code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE__ = get_tests_dir('''fixtures/test_sentencepiece_with_bytefallback.model''') @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Union[str, Any] = GPTSwaTokenizer A__ : Dict = False A__ : List[str] = True A__ : Optional[Any] = False def _a ( self : str ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing A__ = GPTSwaTokenizer(_snake_case , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self : Any , _snake_case : Tuple ): """simple docstring""" A__ = 'This is a test' A__ = 'This is a test' return input_text, output_text def _a ( self : Any ): """simple docstring""" A__ = '<s>' A__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case ) , _snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case ) , _snake_case ) def _a ( self : Optional[Any] ): """simple docstring""" A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(_snake_case ) , 20_00 ) def _a ( self : Any ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 20_00 ) def _a ( self : str ): """simple docstring""" A__ = GPTSwaTokenizer(_snake_case ) A__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(_snake_case , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , [4_65, 2_87, 2_65, 6_31, 8_42] ) A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( _snake_case , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on A__ = tokenizer.convert_tokens_to_ids(_snake_case ) self.assertListEqual( _snake_case , [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60] , ) A__ = tokenizer.convert_ids_to_tokens(_snake_case ) # fmt: off self.assertListEqual( _snake_case , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def _a ( self : Tuple ): """simple docstring""" A__ = GPTSwaTokenizer(_snake_case ) A__ = ['This is a test', 'I was born in 92000, and this is falsé.'] A__ = [ [4_65, 2_87, 2_65, 6_31, 8_42], [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(_snake_case , _snake_case ): self.assertListEqual(tokenizer.encode_fast(_snake_case ) , _snake_case ) # Test that decode_fast returns the input text for text, token_ids in zip(_snake_case , _snake_case ): self.assertEqual(tokenizer.decode_fast(_snake_case ) , _snake_case ) @slow def _a ( self : List[Any] ): """simple docstring""" A__ = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off A__ = {'input_ids': [[6_34_23, 5, 68_11, 1_49_54, 2_82, 8_16, 38_21, 6_34_66, 6_34_25, 6_34_62, 18, 6_39_78, 6_78, 3_01, 13_20, 6_34_23, 6_34_55, 6_34_58, 18, 6_39_82, 42_46, 39_40, 19_01, 4_77_89, 55_47, 1_89_94], [1_96_30, 11_00, 6_34_46, 13_42, 6_33, 5_44, 44_88, 5_93, 51_02, 24_16, 6_34_95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [16_52, 4_28, 2_68, 19_36, 5_15, 2_68, 5_85_93, 2_24_13, 91_06, 5_46, 2_68, 3_32_13, 6_39_79, 6_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_51_30, 6_34_50, 9_24, 6_34_49, 22_49, 40_62, 15_58, 3_18, 6_35_04, 2_14_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_09, 3_77, 28_27, 25_59, 3_32, 65_75, 6_34_43, 2_68_01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='AI-Sweden/gpt-sw3-126m' , sequences=_snake_case , )
9
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: A__ = OmegaConf.load(__UpperCamelCase ) A__ = torch.load(__UpperCamelCase , map_location='cpu' )['model'] A__ = list(state_dict.keys() ) # extract state_dict for VQVAE A__ = {} A__ = 'first_stage_model.' for key in keys: if key.startswith(__UpperCamelCase ): A__ = state_dict[key] # extract state_dict for UNetLDM A__ = {} A__ = 'model.diffusion_model.' for key in keys: if key.startswith(__UpperCamelCase ): A__ = state_dict[key] A__ = config.model.params.first_stage_config.params A__ = config.model.params.unet_config.params A__ = VQModel(**__UpperCamelCase ).eval() vqvae.load_state_dict(__UpperCamelCase ) A__ = UNetLDMModel(**__UpperCamelCase ).eval() unet.load_state_dict(__UpperCamelCase ) A__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__UpperCamelCase , ) A__ = LDMPipeline(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) pipeline.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
9
1
import unittest import torch from torch import nn from diffusers.models.activations import get_activation class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _a ( self : str ): """simple docstring""" A__ = get_activation('swish' ) self.assertIsInstance(_snake_case , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def _a ( self : str ): """simple docstring""" A__ = get_activation('silu' ) self.assertIsInstance(_snake_case , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def _a ( self : Tuple ): """simple docstring""" A__ = get_activation('mish' ) self.assertIsInstance(_snake_case , nn.Mish ) self.assertEqual(act(torch.tensor(-2_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def _a ( self : List[str] ): """simple docstring""" A__ = get_activation('gelu' ) self.assertIsInstance(_snake_case , nn.GELU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
9
import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def A ( __UpperCamelCase ) -> Union[str, Any]: if hor == 128: A__ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A__ = (32, 128, 256) A__ = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: A__ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A__ = (32, 64, 128, 256) A__ = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') A__ = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) A__ = model.state_dict() A__ = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 65_536, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } A__ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A__ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A__ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() , f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , 'w' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) def A ( ) -> List[str]: A__ = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 128, 256), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 65_536, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } A__ = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) A__ = model A__ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A__ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A__ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() , 'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' , 'w' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": unet(3_2) # unet(128) value_function()
9
1
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py SCREAMING_SNAKE_CASE__ = '''src/diffusers''' # Matches is_xxx_available() SCREAMING_SNAKE_CASE__ = re.compile(r'''is\_([a-z_]*)_available\(\)''') # Matches from xxx import bla SCREAMING_SNAKE_CASE__ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') SCREAMING_SNAKE_CASE__ = ''' {0} = None ''' SCREAMING_SNAKE_CASE__ = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) ''' SCREAMING_SNAKE_CASE__ = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' def A ( __UpperCamelCase ) -> Optional[Any]: A__ = _re_backend.findall(__UpperCamelCase ) if len(__UpperCamelCase ) == 0: return None return "_and_".join(__UpperCamelCase ) def A ( ) -> List[Any]: with open(os.path.join(__UpperCamelCase , '__init__.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: A__ = f.readlines() # Get to the point we do the actual imports for type checking A__ = 0 A__ = {} # Go through the end of the file while line_index < len(__UpperCamelCase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block A__ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('else:' ): line_index += 1 line_index += 1 A__ = [] # Until we unindent, add backend objects to the list while line_index < len(__UpperCamelCase ) and len(lines[line_index] ) > 1: A__ = lines[line_index] A__ = _re_single_line_import.search(__UpperCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__UpperCamelCase ) > 0: A__ = objects else: line_index += 1 return backend_specific_objects def A ( __UpperCamelCase , __UpperCamelCase ) -> Tuple: if name.isupper(): return DUMMY_CONSTANT.format(__UpperCamelCase ) elif name.islower(): return DUMMY_FUNCTION.format(__UpperCamelCase , __UpperCamelCase ) else: return DUMMY_CLASS.format(__UpperCamelCase , __UpperCamelCase ) def A ( __UpperCamelCase=None ) -> Union[str, Any]: if backend_specific_objects is None: A__ = read_init() # For special correspondence backend to module name as used in the function requires_modulename A__ = {} for backend, objects in backend_specific_objects.items(): A__ = '[' + ', '.join(f'''"{b}"''' for b in backend.split('_and_' ) ) + ']' A__ = '# This file is autogenerated by the command `make fix-copies`, do not edit.\n' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__UpperCamelCase , __UpperCamelCase ) for o in objects] ) A__ = dummy_file return dummy_files def A ( __UpperCamelCase=False ) -> Optional[Any]: A__ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py A__ = {'torch': 'pt'} # Locate actual dummy modules and read their content. A__ = os.path.join(__UpperCamelCase , 'utils' ) A__ = { backend: os.path.join(__UpperCamelCase , f'''dummy_{short_names.get(__UpperCamelCase , __UpperCamelCase )}_objects.py''' ) for backend in dummy_files.keys() } A__ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__UpperCamelCase ): with open(__UpperCamelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: A__ = f.read() else: A__ = '' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f'''Updating diffusers.utils.dummy_{short_names.get(__UpperCamelCase , __UpperCamelCase )}_objects.py as the main ''' '__init__ has new objects.' ) with open(dummy_file_paths[backend] , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( 'The main __init__ has objects that are not present in ' f'''diffusers.utils.dummy_{short_names.get(__UpperCamelCase , __UpperCamelCase )}_objects.py. Run `make fix-copies` ''' 'to fix this.' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') SCREAMING_SNAKE_CASE__ = parser.parse_args() check_dummies(args.fix_and_overwrite)
9
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase : """simple docstring""" def __init__( self : Dict , _snake_case : Union[str, Any] , _snake_case : Optional[Any]=12 , _snake_case : Any=7 , _snake_case : List[str]=True , _snake_case : int=True , _snake_case : int=True , _snake_case : Tuple=99 , _snake_case : List[Any]=32 , _snake_case : Optional[int]=32 , _snake_case : List[str]=2 , _snake_case : List[str]=4 , _snake_case : List[Any]=37 , _snake_case : Union[str, Any]=0.1 , _snake_case : Tuple=0.1 , _snake_case : Dict=5_12 , _snake_case : Union[str, Any]=0.02 , _snake_case : Any=0 , _snake_case : Optional[Any]=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = projection_dim A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = dropout A__ = attention_dropout A__ = max_position_embeddings A__ = initializer_range A__ = scope A__ = bos_token_id def _a ( self : Optional[Any] ): """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: A__ = input_mask.numpy() A__ , A__ = input_mask.shape A__ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_snake_case ): A__ = 1 A__ = 0 A__ = self.get_config() return config, input_ids, tf.convert_to_tensor(_snake_case ) def _a ( self : Tuple ): """simple docstring""" return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _a ( self : int , _snake_case : Union[str, Any] , _snake_case : Any , _snake_case : List[str] ): """simple docstring""" A__ = TFBlipTextModel(config=_snake_case ) A__ = model(_snake_case , attention_mask=_snake_case , training=_snake_case ) A__ = model(_snake_case , training=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _a ( self : str ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Tuple = (TFBlipTextModel,) if is_tf_available() else () A__ : Optional[int] = False A__ : Union[str, Any] = False A__ : Union[str, Any] = False def _a ( self : Any ): """simple docstring""" A__ = BlipTextModelTester(self ) A__ = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def _a ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Union[str, Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def _a ( self : Tuple ): """simple docstring""" pass def _a ( self : int ): """simple docstring""" pass @unittest.skip(reason='Blip does not use inputs_embeds' ) def _a ( self : Any ): """simple docstring""" pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _a ( self : str ): """simple docstring""" pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _a ( self : Optional[Any] ): """simple docstring""" pass @slow def _a ( self : Union[str, Any] ): """simple docstring""" for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFBlipTextModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def _a ( self : int , _snake_case : int=True ): """simple docstring""" super().test_pt_tf_model_equivalence(allow_missing_keys=_snake_case )
9
1
import numpy as np import datasets SCREAMING_SNAKE_CASE__ = ''' Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] ''' SCREAMING_SNAKE_CASE__ = '''\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } ''' SCREAMING_SNAKE_CASE__ = ''' Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric("mahalanobis") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {\'mahalanobis\': array([0.5])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): """simple docstring""" def _a ( self : List[str] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'X': datasets.Sequence(datasets.Value('float' , id='sequence' ) , id='X' ), } ) , ) def _a ( self : Tuple , _snake_case : Union[str, Any] , _snake_case : Any ): """simple docstring""" A__ = np.array(_snake_case ) A__ = np.array(_snake_case ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError('Expected `X` to be a 2D vector' ) if len(reference_distribution.shape ) != 2: raise ValueError('Expected `reference_distribution` to be a 2D vector' ) if reference_distribution.shape[0] < 2: raise ValueError( 'Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension' ) # Get mahalanobis distance for each prediction A__ = X - np.mean(_snake_case ) A__ = np.cov(reference_distribution.T ) try: A__ = np.linalg.inv(_snake_case ) except np.linalg.LinAlgError: A__ = np.linalg.pinv(_snake_case ) A__ = np.dot(_snake_case , _snake_case ) A__ = np.dot(_snake_case , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
9
from __future__ import annotations from typing import Any def A ( __UpperCamelCase ) -> int: if not postfix_notation: return 0 A__ = {'+', '-', '*', '/'} A__ = [] for token in postfix_notation: if token in operations: A__ , A__ = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(__UpperCamelCase ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
9
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A ( __UpperCamelCase ) -> Optional[int]: A__ = filter(lambda __UpperCamelCase : p.requires_grad , model.parameters() ) A__ = sum([np.prod(p.size() ) for p in model_parameters] ) return params SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) def A ( __UpperCamelCase , __UpperCamelCase ) -> Dict: if metric == "rouge2": A__ = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": A__ = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": A__ = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": A__ = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ' function.' ) A__ = ModelCheckpoint( dirpath=__UpperCamelCase , filename=__UpperCamelCase , monitor=f'''val_{metric}''' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def A ( __UpperCamelCase , __UpperCamelCase ) -> Any: return EarlyStopping( monitor=f'''val_{metric}''' , mode='min' if 'loss' in metric else 'max' , patience=__UpperCamelCase , verbose=__UpperCamelCase , ) class __lowerCAmelCase ( pl.Callback ): """simple docstring""" def _a ( self : Dict , _snake_case : Union[str, Any] , _snake_case : str ): """simple docstring""" A__ = {F'''lr_group_{i}''': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_snake_case ) @rank_zero_only def _a ( self : Union[str, Any] , _snake_case : pl.Trainer , _snake_case : pl.LightningModule , _snake_case : str , _snake_case : Optional[Any]=True ): """simple docstring""" logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) A__ = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results A__ = Path(pl_module.hparams.output_dir ) if type_path == "test": A__ = od / 'test_results.txt' A__ = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. A__ = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' A__ = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=_snake_case ) generations_file.parent.mkdir(exist_ok=_snake_case ) with open(_snake_case , 'a+' ) as writer: for key in sorted(_snake_case ): if key in ["log", "progress_bar", "preds"]: continue A__ = metrics[key] if isinstance(_snake_case , torch.Tensor ): A__ = val.item() A__ = F'''{key}: {val:.6f}\n''' writer.write(_snake_case ) if not save_generations: return if "preds" in metrics: A__ = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(_snake_case ) @rank_zero_only def _a ( self : Dict , _snake_case : List[str] , _snake_case : List[Any] ): """simple docstring""" try: A__ = pl_module.model.model.num_parameters() except AttributeError: A__ = pl_module.model.num_parameters() A__ = count_trainable_parameters(_snake_case ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def _a ( self : int , _snake_case : pl.Trainer , _snake_case : pl.LightningModule ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_snake_case , _snake_case , 'test' ) @rank_zero_only def _a ( self : Optional[Any] , _snake_case : pl.Trainer , _snake_case : List[Any] ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
9
from __future__ import annotations def A ( __UpperCamelCase = 4 ) -> list[list[int]]: A__ = abs(__UpperCamelCase ) or 4 return [[1 + x + y * row_size for x in range(__UpperCamelCase )] for y in range(__UpperCamelCase )] def A ( __UpperCamelCase ) -> list[list[int]]: return reverse_row(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_column(matrix)) def A ( __UpperCamelCase ) -> list[list[int]]: return reverse_row(reverse_column(__UpperCamelCase ) ) # OR.. reverse_column(reverse_row(matrix)) def A ( __UpperCamelCase ) -> list[list[int]]: return reverse_column(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_row(matrix)) def A ( __UpperCamelCase ) -> list[list[int]]: A__ = [list(__UpperCamelCase ) for x in zip(*__UpperCamelCase )] return matrix def A ( __UpperCamelCase ) -> list[list[int]]: A__ = matrix[::-1] return matrix def A ( __UpperCamelCase ) -> list[list[int]]: A__ = [x[::-1] for x in matrix] return matrix def A ( __UpperCamelCase ) -> None: for i in matrix: print(*__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 90 counterclockwise:\n''') print_matrix(rotate_aa(matrix)) SCREAMING_SNAKE_CASE__ = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 180:\n''') print_matrix(rotate_aaa(matrix)) SCREAMING_SNAKE_CASE__ = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 270 counterclockwise:\n''') print_matrix(rotate_aaa(matrix))
9
1
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def A ( __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer A__ = flax_key_tuple[:-1] + ('weight',) A__ = torch.permute(__UpperCamelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__UpperCamelCase ): # linear layer A__ = flax_key_tuple[:-1] + ('weight',) A__ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: A__ = flax_key_tuple[:-1] + ('weight',) return flax_key_tuple, flax_tensor def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: if "metadata" in layer: A__ = layer.split('metadata' ) A__ = ''.join(split_layer[0] )[:-1] A__ = [tuple(('metadata' + split_layer[1]).split('/' ) )] elif "kvstore" in layer: A__ = layer.split('kvstore' ) A__ = ''.join(split_layer[0] )[:-1] A__ = [tuple(('kvstore' + split_layer[1]).split('/' ) )] else: A__ = layer.split('/' ) A__ = '/'.join(split_layer[:-1] ) A__ = (split_layer[-1],) if "kvstore/path" in layer: A__ = f'''{switch_checkpoint_path}/{checkpoint_info[layer]}''' elif "kvstore/driver" in layer: A__ = 'file' else: A__ = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def A ( __UpperCamelCase , __UpperCamelCase ) -> Dict: A__ = rename_keys(__UpperCamelCase ) A__ = {} for k, v in current_block.items(): A__ = v A__ = new_current_block torch.save(__UpperCamelCase , __UpperCamelCase ) def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = WEIGHTS_NAME ) -> List[str]: A__ = convert_file_size_to_int(__UpperCamelCase ) A__ = [] A__ = {} A__ = 0 A__ = 0 os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) with gfile.GFile(switch_checkpoint_path + '/checkpoint' , 'rb' ) as fp: A__ = serialization.msgpack_restore(fp.read() )['optimizer']['target'] A__ = flatten_dict(__UpperCamelCase , sep='/' ) A__ = {} for layer in checkpoint_info.keys(): A__ , A__ , A__ = get_key_and_tensorstore_dict( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if curr_real_layer_name in all_layers: A__ = content else: A__ = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file A__ = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() A__ = torch.tensor(__UpperCamelCase ) A__ = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts A__ , A__ = rename_base_flax_keys(tuple(key.split('/' ) ) , __UpperCamelCase ) A__ = '/'.join(__UpperCamelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: A__ = os.path.join( __UpperCamelCase , weights_name.replace('.bin' , f'''-{len(__UpperCamelCase )+1:05d}-of-???.bin''' ) ) rename_and_save_block(__UpperCamelCase , __UpperCamelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block A__ = {} A__ = 0 A__ = raw_weights.to(getattr(__UpperCamelCase , __UpperCamelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block A__ = os.path.join(__UpperCamelCase , weights_name.replace('.bin' , f'''-{len(__UpperCamelCase )+1:05d}-of-???.bin''' ) ) rename_and_save_block(__UpperCamelCase , __UpperCamelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(__UpperCamelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index A__ = {} A__ = {} for idx, shard in enumerate(__UpperCamelCase ): A__ = weights_name.replace( '.bin' , f'''-{idx+1:05d}-of-{len(__UpperCamelCase ):05d}.bin''' ) # len(sharded_state_dicts):05d} A__ = os.path.join(__UpperCamelCase , weights_name.replace('.bin' , f'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__UpperCamelCase , os.path.join(__UpperCamelCase , __UpperCamelCase ) ) A__ = shard for key in shard: A__ = shard_file # Add the metadata A__ = {'total_size': total_size} A__ = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(__UpperCamelCase , __UpperCamelCase ) , 'w' , encoding='utf-8' ) as f: A__ = json.dumps(__UpperCamelCase , indent=2 , sort_keys=__UpperCamelCase ) + '\n' f.write(__UpperCamelCase ) return metadata, index if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--max_shard_size''', default='''10GB''', required=False, help='''Max shard size''') parser.add_argument('''--dtype''', default='''bfloat16''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted''', type=str, required=False, help='''Path to the output pytorch model.''', ) SCREAMING_SNAKE_CASE__ = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def A ( ) -> Optional[Any]: from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer A__ = SwitchTransformersConfig.from_pretrained('google/switch-base-8' ) config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted' ) A__ = SwitchTransformersForConditionalGeneration.from_pretrained( '/home/arthur_huggingface_co/transformers/switch_converted' , device_map='auto' ) A__ = TaTokenizer.from_pretrained('t5-small' ) A__ = 'A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.' A__ = tokenizer(__UpperCamelCase , return_tensors='pt' ).input_ids A__ = model.generate(__UpperCamelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
9
from __future__ import annotations from fractions import Fraction def A ( __UpperCamelCase , __UpperCamelCase ) -> bool: return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def A ( __UpperCamelCase ) -> list[str]: A__ = [] A__ = 11 A__ = int('1' + '0' * digit_len ) for num in range(__UpperCamelCase , __UpperCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(__UpperCamelCase , __UpperCamelCase ): solutions.append(f'''{num}/{den}''' ) den += 1 num += 1 A__ = 10 return solutions def A ( __UpperCamelCase = 2 ) -> int: A__ = 1.0 for fraction in fraction_list(__UpperCamelCase ): A__ = Fraction(__UpperCamelCase ) result *= frac.denominator / frac.numerator return int(__UpperCamelCase ) if __name__ == "__main__": print(solution())
9
1
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: A__ = OmegaConf.load(__UpperCamelCase ) A__ = torch.load(__UpperCamelCase , map_location='cpu' )['model'] A__ = list(state_dict.keys() ) # extract state_dict for VQVAE A__ = {} A__ = 'first_stage_model.' for key in keys: if key.startswith(__UpperCamelCase ): A__ = state_dict[key] # extract state_dict for UNetLDM A__ = {} A__ = 'model.diffusion_model.' for key in keys: if key.startswith(__UpperCamelCase ): A__ = state_dict[key] A__ = config.model.params.first_stage_config.params A__ = config.model.params.unet_config.params A__ = VQModel(**__UpperCamelCase ).eval() vqvae.load_state_dict(__UpperCamelCase ) A__ = UNetLDMModel(**__UpperCamelCase ).eval() unet.load_state_dict(__UpperCamelCase ) A__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__UpperCamelCase , ) A__ = LDMPipeline(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) pipeline.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
9
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
9
1
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def A ( ) -> Union[str, Any]: A__ = HfArgumentParser(__UpperCamelCase ) A__ = parser.parse_args_into_dataclasses()[0] A__ = TensorFlowBenchmark(args=__UpperCamelCase ) try: A__ = parser.parse_args_into_dataclasses()[0] except ValueError as e: A__ = 'Arg --no_{0} is no longer used, please use --no-{0} instead.' A__ = ' '.join(str(__UpperCamelCase ).split(' ' )[:-1] ) A__ = '' A__ = eval(str(__UpperCamelCase ).split(' ' )[-1] ) A__ = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__UpperCamelCase ) if len(__UpperCamelCase ) > 0: A__ = full_error_msg + begin_error_msg + str(__UpperCamelCase ) raise ValueError(__UpperCamelCase ) benchmark.run() if __name__ == "__main__": main()
9
SCREAMING_SNAKE_CASE__ = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' SCREAMING_SNAKE_CASE__ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] SCREAMING_SNAKE_CASE__ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
9
1
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def A ( __UpperCamelCase , __UpperCamelCase=7 ) -> Optional[int]: A__ = None if token is not None: A__ = {'Accept': 'application/vnd.github+json', 'Authorization': f'''Bearer {token}'''} # The id of a workflow (not of a workflow run) A__ = '636036' A__ = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' A__ = requests.get(__UpperCamelCase , headers=__UpperCamelCase ).json() return result["workflow_runs"] def A ( __UpperCamelCase ) -> Optional[int]: A__ = get_daily_ci_runs(__UpperCamelCase ) A__ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": A__ = workflow_run['id'] break return workflow_run_id def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> str: A__ = get_last_daily_ci_runs(__UpperCamelCase ) if workflow_run_id is not None: A__ = get_artifacts_links(worflow_run_id=__UpperCamelCase , token=__UpperCamelCase ) for artifact_name in artifact_names: if artifact_name in artifacts_links: A__ = artifacts_links[artifact_name] download_artifact( artifact_name=__UpperCamelCase , artifact_url=__UpperCamelCase , output_dir=__UpperCamelCase , token=__UpperCamelCase ) def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: get_last_daily_ci_artifacts(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) A__ = {} for artifact_name in artifact_names: A__ = os.path.join(__UpperCamelCase , f'''{artifact_name}.zip''' ) if os.path.isfile(__UpperCamelCase ): A__ = {} with zipfile.ZipFile(__UpperCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(__UpperCamelCase ): # read the file with z.open(__UpperCamelCase ) as f: A__ = f.read().decode('UTF-8' ) return results
9
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : """simple docstring""" @staticmethod def _a ( *_snake_case : Any , **_snake_case : Optional[int] ): """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" A__ : Union[str, Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def _a ( self : List[Any] , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : Union[str, Any] ): """simple docstring""" A__ = pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' ) A__ = [ { 'image': Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'question': 'How many cats are there?', }, { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'question': 'How many cats are there?', }, ] return vqa_pipeline, examples def _a ( self : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : List[str] ): """simple docstring""" A__ = vqa_pipeline(_snake_case , top_k=1 ) self.assertEqual( _snake_case , [ [{'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}], [{'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}], ] , ) @require_torch def _a ( self : Any ): """simple docstring""" A__ = pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' ) A__ = './tests/fixtures/tests_samples/COCO/000000039769.png' A__ = 'How many cats are there?' A__ = vqa_pipeline(image=_snake_case , question='How many cats are there?' , top_k=2 ) self.assertEqual( _snake_case , [{'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}, {'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}] ) A__ = vqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( _snake_case , [{'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}, {'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}] ) @slow @require_torch def _a ( self : Any ): """simple docstring""" A__ = pipeline('visual-question-answering' , model='dandelin/vilt-b32-finetuned-vqa' ) A__ = './tests/fixtures/tests_samples/COCO/000000039769.png' A__ = 'How many cats are there?' A__ = vqa_pipeline(image=_snake_case , question=_snake_case , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}] ) A__ = vqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}] ) A__ = vqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [[{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}]] * 2 , ) @require_tf @unittest.skip('Visual question answering not implemented in TF' ) def _a ( self : Dict ): """simple docstring""" pass
9
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable SCREAMING_SNAKE_CASE__ = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ['''DPTFeatureExtractor'''] SCREAMING_SNAKE_CASE__ = ['''DPTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DPTForDepthEstimation''', '''DPTForSemanticSegmentation''', '''DPTModel''', '''DPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
9
def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: if exponent == 1: return base if exponent % 2 == 0: A__ = _modexpt(__UpperCamelCase , exponent // 2 , __UpperCamelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__UpperCamelCase , exponent - 1 , __UpperCamelCase )) % modulo_value def A ( __UpperCamelCase = 1_777 , __UpperCamelCase = 1_855 , __UpperCamelCase = 8 ) -> int: A__ = base for _ in range(1 , __UpperCamelCase ): A__ = _modexpt(__UpperCamelCase , __UpperCamelCase , 10**digits ) return result if __name__ == "__main__": print(f'{solution() = }')
9
1
import math def A ( __UpperCamelCase , __UpperCamelCase ) -> float: if initial_intensity < 0: raise ValueError('The value of intensity cannot be negative' ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(__UpperCamelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='''malus_law''')
9
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def A ( __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=False ) -> Dict: A__ = 'backbone.' if is_semantic else '' A__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (f'''{prefix}cls_token''', 'beit.embeddings.cls_token'), (f'''{prefix}patch_embed.proj.weight''', 'beit.embeddings.patch_embeddings.projection.weight'), (f'''{prefix}patch_embed.proj.bias''', 'beit.embeddings.patch_embeddings.projection.bias'), (f'''{prefix}pos_embed''', 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=False ) -> Optional[Any]: for i in range(config.num_hidden_layers ): A__ = 'backbone.' if is_semantic else '' # queries, keys and values A__ = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' ) A__ = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' ) A__ = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' ) A__ = in_proj_weight[ : config.hidden_size, : ] A__ = q_bias A__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ = in_proj_weight[ -config.hidden_size :, : ] A__ = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained A__ = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' ) A__ = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' ) A__ = gamma_a A__ = gamma_a def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: A__ = dct.pop(__UpperCamelCase ) A__ = val def A ( ) -> Dict: A__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' A__ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False ) -> str: A__ = False if 'rvlcdip' in checkpoint_url else True A__ = BeitConfig(use_absolute_position_embeddings=__UpperCamelCase , use_mask_token=__UpperCamelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: A__ = 1_024 A__ = 4_096 A__ = 24 A__ = 16 # labels if "rvlcdip" in checkpoint_url: A__ = 16 A__ = 'huggingface/label-files' A__ = 'rvlcdip-id2label.json' A__ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='dataset' ) , 'r' ) ) A__ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys A__ = torch.hub.load_state_dict_from_url(__UpperCamelCase , map_location='cpu' )['model'] A__ = create_rename_keys(__UpperCamelCase , has_lm_head=__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) read_in_q_k_v(__UpperCamelCase , __UpperCamelCase , has_lm_head=__UpperCamelCase ) # load HuggingFace model A__ = BeitForMaskedImageModeling(__UpperCamelCase ) if has_lm_head else BeitForImageClassification(__UpperCamelCase ) model.eval() model.load_state_dict(__UpperCamelCase ) # Check outputs on an image A__ = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__UpperCamelCase ) A__ = prepare_img() A__ = image_processor(images=__UpperCamelCase , return_tensors='pt' ) A__ = encoding['pixel_values'] A__ = model(__UpperCamelCase ) A__ = outputs.logits # verify logits A__ = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 196, 8_192] assert logits.shape == torch.Size(__UpperCamelCase ), "Shape of logits not as expected" Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if push_to_hub: if has_lm_head: A__ = 'dit-base' if 'base' in checkpoint_url else 'dit-large' else: A__ = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip' image_processor.push_to_hub( repo_path_or_name=Path(__UpperCamelCase , __UpperCamelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=__UpperCamelCase , ) model.push_to_hub( repo_path_or_name=Path(__UpperCamelCase , __UpperCamelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=__UpperCamelCase , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
9
1
# flake8: noqa # Lint as: python3 SCREAMING_SNAKE_CASE__ = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
9
SCREAMING_SNAKE_CASE__ = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> list[str]: A__ = set() # keep track of all the paths to be checked A__ = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue A__ = queue.pop(0 ) # get the last node from the path A__ = path[-1] if node not in explored: A__ = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: A__ = list(__UpperCamelCase ) new_path.append(__UpperCamelCase ) queue.append(__UpperCamelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(__UpperCamelCase ) # in case there's no path between the 2 nodes return [] def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 A__ = [start] A__ = set(__UpperCamelCase ) # Keep tab on distances from `start` node. A__ = {start: 0, target: -1} while queue: A__ = queue.pop(0 ) if node == target: A__ = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(__UpperCamelCase ) queue.append(__UpperCamelCase ) A__ = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
9
1
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , _snake_case : Optional[Any] , _snake_case : Tuple=13 , _snake_case : int=7 , _snake_case : Dict=True , _snake_case : str=True , _snake_case : Tuple=True , _snake_case : List[str]=True , _snake_case : Union[str, Any]=99 , _snake_case : Union[str, Any]=32 , _snake_case : Union[str, Any]=5 , _snake_case : Any=4 , _snake_case : Any=37 , _snake_case : Any="gelu" , _snake_case : Optional[Any]=0.1 , _snake_case : Any=0.1 , _snake_case : List[str]=5_12 , _snake_case : int=16 , _snake_case : str=2 , _snake_case : Any=0.02 , _snake_case : List[str]=4 , ): """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_attention_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_choices def _a ( self : Tuple ): """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_attention_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _a ( self : Dict ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ , A__ = config_and_inputs A__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class __lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : str = True A__ : Optional[Any] = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def _a ( self : Optional[Any] ): """simple docstring""" A__ = FlaxRoFormerModelTester(self ) @slow def _a ( self : int ): """simple docstring""" for model_class_name in self.all_model_classes: A__ = model_class_name.from_pretrained('junnyu/roformer_chinese_small' , from_pt=_snake_case ) A__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_snake_case ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _a ( self : Tuple ): """simple docstring""" A__ = FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) A__ = jnp.array([[0, 1, 2, 3, 4, 5]] ) A__ = model(_snake_case )[0] A__ = 5_00_00 A__ = (1, 6, vocab_size) self.assertEqual(output.shape , _snake_case ) A__ = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _snake_case , atol=1E-4 ) )
9
def A ( __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: A__ = 0 A__ = len(__UpperCamelCase ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__UpperCamelCase ): return None A__ = sorted_collection[point] if current_item == item: return point else: if point < left: A__ = left A__ = point elif point > right: A__ = right A__ = point else: if item < current_item: A__ = point - 1 else: A__ = point + 1 return None def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__UpperCamelCase ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) elif point > right: return interpolation_search_by_recursion(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , point - 1 ) else: return interpolation_search_by_recursion( __UpperCamelCase , __UpperCamelCase , point + 1 , __UpperCamelCase ) def A ( __UpperCamelCase ) -> List[str]: if collection != sorted(__UpperCamelCase ): raise ValueError('Collection must be ascending sorted' ) return True if __name__ == "__main__": import sys SCREAMING_SNAKE_CASE__ = 0 if debug == 1: SCREAMING_SNAKE_CASE__ = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit('''Sequence must be ascending sorted to apply interpolation search''') SCREAMING_SNAKE_CASE__ = 6_7 SCREAMING_SNAKE_CASE__ = interpolation_search(collection, target) if result is not None: print(f'{target} found at positions: {result}') else: print('''Not found''')
9
1
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time SCREAMING_SNAKE_CASE__ = Lock() def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> str: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(__UpperCamelCase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() A__ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left A__ = min(__UpperCamelCase , __UpperCamelCase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(__UpperCamelCase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() A__ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right A__ = max(__UpperCamelCase , __UpperCamelCase ) # after all swaps are performed, send the values back to main result_pipe[1].send(__UpperCamelCase ) def A ( __UpperCamelCase ) -> Union[str, Any]: A__ = [] A__ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop A__ = Pipe() A__ = Pipe() process_array_.append( Process( target=__UpperCamelCase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) A__ = temp_rs A__ = temp_rr for i in range(1 , len(__UpperCamelCase ) - 1 ): A__ = Pipe() A__ = Pipe() process_array_.append( Process( target=__UpperCamelCase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) A__ = temp_rs A__ = temp_rr process_array_.append( Process( target=__UpperCamelCase , args=( len(__UpperCamelCase ) - 1, arr[len(__UpperCamelCase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(__UpperCamelCase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(__UpperCamelCase ) ): A__ = result_pipe[p][0].recv() process_array_[p].join() return arr def A ( ) -> Optional[int]: A__ = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*__UpperCamelCase ) A__ = odd_even_transposition(__UpperCamelCase ) print('Sorted List\n' ) print(*__UpperCamelCase ) if __name__ == "__main__": main()
9
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , *_snake_case : int , **_snake_case : Optional[int] ): """simple docstring""" warnings.warn( 'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use CLIPImageProcessor instead.' , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
9
1
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) class __lowerCAmelCase : """simple docstring""" def __init__( self : Tuple ): """simple docstring""" A__ = False def _a ( self : List[Any] , _snake_case : Tuple , _snake_case : List[str] , _snake_case : Union[str, Any] , _snake_case : List[Any] ): """simple docstring""" if not self.initialized: A__ = RagRetriever( _snake_case , question_encoder_tokenizer=_snake_case , generator_tokenizer=_snake_case , index=_snake_case , init_retrieval=_snake_case , ) A__ = True def _a ( self : Union[str, Any] ): """simple docstring""" self.retriever.index.init_index() def _a ( self : List[str] , _snake_case : Union[str, Any] , _snake_case : List[Any] ): """simple docstring""" A__ , A__ = self.retriever._main_retrieve(_snake_case , _snake_case ) return doc_ids, retrieved_doc_embeds class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : int , _snake_case : int , _snake_case : Union[str, Any] , _snake_case : Any , _snake_case : Tuple , _snake_case : str=None ): """simple docstring""" if index is not None and index.is_initialized() and len(_snake_case ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( _snake_case , question_encoder_tokenizer=_snake_case , generator_tokenizer=_snake_case , index=_snake_case , init_retrieval=_snake_case , ) A__ = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(_snake_case , _snake_case , _snake_case , _snake_case ) for worker in self.retrieval_workers ] ) def _a ( self : Dict ): """simple docstring""" logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _a ( self : str , _snake_case : Optional[Any] , _snake_case : Optional[int] ): """simple docstring""" if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. A__ = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] A__ , A__ = ray.get(random_worker.retrieve.remote(_snake_case , _snake_case ) ) else: A__ , A__ = self._main_retrieve(_snake_case , _snake_case ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_snake_case ) @classmethod def _a ( cls : List[Any] , _snake_case : int , _snake_case : Union[str, Any]=None , **_snake_case : int ): """simple docstring""" return super(_snake_case , cls ).get_tokenizers(_snake_case , _snake_case , **_snake_case ) @classmethod def _a ( cls : int , _snake_case : List[str] , _snake_case : Union[str, Any] , _snake_case : List[str]=None , **_snake_case : Any ): """simple docstring""" A__ = kwargs.pop('config' , _snake_case ) or RagConfig.from_pretrained(_snake_case , **_snake_case ) A__ = RagTokenizer.from_pretrained(_snake_case , config=_snake_case ) A__ = rag_tokenizer.question_encoder A__ = rag_tokenizer.generator if indexed_dataset is not None: A__ = 'custom' A__ = CustomHFIndex(config.retrieval_vector_size , _snake_case ) else: A__ = cls._build_index(_snake_case ) return cls( _snake_case , question_encoder_tokenizer=_snake_case , generator_tokenizer=_snake_case , retrieval_workers=_snake_case , index=_snake_case , )
9
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () SCREAMING_SNAKE_CASE__ = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). SCREAMING_SNAKE_CASE__ = [0, 2_5, 5_0] SCREAMING_SNAKE_CASE__ = [2_5, 5_0, 7_5] SCREAMING_SNAKE_CASE__ = fuzz.membership.trimf(X, abca) SCREAMING_SNAKE_CASE__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. SCREAMING_SNAKE_CASE__ = np.ones(7_5) SCREAMING_SNAKE_CASE__ = np.zeros((7_5,)) # 1. Union = max(µA(x), µB(x)) SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] SCREAMING_SNAKE_CASE__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) SCREAMING_SNAKE_CASE__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
9
1
def A ( __UpperCamelCase = 4_000_000 ) -> int: A__ = [0, 1] A__ = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 A__ = 0 for j in range(len(__UpperCamelCase ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f'{solution() = }')
9
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : """simple docstring""" @staticmethod def _a ( *_snake_case : int , **_snake_case : List[str] ): """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" A__ : List[str] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def _a ( self : Any , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : Optional[Any] ): """simple docstring""" A__ = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) A__ = [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] return object_detector, examples def _a ( self : int , _snake_case : int , _snake_case : List[str] ): """simple docstring""" A__ = object_detector(examples[0] , threshold=0.0 ) A__ = len(_snake_case ) self.assertGreater(_snake_case , 0 ) self.assertEqual( _snake_case , [ { 'score': ANY(_snake_case ), 'label': ANY(_snake_case ), 'box': {'xmin': ANY(_snake_case ), 'ymin': ANY(_snake_case ), 'xmax': ANY(_snake_case ), 'ymax': ANY(_snake_case )}, } for i in range(_snake_case ) ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def _a ( self : List[str] ): """simple docstring""" pass @require_torch def _a ( self : Optional[int] ): """simple docstring""" A__ = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) A__ = object_detector( './tests/fixtures/tests_samples/COCO/000000039769.png' , candidate_labels=['cat', 'remote', 'couch'] , threshold=0.64 , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {'score': 0.7235, 'label': 'cat', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7218, 'label': 'remote', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7184, 'label': 'couch', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.6748, 'label': 'remote', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6656, 'label': 'cat', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6614, 'label': 'couch', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6456, 'label': 'remote', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 2_74, 'xmax': 93, 'ymax': 2_97}}, {'score': 0.6419, 'label': 'cat', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, ] , ) A__ = object_detector( [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ [ {'score': 0.7235, 'label': 'cat', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7218, 'label': 'remote', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7184, 'label': 'couch', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.6748, 'label': 'remote', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6656, 'label': 'cat', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6614, 'label': 'couch', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6456, 'label': 'remote', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 2_74, 'xmax': 93, 'ymax': 2_97}}, {'score': 0.6419, 'label': 'cat', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, ] ] , ) @require_torch @slow def _a ( self : int ): """simple docstring""" A__ = pipeline('zero-shot-object-detection' ) A__ = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ] , ) A__ = object_detector( [ { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, ] , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ], [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ], ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def _a ( self : int ): """simple docstring""" pass @require_torch @slow def _a ( self : str ): """simple docstring""" A__ = 0.2 A__ = pipeline('zero-shot-object-detection' ) A__ = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , threshold=_snake_case , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, ] , ) @require_torch @slow def _a ( self : Any ): """simple docstring""" A__ = 2 A__ = pipeline('zero-shot-object-detection' ) A__ = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , top_k=_snake_case , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, ] , )
