position_embeddings'),
('projection', 'visual_projection'),
]
SCREAMING_SNAKE_CASE :List[str] = [
'nlvr2_coco_pre_trained.th',
'nlvr2_fine_tuned.th',
'nlvr2_pre_trained.th',
'vcr_coco_pre_train.th',
'vcr_fine_tune.th',
'vcr_pre_train.th',
'vqa_coco_pre_trained.th',
'vqa_fine_tuned.th',
'vqa_pre_trained.th',
]
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
__A = torch.load(a_ , map_location="cpu" )
return sd
def UpperCAmelCase ( a_ , a_ , a_=rename_keys_prefix ) -> Dict:
"""simple docstring"""
__A = OrderedDict()
__A = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
__A = key
for name_pair in rename_keys_prefix:
__A = new_key.replace(name_pair[0] , name_pair[1] )
__A = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
__A = new_d["cls.predictions.bias"]
return new_d
@torch.no_grad()
def UpperCAmelCase ( a_ , a_ ) -> Optional[int]:
"""simple docstring"""
assert (
checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS
), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.'''
# Get Config
if "pre" in checkpoint_path:
__A = "pretraining"
if "vcr" in checkpoint_path:
__A = {"visual_embedding_dim": 5_1_2}
elif "vqa_advanced" in checkpoint_path:
__A = {"visual_embedding_dim": 2_0_4_8}
elif "vqa" in checkpoint_path:
__A = {"visual_embedding_dim": 2_0_4_8}
elif "nlvr" in checkpoint_path:
__A = {"visual_embedding_dim": 1_0_2_4}
else:
raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' )
else:
if "vcr" in checkpoint_path:
__A = {"visual_embedding_dim": 5_1_2}
__A = "multichoice"
elif "vqa_advanced" in checkpoint_path:
__A = {"visual_embedding_dim": 2_0_4_8}
__A = "vqa_advanced"
elif "vqa" in checkpoint_path:
__A = {"visual_embedding_dim": 2_0_4_8, "num_labels": 3_1_2_9}
__A = "vqa"
elif "nlvr" in checkpoint_path:
__A = {
"visual_embedding_dim": 1_0_2_4,
"num_labels": 2,
}
__A = "nlvr"
__A = VisualBertConfig(**a_ )
# Load State Dict
__A = load_state_dict(a_ )
__A = get_new_dict(a_ , a_ )
if model_type == "pretraining":
__A = VisualBertForPreTraining(a_ )
elif model_type == "vqa":
__A = VisualBertForQuestionAnswering(a_ )
elif model_type == "nlvr":
__A = VisualBertForVisualReasoning(a_ )
elif model_type == "multichoice":
__A = VisualBertForMultipleChoice(a_ )
model.load_state_dict(a_ )
# Save Checkpoints
Path(a_ ).mkdir(exist_ok=a_ )
model.save_pretrained(a_ )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.')
parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.')
SCREAMING_SNAKE_CASE :Optional[int] = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 55 |
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError
import requests
def UpperCAmelCase ( a_ = "isbn/0140328726" ) -> dict:
"""simple docstring"""
__A = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes
if new_olid.count("/" ) != 1:
__A = F'''{olid} is not a valid Open Library olid'''
raise ValueError(a_ )
return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json()
def UpperCAmelCase ( a_ ) -> dict:
"""simple docstring"""
__A = {
"title": "Title",
"publish_date": "Publish date",
"authors": "Authors",
"number_of_pages": "Number of pages:",
"first_sentence": "First sentence",
"isbn_10": "ISBN (10)",
"isbn_13": "ISBN (13)",
}
__A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()}
__A = [
get_openlibrary_data(author["key"] )["name"] for author in data["Authors"]
]
__A = data["First sentence"]["value"]
for key, value in data.items():
if isinstance(a_ , a_ ):
__A = ", ".join(a_ )
return data
if __name__ == "__main__":
import doctest
doctest.testmod()
while True:
SCREAMING_SNAKE_CASE :int = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip()
if isbn.lower() in ("", "q", "quit", "exit", "stop"):
break
if len(isbn) not in (10, 13) or not isbn.isdigit():
print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''')
continue
print(f'''\nSearching Open Library for ISBN: {isbn}...\n''')
try:
SCREAMING_SNAKE_CASE :Any = summarize_book(get_openlibrary_data(f'''isbn/{isbn}'''))
print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items()))
except JSONDecodeError: # Workaround for requests.exceptions.RequestException:
print(f'''Sorry, there are no results for ISBN: {isbn}.''')
| 55 | 1 |
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = LayoutLMTokenizer
snake_case_ = LayoutLMTokenizerFast
snake_case_ = True
snake_case_ = True
def UpperCamelCase_ ( self : Any ):
super().setUp()
__A = [
"[UNK]",
"[CLS]",
"[SEP]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
__A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
def UpperCamelCase_ ( self : Tuple ,**A : int ):
return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**A )
def UpperCamelCase_ ( self : Optional[Any] ,A : Any ):
__A = "UNwant\u00E9d,running"
__A = "unwanted, running"
return input_text, output_text
def UpperCamelCase_ ( self : str ):
__A = self.tokenizer_class(self.vocab_file )
__A = tokenizer.tokenize("UNwant\u00E9d,running" )
self.assertListEqual(A ,["un", "##want", "##ed", ",", "runn", "##ing"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[7, 4, 5, 10, 8, 9] )
def UpperCamelCase_ ( self : int ):
pass
| 55 |
import requests
SCREAMING_SNAKE_CASE :List[str] = 'YOUR API KEY'
def UpperCAmelCase ( a_ , a_ = giphy_api_key ) -> list:
"""simple docstring"""
__A = "+".join(query.split() )
__A = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}'''
__A = requests.get(a_ ).json()["data"]
return [gif["url"] for gif in gifs]
if __name__ == "__main__":
print('\n'.join(get_gifs('space ship')))
| 55 | 1 |
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ASTConfig
from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_torchaudio_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ASTForAudioClassification, ASTModel
from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_torchaudio_available():
import torchaudio
from transformers import ASTFeatureExtractor
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : int ,A : List[str] ,A : List[Any]=13 ,A : str=2 ,A : int=24 ,A : Any=16 ,A : Tuple=True ,A : Optional[int]=True ,A : int=32 ,A : int=5 ,A : Optional[Any]=4 ,A : str=37 ,A : Union[str, Any]="gelu" ,A : Union[str, Any]=0.1 ,A : List[str]=0.1 ,A : Tuple=10 ,A : str=0.02 ,A : Tuple=None ,A : List[str]=2 ,A : str=2 ,):
__A = parent
__A = batch_size
__A = patch_size
__A = max_length
__A = num_mel_bins
__A = is_training
__A = use_labels
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = type_sequence_label_size
__A = initializer_range
__A = scope
__A = frequency_stride
__A = time_stride
# in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
__A = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1
__A = (self.max_length - self.patch_size) // self.time_stride + 1
__A = frequency_out_dimension * time_out_dimension
__A = num_patches + 2
def UpperCamelCase_ ( self : Optional[Any] ):
__A = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] )
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__A = self.get_config()
return config, input_values, labels
def UpperCamelCase_ ( self : str ):
return ASTConfig(
patch_size=self.patch_size ,max_length=self.max_length ,num_mel_bins=self.num_mel_bins ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,frequency_stride=self.frequency_stride ,time_stride=self.time_stride ,)
def UpperCamelCase_ ( self : Tuple ,A : Dict ,A : str ,A : List[str] ):
__A = ASTModel(config=A )
model.to(A )
model.eval()
__A = model(A )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self : int ):
__A = self.prepare_config_and_inputs()
(
(
__A
) , (
__A
) , (
__A
) ,
) = config_and_inputs
__A = {"input_values": input_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (
(
ASTModel,
ASTForAudioClassification,
)
if is_torch_available()
else ()
)
snake_case_ = (
{"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel}
if is_torch_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def UpperCamelCase_ ( self : str ,A : Union[str, Any] ,A : Optional[Any] ,A : List[str] ,A : List[str] ,A : List[Any] ):
if pipeline_test_casse_name == "AudioClassificationPipelineTests":
return True
return False
def UpperCamelCase_ ( self : Optional[int] ):
__A = ASTModelTester(self )
__A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 )
def UpperCamelCase_ ( self : List[Any] ):
self.config_tester.run_common_tests()
@unittest.skip(reason="AST does not use inputs_embeds" )
def UpperCamelCase_ ( self : int ):
pass
def UpperCamelCase_ ( self : Optional[int] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) )
__A = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(A ,nn.Linear ) )
def UpperCamelCase_ ( self : Optional[int] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
__A = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__A = [*signature.parameters.keys()]
__A = ["input_values"]
self.assertListEqual(arg_names[:1] ,A )
def UpperCamelCase_ ( self : Tuple ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
@slow
def UpperCamelCase_ ( self : str ):
for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = ASTModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
__A = hf_hub_download(
repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" )
__A , __A = torchaudio.load(a_ )
return audio, sampling_rate
@require_torch
@require_torchaudio
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : int ):
return (
ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" )
if is_torchaudio_available()
else None
)
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.default_feature_extractor
__A = ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ).to(A )
__A = self.default_feature_extractor
__A , __A = prepare_audio()
__A = audio.squeeze().numpy()
__A = feature_extractor(A ,sampling_rate=A ,return_tensors="pt" ).to(A )
# forward pass
with torch.no_grad():
__A = model(**A )
# verify the logits
__A = torch.Size((1, 5_27) )
self.assertEqual(outputs.logits.shape ,A )
__A = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
| 55 |
import itertools
import math
def UpperCAmelCase ( a_ ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(a_ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def UpperCAmelCase ( ) -> Optional[Any]:
"""simple docstring"""
__A = 2
while True:
if is_prime(a_ ):
yield num
num += 1
def UpperCAmelCase ( a_ = 1_0_0_0_1 ) -> int:
"""simple docstring"""
return next(itertools.islice(prime_generator() , nth - 1 , a_ ) )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 55 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roberta import RobertaTokenizer
SCREAMING_SNAKE_CASE :str = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :Dict = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
SCREAMING_SNAKE_CASE :Optional[Any] = {
'vocab_file': {
'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/vocab.json',
'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/vocab.json',
'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json',
'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/vocab.json',
'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json',
'roberta-large-openai-detector': (
'https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json'
),
},
'merges_file': {
'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/merges.txt',
'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/merges.txt',
'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt',
'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/merges.txt',
'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt',
'roberta-large-openai-detector': (
'https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt'
),
},
'tokenizer_file': {
'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/tokenizer.json',
'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/tokenizer.json',
'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json',
'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json',
'roberta-base-openai-detector': (
'https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json'
),
'roberta-large-openai-detector': (
'https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json'
),
},
}
SCREAMING_SNAKE_CASE :List[Any] = {
'roberta-base': 512,
'roberta-large': 512,
'roberta-large-mnli': 512,
'distilroberta-base': 512,
'roberta-base-openai-detector': 512,
'roberta-large-openai-detector': 512,
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = ["input_ids", "attention_mask"]
snake_case_ = RobertaTokenizer
def __init__( self : Union[str, Any] ,A : List[str]=None ,A : Union[str, Any]=None ,A : Union[str, Any]=None ,A : Any="replace" ,A : str="<s>" ,A : List[Any]="</s>" ,A : Any="</s>" ,A : Optional[int]="<s>" ,A : Union[str, Any]="<unk>" ,A : Dict="<pad>" ,A : Union[str, Any]="<mask>" ,A : str=False ,A : List[str]=True ,**A : Optional[int] ,):
super().__init__(
A ,A ,tokenizer_file=A ,errors=A ,bos_token=A ,eos_token=A ,sep_token=A ,cls_token=A ,unk_token=A ,pad_token=A ,mask_token=A ,add_prefix_space=A ,trim_offsets=A ,**A ,)
__A = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("add_prefix_space" ,A ) != add_prefix_space:
__A = getattr(A ,pre_tok_state.pop("type" ) )
__A = add_prefix_space
__A = pre_tok_class(**A )
__A = add_prefix_space
__A = "post_processor"
__A = getattr(self.backend_tokenizer ,A ,A )
if tokenizer_component_instance:
__A = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
__A = tuple(state["sep"] )
if "cls" in state:
__A = tuple(state["cls"] )
__A = False
if state.get("add_prefix_space" ,A ) != add_prefix_space:
__A = add_prefix_space
__A = True
if state.get("trim_offsets" ,A ) != trim_offsets:
__A = trim_offsets
__A = True
if changes_to_apply:
__A = getattr(A ,state.pop("type" ) )
__A = component_class(**A )
setattr(self.backend_tokenizer ,A ,A )
@property
def UpperCamelCase_ ( self : Tuple ):
if self._mask_token is None:
if self.verbose:
logger.error("Using mask_token, but it is not set yet." )
return None
return str(self._mask_token )
@mask_token.setter
def UpperCamelCase_ ( self : Optional[int] ,A : List[Any] ):
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else value
__A = value
def UpperCamelCase_ ( self : Union[str, Any] ,*A : List[str] ,**A : Optional[int] ):
__A = kwargs.get("is_split_into_words" ,A )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*A ,**A )
def UpperCamelCase_ ( self : int ,*A : str ,**A : Optional[Any] ):
__A = kwargs.get("is_split_into_words" ,A )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._encode_plus(*A ,**A )
def UpperCamelCase_ ( self : int ,A : str ,A : Optional[str] = None ):
__A = self._tokenizer.model.save(A ,name=A )
return tuple(A )
def UpperCamelCase_ ( self : Any ,A : Any ,A : Any=None ):
__A = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def UpperCamelCase_ ( self : Optional[int] ,A : List[int] ,A : Optional[List[int]] = None ):
__A = [self.sep_token_id]
__A = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 55 |
import argparse
import os
import numpy as np
import tensorflow as tf
import torch
from transformers import BertModel
def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]:
"""simple docstring"""
__A = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value")
__A = (
("layer.", "layer_"),
("word_embeddings.weight", "word_embeddings"),
("position_embeddings.weight", "position_embeddings"),
("token_type_embeddings.weight", "token_type_embeddings"),
(".", "/"),
("LayerNorm/weight", "LayerNorm/gamma"),
("LayerNorm/bias", "LayerNorm/beta"),
("weight", "kernel"),
)
if not os.path.isdir(a_ ):
os.makedirs(a_ )
__A = model.state_dict()
def to_tf_var_name(a_ ):
for patt, repl in iter(a_ ):
__A = name.replace(a_ , a_ )
return F'''bert/{name}'''
def create_tf_var(a_ , a_ , a_ ):
__A = tf.dtypes.as_dtype(tensor.dtype )
__A = tf.get_variable(dtype=a_ , shape=tensor.shape , name=a_ , initializer=tf.zeros_initializer() )
session.run(tf.variables_initializer([tf_var] ) )
session.run(a_ )
return tf_var
tf.reset_default_graph()
with tf.Session() as session:
for var_name in state_dict:
__A = to_tf_var_name(a_ )
__A = state_dict[var_name].numpy()
if any(x in var_name for x in tensors_to_transpose ):
__A = torch_tensor.T
__A = create_tf_var(tensor=a_ , name=a_ , session=a_ )
tf.keras.backend.set_value(a_ , a_ )
__A = session.run(a_ )
print(F'''Successfully created {tf_name}: {np.allclose(a_ , a_ )}''' )
__A = tf.train.Saver(tf.trainable_variables() )
saver.save(a_ , os.path.join(a_ , model_name.replace("-" , "_" ) + ".ckpt" ) )
def UpperCAmelCase ( a_=None ) -> List[Any]:
"""simple docstring"""
__A = argparse.ArgumentParser()
parser.add_argument("--model_name" , type=a_ , required=a_ , help="model name e.g. bert-base-uncased" )
parser.add_argument(
"--cache_dir" , type=a_ , default=a_ , required=a_ , help="Directory containing pytorch model" )
parser.add_argument("--pytorch_model_path" , type=a_ , required=a_ , help="/path/to/<pytorch-model-name>.bin" )
parser.add_argument("--tf_cache_dir" , type=a_ , required=a_ , help="Directory in which to save tensorflow model" )
__A = parser.parse_args(a_ )
__A = BertModel.from_pretrained(
pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , )
convert_pytorch_checkpoint_to_tf(model=a_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name )
if __name__ == "__main__":
main()
| 55 | 1 |
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE :int = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :Optional[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'}
SCREAMING_SNAKE_CASE :List[str] = {
'vocab_file': {
'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json',
'allenai/longformer-large-4096': (
'https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json'
),
'allenai/longformer-large-4096-finetuned-triviaqa': (
'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json'
),
'allenai/longformer-base-4096-extra.pos.embd.only': (
'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json'
),
'allenai/longformer-large-4096-extra.pos.embd.only': (
'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json'
),
},
'merges_file': {
'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt',
'allenai/longformer-large-4096': (
'https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt'
),
'allenai/longformer-large-4096-finetuned-triviaqa': (
'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt'
),
'allenai/longformer-base-4096-extra.pos.embd.only': (
'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt'
),
'allenai/longformer-large-4096-extra.pos.embd.only': (
'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt'
),
},
}
SCREAMING_SNAKE_CASE :int = {
'allenai/longformer-base-4096': 4096,
'allenai/longformer-large-4096': 4096,
'allenai/longformer-large-4096-finetuned-triviaqa': 4096,
'allenai/longformer-base-4096-extra.pos.embd.only': 4096,
'allenai/longformer-large-4096-extra.pos.embd.only': 4096,
}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def UpperCAmelCase ( ) -> List[str]:
"""simple docstring"""
__A = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
__A = bs[:]
__A = 0
for b in range(2**8 ):
if b not in bs:
bs.append(a_ )
cs.append(2**8 + n )
n += 1
__A = [chr(a_ ) for n in cs]
return dict(zip(a_ , a_ ) )
def UpperCAmelCase ( a_ ) -> Tuple:
"""simple docstring"""
__A = set()
__A = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__A = char
return pairs
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = ["input_ids", "attention_mask"]
def __init__( self : Any ,A : Optional[Any] ,A : str ,A : Union[str, Any]="replace" ,A : Tuple="<s>" ,A : Optional[Any]="</s>" ,A : Any="</s>" ,A : Optional[Any]="<s>" ,A : List[str]="<unk>" ,A : int="<pad>" ,A : List[str]="<mask>" ,A : Any=False ,**A : Dict ,):
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else bos_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else eos_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else sep_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else cls_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else unk_token
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__A = AddedToken(A ,lstrip=A ,rstrip=A ) if isinstance(A ,A ) else mask_token