9
1
def A ( __UpperCamelCase ) -> tuple[int, int]: try: A__ = float(__UpperCamelCase ) except ValueError: raise ValueError('Please enter a valid number' ) A__ = decimal - int(__UpperCamelCase ) if fractional_part == 0: return int(__UpperCamelCase ), 1 else: A__ = len(str(__UpperCamelCase ).split('.' )[1] ) A__ = int(decimal * (10**number_of_frac_digits) ) A__ = 10**number_of_frac_digits A__ , A__ = denominator, numerator while True: A__ = dividend % divisor if remainder == 0: break A__ , A__ = divisor, remainder A__ , A__ = numerator / divisor, denominator / divisor return int(__UpperCamelCase ), int(__UpperCamelCase ) if __name__ == "__main__": print(f'{decimal_to_fraction(2) = }') print(f'{decimal_to_fraction(89.0) = }') print(f'{decimal_to_fraction("67") = }') print(f'{decimal_to_fraction("45.0") = }') print(f'{decimal_to_fraction(1.5) = }') print(f'{decimal_to_fraction("6.25") = }') print(f'{decimal_to_fraction("78td") = }')
9
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml SCREAMING_SNAKE_CASE__ = NewType('''DataClass''', Any) SCREAMING_SNAKE_CASE__ = NewType('''DataClassType''', Any) def A ( __UpperCamelCase ) -> List[Any]: if isinstance(__UpperCamelCase , __UpperCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def A ( __UpperCamelCase ) -> Callable[[str], Any]: A__ = {str(__UpperCamelCase ): choice for choice in choices} return lambda __UpperCamelCase : str_to_choice.get(__UpperCamelCase , __UpperCamelCase ) def A ( *, __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = dataclasses.MISSING , __UpperCamelCase = dataclasses.MISSING , __UpperCamelCase = None , **__UpperCamelCase , ) -> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls A__ = {} if aliases is not None: A__ = aliases if help is not None: A__ = help return dataclasses.field(metadata=__UpperCamelCase , default=__UpperCamelCase , default_factory=__UpperCamelCase , **__UpperCamelCase ) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Iterable[DataClassType] def __init__( self : Optional[int] , _snake_case : Union[DataClassType, Iterable[DataClassType]] , **_snake_case : Tuple ): """simple docstring""" if "formatter_class" not in kwargs: A__ = ArgumentDefaultsHelpFormatter super().__init__(**_snake_case ) if dataclasses.is_dataclass(_snake_case ): A__ = [dataclass_types] A__ = list(_snake_case ) for dtype in self.dataclass_types: self._add_dataclass_arguments(_snake_case ) @staticmethod def _a ( _snake_case : ArgumentParser , _snake_case : dataclasses.Field ): """simple docstring""" A__ = F'''--{field.name}''' A__ = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , _snake_case ): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default' ) A__ = kwargs.pop('aliases' , [] ) if isinstance(_snake_case , _snake_case ): A__ = [aliases] A__ = getattr(field.type , '__origin__' , field.type ) if origin_type is Union or (hasattr(_snake_case , 'UnionType' ) and isinstance(_snake_case , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(_snake_case ) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' F''' Problem encountered in field \'{field.name}\'.''' ) if type(_snake_case ) not in field.type.__args__: # filter `str` in Union A__ = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] A__ = getattr(field.type , '__origin__' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) A__ = ( field.type.__args__[0] if isinstance(_snake_case , field.type.__args__[1] ) else field.type.__args__[1] ) A__ = getattr(field.type , '__origin__' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) A__ = {} if origin_type is Literal or (isinstance(field.type , _snake_case ) and issubclass(field.type , _snake_case )): if origin_type is Literal: A__ = field.type.__args__ else: A__ = [x.value for x in field.type] A__ = make_choice_type_function(kwargs['choices'] ) if field.default is not dataclasses.MISSING: A__ = field.default else: A__ = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument A__ = copy(_snake_case ) # Hack because type=bool in argparse does not behave as we want. A__ = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. A__ = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way A__ = default # This tells argparse we accept 0 or 1 value after --field_name A__ = '?' # This is the value that will get picked if we do --field_name (without value) A__ = True elif isclass(_snake_case ) and issubclass(_snake_case , _snake_case ): A__ = field.type.__args__[0] A__ = '+' if field.default_factory is not dataclasses.MISSING: A__ = field.default_factory() elif field.default is dataclasses.MISSING: A__ = True else: A__ = field.type if field.default is not dataclasses.MISSING: A__ = field.default elif field.default_factory is not dataclasses.MISSING: A__ = field.default_factory() else: A__ = True parser.add_argument(_snake_case , *_snake_case , **_snake_case ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): A__ = False parser.add_argument(F'''--no_{field.name}''' , action='store_false' , dest=field.name , **_snake_case ) def _a ( self : Any , _snake_case : DataClassType ): """simple docstring""" if hasattr(_snake_case , '_argument_group_name' ): A__ = self.add_argument_group(dtype._argument_group_name ) else: A__ = self try: A__ = get_type_hints(_snake_case ) except NameError: raise RuntimeError( F'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_snake_case ): A__ = '.'.join(map(_snake_case , sys.version_info[:3] ) ) raise RuntimeError( F'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.' ) from ex raise for field in dataclasses.fields(_snake_case ): if not field.init: continue A__ = type_hints[field.name] self._parse_dataclass_field(_snake_case , _snake_case ) def _a ( self : Optional[int] , _snake_case : Optional[Any]=None , _snake_case : Any=False , _snake_case : int=True , _snake_case : List[Any]=None , _snake_case : int=None , ): """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): A__ = [] if args_filename: args_files.append(Path(_snake_case ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('.args' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values A__ = ArgumentParser() args_file_parser.add_argument(_snake_case , type=_snake_case , action='append' ) # Use only remaining args for further parsing (remove the args_file_flag) A__ , A__ = args_file_parser.parse_known_args(args=_snake_case ) A__ = vars(_snake_case ).get(args_file_flag.lstrip('-' ) , _snake_case ) if cmd_args_file_paths: args_files.extend([Path(_snake_case ) for p in cmd_args_file_paths] ) A__ = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last A__ = file_args + args if args is not None else file_args + sys.argv[1:] A__ , A__ = self.parse_known_args(args=_snake_case ) A__ = [] for dtype in self.dataclass_types: A__ = {f.name for f in dataclasses.fields(_snake_case ) if f.init} A__ = {k: v for k, v in vars(_snake_case ).items() if k in keys} for k in keys: delattr(_snake_case , _snake_case ) A__ = dtype(**_snake_case ) outputs.append(_snake_case ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(_snake_case ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def _a ( self : Dict , _snake_case : Dict[str, Any] , _snake_case : bool = False ): """simple docstring""" A__ = set(args.keys() ) A__ = [] for dtype in self.dataclass_types: A__ = {f.name for f in dataclasses.fields(_snake_case ) if f.init} A__ = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) A__ = dtype(**_snake_case ) outputs.append(_snake_case ) if not allow_extra_keys and unused_keys: raise ValueError(F'''Some keys are not used by the HfArgumentParser: {sorted(_snake_case )}''' ) return tuple(_snake_case ) def _a ( self : Dict , _snake_case : str , _snake_case : bool = False ): """simple docstring""" with open(Path(_snake_case ) , encoding='utf-8' ) as open_json_file: A__ = json.loads(open_json_file.read() ) A__ = self.parse_dict(_snake_case , allow_extra_keys=_snake_case ) return tuple(_snake_case ) def _a ( self : Tuple , _snake_case : str , _snake_case : bool = False ): """simple docstring""" A__ = self.parse_dict(yaml.safe_load(Path(_snake_case ).read_text() ) , allow_extra_keys=_snake_case ) return tuple(_snake_case )
9
1
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : str = ["vqvae"] def __init__( self : int , _snake_case : AutoencoderKL , _snake_case : UNetaDConditionModel , _snake_case : Mel , _snake_case : Union[DDIMScheduler, DDPMScheduler] , ): """simple docstring""" super().__init__() self.register_modules(unet=_snake_case , scheduler=_snake_case , mel=_snake_case , vqvae=_snake_case ) def _a ( self : Tuple ): """simple docstring""" return 50 if isinstance(self.scheduler , _snake_case ) else 10_00 @torch.no_grad() def __call__( self : List[str] , _snake_case : int = 1 , _snake_case : str = None , _snake_case : np.ndarray = None , _snake_case : int = 0 , _snake_case : int = 0 , _snake_case : int = None , _snake_case : torch.Generator = None , _snake_case : float = 0 , _snake_case : float = 0 , _snake_case : torch.Generator = None , _snake_case : float = 0 , _snake_case : torch.Tensor = None , _snake_case : torch.Tensor = None , _snake_case : int=True , ): """simple docstring""" A__ = steps or self.get_default_steps() self.scheduler.set_timesteps(_snake_case ) A__ = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: A__ = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: A__ = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=_snake_case , device=self.device , ) A__ = noise A__ = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_snake_case , _snake_case ) A__ = self.mel.audio_slice_to_image(_snake_case ) A__ = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape( (input_image.height, input_image.width) ) A__ = (input_image / 2_55) * 2 - 1 A__ = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: A__ = self.vqvae.encode(torch.unsqueeze(_snake_case , 0 ) ).latent_dist.sample( generator=_snake_case )[0] A__ = self.vqvae.config.scaling_factor * input_images if start_step > 0: A__ = self.scheduler.add_noise(_snake_case , _snake_case , self.scheduler.timesteps[start_step - 1] ) A__ = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) A__ = int(mask_start_secs * pixels_per_second ) A__ = int(mask_end_secs * pixels_per_second ) A__ = self.scheduler.add_noise(_snake_case , _snake_case , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , _snake_case ): A__ = self.unet(_snake_case , _snake_case , _snake_case )['sample'] else: A__ = self.unet(_snake_case , _snake_case )['sample'] if isinstance(self.scheduler , _snake_case ): A__ = self.scheduler.step( model_output=_snake_case , timestep=_snake_case , sample=_snake_case , eta=_snake_case , generator=_snake_case , )['prev_sample'] else: A__ = self.scheduler.step( model_output=_snake_case , timestep=_snake_case , sample=_snake_case , generator=_snake_case , )['prev_sample'] if mask is not None: if mask_start > 0: A__ = mask[:, step, :, :mask_start] if mask_end > 0: A__ = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance A__ = 1 / self.vqvae.config.scaling_factor * images A__ = self.vqvae.decode(_snake_case )['sample'] A__ = (images / 2 + 0.5).clamp(0 , 1 ) A__ = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() A__ = (images * 2_55).round().astype('uint8' ) A__ = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_snake_case , mode='RGB' ).convert('L' ) for _ in images) ) A__ = [self.mel.image_to_audio(_snake_case ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_snake_case )[:, np.newaxis, :] ) , **ImagePipelineOutput(_snake_case ) ) @torch.no_grad() def _a ( self : Optional[Any] , _snake_case : List[Image.Image] , _snake_case : int = 50 ): """simple docstring""" assert isinstance(self.scheduler , _snake_case ) self.scheduler.set_timesteps(_snake_case ) A__ = np.array( [np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) A__ = (sample / 2_55) * 2 - 1 A__ = torch.Tensor(_snake_case ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): A__ = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps A__ = self.scheduler.alphas_cumprod[t] A__ = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) A__ = 1 - alpha_prod_t A__ = self.unet(_snake_case , _snake_case )['sample'] A__ = (1 - alpha_prod_t_prev) ** 0.5 * model_output A__ = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) A__ = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def _a ( _snake_case : torch.Tensor , _snake_case : torch.Tensor , _snake_case : float ): """simple docstring""" A__ = acos(torch.dot(torch.flatten(_snake_case ) , torch.flatten(_snake_case ) ) / torch.norm(_snake_case ) / torch.norm(_snake_case ) ) return sin((1 - alpha) * theta ) * xa / sin(_snake_case ) + sin(alpha * theta ) * xa / sin(_snake_case )
9
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def A ( __UpperCamelCase ) -> List[Any]: print('Loading config file...' ) def flatten_yaml_as_dict(__UpperCamelCase , __UpperCamelCase="" , __UpperCamelCase="." ): A__ = [] for k, v in d.items(): A__ = parent_key + sep + k if parent_key else k if isinstance(__UpperCamelCase , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(__UpperCamelCase , __UpperCamelCase , sep=__UpperCamelCase ).items() ) else: items.append((new_key, v) ) return dict(__UpperCamelCase ) A__ = argparse.Namespace() with open(__UpperCamelCase , 'r' ) as yaml_file: try: A__ = yaml.load(__UpperCamelCase , Loader=yaml.FullLoader ) A__ = flatten_yaml_as_dict(__UpperCamelCase ) for k, v in flat_cfg.items(): setattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) except yaml.YAMLError as exc: logger.error('Error while loading config file: {}. Error message: {}'.format(__UpperCamelCase , str(__UpperCamelCase ) ) ) return config def A ( __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: A__ = MobileViTVaConfig() A__ = False # dataset if task_name.startswith('imagenet1k_' ): A__ = 1_000 if int(task_name.strip().split('_' )[-1] ) == 384: A__ = 384 else: A__ = 256 A__ = 'imagenet-1k-id2label.json' elif task_name.startswith('imagenet21k_to_1k_' ): A__ = 21_000 if int(task_name.strip().split('_' )[-1] ) == 384: A__ = 384 else: A__ = 256 A__ = 'imagenet-22k-id2label.json' elif task_name.startswith('ade20k_' ): A__ = 151 A__ = 512 A__ = 'ade20k-id2label.json' A__ = True elif task_name.startswith('voc_' ): A__ = 21 A__ = 512 A__ = 'pascal-voc-id2label.json' A__ = True # orig_config A__ = load_orig_config_file(__UpperCamelCase ) assert getattr(__UpperCamelCase , 'model.classification.name' , -1 ) == "mobilevit_v2", "Invalid model" A__ = getattr(__UpperCamelCase , 'model.classification.mitv2.width_multiplier' , 1.0 ) assert ( getattr(__UpperCamelCase , 'model.classification.mitv2.attn_norm_layer' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" A__ = getattr(__UpperCamelCase , 'model.classification.activation.name' , 'swish' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: A__ = getattr(__UpperCamelCase , 'model.segmentation.output_stride' , 16 ) if "_deeplabv3" in task_name: A__ = getattr(__UpperCamelCase , 'model.segmentation.deeplabv3.aspp_rates' , [12, 24, 36] ) A__ = getattr(__UpperCamelCase , 'model.segmentation.deeplabv3.aspp_out_channels' , 512 ) A__ = getattr(__UpperCamelCase , 'model.segmentation.deeplabv3.aspp_dropout' , 0.1 ) # id2label A__ = 'huggingface/label-files' A__ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='dataset' ) , 'r' ) ) A__ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} return config def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[str]: A__ = dct.pop(__UpperCamelCase ) A__ = val def A ( __UpperCamelCase , __UpperCamelCase=False ) -> Dict: if base_model: A__ = '' else: A__ = 'mobilevitv2.' A__ = [] for k in state_dict.keys(): if k[:8] == "encoder.": A__ = k[8:] else: A__ = k if ".block." in k: A__ = k_new.replace('.block.' , '.' ) if ".conv." in k: A__ = k_new.replace('.conv.' , '.convolution.' ) if ".norm." in k: A__ = k_new.replace('.norm.' , '.normalization.' ) if "conv_1." in k: A__ = k_new.replace('conv_1.' , f'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if f'''layer_{i}.''' in k: A__ = k_new.replace(f'''layer_{i}.''' , f'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: A__ = k_new.replace('.exp_1x1.' , '.expand_1x1.' ) if ".red_1x1." in k: A__ = k_new.replace('.red_1x1.' , '.reduce_1x1.' ) for i in [3, 4, 5]: if f'''layer_{i}.0.''' in k: A__ = k_new.replace(f'''layer_{i}.0.''' , f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if f'''layer_{i}.1.local_rep.0.''' in k: A__ = k_new.replace(f'''layer_{i}.1.local_rep.0.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if f'''layer_{i}.1.local_rep.1.''' in k: A__ = k_new.replace(f'''layer_{i}.1.local_rep.1.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: A__ = [0, 1] elif i == 4: A__ = [0, 1, 2, 3] elif i == 5: A__ = [0, 1, 2] for j in j_in: if f'''layer_{i}.1.global_rep.{j}.''' in k: A__ = k_new.replace( f'''layer_{i}.1.global_rep.{j}.''' , f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if f'''layer_{i}.1.global_rep.{j+1}.''' in k: A__ = k_new.replace( f'''layer_{i}.1.global_rep.{j+1}.''' , f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if f'''layer_{i}.1.conv_proj.''' in k: A__ = k_new.replace(f'''layer_{i}.1.conv_proj.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: A__ = k_new.replace('pre_norm_attn.0.' , 'layernorm_before.' ) if "pre_norm_attn.1." in k: A__ = k_new.replace('pre_norm_attn.1.' , 'attention.' ) if "pre_norm_ffn.0." in k: A__ = k_new.replace('pre_norm_ffn.0.' , 'layernorm_after.' ) if "pre_norm_ffn.1." in k: A__ = k_new.replace('pre_norm_ffn.1.' , 'ffn.conv1.' ) if "pre_norm_ffn.3." in k: A__ = k_new.replace('pre_norm_ffn.3.' , 'ffn.conv2.' ) if "classifier.1." in k: A__ = k_new.replace('classifier.1.' , 'classifier.' ) if "seg_head." in k: A__ = k_new.replace('seg_head.' , 'segmentation_head.' ) if ".aspp_layer." in k: A__ = k_new.replace('.aspp_layer.' , '.' ) if ".aspp_pool." in k: A__ = k_new.replace('.aspp_pool.' , '.' ) rename_keys.append((k, k_new) ) return rename_keys def A ( __UpperCamelCase ) -> Tuple: A__ = [] for k in state_dict.keys(): if k.startswith('seg_head.aux_head.' ): keys_to_ignore.append(__UpperCamelCase ) for k in keys_to_ignore: state_dict.pop(__UpperCamelCase , __UpperCamelCase ) def A ( ) -> str: A__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" A__ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: A__ = get_mobilevitva_config(__UpperCamelCase , __UpperCamelCase ) # load original state_dict A__ = torch.load(__UpperCamelCase , map_location='cpu' ) # load huggingface model if task_name.startswith('ade20k_' ) or task_name.startswith('voc_' ): A__ = MobileViTVaForSemanticSegmentation(__UpperCamelCase ).eval() A__ = False else: A__ = MobileViTVaForImageClassification(__UpperCamelCase ).eval() A__ = False # remove and rename some keys of load the original model A__ = checkpoint remove_unused_keys(__UpperCamelCase ) A__ = create_rename_keys(__UpperCamelCase , base_model=__UpperCamelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # load modified state_dict model.load_state_dict(__UpperCamelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor A__ = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) A__ = image_processor(images=prepare_img() , return_tensors='pt' ) A__ = model(**__UpperCamelCase ) # verify classification model if task_name.startswith('imagenet' ): A__ = outputs.logits A__ = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('imagenet1k_256' ) and config.width_multiplier == 1.0: # expected_logits for base variant A__ = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ) assert torch.allclose(logits[0, :3] , __UpperCamelCase , atol=1E-4 ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''imagenet1k_256''', type=str, help=( '''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ''' ''' Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 ''' ), choices=[ '''imagenet1k_256''', '''imagenet1k_384''', '''imagenet21k_to_1k_256''', '''imagenet21k_to_1k_384''', '''ade20k_deeplabv3''', '''voc_deeplabv3''', ], ) parser.add_argument( '''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
9
1
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : str = None A__ : str = BloomTokenizerFast A__ : List[str] = BloomTokenizerFast A__ : Union[str, Any] = True A__ : int = False A__ : List[Any] = "tokenizer_file" A__ : Optional[Any] = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def _a ( self : Dict ): """simple docstring""" super().setUp() A__ = BloomTokenizerFast.from_pretrained('bigscience/tokenizer' ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self : Optional[int] , **_snake_case : Dict ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **_snake_case ) def _a ( self : List[Any] ): """simple docstring""" A__ = self.get_rust_tokenizer() A__ = ['The quick brown fox</s>', 'jumps over the lazy dog</s>'] A__ = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]] A__ = tokenizer.batch_encode_plus(_snake_case )['input_ids'] self.assertListEqual(_snake_case , _snake_case ) A__ = tokenizer.batch_decode(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) def _a ( self : Optional[int] , _snake_case : Dict=6 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A__ = self.rust_tokenizer_class.from_pretrained(_snake_case , **_snake_case ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input A__ = 'This is a simple input' A__ = ['This is a simple input 1', 'This is a simple input 2'] A__ = ('This is a simple input', 'This is a pair') A__ = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests try: tokenizer_r.encode(_snake_case , max_length=_snake_case ) tokenizer_r.encode_plus(_snake_case , max_length=_snake_case ) tokenizer_r.batch_encode_plus(_snake_case , max_length=_snake_case ) tokenizer_r.encode(_snake_case , max_length=_snake_case ) tokenizer_r.batch_encode_plus(_snake_case , max_length=_snake_case ) except ValueError: self.fail('Bloom Tokenizer should be able to deal with padding' ) A__ = None # Hotfixing padding = None self.assertRaises(_snake_case , tokenizer_r.encode , _snake_case , max_length=_snake_case , padding='max_length' ) # Simple input self.assertRaises(_snake_case , tokenizer_r.encode_plus , _snake_case , max_length=_snake_case , padding='max_length' ) # Simple input self.assertRaises( _snake_case , tokenizer_r.batch_encode_plus , _snake_case , max_length=_snake_case , padding='max_length' , ) # Pair input self.assertRaises(_snake_case , tokenizer_r.encode , _snake_case , max_length=_snake_case , padding='max_length' ) # Pair input self.assertRaises(_snake_case , tokenizer_r.encode_plus , _snake_case , max_length=_snake_case , padding='max_length' ) # Pair input self.assertRaises( _snake_case , tokenizer_r.batch_encode_plus , _snake_case , max_length=_snake_case , padding='max_length' , ) def _a ( self : Union[str, Any] ): """simple docstring""" A__ = self.get_rust_tokenizer() A__ = load_dataset('xnli' , 'all_languages' , split='test' , streaming=_snake_case ) A__ = next(iter(_snake_case ) )['premise'] # pick up one data A__ = list(sample_data.values() ) A__ = list(map(tokenizer.encode , _snake_case ) ) A__ = [tokenizer.decode(_snake_case , clean_up_tokenization_spaces=_snake_case ) for x in output_tokens] self.assertListEqual(_snake_case , _snake_case ) def _a ( self : Optional[int] ): """simple docstring""" self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
9
import argparse from collections import defaultdict import yaml SCREAMING_SNAKE_CASE__ = '''docs/source/en/_toctree.yml''' def A ( __UpperCamelCase ) -> Optional[Any]: A__ = defaultdict(__UpperCamelCase ) for doc in model_doc: counts[doc["local"]] += 1 A__ = [key for key, value in counts.items() if value > 1] A__ = [] for duplicate_key in duplicates: A__ = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(__UpperCamelCase ) > 1: raise ValueError( f'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(__UpperCamelCase , key=lambda __UpperCamelCase : s["title"].lower() ) def A ( __UpperCamelCase=False ) -> str: with open(__UpperCamelCase , encoding='utf-8' ) as f: A__ = yaml.safe_load(f.read() ) # Get to the API doc A__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 A__ = content[api_idx]['sections'] # Then to the model doc A__ = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 A__ = api_doc[model_idx]['sections'] A__ = [(idx, section) for idx, section in enumerate(__UpperCamelCase ) if 'sections' in section] A__ = False for idx, modality_doc in modalities_docs: A__ = modality_doc['sections'] A__ = clean_model_doc_toc(__UpperCamelCase ) if old_modality_doc != new_modality_doc: A__ = True if overwrite: A__ = new_modality_doc if diff: if overwrite: A__ = model_doc A__ = api_doc with open(__UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(__UpperCamelCase , allow_unicode=__UpperCamelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') SCREAMING_SNAKE_CASE__ = parser.parse_args() check_model_doc(args.fix_and_overwrite)
9
1
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : str = "align_text_model" def __init__( self : Any , _snake_case : Optional[int]=3_05_22 , _snake_case : Optional[int]=7_68 , _snake_case : str=12 , _snake_case : Union[str, Any]=12 , _snake_case : List[Any]=30_72 , _snake_case : List[str]="gelu" , _snake_case : Optional[int]=0.1 , _snake_case : str=0.1 , _snake_case : Optional[int]=5_12 , _snake_case : Optional[Any]=2 , _snake_case : List[Any]=0.02 , _snake_case : List[Any]=1E-12 , _snake_case : List[str]=0 , _snake_case : List[str]="absolute" , _snake_case : Tuple=True , **_snake_case : Optional[Any] , ): """simple docstring""" super().__init__(**_snake_case ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = pad_token_id @classmethod def _a ( cls : List[str] , _snake_case : Union[str, os.PathLike] , **_snake_case : List[str] ): """simple docstring""" cls._set_token_in_kwargs(_snake_case ) A__ , A__ = cls.get_config_dict(_snake_case , **_snake_case ) # get the text config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": A__ = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_snake_case , **_snake_case ) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Dict = "align_vision_model" def __init__( self : Union[str, Any] , _snake_case : int = 3 , _snake_case : int = 6_00 , _snake_case : float = 2.0 , _snake_case : float = 3.1 , _snake_case : int = 8 , _snake_case : List[int] = [3, 3, 5, 3, 5, 5, 3] , _snake_case : List[int] = [32, 16, 24, 40, 80, 1_12, 1_92] , _snake_case : List[int] = [16, 24, 40, 80, 1_12, 1_92, 3_20] , _snake_case : List[int] = [] , _snake_case : List[int] = [1, 2, 2, 2, 1, 2, 1] , _snake_case : List[int] = [1, 2, 2, 3, 3, 4, 1] , _snake_case : List[int] = [1, 6, 6, 6, 6, 6, 6] , _snake_case : float = 0.25 , _snake_case : str = "swish" , _snake_case : int = 25_60 , _snake_case : str = "mean" , _snake_case : float = 0.02 , _snake_case : float = 0.001 , _snake_case : float = 0.99 , _snake_case : float = 0.2 , **_snake_case : Tuple , ): """simple docstring""" super().__init__(**_snake_case ) A__ = num_channels A__ = image_size A__ = width_coefficient A__ = depth_coefficient A__ = depth_divisor A__ = kernel_sizes A__ = in_channels A__ = out_channels A__ = depthwise_padding A__ = strides A__ = num_block_repeats A__ = expand_ratios A__ = squeeze_expansion_ratio A__ = hidden_act A__ = hidden_dim A__ = pooling_type A__ = initializer_range A__ = batch_norm_eps A__ = batch_norm_momentum A__ = drop_connect_rate A__ = sum(_snake_case ) * 4 @classmethod def _a ( cls : List[str] , _snake_case : Union[str, os.PathLike] , **_snake_case : Optional[int] ): """simple docstring""" cls._set_token_in_kwargs(_snake_case ) A__ , A__ = cls.get_config_dict(_snake_case , **_snake_case ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": A__ = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_snake_case , **_snake_case ) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Dict = "align" A__ : List[Any] = True def __init__( self : Optional[int] , _snake_case : Union[str, Any]=None , _snake_case : Union[str, Any]=None , _snake_case : Optional[int]=6_40 , _snake_case : List[str]=1.0 , _snake_case : Union[str, Any]=0.02 , **_snake_case : Tuple , ): """simple docstring""" super().__init__(**_snake_case ) if text_config is None: A__ = {} logger.info('text_config is None. Initializing the AlignTextConfig with default values.' ) if vision_config is None: A__ = {} logger.info('vision_config is None. Initializing the AlignVisionConfig with default values.' ) A__ = AlignTextConfig(**_snake_case ) A__ = AlignVisionConfig(**_snake_case ) A__ = projection_dim A__ = temperature_init_value A__ = initializer_range @classmethod def _a ( cls : Union[str, Any] , _snake_case : AlignTextConfig , _snake_case : AlignVisionConfig , **_snake_case : Optional[int] ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_snake_case ) def _a ( self : List[str] ): """simple docstring""" A__ = copy.deepcopy(self.__dict__ ) A__ = self.text_config.to_dict() A__ = self.vision_config.to_dict() A__ = self.__class__.model_type return output
9
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def _a ( self : List[str] ): """simple docstring""" A__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_snake_case , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(_snake_case , 'num_attention_heads' ) ) self.parent.assertTrue(hasattr(_snake_case , 'num_encoder_blocks' ) ) class __lowerCAmelCase : """simple docstring""" def __init__( self : Any , _snake_case : str , _snake_case : Union[str, Any]=13 , _snake_case : Any=64 , _snake_case : Optional[Any]=3 , _snake_case : Dict=4 , _snake_case : Tuple=[2, 2, 2, 2] , _snake_case : str=[8, 4, 2, 1] , _snake_case : Union[str, Any]=[16, 32, 64, 1_28] , _snake_case : int=[1, 4, 8, 16] , _snake_case : List[str]=[1, 2, 4, 8] , _snake_case : int=True , _snake_case : int=True , _snake_case : Union[str, Any]="gelu" , _snake_case : Optional[int]=0.1 , _snake_case : Tuple=0.1 , _snake_case : Dict=0.02 , _snake_case : Tuple=3 , _snake_case : int=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = num_encoder_blocks A__ = sr_ratios A__ = depths A__ = hidden_sizes A__ = downsampling_rates A__ = num_attention_heads A__ = is_training A__ = use_labels A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = num_labels A__ = scope def _a ( self : int ): """simple docstring""" A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A__ = self.get_config() return config, pixel_values, labels def _a ( self : int ): """simple docstring""" return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _a ( self : int , _snake_case : Optional[Any] , _snake_case : int , _snake_case : Any ): """simple docstring""" A__ = SegformerModel(config=_snake_case ) model.to(_snake_case ) model.eval() A__ = model(_snake_case ) A__ = A__ = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def _a ( self : Union[str, Any] , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : Dict ): """simple docstring""" A__ = self.num_labels A__ = SegformerForSemanticSegmentation(_snake_case ) model.to(_snake_case ) model.eval() A__ = model(_snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) A__ = model(_snake_case , labels=_snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def _a ( self : List[str] , _snake_case : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : List[str] ): """simple docstring""" A__ = 1 A__ = SegformerForSemanticSegmentation(config=_snake_case ) model.to(_snake_case ) model.eval() A__ = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(_snake_case ) A__ = model(_snake_case , labels=_snake_case ) self.parent.assertGreater(result.loss , 0.0 ) def _a ( self : List[Any] ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Optional[int] = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) A__ : Union[str, Any] = ( { "feature-extraction": SegformerModel, "image-classification": SegformerForImageClassification, "image-segmentation": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) A__ : Optional[Any] = True A__ : str = False A__ : Tuple = False A__ : Dict = False def _a ( self : Union[str, Any] ): """simple docstring""" A__ = SegformerModelTester(self ) A__ = SegformerConfigTester(self , config_class=_snake_case ) def _a ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Optional[Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def _a ( self : List[Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*_snake_case ) def _a ( self : Tuple ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*_snake_case ) @unittest.skip('SegFormer does not use inputs_embeds' ) def _a ( self : List[Any] ): """simple docstring""" pass @unittest.skip('SegFormer does not have get_input_embeddings method and get_output_embeddings methods' ) def _a ( self : Dict ): """simple docstring""" pass def _a ( self : Dict ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(_snake_case ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _snake_case ) def _a ( self : Dict ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True for model_class in self.all_model_classes: A__ = True A__ = False A__ = True A__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) A__ = outputs.attentions A__ = sum(self.model_tester.depths ) self.assertEqual(len(_snake_case ) , _snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) A__ = outputs.attentions self.assertEqual(len(_snake_case ) , _snake_case ) # verify the first attentions (first block, first layer) A__ = (self.model_tester.image_size // 4) ** 2 A__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) A__ = (self.model_tester.image_size // 32) ** 2 A__ = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) A__ = len(_snake_case ) # Check attention is always last and order is fine A__ = True A__ = True A__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) self.assertEqual(out_len + 1 , len(_snake_case ) ) A__ = outputs.attentions self.assertEqual(len(_snake_case ) , _snake_case ) # verify the first attentions (first block, first layer) A__ = (self.model_tester.image_size // 4) ** 2 A__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def _a ( self : Union[str, Any] ): """simple docstring""" def check_hidden_states_output(_snake_case : Dict , _snake_case : int , _snake_case : List[Any] ): A__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) A__ = outputs.hidden_states A__ = self.model_tester.num_encoder_blocks self.assertEqual(len(_snake_case ) , _snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) def _a ( self : Tuple ): """simple docstring""" if not self.model_tester.is_training: return A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True for model_class in self.all_model_classes: if model_class in get_values(_snake_case ): continue A__ = model_class(_snake_case ) model.to(_snake_case ) model.train() A__ = self._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) A__ = model(**_snake_case ).loss loss.backward() @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _a ( self : Optional[Any] ): """simple docstring""" pass @slow def _a ( self : Tuple ): """simple docstring""" for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = SegformerModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def A ( ) -> str: A__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _a ( self : Dict ): """simple docstring""" A__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_snake_case , align=_snake_case , do_random_crop=_snake_case ) A__ = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( _snake_case ) A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='pt' ) A__ = encoded_inputs.pixel_values.to(_snake_case ) with torch.no_grad(): A__ = model(_snake_case ) A__ = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , _snake_case ) A__ = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _snake_case , atol=1E-4 ) ) @slow def _a ( self : Optional[Any] ): """simple docstring""" A__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_snake_case , align=_snake_case , do_random_crop=_snake_case ) A__ = SegformerForSemanticSegmentation.from_pretrained( 'nvidia/segformer-b1-finetuned-cityscapes-1024-1024' ).to(_snake_case ) A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='pt' ) A__ = encoded_inputs.pixel_values.to(_snake_case ) with torch.no_grad(): A__ = model(_snake_case ) A__ = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , _snake_case ) A__ = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _snake_case , atol=1E-1 ) ) @slow def _a ( self : Any ): """simple docstring""" A__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_snake_case , align=_snake_case , do_random_crop=_snake_case ) A__ = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( _snake_case ) A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='pt' ) A__ = encoded_inputs.pixel_values.to(_snake_case ) with torch.no_grad(): A__ = model(_snake_case ) A__ = outputs.logits.detach().cpu() A__ = image_processor.post_process_semantic_segmentation(outputs=_snake_case , target_sizes=[(5_00, 3_00)] ) A__ = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , _snake_case ) A__ = image_processor.post_process_semantic_segmentation(outputs=_snake_case ) A__ = torch.Size((1_28, 1_28) ) self.assertEqual(segmentation[0].shape , _snake_case )
9
1
from datetime import datetime import matplotlib.pyplot as plt import torch def A ( __UpperCamelCase ) -> Any: for param in module.parameters(): A__ = False def A ( ) -> str: A__ = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): A__ = 'mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def A ( __UpperCamelCase ) -> int: A__ = plt.imshow(__UpperCamelCase ) fig.axes.get_xaxis().set_visible(__UpperCamelCase ) fig.axes.get_yaxis().set_visible(__UpperCamelCase ) plt.show() def A ( ) -> Optional[Any]: A__ = datetime.now() A__ = current_time.strftime('%H:%M:%S' ) return timestamp
9
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A ( __UpperCamelCase ) -> Optional[int]: A__ = filter(lambda __UpperCamelCase : p.requires_grad , model.parameters() ) A__ = sum([np.prod(p.size() ) for p in model_parameters] ) return params SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) def A ( __UpperCamelCase , __UpperCamelCase ) -> Dict: if metric == "rouge2": A__ = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": A__ = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": A__ = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": A__ = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ' function.' ) A__ = ModelCheckpoint( dirpath=__UpperCamelCase , filename=__UpperCamelCase , monitor=f'''val_{metric}''' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def A ( __UpperCamelCase , __UpperCamelCase ) -> Any: return EarlyStopping( monitor=f'''val_{metric}''' , mode='min' if 'loss' in metric else 'max' , patience=__UpperCamelCase , verbose=__UpperCamelCase , ) class __lowerCAmelCase ( pl.Callback ): """simple docstring""" def _a ( self : Dict , _snake_case : Union[str, Any] , _snake_case : str ): """simple docstring""" A__ = {F'''lr_group_{i}''': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_snake_case ) @rank_zero_only def _a ( self : Union[str, Any] , _snake_case : pl.Trainer , _snake_case : pl.LightningModule , _snake_case : str , _snake_case : Optional[Any]=True ): """simple docstring""" logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) A__ = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results A__ = Path(pl_module.hparams.output_dir ) if type_path == "test": A__ = od / 'test_results.txt' A__ = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. A__ = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' A__ = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=_snake_case ) generations_file.parent.mkdir(exist_ok=_snake_case ) with open(_snake_case , 'a+' ) as writer: for key in sorted(_snake_case ): if key in ["log", "progress_bar", "preds"]: continue A__ = metrics[key] if isinstance(_snake_case , torch.Tensor ): A__ = val.item() A__ = F'''{key}: {val:.6f}\n''' writer.write(_snake_case ) if not save_generations: return if "preds" in metrics: A__ = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(_snake_case ) @rank_zero_only def _a ( self : Dict , _snake_case : List[str] , _snake_case : List[Any] ): """simple docstring""" try: A__ = pl_module.model.model.num_parameters() except AttributeError: A__ = pl_module.model.num_parameters() A__ = count_trainable_parameters(_snake_case ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def _a ( self : int , _snake_case : pl.Trainer , _snake_case : pl.LightningModule ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_snake_case , _snake_case , 'test' ) @rank_zero_only def _a ( self : Optional[Any] , _snake_case : pl.Trainer , _snake_case : List[Any] ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
9
1
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , *_snake_case : List[str] , _snake_case : Any=None , _snake_case : Any=None , **_snake_case : int ): """simple docstring""" super().__init__(*_snake_case , **_snake_case ) A__ = eval_examples A__ = post_process_function def _a ( self : int , _snake_case : Optional[Dataset] = None , _snake_case : int=None , _snake_case : Optional[List[str]] = None , _snake_case : str = "eval" , **_snake_case : Dict , ): """simple docstring""" A__ = gen_kwargs.copy() A__ = ( gen_kwargs['max_length'] if gen_kwargs.get('max_length' ) is not None else self.args.generation_max_length ) A__ = ( gen_kwargs['num_beams'] if gen_kwargs.get('num_beams' ) is not None else self.args.generation_num_beams ) A__ = gen_kwargs A__ = self.eval_dataset if eval_dataset is None else eval_dataset A__ = self.get_eval_dataloader(_snake_case ) A__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. A__ = self.compute_metrics A__ = None A__ = time.time() A__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: A__ = eval_loop( _snake_case , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_snake_case , metric_key_prefix=_snake_case , ) finally: A__ = compute_metrics A__ = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _snake_case , _snake_case , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default A__ = self.post_process_function(_snake_case , _snake_case , _snake_case ) A__ = self.compute_metrics(_snake_case ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): A__ = metrics.pop(_snake_case ) metrics.update(output.metrics ) else: A__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_snake_case ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) A__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , _snake_case ) return metrics def _a ( self : Tuple , _snake_case : Union[str, Any] , _snake_case : Optional[int] , _snake_case : str=None , _snake_case : str = "test" , **_snake_case : List[str] ): """simple docstring""" A__ = gen_kwargs.copy() A__ = self.get_test_dataloader(_snake_case ) # Temporarily disable metric computation, we will do it in the loop here. A__ = self.compute_metrics A__ = None A__ = time.time() A__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: A__ = eval_loop( _snake_case , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_snake_case , metric_key_prefix=_snake_case , ) finally: A__ = compute_metrics A__ = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _snake_case , _snake_case , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output A__ = self.post_process_function(_snake_case , _snake_case , _snake_case , 'predict' ) A__ = self.compute_metrics(_snake_case ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): A__ = metrics.pop(_snake_case ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_snake_case )
9
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Optional[Any] = ["input_values", "attention_mask"] def __init__( self : str , _snake_case : int = 1 , _snake_case : int = 1_60_00 , _snake_case : float = 0.0 , _snake_case : bool = False , _snake_case : int = 80 , _snake_case : int = 16 , _snake_case : int = 64 , _snake_case : str = "hann_window" , _snake_case : float = 1.0 , _snake_case : float = 80 , _snake_case : float = 76_00 , _snake_case : float = 1E-10 , _snake_case : int = 2 , _snake_case : bool = True , **_snake_case : Union[str, Any] , ): """simple docstring""" super().__init__(feature_size=_snake_case , sampling_rate=_snake_case , padding_value=_snake_case , **_snake_case ) A__ = do_normalize A__ = return_attention_mask A__ = num_mel_bins A__ = hop_length A__ = win_length A__ = win_function A__ = frame_signal_scale A__ = fmin A__ = fmax A__ = mel_floor A__ = reduction_factor A__ = win_length * sampling_rate // 10_00 A__ = hop_length * sampling_rate // 10_00 A__ = optimal_fft_length(self.sample_size ) A__ = (self.n_fft // 2) + 1 A__ = window_function(window_length=self.sample_size , name=self.win_function , periodic=_snake_case ) A__ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , _snake_case , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , _snake_case , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _a ( _snake_case : List[np.ndarray] , _snake_case : List[np.ndarray] , _snake_case : float = 0.0 ): """simple docstring""" if attention_mask is not None: A__ = np.array(_snake_case , np.intaa ) A__ = [] for vector, length in zip(_snake_case , attention_mask.sum(-1 ) ): A__ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: A__ = padding_value normed_input_values.append(_snake_case ) else: A__ = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def _a ( self : Tuple , _snake_case : np.ndarray , ): """simple docstring""" A__ = spectrogram( _snake_case , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self : List[str] , _snake_case : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _snake_case : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Optional[int] = None , _snake_case : bool = False , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : Optional[int] = None , **_snake_case : Tuple , ): """simple docstring""" if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: A__ = self._process_audio( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , **_snake_case , ) else: A__ = None if audio_target is not None: A__ = self._process_audio( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , **_snake_case , ) if inputs is None: return inputs_target else: A__ = inputs_target['input_values'] A__ = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def _a ( self : Tuple , _snake_case : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _snake_case : bool = False , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Optional[int] = None , _snake_case : bool = False , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[Union[str, TensorType]] = None , **_snake_case : Tuple , ): """simple docstring""" A__ = isinstance(_snake_case , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) A__ = is_batched_numpy or ( isinstance(_snake_case , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A__ = [np.asarray(_snake_case , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_snake_case , np.ndarray ): A__ = np.asarray(_snake_case , dtype=np.floataa ) elif isinstance(_snake_case , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): A__ = speech.astype(np.floataa ) # always return batch if not is_batched: A__ = [speech] # needed to make pad() work on spectrogram inputs A__ = self.feature_size # convert into correct format for padding if is_target: A__ = [self._extract_mel_features(_snake_case ) for waveform in speech] A__ = BatchFeature({'input_values': features} ) A__ = self.num_mel_bins else: A__ = BatchFeature({'input_values': speech} ) A__ = self.pad( _snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , **_snake_case , ) A__ = feature_size_hack # convert input values to correct format A__ = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray ): A__ = [np.asarray(_snake_case , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_snake_case , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): A__ = [array.astype(np.floataa ) for array in input_values] elif isinstance(_snake_case , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): A__ = input_values.astype(np.floataa ) # convert attention_mask to correct format A__ = padded_inputs.get('attention_mask' ) if attention_mask is not None: A__ = [np.asarray(_snake_case , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: A__ = ( attention_mask if self._get_padding_strategies(_snake_case , max_length=_snake_case ) is not PaddingStrategy.DO_NOT_PAD else None ) A__ = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=_snake_case , padding_value=self.padding_value ) if return_tensors is not None: A__ = padded_inputs.convert_to_tensors(_snake_case ) return padded_inputs def _a ( self : Optional[Any] ): """simple docstring""" A__ = super().to_dict() # Don't serialize these as they are derived from the other properties. A__ = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