super().__init__(
errors=A ,bos_token=A ,eos_token=A ,unk_token=A ,sep_token=A ,cls_token=A ,pad_token=A ,mask_token=A ,add_prefix_space=A ,**A ,)
with open(A ,encoding="utf-8" ) as vocab_handle:
__A = json.load(A )
__A = {v: k for k, v in self.encoder.items()}
__A = errors # how to handle errors in decoding
__A = bytes_to_unicode()
__A = {v: k for k, v in self.byte_encoder.items()}
with open(A ,encoding="utf-8" ) as merges_handle:
__A = merges_handle.read().split("\n" )[1:-1]
__A = [tuple(merge.split() ) for merge in bpe_merges]
__A = dict(zip(A ,range(len(A ) ) ) )
__A = {}
__A = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__A = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
def UpperCamelCase_ ( self : Tuple ):
return len(self.encoder )
def UpperCamelCase_ ( self : Union[str, Any] ):
return dict(self.encoder ,**self.added_tokens_encoder )
def UpperCamelCase_ ( self : int ,A : Any ):
if token in self.cache:
return self.cache[token]
__A = tuple(A )
__A = get_pairs(A )
if not pairs:
return token
while True:
__A = min(A ,key=lambda A : self.bpe_ranks.get(A ,float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
__A , __A = bigram
__A = []
__A = 0
while i < len(A ):
try:
__A = word.index(A ,A )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__A = j
if word[i] == first and i < len(A ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__A = tuple(A )
__A = new_word
if len(A ) == 1:
break
else:
__A = get_pairs(A )
__A = " ".join(A )
__A = word
return word
def UpperCamelCase_ ( self : int ,A : Dict ):
__A = []
for token in re.findall(self.pat ,A ):
__A = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A ).split(" " ) )
return bpe_tokens
def UpperCamelCase_ ( self : List[str] ,A : Union[str, Any] ):
return self.encoder.get(A ,self.encoder.get(self.unk_token ) )
def UpperCamelCase_ ( self : Any ,A : str ):
return self.decoder.get(A )
def UpperCamelCase_ ( self : Optional[int] ,A : Dict ):
__A = "".join(A )
__A = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" ,errors=self.errors )
return text
def UpperCamelCase_ ( self : List[str] ,A : str ,A : Optional[str] = None ):
if not os.path.isdir(A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__A = os.path.join(
A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
__A = os.path.join(
A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(A ,"w" ,encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=A ,ensure_ascii=A ) + "\n" )
__A = 0
with open(A ,"w" ,encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda A : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
" Please check that the tokenizer is not corrupted!" )
__A = token_index
writer.write(" ".join(A ) + "\n" )
index += 1
return vocab_file, merge_file
def UpperCamelCase_ ( self : Any ,A : List[int] ,A : Optional[List[int]] = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__A = [self.cls_token_id]
__A = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCamelCase_ ( self : int ,A : List[int] ,A : Optional[List[int]] = None ,A : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=A ,token_ids_a=A ,already_has_special_tokens=A )
if token_ids_a is None:
return [1] + ([0] * len(A )) + [1]
return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1]
def UpperCamelCase_ ( self : int ,A : List[int] ,A : Optional[List[int]] = None ):
__A = [self.sep_token_id]
__A = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def UpperCamelCase_ ( self : Tuple ,A : Optional[Any] ,A : Optional[Any]=False ,**A : Optional[int] ):
__A = kwargs.pop("add_prefix_space" ,self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(A ) > 0 and not text[0].isspace()):
__A = " " + text
return (text, kwargs)
| 55 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE :Any = {
'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Any = [
'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST',
'PegasusXForConditionalGeneration',
'PegasusXModel',
'PegasusXPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 55 | 1 |
import unittest
from typing import Tuple
import torch
from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device
from diffusers.utils.testing_utils import require_torch
@require_torch
class UpperCAmelCase :
'''simple docstring'''
@property
def UpperCamelCase_ ( self : str ):
return self.get_dummy_input()
@property
def UpperCamelCase_ ( self : int ):
if self.block_type == "down":
return (4, 32, 16, 16)
elif self.block_type == "mid":
return (4, 32, 32, 32)
elif self.block_type == "up":
return (4, 32, 64, 64)
raise ValueError(f'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' )
def UpperCamelCase_ ( self : List[str] ,A : Optional[Any]=True ,A : Optional[Any]=False ,A : List[str]=False ,A : Optional[Any]=False ,):
__A = 4
__A = 32
__A = (32, 32)
__A = torch.manual_seed(0 )
__A = torch.device(A )
__A = (batch_size, num_channels) + sizes
__A = randn_tensor(A ,generator=A ,device=A )
__A = {"hidden_states": hidden_states}
if include_temb:
__A = 1_28
__A = randn_tensor((batch_size, temb_channels) ,generator=A ,device=A )
if include_res_hidden_states_tuple:
__A = torch.manual_seed(1 )
__A = (randn_tensor(A ,generator=A ,device=A ),)
if include_encoder_hidden_states:
__A = floats_tensor((batch_size, 32, 32) ).to(A )
if include_skip_sample:
__A = randn_tensor(((batch_size, 3) + sizes) ,generator=A ,device=A )
return dummy_input
def UpperCamelCase_ ( self : Optional[Any] ):
__A = {
"in_channels": 32,
"out_channels": 32,
"temb_channels": 1_28,
}
if self.block_type == "up":
__A = 32
if self.block_type == "mid":
init_dict.pop("out_channels" )
__A = self.dummy_input
return init_dict, inputs_dict
def UpperCamelCase_ ( self : Dict ,A : Tuple ):
__A , __A = self.prepare_init_args_and_inputs_for_common()
__A = self.block_class(**A )
unet_block.to(A )
unet_block.eval()
with torch.no_grad():
__A = unet_block(**A )
if isinstance(A ,A ):
__A = output[0]
self.assertEqual(output.shape ,self.output_shape )
__A = output[0, -1, -3:, -3:]
__A = torch.tensor(A ).to(A )
assert torch_all_close(output_slice.flatten() ,A ,atol=5E-3 )
@unittest.skipIf(torch_device == "mps" ,"Training is not supported in mps" )
def UpperCamelCase_ ( self : Optional[int] ):
__A , __A = self.prepare_init_args_and_inputs_for_common()
__A = self.block_class(**A )
model.to(A )
model.train()
__A = model(**A )
if isinstance(A ,A ):
__A = output[0]
__A = torch.device(A )
__A = randn_tensor(output.shape ,device=A )
__A = torch.nn.functional.mse_loss(A ,A )
loss.backward()
| 55 |
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
SCREAMING_SNAKE_CASE :int = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l='
def UpperCAmelCase ( a_ = "mumbai" ) -> Generator[tuple[str, str], None, None]:
"""simple docstring"""
__A = BeautifulSoup(requests.get(url + location ).content , "html.parser" )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ):
__A = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip()
__A = job.find("span" , {"class": "company"} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs('Bangalore'), 1):
print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
| 55 | 1 |
import re
from flax.core.frozen_dict import freeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.experimental import PartitionSpec as P
# Sentinels
SCREAMING_SNAKE_CASE :Union[str, Any] = object()
# For specifying empty leaf dict `{}`
SCREAMING_SNAKE_CASE :List[str] = object()
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
__A = tuple((re.compile(x + "$" ) for x in qs) )
for i in range(len(a_ ) - len(a_ ) + 1 ):
__A = [x.match(a_ ) for x, y in zip(a_ , ks[i:] )]
if matches and all(a_ ):
return True
return False
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
def replace(a_ , a_ ):
for rule, replacement in rules:
if _match(a_ , a_ ):
return replacement
return val
return replace
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
return [
# embeddings
(("transformer", "wpe", "embedding"), P("mp" , a_ )),
(("transformer", "wte", "embedding"), P("mp" , a_ )),
# atention
(("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a_ , "mp" )),
(("attention", "out_proj", "kernel"), P("mp" , a_ )),
(("attention", "out_proj", "bias"), None),
# mlp
(("mlp", "c_fc", "kernel"), P(a_ , "mp" )),
(("mlp", "c_fc", "bias"), P("mp" )),
(("mlp", "c_proj", "kernel"), P("mp" , a_ )),
(("mlp", "c_proj", "bias"), None),
# layer norms
((r"ln_\d+", "bias"), None),
((r"\d+", r"ln_\d+", "scale"), None),
(("ln_f", "bias"), None),
(("ln_f", "scale"), None),
]
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
__A = _get_partition_rules()
__A = _replacement_rules(a_ )
__A = {k: _unmatched for k in flatten_dict(a_ )}
__A = {k: replace(a_ , a_ ) for k, v in initd.items()}
assert _unmatched not in result.values(), "Incomplete partition spec."
return freeze(unflatten_dict(a_ ) )
| 55 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : List[str] ):
__A = tempfile.mkdtemp()
__A = BlipImageProcessor()
__A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" )
__A = BlipaProcessor(A ,A )
processor.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self : Dict ,**A : int ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).tokenizer
def UpperCamelCase_ ( self : Dict ,**A : Optional[int] ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor
def UpperCamelCase_ ( self : Dict ):
shutil.rmtree(self.tmpdirname )
def UpperCamelCase_ ( self : Optional[int] ):
__A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )]
__A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def UpperCamelCase_ ( self : Any ):
__A = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__A = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" )
__A = self.get_image_processor(do_normalize=A ,padding_value=1.0 )
__A = BlipaProcessor.from_pretrained(
self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=A ,padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer ,A )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,A )
def UpperCamelCase_ ( self : List[Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = self.prepare_image_inputs()
__A = image_processor(A ,return_tensors="np" )
__A = processor(images=A ,return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 )
def UpperCamelCase_ ( self : Tuple ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = "lower newer"
__A = processor(text=A )
__A = tokenizer(A ,return_token_type_ids=A )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] ,encoded_processor[key] )
def UpperCamelCase_ ( self : int ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = "lower newer"
__A = self.prepare_image_inputs()
__A = processor(text=A ,images=A )
self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(A ):
processor()
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__A = processor.batch_decode(A )
__A = tokenizer.batch_decode(A )
self.assertListEqual(A ,A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = "lower newer"
__A = self.prepare_image_inputs()
__A = processor(text=A ,images=A )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
| 55 | 1 |
from __future__ import annotations
import math
import random
from collections.abc import Collection
from typing import overload
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Optional[Any] ,A : Collection[float] | None = None ):
if components is None:
__A = []
__A = list(A )
def __len__( self : Dict ):
return len(self.__components )
def __str__( self : Optional[int] ):
return "(" + ",".join(map(A ,self.__components ) ) + ")"
def __add__( self : Optional[int] ,A : Vector ):
__A = len(self )
if size == len(A ):
__A = [self.__components[i] + other.component(A ) for i in range(A )]
return Vector(A )
else:
raise Exception("must have the same size" )
def __sub__( self : int ,A : Vector ):
__A = len(self )
if size == len(A ):
__A = [self.__components[i] - other.component(A ) for i in range(A )]
return Vector(A )
else: # error case
raise Exception("must have the same size" )
@overload
def __mul__( self : List[Any] ,A : float ):
...
@overload
def __mul__( self : List[Any] ,A : Vector ):
...
def __mul__( self : Any ,A : float | Vector ):
if isinstance(A ,(float, int) ):
__A = [c * other for c in self.__components]
return Vector(A )
elif isinstance(A ,A ) and len(self ) == len(A ):
__A = len(self )
__A = [self.__components[i] * other.component(A ) for i in range(A )]
return sum(A )
else: # error case
raise Exception("invalid operand!" )
def UpperCamelCase_ ( self : Tuple ):
return Vector(self.__components )
def UpperCamelCase_ ( self : List[Any] ,A : int ):
if isinstance(A ,A ) and -len(self.__components ) <= i < len(self.__components ):
return self.__components[i]
else:
raise Exception("index out of range" )
def UpperCamelCase_ ( self : List[str] ,A : int ,A : float ):
assert -len(self.__components ) <= pos < len(self.__components )
__A = value
def UpperCamelCase_ ( self : List[Any] ):
if len(self.__components ) == 0:
raise Exception("Vector is empty" )
__A = [c**2 for c in self.__components]
return math.sqrt(sum(A ) )
def UpperCamelCase_ ( self : Tuple ,A : Vector ,A : bool = False ):
__A = self * other
__A = self.euclidean_length() * other.euclidean_length()
if deg:
return math.degrees(math.acos(num / den ) )
else:
return math.acos(num / den )
def UpperCAmelCase ( a_ ) -> Vector:
"""simple docstring"""
assert isinstance(a_ , a_ )
return Vector([0] * dimension )
def UpperCAmelCase ( a_ , a_ ) -> Vector:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (isinstance(a_ , a_ ))
__A = [0] * dimension
__A = 1
return Vector(a_ )
def UpperCAmelCase ( a_ , a_ , a_ ) -> Vector:
"""simple docstring"""
assert (
isinstance(a_ , a_ )
and isinstance(a_ , a_ )
and (isinstance(a_ , (int, float) ))
)
return x * scalar + y
def UpperCAmelCase ( a_ , a_ , a_ ) -> Vector:
"""simple docstring"""
random.seed(a_ )
__A = [random.randint(a_ , a_ ) for _ in range(a_ )]
return Vector(a_ )
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : int ,A : list[list[float]] ,A : int ,A : int ):
__A = matrix
__A = w
__A = h
def __str__( self : Optional[int] ):
__A = ""
for i in range(self.__height ):
ans += "|"
for j in range(self.__width ):
if j < self.__width - 1:
ans += str(self.__matrix[i][j] ) + ","
else:
ans += str(self.__matrix[i][j] ) + "|\n"
return ans
def __add__( self : int ,A : Matrix ):
if self.__width == other.width() and self.__height == other.height():
__A = []
for i in range(self.__height ):
__A = [
self.__matrix[i][j] + other.component(A ,A )
for j in range(self.__width )
]
matrix.append(A )
return Matrix(A ,self.__width ,self.__height )
else:
raise Exception("matrix must have the same dimension!" )
def __sub__( self : List[Any] ,A : Matrix ):
if self.__width == other.width() and self.__height == other.height():
__A = []
for i in range(self.__height ):
__A = [
self.__matrix[i][j] - other.component(A ,A )
for j in range(self.__width )
]
matrix.append(A )
return Matrix(A ,self.__width ,self.__height )
else:
raise Exception("matrices must have the same dimension!" )
@overload
def __mul__( self : List[Any] ,A : float ):
...
@overload
def __mul__( self : Any ,A : Vector ):
...
def __mul__( self : Dict ,A : float | Vector ):
if isinstance(A ,A ): # matrix-vector
if len(A ) == self.__width:
__A = zero_vector(self.__height )
for i in range(self.__height ):
__A = [
self.__matrix[i][j] * other.component(A )
for j in range(self.__width )
]
ans.change_component(A ,sum(A ) )
return ans
else:
raise Exception(
"vector must have the same size as the "
"number of columns of the matrix!" )
elif isinstance(A ,(int, float) ): # matrix-scalar
__A = [
[self.__matrix[i][j] * other for j in range(self.__width )]
for i in range(self.__height )
]
return Matrix(A ,self.__width ,self.__height )
return None
def UpperCamelCase_ ( self : Union[str, Any] ):
return self.__height
def UpperCamelCase_ ( self : List[Any] ):
return self.__width
def UpperCamelCase_ ( self : str ,A : int ,A : int ):
if 0 <= x < self.__height and 0 <= y < self.__width:
return self.__matrix[x][y]
else:
raise Exception("change_component: indices out of bounds" )
def UpperCamelCase_ ( self : List[Any] ,A : int ,A : int ,A : float ):
if 0 <= x < self.__height and 0 <= y < self.__width:
__A = value
else:
raise Exception("change_component: indices out of bounds" )
def UpperCamelCase_ ( self : str ,A : int ,A : int ):
if self.__height != self.__width:
raise Exception("Matrix is not square" )
__A = self.__matrix[:x] + self.__matrix[x + 1 :]
for i in range(len(A ) ):
__A = minor[i][:y] + minor[i][y + 1 :]
return Matrix(A ,self.__width - 1 ,self.__height - 1 ).determinant()
def UpperCamelCase_ ( self : Tuple ,A : int ,A : int ):
if self.__height != self.__width:
raise Exception("Matrix is not square" )
if 0 <= x < self.__height and 0 <= y < self.__width:
return (-1) ** (x + y) * self.minor(A ,A )
else:
raise Exception("Indices out of bounds" )
def UpperCamelCase_ ( self : Optional[int] ):
if self.__height != self.__width:
raise Exception("Matrix is not square" )
if self.__height < 1:
raise Exception("Matrix has no element" )
elif self.__height == 1:
return self.__matrix[0][0]
elif self.__height == 2:
return (
self.__matrix[0][0] * self.__matrix[1][1]
- self.__matrix[0][1] * self.__matrix[1][0]
)
else:
__A = [
self.__matrix[0][y] * self.cofactor(0 ,A ) for y in range(self.__width )
]
return sum(A )
def UpperCAmelCase ( a_ ) -> Matrix:
"""simple docstring"""
__A = [[0] * n for _ in range(a_ )]
return Matrix(a_ , a_ , a_ )
def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> Matrix:
"""simple docstring"""
random.seed(a_ )
__A = [
[random.randint(a_ , a_ ) for _ in range(a_ )] for _ in range(a_ )
]
return Matrix(a_ , a_ , a_ )
| 55 |
import logging
import torch
from accelerate import Accelerator
from arguments import EvaluationArguments
from datasets import load_dataset
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : int ,A : Any ,A : List[str] ,A : Union[str, Any]=10_24 ,A : int=10_24 ,A : Optional[Any]=3.6 ):
__A = tokenizer
__A = tokenizer.bos_token_id
__A = dataset
__A = seq_length
__A = seq_length * chars_per_token * num_of_sequences
def __iter__( self : List[Any] ):
__A = iter(self.dataset )
__A = True
while more_examples:
__A , __A = [], 0
while True:
if buffer_len >= self.input_characters:
break
try:
buffer.append(next(A )["content"] )
buffer_len += len(buffer[-1] )
except StopIteration:
__A = False
break
__A = tokenizer(A ,truncation=A )["input_ids"]
__A = []
for tokenized_input in tokenized_inputs:
all_token_ids.extend(tokenized_input + [self.concat_token_id] )
for i in range(0 ,len(A ) ,self.seq_length ):
__A = all_token_ids[i : i + self.seq_length]
if len(A ) == self.seq_length:
yield torch.tensor(A )
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
__A = {"streaming": True}
__A = load_dataset(args.dataset_name , split="train" , **a_ )
__A = ConstantLengthDataset(a_ , a_ , seq_length=args.seq_length )
__A = DataLoader(a_ , batch_size=args.batch_size )
return eval_dataloader
def UpperCAmelCase ( a_ ) -> Union[str, Any]:
"""simple docstring"""
model.eval()
__A = []
for step, batch in enumerate(a_ ):
with torch.no_grad():
__A = model(a_ , labels=a_ )
__A = outputs.loss.repeat(args.batch_size )
losses.append(accelerator.gather(a_ ) )
if args.max_eval_steps > 0 and step >= args.max_eval_steps:
break
__A = torch.mean(torch.cat(a_ ) )
try:
__A = torch.exp(a_ )
except OverflowError:
__A = float("inf" )
return loss.item(), perplexity.item()
# Setup Accelerator
SCREAMING_SNAKE_CASE :Optional[int] = Accelerator()
# Parse configuration
SCREAMING_SNAKE_CASE :str = HfArgumentParser(EvaluationArguments)
SCREAMING_SNAKE_CASE :int = parser.parse_args()
set_seed(args.seed)
# Logging
SCREAMING_SNAKE_CASE :Dict = logging.getLogger(__name__)
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO
)
# Load model and tokenizer
SCREAMING_SNAKE_CASE :List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt)
SCREAMING_SNAKE_CASE :int = AutoTokenizer.from_pretrained(args.model_ckpt)
# Load dataset and dataloader
SCREAMING_SNAKE_CASE :List[str] = create_dataloader(args)
# Prepare everything with our `accelerator`.
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = accelerator.prepare(model, eval_dataloader)
# Evaluate and save the last checkpoint
logger.info('Evaluating and saving model after training')
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = evaluate(args)
logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
| 55 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE :Tuple = {'configuration_sew': ['SEW_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SEWConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :List[Any] = [
'SEW_PRETRAINED_MODEL_ARCHIVE_LIST',
'SEWForCTC',
'SEWForSequenceClassification',
'SEWModel',
'SEWPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_sew import (
SEW_PRETRAINED_MODEL_ARCHIVE_LIST,
SEWForCTC,
SEWForSequenceClassification,
SEWModel,
SEWPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE :Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 55 |
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = LayoutLMTokenizer
snake_case_ = LayoutLMTokenizerFast
snake_case_ = True
snake_case_ = True
def UpperCamelCase_ ( self : Any ):
super().setUp()
__A = [
"[UNK]",
"[CLS]",
"[SEP]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
__A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
def UpperCamelCase_ ( self : Tuple ,**A : int ):
return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**A )
def UpperCamelCase_ ( self : Optional[Any] ,A : Any ):
__A = "UNwant\u00E9d,running"
__A = "unwanted, running"
return input_text, output_text
def UpperCamelCase_ ( self : str ):
__A = self.tokenizer_class(self.vocab_file )
__A = tokenizer.tokenize("UNwant\u00E9d,running" )
self.assertListEqual(A ,["un", "##want", "##ed", ",", "runn", "##ing"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[7, 4, 5, 10, 8, 9] )
def UpperCamelCase_ ( self : int ):
pass
| 55 | 1 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import (
AutoProcessor,
BertTokenizerFast,
BlipImageProcessor,
GPTaTokenizer,
InstructBlipProcessor,
PreTrainedTokenizerFast,
)
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Dict ):
__A = tempfile.mkdtemp()
__A = BlipImageProcessor()
__A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" )
__A = BertTokenizerFast.from_pretrained("hf-internal-testing/tiny-random-bert" )
__A = InstructBlipProcessor(A ,A ,A )
processor.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self : Optional[Any] ,**A : Optional[Any] ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).tokenizer
def UpperCamelCase_ ( self : Optional[Any] ,**A : Tuple ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor
def UpperCamelCase_ ( self : Tuple ,**A : Tuple ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).qformer_tokenizer
def UpperCamelCase_ ( self : Optional[int] ):
shutil.rmtree(self.tmpdirname )
def UpperCamelCase_ ( self : Dict ):
__A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )]
__A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = InstructBlipProcessor(
tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ,qformer_tokenizer=self.get_qformer_tokenizer() ,)
processor.save_pretrained(self.tmpdirname )
__A = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" )
__A = self.get_image_processor(do_normalize=A ,padding_value=1.0 )
__A = InstructBlipProcessor.from_pretrained(
self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=A ,padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer ,A )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,A )
self.assertIsInstance(processor.qformer_tokenizer ,A )
def UpperCamelCase_ ( self : Tuple ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = self.get_qformer_tokenizer()
__A = InstructBlipProcessor(
tokenizer=A ,image_processor=A ,qformer_tokenizer=A )
__A = self.prepare_image_inputs()
__A = image_processor(A ,return_tensors="np" )
__A = processor(images=A ,return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = self.get_qformer_tokenizer()
__A = InstructBlipProcessor(
tokenizer=A ,image_processor=A ,qformer_tokenizer=A )
__A = "lower newer"
__A = processor(text=A )
__A = tokenizer(A ,return_token_type_ids=A )
__A = qformer_tokenizer(A ,return_token_type_ids=A )
for key in encoded_tokens.keys():
self.assertListEqual(encoded_tokens[key] ,encoded_processor[key] )
for key in encoded_tokens_qformer.keys():
self.assertListEqual(encoded_tokens_qformer[key] ,encoded_processor["qformer_" + key] )
def UpperCamelCase_ ( self : int ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = self.get_qformer_tokenizer()
__A = InstructBlipProcessor(
tokenizer=A ,image_processor=A ,qformer_tokenizer=A )
__A = "lower newer"
__A = self.prepare_image_inputs()
__A = processor(text=A ,images=A )
self.assertListEqual(
list(inputs.keys() ) ,["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] ,)
# test if it raises when no input is passed
with pytest.raises(A ):
processor()
def UpperCamelCase_ ( self : Dict ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = self.get_qformer_tokenizer()
__A = InstructBlipProcessor(
tokenizer=A ,image_processor=A ,qformer_tokenizer=A )
__A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__A = processor.batch_decode(A )
__A = tokenizer.batch_decode(A )
self.assertListEqual(A ,A )
def UpperCamelCase_ ( self : List[Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = self.get_qformer_tokenizer()
__A = InstructBlipProcessor(
tokenizer=A ,image_processor=A ,qformer_tokenizer=A )
__A = "lower newer"
__A = self.prepare_image_inputs()
__A = processor(text=A ,images=A )
self.assertListEqual(
list(inputs.keys() ) ,["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] ,)
| 55 |
SCREAMING_SNAKE_CASE :int = {str(digit): digit**5 for digit in range(10)}
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
return sum(DIGITS_FIFTH_POWER[digit] for digit in str(a_ ) )
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
return sum(
number
for number in range(1_0_0_0 , 1_0_0_0_0_0_0 )
if number == digits_fifth_powers_sum(a_ ) )
if __name__ == "__main__":
print(solution())
| 55 | 1 |
import json
import os
import unittest
from transformers.models.roc_bert.tokenization_roc_bert import (
VOCAB_FILES_NAMES,
RoCBertBasicTokenizer,
RoCBertTokenizer,
RoCBertWordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = RoCBertTokenizer
snake_case_ = None
snake_case_ = False
snake_case_ = True
snake_case_ = filter_non_english
def UpperCamelCase_ ( self : List[Any] ):
super().setUp()
__A = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"]
__A = {}
__A = {}
for i, value in enumerate(A ):
__A = i
__A = i
__A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] )
__A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["word_shape_file"] )
__A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["word_pronunciation_file"] )
with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
with open(self.word_shape_file ,"w" ,encoding="utf-8" ) as word_shape_writer:
json.dump(A ,A ,ensure_ascii=A )
with open(self.word_pronunciation_file ,"w" ,encoding="utf-8" ) as word_pronunciation_writer:
json.dump(A ,A ,ensure_ascii=A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.tokenizer_class(self.vocab_file ,self.word_shape_file ,self.word_pronunciation_file )
__A = tokenizer.tokenize("你好[SEP]你是谁" )
self.assertListEqual(A ,["你", "好", "[SEP]", "你", "是", "谁"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(A ) ,[5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(A ) ,[5, 6, 2, 5, 7, 8] )
def UpperCamelCase_ ( self : str ):
__A = RoCBertBasicTokenizer()
self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) ,["ah", "\u535A", "\u63A8", "zz"] )
def UpperCamelCase_ ( self : Optional[int] ):
__A = RoCBertBasicTokenizer(do_lower_case=A )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) ,["hello", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) ,["hello"] )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = RoCBertBasicTokenizer(do_lower_case=A ,strip_accents=A )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) ,["hällo", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) ,["h\u00E9llo"] )
def UpperCamelCase_ ( self : Optional[int] ):
__A = RoCBertBasicTokenizer(do_lower_case=A ,strip_accents=A )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) ,["hallo", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) ,["hello"] )
def UpperCamelCase_ ( self : int ):
__A = RoCBertBasicTokenizer(do_lower_case=A )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) ,["hallo", "!", "how", "are", "you", "?"] )
self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) ,["hello"] )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = RoCBertBasicTokenizer(do_lower_case=A )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) ,["HeLLo", "!", "how", "Are", "yoU", "?"] )
def UpperCamelCase_ ( self : str ):
__A = RoCBertBasicTokenizer(do_lower_case=A ,strip_accents=A )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) ,["HäLLo", "!", "how", "Are", "yoU", "?"] )
def UpperCamelCase_ ( self : List[str] ):
__A = RoCBertBasicTokenizer(do_lower_case=A ,strip_accents=A )
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) ,["HaLLo", "!", "how", "Are", "yoU", "?"] )
def UpperCamelCase_ ( self : Any ):
__A = RoCBertBasicTokenizer(do_lower_case=A ,never_split=["[UNK]"] )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) ,["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] )
def UpperCamelCase_ ( self : Any ):
__A = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"]
__A = {}
for i, token in enumerate(A ):
__A = i
__A = RoCBertWordpieceTokenizer(vocab=A ,unk_token="[UNK]" )
self.assertListEqual(tokenizer.tokenize("" ) ,[] )
self.assertListEqual(tokenizer.tokenize("unwanted running" ) ,["un", "##want", "##ed", "runn", "##ing"] )
self.assertListEqual(tokenizer.tokenize("unwantedX running" ) ,["[UNK]", "runn", "##ing"] )
def UpperCamelCase_ ( self : Union[str, Any] ):
self.assertTrue(_is_whitespace(" " ) )
self.assertTrue(_is_whitespace("\t" ) )
self.assertTrue(_is_whitespace("\r" ) )
self.assertTrue(_is_whitespace("\n" ) )
self.assertTrue(_is_whitespace("\u00A0" ) )
self.assertFalse(_is_whitespace("A" ) )
self.assertFalse(_is_whitespace("-" ) )
def UpperCamelCase_ ( self : Dict ):
self.assertTrue(_is_control("\u0005" ) )
self.assertFalse(_is_control("A" ) )
self.assertFalse(_is_control(" " ) )
self.assertFalse(_is_control("\t" ) )
self.assertFalse(_is_control("\r" ) )
def UpperCamelCase_ ( self : Optional[Any] ):
self.assertTrue(_is_punctuation("-" ) )
self.assertTrue(_is_punctuation("$" ) )
self.assertTrue(_is_punctuation("`" ) )
self.assertTrue(_is_punctuation("." ) )
self.assertFalse(_is_punctuation("A" ) )
self.assertFalse(_is_punctuation(" " ) )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(A ) for t in ["Test", "\xad", "test"]] ,[["[UNK]"], [], ["[UNK]"]] )
if self.test_rust_tokenizer:
__A = self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(A ) for t in ["Test", "\xad", "test"]] ,[["[UNK]"], [], ["[UNK]"]] )
def UpperCamelCase_ ( self : Dict ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__A = self.rust_tokenizer_class.from_pretrained(A ,**A )
__A = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'''
__A = tokenizer_r.encode_plus(
A ,return_attention_mask=A ,return_token_type_ids=A ,return_offsets_mapping=A ,add_special_tokens=A ,)
__A = tokenizer_r.do_lower_case if hasattr(A ,"do_lower_case" ) else False
__A = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), "A"),
((1, 2), ","),
((3, 5), "na"),
((5, 6), "##ï"),
((6, 8), "##ve"),
((9, 15), tokenizer_r.mask_token),
((16, 21), "Allen"),
((21, 23), "##NL"),
((23, 24), "##P"),
((25, 33), "sentence"),
((33, 34), "."),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), "a"),
((1, 2), ","),
((3, 8), "naive"),
((9, 15), tokenizer_r.mask_token),
((16, 21), "allen"),
((21, 23), "##nl"),
((23, 24), "##p"),
((25, 33), "sentence"),
((33, 34), "."),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] ,tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) )
self.assertEqual([e[0] for e in expected_results] ,tokens["offset_mapping"] )
def UpperCamelCase_ ( self : List[str] ):
__A = ["的", "人", "有"]
__A = "".join(A )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__A = True
__A = self.tokenizer_class.from_pretrained(A ,**A )
__A = self.rust_tokenizer_class.from_pretrained(A ,**A )
__A = tokenizer_p.encode(A ,add_special_tokens=A )
__A = tokenizer_r.encode(A ,add_special_tokens=A )
__A = tokenizer_r.convert_ids_to_tokens(A )
__A = tokenizer_p.convert_ids_to_tokens(A )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(A ,A )
self.assertListEqual(A ,A )
__A = False
__A = self.rust_tokenizer_class.from_pretrained(A ,**A )
__A = self.tokenizer_class.from_pretrained(A ,**A )
__A = tokenizer_r.encode(A ,add_special_tokens=A )
__A = tokenizer_p.encode(A ,add_special_tokens=A )
__A = tokenizer_r.convert_ids_to_tokens(A )
__A = tokenizer_p.convert_ids_to_tokens(A )
# it is expected that only the first Chinese character is not preceded by "##".
__A = [
f'''##{token}''' if idx != 0 else token for idx, token in enumerate(A )
]
self.assertListEqual(A ,A )
self.assertListEqual(A ,A )
@slow
def UpperCamelCase_ ( self : Tuple ):
__A = self.tokenizer_class(self.vocab_file ,self.word_shape_file ,self.word_pronunciation_file )
__A = tokenizer.encode("你好" ,add_special_tokens=A )
__A = tokenizer.encode("你是谁" ,add_special_tokens=A )
__A = tokenizer.build_inputs_with_special_tokens(A )
__A = tokenizer.build_inputs_with_special_tokens(A ,A )
assert encoded_sentence == [1] + text + [2]
assert encoded_pair == [1] + text + [2] + text_a + [2]
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.get_tokenizers(do_lower_case=A )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__A = "你好,你是谁"
__A = tokenizer.tokenize(A )
__A = tokenizer.convert_tokens_to_ids(A )
__A = tokenizer.convert_tokens_to_shape_ids(A )
__A = tokenizer.convert_tokens_to_pronunciation_ids(A )
__A = tokenizer.prepare_for_model(
A ,A ,A ,add_special_tokens=A )
__A = tokenizer.encode_plus(A ,add_special_tokens=A )
self.assertEqual(A ,A )
| 55 |
import inspect
import unittest
from transformers import MobileNetVaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileNetVaForImageClassification, MobileNetVaModel
from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self : Any ):
__A = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(A ,"tf_padding" ) )
self.parent.assertTrue(hasattr(A ,"depth_multiplier" ) )
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : Optional[Any] ,A : int ,A : List[Any]=13 ,A : int=3 ,A : Optional[Any]=32 ,A : Union[str, Any]=0.25 ,A : Tuple=8 ,A : Optional[int]=True ,A : Union[str, Any]=10_24 ,A : Any=32 ,A : Optional[int]="relu6" ,A : int=0.1 ,A : Optional[Any]=0.02 ,A : Optional[Any]=True ,A : List[str]=True ,A : str=10 ,A : str=None ,):
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = depth_multiplier
__A = min_depth
__A = tf_padding
__A = int(last_hidden_size * depth_multiplier )
__A = output_stride
__A = hidden_act
__A = classifier_dropout_prob
__A = use_labels
__A = is_training
__A = num_labels
__A = initializer_range
__A = scope
def UpperCamelCase_ ( self : Optional[int] ):
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.num_labels )
__A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels )
__A = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self : Any ):
return MobileNetVaConfig(
num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,min_depth=self.min_depth ,tf_padding=self.tf_padding ,hidden_act=self.hidden_act ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,)
def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : Tuple ,A : Optional[int] ,A : List[str] ):
__A = MobileNetVaModel(config=A )
model.to(A )
model.eval()
__A = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) ,)
def UpperCamelCase_ ( self : List[Any] ,A : Union[str, Any] ,A : List[Any] ,A : int ,A : Union[str, Any] ):
__A = self.num_labels
__A = MobileNetVaForImageClassification(A )
model.to(A )
model.eval()
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : Tuple ):
__A = self.prepare_config_and_inputs()
__A , __A , __A , __A = config_and_inputs
__A = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else ()
snake_case_ = (
{"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification}
if is_torch_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def UpperCamelCase_ ( self : Any ):
__A = MobileNetVaModelTester(self )
__A = MobileNetVaConfigTester(self ,config_class=A ,has_text_modality=A )
def UpperCamelCase_ ( self : str ):
self.config_tester.run_common_tests()
@unittest.skip(reason="MobileNetV1 does not use inputs_embeds" )
def UpperCamelCase_ ( self : Union[str, Any] ):
pass
@unittest.skip(reason="MobileNetV1 does not support input and output embeddings" )
def UpperCamelCase_ ( self : Tuple ):
pass
@unittest.skip(reason="MobileNetV1 does not output attentions" )
def UpperCamelCase_ ( self : Any ):
pass
def UpperCamelCase_ ( self : Optional[int] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
__A = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__A = [*signature.parameters.keys()]
__A = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,A )
def UpperCamelCase_ ( self : List[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Optional[int] ):
def check_hidden_states_output(A : List[Any] ,A : List[Any] ,A : Optional[int] ):
__A = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
__A = model(**self._prepare_for_class(A ,A ) )
__A = outputs.hidden_states
__A = 26
self.assertEqual(len(A ) ,A )
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = True
check_hidden_states_output(A ,A ,A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__A = True
check_hidden_states_output(A ,A ,A )
def UpperCamelCase_ ( self : Tuple ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
@slow
def UpperCamelCase_ ( self : Union[str, Any] ):
for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = MobileNetVaModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> str:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : List[str] ):
return (
MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None
)
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
__A = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(A )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="pt" ).to(A )
# forward pass
with torch.no_grad():
__A = model(**A )
# verify the logits
__A = torch.Size((1, 10_01) )
self.assertEqual(outputs.logits.shape ,A )
__A = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
| 55 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_funnel import FunnelTokenizer
SCREAMING_SNAKE_CASE :Any = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :List[str] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
SCREAMING_SNAKE_CASE :str = [
'small',
'small-base',
'medium',
'medium-base',
'intermediate',
'intermediate-base',
'large',
'large-base',
'xlarge',
'xlarge-base',
]
SCREAMING_SNAKE_CASE :Dict = {
'vocab_file': {
'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt',
'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt',
'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt',
'funnel-transformer/medium-base': (
'https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt'
),
'funnel-transformer/intermediate': (
'https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt'
),
'funnel-transformer/intermediate-base': (
'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt'
),
'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt',
'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt',
'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt',
'funnel-transformer/xlarge-base': (
'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json',
'funnel-transformer/small-base': (
'https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json'
),
'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json',
'funnel-transformer/medium-base': (
'https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json'
),
'funnel-transformer/intermediate': (
'https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json'
),
'funnel-transformer/intermediate-base': (
'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json'
),
'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json',
'funnel-transformer/large-base': (
'https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json'
),
'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json',
'funnel-transformer/xlarge-base': (
'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json'
),
},
}
SCREAMING_SNAKE_CASE :Union[str, Any] = {f'''funnel-transformer/{name}''': 512 for name in _model_names}
SCREAMING_SNAKE_CASE :Union[str, Any] = {f'''funnel-transformer/{name}''': {'do_lower_case': True} for name in _model_names}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_INIT_CONFIGURATION
snake_case_ = FunnelTokenizer
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = 2
def __init__( self : List[Any] ,A : Optional[int]=None ,A : List[str]=None ,A : Tuple=True ,A : str="<unk>" ,A : int="<sep>" ,A : Any="<pad>" ,A : List[str]="<cls>" ,A : str="<mask>" ,A : Any="<s>" ,A : int="</s>" ,A : Union[str, Any]=True ,A : List[str]=True ,A : Optional[int]=None ,A : Optional[int]="##" ,**A : str ,):
super().__init__(
A ,tokenizer_file=A ,do_lower_case=A ,unk_token=A ,sep_token=A ,pad_token=A ,cls_token=A ,mask_token=A ,bos_token=A ,eos_token=A ,clean_text=A ,tokenize_chinese_chars=A ,strip_accents=A ,wordpieces_prefix=A ,**A ,)
__A = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" ,A ) != do_lower_case
or normalizer_state.get("strip_accents" ,A ) != strip_accents
or normalizer_state.get("handle_chinese_chars" ,A ) != tokenize_chinese_chars
):
__A = getattr(A ,normalizer_state.pop("type" ) )
__A = do_lower_case
__A = strip_accents
__A = tokenize_chinese_chars
__A = normalizer_class(**A )
__A = do_lower_case
def UpperCamelCase_ ( self : str ,A : Any ,A : List[Any]=None ):
__A = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase_ ( self : Optional[int] ,A : List[int] ,A : Optional[List[int]] = None ):
__A = [self.sep_token_id]
__A = [self.cls_token_id]
if token_ids_a is None:
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0]
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase_ ( self : int ,A : str ,A : Optional[str] = None ):
__A = self._tokenizer.model.save(A ,name=A )
return tuple(A )
| 55 |
import copy
import unittest
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
)
from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : str ,A : int ,A : int=2 ,A : Optional[Any]=3 ,A : Dict=4 ,A : Optional[int]=2 ,A : Union[str, Any]=7 ,A : List[str]=True ,A : Union[str, Any]=True ,A : Optional[int]=True ,A : Optional[int]=True ,A : Tuple=99 ,A : Optional[int]=36 ,A : Dict=3 ,A : str=4 ,A : Optional[Any]=37 ,A : Dict="gelu" ,A : Dict=0.1 ,A : Union[str, Any]=0.1 ,A : Union[str, Any]=5_12 ,A : Any=16 ,A : Union[str, Any]=2 ,A : List[Any]=0.02 ,A : List[Any]=6 ,A : Optional[int]=6 ,A : List[Any]=3 ,A : Union[str, Any]=4 ,A : Tuple=None ,A : List[str]=10_00 ,):
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = patch_size
__A = text_seq_length
__A = is_training
__A = use_input_mask
__A = use_token_type_ids
__A = use_labels
__A = vocab_size
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = max_position_embeddings
__A = type_vocab_size
__A = type_sequence_label_size
__A = initializer_range
__A = coordinate_size
__A = shape_size
__A = num_labels
__A = num_choices
__A = scope
__A = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
__A = text_seq_length
__A = (image_size // patch_size) ** 2 + 1
__A = self.text_seq_length + self.image_seq_length
def UpperCamelCase_ ( self : int ):
__A = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size )
__A = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__A = bbox[i, j, 3]
__A = bbox[i, j, 1]
__A = t
if bbox[i, j, 2] < bbox[i, j, 0]:
__A = bbox[i, j, 2]
__A = bbox[i, j, 0]
__A = t
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
if self.use_input_mask:
__A = random_attention_mask([self.batch_size, self.text_seq_length] )
__A = None
if self.use_token_type_ids:
__A = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size )
__A = None
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__A = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels )
__A = LayoutLMvaConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,)
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def UpperCamelCase_ ( self : Optional[int] ,A : List[str] ,A : Any ,A : Dict ,A : List[Any] ,A : Optional[int] ,A : Any ,A : Dict ,A : List[Any] ):
__A = LayoutLMvaModel(config=A )
model.to(A )
model.eval()
# text + image
__A = model(A ,pixel_values=A )
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A )
__A = model(A ,bbox=A ,pixel_values=A ,token_type_ids=A )
__A = model(A ,bbox=A ,pixel_values=A )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
# text only
__A = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
__A = model(pixel_values=A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) )
def UpperCamelCase_ ( self : Optional[int] ,A : Dict ,A : List[str] ,A : Any ,A : List[Any] ,A : Any ,A : Any ,A : Dict ,A : Optional[Any] ):
__A = self.num_labels
__A = LayoutLMvaForSequenceClassification(A )
model.to(A )
model.eval()
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : str ,A : Optional[Any] ,A : Dict ,A : str ,A : Tuple ,A : Union[str, Any] ,A : List[Any] ,A : Any ,A : Union[str, Any] ):
__A = self.num_labels
__A = LayoutLMvaForTokenClassification(config=A )
model.to(A )
model.eval()
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) )
def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : int ,A : str ,A : List[str] ,A : int ,A : List[str] ,A : List[str] ,A : Dict ):
__A = LayoutLMvaForQuestionAnswering(config=A )
model.to(A )
model.eval()
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,start_positions=A ,end_positions=A ,)
self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) )
def UpperCamelCase_ ( self : str ):
__A = self.prepare_config_and_inputs()
(
(
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) ,
) = config_and_inputs
__A = {
"input_ids": input_ids,
"bbox": bbox,
"pixel_values": pixel_values,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = (
(
LayoutLMvaModel,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaForQuestionAnswering,
)
if is_torch_available()
else ()
)
snake_case_ = (
{"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel}
if is_torch_available()
else {}
)
def UpperCamelCase_ ( self : str ,A : Any ,A : Any ,A : Tuple ,A : List[Any] ,A : Optional[Any] ):