9
1
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Tuple , _snake_case : Callable , _snake_case : Optional[Features] = None , _snake_case : str = None , _snake_case : bool = False , _snake_case : bool = False , _snake_case : Optional[dict] = None , _snake_case : Optional[int] = None , **_snake_case : Dict , ): """simple docstring""" super().__init__( features=_snake_case , cache_dir=_snake_case , keep_in_memory=_snake_case , streaming=_snake_case , num_proc=_snake_case , **_snake_case , ) A__ = Generator( cache_dir=_snake_case , features=_snake_case , generator=_snake_case , gen_kwargs=_snake_case , **_snake_case , ) def _a ( self : Optional[int] ): """simple docstring""" if self.streaming: A__ = self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: A__ = None A__ = None A__ = None A__ = None self.builder.download_and_prepare( download_config=_snake_case , download_mode=_snake_case , verification_mode=_snake_case , base_path=_snake_case , num_proc=self.num_proc , ) A__ = self.builder.as_dataset( split='train' , verification_mode=_snake_case , in_memory=self.keep_in_memory ) return dataset
9
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: A__ = OmegaConf.load(__UpperCamelCase ) A__ = torch.load(__UpperCamelCase , map_location='cpu' )['model'] A__ = list(state_dict.keys() ) # extract state_dict for VQVAE A__ = {} A__ = 'first_stage_model.' for key in keys: if key.startswith(__UpperCamelCase ): A__ = state_dict[key] # extract state_dict for UNetLDM A__ = {} A__ = 'model.diffusion_model.' for key in keys: if key.startswith(__UpperCamelCase ): A__ = state_dict[key] A__ = config.model.params.first_stage_config.params A__ = config.model.params.unet_config.params A__ = VQModel(**__UpperCamelCase ).eval() vqvae.load_state_dict(__UpperCamelCase ) A__ = UNetLDMModel(**__UpperCamelCase ).eval() unet.load_state_dict(__UpperCamelCase ) A__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__UpperCamelCase , ) A__ = LDMPipeline(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) pipeline.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
9
1
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE__ = '''MobileNetV1Config''' # Base docstring SCREAMING_SNAKE_CASE__ = '''google/mobilenet_v1_1.0_224''' SCREAMING_SNAKE_CASE__ = [1, 1_0_2_4, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE__ = '''google/mobilenet_v1_1.0_224''' SCREAMING_SNAKE_CASE__ = '''tabby, tabby cat''' SCREAMING_SNAKE_CASE__ = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None ) -> List[str]: A__ = {} if isinstance(__UpperCamelCase , __UpperCamelCase ): A__ = model.mobilenet_va else: A__ = model A__ = 'MobilenetV1/Conv2d_0/' A__ = backbone.conv_stem.convolution.weight A__ = backbone.conv_stem.normalization.bias A__ = backbone.conv_stem.normalization.weight A__ = backbone.conv_stem.normalization.running_mean A__ = backbone.conv_stem.normalization.running_var for i in range(13 ): A__ = i + 1 A__ = i * 2 A__ = backbone.layer[pt_index] A__ = f'''MobilenetV1/Conv2d_{tf_index}_depthwise/''' A__ = pointer.convolution.weight A__ = pointer.normalization.bias A__ = pointer.normalization.weight A__ = pointer.normalization.running_mean A__ = pointer.normalization.running_var A__ = backbone.layer[pt_index + 1] A__ = f'''MobilenetV1/Conv2d_{tf_index}_pointwise/''' A__ = pointer.convolution.weight A__ = pointer.normalization.bias A__ = pointer.normalization.weight A__ = pointer.normalization.running_mean A__ = pointer.normalization.running_var if isinstance(__UpperCamelCase , __UpperCamelCase ): A__ = 'MobilenetV1/Logits/Conv2d_1c_1x1/' A__ = model.classifier.weight A__ = model.classifier.bias return tf_to_pt_map def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: try: import numpy as np import tensorflow as tf except ImportError: logger.error( 'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ' 'https://www.tensorflow.org/install/ for installation instructions.' ) raise # Load weights from TF model A__ = tf.train.list_variables(__UpperCamelCase ) A__ = {} for name, shape in init_vars: logger.info(f'''Loading TF weight {name} with shape {shape}''' ) A__ = tf.train.load_variable(__UpperCamelCase , __UpperCamelCase ) A__ = array # Build TF to PyTorch weights loading map A__ = _build_tf_to_pytorch_map(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(f'''Importing {name}''' ) if name not in tf_weights: logger.info(f'''{name} not in tf pre-trained weights, skipping''' ) continue A__ = tf_weights[name] if "depthwise_weights" in name: logger.info('Transposing depthwise' ) A__ = np.transpose(__UpperCamelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info('Transposing' ) if len(pointer.shape ) == 2: # copying into linear layer A__ = array.squeeze().transpose() else: A__ = np.transpose(__UpperCamelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''' ) logger.info(f'''Initialize PyTorch weight {name} {array.shape}''' ) A__ = torch.from_numpy(__UpperCamelCase ) tf_weights.pop(__UpperCamelCase , __UpperCamelCase ) tf_weights.pop(name + '/RMSProp' , __UpperCamelCase ) tf_weights.pop(name + '/RMSProp_1' , __UpperCamelCase ) tf_weights.pop(name + '/ExponentialMovingAverage' , __UpperCamelCase ) logger.info(f'''Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}''' ) return model def A ( __UpperCamelCase , __UpperCamelCase ) -> torch.Tensor: A__ , A__ = features.shape[-2:] A__ , A__ = conv_layer.stride A__ , A__ = conv_layer.kernel_size if in_height % stride_height == 0: A__ = max(kernel_height - stride_height , 0 ) else: A__ = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: A__ = max(kernel_width - stride_width , 0 ) else: A__ = max(kernel_width - (in_width % stride_width) , 0 ) A__ = pad_along_width // 2 A__ = pad_along_width - pad_left A__ = pad_along_height // 2 A__ = pad_along_height - pad_top A__ = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(__UpperCamelCase , __UpperCamelCase , 'constant' , 0.0 ) class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : List[str] , _snake_case : MobileNetVaConfig , _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : Optional[int] = 1 , _snake_case : Optional[int] = 1 , _snake_case : bool = False , _snake_case : Optional[bool] = True , _snake_case : Optional[bool or str] = True , ): """simple docstring""" super().__init__() A__ = config if in_channels % groups != 0: raise ValueError(F'''Input channels ({in_channels}) are not divisible by {groups} groups.''' ) if out_channels % groups != 0: raise ValueError(F'''Output channels ({out_channels}) are not divisible by {groups} groups.''' ) A__ = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) A__ = nn.Convad( in_channels=_snake_case , out_channels=_snake_case , kernel_size=_snake_case , stride=_snake_case , padding=_snake_case , groups=_snake_case , bias=_snake_case , padding_mode='zeros' , ) if use_normalization: A__ = nn.BatchNormad( num_features=_snake_case , eps=config.layer_norm_eps , momentum=0.9997 , affine=_snake_case , track_running_stats=_snake_case , ) else: A__ = None if use_activation: if isinstance(_snake_case , _snake_case ): A__ = ACTaFN[use_activation] elif isinstance(config.hidden_act , _snake_case ): A__ = ACTaFN[config.hidden_act] else: A__ = config.hidden_act else: A__ = None def _a ( self : Dict , _snake_case : torch.Tensor ): """simple docstring""" if self.config.tf_padding: A__ = apply_tf_padding(_snake_case , self.convolution ) A__ = self.convolution(_snake_case ) if self.normalization is not None: A__ = self.normalization(_snake_case ) if self.activation is not None: A__ = self.activation(_snake_case ) return features class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Union[str, Any] = MobileNetVaConfig A__ : List[Any] = load_tf_weights_in_mobilenet_va A__ : Tuple = "mobilenet_v1" A__ : List[Any] = "pixel_values" A__ : int = False def _a ( self : Union[str, Any] , _snake_case : Union[nn.Linear, nn.Convad] ): """simple docstring""" if isinstance(_snake_case , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_snake_case , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) SCREAMING_SNAKE_CASE__ = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' SCREAMING_SNAKE_CASE__ = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." , UpperCAmelCase_ , ) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Optional[int] , _snake_case : MobileNetVaConfig , _snake_case : bool = True ): """simple docstring""" super().__init__(_snake_case ) A__ = config A__ = 32 A__ = max(int(depth * config.depth_multiplier ) , config.min_depth ) A__ = MobileNetVaConvLayer( _snake_case , in_channels=config.num_channels , out_channels=_snake_case , kernel_size=3 , stride=2 , ) A__ = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] A__ = nn.ModuleList() for i in range(13 ): A__ = out_channels if strides[i] == 2 or i == 0: depth *= 2 A__ = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( _snake_case , in_channels=_snake_case , out_channels=_snake_case , kernel_size=3 , stride=strides[i] , groups=_snake_case , ) ) self.layer.append( MobileNetVaConvLayer( _snake_case , in_channels=_snake_case , out_channels=_snake_case , kernel_size=1 , ) ) A__ = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _a ( self : List[str] , _snake_case : List[str] ): """simple docstring""" raise NotImplementedError @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_snake_case , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _a ( self : Optional[Any] , _snake_case : Optional[torch.Tensor] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[bool] = None , ): """simple docstring""" A__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A__ = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) A__ = self.conv_stem(_snake_case ) A__ = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): A__ = layer_module(_snake_case ) if output_hidden_states: A__ = all_hidden_states + (hidden_states,) A__ = hidden_states if self.pooler is not None: A__ = torch.flatten(self.pooler(_snake_case ) , start_dim=1 ) else: A__ = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_snake_case , pooler_output=_snake_case , hidden_states=_snake_case , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , UpperCAmelCase_ , ) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , _snake_case : MobileNetVaConfig ): """simple docstring""" super().__init__(_snake_case ) A__ = config.num_labels A__ = MobileNetVaModel(_snake_case ) A__ = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head A__ = nn.Dropout(config.classifier_dropout_prob , inplace=_snake_case ) A__ = nn.Linear(_snake_case , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_snake_case , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _a ( self : Optional[Any] , _snake_case : Optional[torch.Tensor] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[torch.Tensor] = None , _snake_case : Optional[bool] = None , ): """simple docstring""" A__ = return_dict if return_dict is not None else self.config.use_return_dict A__ = self.mobilenet_va(_snake_case , output_hidden_states=_snake_case , return_dict=_snake_case ) A__ = outputs.pooler_output if return_dict else outputs[1] A__ = self.classifier(self.dropout(_snake_case ) ) A__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: A__ = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): A__ = 'single_label_classification' else: A__ = 'multi_label_classification' if self.config.problem_type == "regression": A__ = MSELoss() if self.num_labels == 1: A__ = loss_fct(logits.squeeze() , labels.squeeze() ) else: A__ = loss_fct(_snake_case , _snake_case ) elif self.config.problem_type == "single_label_classification": A__ = CrossEntropyLoss() A__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": A__ = BCEWithLogitsLoss() A__ = loss_fct(_snake_case , _snake_case ) if not return_dict: A__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_snake_case , logits=_snake_case , hidden_states=outputs.hidden_states , )
9
import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def A ( __UpperCamelCase ) -> Union[str, Any]: if hor == 128: A__ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A__ = (32, 128, 256) A__ = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: A__ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A__ = (32, 64, 128, 256) A__ = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') A__ = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) A__ = model.state_dict() A__ = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 65_536, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } A__ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A__ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A__ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() , f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , 'w' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) def A ( ) -> List[str]: A__ = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 128, 256), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 65_536, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } A__ = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) A__ = model A__ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A__ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A__ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() , 'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' , 'w' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": unet(3_2) # unet(128) value_function()
9
1
from __future__ import annotations def A ( __UpperCamelCase = 4 ) -> list[list[int]]: A__ = abs(__UpperCamelCase ) or 4 return [[1 + x + y * row_size for x in range(__UpperCamelCase )] for y in range(__UpperCamelCase )] def A ( __UpperCamelCase ) -> list[list[int]]: return reverse_row(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_column(matrix)) def A ( __UpperCamelCase ) -> list[list[int]]: return reverse_row(reverse_column(__UpperCamelCase ) ) # OR.. reverse_column(reverse_row(matrix)) def A ( __UpperCamelCase ) -> list[list[int]]: return reverse_column(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_row(matrix)) def A ( __UpperCamelCase ) -> list[list[int]]: A__ = [list(__UpperCamelCase ) for x in zip(*__UpperCamelCase )] return matrix def A ( __UpperCamelCase ) -> list[list[int]]: A__ = matrix[::-1] return matrix def A ( __UpperCamelCase ) -> list[list[int]]: A__ = [x[::-1] for x in matrix] return matrix def A ( __UpperCamelCase ) -> None: for i in matrix: print(*__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 90 counterclockwise:\n''') print_matrix(rotate_aa(matrix)) SCREAMING_SNAKE_CASE__ = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 180:\n''') print_matrix(rotate_aaa(matrix)) SCREAMING_SNAKE_CASE__ = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 270 counterclockwise:\n''') print_matrix(rotate_aaa(matrix))
9
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase : """simple docstring""" def __init__( self : Dict , _snake_case : Union[str, Any] , _snake_case : Optional[Any]=12 , _snake_case : Any=7 , _snake_case : List[str]=True , _snake_case : int=True , _snake_case : int=True , _snake_case : Tuple=99 , _snake_case : List[Any]=32 , _snake_case : Optional[int]=32 , _snake_case : List[str]=2 , _snake_case : List[str]=4 , _snake_case : List[Any]=37 , _snake_case : Union[str, Any]=0.1 , _snake_case : Tuple=0.1 , _snake_case : Dict=5_12 , _snake_case : Union[str, Any]=0.02 , _snake_case : Any=0 , _snake_case : Optional[Any]=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = projection_dim A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = dropout A__ = attention_dropout A__ = max_position_embeddings A__ = initializer_range A__ = scope A__ = bos_token_id def _a ( self : Optional[Any] ): """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: A__ = input_mask.numpy() A__ , A__ = input_mask.shape A__ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_snake_case ): A__ = 1 A__ = 0 A__ = self.get_config() return config, input_ids, tf.convert_to_tensor(_snake_case ) def _a ( self : Tuple ): """simple docstring""" return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _a ( self : int , _snake_case : Union[str, Any] , _snake_case : Any , _snake_case : List[str] ): """simple docstring""" A__ = TFBlipTextModel(config=_snake_case ) A__ = model(_snake_case , attention_mask=_snake_case , training=_snake_case ) A__ = model(_snake_case , training=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _a ( self : str ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Tuple = (TFBlipTextModel,) if is_tf_available() else () A__ : Optional[int] = False A__ : Union[str, Any] = False A__ : Union[str, Any] = False def _a ( self : Any ): """simple docstring""" A__ = BlipTextModelTester(self ) A__ = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def _a ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Union[str, Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def _a ( self : Tuple ): """simple docstring""" pass def _a ( self : int ): """simple docstring""" pass @unittest.skip(reason='Blip does not use inputs_embeds' ) def _a ( self : Any ): """simple docstring""" pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _a ( self : str ): """simple docstring""" pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _a ( self : Optional[Any] ): """simple docstring""" pass @slow def _a ( self : Union[str, Any] ): """simple docstring""" for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFBlipTextModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def _a ( self : int , _snake_case : int=True ): """simple docstring""" super().test_pt_tf_model_equivalence(allow_missing_keys=_snake_case )
9
1
from collections import defaultdict def A ( __UpperCamelCase , __UpperCamelCase ) -> bool: A__ = first_str.lower().strip() A__ = second_str.lower().strip() # Remove whitespace A__ = first_str.replace(' ' , '' ) A__ = second_str.replace(' ' , '' ) # Strings of different lengths are not anagrams if len(__UpperCamelCase ) != len(__UpperCamelCase ): return False # Default values for count should be 0 A__ = defaultdict(__UpperCamelCase ) # For each character in input strings, # increment count in the corresponding for i in range(len(__UpperCamelCase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() SCREAMING_SNAKE_CASE__ = input('''Enter the first string ''').strip() SCREAMING_SNAKE_CASE__ = input('''Enter the second string ''').strip() SCREAMING_SNAKE_CASE__ = check_anagrams(input_a, input_b) print(f'{input_a} and {input_b} are {"" if status else "not "}anagrams.')
9
from __future__ import annotations from typing import Any def A ( __UpperCamelCase ) -> int: if not postfix_notation: return 0 A__ = {'+', '-', '*', '/'} A__ = [] for token in postfix_notation: if token in operations: A__ , A__ = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(__UpperCamelCase ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
9
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''SCUT-DLVCLab/lilt-roberta-en-base''': ( '''https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json''' ), } class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : int = "lilt" def __init__( self : int , _snake_case : Dict=3_05_22 , _snake_case : List[str]=7_68 , _snake_case : Optional[int]=12 , _snake_case : Tuple=12 , _snake_case : Union[str, Any]=30_72 , _snake_case : str="gelu" , _snake_case : List[Any]=0.1 , _snake_case : Union[str, Any]=0.1 , _snake_case : Dict=5_12 , _snake_case : List[str]=2 , _snake_case : Any=0.02 , _snake_case : str=1E-12 , _snake_case : Union[str, Any]=0 , _snake_case : int="absolute" , _snake_case : str=None , _snake_case : Union[str, Any]=4 , _snake_case : List[Any]=10_24 , **_snake_case : Any , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , **_snake_case ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = classifier_dropout A__ = channel_shrink_ratio A__ = max_ad_position_embeddings
9
from __future__ import annotations def A ( __UpperCamelCase = 4 ) -> list[list[int]]: A__ = abs(__UpperCamelCase ) or 4 return [[1 + x + y * row_size for x in range(__UpperCamelCase )] for y in range(__UpperCamelCase )] def A ( __UpperCamelCase ) -> list[list[int]]: return reverse_row(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_column(matrix)) def A ( __UpperCamelCase ) -> list[list[int]]: return reverse_row(reverse_column(__UpperCamelCase ) ) # OR.. reverse_column(reverse_row(matrix)) def A ( __UpperCamelCase ) -> list[list[int]]: return reverse_column(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_row(matrix)) def A ( __UpperCamelCase ) -> list[list[int]]: A__ = [list(__UpperCamelCase ) for x in zip(*__UpperCamelCase )] return matrix def A ( __UpperCamelCase ) -> list[list[int]]: A__ = matrix[::-1] return matrix def A ( __UpperCamelCase ) -> list[list[int]]: A__ = [x[::-1] for x in matrix] return matrix def A ( __UpperCamelCase ) -> None: for i in matrix: print(*__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 90 counterclockwise:\n''') print_matrix(rotate_aa(matrix)) SCREAMING_SNAKE_CASE__ = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 180:\n''') print_matrix(rotate_aaa(matrix)) SCREAMING_SNAKE_CASE__ = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 270 counterclockwise:\n''') print_matrix(rotate_aaa(matrix))
9
1
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] , _snake_case : Optional[Any] , _snake_case : Optional[int]=3 , _snake_case : Union[str, Any]=32 , _snake_case : Optional[int]=3 , _snake_case : List[Any]=10 , _snake_case : Union[str, Any]=[10, 20, 30, 40] , _snake_case : int=[1, 1, 2, 1] , _snake_case : Union[str, Any]=True , _snake_case : Union[str, Any]=True , _snake_case : Optional[Any]="relu" , _snake_case : Dict=3 , _snake_case : Optional[int]=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = embeddings_size A__ = hidden_sizes A__ = depths A__ = is_training A__ = use_labels A__ = hidden_act A__ = num_labels A__ = scope A__ = len(_snake_case ) def _a ( self : Union[str, Any] ): """simple docstring""" A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.num_labels ) A__ = self.get_config() return config, pixel_values, labels def _a ( self : str ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _a ( self : List[Any] , _snake_case : Tuple , _snake_case : str , _snake_case : str ): """simple docstring""" A__ = TFResNetModel(config=_snake_case ) A__ = model(_snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self : List[str] , _snake_case : Optional[int] , _snake_case : Optional[Any] , _snake_case : Dict ): """simple docstring""" A__ = self.num_labels A__ = TFResNetForImageClassification(_snake_case ) A__ = model(_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : int ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Any = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () A__ : List[str] = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) A__ : List[str] = False A__ : str = False A__ : List[Any] = False A__ : Tuple = False A__ : str = False def _a ( self : List[Any] ): """simple docstring""" A__ = TFResNetModelTester(self ) A__ = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case ) def _a ( self : Any ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self : Dict ): """simple docstring""" return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def _a ( self : Tuple ): """simple docstring""" pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def _a ( self : str ): """simple docstring""" pass def _a ( self : Union[str, Any] ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(_snake_case ) A__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _snake_case ) def _a ( self : str ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def _a ( self : Dict ): """simple docstring""" def check_hidden_states_output(_snake_case : Dict , _snake_case : List[Any] , _snake_case : str ): A__ = model_class(_snake_case ) A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A__ = self.model_tester.num_stages self.assertEqual(len(_snake_case ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: A__ = layer_type A__ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) def _a ( self : Tuple ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def _a ( self : Optional[int] ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFResNetModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def A ( ) -> str: A__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self : List[str] ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self : Optional[int] ): """simple docstring""" A__ = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='tf' ) # forward pass A__ = model(**_snake_case ) # verify the logits A__ = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , _snake_case ) A__ = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _snake_case , atol=1E-4 ) )
9
from __future__ import annotations from fractions import Fraction def A ( __UpperCamelCase , __UpperCamelCase ) -> bool: return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def A ( __UpperCamelCase ) -> list[str]: A__ = [] A__ = 11 A__ = int('1' + '0' * digit_len ) for num in range(__UpperCamelCase , __UpperCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(__UpperCamelCase , __UpperCamelCase ): solutions.append(f'''{num}/{den}''' ) den += 1 num += 1 A__ = 10 return solutions def A ( __UpperCamelCase = 2 ) -> int: A__ = 1.0 for fraction in fraction_list(__UpperCamelCase ): A__ = Fraction(__UpperCamelCase ) result *= frac.denominator / frac.numerator return int(__UpperCamelCase ) if __name__ == "__main__": print(solution())
9
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
9
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
9
1
import math def A ( __UpperCamelCase ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__UpperCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A ( __UpperCamelCase = 10_001 ) -> int: try: A__ = int(__UpperCamelCase ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) A__ = [] A__ = 2 while len(__UpperCamelCase ) < nth: if is_prime(__UpperCamelCase ): primes.append(__UpperCamelCase ) num += 1 else: num += 1 return primes[len(__UpperCamelCase ) - 1] if __name__ == "__main__": print(f'{solution() = }')
9
SCREAMING_SNAKE_CASE__ = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' SCREAMING_SNAKE_CASE__ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] SCREAMING_SNAKE_CASE__ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
9
1
from __future__ import annotations def A ( __UpperCamelCase , __UpperCamelCase ) -> list[str]: if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) A__ = number_of_bytes // partitions A__ = [] for i in range(__UpperCamelCase ): A__ = i * bytes_per_partition + 1 A__ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
9
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : """simple docstring""" @staticmethod def _a ( *_snake_case : Any , **_snake_case : Optional[int] ): """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" A__ : Union[str, Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def _a ( self : List[Any] , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : Union[str, Any] ): """simple docstring""" A__ = pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' ) A__ = [ { 'image': Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'question': 'How many cats are there?', }, { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'question': 'How many cats are there?', }, ] return vqa_pipeline, examples def _a ( self : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : List[str] ): """simple docstring""" A__ = vqa_pipeline(_snake_case , top_k=1 ) self.assertEqual( _snake_case , [ [{'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}], [{'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}], ] , ) @require_torch def _a ( self : Any ): """simple docstring""" A__ = pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' ) A__ = './tests/fixtures/tests_samples/COCO/000000039769.png' A__ = 'How many cats are there?' A__ = vqa_pipeline(image=_snake_case , question='How many cats are there?' , top_k=2 ) self.assertEqual( _snake_case , [{'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}, {'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}] ) A__ = vqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( _snake_case , [{'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}, {'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}] ) @slow @require_torch def _a ( self : Any ): """simple docstring""" A__ = pipeline('visual-question-answering' , model='dandelin/vilt-b32-finetuned-vqa' ) A__ = './tests/fixtures/tests_samples/COCO/000000039769.png' A__ = 'How many cats are there?' A__ = vqa_pipeline(image=_snake_case , question=_snake_case , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}] ) A__ = vqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}] ) A__ = vqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [[{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}]] * 2 , ) @require_tf @unittest.skip('Visual question answering not implemented in TF' ) def _a ( self : Dict ): """simple docstring""" pass
9
1
def A ( __UpperCamelCase , __UpperCamelCase ) -> list[str]: return [sentence[i : i + ngram_size] for i in range(len(__UpperCamelCase ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
9
def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: if exponent == 1: return base if exponent % 2 == 0: A__ = _modexpt(__UpperCamelCase , exponent // 2 , __UpperCamelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__UpperCamelCase , exponent - 1 , __UpperCamelCase )) % modulo_value def A ( __UpperCamelCase = 1_777 , __UpperCamelCase = 1_855 , __UpperCamelCase = 8 ) -> int: A__ = base for _ in range(1 , __UpperCamelCase ): A__ = _modexpt(__UpperCamelCase , __UpperCamelCase , 10**digits ) return result if __name__ == "__main__": print(f'{solution() = }')
9
1
import warnings from .generation import TFGenerationMixin class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" warnings.warn( "Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will " "be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead." , UpperCAmelCase_ , )
9
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def A ( __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=False ) -> Dict: A__ = 'backbone.' if is_semantic else '' A__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (f'''{prefix}cls_token''', 'beit.embeddings.cls_token'), (f'''{prefix}patch_embed.proj.weight''', 'beit.embeddings.patch_embeddings.projection.weight'), (f'''{prefix}patch_embed.proj.bias''', 'beit.embeddings.patch_embeddings.projection.bias'), (f'''{prefix}pos_embed''', 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=False ) -> Optional[Any]: for i in range(config.num_hidden_layers ): A__ = 'backbone.' if is_semantic else '' # queries, keys and values A__ = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' ) A__ = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' ) A__ = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' ) A__ = in_proj_weight[ : config.hidden_size, : ] A__ = q_bias A__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ = in_proj_weight[ -config.hidden_size :, : ] A__ = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained A__ = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' ) A__ = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' ) A__ = gamma_a A__ = gamma_a def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: A__ = dct.pop(__UpperCamelCase ) A__ = val def A ( ) -> Dict: A__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' A__ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False ) -> str: A__ = False if 'rvlcdip' in checkpoint_url else True A__ = BeitConfig(use_absolute_position_embeddings=__UpperCamelCase , use_mask_token=__UpperCamelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: A__ = 1_024 A__ = 4_096 A__ = 24 A__ = 16 # labels if "rvlcdip" in checkpoint_url: A__ = 16 A__ = 'huggingface/label-files' A__ = 'rvlcdip-id2label.json' A__ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='dataset' ) , 'r' ) ) A__ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys A__ = torch.hub.load_state_dict_from_url(__UpperCamelCase , map_location='cpu' )['model'] A__ = create_rename_keys(__UpperCamelCase , has_lm_head=__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) read_in_q_k_v(__UpperCamelCase , __UpperCamelCase , has_lm_head=__UpperCamelCase ) # load HuggingFace model A__ = BeitForMaskedImageModeling(__UpperCamelCase ) if has_lm_head else BeitForImageClassification(__UpperCamelCase ) model.eval() model.load_state_dict(__UpperCamelCase ) # Check outputs on an image A__ = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__UpperCamelCase ) A__ = prepare_img() A__ = image_processor(images=__UpperCamelCase , return_tensors='pt' ) A__ = encoding['pixel_values'] A__ = model(__UpperCamelCase ) A__ = outputs.logits # verify logits A__ = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 196, 8_192] assert logits.shape == torch.Size(__UpperCamelCase ), "Shape of logits not as expected" Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if push_to_hub: if has_lm_head: A__ = 'dit-base' if 'base' in checkpoint_url else 'dit-large' else: A__ = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip' image_processor.push_to_hub( repo_path_or_name=Path(__UpperCamelCase , __UpperCamelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=__UpperCamelCase , ) model.push_to_hub( repo_path_or_name=Path(__UpperCamelCase , __UpperCamelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=__UpperCamelCase , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
9
1
SCREAMING_SNAKE_CASE__ = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' SCREAMING_SNAKE_CASE__ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] SCREAMING_SNAKE_CASE__ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
9
SCREAMING_SNAKE_CASE__ = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> list[str]: A__ = set() # keep track of all the paths to be checked A__ = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue A__ = queue.pop(0 ) # get the last node from the path A__ = path[-1] if node not in explored: A__ = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: A__ = list(__UpperCamelCase ) new_path.append(__UpperCamelCase ) queue.append(__UpperCamelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(__UpperCamelCase ) # in case there's no path between the 2 nodes return [] def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 A__ = [start] A__ = set(__UpperCamelCase ) # Keep tab on distances from `start` node. A__ = {start: 0, target: -1} while queue: A__ = queue.pop(0 ) if node == target: A__ = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(__UpperCamelCase ) queue.append(__UpperCamelCase ) A__ = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
9
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : str = ["image_processor", "tokenizer"] A__ : str = "LayoutLMv3ImageProcessor" A__ : Tuple = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self : Optional[int] , _snake_case : Optional[int]=None , _snake_case : Optional[int]=None , **_snake_case : int ): """simple docstring""" A__ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _snake_case , ) A__ = kwargs.pop('feature_extractor' ) A__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_snake_case , _snake_case ) def __call__( self : Optional[int] , _snake_case : List[str] , _snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _snake_case : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _snake_case : Union[List[List[int]], List[List[List[int]]]] = None , _snake_case : Optional[Union[List[int], List[List[int]]]] = None , _snake_case : bool = True , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Union[bool, str, TruncationStrategy] = None , _snake_case : Optional[int] = None , _snake_case : int = 0 , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[bool] = None , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = True , _snake_case : Optional[Union[str, TensorType]] = None , **_snake_case : Optional[Any] , ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) # first, apply the image processor A__ = self.image_processor(images=_snake_case , return_tensors=_snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_snake_case , _snake_case ): A__ = [text] # add batch dimension (as the image processor always adds a batch dimension) A__ = features['words'] A__ = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , stride=_snake_case , pad_to_multiple_of=_snake_case , return_token_type_ids=_snake_case , return_attention_mask=_snake_case , return_overflowing_tokens=_snake_case , return_special_tokens_mask=_snake_case , return_offsets_mapping=_snake_case , return_length=_snake_case , verbose=_snake_case , return_tensors=_snake_case , **_snake_case , ) # add pixel values A__ = features.pop('pixel_values' ) if return_overflowing_tokens is True: A__ = self.get_overflowing_images(_snake_case , encoded_inputs['overflow_to_sample_mapping'] ) A__ = images return encoded_inputs def _a ( self : int , _snake_case : List[str] , _snake_case : Union[str, Any] ): """simple docstring""" A__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_snake_case ) != len(_snake_case ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F''' {len(_snake_case )} and {len(_snake_case )}''' ) return images_with_overflow def _a ( self : Union[str, Any] , *_snake_case : List[Any] , **_snake_case : Any ): """simple docstring""" return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def _a ( self : List[str] , *_snake_case : Optional[int] , **_snake_case : int ): """simple docstring""" return self.tokenizer.decode(*_snake_case , **_snake_case ) @property def _a ( self : Optional[Any] ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def _a ( self : Any ): """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _snake_case , ) return self.image_processor_class @property def _a ( self : int ): """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _snake_case , ) return self.image_processor
9
def A ( __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: A__ = 0 A__ = len(__UpperCamelCase ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__UpperCamelCase ): return None A__ = sorted_collection[point] if current_item == item: return point else: if point < left: A__ = left A__ = point elif point > right: A__ = right A__ = point else: if item < current_item: A__ = point - 1 else: A__ = point + 1 return None def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__UpperCamelCase ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) elif point > right: return interpolation_search_by_recursion(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , point - 1 ) else: return interpolation_search_by_recursion( __UpperCamelCase , __UpperCamelCase , point + 1 , __UpperCamelCase ) def A ( __UpperCamelCase ) -> List[str]: if collection != sorted(__UpperCamelCase ): raise ValueError('Collection must be ascending sorted' ) return True if __name__ == "__main__": import sys SCREAMING_SNAKE_CASE__ = 0 if debug == 1: SCREAMING_SNAKE_CASE__ = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit('''Sequence must be ascending sorted to apply interpolation search''') SCREAMING_SNAKE_CASE__ = 6_7 SCREAMING_SNAKE_CASE__ = interpolation_search(collection, target) if result is not None: print(f'{target} found at positions: {result}') else: print('''Not found''')
9
1
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def A ( __UpperCamelCase ) -> List[str]: return {key.lstrip('-' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def A ( ) -> Optional[int]: A__ = ArgumentParser( 'HuggingFace Datasets CLI tool' , usage='datasets-cli <command> [<args>]' , allow_abbrev=__UpperCamelCase ) A__ = parser.add_subparsers(help='datasets-cli command helpers' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(__UpperCamelCase ) EnvironmentCommand.register_subcommand(__UpperCamelCase ) TestCommand.register_subcommand(__UpperCamelCase ) RunBeamCommand.register_subcommand(__UpperCamelCase ) DummyDataCommand.register_subcommand(__UpperCamelCase ) # Parse args A__ , A__ = parser.parse_known_args() if not hasattr(__UpperCamelCase , 'func' ): parser.print_help() exit(1 ) A__ = parse_unknown_args(__UpperCamelCase ) # Run A__ = args.func(__UpperCamelCase , **__UpperCamelCase ) service.run() if __name__ == "__main__": main()
9
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , *_snake_case : int , **_snake_case : Optional[int] ): """simple docstring""" warnings.warn( 'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use CLIPImageProcessor instead.' , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
9
1
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class __lowerCAmelCase : """simple docstring""" def _a ( self : Dict , _snake_case : List[str] ): """simple docstring""" raise NotImplementedError() def _a ( self : Union[str, Any] ): """simple docstring""" raise NotImplementedError() class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : List[str] , _snake_case : "AutoTokenizer" , _snake_case : bool = False , **_snake_case : Tuple ): """simple docstring""" A__ = tokenizer A__ = skip_prompt A__ = decode_kwargs # variables used in the streaming process A__ = [] A__ = 0 A__ = True def _a ( self : Optional[int] , _snake_case : str ): """simple docstring""" if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('TextStreamer only supports batch size 1' ) elif len(value.shape ) > 1: A__ = value[0] if self.skip_prompt and self.next_tokens_are_prompt: A__ = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) A__ = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('\n' ): A__ = text[self.print_len :] A__ = [] A__ = 0 # If the last token is a CJK character, we print the characters. elif len(_snake_case ) > 0 and self._is_chinese_char(ord(text[-1] ) ): A__ = text[self.print_len :] self.print_len += len(_snake_case ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: A__ = text[self.print_len : text.rfind(' ' ) + 1] self.print_len += len(_snake_case ) self.on_finalized_text(_snake_case ) def _a ( self : Optional[int] ): """simple docstring""" if len(self.token_cache ) > 0: A__ = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) A__ = text[self.print_len :] A__ = [] A__ = 0 else: A__ = '' A__ = True self.on_finalized_text(_snake_case , stream_end=_snake_case ) def _a ( self : Optional[int] , _snake_case : str , _snake_case : bool = False ): """simple docstring""" print(_snake_case , flush=_snake_case , end='' if not stream_end else None ) def _a ( self : Any , _snake_case : str ): """simple docstring""" if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , _snake_case : "AutoTokenizer" , _snake_case : bool = False , _snake_case : Optional[float] = None , **_snake_case : str ): """simple docstring""" super().__init__(_snake_case , _snake_case , **_snake_case ) A__ = Queue() A__ = None A__ = timeout def _a ( self : Optional[int] , _snake_case : str , _snake_case : bool = False ): """simple docstring""" self.text_queue.put(_snake_case , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : Optional[int] ): """simple docstring""" return self def _a ( self : Dict ): """simple docstring""" A__ = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
9
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () SCREAMING_SNAKE_CASE__ = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). SCREAMING_SNAKE_CASE__ = [0, 2_5, 5_0] SCREAMING_SNAKE_CASE__ = [2_5, 5_0, 7_5] SCREAMING_SNAKE_CASE__ = fuzz.membership.trimf(X, abca) SCREAMING_SNAKE_CASE__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. SCREAMING_SNAKE_CASE__ = np.ones(7_5) SCREAMING_SNAKE_CASE__ = np.zeros((7_5,)) # 1. Union = max(µA(x), µB(x)) SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] SCREAMING_SNAKE_CASE__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) SCREAMING_SNAKE_CASE__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
9
1
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def A ( __UpperCamelCase ) -> List[List[ImageInput]]: if isinstance(__UpperCamelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__UpperCamelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__UpperCamelCase ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Any = ["pixel_values"] def __init__( self : int , _snake_case : bool = True , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = PILImageResampling.BILINEAR , _snake_case : bool = True , _snake_case : Dict[str, int] = None , _snake_case : bool = True , _snake_case : Union[int, float] = 1 / 2_55 , _snake_case : bool = True , _snake_case : bool = True , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[Union[float, List[float]]] = None , **_snake_case : Tuple , ): """simple docstring""" super().__init__(**_snake_case ) A__ = size if size is not None else {'shortest_edge': 2_56} A__ = get_size_dict(_snake_case , default_to_square=_snake_case ) A__ = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} A__ = get_size_dict(_snake_case , param_name='crop_size' ) A__ = do_resize A__ = size A__ = do_center_crop A__ = crop_size A__ = resample A__ = do_rescale A__ = rescale_factor A__ = offset A__ = do_normalize A__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _a ( self : Dict , _snake_case : np.ndarray , _snake_case : Dict[str, int] , _snake_case : PILImageResampling = PILImageResampling.BILINEAR , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : int , ): """simple docstring""" A__ = get_size_dict(_snake_case , default_to_square=_snake_case ) if "shortest_edge" in size: A__ = get_resize_output_image_size(_snake_case , size['shortest_edge'] , default_to_square=_snake_case ) elif "height" in size and "width" in size: A__ = (size['height'], size['width']) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(_snake_case , size=_snake_case , resample=_snake_case , data_format=_snake_case , **_snake_case ) def _a ( self : Any , _snake_case : np.ndarray , _snake_case : Dict[str, int] , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : str , ): """simple docstring""" A__ = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(_snake_case , size=(size['height'], size['width']) , data_format=_snake_case , **_snake_case ) def _a ( self : Optional[Any] , _snake_case : np.ndarray , _snake_case : Union[int, float] , _snake_case : bool = True , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : str , ): """simple docstring""" A__ = image.astype(np.floataa ) if offset: A__ = image - (scale / 2) return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case ) def _a ( self : Optional[int] , _snake_case : np.ndarray , _snake_case : Union[float, List[float]] , _snake_case : Union[float, List[float]] , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : Tuple , ): """simple docstring""" return normalize(_snake_case , mean=_snake_case , std=_snake_case , data_format=_snake_case , **_snake_case ) def _a ( self : List[Any] , _snake_case : ImageInput , _snake_case : bool = None , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = None , _snake_case : bool = None , _snake_case : Dict[str, int] = None , _snake_case : bool = None , _snake_case : float = None , _snake_case : bool = None , _snake_case : bool = None , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[ChannelDimension] = ChannelDimension.FIRST , ): """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) if offset and not do_rescale: raise ValueError('For offset, do_rescale must also be set to True.' ) # All transformations expect numpy arrays. A__ = to_numpy_array(_snake_case ) if do_resize: A__ = self.resize(image=_snake_case , size=_snake_case , resample=_snake_case ) if do_center_crop: A__ = self.center_crop(_snake_case , size=_snake_case ) if do_rescale: A__ = self.rescale(image=_snake_case , scale=_snake_case , offset=_snake_case ) if do_normalize: A__ = self.normalize(image=_snake_case , mean=_snake_case , std=_snake_case ) A__ = to_channel_dimension_format(_snake_case , _snake_case ) return image def _a ( self : Union[str, Any] , _snake_case : ImageInput , _snake_case : bool = None , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = None , _snake_case : bool = None , _snake_case : Dict[str, int] = None , _snake_case : bool = None , _snake_case : float = None , _snake_case : bool = None , _snake_case : bool = None , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : ChannelDimension = ChannelDimension.FIRST , **_snake_case : str , ): """simple docstring""" A__ = do_resize if do_resize is not None else self.do_resize A__ = resample if resample is not None else self.resample A__ = do_center_crop if do_center_crop is not None else self.do_center_crop A__ = do_rescale if do_rescale is not None else self.do_rescale A__ = rescale_factor if rescale_factor is not None else self.rescale_factor A__ = offset if offset is not None else self.offset A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = image_mean if image_mean is not None else self.image_mean A__ = image_std if image_std is not None else self.image_std A__ = size if size is not None else self.size A__ = get_size_dict(_snake_case , default_to_square=_snake_case ) A__ = crop_size if crop_size is not None else self.crop_size A__ = get_size_dict(_snake_case , param_name='crop_size' ) if not valid_images(_snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) A__ = make_batched(_snake_case ) A__ = [ [ self._preprocess_image( image=_snake_case , do_resize=_snake_case , size=_snake_case , resample=_snake_case , do_center_crop=_snake_case , crop_size=_snake_case , do_rescale=_snake_case , rescale_factor=_snake_case , offset=_snake_case , do_normalize=_snake_case , image_mean=_snake_case , image_std=_snake_case , data_format=_snake_case , ) for img in video ] for video in videos ] A__ = {'pixel_values': videos} return BatchFeature(data=_snake_case , tensor_type=_snake_case )