# `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual
# embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has
# the sequence dimension of the text embedding only.
# (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`)
return True
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = LayoutLMvaModelTester(self )
__A = ConfigTester(self ,config_class=A ,hidden_size=37 )
def UpperCamelCase_ ( self : List[Any] ,A : int ,A : List[str] ,A : Dict=False ):
__A = copy.deepcopy(A )
if model_class in get_values(A ):
__A = {
k: v.unsqueeze(1 ).expand(-1 ,self.model_tester.num_choices ,-1 ).contiguous()
if isinstance(A ,torch.Tensor ) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(A ):
__A = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=A )
elif model_class in get_values(A ):
__A = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=A )
__A = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=A )
elif model_class in [
*get_values(A ),
]:
__A = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=A )
elif model_class in [
*get_values(A ),
]:
__A = torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=A ,)
return inputs_dict
def UpperCamelCase_ ( self : List[Any] ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : str ):
__A = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__A = type
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*A )
def UpperCamelCase_ ( self : str ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*A )
@slow
def UpperCamelCase_ ( self : Optional[int] ):
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = LayoutLMvaModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> Dict:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : Any ):
return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self : Dict ):
__A = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(A )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="pt" ).pixel_values.to(A )
__A = torch.tensor([[1, 2]] )
__A = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 )
# forward pass
__A = model(
input_ids=input_ids.to(A ) ,bbox=bbox.to(A ) ,pixel_values=pixel_values.to(A ) ,)
# verify the logits
__A = torch.Size((1, 1_99, 7_68) )
self.assertEqual(outputs.last_hidden_state.shape ,A )
__A = torch.tensor(
[[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(A )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,A ,atol=1E-4 ) )
| 55 | 1 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = ShapEPipeline
snake_case_ = ["prompt"]
snake_case_ = ["prompt"]
snake_case_ = [
"num_images_per_prompt",
"num_inference_steps",
"generator",
"latents",
"guidance_scale",
"frame_size",
"output_type",
"return_dict",
]
snake_case_ = False
@property
def UpperCamelCase_ ( self : List[Any] ):
return 32
@property
def UpperCamelCase_ ( self : Optional[int] ):
return 32
@property
def UpperCamelCase_ ( self : Tuple ):
return self.time_input_dim * 4
@property
def UpperCamelCase_ ( self : Union[str, Any] ):
return 8
@property
def UpperCamelCase_ ( self : Tuple ):
__A = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
return tokenizer
@property
def UpperCamelCase_ ( self : int ):
torch.manual_seed(0 )
__A = CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,)
return CLIPTextModelWithProjection(A )
@property
def UpperCamelCase_ ( self : List[Any] ):
torch.manual_seed(0 )
__A = {
"num_attention_heads": 2,
"attention_head_dim": 16,
"embedding_dim": self.time_input_dim,
"num_embeddings": 32,
"embedding_proj_dim": self.text_embedder_hidden_size,
"time_embed_dim": self.time_embed_dim,
"num_layers": 1,
"clip_embed_dim": self.time_input_dim * 2,
"additional_embeddings": 0,
"time_embed_act_fn": "gelu",
"norm_in_type": "layer",
"encoder_hid_proj_type": None,
"added_emb_type": None,
}
__A = PriorTransformer(**A )
return model
@property
def UpperCamelCase_ ( self : Union[str, Any] ):
torch.manual_seed(0 )
__A = {
"param_shapes": (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
"d_latent": self.time_input_dim,
"d_hidden": self.renderer_dim,
"n_output": 12,
"background": (
0.1,
0.1,
0.1,
),
}
__A = ShapERenderer(**A )
return model
def UpperCamelCase_ ( self : List[str] ):
__A = self.dummy_prior
__A = self.dummy_text_encoder
__A = self.dummy_tokenizer
__A = self.dummy_renderer
__A = HeunDiscreteScheduler(
beta_schedule="exp" ,num_train_timesteps=10_24 ,prediction_type="sample" ,use_karras_sigmas=A ,clip_sample=A ,clip_sample_range=1.0 ,)
__A = {
"prior": prior,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"renderer": renderer,
"scheduler": scheduler,
}
return components
def UpperCamelCase_ ( self : Dict ,A : Optional[Any] ,A : Any=0 ):
if str(A ).startswith("mps" ):
__A = torch.manual_seed(A )
else:
__A = torch.Generator(device=A ).manual_seed(A )
__A = {
"prompt": "horse",
"generator": generator,
"num_inference_steps": 1,
"frame_size": 32,
"output_type": "np",
}
return inputs
def UpperCamelCase_ ( self : List[str] ):
__A = "cpu"
__A = self.get_dummy_components()
__A = self.pipeline_class(**A )
__A = pipe.to(A )
pipe.set_progress_bar_config(disable=A )
__A = pipe(**self.get_dummy_inputs(A ) )
__A = output.images[0]
__A = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
__A = np.array(
[
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase_ ( self : Optional[Any] ):
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def UpperCamelCase_ ( self : int ):
__A = torch_device == "cpu"
__A = True
self._test_inference_batch_single_identical(
batch_size=2 ,test_max_difference=A ,relax_max_difference=A ,)
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.get_dummy_components()
__A = self.pipeline_class(**A )
__A = pipe.to(A )
pipe.set_progress_bar_config(disable=A )
__A = 1
__A = 2
__A = self.get_dummy_inputs(A )
for key in inputs.keys():
if key in self.batch_params:
__A = batch_size * [inputs[key]]
__A = pipe(**A ,num_images_per_prompt=A )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Dict ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self : Optional[int] ):
__A = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/shap_e/test_shap_e_np_out.npy" )
__A = ShapEPipeline.from_pretrained("openai/shap-e" )
__A = pipe.to(A )
pipe.set_progress_bar_config(disable=A )
__A = torch.Generator(device=A ).manual_seed(0 )
__A = pipe(
"a shark" ,generator=A ,guidance_scale=15.0 ,num_inference_steps=64 ,frame_size=64 ,output_type="np" ,).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(A ,A )
| 55 |
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Any ,A : List[str] ,A : str=7 ,A : Optional[Any]=3 ,A : Any=18 ,A : int=30 ,A : int=4_00 ,A : List[str]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=True ,A : Tuple=None ,A : Tuple=True ,A : Union[str, Any]=[0.5, 0.5, 0.5] ,A : str=[0.5, 0.5, 0.5] ,A : List[Any]=False ,):
__A = size if size is not None else {"height": 20, "width": 20}
__A = crop_size if crop_size is not None else {"height": 18, "width": 18}
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = min_resolution
__A = max_resolution
__A = do_resize
__A = size
__A = do_center_crop
__A = crop_size
__A = do_normalize
__A = image_mean
__A = image_std
__A = do_reduce_labels
def UpperCamelCase_ ( self : List[str] ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
__A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
__A = Image.open(dataset[0]["file"] )
__A = Image.open(dataset[1]["file"] )
return image, map
def UpperCAmelCase ( ) -> Optional[int]:
"""simple docstring"""
__A = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
__A = Image.open(ds[0]["file"] )
__A = Image.open(ds[1]["file"] )
__A = Image.open(ds[2]["file"] )
__A = Image.open(ds[3]["file"] )
return [imagea, imagea], [mapa, mapa]
@require_torch
@require_vision
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = BeitImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self : List[Any] ):
__A = BeitImageProcessingTester(self )
@property
def UpperCamelCase_ ( self : List[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self : int ):
__A = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A ,"do_resize" ) )
self.assertTrue(hasattr(A ,"size" ) )
self.assertTrue(hasattr(A ,"do_center_crop" ) )
self.assertTrue(hasattr(A ,"center_crop" ) )
self.assertTrue(hasattr(A ,"do_normalize" ) )
self.assertTrue(hasattr(A ,"image_mean" ) )
self.assertTrue(hasattr(A ,"image_std" ) )
def UpperCamelCase_ ( self : List[str] ):
__A = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size ,{"height": 20, "width": 20} )
self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} )
self.assertEqual(image_processor.do_reduce_labels ,A )
__A = self.image_processing_class.from_dict(
self.image_processor_dict ,size=42 ,crop_size=84 ,reduce_labels=A )
self.assertEqual(image_processor.size ,{"height": 42, "width": 42} )
self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} )
self.assertEqual(image_processor.do_reduce_labels ,A )
def UpperCamelCase_ ( self : List[Any] ):
pass
def UpperCamelCase_ ( self : Optional[int] ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A ,Image.Image )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : List[str] ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A )
for image in image_inputs:
self.assertIsInstance(A ,np.ndarray )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : int ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A )
for image in image_inputs:
self.assertIsInstance(A ,torch.Tensor )
# Test not batched input
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
# Test batched
__A = image_processing(A ,return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
def UpperCamelCase_ ( self : str ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A )
__A = []
for image in image_inputs:
self.assertIsInstance(A ,torch.Tensor )
maps.append(torch.zeros(image.shape[-2:] ).long() )
# Test not batched input
__A = image_processing(image_inputs[0] ,maps[0] ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
1,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
# Test batched
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
# Test not batched input (PIL images)
__A , __A = prepare_semantic_single_inputs()
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
1,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
# Test batched input (PIL images)
__A , __A = prepare_semantic_batch_inputs()
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape ,(
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(
encoding["labels"].shape ,(
2,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) ,)
self.assertEqual(encoding["labels"].dtype ,torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
def UpperCamelCase_ ( self : Dict ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
__A , __A = prepare_semantic_single_inputs()
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 1_50 )
__A = True
__A = image_processing(A ,A ,return_tensors="pt" )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 2_55 )
| 55 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE :Optional[Any] = {
'configuration_lxmert': ['LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LxmertConfig'],
'tokenization_lxmert': ['LxmertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Tuple = ['LxmertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :List[str] = [
'LxmertEncoder',
'LxmertForPreTraining',
'LxmertForQuestionAnswering',
'LxmertModel',
'LxmertPreTrainedModel',
'LxmertVisualFeatureEncoder',
'LxmertXLayer',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Optional[Any] = [
'TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFLxmertForPreTraining',
'TFLxmertMainLayer',
'TFLxmertModel',
'TFLxmertPreTrainedModel',
'TFLxmertVisualFeatureEncoder',
]
if TYPE_CHECKING:
from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig
from .tokenization_lxmert import LxmertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_lxmert_fast import LxmertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_lxmert import (
LxmertEncoder,
LxmertForPreTraining,
LxmertForQuestionAnswering,
LxmertModel,
LxmertPreTrainedModel,
LxmertVisualFeatureEncoder,
LxmertXLayer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_lxmert import (
TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLxmertForPreTraining,
TFLxmertMainLayer,
TFLxmertModel,
TFLxmertPreTrainedModel,
TFLxmertVisualFeatureEncoder,
)
else:
import sys
SCREAMING_SNAKE_CASE :List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 55 |
from numpy import exp, pi, sqrt
def UpperCAmelCase ( a_ , a_ = 0.0 , a_ = 1.0 ) -> int:
"""simple docstring"""
return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 55 | 1 |
from queue import PriorityQueue
from typing import Any
import numpy as np
def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ) -> float | int:
"""simple docstring"""
for nxt, d in graph[v]:
if nxt in visited_forward:
continue
__A = cst_fwd.get(a_ , np.inf )
__A = cst_fwd[v] + d
if new_cost_f < old_cost_f:
queue.put((new_cost_f, nxt) )
__A = new_cost_f
__A = v
if nxt in visited_backward:
if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance:
__A = cst_fwd[v] + d + cst_bwd[nxt]
return shortest_distance
def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int:
"""simple docstring"""
__A = -1
__A = set()
__A = set()
__A = {source: 0}
__A = {destination: 0}
__A = {source: None}
__A = {destination: None}
__A = PriorityQueue()
__A = PriorityQueue()
__A = np.inf
queue_forward.put((0, source) )
queue_backward.put((0, destination) )
if source == destination:
return 0
while not queue_forward.empty() and not queue_backward.empty():
__A , __A = queue_forward.get()
visited_forward.add(a_ )
__A , __A = queue_backward.get()
visited_backward.add(a_ )
__A = pass_and_relaxation(
a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , )
__A = pass_and_relaxation(
a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , )
if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance:
break
if shortest_distance != np.inf:
__A = shortest_distance
return shortest_path_distance
SCREAMING_SNAKE_CASE :List[str] = {
'B': [['C', 1]],
'C': [['D', 1]],
'D': [['F', 1]],
'E': [['B', 1], ['G', 2]],
'F': [],
'G': [['F', 1]],
}
SCREAMING_SNAKE_CASE :str = {
'B': [['E', 1]],
'C': [['B', 1]],
'D': [['C', 1]],
'F': [['D', 1], ['G', 1]],
'E': [[None, np.inf]],
'G': [['E', 2]],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
| 55 |
import gc
import unittest
from diffusers import FlaxStableDiffusionInpaintPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Tuple ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def UpperCamelCase_ ( self : Optional[int] ):
__A = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/sd2-inpaint/init_image.png" )
__A = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" )
__A = "xvjiarui/stable-diffusion-2-inpainting"
__A , __A = FlaxStableDiffusionInpaintPipeline.from_pretrained(A ,safety_checker=A )
__A = "Face of a yellow cat, high resolution, sitting on a park bench"
__A = jax.random.PRNGKey(0 )
__A = 50
__A = jax.device_count()
__A = num_samples * [prompt]
__A = num_samples * [init_image]
__A = num_samples * [mask_image]
__A , __A , __A = pipeline.prepare_inputs(A ,A ,A )
# shard inputs and rng
__A = replicate(A )
__A = jax.random.split(A ,jax.device_count() )
__A = shard(A )
__A = shard(A )
__A = shard(A )
__A = pipeline(
A ,A ,A ,A ,A ,A ,jit=A )
__A = output.images.reshape(A ,5_12 ,5_12 ,3 )
__A = images[0, 2_53:2_56, 2_53:2_56, -1]
__A = jnp.asarray(jax.device_get(image_slice.flatten() ) )
__A = jnp.array(
[0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] )
print(f'''output_slice: {output_slice}''' )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
| 55 | 1 |
import inspect
import tempfile
import unittest
from huggingface_hub import hf_hub_download
from transformers import is_torch_available
from transformers.testing_utils import is_flaky, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
SCREAMING_SNAKE_CASE :Union[str, Any] = 1E-4
if is_torch_available():
import torch
from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel
from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder
@require_torch
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : List[Any] ,A : Any ,A : Optional[Any]=16 ,A : Optional[int]=13 ,A : int=7 ,A : int=14 ,A : Optional[Any]=10 ,A : Dict=19 ,A : Optional[Any]=5 ,A : Union[str, Any]=4 ,A : List[Any]=True ,A : Any=16 ,A : List[Any]=2 ,A : Any=4 ,A : Dict=4 ,A : str="gelu" ,A : int=0.1 ,A : List[Any]=0.1 ,A : str=[1, 2, 3, 4, 5] ,A : List[Any]=25 ,A : Optional[Any]=5 ,):
__A = d_model
__A = parent
__A = batch_size
__A = prediction_length
__A = context_length
__A = cardinality
__A = num_time_features
__A = lags_sequence
__A = embedding_dimension
__A = is_training
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = context_length
__A = prediction_length + label_length
__A = label_length
__A = moving_average
__A = autocorrelation_factor
def UpperCamelCase_ ( self : List[str] ):
return AutoformerConfig(
d_model=self.d_model ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,prediction_length=self.prediction_length ,context_length=self.context_length ,label_length=self.label_length ,lags_sequence=self.lags_sequence ,num_time_features=self.num_time_features ,num_static_categorical_features=1 ,cardinality=[self.cardinality] ,embedding_dimension=[self.embedding_dimension] ,moving_average=self.moving_average ,)
def UpperCamelCase_ ( self : Optional[Any] ,A : Optional[Any] ):
__A = config.context_length + max(config.lags_sequence )
__A = ids_tensor([self.batch_size, 1] ,config.cardinality[0] )
__A = floats_tensor([self.batch_size, _past_length, config.num_time_features] )
__A = floats_tensor([self.batch_size, _past_length] )
__A = floats_tensor([self.batch_size, _past_length] ) > 0.5
# decoder inputs
__A = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] )
__A = floats_tensor([self.batch_size, config.prediction_length] )
__A = {
"past_values": past_values,
"static_categorical_features": static_categorical_features,
"past_time_features": past_time_features,
"past_observed_mask": past_observed_mask,
"future_time_features": future_time_features,
"future_values": future_values,
}
return inputs_dict
def UpperCamelCase_ ( self : Optional[int] ):
__A = self.get_config()
__A = self.prepare_autoformer_inputs_dict(A )
return config, inputs_dict
def UpperCamelCase_ ( self : Optional[int] ):
__A , __A = self.prepare_config_and_inputs()
return config, inputs_dict
def UpperCamelCase_ ( self : Tuple ,A : Optional[Any] ,A : Optional[int] ):
__A = AutoformerModel(config=A ).to(A ).eval()
__A = model(**A )
__A = outputs.encoder_last_hidden_state
__A = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
__A = model.get_encoder()
encoder.save_pretrained(A )
__A = AutoformerEncoder.from_pretrained(A ).to(A )
__A , __A , __A , __A , __A = model.create_network_inputs(**A )
__A , __A = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] )
__A = torch.cat(
(transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) ,dim=-1 ,)
__A = encoder(inputs_embeds=A )[0]
self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 )
__A = (
torch.mean(transformer_inputs[:, : config.context_length, ...] ,dim=1 )
.unsqueeze(1 )
.repeat(1 ,config.prediction_length ,1 )
)
__A = torch.zeros(
[transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] ,device=enc_input.device ,)
__A = torch.cat(
(
torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) ,dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) ,dim=-1 ,)
__A = torch.cat(
(
torch.cat((trend_input[:, -config.label_length :, ...], mean) ,dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) ,dim=-1 ,)
with tempfile.TemporaryDirectory() as tmpdirname:
__A = model.get_decoder()
decoder.save_pretrained(A )
__A = AutoformerDecoder.from_pretrained(A ).to(A )
__A = decoder(
trend=A ,inputs_embeds=A ,encoder_hidden_states=A ,)[0]
self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 )
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else ()
snake_case_ = (AutoformerForPrediction,) if is_torch_available() else ()
snake_case_ = {"feature-extraction": AutoformerModel} if is_torch_available() else {}
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def UpperCamelCase_ ( self : List[str] ):
__A = AutoformerModelTester(self )
__A = ConfigTester(self ,config_class=A ,has_text_modality=A )
def UpperCamelCase_ ( self : Any ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self : Union[str, Any] ):
__A , __A = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
__A = model_class(A )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(A )
__A , __A = model_class.from_pretrained(A ,output_loading_info=A )
self.assertEqual(info["missing_keys"] ,[] )
def UpperCamelCase_ ( self : Dict ):
__A = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*A )
@unittest.skip(reason="Model has no tokens embeddings" )
def UpperCamelCase_ ( self : str ):
pass
def UpperCamelCase_ ( self : List[str] ):
__A = inspect.signature(getattr(A ,"forward" ) )
# The main input is the name of the argument after `self`
__A = list(model_signature.parameters.keys() )[1]
self.assertEqual(AutoformerModel.main_input_name ,A )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
__A = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__A = [*signature.parameters.keys()]
__A = [
"past_values",
"past_time_features",
"past_observed_mask",
"static_categorical_features",
"static_real_features",
"future_values",
"future_time_features",
]
if model.__class__.__name__ in ["AutoformerForPrediction"]:
expected_arg_names.append("future_observed_mask" )
expected_arg_names.extend(
[
"decoder_attention_mask",
"head_mask",
"decoder_head_mask",
"cross_attn_head_mask",
"encoder_outputs",
"past_key_values",
"output_hidden_states",
"output_attentions",
"use_cache",
"return_dict",
] )
self.assertListEqual(arg_names[: len(A )] ,A )
def UpperCamelCase_ ( self : str ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
__A = True
__A = getattr(self.model_tester ,"seq_length" ,A )
__A = getattr(self.model_tester ,"decoder_seq_length" ,A )
__A = getattr(self.model_tester ,"encoder_seq_length" ,A )
__A = getattr(self.model_tester ,"d_model" ,A )
__A = getattr(self.model_tester ,"num_attention_heads" ,A )
__A = d_model // num_attention_heads
for model_class in self.all_model_classes:
__A = True
__A = False
__A = True
__A = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
__A = model(**self._prepare_for_class(A ,A ) )
__A = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(A ) ,self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__A = True
__A = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
__A = model(**self._prepare_for_class(A ,A ) )
__A = outputs.encoder_attentions
self.assertEqual(len(A ) ,self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, encoder_seq_length, dim] ,)
__A = len(A )
__A = 7
if "last_hidden_state" in outputs:
correct_outlen += 1
if "trend" in outputs:
correct_outlen += 1
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
if "loss" in outputs:
correct_outlen += 1
if "params" in outputs:
correct_outlen += 1
self.assertEqual(A ,A )
# decoder attentions
__A = outputs.decoder_attentions
self.assertIsInstance(A ,(list, tuple) )
self.assertEqual(len(A ) ,self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, decoder_seq_length, dim] ,)
# cross attentions
__A = outputs.cross_attentions
self.assertIsInstance(A ,(list, tuple) )
self.assertEqual(len(A ) ,self.model_tester.num_hidden_layers )
self.assertListEqual(
list(cross_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, decoder_seq_length, dim] ,)
# Check attention is always last and order is fine
__A = True
__A = True
__A = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
__A = model(**self._prepare_for_class(A ,A ) )
self.assertEqual(out_len + 2 ,len(A ) )
__A = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(A ) ,self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, encoder_seq_length, dim] ,)
@is_flaky()
def UpperCamelCase_ ( self : Dict ):
super().test_retain_grad_hidden_states_attentions()
def UpperCAmelCase ( a_="train-batch.pt" ) -> List[Any]:
"""simple docstring"""
__A = hf_hub_download(repo_id="hf-internal-testing/tourism-monthly-batch" , filename=a_ , repo_type="dataset" )
__A = torch.load(a_ , map_location=a_ )
return batch
@require_torch
@slow
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Tuple ):
__A = AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(A )
__A = prepare_batch()
with torch.no_grad():
__A = model(
past_values=batch["past_values"] ,past_time_features=batch["past_time_features"] ,past_observed_mask=batch["past_observed_mask"] ,static_categorical_features=batch["static_categorical_features"] ,future_values=batch["future_values"] ,future_time_features=batch["future_time_features"] ,)[0]
__A = torch.Size(
(64, model.config.prediction_length + model.config.label_length, model.config.feature_size) )
self.assertEqual(output.shape ,A )
__A = torch.tensor(
[[0.35_93, -1.33_98, 0.63_30], [0.22_79, 1.53_96, -0.17_92], [0.04_50, 1.32_25, -0.23_35]] ,device=A )
self.assertTrue(torch.allclose(output[0, :3, :3] ,A ,atol=A ) )
def UpperCamelCase_ ( self : Any ):
__A = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(A )
__A = prepare_batch("val-batch.pt" )
with torch.no_grad():
__A = model(
past_values=batch["past_values"] ,past_time_features=batch["past_time_features"] ,past_observed_mask=batch["past_observed_mask"] ,static_categorical_features=batch["static_categorical_features"] ,).encoder_last_hidden_state
__A = torch.Size((64, model.config.context_length, model.config.d_model) )
self.assertEqual(output.shape ,A )
__A = torch.tensor(
[[-0.07_34, -0.90_36, 0.83_58], [4.71_86, 2.41_13, 1.95_81], [1.79_53, 2.35_58, 1.29_70]] ,device=A )
self.assertTrue(torch.allclose(output[0, :3, :3] ,A ,atol=A ) )
def UpperCamelCase_ ( self : Tuple ):
__A = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(A )
__A = prepare_batch("val-batch.pt" )
with torch.no_grad():
__A = model.generate(
static_categorical_features=batch["static_categorical_features"] ,past_time_features=batch["past_time_features"] ,past_values=batch["past_values"] ,future_time_features=batch["future_time_features"] ,past_observed_mask=batch["past_observed_mask"] ,)
__A = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) )
self.assertEqual(outputs.sequences.shape ,A )
__A = torch.tensor([31_30.67_63, 40_56.52_93, 70_53.07_86] ,device=A )
__A = outputs.sequences.mean(dim=1 )
self.assertTrue(torch.allclose(mean_prediction[0, -3:] ,A ,rtol=1E-1 ) )
| 55 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import GLPNImageProcessor
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Any ,A : Optional[int] ,A : Optional[int]=7 ,A : Optional[Any]=3 ,A : List[str]=18 ,A : Any=30 ,A : Tuple=4_00 ,A : Union[str, Any]=True ,A : Optional[Any]=32 ,A : Union[str, Any]=True ,):
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = min_resolution
__A = max_resolution
__A = do_resize
__A = size_divisor
__A = do_rescale
def UpperCamelCase_ ( self : Union[str, Any] ):
return {
"do_resize": self.do_resize,
"size_divisor": self.size_divisor,
"do_rescale": self.do_rescale,
}
@require_torch
@require_vision
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = GLPNImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self : int ):
__A = GLPNImageProcessingTester(self )
@property
def UpperCamelCase_ ( self : Optional[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self : Any ):
__A = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A ,"do_resize" ) )
self.assertTrue(hasattr(A ,"size_divisor" ) )
self.assertTrue(hasattr(A ,"resample" ) )
self.assertTrue(hasattr(A ,"do_rescale" ) )
def UpperCamelCase_ ( self : str ):
pass
def UpperCamelCase_ ( self : Dict ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A )
for image in image_inputs:
self.assertIsInstance(A ,Image.Image )
# Test not batched input (GLPNImageProcessor doesn't support batching)
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
def UpperCamelCase_ ( self : Optional[Any] ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A )
for image in image_inputs:
self.assertIsInstance(A ,np.ndarray )
# Test not batched input (GLPNImageProcessor doesn't support batching)
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
def UpperCamelCase_ ( self : int ):
# Initialize image_processing
__A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A )
for image in image_inputs:
self.assertIsInstance(A ,torch.Tensor )
# Test not batched input (GLPNImageProcessor doesn't support batching)
__A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
| 55 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE :List[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :Optional[int] = {
'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json',
'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json',
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = "falcon"
snake_case_ = ["past_key_values"]
def __init__( self : Optional[int] ,A : Tuple=6_50_24 ,A : int=45_44 ,A : int=32 ,A : str=71 ,A : Optional[int]=1E-5 ,A : List[Any]=0.02 ,A : str=True ,A : str=0.0 ,A : Any=0.0 ,A : Any=None ,A : List[str]=False ,A : Dict=False ,A : Union[str, Any]=True ,A : List[Any]=True ,A : Optional[int]=False ,A : Optional[Any]=11 ,A : str=11 ,**A : Union[str, Any] ,):
__A = vocab_size
# Backward compatibility with n_embed kwarg
__A = kwargs.pop("n_embed" ,A )
__A = hidden_size if n_embed is None else n_embed
__A = num_hidden_layers
__A = num_attention_heads
__A = layer_norm_epsilon
__A = initializer_range
__A = use_cache
__A = hidden_dropout
__A = attention_dropout
__A = bos_token_id
__A = eos_token_id
__A = num_attention_heads if num_kv_heads is None else num_kv_heads
__A = alibi
__A = new_decoder_architecture
__A = multi_query # Ignored when new_decoder_architecture is True
__A = parallel_attn
__A = bias
super().__init__(bos_token_id=A ,eos_token_id=A ,**A )
@property
def UpperCamelCase_ ( self : Optional[int] ):
return self.hidden_size // self.num_attention_heads
@property
def UpperCamelCase_ ( self : List[str] ):
return not self.alibi
| 55 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=__SCREAMING_SNAKE_CASE )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
snake_case_ = Features({"image": Image()} )
snake_case_ = Features({"labels": ClassLabel} )
snake_case_ = "image"
snake_case_ = "labels"
def UpperCamelCase_ ( self : Optional[Any] ,A : Tuple ):
if self.label_column not in features:
raise ValueError(f'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] ,A ):
raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' )
__A = copy.deepcopy(self )
__A = self.label_schema.copy()
__A = features[self.label_column]
__A = label_schema
return task_template
@property
def UpperCamelCase_ ( self : Any ):
return {
self.image_column: "image",
self.label_column: "labels",
}
| 55 | 1 |
import argparse
import os
import numpy as np
import tensorflow as tf
import torch
from transformers import BertModel
def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]:
"""simple docstring"""
__A = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value")
__A = (
("layer.", "layer_"),
("word_embeddings.weight", "word_embeddings"),
("position_embeddings.weight", "position_embeddings"),
("token_type_embeddings.weight", "token_type_embeddings"),
(".", "/"),
("LayerNorm/weight", "LayerNorm/gamma"),
("LayerNorm/bias", "LayerNorm/beta"),
("weight", "kernel"),
)
if not os.path.isdir(a_ ):
os.makedirs(a_ )
__A = model.state_dict()
def to_tf_var_name(a_ ):
for patt, repl in iter(a_ ):
__A = name.replace(a_ , a_ )
return F'''bert/{name}'''
def create_tf_var(a_ , a_ , a_ ):
__A = tf.dtypes.as_dtype(tensor.dtype )
__A = tf.get_variable(dtype=a_ , shape=tensor.shape , name=a_ , initializer=tf.zeros_initializer() )
session.run(tf.variables_initializer([tf_var] ) )
session.run(a_ )
return tf_var
tf.reset_default_graph()
with tf.Session() as session:
for var_name in state_dict:
__A = to_tf_var_name(a_ )
__A = state_dict[var_name].numpy()
if any(x in var_name for x in tensors_to_transpose ):
__A = torch_tensor.T
__A = create_tf_var(tensor=a_ , name=a_ , session=a_ )
tf.keras.backend.set_value(a_ , a_ )
__A = session.run(a_ )
print(F'''Successfully created {tf_name}: {np.allclose(a_ , a_ )}''' )
__A = tf.train.Saver(tf.trainable_variables() )
saver.save(a_ , os.path.join(a_ , model_name.replace("-" , "_" ) + ".ckpt" ) )
def UpperCAmelCase ( a_=None ) -> List[Any]:
"""simple docstring"""
__A = argparse.ArgumentParser()
parser.add_argument("--model_name" , type=a_ , required=a_ , help="model name e.g. bert-base-uncased" )
parser.add_argument(
"--cache_dir" , type=a_ , default=a_ , required=a_ , help="Directory containing pytorch model" )
parser.add_argument("--pytorch_model_path" , type=a_ , required=a_ , help="/path/to/<pytorch-model-name>.bin" )
parser.add_argument("--tf_cache_dir" , type=a_ , required=a_ , help="Directory in which to save tensorflow model" )
__A = parser.parse_args(a_ )
__A = BertModel.from_pretrained(
pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , )
convert_pytorch_checkpoint_to_tf(model=a_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name )
if __name__ == "__main__":
main()
| 55 |
from math import sqrt
def UpperCAmelCase ( a_ ) -> bool:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number >= 0
), "'number' must been an int and positive"
__A = True
# 0 and 1 are none primes.
if number <= 1:
__A = False
for divisor in range(2 , int(round(sqrt(a_ ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
__A = False
break
# precondition
assert isinstance(a_ , a_ ), "'status' must been from type bool"
return status
def UpperCAmelCase ( a_ ) -> Any:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
__A = list(range(2 , n + 1 ) )
__A = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(a_ ) ):
for j in range(i + 1 , len(a_ ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
__A = 0
# filters actual prime numbers.
__A = [x for x in begin_list if x != 0]
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type list"
return ans
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n > 2), "'N' must been an int and > 2"
__A = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(a_ ):
ans.append(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type list"
return ans
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and number >= 0, "'number' must been an int and >= 0"
__A = [] # this list will be returns of the function.
# potential prime number factors.
__A = 2
__A = number
if number == 0 or number == 1:
ans.append(a_ )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(a_ ):
while quotient != 1:
if is_prime(a_ ) and (quotient % factor == 0):
ans.append(a_ )
quotient /= factor
else:
factor += 1
else:
ans.append(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type list"
return ans
def UpperCAmelCase ( a_ ) -> Any:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
__A = 0
# prime factorization of 'number'
__A = prime_factorization(a_ )
__A = max(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type int"
return ans
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number >= 0
), "'number' bust been an int and >= 0"
__A = 0
# prime factorization of 'number'
__A = prime_factorization(a_ )
__A = min(a_ )
# precondition
assert isinstance(a_ , a_ ), "'ans' must been from type int"
return ans
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
assert isinstance(a_ , a_ ), "'number' must been an int"
assert isinstance(number % 2 == 0 , a_ ), "compare bust been from type bool"
return number % 2 == 0
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
assert isinstance(a_ , a_ ), "'number' must been an int"
assert isinstance(number % 2 != 0 , a_ ), "compare bust been from type bool"
return number % 2 != 0
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
assert (
isinstance(a_ , a_ ) and (number > 2) and is_even(a_ )
), "'number' must been an int, even and > 2"
__A = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
__A = get_prime_numbers(a_ )
__A = len(a_ )
# run variable for while-loops.
__A = 0
__A = None
# exit variable. for break up the loops
__A = True
while i < len_pn and loop:
__A = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
__A = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(a_ , a_ )
and (len(a_ ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def UpperCAmelCase ( a_ , a_ ) -> Optional[Any]:
"""simple docstring"""
assert (
isinstance(a_ , a_ )
and isinstance(a_ , a_ )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
__A = 0
while numbera != 0:
__A = numbera % numbera
__A = numbera
__A = rest
# precondition
assert isinstance(a_ , a_ ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def UpperCAmelCase ( a_ , a_ ) -> List[str]:
"""simple docstring"""
assert (
isinstance(a_ , a_ )
and isinstance(a_ , a_ )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
__A = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
__A = prime_factorization(a_ )
__A = prime_factorization(a_ )
elif numbera == 1 or numbera == 1:
__A = []
__A = []
__A = max(a_ , a_ )
__A = 0
__A = 0
__A = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
__A = prime_fac_a.count(a_ )
__A = prime_fac_a.count(a_ )
for _ in range(max(a_ , a_ ) ):
ans *= n
else:
__A = prime_fac_a.count(a_ )
for _ in range(a_ ):
ans *= n
done.append(a_ )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
__A = prime_fac_a.count(a_ )
for _ in range(a_ ):
ans *= n
done.append(a_ )
# precondition
assert isinstance(a_ , a_ ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 0), "'number' must been a positive int"
__A = 0
__A = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(a_ ):
ans += 1
# precondition
assert isinstance(a_ , a_ ) and is_prime(
a_ ), "'ans' must been a prime number and from type int"
return ans
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
assert (
is_prime(a_ ) and is_prime(a_ ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
__A = p_number_a + 1 # jump to the next number
__A = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(a_ ):
number += 1
while number < p_number_a:
ans.append(a_ )
number += 1
# fetch the next prime number.
while not is_prime(a_ ):
number += 1
# precondition
assert (
isinstance(a_ , a_ )
and ans[0] != p_number_a
and ans[len(a_ ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 1), "'n' must been int and >= 1"
__A = [] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(a_ )
# precondition
assert ans[0] == 1 and ans[len(a_ ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def UpperCAmelCase ( a_ ) -> Dict:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (
number > 1
), "'number' must been an int and >= 1"
__A = get_divisors(a_ )
# precondition
assert (
isinstance(a_ , a_ )
and (divisors[0] == 1)
and (divisors[len(a_ ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def UpperCAmelCase ( a_ , a_ ) -> str:
"""simple docstring"""
assert (
isinstance(a_ , a_ )
and isinstance(a_ , a_ )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
__A = gcd(abs(a_ ) , abs(a_ ) )
# precondition
assert (
isinstance(a_ , a_ )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been a int and >= 0"
__A = 1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
assert isinstance(a_ , a_ ) and (n >= 0), "'n' must been an int and >= 0"
__A = 0
__A = 1
__A = 1 # this will be return
for _ in range(n - 1 ):
__A = ans
ans += fiba
__A = tmp
return ans
| 55 | 1 |
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(A ,"width_multiplier" ) )
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : int ,A : Optional[int] ,A : int=13 ,A : int=64 ,A : List[Any]=2 ,A : List[Any]=3 ,A : List[Any]="swish" ,A : Any=3 ,A : Optional[Any]=32 ,A : Union[str, Any]=0.1 ,A : Union[str, Any]=0.02 ,A : Any=True ,A : Optional[Any]=True ,A : List[Any]=10 ,A : Union[str, Any]=None ,A : Any=0.25 ,A : int=0.0 ,A : Tuple=0.0 ,):
__A = parent
__A = batch_size
__A = image_size
__A = patch_size
__A = num_channels
__A = make_divisible(5_12 * width_multiplier ,divisor=8 )
__A = hidden_act
__A = conv_kernel_size
__A = output_stride
__A = classifier_dropout_prob
__A = use_labels
__A = is_training
__A = num_labels
__A = initializer_range
__A = scope
__A = width_multiplier
__A = ffn_dropout
__A = attn_dropout
def UpperCamelCase_ ( self : List[Any] ):
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.num_labels )
__A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels )
__A = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase_ ( self : Tuple ):
return MobileViTVaConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_act=self.hidden_act ,conv_kernel_size=self.conv_kernel_size ,output_stride=self.output_stride ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,width_multiplier=self.width_multiplier ,ffn_dropout=self.ffn_dropout_prob ,attn_dropout=self.attn_dropout_prob ,)
def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,A : List[str] ,A : Optional[Any] ,A : List[str] ):
__A = MobileViTVaModel(config=A )
model.to(A )
model.eval()
__A = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) ,)
def UpperCamelCase_ ( self : List[Any] ,A : Dict ,A : str ,A : Any ,A : Tuple ):
__A = self.num_labels
__A = MobileViTVaForImageClassification(A )
model.to(A )
model.eval()
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : Dict ,A : str ,A : Tuple ,A : int ,A : Dict ):
__A = self.num_labels
__A = MobileViTVaForSemanticSegmentation(A )
model.to(A )
model.eval()
__A = model(A )
self.parent.assertEqual(
result.logits.shape ,(
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) ,)
__A = model(A ,labels=A )
self.parent.assertEqual(
result.logits.shape ,(
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) ,)
def UpperCamelCase_ ( self : Optional[int] ):
__A = self.prepare_config_and_inputs()
__A , __A , __A , __A = config_and_inputs
__A = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
snake_case_ = (
{
"feature-extraction": MobileViTVaModel,
"image-classification": MobileViTVaForImageClassification,
"image-segmentation": MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def UpperCamelCase_ ( self : Dict ):
__A = MobileViTVaModelTester(self )
__A = MobileViTVaConfigTester(self ,config_class=A ,has_text_modality=A )
def UpperCamelCase_ ( self : Optional[Any] ):
self.config_tester.run_common_tests()
@unittest.skip(reason="MobileViTV2 does not use inputs_embeds" )
def UpperCamelCase_ ( self : List[Any] ):
pass
@unittest.skip(reason="MobileViTV2 does not support input and output embeddings" )
def UpperCamelCase_ ( self : Union[str, Any] ):
pass
@unittest.skip(reason="MobileViTV2 does not output attentions" )
def UpperCamelCase_ ( self : Union[str, Any] ):
pass
@require_torch_multi_gpu
@unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." )
def UpperCamelCase_ ( self : Any ):
pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def UpperCamelCase_ ( self : Union[str, Any] ):
pass
def UpperCamelCase_ ( self : Any ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
__A = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__A = [*signature.parameters.keys()]
__A = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,A )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : List[Any] ):
def check_hidden_states_output(A : Union[str, Any] ,A : int ,A : List[Any] ):
__A = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
__A = model(**self._prepare_for_class(A ,A ) )
__A = outputs.hidden_states
__A = 5
self.assertEqual(len(A ) ,A )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
__A = 2
for i in range(len(A ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) ,[self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] ,)
divisor *= 2
self.assertEqual(self.model_tester.output_stride ,divisor // 2 )
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = True
check_hidden_states_output(A ,A ,A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__A = True
check_hidden_states_output(A ,A ,A )
def UpperCamelCase_ ( self : Optional[int] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
def UpperCamelCase_ ( self : List[str] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*A )
@slow
def UpperCamelCase_ ( self : List[Any] ):
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = MobileViTVaModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> Optional[int]:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : List[Any] ):
return (
MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" )
if is_vision_available()
else None
)
@slow
def UpperCamelCase_ ( self : Any ):
__A = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to(
A )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="pt" ).to(A )
# forward pass
with torch.no_grad():
__A = model(**A )
# verify the logits
__A = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape ,A )
__A = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self : List[str] ):
__A = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
__A = model.to(A )
__A = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="pt" ).to(A )
# forward pass
with torch.no_grad():
__A = model(**A )
__A = outputs.logits
# verify the logits
__A = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape ,A )
__A = torch.tensor(
[
[[7.08_63, 7.15_25, 6.82_01], [6.69_31, 6.87_70, 6.89_33], [6.29_78, 7.03_66, 6.96_36]],
[[-3.71_34, -3.67_12, -3.66_75], [-3.58_25, -3.35_49, -3.47_77], [-3.34_35, -3.39_79, -3.28_57]],
[[-2.93_29, -2.80_03, -2.73_69], [-3.05_64, -2.47_80, -2.02_07], [-2.68_89, -1.92_98, -1.76_40]],
] ,device=A ,)
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,A ,atol=1E-4 ) )
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
__A = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
__A = model.to(A )
__A = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="pt" ).to(A )
# forward pass
with torch.no_grad():
__A = model(**A )
__A = outputs.logits.detach().cpu()
__A = image_processor.post_process_semantic_segmentation(outputs=A ,target_sizes=[(50, 60)] )
__A = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape ,A )
__A = image_processor.post_process_semantic_segmentation(outputs=A )
__A = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape ,A )
| 55 |
import os
def UpperCAmelCase ( ) -> Any:
"""simple docstring"""
__A = os.path.dirname(os.path.realpath(a_ ) )
__A = os.path.join(a_ , "triangle.txt" )
with open(a_ ) as f:
__A = f.readlines()
__A = []
for line in triangle:
__A = []
for number in line.strip().split(" " ):
numbers_from_line.append(int(a_ ) )
a.append(a_ )
for i in range(1 , len(a_ ) ):
for j in range(len(a[i] ) ):
__A = a[i - 1][j] if j != len(a[i - 1] ) else 0
__A = a[i - 1][j - 1] if j > 0 else 0
a[i][j] += max(a_ , a_ )
return max(a[-1] )
if __name__ == "__main__":
print(solution())
| 55 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE :Any = {
'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Any = [
'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST',
'PegasusXForConditionalGeneration',
'PegasusXModel',
'PegasusXPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 55 |
import re
from flax.core.frozen_dict import freeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.experimental import PartitionSpec as P
# Sentinels
SCREAMING_SNAKE_CASE :Union[str, Any] = object()
# For specifying empty leaf dict `{}`
SCREAMING_SNAKE_CASE :List[str] = object()
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
__A = tuple((re.compile(x + "$" ) for x in qs) )
for i in range(len(a_ ) - len(a_ ) + 1 ):
__A = [x.match(a_ ) for x, y in zip(a_ , ks[i:] )]
if matches and all(a_ ):
return True
return False
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
def replace(a_ , a_ ):
for rule, replacement in rules:
if _match(a_ , a_ ):
return replacement
return val
return replace
def UpperCAmelCase ( ) -> int:
"""simple docstring"""
return [
# embeddings
(("transformer", "wpe", "embedding"), P("mp" , a_ )),
(("transformer", "wte", "embedding"), P("mp" , a_ )),
# atention
(("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a_ , "mp" )),
(("attention", "out_proj", "kernel"), P("mp" , a_ )),
(("attention", "out_proj", "bias"), None),
# mlp
(("mlp", "c_fc", "kernel"), P(a_ , "mp" )),
(("mlp", "c_fc", "bias"), P("mp" )),
(("mlp", "c_proj", "kernel"), P("mp" , a_ )),
(("mlp", "c_proj", "bias"), None),
# layer norms
((r"ln_\d+", "bias"), None),
((r"\d+", r"ln_\d+", "scale"), None),
(("ln_f", "bias"), None),
(("ln_f", "scale"), None),
]
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
__A = _get_partition_rules()
__A = _replacement_rules(a_ )
__A = {k: _unmatched for k in flatten_dict(a_ )}
__A = {k: replace(a_ , a_ ) for k, v in initd.items()}
assert _unmatched not in result.values(), "Incomplete partition spec."