9
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : """simple docstring""" @staticmethod def _a ( *_snake_case : int , **_snake_case : List[str] ): """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" A__ : List[str] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def _a ( self : Any , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : Optional[Any] ): """simple docstring""" A__ = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) A__ = [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] return object_detector, examples def _a ( self : int , _snake_case : int , _snake_case : List[str] ): """simple docstring""" A__ = object_detector(examples[0] , threshold=0.0 ) A__ = len(_snake_case ) self.assertGreater(_snake_case , 0 ) self.assertEqual( _snake_case , [ { 'score': ANY(_snake_case ), 'label': ANY(_snake_case ), 'box': {'xmin': ANY(_snake_case ), 'ymin': ANY(_snake_case ), 'xmax': ANY(_snake_case ), 'ymax': ANY(_snake_case )}, } for i in range(_snake_case ) ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def _a ( self : List[str] ): """simple docstring""" pass @require_torch def _a ( self : Optional[int] ): """simple docstring""" A__ = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) A__ = object_detector( './tests/fixtures/tests_samples/COCO/000000039769.png' , candidate_labels=['cat', 'remote', 'couch'] , threshold=0.64 , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {'score': 0.7235, 'label': 'cat', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7218, 'label': 'remote', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7184, 'label': 'couch', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.6748, 'label': 'remote', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6656, 'label': 'cat', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6614, 'label': 'couch', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6456, 'label': 'remote', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 2_74, 'xmax': 93, 'ymax': 2_97}}, {'score': 0.6419, 'label': 'cat', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, ] , ) A__ = object_detector( [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ [ {'score': 0.7235, 'label': 'cat', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7218, 'label': 'remote', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7184, 'label': 'couch', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.6748, 'label': 'remote', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6656, 'label': 'cat', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6614, 'label': 'couch', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6456, 'label': 'remote', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 2_74, 'xmax': 93, 'ymax': 2_97}}, {'score': 0.6419, 'label': 'cat', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, ] ] , ) @require_torch @slow def _a ( self : int ): """simple docstring""" A__ = pipeline('zero-shot-object-detection' ) A__ = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ] , ) A__ = object_detector( [ { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, ] , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ], [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ], ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def _a ( self : int ): """simple docstring""" pass @require_torch @slow def _a ( self : str ): """simple docstring""" A__ = 0.2 A__ = pipeline('zero-shot-object-detection' ) A__ = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , threshold=_snake_case , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, ] , ) @require_torch @slow def _a ( self : Any ): """simple docstring""" A__ = 2 A__ = pipeline('zero-shot-object-detection' ) A__ = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , top_k=_snake_case , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, ] , )
9
1
from __future__ import annotations import math def A ( __UpperCamelCase ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__UpperCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True SCREAMING_SNAKE_CASE__ = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def A ( __UpperCamelCase ) -> list[int]: if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) A__ = [] for num in range(len(__UpperCamelCase ) ): A__ = 0 while 2 * i * i <= odd_composites[num]: A__ = odd_composites[num] - 2 * i * i if is_prime(__UpperCamelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(__UpperCamelCase ) == n: return list_nums return [] def A ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(f'{solution() = }')
9
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml SCREAMING_SNAKE_CASE__ = NewType('''DataClass''', Any) SCREAMING_SNAKE_CASE__ = NewType('''DataClassType''', Any) def A ( __UpperCamelCase ) -> List[Any]: if isinstance(__UpperCamelCase , __UpperCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def A ( __UpperCamelCase ) -> Callable[[str], Any]: A__ = {str(__UpperCamelCase ): choice for choice in choices} return lambda __UpperCamelCase : str_to_choice.get(__UpperCamelCase , __UpperCamelCase ) def A ( *, __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = dataclasses.MISSING , __UpperCamelCase = dataclasses.MISSING , __UpperCamelCase = None , **__UpperCamelCase , ) -> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls A__ = {} if aliases is not None: A__ = aliases if help is not None: A__ = help return dataclasses.field(metadata=__UpperCamelCase , default=__UpperCamelCase , default_factory=__UpperCamelCase , **__UpperCamelCase ) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Iterable[DataClassType] def __init__( self : Optional[int] , _snake_case : Union[DataClassType, Iterable[DataClassType]] , **_snake_case : Tuple ): """simple docstring""" if "formatter_class" not in kwargs: A__ = ArgumentDefaultsHelpFormatter super().__init__(**_snake_case ) if dataclasses.is_dataclass(_snake_case ): A__ = [dataclass_types] A__ = list(_snake_case ) for dtype in self.dataclass_types: self._add_dataclass_arguments(_snake_case ) @staticmethod def _a ( _snake_case : ArgumentParser , _snake_case : dataclasses.Field ): """simple docstring""" A__ = F'''--{field.name}''' A__ = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , _snake_case ): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default' ) A__ = kwargs.pop('aliases' , [] ) if isinstance(_snake_case , _snake_case ): A__ = [aliases] A__ = getattr(field.type , '__origin__' , field.type ) if origin_type is Union or (hasattr(_snake_case , 'UnionType' ) and isinstance(_snake_case , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(_snake_case ) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' F''' Problem encountered in field \'{field.name}\'.''' ) if type(_snake_case ) not in field.type.__args__: # filter `str` in Union A__ = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] A__ = getattr(field.type , '__origin__' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) A__ = ( field.type.__args__[0] if isinstance(_snake_case , field.type.__args__[1] ) else field.type.__args__[1] ) A__ = getattr(field.type , '__origin__' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) A__ = {} if origin_type is Literal or (isinstance(field.type , _snake_case ) and issubclass(field.type , _snake_case )): if origin_type is Literal: A__ = field.type.__args__ else: A__ = [x.value for x in field.type] A__ = make_choice_type_function(kwargs['choices'] ) if field.default is not dataclasses.MISSING: A__ = field.default else: A__ = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument A__ = copy(_snake_case ) # Hack because type=bool in argparse does not behave as we want. A__ = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. A__ = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way A__ = default # This tells argparse we accept 0 or 1 value after --field_name A__ = '?' # This is the value that will get picked if we do --field_name (without value) A__ = True elif isclass(_snake_case ) and issubclass(_snake_case , _snake_case ): A__ = field.type.__args__[0] A__ = '+' if field.default_factory is not dataclasses.MISSING: A__ = field.default_factory() elif field.default is dataclasses.MISSING: A__ = True else: A__ = field.type if field.default is not dataclasses.MISSING: A__ = field.default elif field.default_factory is not dataclasses.MISSING: A__ = field.default_factory() else: A__ = True parser.add_argument(_snake_case , *_snake_case , **_snake_case ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): A__ = False parser.add_argument(F'''--no_{field.name}''' , action='store_false' , dest=field.name , **_snake_case ) def _a ( self : Any , _snake_case : DataClassType ): """simple docstring""" if hasattr(_snake_case , '_argument_group_name' ): A__ = self.add_argument_group(dtype._argument_group_name ) else: A__ = self try: A__ = get_type_hints(_snake_case ) except NameError: raise RuntimeError( F'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_snake_case ): A__ = '.'.join(map(_snake_case , sys.version_info[:3] ) ) raise RuntimeError( F'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.' ) from ex raise for field in dataclasses.fields(_snake_case ): if not field.init: continue A__ = type_hints[field.name] self._parse_dataclass_field(_snake_case , _snake_case ) def _a ( self : Optional[int] , _snake_case : Optional[Any]=None , _snake_case : Any=False , _snake_case : int=True , _snake_case : List[Any]=None , _snake_case : int=None , ): """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): A__ = [] if args_filename: args_files.append(Path(_snake_case ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('.args' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values A__ = ArgumentParser() args_file_parser.add_argument(_snake_case , type=_snake_case , action='append' ) # Use only remaining args for further parsing (remove the args_file_flag) A__ , A__ = args_file_parser.parse_known_args(args=_snake_case ) A__ = vars(_snake_case ).get(args_file_flag.lstrip('-' ) , _snake_case ) if cmd_args_file_paths: args_files.extend([Path(_snake_case ) for p in cmd_args_file_paths] ) A__ = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last A__ = file_args + args if args is not None else file_args + sys.argv[1:] A__ , A__ = self.parse_known_args(args=_snake_case ) A__ = [] for dtype in self.dataclass_types: A__ = {f.name for f in dataclasses.fields(_snake_case ) if f.init} A__ = {k: v for k, v in vars(_snake_case ).items() if k in keys} for k in keys: delattr(_snake_case , _snake_case ) A__ = dtype(**_snake_case ) outputs.append(_snake_case ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(_snake_case ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def _a ( self : Dict , _snake_case : Dict[str, Any] , _snake_case : bool = False ): """simple docstring""" A__ = set(args.keys() ) A__ = [] for dtype in self.dataclass_types: A__ = {f.name for f in dataclasses.fields(_snake_case ) if f.init} A__ = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) A__ = dtype(**_snake_case ) outputs.append(_snake_case ) if not allow_extra_keys and unused_keys: raise ValueError(F'''Some keys are not used by the HfArgumentParser: {sorted(_snake_case )}''' ) return tuple(_snake_case ) def _a ( self : Dict , _snake_case : str , _snake_case : bool = False ): """simple docstring""" with open(Path(_snake_case ) , encoding='utf-8' ) as open_json_file: A__ = json.loads(open_json_file.read() ) A__ = self.parse_dict(_snake_case , allow_extra_keys=_snake_case ) return tuple(_snake_case ) def _a ( self : Tuple , _snake_case : str , _snake_case : bool = False ): """simple docstring""" A__ = self.parse_dict(yaml.safe_load(Path(_snake_case ).read_text() ) , allow_extra_keys=_snake_case ) return tuple(_snake_case )
9
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : int = ["input_features"] def __init__( self : Dict , _snake_case : str=80 , _snake_case : List[Any]=1_60_00 , _snake_case : str=1_60 , _snake_case : Any=30 , _snake_case : Dict=4_00 , _snake_case : int=0.0 , _snake_case : Tuple=False , **_snake_case : Optional[Any] , ): """simple docstring""" super().__init__( feature_size=_snake_case , sampling_rate=_snake_case , padding_value=_snake_case , return_attention_mask=_snake_case , **_snake_case , ) A__ = n_fft A__ = hop_length A__ = chunk_length A__ = chunk_length * sampling_rate A__ = self.n_samples // hop_length A__ = sampling_rate A__ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_snake_case , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=_snake_case , norm='slaney' , mel_scale='slaney' , ) def _a ( self : List[str] , _snake_case : np.array ): """simple docstring""" A__ = spectrogram( _snake_case , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='log10' , ) A__ = log_spec[:, :-1] A__ = np.maximum(_snake_case , log_spec.max() - 8.0 ) A__ = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _a ( _snake_case : List[np.ndarray] , _snake_case : List[np.ndarray] , _snake_case : float = 0.0 ): """simple docstring""" if attention_mask is not None: A__ = np.array(_snake_case , np.intaa ) A__ = [] for vector, length in zip(_snake_case , attention_mask.sum(-1 ) ): A__ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: A__ = padding_value normed_input_values.append(_snake_case ) else: A__ = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self : str , _snake_case : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _snake_case : bool = True , _snake_case : Optional[int] = None , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[str] = "max_length" , _snake_case : Optional[int] = None , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , **_snake_case : Optional[int] , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) A__ = isinstance(_snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) A__ = is_batched_numpy or ( isinstance(_snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A__ = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_snake_case , np.ndarray ): A__ = np.asarray(_snake_case , dtype=np.floataa ) elif isinstance(_snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A__ = [np.asarray([raw_speech] ).T] A__ = BatchFeature({'input_features': raw_speech} ) # convert into correct format for padding A__ = self.pad( _snake_case , padding=_snake_case , max_length=max_length if max_length else self.n_samples , truncation=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: A__ = self.zero_mean_unit_var_norm( padded_inputs['input_features'] , attention_mask=padded_inputs['attention_mask'] , padding_value=self.padding_value , ) A__ = np.stack(padded_inputs['input_features'] , axis=0 ) # make sure list is in array format A__ = padded_inputs.get('input_features' ).transpose(2 , 0 , 1 ) A__ = [self._np_extract_fbank_features(_snake_case ) for waveform in input_features[0]] if isinstance(input_features[0] , _snake_case ): A__ = [np.asarray(_snake_case , dtype=np.floataa ) for feature in input_features] else: A__ = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) A__ = padded_inputs['attention_mask'][:, :: self.hop_length] if return_tensors is not None: A__ = padded_inputs.convert_to_tensors(_snake_case ) return padded_inputs def _a ( self : Optional[Any] ): """simple docstring""" A__ = copy.deepcopy(self.__dict__ ) A__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
9
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def A ( __UpperCamelCase ) -> List[Any]: print('Loading config file...' ) def flatten_yaml_as_dict(__UpperCamelCase , __UpperCamelCase="" , __UpperCamelCase="." ): A__ = [] for k, v in d.items(): A__ = parent_key + sep + k if parent_key else k if isinstance(__UpperCamelCase , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(__UpperCamelCase , __UpperCamelCase , sep=__UpperCamelCase ).items() ) else: items.append((new_key, v) ) return dict(__UpperCamelCase ) A__ = argparse.Namespace() with open(__UpperCamelCase , 'r' ) as yaml_file: try: A__ = yaml.load(__UpperCamelCase , Loader=yaml.FullLoader ) A__ = flatten_yaml_as_dict(__UpperCamelCase ) for k, v in flat_cfg.items(): setattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) except yaml.YAMLError as exc: logger.error('Error while loading config file: {}. Error message: {}'.format(__UpperCamelCase , str(__UpperCamelCase ) ) ) return config def A ( __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: A__ = MobileViTVaConfig() A__ = False # dataset if task_name.startswith('imagenet1k_' ): A__ = 1_000 if int(task_name.strip().split('_' )[-1] ) == 384: A__ = 384 else: A__ = 256 A__ = 'imagenet-1k-id2label.json' elif task_name.startswith('imagenet21k_to_1k_' ): A__ = 21_000 if int(task_name.strip().split('_' )[-1] ) == 384: A__ = 384 else: A__ = 256 A__ = 'imagenet-22k-id2label.json' elif task_name.startswith('ade20k_' ): A__ = 151 A__ = 512 A__ = 'ade20k-id2label.json' A__ = True elif task_name.startswith('voc_' ): A__ = 21 A__ = 512 A__ = 'pascal-voc-id2label.json' A__ = True # orig_config A__ = load_orig_config_file(__UpperCamelCase ) assert getattr(__UpperCamelCase , 'model.classification.name' , -1 ) == "mobilevit_v2", "Invalid model" A__ = getattr(__UpperCamelCase , 'model.classification.mitv2.width_multiplier' , 1.0 ) assert ( getattr(__UpperCamelCase , 'model.classification.mitv2.attn_norm_layer' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" A__ = getattr(__UpperCamelCase , 'model.classification.activation.name' , 'swish' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: A__ = getattr(__UpperCamelCase , 'model.segmentation.output_stride' , 16 ) if "_deeplabv3" in task_name: A__ = getattr(__UpperCamelCase , 'model.segmentation.deeplabv3.aspp_rates' , [12, 24, 36] ) A__ = getattr(__UpperCamelCase , 'model.segmentation.deeplabv3.aspp_out_channels' , 512 ) A__ = getattr(__UpperCamelCase , 'model.segmentation.deeplabv3.aspp_dropout' , 0.1 ) # id2label A__ = 'huggingface/label-files' A__ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='dataset' ) , 'r' ) ) A__ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} return config def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[str]: A__ = dct.pop(__UpperCamelCase ) A__ = val def A ( __UpperCamelCase , __UpperCamelCase=False ) -> Dict: if base_model: A__ = '' else: A__ = 'mobilevitv2.' A__ = [] for k in state_dict.keys(): if k[:8] == "encoder.": A__ = k[8:] else: A__ = k if ".block." in k: A__ = k_new.replace('.block.' , '.' ) if ".conv." in k: A__ = k_new.replace('.conv.' , '.convolution.' ) if ".norm." in k: A__ = k_new.replace('.norm.' , '.normalization.' ) if "conv_1." in k: A__ = k_new.replace('conv_1.' , f'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if f'''layer_{i}.''' in k: A__ = k_new.replace(f'''layer_{i}.''' , f'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: A__ = k_new.replace('.exp_1x1.' , '.expand_1x1.' ) if ".red_1x1." in k: A__ = k_new.replace('.red_1x1.' , '.reduce_1x1.' ) for i in [3, 4, 5]: if f'''layer_{i}.0.''' in k: A__ = k_new.replace(f'''layer_{i}.0.''' , f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if f'''layer_{i}.1.local_rep.0.''' in k: A__ = k_new.replace(f'''layer_{i}.1.local_rep.0.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if f'''layer_{i}.1.local_rep.1.''' in k: A__ = k_new.replace(f'''layer_{i}.1.local_rep.1.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: A__ = [0, 1] elif i == 4: A__ = [0, 1, 2, 3] elif i == 5: A__ = [0, 1, 2] for j in j_in: if f'''layer_{i}.1.global_rep.{j}.''' in k: A__ = k_new.replace( f'''layer_{i}.1.global_rep.{j}.''' , f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if f'''layer_{i}.1.global_rep.{j+1}.''' in k: A__ = k_new.replace( f'''layer_{i}.1.global_rep.{j+1}.''' , f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if f'''layer_{i}.1.conv_proj.''' in k: A__ = k_new.replace(f'''layer_{i}.1.conv_proj.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: A__ = k_new.replace('pre_norm_attn.0.' , 'layernorm_before.' ) if "pre_norm_attn.1." in k: A__ = k_new.replace('pre_norm_attn.1.' , 'attention.' ) if "pre_norm_ffn.0." in k: A__ = k_new.replace('pre_norm_ffn.0.' , 'layernorm_after.' ) if "pre_norm_ffn.1." in k: A__ = k_new.replace('pre_norm_ffn.1.' , 'ffn.conv1.' ) if "pre_norm_ffn.3." in k: A__ = k_new.replace('pre_norm_ffn.3.' , 'ffn.conv2.' ) if "classifier.1." in k: A__ = k_new.replace('classifier.1.' , 'classifier.' ) if "seg_head." in k: A__ = k_new.replace('seg_head.' , 'segmentation_head.' ) if ".aspp_layer." in k: A__ = k_new.replace('.aspp_layer.' , '.' ) if ".aspp_pool." in k: A__ = k_new.replace('.aspp_pool.' , '.' ) rename_keys.append((k, k_new) ) return rename_keys def A ( __UpperCamelCase ) -> Tuple: A__ = [] for k in state_dict.keys(): if k.startswith('seg_head.aux_head.' ): keys_to_ignore.append(__UpperCamelCase ) for k in keys_to_ignore: state_dict.pop(__UpperCamelCase , __UpperCamelCase ) def A ( ) -> str: A__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" A__ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: A__ = get_mobilevitva_config(__UpperCamelCase , __UpperCamelCase ) # load original state_dict A__ = torch.load(__UpperCamelCase , map_location='cpu' ) # load huggingface model if task_name.startswith('ade20k_' ) or task_name.startswith('voc_' ): A__ = MobileViTVaForSemanticSegmentation(__UpperCamelCase ).eval() A__ = False else: A__ = MobileViTVaForImageClassification(__UpperCamelCase ).eval() A__ = False # remove and rename some keys of load the original model A__ = checkpoint remove_unused_keys(__UpperCamelCase ) A__ = create_rename_keys(__UpperCamelCase , base_model=__UpperCamelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # load modified state_dict model.load_state_dict(__UpperCamelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor A__ = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) A__ = image_processor(images=prepare_img() , return_tensors='pt' ) A__ = model(**__UpperCamelCase ) # verify classification model if task_name.startswith('imagenet' ): A__ = outputs.logits A__ = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('imagenet1k_256' ) and config.width_multiplier == 1.0: # expected_logits for base variant A__ = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ) assert torch.allclose(logits[0, :3] , __UpperCamelCase , atol=1E-4 ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''imagenet1k_256''', type=str, help=( '''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ''' ''' Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 ''' ), choices=[ '''imagenet1k_256''', '''imagenet1k_384''', '''imagenet21k_to_1k_256''', '''imagenet21k_to_1k_384''', '''ade20k_deeplabv3''', '''voc_deeplabv3''', ], ) parser.add_argument( '''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
9
1
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () SCREAMING_SNAKE_CASE__ = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). SCREAMING_SNAKE_CASE__ = [0, 2_5, 5_0] SCREAMING_SNAKE_CASE__ = [2_5, 5_0, 7_5] SCREAMING_SNAKE_CASE__ = fuzz.membership.trimf(X, abca) SCREAMING_SNAKE_CASE__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. SCREAMING_SNAKE_CASE__ = np.ones(7_5) SCREAMING_SNAKE_CASE__ = np.zeros((7_5,)) # 1. Union = max(µA(x), µB(x)) SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] SCREAMING_SNAKE_CASE__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) SCREAMING_SNAKE_CASE__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
9
import argparse from collections import defaultdict import yaml SCREAMING_SNAKE_CASE__ = '''docs/source/en/_toctree.yml''' def A ( __UpperCamelCase ) -> Optional[Any]: A__ = defaultdict(__UpperCamelCase ) for doc in model_doc: counts[doc["local"]] += 1 A__ = [key for key, value in counts.items() if value > 1] A__ = [] for duplicate_key in duplicates: A__ = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(__UpperCamelCase ) > 1: raise ValueError( f'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(__UpperCamelCase , key=lambda __UpperCamelCase : s["title"].lower() ) def A ( __UpperCamelCase=False ) -> str: with open(__UpperCamelCase , encoding='utf-8' ) as f: A__ = yaml.safe_load(f.read() ) # Get to the API doc A__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 A__ = content[api_idx]['sections'] # Then to the model doc A__ = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 A__ = api_doc[model_idx]['sections'] A__ = [(idx, section) for idx, section in enumerate(__UpperCamelCase ) if 'sections' in section] A__ = False for idx, modality_doc in modalities_docs: A__ = modality_doc['sections'] A__ = clean_model_doc_toc(__UpperCamelCase ) if old_modality_doc != new_modality_doc: A__ = True if overwrite: A__ = new_modality_doc if diff: if overwrite: A__ = model_doc A__ = api_doc with open(__UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(__UpperCamelCase , allow_unicode=__UpperCamelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') SCREAMING_SNAKE_CASE__ = parser.parse_args() check_model_doc(args.fix_and_overwrite)
9
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = { '''configuration_luke''': ['''LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LukeConfig'''], '''tokenization_luke''': ['''LukeTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''LUKE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LukeForEntityClassification''', '''LukeForEntityPairClassification''', '''LukeForEntitySpanClassification''', '''LukeForMultipleChoice''', '''LukeForQuestionAnswering''', '''LukeForSequenceClassification''', '''LukeForTokenClassification''', '''LukeForMaskedLM''', '''LukeModel''', '''LukePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
9
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def _a ( self : List[str] ): """simple docstring""" A__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_snake_case , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(_snake_case , 'num_attention_heads' ) ) self.parent.assertTrue(hasattr(_snake_case , 'num_encoder_blocks' ) ) class __lowerCAmelCase : """simple docstring""" def __init__( self : Any , _snake_case : str , _snake_case : Union[str, Any]=13 , _snake_case : Any=64 , _snake_case : Optional[Any]=3 , _snake_case : Dict=4 , _snake_case : Tuple=[2, 2, 2, 2] , _snake_case : str=[8, 4, 2, 1] , _snake_case : Union[str, Any]=[16, 32, 64, 1_28] , _snake_case : int=[1, 4, 8, 16] , _snake_case : List[str]=[1, 2, 4, 8] , _snake_case : int=True , _snake_case : int=True , _snake_case : Union[str, Any]="gelu" , _snake_case : Optional[int]=0.1 , _snake_case : Tuple=0.1 , _snake_case : Dict=0.02 , _snake_case : Tuple=3 , _snake_case : int=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = num_encoder_blocks A__ = sr_ratios A__ = depths A__ = hidden_sizes A__ = downsampling_rates A__ = num_attention_heads A__ = is_training A__ = use_labels A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = num_labels A__ = scope def _a ( self : int ): """simple docstring""" A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A__ = self.get_config() return config, pixel_values, labels def _a ( self : int ): """simple docstring""" return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _a ( self : int , _snake_case : Optional[Any] , _snake_case : int , _snake_case : Any ): """simple docstring""" A__ = SegformerModel(config=_snake_case ) model.to(_snake_case ) model.eval() A__ = model(_snake_case ) A__ = A__ = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def _a ( self : Union[str, Any] , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : Dict ): """simple docstring""" A__ = self.num_labels A__ = SegformerForSemanticSegmentation(_snake_case ) model.to(_snake_case ) model.eval() A__ = model(_snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) A__ = model(_snake_case , labels=_snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def _a ( self : List[str] , _snake_case : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : List[str] ): """simple docstring""" A__ = 1 A__ = SegformerForSemanticSegmentation(config=_snake_case ) model.to(_snake_case ) model.eval() A__ = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(_snake_case ) A__ = model(_snake_case , labels=_snake_case ) self.parent.assertGreater(result.loss , 0.0 ) def _a ( self : List[Any] ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Optional[int] = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) A__ : Union[str, Any] = ( { "feature-extraction": SegformerModel, "image-classification": SegformerForImageClassification, "image-segmentation": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) A__ : Optional[Any] = True A__ : str = False A__ : Tuple = False A__ : Dict = False def _a ( self : Union[str, Any] ): """simple docstring""" A__ = SegformerModelTester(self ) A__ = SegformerConfigTester(self , config_class=_snake_case ) def _a ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Optional[Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def _a ( self : List[Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*_snake_case ) def _a ( self : Tuple ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*_snake_case ) @unittest.skip('SegFormer does not use inputs_embeds' ) def _a ( self : List[Any] ): """simple docstring""" pass @unittest.skip('SegFormer does not have get_input_embeddings method and get_output_embeddings methods' ) def _a ( self : Dict ): """simple docstring""" pass def _a ( self : Dict ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(_snake_case ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _snake_case ) def _a ( self : Dict ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True for model_class in self.all_model_classes: A__ = True A__ = False A__ = True A__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) A__ = outputs.attentions A__ = sum(self.model_tester.depths ) self.assertEqual(len(_snake_case ) , _snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) A__ = outputs.attentions self.assertEqual(len(_snake_case ) , _snake_case ) # verify the first attentions (first block, first layer) A__ = (self.model_tester.image_size // 4) ** 2 A__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) A__ = (self.model_tester.image_size // 32) ** 2 A__ = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) A__ = len(_snake_case ) # Check attention is always last and order is fine A__ = True A__ = True A__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) self.assertEqual(out_len + 1 , len(_snake_case ) ) A__ = outputs.attentions self.assertEqual(len(_snake_case ) , _snake_case ) # verify the first attentions (first block, first layer) A__ = (self.model_tester.image_size // 4) ** 2 A__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def _a ( self : Union[str, Any] ): """simple docstring""" def check_hidden_states_output(_snake_case : Dict , _snake_case : int , _snake_case : List[Any] ): A__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) A__ = outputs.hidden_states A__ = self.model_tester.num_encoder_blocks self.assertEqual(len(_snake_case ) , _snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) def _a ( self : Tuple ): """simple docstring""" if not self.model_tester.is_training: return A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True for model_class in self.all_model_classes: if model_class in get_values(_snake_case ): continue A__ = model_class(_snake_case ) model.to(_snake_case ) model.train() A__ = self._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) A__ = model(**_snake_case ).loss loss.backward() @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _a ( self : Optional[Any] ): """simple docstring""" pass @slow def _a ( self : Tuple ): """simple docstring""" for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = SegformerModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def A ( ) -> str: A__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _a ( self : Dict ): """simple docstring""" A__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_snake_case , align=_snake_case , do_random_crop=_snake_case ) A__ = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( _snake_case ) A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='pt' ) A__ = encoded_inputs.pixel_values.to(_snake_case ) with torch.no_grad(): A__ = model(_snake_case ) A__ = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , _snake_case ) A__ = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _snake_case , atol=1E-4 ) ) @slow def _a ( self : Optional[Any] ): """simple docstring""" A__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_snake_case , align=_snake_case , do_random_crop=_snake_case ) A__ = SegformerForSemanticSegmentation.from_pretrained( 'nvidia/segformer-b1-finetuned-cityscapes-1024-1024' ).to(_snake_case ) A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='pt' ) A__ = encoded_inputs.pixel_values.to(_snake_case ) with torch.no_grad(): A__ = model(_snake_case ) A__ = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , _snake_case ) A__ = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _snake_case , atol=1E-1 ) ) @slow def _a ( self : Any ): """simple docstring""" A__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_snake_case , align=_snake_case , do_random_crop=_snake_case ) A__ = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( _snake_case ) A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='pt' ) A__ = encoded_inputs.pixel_values.to(_snake_case ) with torch.no_grad(): A__ = model(_snake_case ) A__ = outputs.logits.detach().cpu() A__ = image_processor.post_process_semantic_segmentation(outputs=_snake_case , target_sizes=[(5_00, 3_00)] ) A__ = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , _snake_case ) A__ = image_processor.post_process_semantic_segmentation(outputs=_snake_case ) A__ = torch.Size((1_28, 1_28) ) self.assertEqual(segmentation[0].shape , _snake_case )
9
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _a ( self : Union[str, Any] ): """simple docstring""" A__ = tempfile.mkdtemp() # fmt: off A__ = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on A__ = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) A__ = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] A__ = {'unk_token': '<unk>'} A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_snake_case ) ) A__ = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073], 'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711], } A__ = os.path.join(self.tmpdirname , _snake_case ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(_snake_case , _snake_case ) def _a ( self : Union[str, Any] , **_snake_case : Optional[int] ): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def _a ( self : Union[str, Any] , **_snake_case : Union[str, Any] ): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_snake_case ) def _a ( self : List[str] , **_snake_case : int ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_snake_case ) def _a ( self : Dict ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _a ( self : List[Any] ): """simple docstring""" A__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A__ = [Image.fromarray(np.moveaxis(_snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self : Union[str, Any] ): """simple docstring""" A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = self.get_image_processor() A__ = CLIPSegProcessor(tokenizer=_snake_case , image_processor=_snake_case ) processor_slow.save_pretrained(self.tmpdirname ) A__ = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=_snake_case ) A__ = CLIPSegProcessor(tokenizer=_snake_case , image_processor=_snake_case ) processor_fast.save_pretrained(self.tmpdirname ) A__ = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _snake_case ) self.assertIsInstance(processor_fast.tokenizer , _snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _snake_case ) self.assertIsInstance(processor_fast.image_processor , _snake_case ) def _a ( self : Dict ): """simple docstring""" A__ = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) A__ = self.get_image_processor(do_normalize=_snake_case , padding_value=1.0 ) A__ = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_snake_case , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _snake_case ) def _a ( self : List[str] ): """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPSegProcessor(tokenizer=_snake_case , image_processor=_snake_case ) A__ = self.prepare_image_inputs() A__ = image_processor(_snake_case , return_tensors='np' ) A__ = processor(images=_snake_case , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self : Tuple ): """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPSegProcessor(tokenizer=_snake_case , image_processor=_snake_case ) A__ = 'lower newer' A__ = processor(text=_snake_case ) A__ = tokenizer(_snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self : Optional[int] ): """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPSegProcessor(tokenizer=_snake_case , image_processor=_snake_case ) A__ = 'lower newer' A__ = self.prepare_image_inputs() A__ = processor(text=_snake_case , images=_snake_case ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_snake_case ): processor() def _a ( self : Dict ): """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPSegProcessor(tokenizer=_snake_case , image_processor=_snake_case ) A__ = self.prepare_image_inputs() A__ = self.prepare_image_inputs() A__ = processor(images=_snake_case , visual_prompt=_snake_case ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'conditional_pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_snake_case ): processor() def _a ( self : int ): """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPSegProcessor(tokenizer=_snake_case , image_processor=_snake_case ) A__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A__ = processor.batch_decode(_snake_case ) A__ = tokenizer.batch_decode(_snake_case ) self.assertListEqual(_snake_case , _snake_case )
9
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A ( __UpperCamelCase ) -> Optional[int]: A__ = filter(lambda __UpperCamelCase : p.requires_grad , model.parameters() ) A__ = sum([np.prod(p.size() ) for p in model_parameters] ) return params SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) def A ( __UpperCamelCase , __UpperCamelCase ) -> Dict: if metric == "rouge2": A__ = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": A__ = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": A__ = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": A__ = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ' function.' ) A__ = ModelCheckpoint( dirpath=__UpperCamelCase , filename=__UpperCamelCase , monitor=f'''val_{metric}''' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def A ( __UpperCamelCase , __UpperCamelCase ) -> Any: return EarlyStopping( monitor=f'''val_{metric}''' , mode='min' if 'loss' in metric else 'max' , patience=__UpperCamelCase , verbose=__UpperCamelCase , ) class __lowerCAmelCase ( pl.Callback ): """simple docstring""" def _a ( self : Dict , _snake_case : Union[str, Any] , _snake_case : str ): """simple docstring""" A__ = {F'''lr_group_{i}''': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_snake_case ) @rank_zero_only def _a ( self : Union[str, Any] , _snake_case : pl.Trainer , _snake_case : pl.LightningModule , _snake_case : str , _snake_case : Optional[Any]=True ): """simple docstring""" logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) A__ = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results A__ = Path(pl_module.hparams.output_dir ) if type_path == "test": A__ = od / 'test_results.txt' A__ = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. A__ = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' A__ = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=_snake_case ) generations_file.parent.mkdir(exist_ok=_snake_case ) with open(_snake_case , 'a+' ) as writer: for key in sorted(_snake_case ): if key in ["log", "progress_bar", "preds"]: continue A__ = metrics[key] if isinstance(_snake_case , torch.Tensor ): A__ = val.item() A__ = F'''{key}: {val:.6f}\n''' writer.write(_snake_case ) if not save_generations: return if "preds" in metrics: A__ = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(_snake_case ) @rank_zero_only def _a ( self : Dict , _snake_case : List[str] , _snake_case : List[Any] ): """simple docstring""" try: A__ = pl_module.model.model.num_parameters() except AttributeError: A__ = pl_module.model.num_parameters() A__ = count_trainable_parameters(_snake_case ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def _a ( self : int , _snake_case : pl.Trainer , _snake_case : pl.LightningModule ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_snake_case , _snake_case , 'test' ) @rank_zero_only def _a ( self : Optional[Any] , _snake_case : pl.Trainer , _snake_case : List[Any] ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
9
1
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : List[str] = XLNetTokenizer A__ : str = XLNetTokenizerFast A__ : int = True A__ : List[str] = True def _a ( self : Optional[int] ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing A__ = XLNetTokenizer(_snake_case , keep_accents=_snake_case ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def _a ( self : Any ): """simple docstring""" A__ = '<s>' A__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case ) , _snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case ) , _snake_case ) def _a ( self : Tuple ): """simple docstring""" A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<eod>' ) self.assertEqual(len(_snake_case ) , 10_06 ) def _a ( self : Dict ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def _a ( self : List[Any] ): """simple docstring""" A__ = XLNetTokenizer(_snake_case , keep_accents=_snake_case ) A__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(_snake_case , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , [2_85, 46, 10, 1_70, 3_82] ) A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) A__ = tokenizer.convert_tokens_to_ids(_snake_case ) self.assertListEqual(_snake_case , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) A__ = tokenizer.convert_ids_to_tokens(_snake_case ) self.assertListEqual( _snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def _a ( self : List[Any] ): """simple docstring""" A__ = XLNetTokenizer(_snake_case , do_lower_case=_snake_case ) A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _snake_case , [ SPIECE_UNDERLINE + '', 'i', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 'se', '.', ] , ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['▁he', 'll', 'o'] ) def _a ( self : Tuple ): """simple docstring""" A__ = XLNetTokenizer(_snake_case , do_lower_case=_snake_case ) A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 'se', '.', ] , ) @slow def _a ( self : Optional[Any] ): """simple docstring""" A__ = XLNetTokenizer.from_pretrained('xlnet-base-cased' ) A__ = tokenizer.encode('sequence builders' , add_special_tokens=_snake_case ) A__ = tokenizer.encode('multi-sequence build' , add_special_tokens=_snake_case ) A__ = tokenizer.build_inputs_with_special_tokens(_snake_case ) A__ = tokenizer.build_inputs_with_special_tokens(_snake_case , _snake_case ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def _a ( self : str ): """simple docstring""" A__ = {'input_ids': [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='xlnet-base-cased' , revision='c841166438c31ec7ca9a106dee7bb312b73ae511' , )
9
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Optional[Any] = ["input_values", "attention_mask"] def __init__( self : str , _snake_case : int = 1 , _snake_case : int = 1_60_00 , _snake_case : float = 0.0 , _snake_case : bool = False , _snake_case : int = 80 , _snake_case : int = 16 , _snake_case : int = 64 , _snake_case : str = "hann_window" , _snake_case : float = 1.0 , _snake_case : float = 80 , _snake_case : float = 76_00 , _snake_case : float = 1E-10 , _snake_case : int = 2 , _snake_case : bool = True , **_snake_case : Union[str, Any] , ): """simple docstring""" super().__init__(feature_size=_snake_case , sampling_rate=_snake_case , padding_value=_snake_case , **_snake_case ) A__ = do_normalize A__ = return_attention_mask A__ = num_mel_bins A__ = hop_length A__ = win_length A__ = win_function A__ = frame_signal_scale A__ = fmin A__ = fmax A__ = mel_floor A__ = reduction_factor A__ = win_length * sampling_rate // 10_00 A__ = hop_length * sampling_rate // 10_00 A__ = optimal_fft_length(self.sample_size ) A__ = (self.n_fft // 2) + 1 A__ = window_function(window_length=self.sample_size , name=self.win_function , periodic=_snake_case ) A__ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , _snake_case , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , _snake_case , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _a ( _snake_case : List[np.ndarray] , _snake_case : List[np.ndarray] , _snake_case : float = 0.0 ): """simple docstring""" if attention_mask is not None: A__ = np.array(_snake_case , np.intaa ) A__ = [] for vector, length in zip(_snake_case , attention_mask.sum(-1 ) ): A__ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: A__ = padding_value normed_input_values.append(_snake_case ) else: A__ = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def _a ( self : Tuple , _snake_case : np.ndarray , ): """simple docstring""" A__ = spectrogram( _snake_case , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self : List[str] , _snake_case : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _snake_case : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Optional[int] = None , _snake_case : bool = False , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : Optional[int] = None , **_snake_case : Tuple , ): """simple docstring""" if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: A__ = self._process_audio( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , **_snake_case , ) else: A__ = None if audio_target is not None: A__ = self._process_audio( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , **_snake_case , ) if inputs is None: return inputs_target else: A__ = inputs_target['input_values'] A__ = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def _a ( self : Tuple , _snake_case : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _snake_case : bool = False , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Optional[int] = None , _snake_case : bool = False , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[Union[str, TensorType]] = None , **_snake_case : Tuple , ): """simple docstring""" A__ = isinstance(_snake_case , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) A__ = is_batched_numpy or ( isinstance(_snake_case , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A__ = [np.asarray(_snake_case , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_snake_case , np.ndarray ): A__ = np.asarray(_snake_case , dtype=np.floataa ) elif isinstance(_snake_case , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): A__ = speech.astype(np.floataa ) # always return batch if not is_batched: A__ = [speech] # needed to make pad() work on spectrogram inputs A__ = self.feature_size # convert into correct format for padding if is_target: A__ = [self._extract_mel_features(_snake_case ) for waveform in speech] A__ = BatchFeature({'input_values': features} ) A__ = self.num_mel_bins else: A__ = BatchFeature({'input_values': speech} ) A__ = self.pad( _snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , **_snake_case , ) A__ = feature_size_hack # convert input values to correct format A__ = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray ): A__ = [np.asarray(_snake_case , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_snake_case , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): A__ = [array.astype(np.floataa ) for array in input_values] elif isinstance(_snake_case , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): A__ = input_values.astype(np.floataa ) # convert attention_mask to correct format A__ = padded_inputs.get('attention_mask' ) if attention_mask is not None: A__ = [np.asarray(_snake_case , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: A__ = ( attention_mask if self._get_padding_strategies(_snake_case , max_length=_snake_case ) is not PaddingStrategy.DO_NOT_PAD else None ) A__ = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=_snake_case , padding_value=self.padding_value ) if return_tensors is not None: A__ = padded_inputs.convert_to_tensors(_snake_case ) return padded_inputs def _a ( self : Optional[Any] ): """simple docstring""" A__ = super().to_dict() # Don't serialize these as they are derived from the other properties. A__ = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
9
1
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=True ) -> Union[str, Any]: model.train() A__ = model(__UpperCamelCase ) A__ = F.mse_loss(__UpperCamelCase , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(__UpperCamelCase ) def A ( __UpperCamelCase , __UpperCamelCase=False ) -> Tuple: set_seed(42 ) A__ = RegressionModel() A__ = deepcopy(__UpperCamelCase ) A__ = RegressionDataset(length=80 ) A__ = DataLoader(__UpperCamelCase , batch_size=16 ) model.to(accelerator.device ) if sched: A__ = AdamW(params=model.parameters() , lr=1E-3 ) A__ = AdamW(params=ddp_model.parameters() , lr=1E-3 ) A__ = LambdaLR(__UpperCamelCase , lr_lambda=lambda __UpperCamelCase : epoch**0.65 ) A__ = LambdaLR(__UpperCamelCase , lr_lambda=lambda __UpperCamelCase : epoch**0.65 ) # Make a copy of `model` if sched: A__ , A__ , A__ , A__ = accelerator.prepare(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: A__ , A__ = accelerator.prepare(__UpperCamelCase , __UpperCamelCase ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def A ( __UpperCamelCase ) -> Union[str, Any]: # Test when on a single CPU or GPU that the context manager does nothing A__ , A__ , A__ = get_training_setup(__UpperCamelCase ) # Use a single batch A__ , A__ = next(iter(__UpperCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model A__ , A__ = accelerator.gather((ddp_input, ddp_target) ) A__ , A__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__UpperCamelCase ): step_model(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: # Sync grads step_model(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) A__ = ddp_input[torch.randperm(len(__UpperCamelCase ) )] def A ( __UpperCamelCase ) -> Union[str, Any]: # Test on distributed setup that context manager behaves properly A__ , A__ , A__ = get_training_setup(__UpperCamelCase ) # Use a single batch A__ , A__ = next(iter(__UpperCamelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model A__ , A__ = accelerator.gather((ddp_input, ddp_target) ) A__ , A__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__UpperCamelCase ): step_model(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: # Sync grads step_model(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) A__ = ddp_input[torch.randperm(len(__UpperCamelCase ) )] def A ( __UpperCamelCase=False , __UpperCamelCase=False ) -> Optional[int]: A__ = Accelerator( split_batches=__UpperCamelCase , dispatch_batches=__UpperCamelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly A__ , A__ , A__ = get_training_setup(__UpperCamelCase ) for iteration, batch in enumerate(__UpperCamelCase ): A__ , A__ = batch.values() # Gather the distributed inputs and targs for the base model A__ , A__ = accelerator.gather((ddp_input, ddp_target) ) A__ , A__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Do "gradient accumulation" (noop) with accelerator.accumulate(__UpperCamelCase ): step_model(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(__UpperCamelCase ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) A__ = ddp_input[torch.randperm(len(__UpperCamelCase ) )] GradientState._reset_state() def A ( __UpperCamelCase=False , __UpperCamelCase=False ) -> Optional[int]: A__ = Accelerator( split_batches=__UpperCamelCase , dispatch_batches=__UpperCamelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly A__ , A__ , A__ , A__ , A__ , A__ , A__ = get_training_setup(__UpperCamelCase , __UpperCamelCase ) for iteration, batch in enumerate(__UpperCamelCase ): A__ , A__ = batch.values() # Gather the distributed inputs and targs for the base model A__ , A__ = accelerator.gather((ddp_input, ddp_target) ) A__ , A__ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(__UpperCamelCase )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(__UpperCamelCase ): step_model(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' A__ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(__UpperCamelCase )) if accelerator.num_processes > 1: check_model_parameters(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) GradientState._reset_state() def A ( ) -> List[str]: A__ = Accelerator() A__ = RegressionDataset(length=80 ) A__ = DataLoader(__UpperCamelCase , batch_size=16 ) A__ = RegressionDataset(length=96 ) A__ = DataLoader(__UpperCamelCase , batch_size=16 ) A__ , A__ = accelerator.prepare(__UpperCamelCase , __UpperCamelCase ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(__UpperCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(__UpperCamelCase ) if iteration < len(__UpperCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(__UpperCamelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(__UpperCamelCase ) if batch_num < len(__UpperCamelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def A ( ) -> Optional[Any]: A__ = Accelerator() A__ = accelerator.state if state.local_process_index == 0: print('**Test `accumulate` gradient accumulation with dataloader break**' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('**Test NOOP `no_sync` context manager**' ) test_noop_sync(__UpperCamelCase ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('**Test Distributed `no_sync` context manager**' ) test_distributed_sync(__UpperCamelCase ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation, ' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(__UpperCamelCase , __UpperCamelCase ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('<' , '2.0' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , '`split_batches=False`, `dispatch_batches=False`**' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(__UpperCamelCase , __UpperCamelCase ) def A ( __UpperCamelCase ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
9
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: A__ = OmegaConf.load(__UpperCamelCase ) A__ = torch.load(__UpperCamelCase , map_location='cpu' )['model'] A__ = list(state_dict.keys() ) # extract state_dict for VQVAE A__ = {} A__ = 'first_stage_model.' for key in keys: if key.startswith(__UpperCamelCase ): A__ = state_dict[key] # extract state_dict for UNetLDM A__ = {} A__ = 'model.diffusion_model.' for key in keys: if key.startswith(__UpperCamelCase ): A__ = state_dict[key] A__ = config.model.params.first_stage_config.params A__ = config.model.params.unet_config.params A__ = VQModel(**__UpperCamelCase ).eval() vqvae.load_state_dict(__UpperCamelCase ) A__ = UNetLDMModel(**__UpperCamelCase ).eval() unet.load_state_dict(__UpperCamelCase ) A__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__UpperCamelCase , ) A__ = LDMPipeline(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) pipeline.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
9
1
from collections import defaultdict def A ( __UpperCamelCase ) -> int: A__ = 1 A__ = True for v in tree[start]: if v not in visited: ret += dfs(__UpperCamelCase ) if ret % 2 == 0: cuts.append(__UpperCamelCase ) return ret def A ( ) -> Dict: dfs(1 ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 1_0, 9 SCREAMING_SNAKE_CASE__ = defaultdict(list) SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (1_0, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
9
import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def A ( __UpperCamelCase ) -> Union[str, Any]: if hor == 128: A__ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A__ = (32, 128, 256) A__ = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: A__ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A__ = (32, 64, 128, 256) A__ = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') A__ = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) A__ = model.state_dict() A__ = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 65_536, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } A__ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A__ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A__ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() , f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , 'w' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) def A ( ) -> List[str]: A__ = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 128, 256), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 65_536, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } A__ = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) A__ = model A__ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A__ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A__ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() , 'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' , 'w' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": unet(3_2) # unet(128) value_function()
9
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer SCREAMING_SNAKE_CASE__ = ['''bert-base-uncased''', '''bert-base-cased'''] SCREAMING_SNAKE_CASE__ = '''hf-internal-testing/tiny-bert-tf-only''' if is_tf_available(): class __lowerCAmelCase ( tf.keras.Model ): """simple docstring""" def __init__( self : str , _snake_case : Optional[int] ): """simple docstring""" super().__init__() A__ = tokenizer A__ = AutoConfig.from_pretrained(_snake_case ) A__ = TFAutoModel.from_config(_snake_case ) def _a ( self : Optional[int] , _snake_case : Optional[int] ): """simple docstring""" A__ = self.tokenizer(_snake_case ) A__ = self.bert(**_snake_case ) return out["pooler_output"] @require_tf @require_tensorflow_text class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _a ( self : Dict ): """simple docstring""" super().setUp() A__ = [ BertTokenizer.from_pretrained(_snake_case ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false A__ = [TFBertTokenizer.from_pretrained(_snake_case ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(_snake_case , use_fast_bert_tokenizer=_snake_case ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) A__ = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] A__ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _a ( self : str ): """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): A__ = tokenizer(_snake_case , return_tensors='tf' , padding='longest' ) A__ = tf_tokenizer(_snake_case ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def _a ( self : Dict ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: A__ = tf_tokenizer(self.paired_sentences ) A__ = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def _a ( self : List[Any] ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: A__ = tf.function(_snake_case ) for test_inputs in (self.test_sentences, self.paired_sentences): A__ = tf.constant(_snake_case ) A__ = compiled_tokenizer(_snake_case ) A__ = tf_tokenizer(_snake_case ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _a ( self : Tuple ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: A__ = ModelToSave(tokenizer=_snake_case ) A__ = tf.convert_to_tensor(self.test_sentences ) A__ = model(_snake_case ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: A__ = Path(_snake_case ) / 'saved.model' model.save(_snake_case ) A__ = tf.keras.models.load_model(_snake_case ) A__ = loaded_model(_snake_case ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
9
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase : """simple docstring""" def __init__( self : Dict , _snake_case : Union[str, Any] , _snake_case : Optional[Any]=12 , _snake_case : Any=7 , _snake_case : List[str]=True , _snake_case : int=True , _snake_case : int=True , _snake_case : Tuple=99 , _snake_case : List[Any]=32 , _snake_case : Optional[int]=32 , _snake_case : List[str]=2 , _snake_case : List[str]=4 , _snake_case : List[Any]=37 , _snake_case : Union[str, Any]=0.1 , _snake_case : Tuple=0.1 , _snake_case : Dict=5_12 , _snake_case : Union[str, Any]=0.02 , _snake_case : Any=0 , _snake_case : Optional[Any]=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = projection_dim A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = dropout A__ = attention_dropout A__ = max_position_embeddings A__ = initializer_range A__ = scope A__ = bos_token_id def _a ( self : Optional[Any] ): """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: A__ = input_mask.numpy() A__ , A__ = input_mask.shape A__ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_snake_case ): A__ = 1 A__ = 0 A__ = self.get_config() return config, input_ids, tf.convert_to_tensor(_snake_case ) def _a ( self : Tuple ): """simple docstring""" return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _a ( self : int , _snake_case : Union[str, Any] , _snake_case : Any , _snake_case : List[str] ): """simple docstring""" A__ = TFBlipTextModel(config=_snake_case ) A__ = model(_snake_case , attention_mask=_snake_case , training=_snake_case ) A__ = model(_snake_case , training=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _a ( self : str ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Tuple = (TFBlipTextModel,) if is_tf_available() else () A__ : Optional[int] = False A__ : Union[str, Any] = False A__ : Union[str, Any] = False def _a ( self : Any ): """simple docstring""" A__ = BlipTextModelTester(self ) A__ = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def _a ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Union[str, Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def _a ( self : Tuple ): """simple docstring""" pass def _a ( self : int ): """simple docstring""" pass @unittest.skip(reason='Blip does not use inputs_embeds' ) def _a ( self : Any ): """simple docstring""" pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _a ( self : str ): """simple docstring""" pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _a ( self : Optional[Any] ): """simple docstring""" pass @slow def _a ( self : Union[str, Any] ): """simple docstring""" for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFBlipTextModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def _a ( self : int , _snake_case : int=True ): """simple docstring""" super().test_pt_tf_model_equivalence(allow_missing_keys=_snake_case )
9
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE__ = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ['''DeiTFeatureExtractor'''] SCREAMING_SNAKE_CASE__ = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
9
from __future__ import annotations from typing import Any def A ( __UpperCamelCase ) -> int: if not postfix_notation: return 0 A__ = {'+', '-', '*', '/'} A__ = [] for token in postfix_notation: if token in operations: A__ , A__ = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(__UpperCamelCase ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
9
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _a ( self : Union[str, Any] ): """simple docstring""" A__ = tempfile.mkdtemp() # fmt: off A__ = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on A__ = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) A__ = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] A__ = {'unk_token': '<unk>'} A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_snake_case ) ) A__ = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073], 'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711], } A__ = os.path.join(self.tmpdirname , _snake_case ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(_snake_case , _snake_case ) def _a ( self : Optional[int] , **_snake_case : str ): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def _a ( self : Union[str, Any] , **_snake_case : str ): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_snake_case ) def _a ( self : int , **_snake_case : List[str] ): """simple docstring""" return CLIPImageProcessor.from_pretrained(self.tmpdirname , **_snake_case ) def _a ( self : int ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _a ( self : Dict ): """simple docstring""" A__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A__ = [Image.fromarray(np.moveaxis(_snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self : int ): """simple docstring""" A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = self.get_image_processor() A__ = CLIPProcessor(tokenizer=_snake_case , image_processor=_snake_case ) processor_slow.save_pretrained(self.tmpdirname ) A__ = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_snake_case ) A__ = CLIPProcessor(tokenizer=_snake_case , image_processor=_snake_case ) processor_fast.save_pretrained(self.tmpdirname ) A__ = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _snake_case ) self.assertIsInstance(processor_fast.tokenizer , _snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _snake_case ) self.assertIsInstance(processor_fast.image_processor , _snake_case ) def _a ( self : Dict ): """simple docstring""" A__ = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) A__ = self.get_image_processor(do_normalize=_snake_case , padding_value=1.0 ) A__ = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_snake_case , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _snake_case ) def _a ( self : Dict ): """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=_snake_case , image_processor=_snake_case ) A__ = self.prepare_image_inputs() A__ = image_processor(_snake_case , return_tensors='np' ) A__ = processor(images=_snake_case , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self : List[str] ): """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=_snake_case , image_processor=_snake_case ) A__ = 'lower newer' A__ = processor(text=_snake_case ) A__ = tokenizer(_snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self : Optional[Any] ): """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=_snake_case , image_processor=_snake_case ) A__ = 'lower newer' A__ = self.prepare_image_inputs() A__ = processor(text=_snake_case , images=_snake_case ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_snake_case ): processor() def _a ( self : List[Any] ): """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=_snake_case , image_processor=_snake_case ) A__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A__ = processor.batch_decode(_snake_case ) A__ = tokenizer.batch_decode(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) def _a ( self : Optional[int] ): """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=_snake_case , image_processor=_snake_case ) A__ = 'lower newer' A__ = self.prepare_image_inputs() A__ = processor(text=_snake_case , images=_snake_case ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
9
from __future__ import annotations def A ( __UpperCamelCase = 4 ) -> list[list[int]]: A__ = abs(__UpperCamelCase ) or 4 return [[1 + x + y * row_size for x in range(__UpperCamelCase )] for y in range(__UpperCamelCase )] def A ( __UpperCamelCase ) -> list[list[int]]: return reverse_row(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_column(matrix)) def A ( __UpperCamelCase ) -> list[list[int]]: return reverse_row(reverse_column(__UpperCamelCase ) ) # OR.. reverse_column(reverse_row(matrix)) def A ( __UpperCamelCase ) -> list[list[int]]: return reverse_column(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_row(matrix)) def A ( __UpperCamelCase ) -> list[list[int]]: A__ = [list(__UpperCamelCase ) for x in zip(*__UpperCamelCase )] return matrix def A ( __UpperCamelCase ) -> list[list[int]]: A__ = matrix[::-1] return matrix def A ( __UpperCamelCase ) -> list[list[int]]: A__ = [x[::-1] for x in matrix] return matrix def A ( __UpperCamelCase ) -> None: for i in matrix: print(*__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 90 counterclockwise:\n''') print_matrix(rotate_aa(matrix)) SCREAMING_SNAKE_CASE__ = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 180:\n''') print_matrix(rotate_aaa(matrix)) SCREAMING_SNAKE_CASE__ = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 270 counterclockwise:\n''') print_matrix(rotate_aaa(matrix))
9
1
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Tuple: A__ = s.rsplit(__UpperCamelCase , __UpperCamelCase ) return new.join(__UpperCamelCase ) def A ( __UpperCamelCase ) -> Dict: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def A ( __UpperCamelCase ) -> List[str]: A__ = {} A__ = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: A__ = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: A__ = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): A__ = rreplace(__UpperCamelCase , '.w' , '.weight' , 1 ) if key.endswith('.b' ): A__ = rreplace(__UpperCamelCase , '.b' , '.bias' , 1 ) A__ = value.float() return upgrade @torch.no_grad() def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=True ) -> Optional[Any]: from dall_e import Encoder A__ = Encoder() if os.path.exists(__UpperCamelCase ): A__ = torch.load(__UpperCamelCase ) else: A__ = torch.hub.load_state_dict_from_url(__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ): A__ = ckpt.state_dict() encoder.load_state_dict(__UpperCamelCase ) if config_path is not None: A__ = FlavaImageCodebookConfig.from_pretrained(__UpperCamelCase ) else: A__ = FlavaImageCodebookConfig() A__ = FlavaImageCodebook(__UpperCamelCase ).eval() A__ = encoder.state_dict() A__ = upgrade_state_dict(__UpperCamelCase ) hf_model.load_state_dict(__UpperCamelCase ) A__ = hf_model.state_dict() A__ = count_parameters(__UpperCamelCase ) A__ = count_parameters(__UpperCamelCase ) assert torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(__UpperCamelCase ) else: return hf_state_dict if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
9
from __future__ import annotations from fractions import Fraction def A ( __UpperCamelCase , __UpperCamelCase ) -> bool: return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def A ( __UpperCamelCase ) -> list[str]: A__ = [] A__ = 11 A__ = int('1' + '0' * digit_len ) for num in range(__UpperCamelCase , __UpperCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(__UpperCamelCase , __UpperCamelCase ): solutions.append(f'''{num}/{den}''' ) den += 1 num += 1 A__ = 10 return solutions def A ( __UpperCamelCase = 2 ) -> int: A__ = 1.0 for fraction in fraction_list(__UpperCamelCase ): A__ = Fraction(__UpperCamelCase ) result *= frac.denominator / frac.numerator return int(__UpperCamelCase ) if __name__ == "__main__": print(solution())
9
1
import glob import os import random from string import ascii_lowercase, digits import cva SCREAMING_SNAKE_CASE__ = '''''' SCREAMING_SNAKE_CASE__ = '''''' SCREAMING_SNAKE_CASE__ = '''''' SCREAMING_SNAKE_CASE__ = 1 # (0 is vertical, 1 is horizontal) def A ( ) -> None: A__ , A__ = get_dataset(__UpperCamelCase , __UpperCamelCase ) print('Processing...' ) A__ , A__ , A__ = update_image_and_anno(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) for index, image in enumerate(__UpperCamelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' A__ = random_chars(32 ) A__ = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] A__ = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(f'''/{file_root}.jpg''' , __UpperCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Success {index+1}/{len(__UpperCamelCase )} with {file_name}''' ) A__ = [] for anno in new_annos[index]: A__ = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(__UpperCamelCase ) with open(f'''/{file_root}.txt''' , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def A ( __UpperCamelCase , __UpperCamelCase ) -> tuple[list, list]: A__ = [] A__ = [] for label_file in glob.glob(os.path.join(__UpperCamelCase , '*.txt' ) ): A__ = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(__UpperCamelCase ) as in_file: A__ = in_file.readlines() A__ = os.path.join(__UpperCamelCase , f'''{label_name}.jpg''' ) A__ = [] for obj_list in obj_lists: A__ = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__UpperCamelCase ) labels.append(__UpperCamelCase ) return img_paths, labels def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 ) -> tuple[list, list, list]: A__ = [] A__ = [] A__ = [] for idx in range(len(__UpperCamelCase ) ): A__ = [] A__ = img_list[idx] path_list.append(__UpperCamelCase ) A__ = anno_list[idx] A__ = cva.imread(__UpperCamelCase ) if flip_type == 1: A__ = cva.flip(__UpperCamelCase , __UpperCamelCase ) for bbox in img_annos: A__ = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: A__ = cva.flip(__UpperCamelCase , __UpperCamelCase ) for bbox in img_annos: A__ = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__UpperCamelCase ) new_imgs_list.append(__UpperCamelCase ) return new_imgs_list, new_annos_lists, path_list def A ( __UpperCamelCase = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" A__ = ascii_lowercase + digits return "".join(random.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) ) if __name__ == "__main__": main() print('''DONE ✅''')
9
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
9
1
import pprint import requests SCREAMING_SNAKE_CASE__ = '''https://zenquotes.io/api''' def A ( ) -> list: return requests.get(API_ENDPOINT_URL + '/today' ).json() def A ( ) -> list: return requests.get(API_ENDPOINT_URL + '/random' ).json() if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = random_quotes() pprint.pprint(response)
9
SCREAMING_SNAKE_CASE__ = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' SCREAMING_SNAKE_CASE__ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] SCREAMING_SNAKE_CASE__ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
9
1
def A ( ) -> int: return [ a * b * (1_000 - a - b) for a in range(1 , 999 ) for b in range(__UpperCamelCase , 999 ) if (a * a + b * b == (1_000 - a - b) ** 2) ][0] if __name__ == "__main__": print(f'{solution() = }')
9
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : """simple docstring""" @staticmethod def _a ( *_snake_case : Any , **_snake_case : Optional[int] ): """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" A__ : Union[str, Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def _a ( self : List[Any] , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : Union[str, Any] ): """simple docstring""" A__ = pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' ) A__ = [ { 'image': Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'question': 'How many cats are there?', }, { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'question': 'How many cats are there?', }, ] return vqa_pipeline, examples def _a ( self : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : List[str] ): """simple docstring""" A__ = vqa_pipeline(_snake_case , top_k=1 ) self.assertEqual( _snake_case , [ [{'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}], [{'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}], ] , ) @require_torch def _a ( self : Any ): """simple docstring""" A__ = pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' ) A__ = './tests/fixtures/tests_samples/COCO/000000039769.png' A__ = 'How many cats are there?' A__ = vqa_pipeline(image=_snake_case , question='How many cats are there?' , top_k=2 ) self.assertEqual( _snake_case , [{'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}, {'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}] ) A__ = vqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( _snake_case , [{'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}, {'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}] ) @slow @require_torch def _a ( self : Any ): """simple docstring""" A__ = pipeline('visual-question-answering' , model='dandelin/vilt-b32-finetuned-vqa' ) A__ = './tests/fixtures/tests_samples/COCO/000000039769.png' A__ = 'How many cats are there?' A__ = vqa_pipeline(image=_snake_case , question=_snake_case , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}] ) A__ = vqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}] ) A__ = vqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [[{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}]] * 2 , ) @require_tf @unittest.skip('Visual question answering not implemented in TF' ) def _a ( self : Dict ): """simple docstring""" pass
9
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class __lowerCAmelCase : """simple docstring""" A__ : Optional[int] = None A__ : Optional[jnp.ndarray] = None A__ : Optional[jnp.ndarray] = None # sigma(t_i) @classmethod def _a ( cls : List[Any] ): """simple docstring""" return cls() @dataclass class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : jnp.ndarray A__ : jnp.ndarray A__ : KarrasVeSchedulerState class __lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ ): """simple docstring""" @property def _a ( self : int ): """simple docstring""" return True @register_to_config def __init__( self : Optional[int] , _snake_case : float = 0.02 , _snake_case : float = 1_00 , _snake_case : float = 1.007 , _snake_case : float = 80 , _snake_case : float = 0.05 , _snake_case : float = 50 , ): """simple docstring""" pass def _a ( self : Dict ): """simple docstring""" return KarrasVeSchedulerState.create() def _a ( self : List[str] , _snake_case : KarrasVeSchedulerState , _snake_case : int , _snake_case : Tuple = () ): """simple docstring""" A__ = jnp.arange(0 , _snake_case )[::-1].copy() A__ = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=_snake_case , schedule=jnp.array(_snake_case , dtype=jnp.floataa ) , timesteps=_snake_case , ) def _a ( self : Tuple , _snake_case : KarrasVeSchedulerState , _snake_case : jnp.ndarray , _snake_case : float , _snake_case : random.KeyArray , ): """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: A__ = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: A__ = 0 # sample eps ~ N(0, S_noise^2 * I) A__ = random.split(_snake_case , num=1 ) A__ = self.config.s_noise * random.normal(key=_snake_case , shape=sample.shape ) A__ = sigma + gamma * sigma A__ = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _a ( self : Union[str, Any] , _snake_case : KarrasVeSchedulerState , _snake_case : jnp.ndarray , _snake_case : float , _snake_case : float , _snake_case : jnp.ndarray , _snake_case : bool = True , ): """simple docstring""" A__ = sample_hat + sigma_hat * model_output A__ = (sample_hat - pred_original_sample) / sigma_hat A__ = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=_snake_case , derivative=_snake_case , state=_snake_case ) def _a ( self : int , _snake_case : KarrasVeSchedulerState , _snake_case : jnp.ndarray , _snake_case : float , _snake_case : float , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray , _snake_case : jnp.ndarray , _snake_case : bool = True , ): """simple docstring""" A__ = sample_prev + sigma_prev * model_output A__ = (sample_prev - pred_original_sample) / sigma_prev A__ = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=_snake_case , derivative=_snake_case , state=_snake_case ) def _a ( self : List[Any] , _snake_case : KarrasVeSchedulerState , _snake_case : str , _snake_case : Optional[int] , _snake_case : str ): """simple docstring""" raise NotImplementedError()
9
def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: if exponent == 1: return base if exponent % 2 == 0: A__ = _modexpt(__UpperCamelCase , exponent // 2 , __UpperCamelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__UpperCamelCase , exponent - 1 , __UpperCamelCase )) % modulo_value def A ( __UpperCamelCase = 1_777 , __UpperCamelCase = 1_855 , __UpperCamelCase = 8 ) -> int: A__ = base for _ in range(1 , __UpperCamelCase ): A__ = _modexpt(__UpperCamelCase , __UpperCamelCase , 10**digits ) return result if __name__ == "__main__": print(f'{solution() = }')
9
1
SCREAMING_SNAKE_CASE__ = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' SCREAMING_SNAKE_CASE__ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] SCREAMING_SNAKE_CASE__ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
9
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def A ( __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=False ) -> Dict: A__ = 'backbone.' if is_semantic else '' A__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (f'''{prefix}cls_token''', 'beit.embeddings.cls_token'), (f'''{prefix}patch_embed.proj.weight''', 'beit.embeddings.patch_embeddings.projection.weight'), (f'''{prefix}patch_embed.proj.bias''', 'beit.embeddings.patch_embeddings.projection.bias'), (f'''{prefix}pos_embed''', 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=False ) -> Optional[Any]: for i in range(config.num_hidden_layers ): A__ = 'backbone.' if is_semantic else '' # queries, keys and values A__ = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' ) A__ = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' ) A__ = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' ) A__ = in_proj_weight[ : config.hidden_size, : ] A__ = q_bias A__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ = in_proj_weight[ -config.hidden_size :, : ] A__ = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained A__ = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' ) A__ = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' ) A__ = gamma_a A__ = gamma_a def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: A__ = dct.pop(__UpperCamelCase ) A__ = val def A ( ) -> Dict: A__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' A__ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False ) -> str: A__ = False if 'rvlcdip' in checkpoint_url else True A__ = BeitConfig(use_absolute_position_embeddings=__UpperCamelCase , use_mask_token=__UpperCamelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: A__ = 1_024 A__ = 4_096 A__ = 24 A__ = 16 # labels if "rvlcdip" in checkpoint_url: A__ = 16 A__ = 'huggingface/label-files' A__ = 'rvlcdip-id2label.json' A__ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='dataset' ) , 'r' ) ) A__ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys A__ = torch.hub.load_state_dict_from_url(__UpperCamelCase , map_location='cpu' )['model'] A__ = create_rename_keys(__UpperCamelCase , has_lm_head=__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) read_in_q_k_v(__UpperCamelCase , __UpperCamelCase , has_lm_head=__UpperCamelCase ) # load HuggingFace model A__ = BeitForMaskedImageModeling(__UpperCamelCase ) if has_lm_head else BeitForImageClassification(__UpperCamelCase ) model.eval() model.load_state_dict(__UpperCamelCase ) # Check outputs on an image A__ = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__UpperCamelCase ) A__ = prepare_img() A__ = image_processor(images=__UpperCamelCase , return_tensors='pt' ) A__ = encoding['pixel_values'] A__ = model(__UpperCamelCase ) A__ = outputs.logits # verify logits A__ = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 196, 8_192] assert logits.shape == torch.Size(__UpperCamelCase ), "Shape of logits not as expected" Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if push_to_hub: if has_lm_head: A__ = 'dit-base' if 'base' in checkpoint_url else 'dit-large' else: A__ = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip' image_processor.push_to_hub( repo_path_or_name=Path(__UpperCamelCase , __UpperCamelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=__UpperCamelCase , ) model.push_to_hub( repo_path_or_name=Path(__UpperCamelCase , __UpperCamelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=__UpperCamelCase , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
9
1
import argparse import os import torch from transformers.utils import WEIGHTS_NAME SCREAMING_SNAKE_CASE__ = ['''small''', '''medium''', '''large'''] SCREAMING_SNAKE_CASE__ = '''lm_head.decoder.weight''' SCREAMING_SNAKE_CASE__ = '''lm_head.weight''' def A ( __UpperCamelCase , __UpperCamelCase ) -> Any: A__ = torch.load(__UpperCamelCase ) A__ = d.pop(__UpperCamelCase ) os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) torch.save(__UpperCamelCase , os.path.join(__UpperCamelCase , __UpperCamelCase ) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) SCREAMING_SNAKE_CASE__ = parser.parse_args() for MODEL in DIALOGPT_MODELS: SCREAMING_SNAKE_CASE__ = os.path.join(args.dialogpt_path, f'{MODEL}_ft.pkl') SCREAMING_SNAKE_CASE__ = f'./DialoGPT-{MODEL}' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
9
SCREAMING_SNAKE_CASE__ = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> list[str]: A__ = set() # keep track of all the paths to be checked A__ = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue A__ = queue.pop(0 ) # get the last node from the path A__ = path[-1] if node not in explored: A__ = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: A__ = list(__UpperCamelCase ) new_path.append(__UpperCamelCase ) queue.append(__UpperCamelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(__UpperCamelCase ) # in case there's no path between the 2 nodes return [] def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 A__ = [start] A__ = set(__UpperCamelCase ) # Keep tab on distances from `start` node. A__ = {start: 0, target: -1} while queue: A__ = queue.pop(0 ) if node == target: A__ = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(__UpperCamelCase ) queue.append(__UpperCamelCase ) A__ = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
9
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase_ ) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : str = field(default="automatic-speech-recognition" , metadata={"include_in_asdict_even_if_is_default": True} ) A__ : ClassVar[Features] = Features({"audio": Audio()} ) A__ : ClassVar[Features] = Features({"transcription": Value("string" )} ) A__ : str = "audio" A__ : str = "transcription" def _a ( self : Dict , _snake_case : Any ): """simple docstring""" if self.audio_column not in features: raise ValueError(F'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] , _snake_case ): raise ValueError(F'''Column {self.audio_column} is not an Audio type.''' ) A__ = copy.deepcopy(self ) A__ = self.input_schema.copy() A__ = features[self.audio_column] A__ = input_schema return task_template @property def _a ( self : Union[str, Any] ): """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
9
def A ( __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: A__ = 0 A__ = len(__UpperCamelCase ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__UpperCamelCase ): return None A__ = sorted_collection[point] if current_item == item: return point else: if point < left: A__ = left A__ = point elif point > right: A__ = right A__ = point else: if item < current_item: A__ = point - 1 else: A__ = point + 1 return None def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__UpperCamelCase ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) elif point > right: return interpolation_search_by_recursion(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , point - 1 ) else: return interpolation_search_by_recursion( __UpperCamelCase , __UpperCamelCase , point + 1 , __UpperCamelCase ) def A ( __UpperCamelCase ) -> List[str]: if collection != sorted(__UpperCamelCase ): raise ValueError('Collection must be ascending sorted' ) return True if __name__ == "__main__": import sys SCREAMING_SNAKE_CASE__ = 0 if debug == 1: SCREAMING_SNAKE_CASE__ = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit('''Sequence must be ascending sorted to apply interpolation search''') SCREAMING_SNAKE_CASE__ = 6_7 SCREAMING_SNAKE_CASE__ = interpolation_search(collection, target) if result is not None: print(f'{target} found at positions: {result}') else: print('''Not found''')
9
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE__ = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
9
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , *_snake_case : int , **_snake_case : Optional[int] ): """simple docstring""" warnings.warn( 'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use CLIPImageProcessor instead.' , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
9
1
from manim import * class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def _a ( self : Union[str, Any] ): """simple docstring""" A__ = Rectangle(height=0.5 , width=0.5 ) A__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) A__ = [mem.copy() for i in range(6 )] A__ = [mem.copy() for i in range(6 )] A__ = VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) A__ = VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) A__ = VGroup(_snake_case , _snake_case ).arrange(_snake_case , buff=0 ) A__ = Text('CPU' , font_size=24 ) A__ = Group(_snake_case , _snake_case ).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_snake_case ) A__ = [mem.copy() for i in range(1 )] A__ = VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) A__ = Text('GPU' , font_size=24 ) A__ = Group(_snake_case , _snake_case ).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case ) gpu.align_to(_snake_case , _snake_case ) gpu.set_x(gpu.get_x() - 1 ) self.add(_snake_case ) A__ = [mem.copy() for i in range(6 )] A__ = VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) A__ = Text('Model' , font_size=24 ) A__ = Group(_snake_case , _snake_case ).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case ) model.move_to([3, -1.0, 0] ) self.play( Create(_snake_case , run_time=1 ) , Create(_snake_case , run_time=1 ) , Create(_snake_case , run_time=1 ) , ) A__ = MarkupText( F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) A__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) A__ = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_snake_case , run_time=2.5 ) , Write(_snake_case ) , Write(_snake_case ) ) self.add(_snake_case ) A__ = [] A__ = [] A__ = [] for i, rect in enumerate(_snake_case ): A__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_snake_case , opacity=0.7 ) cpu_target.move_to(_snake_case ) cpu_target.generate_target() A__ = 0.46 / 4 A__ = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_snake_case ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=_snake_case , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_snake_case , buff=0.0 ) cpu_targs.append(_snake_case ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_snake_case ) ) second_animations.append(MoveToTarget(_snake_case , run_time=1.5 ) ) self.play(*_snake_case ) self.play(*_snake_case ) self.wait()
9
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () SCREAMING_SNAKE_CASE__ = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). SCREAMING_SNAKE_CASE__ = [0, 2_5, 5_0] SCREAMING_SNAKE_CASE__ = [2_5, 5_0, 7_5] SCREAMING_SNAKE_CASE__ = fuzz.membership.trimf(X, abca) SCREAMING_SNAKE_CASE__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. SCREAMING_SNAKE_CASE__ = np.ones(7_5) SCREAMING_SNAKE_CASE__ = np.zeros((7_5,)) # 1. Union = max(µA(x), µB(x)) SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] SCREAMING_SNAKE_CASE__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) SCREAMING_SNAKE_CASE__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
9
1
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def A ( __UpperCamelCase ) -> str: A__ = [] for line in lines: A__ = re.sub(r'#.*' , '' , __UpperCamelCase ) # remove comments if line: filtered_lines.append(__UpperCamelCase ) A__ = '\n'.join(__UpperCamelCase ) # Make a hash from all this code A__ = full_str.encode('utf-8' ) return shaaaa(__UpperCamelCase ).hexdigest() # get importable module names and hash for caching SCREAMING_SNAKE_CASE__ = { '''csv''': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), '''json''': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), '''pandas''': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), '''parquet''': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), '''arrow''': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), '''text''': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), '''imagefolder''': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), '''audiofolder''': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions SCREAMING_SNAKE_CASE__ = { '''.csv''': ('''csv''', {}), '''.tsv''': ('''csv''', {'''sep''': '''\t'''}), '''.json''': ('''json''', {}), '''.jsonl''': ('''json''', {}), '''.parquet''': ('''parquet''', {}), '''.arrow''': ('''arrow''', {}), '''.txt''': ('''text''', {}), } _EXTENSION_TO_MODULE.update({ext: ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) SCREAMING_SNAKE_CASE__ = {'''imagefolder''', '''audiofolder'''} # Used to filter data files based on extensions given a module name SCREAMING_SNAKE_CASE__ = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('''.zip''') _MODULE_TO_EXTENSIONS["audiofolder"].append('''.zip''')
9
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : """simple docstring""" @staticmethod def _a ( *_snake_case : int , **_snake_case : List[str] ): """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" A__ : List[str] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def _a ( self : Any , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : Optional[Any] ): """simple docstring""" A__ = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) A__ = [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] return object_detector, examples def _a ( self : int , _snake_case : int , _snake_case : List[str] ): """simple docstring""" A__ = object_detector(examples[0] , threshold=0.0 ) A__ = len(_snake_case ) self.assertGreater(_snake_case , 0 ) self.assertEqual( _snake_case , [ { 'score': ANY(_snake_case ), 'label': ANY(_snake_case ), 'box': {'xmin': ANY(_snake_case ), 'ymin': ANY(_snake_case ), 'xmax': ANY(_snake_case ), 'ymax': ANY(_snake_case )}, } for i in range(_snake_case ) ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def _a ( self : List[str] ): """simple docstring""" pass @require_torch def _a ( self : Optional[int] ): """simple docstring""" A__ = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) A__ = object_detector( './tests/fixtures/tests_samples/COCO/000000039769.png' , candidate_labels=['cat', 'remote', 'couch'] , threshold=0.64 , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {'score': 0.7235, 'label': 'cat', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7218, 'label': 'remote', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7184, 'label': 'couch', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.6748, 'label': 'remote', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6656, 'label': 'cat', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6614, 'label': 'couch', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6456, 'label': 'remote', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 2_74, 'xmax': 93, 'ymax': 2_97}}, {'score': 0.6419, 'label': 'cat', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, ] , ) A__ = object_detector( [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ [ {'score': 0.7235, 'label': 'cat', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7218, 'label': 'remote', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7184, 'label': 'couch', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.6748, 'label': 'remote', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6656, 'label': 'cat', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6614, 'label': 'couch', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6456, 'label': 'remote', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 2_74, 'xmax': 93, 'ymax': 2_97}}, {'score': 0.6419, 'label': 'cat', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, ] ] , ) @require_torch @slow def _a ( self : int ): """simple docstring""" A__ = pipeline('zero-shot-object-detection' ) A__ = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ] , ) A__ = object_detector( [ { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, ] , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ], [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ], ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def _a ( self : int ): """simple docstring""" pass @require_torch @slow def _a ( self : str ): """simple docstring""" A__ = 0.2 A__ = pipeline('zero-shot-object-detection' ) A__ = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , threshold=_snake_case , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, ] , ) @require_torch @slow def _a ( self : Any ): """simple docstring""" A__ = 2 A__ = pipeline('zero-shot-object-detection' ) A__ = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , top_k=_snake_case , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, ] , )