return freeze(unflatten_dict(a_ ) )
| 55 | 1 |
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = (UniPCMultistepScheduler,)
snake_case_ = (("num_inference_steps", 25),)
def UpperCamelCase_ ( self : int ,**A : List[Any] ):
__A = {
"num_train_timesteps": 10_00,
"beta_start": 0.00_01,
"beta_end": 0.02,
"beta_schedule": "linear",
"solver_order": 2,
"solver_type": "bh2",
}
config.update(**A )
return config
def UpperCamelCase_ ( self : List[Any] ,A : Dict=0 ,**A : List[Any] ):
__A = dict(self.forward_default_kwargs )
__A = kwargs.pop("num_inference_steps" ,A )
__A = self.dummy_sample
__A = 0.1 * sample
__A = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
__A = self.get_scheduler_config(**A )
__A = scheduler_class(**A )
scheduler.set_timesteps(A )
# copy over dummy past residuals
__A = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(A )
__A = scheduler_class.from_pretrained(A )
new_scheduler.set_timesteps(A )
# copy over dummy past residuals
__A = dummy_past_residuals[: new_scheduler.config.solver_order]
__A , __A = sample, sample
for t in range(A ,time_step + scheduler.config.solver_order + 1 ):
__A = scheduler.step(A ,A ,A ,**A ).prev_sample
__A = new_scheduler.step(A ,A ,A ,**A ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase_ ( self : str ,A : Optional[Any]=0 ,**A : Union[str, Any] ):
__A = dict(self.forward_default_kwargs )
__A = kwargs.pop("num_inference_steps" ,A )
__A = self.dummy_sample
__A = 0.1 * sample
__A = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
__A = self.get_scheduler_config()
__A = scheduler_class(**A )
scheduler.set_timesteps(A )
# copy over dummy past residuals (must be after setting timesteps)
__A = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(A )
__A = scheduler_class.from_pretrained(A )
# copy over dummy past residuals
new_scheduler.set_timesteps(A )
# copy over dummy past residual (must be after setting timesteps)
__A = dummy_past_residuals[: new_scheduler.config.solver_order]
__A = scheduler.step(A ,A ,A ,**A ).prev_sample
__A = new_scheduler.step(A ,A ,A ,**A ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase_ ( self : Union[str, Any] ,A : Tuple=None ,**A : Tuple ):
if scheduler is None:
__A = self.scheduler_classes[0]
__A = self.get_scheduler_config(**A )
__A = scheduler_class(**A )
__A = self.scheduler_classes[0]
__A = self.get_scheduler_config(**A )
__A = scheduler_class(**A )
__A = 10
__A = self.dummy_model()
__A = self.dummy_sample_deter
scheduler.set_timesteps(A )
for i, t in enumerate(scheduler.timesteps ):
__A = model(A ,A )
__A = scheduler.step(A ,A ,A ).prev_sample
return sample
def UpperCamelCase_ ( self : str ):
__A = dict(self.forward_default_kwargs )
__A = kwargs.pop("num_inference_steps" ,A )
for scheduler_class in self.scheduler_classes:
__A = self.get_scheduler_config()
__A = scheduler_class(**A )
__A = self.dummy_sample
__A = 0.1 * sample
if num_inference_steps is not None and hasattr(A ,"set_timesteps" ):
scheduler.set_timesteps(A )
elif num_inference_steps is not None and not hasattr(A ,"set_timesteps" ):
__A = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
__A = [residual + 0.2, residual + 0.15, residual + 0.10]
__A = dummy_past_residuals[: scheduler.config.solver_order]
__A = scheduler.timesteps[5]
__A = scheduler.timesteps[6]
__A = scheduler.step(A ,A ,A ,**A ).prev_sample
__A = scheduler.step(A ,A ,A ,**A ).prev_sample
self.assertEqual(output_a.shape ,sample.shape )
self.assertEqual(output_a.shape ,output_a.shape )
def UpperCamelCase_ ( self : Dict ):
# make sure that iterating over schedulers with same config names gives same results
# for defaults
__A = UniPCMultistepScheduler(**self.get_scheduler_config() )
__A = self.full_loop(scheduler=A )
__A = torch.mean(torch.abs(A ) )
assert abs(result_mean.item() - 0.24_64 ) < 1E-3
__A = DPMSolverSinglestepScheduler.from_config(scheduler.config )
__A = DEISMultistepScheduler.from_config(scheduler.config )
__A = DPMSolverMultistepScheduler.from_config(scheduler.config )
__A = UniPCMultistepScheduler.from_config(scheduler.config )
__A = self.full_loop(scheduler=A )
__A = torch.mean(torch.abs(A ) )
assert abs(result_mean.item() - 0.24_64 ) < 1E-3
def UpperCamelCase_ ( self : int ):
for timesteps in [25, 50, 1_00, 9_99, 10_00]:
self.check_over_configs(num_train_timesteps=A )
def UpperCamelCase_ ( self : Union[str, Any] ):
self.check_over_configs(thresholding=A )
for order in [1, 2, 3]:
for solver_type in ["bh1", "bh2"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=A ,prediction_type=A ,sample_max_value=A ,solver_order=A ,solver_type=A ,)
def UpperCamelCase_ ( self : Union[str, Any] ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=A )
def UpperCamelCase_ ( self : int ):
for solver_type in ["bh1", "bh2"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=A ,solver_type=A ,prediction_type=A ,)
__A = self.full_loop(
solver_order=A ,solver_type=A ,prediction_type=A ,)
assert not torch.isnan(A ).any(), "Samples have nan numbers"
def UpperCamelCase_ ( self : int ):
self.check_over_configs(lower_order_final=A )
self.check_over_configs(lower_order_final=A )
def UpperCamelCase_ ( self : List[str] ):
for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]:
self.check_over_forward(num_inference_steps=A ,time_step=0 )
def UpperCamelCase_ ( self : Optional[int] ):
__A = self.full_loop()
__A = torch.mean(torch.abs(A ) )
assert abs(result_mean.item() - 0.24_64 ) < 1E-3
def UpperCamelCase_ ( self : Any ):
__A = self.full_loop(prediction_type="v_prediction" )
__A = torch.mean(torch.abs(A ) )
assert abs(result_mean.item() - 0.10_14 ) < 1E-3
def UpperCamelCase_ ( self : Tuple ):
__A = self.scheduler_classes[0]
__A = self.get_scheduler_config(thresholding=A ,dynamic_thresholding_ratio=0 )
__A = scheduler_class(**A )
__A = 10
__A = self.dummy_model()
__A = self.dummy_sample_deter.half()
scheduler.set_timesteps(A )
for i, t in enumerate(scheduler.timesteps ):
__A = model(A ,A )
__A = scheduler.step(A ,A ,A ).prev_sample
assert sample.dtype == torch.floataa
def UpperCamelCase_ ( self : int ,**A : Tuple ):
for scheduler_class in self.scheduler_classes:
__A = self.get_scheduler_config(**A )
__A = scheduler_class(**A )
scheduler.set_timesteps(scheduler.config.num_train_timesteps )
assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
| 55 |
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : List[Any] ,A : Union[str, Any] ,A : List[Any]=13 ,A : Optional[Any]=30 ,A : Union[str, Any]=2 ,A : Union[str, Any]=3 ,A : Any=True ,A : Dict=True ,A : str=32 ,A : Tuple=2 ,A : Optional[int]=4 ,A : Tuple=37 ,A : List[Any]="gelu" ,A : Dict=0.1 ,A : Optional[int]=0.1 ,A : List[Any]=10 ,A : Optional[Any]=0.02 ,A : Dict=3 ,A : Dict=None ,A : List[Any]=2 ,):
__A = parent
__A = batch_size
__A = image_size
__A = patch_size
__A = num_channels
__A = is_training
__A = use_labels
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = type_sequence_label_size
__A = initializer_range
__A = scope
__A = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
__A = (image_size // patch_size) ** 2
__A = num_patches + 2
def UpperCamelCase_ ( self : List[Any] ):
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__A = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self : Optional[int] ):
return DeiTConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,)
def UpperCamelCase_ ( self : List[str] ,A : List[Any] ,A : Optional[int] ,A : Union[str, Any] ):
__A = TFDeiTModel(config=A )
__A = model(A )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self : List[Any] ,A : List[Any] ,A : Optional[Any] ,A : Dict ):
__A = TFDeiTForMaskedImageModeling(config=A )
__A = model(A )
self.parent.assertEqual(
result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__A = 1
__A = TFDeiTForMaskedImageModeling(A )
__A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__A = model(A )
self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) )
def UpperCamelCase_ ( self : Optional[Any] ,A : Union[str, Any] ,A : Dict ,A : Union[str, Any] ):
__A = self.type_sequence_label_size
__A = TFDeiTForImageClassification(A )
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__A = 1
__A = TFDeiTForImageClassification(A )
__A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__A = model(A ,labels=A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase_ ( self : str ):
__A = self.prepare_config_and_inputs()
__A , __A , __A = config_and_inputs
__A = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = (
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
snake_case_ = (
{
"feature-extraction": TFDeiTModel,
"image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def UpperCamelCase_ ( self : str ):
__A = TFDeiTModelTester(self )
__A = ConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 )
def UpperCamelCase_ ( self : Any ):
self.config_tester.run_common_tests()
@unittest.skip(reason="DeiT does not use inputs_embeds" )
def UpperCamelCase_ ( self : Union[str, Any] ):
pass
def UpperCamelCase_ ( self : List[Any] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) )
__A = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(A ,tf.keras.layers.Dense ) )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A , __A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__A = model_class(A )
__A = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__A = [*signature.parameters.keys()]
__A = ["pixel_values"]
self.assertListEqual(arg_names[:1] ,A )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A )
def UpperCamelCase_ ( self : Optional[int] ,A : Union[str, Any] ,A : List[str] ,A : Optional[Any]=False ):
__A = super()._prepare_for_class(A ,A ,return_labels=A )
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def UpperCamelCase_ ( self : Any ):
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = TFDeiTModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> str:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : int ):
return (
DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" )
if is_vision_available()
else None
)
@slow
def UpperCamelCase_ ( self : Optional[int] ):
__A = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="tf" )
# forward pass
__A = model(**A )
# verify the logits
__A = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape ,A )
__A = tf.constant([-1.02_66, 0.19_12, -1.28_61] )
self.assertTrue(np.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
| 55 | 1 |
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : str ):
__A = ""
__A = ""
__A = []
__A = 0
__A = 2_56
__A = 0
__A = 0
__A = 0
__A = 0
def UpperCamelCase_ ( self : Union[str, Any] ,A : Dict ):
__A = cva.imread(A ,0 )
__A = copy.deepcopy(self.img )
__A , __A , __A = plt.hist(self.img.ravel() ,2_56 ,[0, 2_56] ,label="x" )
__A = np.sum(A )
for i in range(len(A ) ):
__A = x[i] / self.k
self.sk += prk
__A = (self.L - 1) * self.sk
if self.rem != 0:
__A = int(last % last )
__A = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(A )
__A = int(np.ma.count(self.img ) / self.img[1].size )
__A = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
__A = self.img[j][i]
if num != self.last_list[num]:
__A = self.last_list[num]
cva.imwrite("output_data/output.jpg" ,self.img )
def UpperCamelCase_ ( self : Optional[Any] ):
plt.hist(self.img.ravel() ,2_56 ,[0, 2_56] )
def UpperCamelCase_ ( self : Any ):
cva.imshow("Output-Image" ,self.img )
cva.imshow("Input-Image" ,self.original_image )
cva.waitKey(50_00 )
cva.destroyAllWindows()
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Union[str, Any] = os.path.join(os.path.basename(__file__), 'image_data/input.jpg')
SCREAMING_SNAKE_CASE :Tuple = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 55 |
SCREAMING_SNAKE_CASE :List[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
SCREAMING_SNAKE_CASE :Union[str, Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
SCREAMING_SNAKE_CASE :int = {
0: 'Sunday',
1: 'Monday',
2: 'Tuesday',
3: 'Wednesday',
4: 'Thursday',
5: 'Friday',
6: 'Saturday',
}
def UpperCAmelCase ( a_ , a_ , a_ ) -> str:
"""simple docstring"""
assert len(str(a_ ) ) > 2, "year should be in YYYY format"
assert 1 <= month <= 1_2, "month should be between 1 to 12"
assert 1 <= day <= 3_1, "day should be between 1 to 31"
# Doomsday algorithm:
__A = year // 1_0_0
__A = (5 * (century % 4) + 2) % 7
__A = year % 1_0_0
__A = centurian % 1_2
__A = (
(centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor
) % 7
__A = (
DOOMSDAY_NOT_LEAP[month - 1]
if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0)
else DOOMSDAY_LEAP[month - 1]
)
__A = (dooms_day + day - day_anchor) % 7
return WEEK_DAY_NAMES[week_day]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 55 | 1 |
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE :Dict = logging.get_logger(__name__)
def UpperCAmelCase ( a_ , a_=False ) -> List[str]:
"""simple docstring"""
__A = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
("cls_token", "vit.embeddings.cls_token"),
("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
("pos_embed", "vit.embeddings.position_embeddings"),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("norm.weight", "layernorm.weight"),
("norm.bias", "layernorm.bias"),
("pre_logits.fc.weight", "pooler.dense.weight"),
("pre_logits.fc.bias", "pooler.dense.bias"),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
__A = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("norm.weight", "vit.layernorm.weight"),
("norm.bias", "vit.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
] )
return rename_keys
def UpperCAmelCase ( a_ , a_ , a_=False ) -> Dict:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
if base_model:
__A = ""
else:
__A = "vit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
__A = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' )
__A = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
__A = in_proj_weight[
: config.hidden_size, :
]
__A = in_proj_bias[: config.hidden_size]
__A = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
__A = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
__A = in_proj_weight[
-config.hidden_size :, :
]
__A = in_proj_bias[-config.hidden_size :]
def UpperCAmelCase ( a_ ) -> Union[str, Any]:
"""simple docstring"""
__A = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(a_ , a_ )
def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[Any]:
"""simple docstring"""
__A = dct.pop(a_ )
__A = val
def UpperCAmelCase ( ) -> Tuple:
"""simple docstring"""
__A = "http://images.cocodataset.org/val2017/000000039769.jpg"
__A = Image.open(requests.get(a_ , stream=a_ ).raw )
return im
@torch.no_grad()
def UpperCAmelCase ( a_ , a_ ) -> Dict:
"""simple docstring"""
__A = ViTConfig()
__A = False
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
if vit_name[-5:] == "in21k":
__A = True
__A = int(vit_name[-1_2:-1_0] )
__A = int(vit_name[-9:-6] )
else:
__A = 1_0_0_0
__A = "huggingface/label-files"
__A = "imagenet-1k-id2label.json"
__A = json.load(open(hf_hub_download(a_ , a_ , repo_type="dataset" ) , "r" ) )
__A = {int(a_ ): v for k, v in idalabel.items()}
__A = idalabel
__A = {v: k for k, v in idalabel.items()}
__A = int(vit_name[-6:-4] )
__A = int(vit_name[-3:] )
# size of the architecture
if "deit" in vit_name:
if vit_name[9:].startswith("tiny" ):
__A = 1_9_2
__A = 7_6_8
__A = 1_2
__A = 3
elif vit_name[9:].startswith("small" ):
__A = 3_8_4
__A = 1_5_3_6
__A = 1_2
__A = 6
else:
pass
else:
if vit_name[4:].startswith("small" ):
__A = 7_6_8
__A = 2_3_0_4
__A = 8
__A = 8
elif vit_name[4:].startswith("base" ):
pass
elif vit_name[4:].startswith("large" ):
__A = 1_0_2_4
__A = 4_0_9_6
__A = 2_4
__A = 1_6
elif vit_name[4:].startswith("huge" ):
__A = 1_2_8_0
__A = 5_1_2_0
__A = 3_2
__A = 1_6
# load original model from timm
__A = timm.create_model(a_ , pretrained=a_ )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
__A = timm_model.state_dict()
if base_model:
remove_classification_head_(a_ )
__A = create_rename_keys(a_ , a_ )
for src, dest in rename_keys:
rename_key(a_ , a_ , a_ )
read_in_q_k_v(a_ , a_ , a_ )
# load HuggingFace model
if vit_name[-5:] == "in21k":
__A = ViTModel(a_ ).eval()
else:
__A = ViTForImageClassification(a_ ).eval()
model.load_state_dict(a_ )
# Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor
if "deit" in vit_name:
__A = DeiTImageProcessor(size=config.image_size )
else:
__A = ViTImageProcessor(size=config.image_size )
__A = image_processor(images=prepare_img() , return_tensors="pt" )
__A = encoding["pixel_values"]
__A = model(a_ )
if base_model:
__A = timm_model.forward_features(a_ )
assert timm_pooled_output.shape == outputs.pooler_output.shape
assert torch.allclose(a_ , outputs.pooler_output , atol=1E-3 )
else:
__A = timm_model(a_ )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(a_ , outputs.logits , atol=1E-3 )
Path(a_ ).mkdir(exist_ok=a_ )
print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(a_ )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(a_ )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--vit_name',
default='vit_base_patch16_224',
type=str,
help='Name of the ViT timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
SCREAMING_SNAKE_CASE :Optional[int] = parser.parse_args()
convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
| 55 |
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError
import requests
def UpperCAmelCase ( a_ = "isbn/0140328726" ) -> dict:
"""simple docstring"""
__A = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes
if new_olid.count("/" ) != 1:
__A = F'''{olid} is not a valid Open Library olid'''
raise ValueError(a_ )
return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json()
def UpperCAmelCase ( a_ ) -> dict:
"""simple docstring"""
__A = {
"title": "Title",
"publish_date": "Publish date",
"authors": "Authors",
"number_of_pages": "Number of pages:",
"first_sentence": "First sentence",
"isbn_10": "ISBN (10)",
"isbn_13": "ISBN (13)",
}
__A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()}
__A = [
get_openlibrary_data(author["key"] )["name"] for author in data["Authors"]
]
__A = data["First sentence"]["value"]
for key, value in data.items():
if isinstance(a_ , a_ ):
__A = ", ".join(a_ )
return data
if __name__ == "__main__":
import doctest
doctest.testmod()
while True:
SCREAMING_SNAKE_CASE :int = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip()
if isbn.lower() in ("", "q", "quit", "exit", "stop"):
break
if len(isbn) not in (10, 13) or not isbn.isdigit():
print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''')
continue
print(f'''\nSearching Open Library for ISBN: {isbn}...\n''')
try:
SCREAMING_SNAKE_CASE :Any = summarize_book(get_openlibrary_data(f'''isbn/{isbn}'''))
print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items()))
except JSONDecodeError: # Workaround for requests.exceptions.RequestException:
print(f'''Sorry, there are no results for ISBN: {isbn}.''')
| 55 | 1 |
import collections
import importlib.util
import os
import re
from pathlib import Path
SCREAMING_SNAKE_CASE :str = 'src/transformers'
# Matches is_xxx_available()
SCREAMING_SNAKE_CASE :List[str] = re.compile(R'is\_([a-z_]*)_available()')
# Catches a one-line _import_struct = {xxx}
SCREAMING_SNAKE_CASE :Any = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
SCREAMING_SNAKE_CASE :Optional[int] = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]')
# Catches a line if not is_foo_available
SCREAMING_SNAKE_CASE :List[str] = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)')
# Catches a line _import_struct["bla"].append("foo")
SCREAMING_SNAKE_CASE :Tuple = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
SCREAMING_SNAKE_CASE :List[Any] = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]')
# Catches a line with an object between quotes and a comma: "MyModel",
SCREAMING_SNAKE_CASE :int = re.compile('^\s+"([^"]+)",')
# Catches a line with objects between brackets only: ["foo", "bar"],
SCREAMING_SNAKE_CASE :Tuple = re.compile('^\s+\[([^\]]+)\]')
# Catches a line with from foo import bar, bla, boo
SCREAMING_SNAKE_CASE :Union[str, Any] = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n')
# Catches a line with try:
SCREAMING_SNAKE_CASE :Union[str, Any] = re.compile(R'^\s*try:')
# Catches a line with else:
SCREAMING_SNAKE_CASE :Dict = re.compile(R'^\s*else:')
def UpperCAmelCase ( a_ ) -> Union[str, Any]:
"""simple docstring"""
if _re_test_backend.search(a_ ) is None:
return None
__A = [b[0] for b in _re_backend.findall(a_ )]
backends.sort()
return "_and_".join(a_ )
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
with open(a_ , "r" , encoding="utf-8" , newline="\n" ) as f:
__A = f.readlines()
__A = 0
while line_index < len(a_ ) and not lines[line_index].startswith("_import_structure = {" ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(a_ ):
return None
# First grab the objects without a specific backend in _import_structure
__A = []
while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None:
__A = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(a_ ):
__A = _re_one_line_import_struct.search(a_ ).groups()[0]
__A = re.findall("\[([^\]]+)\]" , a_ )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(", " )] )
line_index += 1
continue
__A = _re_import_struct_key_value.search(a_ )
if single_line_import_search is not None:
__A = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(a_ ) > 0]
objects.extend(a_ )
elif line.startswith(" " * 8 + "\"" ):
objects.append(line[9:-3] )
line_index += 1
__A = {"none": objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith("if TYPE_CHECKING" ):
# If the line is an if not is_backend_available, we grab all objects associated.
__A = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
__A = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
__A = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ):
__A = lines[line_index]
if _re_import_struct_add_one.search(a_ ) is not None:
objects.append(_re_import_struct_add_one.search(a_ ).groups()[0] )
elif _re_import_struct_add_many.search(a_ ) is not None:
__A = _re_import_struct_add_many.search(a_ ).groups()[0].split(", " )
__A = [obj[1:-1] for obj in imports if len(a_ ) > 0]
objects.extend(a_ )
elif _re_between_brackets.search(a_ ) is not None:
__A = _re_between_brackets.search(a_ ).groups()[0].split(", " )
__A = [obj[1:-1] for obj in imports if len(a_ ) > 0]
objects.extend(a_ )
elif _re_quote_object.search(a_ ) is not None:
objects.append(_re_quote_object.search(a_ ).groups()[0] )
elif line.startswith(" " * 8 + "\"" ):
objects.append(line[9:-3] )
elif line.startswith(" " * 1_2 + "\"" ):
objects.append(line[1_3:-3] )
line_index += 1
__A = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
__A = []
while (
line_index < len(a_ )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith("else" )
):
__A = lines[line_index]
__A = _re_import.search(a_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 8 ):
objects.append(line[8:-2] )
line_index += 1
__A = {"none": objects}
# Let's continue with backend-specific objects
while line_index < len(a_ ):
# If the line is an if is_backend_available, we grab all objects associated.
__A = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
__A = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
__A = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ):
__A = lines[line_index]
__A = _re_import.search(a_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 1_2 ):
objects.append(line[1_2:-2] )
line_index += 1
__A = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def UpperCAmelCase ( a_ , a_ ) -> int:
"""simple docstring"""
def find_duplicates(a_ ):
return [k for k, v in collections.Counter(a_ ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
__A = []
for key in import_dict_objects.keys():
__A = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' )
__A = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
__A = "base imports" if key == "none" else F'''{key} backend'''
errors.append(F'''Differences for {name}:''' )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' )
return errors
def UpperCAmelCase ( ) -> str:
"""simple docstring"""
__A = []
for root, _, files in os.walk(a_ ):
if "__init__.py" in files:
__A = os.path.join(a_ , "__init__.py" )
__A = parse_init(a_ )
if objects is not None:
__A = analyze_results(*a_ )
if len(a_ ) > 0:
__A = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}'''
failures.append("\n".join(a_ ) )
if len(a_ ) > 0:
raise ValueError("\n\n".join(a_ ) )
def UpperCAmelCase ( ) -> List[str]:
"""simple docstring"""
__A = []
for path, directories, files in os.walk(a_ ):
for folder in directories:
# Ignore private modules
if folder.startswith("_" ):
directories.remove(a_ )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(a_ ) / folder).glob("*.py" ) ) ) == 0:
continue
__A = str((Path(a_ ) / folder).relative_to(a_ ) )
__A = short_path.replace(os.path.sep , "." )
submodules.append(a_ )
for fname in files:
if fname == "__init__.py":
continue
__A = str((Path(a_ ) / fname).relative_to(a_ ) )
__A = short_path.replace(".py" , "" ).replace(os.path.sep , "." )
if len(submodule.split("." ) ) == 1:
submodules.append(a_ )
return submodules
SCREAMING_SNAKE_CASE :Tuple = [
'convert_pytorch_checkpoint_to_tf2',
'modeling_flax_pytorch_utils',
]
def UpperCAmelCase ( ) -> Optional[int]:
"""simple docstring"""
__A = importlib.util.spec_from_file_location(
"transformers" , os.path.join(a_ , "__init__.py" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , )
__A = spec.loader.load_module()
__A = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(a_ ) > 0:
__A = "\n".join(F'''- {module}''' for module in module_not_registered )
raise ValueError(
"The following submodules are not properly registered in the main init of Transformers:\n"
F'''{list_of_modules}\n'''
"Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 55 |
import requests
SCREAMING_SNAKE_CASE :List[str] = 'YOUR API KEY'
def UpperCAmelCase ( a_ , a_ = giphy_api_key ) -> list:
"""simple docstring"""
__A = "+".join(query.split() )
__A = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}'''
__A = requests.get(a_ ).json()["data"]
return [gif["url"] for gif in gifs]
if __name__ == "__main__":
print('\n'.join(get_gifs('space ship')))
| 55 | 1 |
import copy
import unittest
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
)
from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class UpperCAmelCase :
'''simple docstring'''
def __init__( self : str ,A : int ,A : int=2 ,A : Optional[Any]=3 ,A : Dict=4 ,A : Optional[int]=2 ,A : Union[str, Any]=7 ,A : List[str]=True ,A : Union[str, Any]=True ,A : Optional[int]=True ,A : Optional[int]=True ,A : Tuple=99 ,A : Optional[int]=36 ,A : Dict=3 ,A : str=4 ,A : Optional[Any]=37 ,A : Dict="gelu" ,A : Dict=0.1 ,A : Union[str, Any]=0.1 ,A : Union[str, Any]=5_12 ,A : Any=16 ,A : Union[str, Any]=2 ,A : List[Any]=0.02 ,A : List[Any]=6 ,A : Optional[int]=6 ,A : List[Any]=3 ,A : Union[str, Any]=4 ,A : Tuple=None ,A : List[str]=10_00 ,):
__A = parent
__A = batch_size
__A = num_channels
__A = image_size
__A = patch_size
__A = text_seq_length
__A = is_training
__A = use_input_mask
__A = use_token_type_ids
__A = use_labels
__A = vocab_size
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = max_position_embeddings
__A = type_vocab_size
__A = type_sequence_label_size
__A = initializer_range
__A = coordinate_size
__A = shape_size
__A = num_labels
__A = num_choices
__A = scope
__A = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
__A = text_seq_length
__A = (image_size // patch_size) ** 2 + 1
__A = self.text_seq_length + self.image_seq_length
def UpperCamelCase_ ( self : int ):
__A = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size )
__A = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__A = bbox[i, j, 3]
__A = bbox[i, j, 1]
__A = t
if bbox[i, j, 2] < bbox[i, j, 0]:
__A = bbox[i, j, 2]
__A = bbox[i, j, 0]
__A = t
__A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__A = None
if self.use_input_mask:
__A = random_attention_mask([self.batch_size, self.text_seq_length] )
__A = None
if self.use_token_type_ids:
__A = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size )
__A = None
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
__A = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels )
__A = LayoutLMvaConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,)
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def UpperCamelCase_ ( self : Optional[int] ,A : List[str] ,A : Any ,A : Dict ,A : List[Any] ,A : Optional[int] ,A : Any ,A : Dict ,A : List[Any] ):
__A = LayoutLMvaModel(config=A )
model.to(A )
model.eval()
# text + image
__A = model(A ,pixel_values=A )
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A )
__A = model(A ,bbox=A ,pixel_values=A ,token_type_ids=A )
__A = model(A ,bbox=A ,pixel_values=A )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
# text only
__A = model(A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
__A = model(pixel_values=A )
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) )
def UpperCamelCase_ ( self : Optional[int] ,A : Dict ,A : List[str] ,A : Any ,A : List[Any] ,A : Any ,A : Any ,A : Dict ,A : Optional[Any] ):
__A = self.num_labels
__A = LayoutLMvaForSequenceClassification(A )
model.to(A )
model.eval()
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : str ,A : Optional[Any] ,A : Dict ,A : str ,A : Tuple ,A : Union[str, Any] ,A : List[Any] ,A : Any ,A : Union[str, Any] ):
__A = self.num_labels
__A = LayoutLMvaForTokenClassification(config=A )
model.to(A )
model.eval()
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) )
def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : int ,A : str ,A : List[str] ,A : int ,A : List[str] ,A : List[str] ,A : Dict ):
__A = LayoutLMvaForQuestionAnswering(config=A )
model.to(A )
model.eval()
__A = model(
A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,start_positions=A ,end_positions=A ,)
self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) )
def UpperCamelCase_ ( self : str ):
__A = self.prepare_config_and_inputs()
(
(
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) , (
__A
) ,
) = config_and_inputs
__A = {
"input_ids": input_ids,
"bbox": bbox,
"pixel_values": pixel_values,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_torch
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = (
(
LayoutLMvaModel,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaForQuestionAnswering,
)
if is_torch_available()
else ()
)
snake_case_ = (
{"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel}
if is_torch_available()
else {}
)
def UpperCamelCase_ ( self : str ,A : Any ,A : Any ,A : Tuple ,A : List[Any] ,A : Optional[Any] ):
# `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual
# embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has
# the sequence dimension of the text embedding only.
# (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`)
return True
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = LayoutLMvaModelTester(self )
__A = ConfigTester(self ,config_class=A ,hidden_size=37 )
def UpperCamelCase_ ( self : List[Any] ,A : int ,A : List[str] ,A : Dict=False ):
__A = copy.deepcopy(A )
if model_class in get_values(A ):
__A = {
k: v.unsqueeze(1 ).expand(-1 ,self.model_tester.num_choices ,-1 ).contiguous()
if isinstance(A ,torch.Tensor ) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(A ):
__A = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=A )
elif model_class in get_values(A ):
__A = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=A )
__A = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=A )
elif model_class in [
*get_values(A ),
]:
__A = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=A )
elif model_class in [
*get_values(A ),
]:
__A = torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=A ,)
return inputs_dict
def UpperCamelCase_ ( self : List[Any] ):
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : str ):
__A = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__A = type
self.model_tester.create_and_check_model(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*A )
def UpperCamelCase_ ( self : str ):
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*A )
@slow
def UpperCamelCase_ ( self : Optional[int] ):
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = LayoutLMvaModel.from_pretrained(A )
self.assertIsNotNone(A )
def UpperCAmelCase ( ) -> Dict:
"""simple docstring"""
__A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase_ ( self : Any ):
return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None
@slow
def UpperCamelCase_ ( self : Dict ):
__A = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(A )
__A = self.default_image_processor
__A = prepare_img()
__A = image_processor(images=A ,return_tensors="pt" ).pixel_values.to(A )
__A = torch.tensor([[1, 2]] )
__A = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 )
# forward pass
__A = model(
input_ids=input_ids.to(A ) ,bbox=bbox.to(A ) ,pixel_values=pixel_values.to(A ) ,)
# verify the logits
__A = torch.Size((1, 1_99, 7_68) )
self.assertEqual(outputs.last_hidden_state.shape ,A )
__A = torch.tensor(
[[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(A )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,A ,atol=1E-4 ) )
| 55 |
import itertools
import math
def UpperCAmelCase ( a_ ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(a_ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def UpperCAmelCase ( ) -> Optional[Any]:
"""simple docstring"""
__A = 2
while True:
if is_prime(a_ ):
yield num
num += 1
def UpperCAmelCase ( a_ = 1_0_0_0_1 ) -> int:
"""simple docstring"""
return next(itertools.islice(prime_generator() , nth - 1 , a_ ) )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 55 | 1 |
def UpperCAmelCase ( a_ , a_ ) -> int:
"""simple docstring"""
if len(a_ ) != len(a_ ):
raise ValueError("String lengths must match!" )
__A = 0
for chara, chara in zip(a_ , a_ ):
if chara != chara:
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 55 |
import argparse
import os
import numpy as np
import tensorflow as tf
import torch
from transformers import BertModel
def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]:
"""simple docstring"""
__A = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value")
__A = (
("layer.", "layer_"),
("word_embeddings.weight", "word_embeddings"),
("position_embeddings.weight", "position_embeddings"),
("token_type_embeddings.weight", "token_type_embeddings"),
(".", "/"),
("LayerNorm/weight", "LayerNorm/gamma"),
("LayerNorm/bias", "LayerNorm/beta"),
("weight", "kernel"),
)
if not os.path.isdir(a_ ):
os.makedirs(a_ )
__A = model.state_dict()
def to_tf_var_name(a_ ):
for patt, repl in iter(a_ ):
__A = name.replace(a_ , a_ )
return F'''bert/{name}'''
def create_tf_var(a_ , a_ , a_ ):
__A = tf.dtypes.as_dtype(tensor.dtype )
__A = tf.get_variable(dtype=a_ , shape=tensor.shape , name=a_ , initializer=tf.zeros_initializer() )
session.run(tf.variables_initializer([tf_var] ) )
session.run(a_ )
return tf_var
tf.reset_default_graph()
with tf.Session() as session:
for var_name in state_dict:
__A = to_tf_var_name(a_ )
__A = state_dict[var_name].numpy()
if any(x in var_name for x in tensors_to_transpose ):
__A = torch_tensor.T
__A = create_tf_var(tensor=a_ , name=a_ , session=a_ )
tf.keras.backend.set_value(a_ , a_ )
__A = session.run(a_ )
print(F'''Successfully created {tf_name}: {np.allclose(a_ , a_ )}''' )
__A = tf.train.Saver(tf.trainable_variables() )
saver.save(a_ , os.path.join(a_ , model_name.replace("-" , "_" ) + ".ckpt" ) )
def UpperCAmelCase ( a_=None ) -> List[Any]:
"""simple docstring"""
__A = argparse.ArgumentParser()
parser.add_argument("--model_name" , type=a_ , required=a_ , help="model name e.g. bert-base-uncased" )
parser.add_argument(
"--cache_dir" , type=a_ , default=a_ , required=a_ , help="Directory containing pytorch model" )
parser.add_argument("--pytorch_model_path" , type=a_ , required=a_ , help="/path/to/<pytorch-model-name>.bin" )
parser.add_argument("--tf_cache_dir" , type=a_ , required=a_ , help="Directory in which to save tensorflow model" )
__A = parser.parse_args(a_ )
__A = BertModel.from_pretrained(
pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , )
convert_pytorch_checkpoint_to_tf(model=a_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name )
if __name__ == "__main__":
main()
| 55 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE :str = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE :Tuple = {
'caidas/swin2sr-classicalsr-x2-64': (
'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json'
),
}
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = "swin2sr"
snake_case_ = {
"hidden_size": "embed_dim",
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : List[str] ,A : str=64 ,A : Union[str, Any]=1 ,A : List[Any]=3 ,A : Dict=1_80 ,A : List[str]=[6, 6, 6, 6, 6, 6] ,A : Any=[6, 6, 6, 6, 6, 6] ,A : int=8 ,A : Dict=2.0 ,A : List[str]=True ,A : Dict=0.0 ,A : Tuple=0.0 ,A : Dict=0.1 ,A : List[Any]="gelu" ,A : int=False ,A : Optional[Any]=0.02 ,A : str=1E-5 ,A : List[Any]=2 ,A : Union[str, Any]=1.0 ,A : Any="1conv" ,A : Optional[int]="pixelshuffle" ,**A : Union[str, Any] ,):
super().__init__(**A )
__A = image_size
__A = patch_size
__A = num_channels
__A = embed_dim
__A = depths
__A = len(A )
__A = num_heads
__A = window_size
__A = mlp_ratio
__A = qkv_bias
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = drop_path_rate
__A = hidden_act
__A = use_absolute_embeddings
__A = layer_norm_eps
__A = initializer_range
__A = upscale
__A = img_range
__A = resi_connection
__A = upsampler
| 55 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE :Any = {
'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Any = [
'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST',
'PegasusXForConditionalGeneration',
'PegasusXModel',
'PegasusXPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 55 | 1 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
__A = 3_8_4
if "tiny" in model_name:
__A = [3, 3, 9, 3]
__A = [9_6, 1_9_2, 3_8_4, 7_6_8]
if "small" in model_name:
__A = [3, 3, 2_7, 3]
__A = [9_6, 1_9_2, 3_8_4, 7_6_8]
if "base" in model_name:
__A = [3, 3, 2_7, 3]
__A = [1_2_8, 2_5_6, 5_1_2, 1_0_2_4]
__A = 5_1_2
if "large" in model_name:
__A = [3, 3, 2_7, 3]
__A = [1_9_2, 3_8_4, 7_6_8, 1_5_3_6]
__A = 7_6_8
if "xlarge" in model_name:
__A = [3, 3, 2_7, 3]
__A = [2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8]
__A = 1_0_2_4
# set label information
__A = 1_5_0
__A = "huggingface/label-files"
__A = "ade20k-id2label.json"
__A = json.load(open(hf_hub_download(a_ , a_ , repo_type="dataset" ) , "r" ) )
__A = {int(a_ ): v for k, v in idalabel.items()}
__A = {v: k for k, v in idalabel.items()}
__A = ConvNextConfig(
depths=a_ , hidden_sizes=a_ , out_features=["stage1", "stage2", "stage3", "stage4"] )
__A = UperNetConfig(
backbone_config=a_ , auxiliary_in_channels=a_ , num_labels=a_ , idalabel=a_ , labelaid=a_ , )
return config
def UpperCAmelCase ( a_ ) -> List[str]:
"""simple docstring"""
__A = []
# fmt: off
# stem
rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") )
rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") )
rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") )
rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F'''backbone.stages.{i}.{j}.gamma''', F'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.norm.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.norm.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') )
rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') )
if i > 0:
rename_keys.append((F'''backbone.downsample_layers.{i}.0.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') )
rename_keys.append((F'''backbone.downsample_layers.{i}.0.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') )
rename_keys.append((F'''backbone.downsample_layers.{i}.1.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') )