9
1
from __future__ import annotations def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> tuple[str, float]: if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
9
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml SCREAMING_SNAKE_CASE__ = NewType('''DataClass''', Any) SCREAMING_SNAKE_CASE__ = NewType('''DataClassType''', Any) def A ( __UpperCamelCase ) -> List[Any]: if isinstance(__UpperCamelCase , __UpperCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def A ( __UpperCamelCase ) -> Callable[[str], Any]: A__ = {str(__UpperCamelCase ): choice for choice in choices} return lambda __UpperCamelCase : str_to_choice.get(__UpperCamelCase , __UpperCamelCase ) def A ( *, __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = dataclasses.MISSING , __UpperCamelCase = dataclasses.MISSING , __UpperCamelCase = None , **__UpperCamelCase , ) -> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls A__ = {} if aliases is not None: A__ = aliases if help is not None: A__ = help return dataclasses.field(metadata=__UpperCamelCase , default=__UpperCamelCase , default_factory=__UpperCamelCase , **__UpperCamelCase ) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Iterable[DataClassType] def __init__( self : Optional[int] , _snake_case : Union[DataClassType, Iterable[DataClassType]] , **_snake_case : Tuple ): """simple docstring""" if "formatter_class" not in kwargs: A__ = ArgumentDefaultsHelpFormatter super().__init__(**_snake_case ) if dataclasses.is_dataclass(_snake_case ): A__ = [dataclass_types] A__ = list(_snake_case ) for dtype in self.dataclass_types: self._add_dataclass_arguments(_snake_case ) @staticmethod def _a ( _snake_case : ArgumentParser , _snake_case : dataclasses.Field ): """simple docstring""" A__ = F'''--{field.name}''' A__ = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , _snake_case ): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default' ) A__ = kwargs.pop('aliases' , [] ) if isinstance(_snake_case , _snake_case ): A__ = [aliases] A__ = getattr(field.type , '__origin__' , field.type ) if origin_type is Union or (hasattr(_snake_case , 'UnionType' ) and isinstance(_snake_case , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(_snake_case ) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' F''' Problem encountered in field \'{field.name}\'.''' ) if type(_snake_case ) not in field.type.__args__: # filter `str` in Union A__ = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] A__ = getattr(field.type , '__origin__' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) A__ = ( field.type.__args__[0] if isinstance(_snake_case , field.type.__args__[1] ) else field.type.__args__[1] ) A__ = getattr(field.type , '__origin__' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) A__ = {} if origin_type is Literal or (isinstance(field.type , _snake_case ) and issubclass(field.type , _snake_case )): if origin_type is Literal: A__ = field.type.__args__ else: A__ = [x.value for x in field.type] A__ = make_choice_type_function(kwargs['choices'] ) if field.default is not dataclasses.MISSING: A__ = field.default else: A__ = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument A__ = copy(_snake_case ) # Hack because type=bool in argparse does not behave as we want. A__ = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. A__ = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way A__ = default # This tells argparse we accept 0 or 1 value after --field_name A__ = '?' # This is the value that will get picked if we do --field_name (without value) A__ = True elif isclass(_snake_case ) and issubclass(_snake_case , _snake_case ): A__ = field.type.__args__[0] A__ = '+' if field.default_factory is not dataclasses.MISSING: A__ = field.default_factory() elif field.default is dataclasses.MISSING: A__ = True else: A__ = field.type if field.default is not dataclasses.MISSING: A__ = field.default elif field.default_factory is not dataclasses.MISSING: A__ = field.default_factory() else: A__ = True parser.add_argument(_snake_case , *_snake_case , **_snake_case ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): A__ = False parser.add_argument(F'''--no_{field.name}''' , action='store_false' , dest=field.name , **_snake_case ) def _a ( self : Any , _snake_case : DataClassType ): """simple docstring""" if hasattr(_snake_case , '_argument_group_name' ): A__ = self.add_argument_group(dtype._argument_group_name ) else: A__ = self try: A__ = get_type_hints(_snake_case ) except NameError: raise RuntimeError( F'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_snake_case ): A__ = '.'.join(map(_snake_case , sys.version_info[:3] ) ) raise RuntimeError( F'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.' ) from ex raise for field in dataclasses.fields(_snake_case ): if not field.init: continue A__ = type_hints[field.name] self._parse_dataclass_field(_snake_case , _snake_case ) def _a ( self : Optional[int] , _snake_case : Optional[Any]=None , _snake_case : Any=False , _snake_case : int=True , _snake_case : List[Any]=None , _snake_case : int=None , ): """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): A__ = [] if args_filename: args_files.append(Path(_snake_case ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('.args' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values A__ = ArgumentParser() args_file_parser.add_argument(_snake_case , type=_snake_case , action='append' ) # Use only remaining args for further parsing (remove the args_file_flag) A__ , A__ = args_file_parser.parse_known_args(args=_snake_case ) A__ = vars(_snake_case ).get(args_file_flag.lstrip('-' ) , _snake_case ) if cmd_args_file_paths: args_files.extend([Path(_snake_case ) for p in cmd_args_file_paths] ) A__ = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last A__ = file_args + args if args is not None else file_args + sys.argv[1:] A__ , A__ = self.parse_known_args(args=_snake_case ) A__ = [] for dtype in self.dataclass_types: A__ = {f.name for f in dataclasses.fields(_snake_case ) if f.init} A__ = {k: v for k, v in vars(_snake_case ).items() if k in keys} for k in keys: delattr(_snake_case , _snake_case ) A__ = dtype(**_snake_case ) outputs.append(_snake_case ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(_snake_case ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def _a ( self : Dict , _snake_case : Dict[str, Any] , _snake_case : bool = False ): """simple docstring""" A__ = set(args.keys() ) A__ = [] for dtype in self.dataclass_types: A__ = {f.name for f in dataclasses.fields(_snake_case ) if f.init} A__ = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) A__ = dtype(**_snake_case ) outputs.append(_snake_case ) if not allow_extra_keys and unused_keys: raise ValueError(F'''Some keys are not used by the HfArgumentParser: {sorted(_snake_case )}''' ) return tuple(_snake_case ) def _a ( self : Dict , _snake_case : str , _snake_case : bool = False ): """simple docstring""" with open(Path(_snake_case ) , encoding='utf-8' ) as open_json_file: A__ = json.loads(open_json_file.read() ) A__ = self.parse_dict(_snake_case , allow_extra_keys=_snake_case ) return tuple(_snake_case ) def _a ( self : Tuple , _snake_case : str , _snake_case : bool = False ): """simple docstring""" A__ = self.parse_dict(yaml.safe_load(Path(_snake_case ).read_text() ) , allow_extra_keys=_snake_case ) return tuple(_snake_case )
9
1
SCREAMING_SNAKE_CASE__ = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> list[str]: A__ = set() # keep track of all the paths to be checked A__ = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue A__ = queue.pop(0 ) # get the last node from the path A__ = path[-1] if node not in explored: A__ = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: A__ = list(__UpperCamelCase ) new_path.append(__UpperCamelCase ) queue.append(__UpperCamelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(__UpperCamelCase ) # in case there's no path between the 2 nodes return [] def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 A__ = [start] A__ = set(__UpperCamelCase ) # Keep tab on distances from `start` node. A__ = {start: 0, target: -1} while queue: A__ = queue.pop(0 ) if node == target: A__ = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(__UpperCamelCase ) queue.append(__UpperCamelCase ) A__ = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
9
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def A ( __UpperCamelCase ) -> List[Any]: print('Loading config file...' ) def flatten_yaml_as_dict(__UpperCamelCase , __UpperCamelCase="" , __UpperCamelCase="." ): A__ = [] for k, v in d.items(): A__ = parent_key + sep + k if parent_key else k if isinstance(__UpperCamelCase , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(__UpperCamelCase , __UpperCamelCase , sep=__UpperCamelCase ).items() ) else: items.append((new_key, v) ) return dict(__UpperCamelCase ) A__ = argparse.Namespace() with open(__UpperCamelCase , 'r' ) as yaml_file: try: A__ = yaml.load(__UpperCamelCase , Loader=yaml.FullLoader ) A__ = flatten_yaml_as_dict(__UpperCamelCase ) for k, v in flat_cfg.items(): setattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) except yaml.YAMLError as exc: logger.error('Error while loading config file: {}. Error message: {}'.format(__UpperCamelCase , str(__UpperCamelCase ) ) ) return config def A ( __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: A__ = MobileViTVaConfig() A__ = False # dataset if task_name.startswith('imagenet1k_' ): A__ = 1_000 if int(task_name.strip().split('_' )[-1] ) == 384: A__ = 384 else: A__ = 256 A__ = 'imagenet-1k-id2label.json' elif task_name.startswith('imagenet21k_to_1k_' ): A__ = 21_000 if int(task_name.strip().split('_' )[-1] ) == 384: A__ = 384 else: A__ = 256 A__ = 'imagenet-22k-id2label.json' elif task_name.startswith('ade20k_' ): A__ = 151 A__ = 512 A__ = 'ade20k-id2label.json' A__ = True elif task_name.startswith('voc_' ): A__ = 21 A__ = 512 A__ = 'pascal-voc-id2label.json' A__ = True # orig_config A__ = load_orig_config_file(__UpperCamelCase ) assert getattr(__UpperCamelCase , 'model.classification.name' , -1 ) == "mobilevit_v2", "Invalid model" A__ = getattr(__UpperCamelCase , 'model.classification.mitv2.width_multiplier' , 1.0 ) assert ( getattr(__UpperCamelCase , 'model.classification.mitv2.attn_norm_layer' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" A__ = getattr(__UpperCamelCase , 'model.classification.activation.name' , 'swish' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: A__ = getattr(__UpperCamelCase , 'model.segmentation.output_stride' , 16 ) if "_deeplabv3" in task_name: A__ = getattr(__UpperCamelCase , 'model.segmentation.deeplabv3.aspp_rates' , [12, 24, 36] ) A__ = getattr(__UpperCamelCase , 'model.segmentation.deeplabv3.aspp_out_channels' , 512 ) A__ = getattr(__UpperCamelCase , 'model.segmentation.deeplabv3.aspp_dropout' , 0.1 ) # id2label A__ = 'huggingface/label-files' A__ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='dataset' ) , 'r' ) ) A__ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} return config def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[str]: A__ = dct.pop(__UpperCamelCase ) A__ = val def A ( __UpperCamelCase , __UpperCamelCase=False ) -> Dict: if base_model: A__ = '' else: A__ = 'mobilevitv2.' A__ = [] for k in state_dict.keys(): if k[:8] == "encoder.": A__ = k[8:] else: A__ = k if ".block." in k: A__ = k_new.replace('.block.' , '.' ) if ".conv." in k: A__ = k_new.replace('.conv.' , '.convolution.' ) if ".norm." in k: A__ = k_new.replace('.norm.' , '.normalization.' ) if "conv_1." in k: A__ = k_new.replace('conv_1.' , f'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if f'''layer_{i}.''' in k: A__ = k_new.replace(f'''layer_{i}.''' , f'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: A__ = k_new.replace('.exp_1x1.' , '.expand_1x1.' ) if ".red_1x1." in k: A__ = k_new.replace('.red_1x1.' , '.reduce_1x1.' ) for i in [3, 4, 5]: if f'''layer_{i}.0.''' in k: A__ = k_new.replace(f'''layer_{i}.0.''' , f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if f'''layer_{i}.1.local_rep.0.''' in k: A__ = k_new.replace(f'''layer_{i}.1.local_rep.0.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if f'''layer_{i}.1.local_rep.1.''' in k: A__ = k_new.replace(f'''layer_{i}.1.local_rep.1.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: A__ = [0, 1] elif i == 4: A__ = [0, 1, 2, 3] elif i == 5: A__ = [0, 1, 2] for j in j_in: if f'''layer_{i}.1.global_rep.{j}.''' in k: A__ = k_new.replace( f'''layer_{i}.1.global_rep.{j}.''' , f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if f'''layer_{i}.1.global_rep.{j+1}.''' in k: A__ = k_new.replace( f'''layer_{i}.1.global_rep.{j+1}.''' , f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if f'''layer_{i}.1.conv_proj.''' in k: A__ = k_new.replace(f'''layer_{i}.1.conv_proj.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: A__ = k_new.replace('pre_norm_attn.0.' , 'layernorm_before.' ) if "pre_norm_attn.1." in k: A__ = k_new.replace('pre_norm_attn.1.' , 'attention.' ) if "pre_norm_ffn.0." in k: A__ = k_new.replace('pre_norm_ffn.0.' , 'layernorm_after.' ) if "pre_norm_ffn.1." in k: A__ = k_new.replace('pre_norm_ffn.1.' , 'ffn.conv1.' ) if "pre_norm_ffn.3." in k: A__ = k_new.replace('pre_norm_ffn.3.' , 'ffn.conv2.' ) if "classifier.1." in k: A__ = k_new.replace('classifier.1.' , 'classifier.' ) if "seg_head." in k: A__ = k_new.replace('seg_head.' , 'segmentation_head.' ) if ".aspp_layer." in k: A__ = k_new.replace('.aspp_layer.' , '.' ) if ".aspp_pool." in k: A__ = k_new.replace('.aspp_pool.' , '.' ) rename_keys.append((k, k_new) ) return rename_keys def A ( __UpperCamelCase ) -> Tuple: A__ = [] for k in state_dict.keys(): if k.startswith('seg_head.aux_head.' ): keys_to_ignore.append(__UpperCamelCase ) for k in keys_to_ignore: state_dict.pop(__UpperCamelCase , __UpperCamelCase ) def A ( ) -> str: A__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" A__ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: A__ = get_mobilevitva_config(__UpperCamelCase , __UpperCamelCase ) # load original state_dict A__ = torch.load(__UpperCamelCase , map_location='cpu' ) # load huggingface model if task_name.startswith('ade20k_' ) or task_name.startswith('voc_' ): A__ = MobileViTVaForSemanticSegmentation(__UpperCamelCase ).eval() A__ = False else: A__ = MobileViTVaForImageClassification(__UpperCamelCase ).eval() A__ = False # remove and rename some keys of load the original model A__ = checkpoint remove_unused_keys(__UpperCamelCase ) A__ = create_rename_keys(__UpperCamelCase , base_model=__UpperCamelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # load modified state_dict model.load_state_dict(__UpperCamelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor A__ = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) A__ = image_processor(images=prepare_img() , return_tensors='pt' ) A__ = model(**__UpperCamelCase ) # verify classification model if task_name.startswith('imagenet' ): A__ = outputs.logits A__ = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('imagenet1k_256' ) and config.width_multiplier == 1.0: # expected_logits for base variant A__ = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ) assert torch.allclose(logits[0, :3] , __UpperCamelCase , atol=1E-4 ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''imagenet1k_256''', type=str, help=( '''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ''' ''' Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 ''' ), choices=[ '''imagenet1k_256''', '''imagenet1k_384''', '''imagenet21k_to_1k_256''', '''imagenet21k_to_1k_384''', '''ade20k_deeplabv3''', '''voc_deeplabv3''', ], ) parser.add_argument( '''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
9
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _a ( self : Any ): """simple docstring""" A__ = tempfile.mkdtemp() A__ = BlipImageProcessor() A__ = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-BertModel' ) A__ = BlipProcessor(_snake_case , _snake_case ) processor.save_pretrained(self.tmpdirname ) def _a ( self : List[Any] , **_snake_case : List[str] ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_snake_case ).tokenizer def _a ( self : Dict , **_snake_case : List[Any] ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_snake_case ).image_processor def _a ( self : Union[str, Any] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _a ( self : List[Any] ): """simple docstring""" A__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A__ = [Image.fromarray(np.moveaxis(_snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self : List[Any] ): """simple docstring""" A__ = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) A__ = self.get_image_processor(do_normalize=_snake_case , padding_value=1.0 ) A__ = BlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_snake_case , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _snake_case ) def _a ( self : List[Any] ): """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = BlipProcessor(tokenizer=_snake_case , image_processor=_snake_case ) A__ = self.prepare_image_inputs() A__ = image_processor(_snake_case , return_tensors='np' ) A__ = processor(images=_snake_case , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self : List[str] ): """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = BlipProcessor(tokenizer=_snake_case , image_processor=_snake_case ) A__ = 'lower newer' A__ = processor(text=_snake_case ) A__ = tokenizer(_snake_case , return_token_type_ids=_snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self : Optional[int] ): """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = BlipProcessor(tokenizer=_snake_case , image_processor=_snake_case ) A__ = 'lower newer' A__ = self.prepare_image_inputs() A__ = processor(text=_snake_case , images=_snake_case ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(_snake_case ): processor() def _a ( self : List[Any] ): """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = BlipProcessor(tokenizer=_snake_case , image_processor=_snake_case ) A__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A__ = processor.batch_decode(_snake_case ) A__ = tokenizer.batch_decode(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) def _a ( self : Optional[int] ): """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = BlipProcessor(tokenizer=_snake_case , image_processor=_snake_case ) A__ = 'lower newer' A__ = self.prepare_image_inputs() A__ = processor(text=_snake_case , images=_snake_case ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
9
import argparse from collections import defaultdict import yaml SCREAMING_SNAKE_CASE__ = '''docs/source/en/_toctree.yml''' def A ( __UpperCamelCase ) -> Optional[Any]: A__ = defaultdict(__UpperCamelCase ) for doc in model_doc: counts[doc["local"]] += 1 A__ = [key for key, value in counts.items() if value > 1] A__ = [] for duplicate_key in duplicates: A__ = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(__UpperCamelCase ) > 1: raise ValueError( f'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(__UpperCamelCase , key=lambda __UpperCamelCase : s["title"].lower() ) def A ( __UpperCamelCase=False ) -> str: with open(__UpperCamelCase , encoding='utf-8' ) as f: A__ = yaml.safe_load(f.read() ) # Get to the API doc A__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 A__ = content[api_idx]['sections'] # Then to the model doc A__ = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 A__ = api_doc[model_idx]['sections'] A__ = [(idx, section) for idx, section in enumerate(__UpperCamelCase ) if 'sections' in section] A__ = False for idx, modality_doc in modalities_docs: A__ = modality_doc['sections'] A__ = clean_model_doc_toc(__UpperCamelCase ) if old_modality_doc != new_modality_doc: A__ = True if overwrite: A__ = new_modality_doc if diff: if overwrite: A__ = model_doc A__ = api_doc with open(__UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(__UpperCamelCase , allow_unicode=__UpperCamelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') SCREAMING_SNAKE_CASE__ = parser.parse_args() check_model_doc(args.fix_and_overwrite)
9
1
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem SCREAMING_SNAKE_CASE__ = importlib.util.find_spec('''s3fs''') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 SCREAMING_SNAKE_CASE__ = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f'A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def A ( __UpperCamelCase ) -> str: if "://" in dataset_path: A__ = dataset_path.split('://' )[1] return dataset_path def A ( __UpperCamelCase ) -> bool: if fs is not None and fs.protocol != "file": return True else: return False def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: A__ = not is_remote_filesystem(__UpperCamelCase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(__UpperCamelCase ) , fs._strip_protocol(__UpperCamelCase ) ) else: fs.mv(__UpperCamelCase , __UpperCamelCase , recursive=__UpperCamelCase ) def A ( ) -> None: if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: A__ = None A__ = None A__ = threading.Lock()
9
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def _a ( self : List[str] ): """simple docstring""" A__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_snake_case , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(_snake_case , 'num_attention_heads' ) ) self.parent.assertTrue(hasattr(_snake_case , 'num_encoder_blocks' ) ) class __lowerCAmelCase : """simple docstring""" def __init__( self : Any , _snake_case : str , _snake_case : Union[str, Any]=13 , _snake_case : Any=64 , _snake_case : Optional[Any]=3 , _snake_case : Dict=4 , _snake_case : Tuple=[2, 2, 2, 2] , _snake_case : str=[8, 4, 2, 1] , _snake_case : Union[str, Any]=[16, 32, 64, 1_28] , _snake_case : int=[1, 4, 8, 16] , _snake_case : List[str]=[1, 2, 4, 8] , _snake_case : int=True , _snake_case : int=True , _snake_case : Union[str, Any]="gelu" , _snake_case : Optional[int]=0.1 , _snake_case : Tuple=0.1 , _snake_case : Dict=0.02 , _snake_case : Tuple=3 , _snake_case : int=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = num_encoder_blocks A__ = sr_ratios A__ = depths A__ = hidden_sizes A__ = downsampling_rates A__ = num_attention_heads A__ = is_training A__ = use_labels A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = num_labels A__ = scope def _a ( self : int ): """simple docstring""" A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A__ = self.get_config() return config, pixel_values, labels def _a ( self : int ): """simple docstring""" return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _a ( self : int , _snake_case : Optional[Any] , _snake_case : int , _snake_case : Any ): """simple docstring""" A__ = SegformerModel(config=_snake_case ) model.to(_snake_case ) model.eval() A__ = model(_snake_case ) A__ = A__ = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def _a ( self : Union[str, Any] , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : Dict ): """simple docstring""" A__ = self.num_labels A__ = SegformerForSemanticSegmentation(_snake_case ) model.to(_snake_case ) model.eval() A__ = model(_snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) A__ = model(_snake_case , labels=_snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def _a ( self : List[str] , _snake_case : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : List[str] ): """simple docstring""" A__ = 1 A__ = SegformerForSemanticSegmentation(config=_snake_case ) model.to(_snake_case ) model.eval() A__ = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(_snake_case ) A__ = model(_snake_case , labels=_snake_case ) self.parent.assertGreater(result.loss , 0.0 ) def _a ( self : List[Any] ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Optional[int] = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) A__ : Union[str, Any] = ( { "feature-extraction": SegformerModel, "image-classification": SegformerForImageClassification, "image-segmentation": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) A__ : Optional[Any] = True A__ : str = False A__ : Tuple = False A__ : Dict = False def _a ( self : Union[str, Any] ): """simple docstring""" A__ = SegformerModelTester(self ) A__ = SegformerConfigTester(self , config_class=_snake_case ) def _a ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Optional[Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def _a ( self : List[Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*_snake_case ) def _a ( self : Tuple ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*_snake_case ) @unittest.skip('SegFormer does not use inputs_embeds' ) def _a ( self : List[Any] ): """simple docstring""" pass @unittest.skip('SegFormer does not have get_input_embeddings method and get_output_embeddings methods' ) def _a ( self : Dict ): """simple docstring""" pass def _a ( self : Dict ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(_snake_case ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _snake_case ) def _a ( self : Dict ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True for model_class in self.all_model_classes: A__ = True A__ = False A__ = True A__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) A__ = outputs.attentions A__ = sum(self.model_tester.depths ) self.assertEqual(len(_snake_case ) , _snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) A__ = outputs.attentions self.assertEqual(len(_snake_case ) , _snake_case ) # verify the first attentions (first block, first layer) A__ = (self.model_tester.image_size // 4) ** 2 A__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) A__ = (self.model_tester.image_size // 32) ** 2 A__ = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) A__ = len(_snake_case ) # Check attention is always last and order is fine A__ = True A__ = True A__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) self.assertEqual(out_len + 1 , len(_snake_case ) ) A__ = outputs.attentions self.assertEqual(len(_snake_case ) , _snake_case ) # verify the first attentions (first block, first layer) A__ = (self.model_tester.image_size // 4) ** 2 A__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def _a ( self : Union[str, Any] ): """simple docstring""" def check_hidden_states_output(_snake_case : Dict , _snake_case : int , _snake_case : List[Any] ): A__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) A__ = outputs.hidden_states A__ = self.model_tester.num_encoder_blocks self.assertEqual(len(_snake_case ) , _snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) def _a ( self : Tuple ): """simple docstring""" if not self.model_tester.is_training: return A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True for model_class in self.all_model_classes: if model_class in get_values(_snake_case ): continue A__ = model_class(_snake_case ) model.to(_snake_case ) model.train() A__ = self._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) A__ = model(**_snake_case ).loss loss.backward() @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _a ( self : Optional[Any] ): """simple docstring""" pass @slow def _a ( self : Tuple ): """simple docstring""" for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = SegformerModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def A ( ) -> str: A__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _a ( self : Dict ): """simple docstring""" A__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_snake_case , align=_snake_case , do_random_crop=_snake_case ) A__ = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( _snake_case ) A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='pt' ) A__ = encoded_inputs.pixel_values.to(_snake_case ) with torch.no_grad(): A__ = model(_snake_case ) A__ = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , _snake_case ) A__ = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _snake_case , atol=1E-4 ) ) @slow def _a ( self : Optional[Any] ): """simple docstring""" A__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_snake_case , align=_snake_case , do_random_crop=_snake_case ) A__ = SegformerForSemanticSegmentation.from_pretrained( 'nvidia/segformer-b1-finetuned-cityscapes-1024-1024' ).to(_snake_case ) A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='pt' ) A__ = encoded_inputs.pixel_values.to(_snake_case ) with torch.no_grad(): A__ = model(_snake_case ) A__ = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , _snake_case ) A__ = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _snake_case , atol=1E-1 ) ) @slow def _a ( self : Any ): """simple docstring""" A__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_snake_case , align=_snake_case , do_random_crop=_snake_case ) A__ = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( _snake_case ) A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='pt' ) A__ = encoded_inputs.pixel_values.to(_snake_case ) with torch.no_grad(): A__ = model(_snake_case ) A__ = outputs.logits.detach().cpu() A__ = image_processor.post_process_semantic_segmentation(outputs=_snake_case , target_sizes=[(5_00, 3_00)] ) A__ = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , _snake_case ) A__ = image_processor.post_process_semantic_segmentation(outputs=_snake_case ) A__ = torch.Size((1_28, 1_28) ) self.assertEqual(segmentation[0].shape , _snake_case )
9
1
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {'''vocab_file''': '''vocab.txt'''} SCREAMING_SNAKE_CASE__ = { '''vocab_file''': { '''facebook/esm2_t6_8M_UR50D''': '''https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt''', '''facebook/esm2_t12_35M_UR50D''': '''https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt''', }, } SCREAMING_SNAKE_CASE__ = { '''facebook/esm2_t6_8M_UR50D''': 1_0_2_4, '''facebook/esm2_t12_35M_UR50D''': 1_0_2_4, } def A ( __UpperCamelCase ) -> Optional[Any]: with open(__UpperCamelCase , 'r' ) as f: A__ = f.read().splitlines() return [l.strip() for l in lines] class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : List[str] = VOCAB_FILES_NAMES A__ : Dict = PRETRAINED_VOCAB_FILES_MAP A__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[int] = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : Tuple="<unk>" , _snake_case : Union[str, Any]="<cls>" , _snake_case : List[str]="<pad>" , _snake_case : Optional[Any]="<mask>" , _snake_case : Optional[Any]="<eos>" , **_snake_case : List[Any] , ): """simple docstring""" super().__init__(**_snake_case ) A__ = load_vocab_file(_snake_case ) A__ = dict(enumerate(self.all_tokens ) ) A__ = {tok: ind for ind, tok in enumerate(self.all_tokens )} A__ = unk_token A__ = cls_token A__ = pad_token A__ = mask_token A__ = eos_token A__ = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def _a ( self : Optional[Any] , _snake_case : int ): """simple docstring""" return self._id_to_token.get(_snake_case , self.unk_token ) def _a ( self : List[Any] , _snake_case : str ): """simple docstring""" return self._token_to_id.get(_snake_case , self._token_to_id.get(self.unk_token ) ) def _a ( self : str , _snake_case : List[Any] , **_snake_case : Optional[Any] ): """simple docstring""" return text.split() def _a ( self : Any , _snake_case : str=False ): """simple docstring""" return len(self._id_to_token ) def _a ( self : Union[str, Any] ): """simple docstring""" return {token: i for i, token in enumerate(self.all_tokens )} def _a ( self : Optional[Any] , _snake_case : str ): """simple docstring""" return self._token_to_id.get(_snake_case , self._token_to_id.get(self.unk_token ) ) def _a ( self : Union[str, Any] , _snake_case : int ): """simple docstring""" return self._id_to_token.get(_snake_case , self.unk_token ) def _a ( self : Tuple , _snake_case : List[int] , _snake_case : Optional[List[int]] = None ): """simple docstring""" A__ = [self.cls_token_id] A__ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def _a ( self : List[Any] , _snake_case : List , _snake_case : Optional[List] = None , _snake_case : bool = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] A__ = [1] + ([0] * len(_snake_case )) + [1] if token_ids_a is not None: mask += [0] * len(_snake_case ) + [1] return mask def _a ( self : Optional[int] , _snake_case : Union[str, Any] , _snake_case : int ): """simple docstring""" A__ = os.path.join(_snake_case , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' ) with open(_snake_case , 'w' ) as f: f.write('\n'.join(self.all_tokens ) ) return (vocab_file,) @property def _a ( self : Union[str, Any] ): """simple docstring""" return self.get_vocab_size(with_added_tokens=_snake_case ) def _a ( self : Tuple , _snake_case : Union[List[str], List[AddedToken]] , _snake_case : bool = False ): """simple docstring""" return super()._add_tokens(_snake_case , special_tokens=_snake_case )
9
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A ( __UpperCamelCase ) -> Optional[int]: A__ = filter(lambda __UpperCamelCase : p.requires_grad , model.parameters() ) A__ = sum([np.prod(p.size() ) for p in model_parameters] ) return params SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) def A ( __UpperCamelCase , __UpperCamelCase ) -> Dict: if metric == "rouge2": A__ = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": A__ = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": A__ = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": A__ = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ' function.' ) A__ = ModelCheckpoint( dirpath=__UpperCamelCase , filename=__UpperCamelCase , monitor=f'''val_{metric}''' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def A ( __UpperCamelCase , __UpperCamelCase ) -> Any: return EarlyStopping( monitor=f'''val_{metric}''' , mode='min' if 'loss' in metric else 'max' , patience=__UpperCamelCase , verbose=__UpperCamelCase , ) class __lowerCAmelCase ( pl.Callback ): """simple docstring""" def _a ( self : Dict , _snake_case : Union[str, Any] , _snake_case : str ): """simple docstring""" A__ = {F'''lr_group_{i}''': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_snake_case ) @rank_zero_only def _a ( self : Union[str, Any] , _snake_case : pl.Trainer , _snake_case : pl.LightningModule , _snake_case : str , _snake_case : Optional[Any]=True ): """simple docstring""" logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) A__ = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results A__ = Path(pl_module.hparams.output_dir ) if type_path == "test": A__ = od / 'test_results.txt' A__ = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. A__ = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' A__ = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=_snake_case ) generations_file.parent.mkdir(exist_ok=_snake_case ) with open(_snake_case , 'a+' ) as writer: for key in sorted(_snake_case ): if key in ["log", "progress_bar", "preds"]: continue A__ = metrics[key] if isinstance(_snake_case , torch.Tensor ): A__ = val.item() A__ = F'''{key}: {val:.6f}\n''' writer.write(_snake_case ) if not save_generations: return if "preds" in metrics: A__ = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(_snake_case ) @rank_zero_only def _a ( self : Dict , _snake_case : List[str] , _snake_case : List[Any] ): """simple docstring""" try: A__ = pl_module.model.model.num_parameters() except AttributeError: A__ = pl_module.model.num_parameters() A__ = count_trainable_parameters(_snake_case ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def _a ( self : int , _snake_case : pl.Trainer , _snake_case : pl.LightningModule ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_snake_case , _snake_case , 'test' ) @rank_zero_only def _a ( self : Optional[Any] , _snake_case : pl.Trainer , _snake_case : List[Any] ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
9
1
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets SCREAMING_SNAKE_CASE__ = ''' @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' SCREAMING_SNAKE_CASE__ = '''\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. ''' SCREAMING_SNAKE_CASE__ = ''' Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=["About 95 species are currently accepted ."] >>> predictions=["About 95 you now get in ."] >>> references=[["About 95 species are currently known ."]] >>> wiki_split = datasets.load_metric("wiki_split") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0} ''' def A ( __UpperCamelCase ) -> str: def remove_articles(__UpperCamelCase ): A__ = re.compile(r'\b(a|an|the)\b' , re.UNICODE ) return re.sub(__UpperCamelCase , ' ' , __UpperCamelCase ) def white_space_fix(__UpperCamelCase ): return " ".join(text.split() ) def remove_punc(__UpperCamelCase ): A__ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__UpperCamelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__UpperCamelCase ) ) ) ) def A ( __UpperCamelCase , __UpperCamelCase ) -> List[Any]: return int(normalize_answer(__UpperCamelCase ) == normalize_answer(__UpperCamelCase ) ) def A ( __UpperCamelCase , __UpperCamelCase ) -> Tuple: A__ = [any(compute_exact(__UpperCamelCase , __UpperCamelCase ) for ref in refs ) for pred, refs in zip(__UpperCamelCase , __UpperCamelCase )] return (sum(__UpperCamelCase ) / len(__UpperCamelCase )) * 100 def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: A__ = [rgram for rgrams in rgramslist for rgram in rgrams] A__ = Counter(__UpperCamelCase ) A__ = Counter(__UpperCamelCase ) A__ = Counter() for sgram, scount in sgramcounter.items(): A__ = scount * numref A__ = Counter(__UpperCamelCase ) A__ = Counter() for cgram, ccount in cgramcounter.items(): A__ = ccount * numref # KEEP A__ = sgramcounter_rep & cgramcounter_rep A__ = keepgramcounter_rep & rgramcounter A__ = sgramcounter_rep & rgramcounter A__ = 0 A__ = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. A__ = 1 A__ = 1 if len(__UpperCamelCase ) > 0: A__ = keeptmpscorea / len(__UpperCamelCase ) if len(__UpperCamelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) A__ = keeptmpscorea / sum(keepgramcounterall_rep.values() ) A__ = 0 if keepscore_precision > 0 or keepscore_recall > 0: A__ = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION A__ = sgramcounter_rep - cgramcounter_rep A__ = delgramcounter_rep - rgramcounter A__ = sgramcounter_rep - rgramcounter A__ = 0 A__ = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. A__ = 1 if len(__UpperCamelCase ) > 0: A__ = deltmpscorea / len(__UpperCamelCase ) # ADDITION A__ = set(__UpperCamelCase ) - set(__UpperCamelCase ) A__ = set(__UpperCamelCase ) & set(__UpperCamelCase ) A__ = set(__UpperCamelCase ) - set(__UpperCamelCase ) A__ = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. A__ = 1 A__ = 1 if len(__UpperCamelCase ) > 0: A__ = addtmpscore / len(__UpperCamelCase ) if len(__UpperCamelCase ) > 0: A__ = addtmpscore / len(__UpperCamelCase ) A__ = 0 if addscore_precision > 0 or addscore_recall > 0: A__ = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Tuple: A__ = len(__UpperCamelCase ) A__ = ssent.split(' ' ) A__ = csent.split(' ' ) A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] for rsent in rsents: A__ = rsent.split(' ' ) A__ = [] A__ = [] A__ = [] ragramslist.append(__UpperCamelCase ) for i in range(0 , len(__UpperCamelCase ) - 1 ): if i < len(__UpperCamelCase ) - 1: A__ = ragrams[i] + ' ' + ragrams[i + 1] ragrams.append(__UpperCamelCase ) if i < len(__UpperCamelCase ) - 2: A__ = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] ragrams.append(__UpperCamelCase ) if i < len(__UpperCamelCase ) - 3: A__ = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] + ' ' + ragrams[i + 3] ragrams.append(__UpperCamelCase ) ragramslist.append(__UpperCamelCase ) ragramslist.append(__UpperCamelCase ) ragramslist.append(__UpperCamelCase ) for i in range(0 , len(__UpperCamelCase ) - 1 ): if i < len(__UpperCamelCase ) - 1: A__ = sagrams[i] + ' ' + sagrams[i + 1] sagrams.append(__UpperCamelCase ) if i < len(__UpperCamelCase ) - 2: A__ = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] sagrams.append(__UpperCamelCase ) if i < len(__UpperCamelCase ) - 3: A__ = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] + ' ' + sagrams[i + 3] sagrams.append(__UpperCamelCase ) for i in range(0 , len(__UpperCamelCase ) - 1 ): if i < len(__UpperCamelCase ) - 1: A__ = cagrams[i] + ' ' + cagrams[i + 1] cagrams.append(__UpperCamelCase ) if i < len(__UpperCamelCase ) - 2: A__ = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] cagrams.append(__UpperCamelCase ) if i < len(__UpperCamelCase ) - 3: A__ = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] + ' ' + cagrams[i + 3] cagrams.append(__UpperCamelCase ) ((A__) , (A__) , (A__)) = SARIngram(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ((A__) , (A__) , (A__)) = SARIngram(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ((A__) , (A__) , (A__)) = SARIngram(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ((A__) , (A__) , (A__)) = SARIngram(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) A__ = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 A__ = sum([delascore, delascore, delascore, delascore] ) / 4 A__ = sum([addascore, addascore, addascore, addascore] ) / 4 A__ = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def A ( __UpperCamelCase , __UpperCamelCase = True , __UpperCamelCase = "13a" , __UpperCamelCase = True ) -> Dict: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: A__ = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: A__ = sacrebleu.metrics.bleu._get_tokenizer(__UpperCamelCase )()(__UpperCamelCase ) else: A__ = sacrebleu.TOKENIZERS[tokenizer]()(__UpperCamelCase ) elif tokenizer == "moses": A__ = sacremoses.MosesTokenizer().tokenize(__UpperCamelCase , return_str=__UpperCamelCase , escape=__UpperCamelCase ) elif tokenizer == "penn": A__ = sacremoses.MosesTokenizer().penn_tokenize(__UpperCamelCase , return_str=__UpperCamelCase ) else: A__ = sentence if not return_str: A__ = normalized_sent.split() return normalized_sent def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[str]: if not (len(__UpperCamelCase ) == len(__UpperCamelCase ) == len(__UpperCamelCase )): raise ValueError('Sources length must match predictions and references lengths.' ) A__ = 0 for src, pred, refs in zip(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): sari_score += SARIsent(normalize(__UpperCamelCase ) , normalize(__UpperCamelCase ) , [normalize(__UpperCamelCase ) for sent in refs] ) A__ = sari_score / len(__UpperCamelCase ) return 100 * sari_score def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase="exp" , __UpperCamelCase=None , __UpperCamelCase=False , __UpperCamelCase=False , __UpperCamelCase=False , ) -> Union[str, Any]: A__ = len(references[0] ) if any(len(__UpperCamelCase ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) A__ = [[refs[i] for refs in references] for i in range(__UpperCamelCase )] A__ = sacrebleu.corpus_bleu( __UpperCamelCase , __UpperCamelCase , smooth_method=__UpperCamelCase , smooth_value=__UpperCamelCase , force=__UpperCamelCase , lowercase=__UpperCamelCase , use_effective_order=__UpperCamelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): """simple docstring""" def _a ( self : List[Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=[ 'https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py', 'https://github.com/cocoxu/simplification/blob/master/SARI.py', 'https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py', 'https://github.com/mjpost/sacreBLEU', ] , reference_urls=[ 'https://www.aclweb.org/anthology/Q16-1029.pdf', 'https://github.com/mjpost/sacreBLEU', 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def _a ( self : Any , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : Optional[Any] ): """simple docstring""" A__ = {} result.update({'sari': compute_sari(sources=_snake_case , predictions=_snake_case , references=_snake_case )} ) result.update({'sacrebleu': compute_sacrebleu(predictions=_snake_case , references=_snake_case )} ) result.update({'exact': compute_em(predictions=_snake_case , references=_snake_case )} ) return result
9
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Optional[Any] = ["input_values", "attention_mask"] def __init__( self : str , _snake_case : int = 1 , _snake_case : int = 1_60_00 , _snake_case : float = 0.0 , _snake_case : bool = False , _snake_case : int = 80 , _snake_case : int = 16 , _snake_case : int = 64 , _snake_case : str = "hann_window" , _snake_case : float = 1.0 , _snake_case : float = 80 , _snake_case : float = 76_00 , _snake_case : float = 1E-10 , _snake_case : int = 2 , _snake_case : bool = True , **_snake_case : Union[str, Any] , ): """simple docstring""" super().__init__(feature_size=_snake_case , sampling_rate=_snake_case , padding_value=_snake_case , **_snake_case ) A__ = do_normalize A__ = return_attention_mask A__ = num_mel_bins A__ = hop_length A__ = win_length A__ = win_function A__ = frame_signal_scale A__ = fmin A__ = fmax A__ = mel_floor A__ = reduction_factor A__ = win_length * sampling_rate // 10_00 A__ = hop_length * sampling_rate // 10_00 A__ = optimal_fft_length(self.sample_size ) A__ = (self.n_fft // 2) + 1 A__ = window_function(window_length=self.sample_size , name=self.win_function , periodic=_snake_case ) A__ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , _snake_case , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , _snake_case , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _a ( _snake_case : List[np.ndarray] , _snake_case : List[np.ndarray] , _snake_case : float = 0.0 ): """simple docstring""" if attention_mask is not None: A__ = np.array(_snake_case , np.intaa ) A__ = [] for vector, length in zip(_snake_case , attention_mask.sum(-1 ) ): A__ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: A__ = padding_value normed_input_values.append(_snake_case ) else: A__ = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def _a ( self : Tuple , _snake_case : np.ndarray , ): """simple docstring""" A__ = spectrogram( _snake_case , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self : List[str] , _snake_case : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _snake_case : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Optional[int] = None , _snake_case : bool = False , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : Optional[int] = None , **_snake_case : Tuple , ): """simple docstring""" if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: A__ = self._process_audio( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , **_snake_case , ) else: A__ = None if audio_target is not None: A__ = self._process_audio( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , **_snake_case , ) if inputs is None: return inputs_target else: A__ = inputs_target['input_values'] A__ = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def _a ( self : Tuple , _snake_case : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _snake_case : bool = False , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Optional[int] = None , _snake_case : bool = False , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[Union[str, TensorType]] = None , **_snake_case : Tuple , ): """simple docstring""" A__ = isinstance(_snake_case , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) A__ = is_batched_numpy or ( isinstance(_snake_case , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A__ = [np.asarray(_snake_case , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_snake_case , np.ndarray ): A__ = np.asarray(_snake_case , dtype=np.floataa ) elif isinstance(_snake_case , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): A__ = speech.astype(np.floataa ) # always return batch if not is_batched: A__ = [speech] # needed to make pad() work on spectrogram inputs A__ = self.feature_size # convert into correct format for padding if is_target: A__ = [self._extract_mel_features(_snake_case ) for waveform in speech] A__ = BatchFeature({'input_values': features} ) A__ = self.num_mel_bins else: A__ = BatchFeature({'input_values': speech} ) A__ = self.pad( _snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , **_snake_case , ) A__ = feature_size_hack # convert input values to correct format A__ = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray ): A__ = [np.asarray(_snake_case , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_snake_case , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): A__ = [array.astype(np.floataa ) for array in input_values] elif isinstance(_snake_case , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): A__ = input_values.astype(np.floataa ) # convert attention_mask to correct format A__ = padded_inputs.get('attention_mask' ) if attention_mask is not None: A__ = [np.asarray(_snake_case , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: A__ = ( attention_mask if self._get_padding_strategies(_snake_case , max_length=_snake_case ) is not PaddingStrategy.DO_NOT_PAD else None ) A__ = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=_snake_case , padding_value=self.padding_value ) if return_tensors is not None: A__ = padded_inputs.convert_to_tensors(_snake_case ) return padded_inputs def _a ( self : Optional[Any] ): """simple docstring""" A__ = super().to_dict() # Don't serialize these as they are derived from the other properties. A__ = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
9
1
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Optional[Any] = "Speech2TextFeatureExtractor" A__ : Optional[Any] = "Speech2TextTokenizer" def __init__( self : Tuple , _snake_case : List[Any] , _snake_case : List[Any] ): """simple docstring""" super().__init__(_snake_case , _snake_case ) A__ = self.feature_extractor A__ = False def __call__( self : Optional[int] , *_snake_case : Any , **_snake_case : int ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*_snake_case , **_snake_case ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) A__ = kwargs.pop('raw_speech' ) else: A__ = kwargs.pop('audio' , _snake_case ) A__ = kwargs.pop('sampling_rate' , _snake_case ) A__ = kwargs.pop('text' , _snake_case ) if len(_snake_case ) > 0: A__ = args[0] A__ = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: A__ = self.feature_extractor(_snake_case , *_snake_case , sampling_rate=_snake_case , **_snake_case ) if text is not None: A__ = self.tokenizer(_snake_case , **_snake_case ) if text is None: return inputs elif audio is None: return encodings else: A__ = encodings['input_ids'] return inputs def _a ( self : Optional[Any] , *_snake_case : Dict , **_snake_case : Union[str, Any] ): """simple docstring""" return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def _a ( self : Optional[Any] , *_snake_case : Optional[Any] , **_snake_case : List[str] ): """simple docstring""" return self.tokenizer.decode(*_snake_case , **_snake_case ) @contextmanager def _a ( self : Any ): """simple docstring""" warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) A__ = True A__ = self.tokenizer yield A__ = self.feature_extractor A__ = False
9
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: A__ = OmegaConf.load(__UpperCamelCase ) A__ = torch.load(__UpperCamelCase , map_location='cpu' )['model'] A__ = list(state_dict.keys() ) # extract state_dict for VQVAE A__ = {} A__ = 'first_stage_model.' for key in keys: if key.startswith(__UpperCamelCase ): A__ = state_dict[key] # extract state_dict for UNetLDM A__ = {} A__ = 'model.diffusion_model.' for key in keys: if key.startswith(__UpperCamelCase ): A__ = state_dict[key] A__ = config.model.params.first_stage_config.params A__ = config.model.params.unet_config.params A__ = VQModel(**__UpperCamelCase ).eval() vqvae.load_state_dict(__UpperCamelCase ) A__ = UNetLDMModel(**__UpperCamelCase ).eval() unet.load_state_dict(__UpperCamelCase ) A__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__UpperCamelCase , ) A__ = LDMPipeline(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) pipeline.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
9
1
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml SCREAMING_SNAKE_CASE__ = NewType('''DataClass''', Any) SCREAMING_SNAKE_CASE__ = NewType('''DataClassType''', Any) def A ( __UpperCamelCase ) -> List[Any]: if isinstance(__UpperCamelCase , __UpperCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def A ( __UpperCamelCase ) -> Callable[[str], Any]: A__ = {str(__UpperCamelCase ): choice for choice in choices} return lambda __UpperCamelCase : str_to_choice.get(__UpperCamelCase , __UpperCamelCase ) def A ( *, __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = dataclasses.MISSING , __UpperCamelCase = dataclasses.MISSING , __UpperCamelCase = None , **__UpperCamelCase , ) -> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls A__ = {} if aliases is not None: A__ = aliases if help is not None: A__ = help return dataclasses.field(metadata=__UpperCamelCase , default=__UpperCamelCase , default_factory=__UpperCamelCase , **__UpperCamelCase ) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Iterable[DataClassType] def __init__( self : Optional[int] , _snake_case : Union[DataClassType, Iterable[DataClassType]] , **_snake_case : Tuple ): """simple docstring""" if "formatter_class" not in kwargs: A__ = ArgumentDefaultsHelpFormatter super().__init__(**_snake_case ) if dataclasses.is_dataclass(_snake_case ): A__ = [dataclass_types] A__ = list(_snake_case ) for dtype in self.dataclass_types: self._add_dataclass_arguments(_snake_case ) @staticmethod def _a ( _snake_case : ArgumentParser , _snake_case : dataclasses.Field ): """simple docstring""" A__ = F'''--{field.name}''' A__ = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , _snake_case ): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default' ) A__ = kwargs.pop('aliases' , [] ) if isinstance(_snake_case , _snake_case ): A__ = [aliases] A__ = getattr(field.type , '__origin__' , field.type ) if origin_type is Union or (hasattr(_snake_case , 'UnionType' ) and isinstance(_snake_case , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(_snake_case ) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' F''' Problem encountered in field \'{field.name}\'.''' ) if type(_snake_case ) not in field.type.__args__: # filter `str` in Union A__ = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] A__ = getattr(field.type , '__origin__' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) A__ = ( field.type.__args__[0] if isinstance(_snake_case , field.type.__args__[1] ) else field.type.__args__[1] ) A__ = getattr(field.type , '__origin__' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) A__ = {} if origin_type is Literal or (isinstance(field.type , _snake_case ) and issubclass(field.type , _snake_case )): if origin_type is Literal: A__ = field.type.__args__ else: A__ = [x.value for x in field.type] A__ = make_choice_type_function(kwargs['choices'] ) if field.default is not dataclasses.MISSING: A__ = field.default else: A__ = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument A__ = copy(_snake_case ) # Hack because type=bool in argparse does not behave as we want. A__ = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. A__ = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way A__ = default # This tells argparse we accept 0 or 1 value after --field_name A__ = '?' # This is the value that will get picked if we do --field_name (without value) A__ = True elif isclass(_snake_case ) and issubclass(_snake_case , _snake_case ): A__ = field.type.__args__[0] A__ = '+' if field.default_factory is not dataclasses.MISSING: A__ = field.default_factory() elif field.default is dataclasses.MISSING: A__ = True else: A__ = field.type if field.default is not dataclasses.MISSING: A__ = field.default elif field.default_factory is not dataclasses.MISSING: A__ = field.default_factory() else: A__ = True parser.add_argument(_snake_case , *_snake_case , **_snake_case ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): A__ = False parser.add_argument(F'''--no_{field.name}''' , action='store_false' , dest=field.name , **_snake_case ) def _a ( self : Any , _snake_case : DataClassType ): """simple docstring""" if hasattr(_snake_case , '_argument_group_name' ): A__ = self.add_argument_group(dtype._argument_group_name ) else: A__ = self try: A__ = get_type_hints(_snake_case ) except NameError: raise RuntimeError( F'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_snake_case ): A__ = '.'.join(map(_snake_case , sys.version_info[:3] ) ) raise RuntimeError( F'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.' ) from ex raise for field in dataclasses.fields(_snake_case ): if not field.init: continue A__ = type_hints[field.name] self._parse_dataclass_field(_snake_case , _snake_case ) def _a ( self : Optional[int] , _snake_case : Optional[Any]=None , _snake_case : Any=False , _snake_case : int=True , _snake_case : List[Any]=None , _snake_case : int=None , ): """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): A__ = [] if args_filename: args_files.append(Path(_snake_case ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('.args' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values A__ = ArgumentParser() args_file_parser.add_argument(_snake_case , type=_snake_case , action='append' ) # Use only remaining args for further parsing (remove the args_file_flag) A__ , A__ = args_file_parser.parse_known_args(args=_snake_case ) A__ = vars(_snake_case ).get(args_file_flag.lstrip('-' ) , _snake_case ) if cmd_args_file_paths: args_files.extend([Path(_snake_case ) for p in cmd_args_file_paths] ) A__ = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last A__ = file_args + args if args is not None else file_args + sys.argv[1:] A__ , A__ = self.parse_known_args(args=_snake_case ) A__ = [] for dtype in self.dataclass_types: A__ = {f.name for f in dataclasses.fields(_snake_case ) if f.init} A__ = {k: v for k, v in vars(_snake_case ).items() if k in keys} for k in keys: delattr(_snake_case , _snake_case ) A__ = dtype(**_snake_case ) outputs.append(_snake_case ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(_snake_case ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def _a ( self : Dict , _snake_case : Dict[str, Any] , _snake_case : bool = False ): """simple docstring""" A__ = set(args.keys() ) A__ = [] for dtype in self.dataclass_types: A__ = {f.name for f in dataclasses.fields(_snake_case ) if f.init} A__ = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) A__ = dtype(**_snake_case ) outputs.append(_snake_case ) if not allow_extra_keys and unused_keys: raise ValueError(F'''Some keys are not used by the HfArgumentParser: {sorted(_snake_case )}''' ) return tuple(_snake_case ) def _a ( self : Dict , _snake_case : str , _snake_case : bool = False ): """simple docstring""" with open(Path(_snake_case ) , encoding='utf-8' ) as open_json_file: A__ = json.loads(open_json_file.read() ) A__ = self.parse_dict(_snake_case , allow_extra_keys=_snake_case ) return tuple(_snake_case ) def _a ( self : Tuple , _snake_case : str , _snake_case : bool = False ): """simple docstring""" A__ = self.parse_dict(yaml.safe_load(Path(_snake_case ).read_text() ) , allow_extra_keys=_snake_case ) return tuple(_snake_case )
9
import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def A ( __UpperCamelCase ) -> Union[str, Any]: if hor == 128: A__ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A__ = (32, 128, 256) A__ = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: A__ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A__ = (32, 64, 128, 256) A__ = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') A__ = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) A__ = model.state_dict() A__ = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 65_536, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } A__ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A__ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A__ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() , f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , 'w' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) def A ( ) -> List[str]: A__ = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 128, 256), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 65_536, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } A__ = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) A__ = model A__ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A__ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A__ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() , 'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' , 'w' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": unet(3_2) # unet(128) value_function()
9
1
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Optional[Any] = ["input_values", "attention_mask"] def __init__( self : str , _snake_case : int = 1 , _snake_case : int = 1_60_00 , _snake_case : float = 0.0 , _snake_case : bool = False , _snake_case : int = 80 , _snake_case : int = 16 , _snake_case : int = 64 , _snake_case : str = "hann_window" , _snake_case : float = 1.0 , _snake_case : float = 80 , _snake_case : float = 76_00 , _snake_case : float = 1E-10 , _snake_case : int = 2 , _snake_case : bool = True , **_snake_case : Union[str, Any] , ): """simple docstring""" super().__init__(feature_size=_snake_case , sampling_rate=_snake_case , padding_value=_snake_case , **_snake_case ) A__ = do_normalize A__ = return_attention_mask A__ = num_mel_bins A__ = hop_length A__ = win_length A__ = win_function A__ = frame_signal_scale A__ = fmin A__ = fmax A__ = mel_floor A__ = reduction_factor A__ = win_length * sampling_rate // 10_00 A__ = hop_length * sampling_rate // 10_00 A__ = optimal_fft_length(self.sample_size ) A__ = (self.n_fft // 2) + 1 A__ = window_function(window_length=self.sample_size , name=self.win_function , periodic=_snake_case ) A__ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , _snake_case , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , _snake_case , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _a ( _snake_case : List[np.ndarray] , _snake_case : List[np.ndarray] , _snake_case : float = 0.0 ): """simple docstring""" if attention_mask is not None: A__ = np.array(_snake_case , np.intaa ) A__ = [] for vector, length in zip(_snake_case , attention_mask.sum(-1 ) ): A__ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: A__ = padding_value normed_input_values.append(_snake_case ) else: A__ = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def _a ( self : Tuple , _snake_case : np.ndarray , ): """simple docstring""" A__ = spectrogram( _snake_case , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self : List[str] , _snake_case : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _snake_case : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Optional[int] = None , _snake_case : bool = False , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : Optional[int] = None , **_snake_case : Tuple , ): """simple docstring""" if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: A__ = self._process_audio( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , **_snake_case , ) else: A__ = None if audio_target is not None: A__ = self._process_audio( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , **_snake_case , ) if inputs is None: return inputs_target else: A__ = inputs_target['input_values'] A__ = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def _a ( self : Tuple , _snake_case : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _snake_case : bool = False , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Optional[int] = None , _snake_case : bool = False , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[Union[str, TensorType]] = None , **_snake_case : Tuple , ): """simple docstring""" A__ = isinstance(_snake_case , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) A__ = is_batched_numpy or ( isinstance(_snake_case , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A__ = [np.asarray(_snake_case , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_snake_case , np.ndarray ): A__ = np.asarray(_snake_case , dtype=np.floataa ) elif isinstance(_snake_case , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): A__ = speech.astype(np.floataa ) # always return batch if not is_batched: A__ = [speech] # needed to make pad() work on spectrogram inputs A__ = self.feature_size # convert into correct format for padding if is_target: A__ = [self._extract_mel_features(_snake_case ) for waveform in speech] A__ = BatchFeature({'input_values': features} ) A__ = self.num_mel_bins else: A__ = BatchFeature({'input_values': speech} ) A__ = self.pad( _snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , **_snake_case , ) A__ = feature_size_hack # convert input values to correct format A__ = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray ): A__ = [np.asarray(_snake_case , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_snake_case , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): A__ = [array.astype(np.floataa ) for array in input_values] elif isinstance(_snake_case , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): A__ = input_values.astype(np.floataa ) # convert attention_mask to correct format A__ = padded_inputs.get('attention_mask' ) if attention_mask is not None: A__ = [np.asarray(_snake_case , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: A__ = ( attention_mask if self._get_padding_strategies(_snake_case , max_length=_snake_case ) is not PaddingStrategy.DO_NOT_PAD else None ) A__ = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=_snake_case , padding_value=self.padding_value ) if return_tensors is not None: A__ = padded_inputs.convert_to_tensors(_snake_case ) return padded_inputs def _a ( self : Optional[Any] ): """simple docstring""" A__ = super().to_dict() # Don't serialize these as they are derived from the other properties. A__ = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
9
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase : """simple docstring""" def __init__( self : Dict , _snake_case : Union[str, Any] , _snake_case : Optional[Any]=12 , _snake_case : Any=7 , _snake_case : List[str]=True , _snake_case : int=True , _snake_case : int=True , _snake_case : Tuple=99 , _snake_case : List[Any]=32 , _snake_case : Optional[int]=32 , _snake_case : List[str]=2 , _snake_case : List[str]=4 , _snake_case : List[Any]=37 , _snake_case : Union[str, Any]=0.1 , _snake_case : Tuple=0.1 , _snake_case : Dict=5_12 , _snake_case : Union[str, Any]=0.02 , _snake_case : Any=0 , _snake_case : Optional[Any]=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = projection_dim A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = dropout A__ = attention_dropout A__ = max_position_embeddings A__ = initializer_range A__ = scope A__ = bos_token_id def _a ( self : Optional[Any] ): """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: A__ = input_mask.numpy() A__ , A__ = input_mask.shape A__ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_snake_case ): A__ = 1 A__ = 0 A__ = self.get_config() return config, input_ids, tf.convert_to_tensor(_snake_case ) def _a ( self : Tuple ): """simple docstring""" return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _a ( self : int , _snake_case : Union[str, Any] , _snake_case : Any , _snake_case : List[str] ): """simple docstring""" A__ = TFBlipTextModel(config=_snake_case ) A__ = model(_snake_case , attention_mask=_snake_case , training=_snake_case ) A__ = model(_snake_case , training=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _a ( self : str ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Tuple = (TFBlipTextModel,) if is_tf_available() else () A__ : Optional[int] = False A__ : Union[str, Any] = False A__ : Union[str, Any] = False def _a ( self : Any ): """simple docstring""" A__ = BlipTextModelTester(self ) A__ = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def _a ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Union[str, Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def _a ( self : Tuple ): """simple docstring""" pass def _a ( self : int ): """simple docstring""" pass @unittest.skip(reason='Blip does not use inputs_embeds' ) def _a ( self : Any ): """simple docstring""" pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _a ( self : str ): """simple docstring""" pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _a ( self : Optional[Any] ): """simple docstring""" pass @slow def _a ( self : Union[str, Any] ): """simple docstring""" for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFBlipTextModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def _a ( self : int , _snake_case : int=True ): """simple docstring""" super().test_pt_tf_model_equivalence(allow_missing_keys=_snake_case )
9
1
from math import factorial, radians def A ( __UpperCamelCase , __UpperCamelCase = 18 , __UpperCamelCase = 10 ) -> float: A__ = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians A__ = radians(__UpperCamelCase ) A__ = angle_in_radians A__ = 3 A__ = -1 for _ in range(__UpperCamelCase ): result += (b * (angle_in_radians**a)) / factorial(__UpperCamelCase ) A__ = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": __import__('''doctest''').testmod()
9
from __future__ import annotations from typing import Any def A ( __UpperCamelCase ) -> int: if not postfix_notation: return 0 A__ = {'+', '-', '*', '/'} A__ = [] for token in postfix_notation: if token in operations: A__ , A__ = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(__UpperCamelCase ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
9
1
import heapq as hq import math from collections.abc import Iterator class __lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] , _snake_case : Tuple ): """simple docstring""" A__ = str(id_ ) A__ = None A__ = None A__ = [] A__ = {} # {vertex:distance} def __lt__( self : List[str] , _snake_case : Tuple ): """simple docstring""" return self.key < other.key def __repr__( self : int ): """simple docstring""" return self.id def _a ( self : str , _snake_case : str ): """simple docstring""" self.neighbors.append(_snake_case ) def _a ( self : Tuple , _snake_case : str , _snake_case : Optional[Any] ): """simple docstring""" A__ = weight def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Tuple: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __UpperCamelCase ) graph[b - 1].add_edge(graph[a - 1] , __UpperCamelCase ) def A ( __UpperCamelCase , __UpperCamelCase ) -> list: A__ = [] for u in graph: A__ = math.inf A__ = None A__ = 0 A__ = graph[:] while q: A__ = min(__UpperCamelCase ) q.remove(__UpperCamelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): A__ = u A__ = u.edges[v.id] for i in range(1 , len(__UpperCamelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def A ( __UpperCamelCase , __UpperCamelCase ) -> Iterator[tuple]: for u in graph: A__ = math.inf A__ = None A__ = 0 A__ = list(__UpperCamelCase ) hq.heapify(__UpperCamelCase ) while h: A__ = hq.heappop(__UpperCamelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): A__ = u A__ = u.edges[v.id] hq.heapify(__UpperCamelCase ) for i in range(1 , len(__UpperCamelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def A ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
9
from __future__ import annotations def A ( __UpperCamelCase = 4 ) -> list[list[int]]: A__ = abs(__UpperCamelCase ) or 4 return [[1 + x + y * row_size for x in range(__UpperCamelCase )] for y in range(__UpperCamelCase )] def A ( __UpperCamelCase ) -> list[list[int]]: return reverse_row(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_column(matrix)) def A ( __UpperCamelCase ) -> list[list[int]]: return reverse_row(reverse_column(__UpperCamelCase ) ) # OR.. reverse_column(reverse_row(matrix)) def A ( __UpperCamelCase ) -> list[list[int]]: return reverse_column(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_row(matrix)) def A ( __UpperCamelCase ) -> list[list[int]]: A__ = [list(__UpperCamelCase ) for x in zip(*__UpperCamelCase )] return matrix def A ( __UpperCamelCase ) -> list[list[int]]: A__ = matrix[::-1] return matrix def A ( __UpperCamelCase ) -> list[list[int]]: A__ = [x[::-1] for x in matrix] return matrix def A ( __UpperCamelCase ) -> None: for i in matrix: print(*__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 90 counterclockwise:\n''') print_matrix(rotate_aa(matrix)) SCREAMING_SNAKE_CASE__ = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 180:\n''') print_matrix(rotate_aaa(matrix)) SCREAMING_SNAKE_CASE__ = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 270 counterclockwise:\n''') print_matrix(rotate_aaa(matrix))
9
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : str = "canine" def __init__( self : Tuple , _snake_case : Optional[Any]=7_68 , _snake_case : Optional[Any]=12 , _snake_case : int=12 , _snake_case : List[str]=30_72 , _snake_case : Any="gelu" , _snake_case : str=0.1 , _snake_case : List[Any]=0.1 , _snake_case : List[str]=1_63_84 , _snake_case : Optional[Any]=16 , _snake_case : Dict=0.02 , _snake_case : str=1E-12 , _snake_case : Dict=0 , _snake_case : Optional[Any]=0xE000 , _snake_case : Optional[Any]=0xE001 , _snake_case : Optional[int]=4 , _snake_case : int=4 , _snake_case : Optional[Any]=8 , _snake_case : Any=1_63_84 , _snake_case : Dict=1_28 , **_snake_case : Tuple , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case ) A__ = max_position_embeddings A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = type_vocab_size A__ = layer_norm_eps # Character config: A__ = downsampling_rate A__ = upsampling_kernel_size A__ = num_hash_functions A__ = num_hash_buckets A__ = local_transformer_stride
9
from __future__ import annotations from fractions import Fraction def A ( __UpperCamelCase , __UpperCamelCase ) -> bool: return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def A ( __UpperCamelCase ) -> list[str]: A__ = [] A__ = 11 A__ = int('1' + '0' * digit_len ) for num in range(__UpperCamelCase , __UpperCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(__UpperCamelCase , __UpperCamelCase ): solutions.append(f'''{num}/{den}''' ) den += 1 num += 1 A__ = 10 return solutions def A ( __UpperCamelCase = 2 ) -> int: A__ = 1.0 for fraction in fraction_list(__UpperCamelCase ): A__ = Fraction(__UpperCamelCase ) result *= frac.denominator / frac.numerator return int(__UpperCamelCase ) if __name__ == "__main__": print(solution())
9
1
def A ( __UpperCamelCase ) -> float: return 10 - x * x def A ( __UpperCamelCase , __UpperCamelCase ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(__UpperCamelCase ) * equation(__UpperCamelCase ) >= 0: raise ValueError('Wrong space!' ) A__ = a while (b - a) >= 0.01: # Find middle point A__ = (a + b) / 2 # Check if middle point is root if equation(__UpperCamelCase ) == 0.0: break # Decide the side to repeat the steps if equation(__UpperCamelCase ) * equation(__UpperCamelCase ) < 0: A__ = c else: A__ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
9
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
9
1
from ....utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : List[Any] , _snake_case : str , _snake_case : List[Any]=None , _snake_case : Union[str, Any]=20_48 ): """simple docstring""" A__ = config.__dict__ A__ = modal_hidden_size if num_labels: A__ = num_labels
9
SCREAMING_SNAKE_CASE__ = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' SCREAMING_SNAKE_CASE__ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] SCREAMING_SNAKE_CASE__ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
9
1
from __future__ import annotations def A ( __UpperCamelCase , __UpperCamelCase ) -> set[str]: A__ , A__ = set(__UpperCamelCase ), [start] while stack: A__ = stack.pop() explored.add(__UpperCamelCase ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(__UpperCamelCase ) return explored SCREAMING_SNAKE_CASE__ = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
9
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : """simple docstring""" @staticmethod def _a ( *_snake_case : Any , **_snake_case : Optional[int] ): """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" A__ : Union[str, Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def _a ( self : List[Any] , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : Union[str, Any] ): """simple docstring""" A__ = pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' ) A__ = [ { 'image': Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'question': 'How many cats are there?', }, { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'question': 'How many cats are there?', }, ] return vqa_pipeline, examples def _a ( self : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : List[str] ): """simple docstring""" A__ = vqa_pipeline(_snake_case , top_k=1 ) self.assertEqual( _snake_case , [ [{'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}], [{'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}], ] , ) @require_torch def _a ( self : Any ): """simple docstring""" A__ = pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' ) A__ = './tests/fixtures/tests_samples/COCO/000000039769.png' A__ = 'How many cats are there?' A__ = vqa_pipeline(image=_snake_case , question='How many cats are there?' , top_k=2 ) self.assertEqual( _snake_case , [{'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}, {'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}] ) A__ = vqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( _snake_case , [{'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}, {'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}] ) @slow @require_torch def _a ( self : Any ): """simple docstring""" A__ = pipeline('visual-question-answering' , model='dandelin/vilt-b32-finetuned-vqa' ) A__ = './tests/fixtures/tests_samples/COCO/000000039769.png' A__ = 'How many cats are there?' A__ = vqa_pipeline(image=_snake_case , question=_snake_case , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}] ) A__ = vqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}] ) A__ = vqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [[{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}]] * 2 , ) @require_tf @unittest.skip('Visual question answering not implemented in TF' ) def _a ( self : Dict ): """simple docstring""" pass
9
1
from math import ceil def A ( __UpperCamelCase = 1_001 ) -> int: A__ = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): A__ = 2 * i + 1 A__ = 2 * i A__ = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: SCREAMING_SNAKE_CASE__ = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
9
def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: if exponent == 1: return base if exponent % 2 == 0: A__ = _modexpt(__UpperCamelCase , exponent // 2 , __UpperCamelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__UpperCamelCase , exponent - 1 , __UpperCamelCase )) % modulo_value def A ( __UpperCamelCase = 1_777 , __UpperCamelCase = 1_855 , __UpperCamelCase = 8 ) -> int: A__ = base for _ in range(1 , __UpperCamelCase ): A__ = _modexpt(__UpperCamelCase , __UpperCamelCase , 10**digits ) return result if __name__ == "__main__": print(f'{solution() = }')
9
1
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {'''vocab_file''': '''spiece.model'''} SCREAMING_SNAKE_CASE__ = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', } } # TODO(PVP) - this should be removed in Transformers v5 SCREAMING_SNAKE_CASE__ = { '''t5-small''': 5_1_2, '''t5-base''': 5_1_2, '''t5-large''': 5_1_2, '''t5-3b''': 5_1_2, '''t5-11b''': 5_1_2, } SCREAMING_SNAKE_CASE__ = '''▁''' class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Tuple = VOCAB_FILES_NAMES A__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP A__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : List[str] = ["input_ids", "attention_mask"] def __init__( self : Any , _snake_case : int , _snake_case : Optional[Any]="</s>" , _snake_case : Any="<unk>" , _snake_case : Optional[int]="<pad>" , _snake_case : List[Any]=1_00 , _snake_case : str=None , _snake_case : Optional[Dict[str, Any]] = None , _snake_case : Tuple=True , **_snake_case : List[str] , ): """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: A__ = [F'''<extra_id_{i}>''' for i in range(_snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens A__ = len(set(filter(lambda _snake_case : bool('extra_id' in str(_snake_case ) ) , _snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( F'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) A__ = legacy A__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_snake_case , unk_token=_snake_case , pad_token=_snake_case , extra_ids=_snake_case , additional_special_tokens=_snake_case , sp_model_kwargs=self.sp_model_kwargs , legacy=_snake_case , **_snake_case , ) A__ = vocab_file A__ = extra_ids A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_snake_case ) @staticmethod def _a ( _snake_case : Union[str, Any] , _snake_case : int , _snake_case : Dict ): """simple docstring""" if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: A__ = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , _snake_case , ) return max_model_length @property def _a ( self : Union[str, Any] ): """simple docstring""" return self.sp_model.get_piece_size() + self._extra_ids def _a ( self : List[str] ): """simple docstring""" A__ = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _a ( self : int , _snake_case : List[int] , _snake_case : Optional[List[int]] = None , _snake_case : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_snake_case )) + [1] return ([0] * len(_snake_case )) + [1] + ([0] * len(_snake_case )) + [1] def _a ( self : Any ): """simple docstring""" return list( set(filter(lambda _snake_case : bool(re.search(R'<extra_id_\d+>' , _snake_case ) ) is not None , self.additional_special_tokens ) ) ) def _a ( self : Optional[Any] ): """simple docstring""" return [self._convert_token_to_id(_snake_case ) for token in self.get_sentinel_tokens()] def _a ( self : List[Any] , _snake_case : List[int] ): """simple docstring""" if len(_snake_case ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def _a ( self : Dict , _snake_case : List[int] , _snake_case : Optional[List[int]] = None ): """simple docstring""" A__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _a ( self : Dict , _snake_case : List[int] , _snake_case : Optional[List[int]] = None ): """simple docstring""" A__ = self._add_eos_if_not_present(_snake_case ) if token_ids_a is None: return token_ids_a else: A__ = self._add_eos_if_not_present(_snake_case ) return token_ids_a + token_ids_a def __getstate__( self : Tuple ): """simple docstring""" A__ = self.__dict__.copy() A__ = None return state def __setstate__( self : Optional[Any] , _snake_case : List[Any] ): """simple docstring""" A__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a ( self : Union[str, Any] , _snake_case : "TextInput" , **_snake_case : Tuple ): """simple docstring""" if not self.legacy: A__ = SPIECE_UNDERLINE + text.replace(_snake_case , ' ' ) return super().tokenize(_snake_case , **_snake_case ) def _a ( self : Optional[Any] , _snake_case : Tuple , **_snake_case : int ): """simple docstring""" if not self.legacy: A__ = text.startswith(_snake_case ) if is_first: A__ = text[1:] A__ = self.sp_model.encode(_snake_case , out_type=_snake_case ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(_snake_case ): A__ = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def _a ( self : Tuple , _snake_case : Optional[int] ): """simple docstring""" if token.startswith('<extra_id_' ): A__ = re.match(R'<extra_id_(\d+)>' , _snake_case ) A__ = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(_snake_case ) def _a ( self : Union[str, Any] , _snake_case : Tuple ): """simple docstring""" if index < self.sp_model.get_piece_size(): A__ = self.sp_model.IdToPiece(_snake_case ) else: A__ = F'''<extra_id_{self.vocab_size - 1 - index}>''' return token def _a ( self : Any , _snake_case : Tuple ): """simple docstring""" A__ = [] A__ = '' A__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_snake_case ) + token A__ = True A__ = [] else: current_sub_tokens.append(_snake_case ) A__ = False out_string += self.sp_model.decode(_snake_case ) return out_string.strip() def _a ( self : List[str] , _snake_case : str , _snake_case : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return A__ = os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case , 'wb' ) as fi: A__ = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
9
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def A ( __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=False ) -> Dict: A__ = 'backbone.' if is_semantic else '' A__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (f'''{prefix}cls_token''', 'beit.embeddings.cls_token'), (f'''{prefix}patch_embed.proj.weight''', 'beit.embeddings.patch_embeddings.projection.weight'), (f'''{prefix}patch_embed.proj.bias''', 'beit.embeddings.patch_embeddings.projection.bias'), (f'''{prefix}pos_embed''', 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=False ) -> Optional[Any]: for i in range(config.num_hidden_layers ): A__ = 'backbone.' if is_semantic else '' # queries, keys and values A__ = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' ) A__ = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' ) A__ = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' ) A__ = in_proj_weight[ : config.hidden_size, : ] A__ = q_bias A__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ = in_proj_weight[ -config.hidden_size :, : ] A__ = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained A__ = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' ) A__ = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' ) A__ = gamma_a A__ = gamma_a def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: A__ = dct.pop(__UpperCamelCase ) A__ = val def A ( ) -> Dict: A__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' A__ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False ) -> str: A__ = False if 'rvlcdip' in checkpoint_url else True A__ = BeitConfig(use_absolute_position_embeddings=__UpperCamelCase , use_mask_token=__UpperCamelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: A__ = 1_024 A__ = 4_096 A__ = 24 A__ = 16 # labels if "rvlcdip" in checkpoint_url: A__ = 16 A__ = 'huggingface/label-files' A__ = 'rvlcdip-id2label.json' A__ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='dataset' ) , 'r' ) ) A__ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys A__ = torch.hub.load_state_dict_from_url(__UpperCamelCase , map_location='cpu' )['model'] A__ = create_rename_keys(__UpperCamelCase , has_lm_head=__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) read_in_q_k_v(__UpperCamelCase , __UpperCamelCase , has_lm_head=__UpperCamelCase ) # load HuggingFace model A__ = BeitForMaskedImageModeling(__UpperCamelCase ) if has_lm_head else BeitForImageClassification(__UpperCamelCase ) model.eval() model.load_state_dict(__UpperCamelCase ) # Check outputs on an image A__ = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__UpperCamelCase ) A__ = prepare_img() A__ = image_processor(images=__UpperCamelCase , return_tensors='pt' ) A__ = encoding['pixel_values'] A__ = model(__UpperCamelCase ) A__ = outputs.logits # verify logits A__ = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 196, 8_192] assert logits.shape == torch.Size(__UpperCamelCase ), "Shape of logits not as expected" Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if push_to_hub: if has_lm_head: A__ = 'dit-base' if 'base' in checkpoint_url else 'dit-large' else: A__ = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip' image_processor.push_to_hub( repo_path_or_name=Path(__UpperCamelCase , __UpperCamelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=__UpperCamelCase , ) model.push_to_hub( repo_path_or_name=Path(__UpperCamelCase , __UpperCamelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=__UpperCamelCase , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
9
1
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE__ = { '''User-Agent''': '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''' } def A ( __UpperCamelCase = "dhaka" , __UpperCamelCase = 5 ) -> int: A__ = min(__UpperCamelCase , 50 ) # Prevent abuse! A__ = { 'q': query, 'tbm': 'isch', 'hl': 'en', 'ijn': '0', } A__ = requests.get('https://www.google.com/search' , params=__UpperCamelCase , headers=__UpperCamelCase ) A__ = BeautifulSoup(html.text , 'html.parser' ) A__ = ''.join( re.findall(r'AF_initDataCallback\(([^<]+)\);' , str(soup.select('script' ) ) ) ) A__ = json.dumps(__UpperCamelCase ) A__ = json.loads(__UpperCamelCase ) A__ = re.findall( r'\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",' , __UpperCamelCase , ) if not matched_google_image_data: return 0 A__ = re.sub( r'\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]' , '' , str(__UpperCamelCase ) , ) A__ = re.findall( r'(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]' , __UpperCamelCase , ) for index, fixed_full_res_image in enumerate(__UpperCamelCase ): if index >= max_images: return index A__ = bytes(__UpperCamelCase , 'ascii' ).decode( 'unicode-escape' ) A__ = bytes(__UpperCamelCase , 'ascii' ).decode( 'unicode-escape' ) A__ = urllib.request.build_opener() A__ = [ ( 'User-Agent', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582', ) ] urllib.request.install_opener(__UpperCamelCase ) A__ = f'''query_{query.replace(" " , "_" )}''' if not os.path.exists(__UpperCamelCase ): os.makedirs(__UpperCamelCase ) urllib.request.urlretrieve( # noqa: S310 __UpperCamelCase , f'''{path_name}/original_size_img_{index}.jpg''' ) return index if __name__ == "__main__": try: SCREAMING_SNAKE_CASE__ = download_images_from_google_query(sys.argv[1]) print(f'{image_count} images were downloaded to disk.') except IndexError: print('''Please provide a search term.''') raise
9
SCREAMING_SNAKE_CASE__ = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> list[str]: A__ = set() # keep track of all the paths to be checked A__ = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue A__ = queue.pop(0 ) # get the last node from the path A__ = path[-1] if node not in explored: A__ = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: A__ = list(__UpperCamelCase ) new_path.append(__UpperCamelCase ) queue.append(__UpperCamelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(__UpperCamelCase ) # in case there's no path between the 2 nodes return [] def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 A__ = [start] A__ = set(__UpperCamelCase ) # Keep tab on distances from `start` node. A__ = {start: 0, target: -1} while queue: A__ = queue.pop(0 ) if node == target: A__ = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(__UpperCamelCase ) queue.append(__UpperCamelCase ) A__ = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
9
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
9
def A ( __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: A__ = 0 A__ = len(__UpperCamelCase ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__UpperCamelCase ): return None A__ = sorted_collection[point] if current_item == item: return point else: if point < left: A__ = left A__ = point elif point > right: A__ = right A__ = point else: if item < current_item: A__ = point - 1 else: A__ = point + 1 return None def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__UpperCamelCase ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) elif point > right: return interpolation_search_by_recursion(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , point - 1 ) else: return interpolation_search_by_recursion( __UpperCamelCase , __UpperCamelCase , point + 1 , __UpperCamelCase ) def A ( __UpperCamelCase ) -> List[str]: if collection != sorted(__UpperCamelCase ): raise ValueError('Collection must be ascending sorted' ) return True if __name__ == "__main__": import sys SCREAMING_SNAKE_CASE__ = 0 if debug == 1: SCREAMING_SNAKE_CASE__ = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit('''Sequence must be ascending sorted to apply interpolation search''') SCREAMING_SNAKE_CASE__ = 6_7 SCREAMING_SNAKE_CASE__ = interpolation_search(collection, target) if result is not None: print(f'{target} found at positions: {result}') else: print('''Not found''')
9
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { '''configuration_electra''': ['''ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ElectraConfig''', '''ElectraOnnxConfig'''], '''tokenization_electra''': ['''ElectraTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ['''ElectraTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ElectraForCausalLM''', '''ElectraForMaskedLM''', '''ElectraForMultipleChoice''', '''ElectraForPreTraining''', '''ElectraForQuestionAnswering''', '''ElectraForSequenceClassification''', '''ElectraForTokenClassification''', '''ElectraModel''', '''ElectraPreTrainedModel''', '''load_tf_weights_in_electra''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFElectraForMaskedLM''', '''TFElectraForMultipleChoice''', '''TFElectraForPreTraining''', '''TFElectraForQuestionAnswering''', '''TFElectraForSequenceClassification''', '''TFElectraForTokenClassification''', '''TFElectraModel''', '''TFElectraPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''FlaxElectraForCausalLM''', '''FlaxElectraForMaskedLM''', '''FlaxElectraForMultipleChoice''', '''FlaxElectraForPreTraining''', '''FlaxElectraForQuestionAnswering''', '''FlaxElectraForSequenceClassification''', '''FlaxElectraForTokenClassification''', '''FlaxElectraModel''', '''FlaxElectraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
9
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , *_snake_case : int , **_snake_case : Optional[int] ): """simple docstring""" warnings.warn( 'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use CLIPImageProcessor instead.' , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
9
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
9
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () SCREAMING_SNAKE_CASE__ = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). SCREAMING_SNAKE_CASE__ = [0, 2_5, 5_0] SCREAMING_SNAKE_CASE__ = [2_5, 5_0, 7_5] SCREAMING_SNAKE_CASE__ = fuzz.membership.trimf(X, abca) SCREAMING_SNAKE_CASE__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. SCREAMING_SNAKE_CASE__ = np.ones(7_5) SCREAMING_SNAKE_CASE__ = np.zeros((7_5,)) # 1. Union = max(µA(x), µB(x)) SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] SCREAMING_SNAKE_CASE__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) SCREAMING_SNAKE_CASE__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
9
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''MIT/ast-finetuned-audioset-10-10-0.4593''': ( '''https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json''' ), } class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : List[str] = "audio-spectrogram-transformer" def __init__( self : Dict , _snake_case : List[str]=7_68 , _snake_case : List[str]=12 , _snake_case : Optional[int]=12 , _snake_case : List[str]=30_72 , _snake_case : str="gelu" , _snake_case : str=0.0 , _snake_case : Dict=0.0 , _snake_case : Dict=0.02 , _snake_case : Dict=1E-12 , _snake_case : List[Any]=16 , _snake_case : List[Any]=True , _snake_case : List[str]=10 , _snake_case : str=10 , _snake_case : Dict=10_24 , _snake_case : str=1_28 , **_snake_case : Union[str, Any] , ): """simple docstring""" super().__init__(**_snake_case ) A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = layer_norm_eps A__ = patch_size A__ = qkv_bias A__ = frequency_stride A__ = time_stride A__ = max_length A__ = num_mel_bins
9
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : """simple docstring""" @staticmethod def _a ( *_snake_case : int , **_snake_case : List[str] ): """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" A__ : List[str] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def _a ( self : Any , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : Optional[Any] ): """simple docstring""" A__ = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) A__ = [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] return object_detector, examples def _a ( self : int , _snake_case : int , _snake_case : List[str] ): """simple docstring""" A__ = object_detector(examples[0] , threshold=0.0 ) A__ = len(_snake_case ) self.assertGreater(_snake_case , 0 ) self.assertEqual( _snake_case , [ { 'score': ANY(_snake_case ), 'label': ANY(_snake_case ), 'box': {'xmin': ANY(_snake_case ), 'ymin': ANY(_snake_case ), 'xmax': ANY(_snake_case ), 'ymax': ANY(_snake_case )}, } for i in range(_snake_case ) ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def _a ( self : List[str] ): """simple docstring""" pass @require_torch def _a ( self : Optional[int] ): """simple docstring""" A__ = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) A__ = object_detector( './tests/fixtures/tests_samples/COCO/000000039769.png' , candidate_labels=['cat', 'remote', 'couch'] , threshold=0.64 , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {'score': 0.7235, 'label': 'cat', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7218, 'label': 'remote', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7184, 'label': 'couch', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.6748, 'label': 'remote', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6656, 'label': 'cat', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6614, 'label': 'couch', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6456, 'label': 'remote', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 2_74, 'xmax': 93, 'ymax': 2_97}}, {'score': 0.6419, 'label': 'cat', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, ] , ) A__ = object_detector( [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ [ {'score': 0.7235, 'label': 'cat', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7218, 'label': 'remote', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7184, 'label': 'couch', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.6748, 'label': 'remote', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6656, 'label': 'cat', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6614, 'label': 'couch', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6456, 'label': 'remote', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 2_74, 'xmax': 93, 'ymax': 2_97}}, {'score': 0.6419, 'label': 'cat', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, ] ] , ) @require_torch @slow def _a ( self : int ): """simple docstring""" A__ = pipeline('zero-shot-object-detection' ) A__ = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ] , ) A__ = object_detector( [ { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, ] , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ], [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ], ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def _a ( self : int ): """simple docstring""" pass @require_torch @slow def _a ( self : str ): """simple docstring""" A__ = 0.2 A__ = pipeline('zero-shot-object-detection' ) A__ = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , threshold=_snake_case , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, ] , ) @require_torch @slow def _a ( self : Any ): """simple docstring""" A__ = 2 A__ = pipeline('zero-shot-object-detection' ) A__ = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , top_k=_snake_case , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, ] , )