rename_keys.append((F'''backbone.downsample_layers.{i}.1.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') )
rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') )
rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') )
# decode head
rename_keys.extend(
[
("decode_head.conv_seg.weight", "decode_head.classifier.weight"),
("decode_head.conv_seg.bias", "decode_head.classifier.bias"),
("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"),
("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"),
] )
# fmt: on
return rename_keys
def UpperCAmelCase ( a_ , a_ , a_ ) -> Optional[int]:
"""simple docstring"""
__A = dct.pop(a_ )
__A = val
def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]:
"""simple docstring"""
__A = {
"upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth",
"upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth",
"upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth",
"upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth",
"upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth",
}
__A = model_name_to_url[model_name]
__A = torch.hub.load_state_dict_from_url(a_ , map_location="cpu" )["state_dict"]
__A = get_upernet_config(a_ )
__A = UperNetForSemanticSegmentation(a_ )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
__A = state_dict.pop(a_ )
if "bn" in key:
__A = key.replace("bn" , "batch_norm" )
__A = val
# rename keys
__A = create_rename_keys(a_ )
for src, dest in rename_keys:
rename_key(a_ , a_ , a_ )
model.load_state_dict(a_ )
# verify on image
__A = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"
__A = Image.open(requests.get(a_ , stream=a_ ).raw ).convert("RGB" )
__A = SegformerImageProcessor()
__A = processor(a_ , return_tensors="pt" ).pixel_values
with torch.no_grad():
__A = model(a_ )
if model_name == "upernet-convnext-tiny":
__A = torch.tensor(
[[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] )
elif model_name == "upernet-convnext-small":
__A = torch.tensor(
[[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] )
elif model_name == "upernet-convnext-base":
__A = torch.tensor(
[[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] )
elif model_name == "upernet-convnext-large":
__A = torch.tensor(
[[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] )
elif model_name == "upernet-convnext-xlarge":
__A = torch.tensor(
[[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] )
print("Logits:" , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , a_ , atol=1E-4 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(a_ )
print(F'''Saving processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(a_ )
if push_to_hub:
print(F'''Pushing model and processor for {model_name} to hub''' )
model.push_to_hub(F'''openmmlab/{model_name}''' )
processor.push_to_hub(F'''openmmlab/{model_name}''' )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='upernet-convnext-tiny',
type=str,
choices=[f'''upernet-convnext-{size}''' for size in ['tiny', 'small', 'base', 'large', 'xlarge']],
help='Name of the ConvNext UperNet model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
SCREAMING_SNAKE_CASE :List[str] = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 55 |
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
SCREAMING_SNAKE_CASE :int = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l='
def UpperCAmelCase ( a_ = "mumbai" ) -> Generator[tuple[str, str], None, None]:
"""simple docstring"""
__A = BeautifulSoup(requests.get(url + location ).content , "html.parser" )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all("div" , attrs={"data-tn-component": "organicJob"} ):
__A = job.find("a" , attrs={"data-tn-element": "jobTitle"} ).text.strip()
__A = job.find("span" , {"class": "company"} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs('Bangalore'), 1):
print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
| 55 | 1 |
from typing import Dict
import numpy as np
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException
if is_tf_available():
import tensorflow as tf
from ..tf_utils import stable_softmax
if is_torch_available():
import torch
SCREAMING_SNAKE_CASE :Dict = logging.get_logger(__name__)
@add_end_docstrings(
__SCREAMING_SNAKE_CASE , R"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self : Optional[int] ,A : GenericTensor ):
if self.framework == "tf":
__A = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()
elif self.framework == "pt":
__A = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=A )
else:
raise ValueError("Unsupported framework" )
return masked_index
def UpperCamelCase_ ( self : Optional[Any] ,A : GenericTensor ):
__A = self.get_masked_index(A )
__A = np.prod(masked_index.shape )
if numel < 1:
raise PipelineException(
"fill-mask" ,self.model.base_model_prefix ,f'''No mask_token ({self.tokenizer.mask_token}) found on the input''' ,)
def UpperCamelCase_ ( self : str ,A : GenericTensor ):
if isinstance(A ,A ):
for model_input in model_inputs:
self._ensure_exactly_one_mask_token(model_input["input_ids"][0] )
else:
for input_ids in model_inputs["input_ids"]:
self._ensure_exactly_one_mask_token(A )
def UpperCamelCase_ ( self : List[str] ,A : int ,A : Tuple=None ,**A : List[str] ):
if return_tensors is None:
__A = self.framework
__A = self.tokenizer(A ,return_tensors=A )
self.ensure_exactly_one_mask_token(A )
return model_inputs
def UpperCamelCase_ ( self : List[str] ,A : Optional[int] ):
__A = self.model(**A )
__A = model_inputs["input_ids"]
return model_outputs
def UpperCamelCase_ ( self : Optional[Any] ,A : int ,A : str=5 ,A : Optional[int]=None ):
# Cap top_k if there are targets
if target_ids is not None and target_ids.shape[0] < top_k:
__A = target_ids.shape[0]
__A = model_outputs["input_ids"][0]
__A = model_outputs["logits"]
if self.framework == "tf":
__A = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0]
__A = outputs.numpy()
__A = outputs[0, masked_index, :]
__A = stable_softmax(A ,axis=-1 )
if target_ids is not None:
__A = tf.gather_nd(tf.squeeze(A ,0 ) ,target_ids.reshape(-1 ,1 ) )
__A = tf.expand_dims(A ,0 )
__A = tf.math.top_k(A ,k=A )
__A , __A = topk.values.numpy(), topk.indices.numpy()
else:
__A = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=A ).squeeze(-1 )
# Fill mask pipeline supports only one ${mask_token} per sample
__A = outputs[0, masked_index, :]
__A = logits.softmax(dim=-1 )
if target_ids is not None:
__A = probs[..., target_ids]
__A , __A = probs.topk(A )
__A = []
__A = values.shape[0] == 1
for i, (_values, _predictions) in enumerate(zip(values.tolist() ,predictions.tolist() ) ):
__A = []
for v, p in zip(_values ,_predictions ):
# Copy is important since we're going to modify this array in place
__A = input_ids.numpy().copy()
if target_ids is not None:
__A = target_ids[p].tolist()
__A = p
# Filter padding out:
__A = tokens[np.where(tokens != self.tokenizer.pad_token_id )]
# Originally we skip special tokens to give readable output.
# For multi masks though, the other [MASK] would be removed otherwise
# making the output look odd, so we add them back
__A = self.tokenizer.decode(A ,skip_special_tokens=A )
__A = {"score": v, "token": p, "token_str": self.tokenizer.decode([p] ), "sequence": sequence}
row.append(A )
result.append(A )
if single_mask:
return result[0]
return result
def UpperCamelCase_ ( self : Any ,A : Optional[int] ,A : int=None ):
if isinstance(A ,A ):
__A = [targets]
try:
__A = self.tokenizer.get_vocab()
except Exception:
__A = {}
__A = []
for target in targets:
__A = vocab.get(A ,A )
if id_ is None:
__A = self.tokenizer(
A ,add_special_tokens=A ,return_attention_mask=A ,return_token_type_ids=A ,max_length=1 ,truncation=A ,)["input_ids"]
if len(A ) == 0:
logger.warning(
f'''The specified target token `{target}` does not exist in the model vocabulary. '''
"We cannot replace it with anything meaningful, ignoring it" )
continue
__A = input_ids[0]
# XXX: If users encounter this pass
# it becomes pretty slow, so let's make sure
# The warning enables them to fix the input to
# get faster performance.
logger.warning(
f'''The specified target token `{target}` does not exist in the model vocabulary. '''
f'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' )
target_ids.append(id_ )
__A = list(set(A ) )
if len(A ) == 0:
raise ValueError("At least one target must be provided when passed." )
__A = np.array(A )
return target_ids
def UpperCamelCase_ ( self : Any ,A : str=None ,A : List[str]=None ):
__A = {}
if targets is not None:
__A = self.get_target_ids(A ,A )
__A = target_ids
if top_k is not None:
__A = top_k
if self.tokenizer.mask_token_id is None:
raise PipelineException(
"fill-mask" ,self.model.base_model_prefix ,"The tokenizer does not define a `mask_token`." )
return {}, {}, postprocess_params
def __call__( self : Optional[int] ,A : Tuple ,*A : Optional[int] ,**A : str ):
__A = super().__call__(A ,**A )
if isinstance(A ,A ) and len(A ) == 1:
return outputs[0]
return outputs
| 55 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : List[str] ):
__A = tempfile.mkdtemp()
__A = BlipImageProcessor()
__A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" )
__A = BlipaProcessor(A ,A )
processor.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self : Dict ,**A : int ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).tokenizer
def UpperCamelCase_ ( self : Dict ,**A : Optional[int] ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor
def UpperCamelCase_ ( self : Dict ):
shutil.rmtree(self.tmpdirname )
def UpperCamelCase_ ( self : Optional[int] ):
__A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )]
__A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def UpperCamelCase_ ( self : Any ):
__A = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__A = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" )
__A = self.get_image_processor(do_normalize=A ,padding_value=1.0 )
__A = BlipaProcessor.from_pretrained(
self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=A ,padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer ,A )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,A )
def UpperCamelCase_ ( self : List[Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = self.prepare_image_inputs()
__A = image_processor(A ,return_tensors="np" )
__A = processor(images=A ,return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 )
def UpperCamelCase_ ( self : Tuple ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = "lower newer"
__A = processor(text=A )
__A = tokenizer(A ,return_token_type_ids=A )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] ,encoded_processor[key] )
def UpperCamelCase_ ( self : int ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = "lower newer"
__A = self.prepare_image_inputs()
__A = processor(text=A ,images=A )
self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(A ):
processor()
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__A = processor.batch_decode(A )
__A = tokenizer.batch_decode(A )
self.assertListEqual(A ,A )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = self.get_image_processor()
__A = self.get_tokenizer()
__A = BlipaProcessor(tokenizer=A ,image_processor=A )
__A = "lower newer"
__A = self.prepare_image_inputs()
__A = processor(text=A ,images=A )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
| 55 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE :List[str] = {
'configuration_deberta': ['DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DebertaConfig', 'DebertaOnnxConfig'],
'tokenization_deberta': ['DebertaTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :List[Any] = ['DebertaTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Optional[int] = [
'DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST',
'DebertaForMaskedLM',
'DebertaForQuestionAnswering',
'DebertaForSequenceClassification',
'DebertaForTokenClassification',
'DebertaModel',
'DebertaPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE :Optional[int] = [
'TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFDebertaForMaskedLM',
'TFDebertaForQuestionAnswering',
'TFDebertaForSequenceClassification',
'TFDebertaForTokenClassification',
'TFDebertaModel',
'TFDebertaPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig
from .tokenization_deberta import DebertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_deberta_fast import DebertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deberta import (
DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
DebertaForMaskedLM,
DebertaForQuestionAnswering,
DebertaForSequenceClassification,
DebertaForTokenClassification,
DebertaModel,
DebertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_deberta import (
TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDebertaForMaskedLM,
TFDebertaForQuestionAnswering,
TFDebertaForSequenceClassification,
TFDebertaForTokenClassification,
TFDebertaModel,
TFDebertaPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 55 |
import logging
import torch
from accelerate import Accelerator
from arguments import EvaluationArguments
from datasets import load_dataset
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : int ,A : Any ,A : List[str] ,A : Union[str, Any]=10_24 ,A : int=10_24 ,A : Optional[Any]=3.6 ):
__A = tokenizer
__A = tokenizer.bos_token_id
__A = dataset
__A = seq_length
__A = seq_length * chars_per_token * num_of_sequences
def __iter__( self : List[Any] ):
__A = iter(self.dataset )
__A = True
while more_examples:
__A , __A = [], 0
while True:
if buffer_len >= self.input_characters:
break
try:
buffer.append(next(A )["content"] )
buffer_len += len(buffer[-1] )
except StopIteration:
__A = False
break
__A = tokenizer(A ,truncation=A )["input_ids"]
__A = []
for tokenized_input in tokenized_inputs:
all_token_ids.extend(tokenized_input + [self.concat_token_id] )
for i in range(0 ,len(A ) ,self.seq_length ):
__A = all_token_ids[i : i + self.seq_length]
if len(A ) == self.seq_length:
yield torch.tensor(A )
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
__A = {"streaming": True}
__A = load_dataset(args.dataset_name , split="train" , **a_ )
__A = ConstantLengthDataset(a_ , a_ , seq_length=args.seq_length )
__A = DataLoader(a_ , batch_size=args.batch_size )
return eval_dataloader
def UpperCAmelCase ( a_ ) -> Union[str, Any]:
"""simple docstring"""
model.eval()
__A = []
for step, batch in enumerate(a_ ):
with torch.no_grad():
__A = model(a_ , labels=a_ )
__A = outputs.loss.repeat(args.batch_size )
losses.append(accelerator.gather(a_ ) )
if args.max_eval_steps > 0 and step >= args.max_eval_steps:
break
__A = torch.mean(torch.cat(a_ ) )
try:
__A = torch.exp(a_ )
except OverflowError:
__A = float("inf" )
return loss.item(), perplexity.item()
# Setup Accelerator
SCREAMING_SNAKE_CASE :Optional[int] = Accelerator()
# Parse configuration
SCREAMING_SNAKE_CASE :str = HfArgumentParser(EvaluationArguments)
SCREAMING_SNAKE_CASE :int = parser.parse_args()
set_seed(args.seed)
# Logging
SCREAMING_SNAKE_CASE :Dict = logging.getLogger(__name__)
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO
)
# Load model and tokenizer
SCREAMING_SNAKE_CASE :List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt)
SCREAMING_SNAKE_CASE :int = AutoTokenizer.from_pretrained(args.model_ckpt)
# Load dataset and dataloader
SCREAMING_SNAKE_CASE :List[str] = create_dataloader(args)
# Prepare everything with our `accelerator`.
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = accelerator.prepare(model, eval_dataloader)
# Evaluate and save the last checkpoint
logger.info('Evaluating and saving model after training')
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = evaluate(args)
logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
| 55 | 1 |
import os
import zipfile
import pytest
from datasets.utils.extract import (
BzipaExtractor,
Extractor,
GzipExtractor,
LzaExtractor,
SevenZipExtractor,
TarExtractor,
XzExtractor,
ZipExtractor,
ZstdExtractor,
)
from .utils import require_lza, require_pyazr, require_zstandard
@pytest.mark.parametrize(
"compression_format, is_archive" , [
("7z", True),
("bz2", False),
("gzip", False),
("lz4", False),
("tar", True),
("xz", False),
("zip", True),
("zstd", False),
] , )
def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ) -> List[Any]:
"""simple docstring"""
__A = {
"7z": (seven_zip_file, SevenZipExtractor),
"bz2": (bza_file, BzipaExtractor),
"gzip": (gz_file, GzipExtractor),
"lz4": (lza_file, LzaExtractor),
"tar": (tar_file, TarExtractor),
"xz": (xz_file, XzExtractor),
"zip": (zip_file, ZipExtractor),
"zstd": (zstd_file, ZstdExtractor),
}
__A , __A = input_paths_and_base_extractors[compression_format]
if input_path is None:
__A = F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(a_ )
assert base_extractor.is_extractable(a_ )
__A = tmp_path / ("extracted" if is_archive else "extracted.txt")
base_extractor.extract(a_ , a_ )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
__A = file_path.read_text(encoding="utf-8" )
else:
__A = output_path.read_text(encoding="utf-8" )
__A = text_file.read_text(encoding="utf-8" )
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize(
"compression_format, is_archive" , [
("7z", True),
("bz2", False),
("gzip", False),
("lz4", False),
("tar", True),
("xz", False),
("zip", True),
("zstd", False),
] , )
def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ) -> Optional[int]:
"""simple docstring"""
__A = {
"7z": seven_zip_file,
"bz2": bza_file,
"gzip": gz_file,
"lz4": lza_file,
"tar": tar_file,
"xz": xz_file,
"zip": zip_file,
"zstd": zstd_file,
}
__A = input_paths[compression_format]
if input_path is None:
__A = F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(a_ )
__A = Extractor.infer_extractor_format(a_ )
assert extractor_format is not None
__A = tmp_path / ("extracted" if is_archive else "extracted.txt")
Extractor.extract(a_ , a_ , a_ )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
__A = file_path.read_text(encoding="utf-8" )
else:
__A = output_path.read_text(encoding="utf-8" )
__A = text_file.read_text(encoding="utf-8" )
assert extracted_file_content == expected_file_content
@pytest.fixture
def UpperCAmelCase ( a_ , a_ ) -> List[Any]:
"""simple docstring"""
import tarfile
__A = tmp_path / "data_dot_dot"
directory.mkdir()
__A = directory / "tar_file_with_dot_dot.tar"
with tarfile.TarFile(a_ , "w" ) as f:
f.add(a_ , arcname=os.path.join(".." , text_file.name ) )
return path
@pytest.fixture
def UpperCAmelCase ( a_ ) -> Any:
"""simple docstring"""
import tarfile
__A = tmp_path / "data_sym_link"
directory.mkdir()
__A = directory / "tar_file_with_sym_link.tar"
os.symlink(".." , directory / "subdir" , target_is_directory=a_ )
with tarfile.TarFile(a_ , "w" ) as f:
f.add(str(directory / "subdir" ) , arcname="subdir" ) # str required by os.readlink on Windows and Python < 3.8
return path
@pytest.mark.parametrize(
"insecure_tar_file, error_log" , [("tar_file_with_dot_dot", "illegal path"), ("tar_file_with_sym_link", "Symlink")] , )
def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ ) -> int:
"""simple docstring"""
__A = {
"tar_file_with_dot_dot": tar_file_with_dot_dot,
"tar_file_with_sym_link": tar_file_with_sym_link,
}
__A = insecure_tar_files[insecure_tar_file]
__A = tmp_path / "extracted"
TarExtractor.extract(a_ , a_ )
assert caplog.text
for record in caplog.records:
assert record.levelname == "ERROR"
assert error_log in record.msg
def UpperCAmelCase ( a_ ) -> Optional[int]:
"""simple docstring"""
__A = tmpdir / "not_a_zip_file"
# From: https://github.com/python/cpython/pull/5053
__A = (
b"\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00"
b"\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I"
b"DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07"
b"\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82"
)
with not_a_zip_file.open("wb" ) as f:
f.write(a_ )
assert zipfile.is_zipfile(str(a_ ) ) # is a false positive for `zipfile`
assert not ZipExtractor.is_extractable(a_ ) # but we're right
| 55 |
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case_ = LayoutLMTokenizer
snake_case_ = LayoutLMTokenizerFast
snake_case_ = True
snake_case_ = True
def UpperCamelCase_ ( self : Any ):
super().setUp()
__A = [
"[UNK]",
"[CLS]",
"[SEP]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
__A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
def UpperCamelCase_ ( self : Tuple ,**A : int ):
return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**A )
def UpperCamelCase_ ( self : Optional[Any] ,A : Any ):
__A = "UNwant\u00E9d,running"
__A = "unwanted, running"
return input_text, output_text
def UpperCamelCase_ ( self : str ):
__A = self.tokenizer_class(self.vocab_file )
__A = tokenizer.tokenize("UNwant\u00E9d,running" )
self.assertListEqual(A ,["un", "##want", "##ed", ",", "runn", "##ing"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[7, 4, 5, 10, 8, 9] )
def UpperCamelCase_ ( self : int ):
pass
| 55 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.