9
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available SCREAMING_SNAKE_CASE__ = { '''configuration_gpt_neo''': ['''GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoConfig''', '''GPTNeoOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoForCausalLM''', '''GPTNeoForQuestionAnswering''', '''GPTNeoForSequenceClassification''', '''GPTNeoForTokenClassification''', '''GPTNeoModel''', '''GPTNeoPreTrainedModel''', '''load_tf_weights_in_gpt_neo''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''FlaxGPTNeoForCausalLM''', '''FlaxGPTNeoModel''', '''FlaxGPTNeoPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
9
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml SCREAMING_SNAKE_CASE__ = NewType('''DataClass''', Any) SCREAMING_SNAKE_CASE__ = NewType('''DataClassType''', Any) def A ( __UpperCamelCase ) -> List[Any]: if isinstance(__UpperCamelCase , __UpperCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def A ( __UpperCamelCase ) -> Callable[[str], Any]: A__ = {str(__UpperCamelCase ): choice for choice in choices} return lambda __UpperCamelCase : str_to_choice.get(__UpperCamelCase , __UpperCamelCase ) def A ( *, __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = dataclasses.MISSING , __UpperCamelCase = dataclasses.MISSING , __UpperCamelCase = None , **__UpperCamelCase , ) -> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls A__ = {} if aliases is not None: A__ = aliases if help is not None: A__ = help return dataclasses.field(metadata=__UpperCamelCase , default=__UpperCamelCase , default_factory=__UpperCamelCase , **__UpperCamelCase ) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Iterable[DataClassType] def __init__( self : Optional[int] , _snake_case : Union[DataClassType, Iterable[DataClassType]] , **_snake_case : Tuple ): """simple docstring""" if "formatter_class" not in kwargs: A__ = ArgumentDefaultsHelpFormatter super().__init__(**_snake_case ) if dataclasses.is_dataclass(_snake_case ): A__ = [dataclass_types] A__ = list(_snake_case ) for dtype in self.dataclass_types: self._add_dataclass_arguments(_snake_case ) @staticmethod def _a ( _snake_case : ArgumentParser , _snake_case : dataclasses.Field ): """simple docstring""" A__ = F'''--{field.name}''' A__ = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , _snake_case ): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default' ) A__ = kwargs.pop('aliases' , [] ) if isinstance(_snake_case , _snake_case ): A__ = [aliases] A__ = getattr(field.type , '__origin__' , field.type ) if origin_type is Union or (hasattr(_snake_case , 'UnionType' ) and isinstance(_snake_case , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(_snake_case ) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' F''' Problem encountered in field \'{field.name}\'.''' ) if type(_snake_case ) not in field.type.__args__: # filter `str` in Union A__ = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] A__ = getattr(field.type , '__origin__' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) A__ = ( field.type.__args__[0] if isinstance(_snake_case , field.type.__args__[1] ) else field.type.__args__[1] ) A__ = getattr(field.type , '__origin__' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) A__ = {} if origin_type is Literal or (isinstance(field.type , _snake_case ) and issubclass(field.type , _snake_case )): if origin_type is Literal: A__ = field.type.__args__ else: A__ = [x.value for x in field.type] A__ = make_choice_type_function(kwargs['choices'] ) if field.default is not dataclasses.MISSING: A__ = field.default else: A__ = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument A__ = copy(_snake_case ) # Hack because type=bool in argparse does not behave as we want. A__ = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. A__ = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way A__ = default # This tells argparse we accept 0 or 1 value after --field_name A__ = '?' # This is the value that will get picked if we do --field_name (without value) A__ = True elif isclass(_snake_case ) and issubclass(_snake_case , _snake_case ): A__ = field.type.__args__[0] A__ = '+' if field.default_factory is not dataclasses.MISSING: A__ = field.default_factory() elif field.default is dataclasses.MISSING: A__ = True else: A__ = field.type if field.default is not dataclasses.MISSING: A__ = field.default elif field.default_factory is not dataclasses.MISSING: A__ = field.default_factory() else: A__ = True parser.add_argument(_snake_case , *_snake_case , **_snake_case ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): A__ = False parser.add_argument(F'''--no_{field.name}''' , action='store_false' , dest=field.name , **_snake_case ) def _a ( self : Any , _snake_case : DataClassType ): """simple docstring""" if hasattr(_snake_case , '_argument_group_name' ): A__ = self.add_argument_group(dtype._argument_group_name ) else: A__ = self try: A__ = get_type_hints(_snake_case ) except NameError: raise RuntimeError( F'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_snake_case ): A__ = '.'.join(map(_snake_case , sys.version_info[:3] ) ) raise RuntimeError( F'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.' ) from ex raise for field in dataclasses.fields(_snake_case ): if not field.init: continue A__ = type_hints[field.name] self._parse_dataclass_field(_snake_case , _snake_case ) def _a ( self : Optional[int] , _snake_case : Optional[Any]=None , _snake_case : Any=False , _snake_case : int=True , _snake_case : List[Any]=None , _snake_case : int=None , ): """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): A__ = [] if args_filename: args_files.append(Path(_snake_case ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('.args' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values A__ = ArgumentParser() args_file_parser.add_argument(_snake_case , type=_snake_case , action='append' ) # Use only remaining args for further parsing (remove the args_file_flag) A__ , A__ = args_file_parser.parse_known_args(args=_snake_case ) A__ = vars(_snake_case ).get(args_file_flag.lstrip('-' ) , _snake_case ) if cmd_args_file_paths: args_files.extend([Path(_snake_case ) for p in cmd_args_file_paths] ) A__ = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last A__ = file_args + args if args is not None else file_args + sys.argv[1:] A__ , A__ = self.parse_known_args(args=_snake_case ) A__ = [] for dtype in self.dataclass_types: A__ = {f.name for f in dataclasses.fields(_snake_case ) if f.init} A__ = {k: v for k, v in vars(_snake_case ).items() if k in keys} for k in keys: delattr(_snake_case , _snake_case ) A__ = dtype(**_snake_case ) outputs.append(_snake_case ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(_snake_case ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def _a ( self : Dict , _snake_case : Dict[str, Any] , _snake_case : bool = False ): """simple docstring""" A__ = set(args.keys() ) A__ = [] for dtype in self.dataclass_types: A__ = {f.name for f in dataclasses.fields(_snake_case ) if f.init} A__ = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) A__ = dtype(**_snake_case ) outputs.append(_snake_case ) if not allow_extra_keys and unused_keys: raise ValueError(F'''Some keys are not used by the HfArgumentParser: {sorted(_snake_case )}''' ) return tuple(_snake_case ) def _a ( self : Dict , _snake_case : str , _snake_case : bool = False ): """simple docstring""" with open(Path(_snake_case ) , encoding='utf-8' ) as open_json_file: A__ = json.loads(open_json_file.read() ) A__ = self.parse_dict(_snake_case , allow_extra_keys=_snake_case ) return tuple(_snake_case ) def _a ( self : Tuple , _snake_case : str , _snake_case : bool = False ): """simple docstring""" A__ = self.parse_dict(yaml.safe_load(Path(_snake_case ).read_text() ) , allow_extra_keys=_snake_case ) return tuple(_snake_case )
9
1
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : List[str] , _snake_case : Optional[int] , _snake_case : List[str] ): """simple docstring""" A__ = params A__ = np.array(_snake_case ) A__ = np.array([len(_snake_case ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : str , _snake_case : str ): """simple docstring""" return (self.token_ids[index], self.lengths[index]) def __len__( self : Union[str, Any] ): """simple docstring""" return len(self.lengths ) def _a ( self : Union[str, Any] ): """simple docstring""" assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def _a ( self : str ): """simple docstring""" A__ = self.params.max_model_input_size A__ = self.lengths > max_len logger.info(F'''Splitting {sum(_snake_case )} too long sequences.''' ) def divide_chunks(_snake_case : List[Any] , _snake_case : Optional[int] ): return [l[i : i + n] for i in range(0 , len(_snake_case ) , _snake_case )] A__ = [] A__ = [] if self.params.mlm: A__ , A__ = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: A__ , A__ = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: A__ = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: A__ = np.insert(_snake_case , 0 , _snake_case ) if sub_s[-1] != sep_id: A__ = np.insert(_snake_case , len(_snake_case ) , _snake_case ) assert len(_snake_case ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(_snake_case ) new_tok_ids.extend(_snake_case ) new_lengths.extend([len(_snake_case ) for l in sub_seqs] ) A__ = np.array(_snake_case ) A__ = np.array(_snake_case ) def _a ( self : List[Any] ): """simple docstring""" A__ = len(self ) A__ = self.lengths > 11 A__ = self.token_ids[indices] A__ = self.lengths[indices] A__ = len(self ) logger.info(F'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' ) def _a ( self : Union[str, Any] ): """simple docstring""" if "unk_token" not in self.params.special_tok_ids: return else: A__ = self.params.special_tok_ids['unk_token'] A__ = len(self ) A__ = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) A__ = (unk_occs / self.lengths) < 0.5 A__ = self.token_ids[indices] A__ = self.lengths[indices] A__ = len(self ) logger.info(F'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' ) def _a ( self : str ): """simple docstring""" if not self.params.is_master: return logger.info(F'''{len(self )} sequences''' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def _a ( self : Optional[int] , _snake_case : List[str] ): """simple docstring""" A__ = [t[0] for t in batch] A__ = [t[1] for t in batch] assert len(_snake_case ) == len(_snake_case ) # Max for paddings A__ = max(_snake_case ) # Pad token ids if self.params.mlm: A__ = self.params.special_tok_ids['pad_token'] else: A__ = self.params.special_tok_ids['unk_token'] A__ = [list(t.astype(_snake_case ) ) + [pad_idx] * (max_seq_len_ - len(_snake_case )) for t in token_ids] assert len(tk_ ) == len(_snake_case ) assert all(len(_snake_case ) == max_seq_len_ for t in tk_ ) A__ = torch.tensor(tk_ ) # (bs, max_seq_len_) A__ = torch.tensor(_snake_case ) # (bs) return tk_t, lg_t
9
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def A ( __UpperCamelCase ) -> List[Any]: print('Loading config file...' ) def flatten_yaml_as_dict(__UpperCamelCase , __UpperCamelCase="" , __UpperCamelCase="." ): A__ = [] for k, v in d.items(): A__ = parent_key + sep + k if parent_key else k if isinstance(__UpperCamelCase , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(__UpperCamelCase , __UpperCamelCase , sep=__UpperCamelCase ).items() ) else: items.append((new_key, v) ) return dict(__UpperCamelCase ) A__ = argparse.Namespace() with open(__UpperCamelCase , 'r' ) as yaml_file: try: A__ = yaml.load(__UpperCamelCase , Loader=yaml.FullLoader ) A__ = flatten_yaml_as_dict(__UpperCamelCase ) for k, v in flat_cfg.items(): setattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) except yaml.YAMLError as exc: logger.error('Error while loading config file: {}. Error message: {}'.format(__UpperCamelCase , str(__UpperCamelCase ) ) ) return config def A ( __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: A__ = MobileViTVaConfig() A__ = False # dataset if task_name.startswith('imagenet1k_' ): A__ = 1_000 if int(task_name.strip().split('_' )[-1] ) == 384: A__ = 384 else: A__ = 256 A__ = 'imagenet-1k-id2label.json' elif task_name.startswith('imagenet21k_to_1k_' ): A__ = 21_000 if int(task_name.strip().split('_' )[-1] ) == 384: A__ = 384 else: A__ = 256 A__ = 'imagenet-22k-id2label.json' elif task_name.startswith('ade20k_' ): A__ = 151 A__ = 512 A__ = 'ade20k-id2label.json' A__ = True elif task_name.startswith('voc_' ): A__ = 21 A__ = 512 A__ = 'pascal-voc-id2label.json' A__ = True # orig_config A__ = load_orig_config_file(__UpperCamelCase ) assert getattr(__UpperCamelCase , 'model.classification.name' , -1 ) == "mobilevit_v2", "Invalid model" A__ = getattr(__UpperCamelCase , 'model.classification.mitv2.width_multiplier' , 1.0 ) assert ( getattr(__UpperCamelCase , 'model.classification.mitv2.attn_norm_layer' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" A__ = getattr(__UpperCamelCase , 'model.classification.activation.name' , 'swish' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: A__ = getattr(__UpperCamelCase , 'model.segmentation.output_stride' , 16 ) if "_deeplabv3" in task_name: A__ = getattr(__UpperCamelCase , 'model.segmentation.deeplabv3.aspp_rates' , [12, 24, 36] ) A__ = getattr(__UpperCamelCase , 'model.segmentation.deeplabv3.aspp_out_channels' , 512 ) A__ = getattr(__UpperCamelCase , 'model.segmentation.deeplabv3.aspp_dropout' , 0.1 ) # id2label A__ = 'huggingface/label-files' A__ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='dataset' ) , 'r' ) ) A__ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} return config def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[str]: A__ = dct.pop(__UpperCamelCase ) A__ = val def A ( __UpperCamelCase , __UpperCamelCase=False ) -> Dict: if base_model: A__ = '' else: A__ = 'mobilevitv2.' A__ = [] for k in state_dict.keys(): if k[:8] == "encoder.": A__ = k[8:] else: A__ = k if ".block." in k: A__ = k_new.replace('.block.' , '.' ) if ".conv." in k: A__ = k_new.replace('.conv.' , '.convolution.' ) if ".norm." in k: A__ = k_new.replace('.norm.' , '.normalization.' ) if "conv_1." in k: A__ = k_new.replace('conv_1.' , f'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if f'''layer_{i}.''' in k: A__ = k_new.replace(f'''layer_{i}.''' , f'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: A__ = k_new.replace('.exp_1x1.' , '.expand_1x1.' ) if ".red_1x1." in k: A__ = k_new.replace('.red_1x1.' , '.reduce_1x1.' ) for i in [3, 4, 5]: if f'''layer_{i}.0.''' in k: A__ = k_new.replace(f'''layer_{i}.0.''' , f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if f'''layer_{i}.1.local_rep.0.''' in k: A__ = k_new.replace(f'''layer_{i}.1.local_rep.0.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if f'''layer_{i}.1.local_rep.1.''' in k: A__ = k_new.replace(f'''layer_{i}.1.local_rep.1.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: A__ = [0, 1] elif i == 4: A__ = [0, 1, 2, 3] elif i == 5: A__ = [0, 1, 2] for j in j_in: if f'''layer_{i}.1.global_rep.{j}.''' in k: A__ = k_new.replace( f'''layer_{i}.1.global_rep.{j}.''' , f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if f'''layer_{i}.1.global_rep.{j+1}.''' in k: A__ = k_new.replace( f'''layer_{i}.1.global_rep.{j+1}.''' , f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if f'''layer_{i}.1.conv_proj.''' in k: A__ = k_new.replace(f'''layer_{i}.1.conv_proj.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: A__ = k_new.replace('pre_norm_attn.0.' , 'layernorm_before.' ) if "pre_norm_attn.1." in k: A__ = k_new.replace('pre_norm_attn.1.' , 'attention.' ) if "pre_norm_ffn.0." in k: A__ = k_new.replace('pre_norm_ffn.0.' , 'layernorm_after.' ) if "pre_norm_ffn.1." in k: A__ = k_new.replace('pre_norm_ffn.1.' , 'ffn.conv1.' ) if "pre_norm_ffn.3." in k: A__ = k_new.replace('pre_norm_ffn.3.' , 'ffn.conv2.' ) if "classifier.1." in k: A__ = k_new.replace('classifier.1.' , 'classifier.' ) if "seg_head." in k: A__ = k_new.replace('seg_head.' , 'segmentation_head.' ) if ".aspp_layer." in k: A__ = k_new.replace('.aspp_layer.' , '.' ) if ".aspp_pool." in k: A__ = k_new.replace('.aspp_pool.' , '.' ) rename_keys.append((k, k_new) ) return rename_keys def A ( __UpperCamelCase ) -> Tuple: A__ = [] for k in state_dict.keys(): if k.startswith('seg_head.aux_head.' ): keys_to_ignore.append(__UpperCamelCase ) for k in keys_to_ignore: state_dict.pop(__UpperCamelCase , __UpperCamelCase ) def A ( ) -> str: A__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" A__ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: A__ = get_mobilevitva_config(__UpperCamelCase , __UpperCamelCase ) # load original state_dict A__ = torch.load(__UpperCamelCase , map_location='cpu' ) # load huggingface model if task_name.startswith('ade20k_' ) or task_name.startswith('voc_' ): A__ = MobileViTVaForSemanticSegmentation(__UpperCamelCase ).eval() A__ = False else: A__ = MobileViTVaForImageClassification(__UpperCamelCase ).eval() A__ = False # remove and rename some keys of load the original model A__ = checkpoint remove_unused_keys(__UpperCamelCase ) A__ = create_rename_keys(__UpperCamelCase , base_model=__UpperCamelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # load modified state_dict model.load_state_dict(__UpperCamelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor A__ = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) A__ = image_processor(images=prepare_img() , return_tensors='pt' ) A__ = model(**__UpperCamelCase ) # verify classification model if task_name.startswith('imagenet' ): A__ = outputs.logits A__ = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('imagenet1k_256' ) and config.width_multiplier == 1.0: # expected_logits for base variant A__ = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ) assert torch.allclose(logits[0, :3] , __UpperCamelCase , atol=1E-4 ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''imagenet1k_256''', type=str, help=( '''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ''' ''' Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 ''' ), choices=[ '''imagenet1k_256''', '''imagenet1k_384''', '''imagenet21k_to_1k_256''', '''imagenet21k_to_1k_384''', '''ade20k_deeplabv3''', '''voc_deeplabv3''', ], ) parser.add_argument( '''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
9
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def A ( __UpperCamelCase , __UpperCamelCase ) -> List[Any]: A__ = b.T A__ = np.sum(np.square(__UpperCamelCase ) , axis=1 ) A__ = np.sum(np.square(__UpperCamelCase ) , axis=0 ) A__ = np.matmul(__UpperCamelCase , __UpperCamelCase ) A__ = aa[:, None] - 2 * ab + ba[None, :] return d def A ( __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: A__ = x.reshape(-1 , 3 ) A__ = squared_euclidean_distance(__UpperCamelCase , __UpperCamelCase ) return np.argmin(__UpperCamelCase , axis=1 ) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Dict = ["pixel_values"] def __init__( self : List[str] , _snake_case : Optional[Union[List[List[int]], np.ndarray]] = None , _snake_case : bool = True , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = PILImageResampling.BILINEAR , _snake_case : bool = True , _snake_case : bool = True , **_snake_case : Dict , ): """simple docstring""" super().__init__(**_snake_case ) A__ = size if size is not None else {'height': 2_56, 'width': 2_56} A__ = get_size_dict(_snake_case ) A__ = np.array(_snake_case ) if clusters is not None else None A__ = do_resize A__ = size A__ = resample A__ = do_normalize A__ = do_color_quantize def _a ( self : int , _snake_case : np.ndarray , _snake_case : Dict[str, int] , _snake_case : PILImageResampling = PILImageResampling.BILINEAR , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : str , ): """simple docstring""" A__ = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( _snake_case , size=(size['height'], size['width']) , resample=_snake_case , data_format=_snake_case , **_snake_case ) def _a ( self : Any , _snake_case : np.ndarray , _snake_case : Optional[Union[str, ChannelDimension]] = None , ): """simple docstring""" A__ = rescale(image=_snake_case , scale=1 / 127.5 , data_format=_snake_case ) A__ = image - 1 return image def _a ( self : List[Any] , _snake_case : ImageInput , _snake_case : bool = None , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = None , _snake_case : bool = None , _snake_case : Optional[bool] = None , _snake_case : Optional[Union[List[List[int]], np.ndarray]] = None , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **_snake_case : int , ): """simple docstring""" A__ = do_resize if do_resize is not None else self.do_resize A__ = size if size is not None else self.size A__ = get_size_dict(_snake_case ) A__ = resample if resample is not None else self.resample A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = do_color_quantize if do_color_quantize is not None else self.do_color_quantize A__ = clusters if clusters is not None else self.clusters A__ = np.array(_snake_case ) A__ = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.' ) # All transformations expect numpy arrays. A__ = [to_numpy_array(_snake_case ) for image in images] if do_resize: A__ = [self.resize(image=_snake_case , size=_snake_case , resample=_snake_case ) for image in images] if do_normalize: A__ = [self.normalize(image=_snake_case ) for image in images] if do_color_quantize: A__ = [to_channel_dimension_format(_snake_case , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) A__ = np.array(_snake_case ) A__ = color_quantize(_snake_case , _snake_case ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) A__ = images.shape[0] A__ = images.reshape(_snake_case , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. A__ = list(_snake_case ) else: A__ = [to_channel_dimension_format(_snake_case , _snake_case ) for image in images] A__ = {'input_ids': images} return BatchFeature(data=_snake_case , tensor_type=_snake_case )
9
import argparse from collections import defaultdict import yaml SCREAMING_SNAKE_CASE__ = '''docs/source/en/_toctree.yml''' def A ( __UpperCamelCase ) -> Optional[Any]: A__ = defaultdict(__UpperCamelCase ) for doc in model_doc: counts[doc["local"]] += 1 A__ = [key for key, value in counts.items() if value > 1] A__ = [] for duplicate_key in duplicates: A__ = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(__UpperCamelCase ) > 1: raise ValueError( f'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(__UpperCamelCase , key=lambda __UpperCamelCase : s["title"].lower() ) def A ( __UpperCamelCase=False ) -> str: with open(__UpperCamelCase , encoding='utf-8' ) as f: A__ = yaml.safe_load(f.read() ) # Get to the API doc A__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 A__ = content[api_idx]['sections'] # Then to the model doc A__ = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 A__ = api_doc[model_idx]['sections'] A__ = [(idx, section) for idx, section in enumerate(__UpperCamelCase ) if 'sections' in section] A__ = False for idx, modality_doc in modalities_docs: A__ = modality_doc['sections'] A__ = clean_model_doc_toc(__UpperCamelCase ) if old_modality_doc != new_modality_doc: A__ = True if overwrite: A__ = new_modality_doc if diff: if overwrite: A__ = model_doc A__ = api_doc with open(__UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(__UpperCamelCase , allow_unicode=__UpperCamelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') SCREAMING_SNAKE_CASE__ = parser.parse_args() check_model_doc(args.fix_and_overwrite)
9
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {'''vocab_file''': '''sentencepiece.bpe.model'''} SCREAMING_SNAKE_CASE__ = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', } } SCREAMING_SNAKE_CASE__ = { '''camembert-base''': 5_1_2, } SCREAMING_SNAKE_CASE__ = '''▁''' class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : List[Any] = VOCAB_FILES_NAMES A__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[Any] = ["input_ids", "attention_mask"] def __init__( self : str , _snake_case : Tuple , _snake_case : Tuple="<s>" , _snake_case : Any="</s>" , _snake_case : str="</s>" , _snake_case : Dict="<s>" , _snake_case : Tuple="<unk>" , _snake_case : Optional[Any]="<pad>" , _snake_case : List[Any]="<mask>" , _snake_case : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] , _snake_case : Optional[Dict[str, Any]] = None , **_snake_case : List[Any] , ): """simple docstring""" A__ = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else mask_token A__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , pad_token=_snake_case , mask_token=_snake_case , additional_special_tokens=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_snake_case ) ) A__ = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> A__ = {'<s>NOTUSED': 0, '<pad>': 1, '</s>NOTUSED': 2, '<unk>': 3} A__ = len(self.fairseq_tokens_to_ids ) A__ = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) A__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def _a ( self : Union[str, Any] , _snake_case : List[int] , _snake_case : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ = [self.cls_token_id] A__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _a ( self : Optional[Any] , _snake_case : List[int] , _snake_case : Optional[List[int]] = None , _snake_case : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case ) if token_ids_a is None: return [1] + ([0] * len(_snake_case )) + [1] return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) + [1] def _a ( self : List[str] , _snake_case : List[int] , _snake_case : Optional[List[int]] = None ): """simple docstring""" A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _a ( self : int ): """simple docstring""" return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def _a ( self : int ): """simple docstring""" A__ = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _a ( self : List[str] , _snake_case : str ): """simple docstring""" return self.sp_model.encode(_snake_case , out_type=_snake_case ) def _a ( self : Optional[int] , _snake_case : str ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(_snake_case ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(_snake_case ) def _a ( self : List[str] , _snake_case : List[str] ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _a ( self : Tuple , _snake_case : List[str] ): """simple docstring""" A__ = [] A__ = '' A__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_snake_case ) + token A__ = True A__ = [] else: current_sub_tokens.append(_snake_case ) A__ = False out_string += self.sp_model.decode(_snake_case ) return out_string.strip() def __getstate__( self : List[str] ): """simple docstring""" A__ = self.__dict__.copy() A__ = None return state def __setstate__( self : List[Any] , _snake_case : Optional[Any] ): """simple docstring""" A__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a ( self : str , _snake_case : str , _snake_case : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return A__ = os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case , 'wb' ) as fi: A__ = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
9
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def _a ( self : List[str] ): """simple docstring""" A__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_snake_case , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(_snake_case , 'num_attention_heads' ) ) self.parent.assertTrue(hasattr(_snake_case , 'num_encoder_blocks' ) ) class __lowerCAmelCase : """simple docstring""" def __init__( self : Any , _snake_case : str , _snake_case : Union[str, Any]=13 , _snake_case : Any=64 , _snake_case : Optional[Any]=3 , _snake_case : Dict=4 , _snake_case : Tuple=[2, 2, 2, 2] , _snake_case : str=[8, 4, 2, 1] , _snake_case : Union[str, Any]=[16, 32, 64, 1_28] , _snake_case : int=[1, 4, 8, 16] , _snake_case : List[str]=[1, 2, 4, 8] , _snake_case : int=True , _snake_case : int=True , _snake_case : Union[str, Any]="gelu" , _snake_case : Optional[int]=0.1 , _snake_case : Tuple=0.1 , _snake_case : Dict=0.02 , _snake_case : Tuple=3 , _snake_case : int=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = num_encoder_blocks A__ = sr_ratios A__ = depths A__ = hidden_sizes A__ = downsampling_rates A__ = num_attention_heads A__ = is_training A__ = use_labels A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = num_labels A__ = scope def _a ( self : int ): """simple docstring""" A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A__ = self.get_config() return config, pixel_values, labels def _a ( self : int ): """simple docstring""" return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _a ( self : int , _snake_case : Optional[Any] , _snake_case : int , _snake_case : Any ): """simple docstring""" A__ = SegformerModel(config=_snake_case ) model.to(_snake_case ) model.eval() A__ = model(_snake_case ) A__ = A__ = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def _a ( self : Union[str, Any] , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : Dict ): """simple docstring""" A__ = self.num_labels A__ = SegformerForSemanticSegmentation(_snake_case ) model.to(_snake_case ) model.eval() A__ = model(_snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) A__ = model(_snake_case , labels=_snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def _a ( self : List[str] , _snake_case : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : List[str] ): """simple docstring""" A__ = 1 A__ = SegformerForSemanticSegmentation(config=_snake_case ) model.to(_snake_case ) model.eval() A__ = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(_snake_case ) A__ = model(_snake_case , labels=_snake_case ) self.parent.assertGreater(result.loss , 0.0 ) def _a ( self : List[Any] ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Optional[int] = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) A__ : Union[str, Any] = ( { "feature-extraction": SegformerModel, "image-classification": SegformerForImageClassification, "image-segmentation": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) A__ : Optional[Any] = True A__ : str = False A__ : Tuple = False A__ : Dict = False def _a ( self : Union[str, Any] ): """simple docstring""" A__ = SegformerModelTester(self ) A__ = SegformerConfigTester(self , config_class=_snake_case ) def _a ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Optional[Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def _a ( self : List[Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*_snake_case ) def _a ( self : Tuple ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*_snake_case ) @unittest.skip('SegFormer does not use inputs_embeds' ) def _a ( self : List[Any] ): """simple docstring""" pass @unittest.skip('SegFormer does not have get_input_embeddings method and get_output_embeddings methods' ) def _a ( self : Dict ): """simple docstring""" pass def _a ( self : Dict ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(_snake_case ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _snake_case ) def _a ( self : Dict ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True for model_class in self.all_model_classes: A__ = True A__ = False A__ = True A__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) A__ = outputs.attentions A__ = sum(self.model_tester.depths ) self.assertEqual(len(_snake_case ) , _snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) A__ = outputs.attentions self.assertEqual(len(_snake_case ) , _snake_case ) # verify the first attentions (first block, first layer) A__ = (self.model_tester.image_size // 4) ** 2 A__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) A__ = (self.model_tester.image_size // 32) ** 2 A__ = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) A__ = len(_snake_case ) # Check attention is always last and order is fine A__ = True A__ = True A__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) self.assertEqual(out_len + 1 , len(_snake_case ) ) A__ = outputs.attentions self.assertEqual(len(_snake_case ) , _snake_case ) # verify the first attentions (first block, first layer) A__ = (self.model_tester.image_size // 4) ** 2 A__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def _a ( self : Union[str, Any] ): """simple docstring""" def check_hidden_states_output(_snake_case : Dict , _snake_case : int , _snake_case : List[Any] ): A__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) A__ = outputs.hidden_states A__ = self.model_tester.num_encoder_blocks self.assertEqual(len(_snake_case ) , _snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) def _a ( self : Tuple ): """simple docstring""" if not self.model_tester.is_training: return A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True for model_class in self.all_model_classes: if model_class in get_values(_snake_case ): continue A__ = model_class(_snake_case ) model.to(_snake_case ) model.train() A__ = self._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) A__ = model(**_snake_case ).loss loss.backward() @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _a ( self : Optional[Any] ): """simple docstring""" pass @slow def _a ( self : Tuple ): """simple docstring""" for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = SegformerModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def A ( ) -> str: A__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _a ( self : Dict ): """simple docstring""" A__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_snake_case , align=_snake_case , do_random_crop=_snake_case ) A__ = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( _snake_case ) A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='pt' ) A__ = encoded_inputs.pixel_values.to(_snake_case ) with torch.no_grad(): A__ = model(_snake_case ) A__ = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , _snake_case ) A__ = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _snake_case , atol=1E-4 ) ) @slow def _a ( self : Optional[Any] ): """simple docstring""" A__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_snake_case , align=_snake_case , do_random_crop=_snake_case ) A__ = SegformerForSemanticSegmentation.from_pretrained( 'nvidia/segformer-b1-finetuned-cityscapes-1024-1024' ).to(_snake_case ) A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='pt' ) A__ = encoded_inputs.pixel_values.to(_snake_case ) with torch.no_grad(): A__ = model(_snake_case ) A__ = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , _snake_case ) A__ = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _snake_case , atol=1E-1 ) ) @slow def _a ( self : Any ): """simple docstring""" A__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_snake_case , align=_snake_case , do_random_crop=_snake_case ) A__ = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( _snake_case ) A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='pt' ) A__ = encoded_inputs.pixel_values.to(_snake_case ) with torch.no_grad(): A__ = model(_snake_case ) A__ = outputs.logits.detach().cpu() A__ = image_processor.post_process_semantic_segmentation(outputs=_snake_case , target_sizes=[(5_00, 3_00)] ) A__ = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , _snake_case ) A__ = image_processor.post_process_semantic_segmentation(outputs=_snake_case ) A__ = torch.Size((1_28, 1_28) ) self.assertEqual(segmentation[0].shape , _snake_case )
9
1
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: # Initialise PyTorch model A__ = BigBirdConfig.from_json_file(__UpperCamelCase ) print(f'''Building PyTorch model from configuration: {config}''' ) if is_trivia_qa: A__ = BigBirdForQuestionAnswering(__UpperCamelCase ) else: A__ = BigBirdForPreTraining(__UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(__UpperCamelCase , __UpperCamelCase , is_trivia_qa=__UpperCamelCase ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--big_bird_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_trivia_qa''', action='''store_true''', help='''Whether to convert a model with a trivia_qa head.''' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
9
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A ( __UpperCamelCase ) -> Optional[int]: A__ = filter(lambda __UpperCamelCase : p.requires_grad , model.parameters() ) A__ = sum([np.prod(p.size() ) for p in model_parameters] ) return params SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) def A ( __UpperCamelCase , __UpperCamelCase ) -> Dict: if metric == "rouge2": A__ = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": A__ = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": A__ = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": A__ = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ' function.' ) A__ = ModelCheckpoint( dirpath=__UpperCamelCase , filename=__UpperCamelCase , monitor=f'''val_{metric}''' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def A ( __UpperCamelCase , __UpperCamelCase ) -> Any: return EarlyStopping( monitor=f'''val_{metric}''' , mode='min' if 'loss' in metric else 'max' , patience=__UpperCamelCase , verbose=__UpperCamelCase , ) class __lowerCAmelCase ( pl.Callback ): """simple docstring""" def _a ( self : Dict , _snake_case : Union[str, Any] , _snake_case : str ): """simple docstring""" A__ = {F'''lr_group_{i}''': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_snake_case ) @rank_zero_only def _a ( self : Union[str, Any] , _snake_case : pl.Trainer , _snake_case : pl.LightningModule , _snake_case : str , _snake_case : Optional[Any]=True ): """simple docstring""" logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) A__ = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results A__ = Path(pl_module.hparams.output_dir ) if type_path == "test": A__ = od / 'test_results.txt' A__ = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. A__ = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' A__ = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=_snake_case ) generations_file.parent.mkdir(exist_ok=_snake_case ) with open(_snake_case , 'a+' ) as writer: for key in sorted(_snake_case ): if key in ["log", "progress_bar", "preds"]: continue A__ = metrics[key] if isinstance(_snake_case , torch.Tensor ): A__ = val.item() A__ = F'''{key}: {val:.6f}\n''' writer.write(_snake_case ) if not save_generations: return if "preds" in metrics: A__ = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(_snake_case ) @rank_zero_only def _a ( self : Dict , _snake_case : List[str] , _snake_case : List[Any] ): """simple docstring""" try: A__ = pl_module.model.model.num_parameters() except AttributeError: A__ = pl_module.model.num_parameters() A__ = count_trainable_parameters(_snake_case ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def _a ( self : int , _snake_case : pl.Trainer , _snake_case : pl.LightningModule ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_snake_case , _snake_case , 'test' ) @rank_zero_only def _a ( self : Optional[Any] , _snake_case : pl.Trainer , _snake_case : List[Any] ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
9
1
from ....configuration_utils import PretrainedConfig from ....utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Union[str, Any] = "trajectory_transformer" A__ : List[str] = ["past_key_values"] A__ : Dict = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Dict , _snake_case : List[Any]=1_00 , _snake_case : Union[str, Any]=5 , _snake_case : Dict=1 , _snake_case : Any=1 , _snake_case : Any=2_49 , _snake_case : Any=6 , _snake_case : Optional[int]=17 , _snake_case : int=25 , _snake_case : List[str]=4 , _snake_case : Any=4 , _snake_case : Union[str, Any]=1_28 , _snake_case : Any=0.1 , _snake_case : Any=0.1 , _snake_case : Tuple=0.1 , _snake_case : Tuple=0.0006 , _snake_case : Tuple=5_12 , _snake_case : Dict=0.02 , _snake_case : Dict=1E-12 , _snake_case : str=1 , _snake_case : Dict=True , _snake_case : List[str]=1 , _snake_case : str=5_02_56 , _snake_case : List[str]=5_02_56 , **_snake_case : Optional[Any] , ): """simple docstring""" A__ = vocab_size A__ = action_weight A__ = reward_weight A__ = value_weight A__ = max_position_embeddings A__ = block_size A__ = action_dim A__ = observation_dim A__ = transition_dim A__ = learning_rate A__ = n_layer A__ = n_head A__ = n_embd A__ = embd_pdrop A__ = attn_pdrop A__ = resid_pdrop A__ = initializer_range A__ = layer_norm_eps A__ = kaiming_initializer_range A__ = use_cache super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case )
9
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Optional[Any] = ["input_values", "attention_mask"] def __init__( self : str , _snake_case : int = 1 , _snake_case : int = 1_60_00 , _snake_case : float = 0.0 , _snake_case : bool = False , _snake_case : int = 80 , _snake_case : int = 16 , _snake_case : int = 64 , _snake_case : str = "hann_window" , _snake_case : float = 1.0 , _snake_case : float = 80 , _snake_case : float = 76_00 , _snake_case : float = 1E-10 , _snake_case : int = 2 , _snake_case : bool = True , **_snake_case : Union[str, Any] , ): """simple docstring""" super().__init__(feature_size=_snake_case , sampling_rate=_snake_case , padding_value=_snake_case , **_snake_case ) A__ = do_normalize A__ = return_attention_mask A__ = num_mel_bins A__ = hop_length A__ = win_length A__ = win_function A__ = frame_signal_scale A__ = fmin A__ = fmax A__ = mel_floor A__ = reduction_factor A__ = win_length * sampling_rate // 10_00 A__ = hop_length * sampling_rate // 10_00 A__ = optimal_fft_length(self.sample_size ) A__ = (self.n_fft // 2) + 1 A__ = window_function(window_length=self.sample_size , name=self.win_function , periodic=_snake_case ) A__ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , _snake_case , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , _snake_case , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _a ( _snake_case : List[np.ndarray] , _snake_case : List[np.ndarray] , _snake_case : float = 0.0 ): """simple docstring""" if attention_mask is not None: A__ = np.array(_snake_case , np.intaa ) A__ = [] for vector, length in zip(_snake_case , attention_mask.sum(-1 ) ): A__ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: A__ = padding_value normed_input_values.append(_snake_case ) else: A__ = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def _a ( self : Tuple , _snake_case : np.ndarray , ): """simple docstring""" A__ = spectrogram( _snake_case , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self : List[str] , _snake_case : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _snake_case : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Optional[int] = None , _snake_case : bool = False , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : Optional[int] = None , **_snake_case : Tuple , ): """simple docstring""" if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: A__ = self._process_audio( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , **_snake_case , ) else: A__ = None if audio_target is not None: A__ = self._process_audio( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , **_snake_case , ) if inputs is None: return inputs_target else: A__ = inputs_target['input_values'] A__ = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def _a ( self : Tuple , _snake_case : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _snake_case : bool = False , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Optional[int] = None , _snake_case : bool = False , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[Union[str, TensorType]] = None , **_snake_case : Tuple , ): """simple docstring""" A__ = isinstance(_snake_case , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) A__ = is_batched_numpy or ( isinstance(_snake_case , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A__ = [np.asarray(_snake_case , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_snake_case , np.ndarray ): A__ = np.asarray(_snake_case , dtype=np.floataa ) elif isinstance(_snake_case , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): A__ = speech.astype(np.floataa ) # always return batch if not is_batched: A__ = [speech] # needed to make pad() work on spectrogram inputs A__ = self.feature_size # convert into correct format for padding if is_target: A__ = [self._extract_mel_features(_snake_case ) for waveform in speech] A__ = BatchFeature({'input_values': features} ) A__ = self.num_mel_bins else: A__ = BatchFeature({'input_values': speech} ) A__ = self.pad( _snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , **_snake_case , ) A__ = feature_size_hack # convert input values to correct format A__ = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray ): A__ = [np.asarray(_snake_case , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_snake_case , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): A__ = [array.astype(np.floataa ) for array in input_values] elif isinstance(_snake_case , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): A__ = input_values.astype(np.floataa ) # convert attention_mask to correct format A__ = padded_inputs.get('attention_mask' ) if attention_mask is not None: A__ = [np.asarray(_snake_case , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: A__ = ( attention_mask if self._get_padding_strategies(_snake_case , max_length=_snake_case ) is not PaddingStrategy.DO_NOT_PAD else None ) A__ = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=_snake_case , padding_value=self.padding_value ) if return_tensors is not None: A__ = padded_inputs.convert_to_tensors(_snake_case ) return padded_inputs def _a ( self : Optional[Any] ): """simple docstring""" A__ = super().to_dict() # Don't serialize these as they are derived from the other properties. A__ = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
9
1
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : List[str] , *_snake_case : Any , **_snake_case : Dict ): """simple docstring""" warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
9
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: A__ = OmegaConf.load(__UpperCamelCase ) A__ = torch.load(__UpperCamelCase , map_location='cpu' )['model'] A__ = list(state_dict.keys() ) # extract state_dict for VQVAE A__ = {} A__ = 'first_stage_model.' for key in keys: if key.startswith(__UpperCamelCase ): A__ = state_dict[key] # extract state_dict for UNetLDM A__ = {} A__ = 'model.diffusion_model.' for key in keys: if key.startswith(__UpperCamelCase ): A__ = state_dict[key] A__ = config.model.params.first_stage_config.params A__ = config.model.params.unet_config.params A__ = VQModel(**__UpperCamelCase ).eval() vqvae.load_state_dict(__UpperCamelCase ) A__ = UNetLDMModel(**__UpperCamelCase ).eval() unet.load_state_dict(__UpperCamelCase ) A__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__UpperCamelCase , ) A__ = LDMPipeline(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) pipeline.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
9
1
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def A ( __UpperCamelCase ) -> Optional[Any]: A__ = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__UpperCamelCase , __UpperCamelCase ) def A ( __UpperCamelCase ) -> int: A__ , A__ = emb.weight.shape A__ = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) A__ = emb.weight.data return lin_layer def A ( __UpperCamelCase ) -> Optional[int]: A__ = torch.load(__UpperCamelCase , map_location='cpu' ) A__ = mam_aaa['args'] or mam_aaa['cfg']['model'] A__ = mam_aaa['model'] remove_ignore_keys_(__UpperCamelCase ) A__ = state_dict['encoder.embed_tokens.weight'].shape[0] A__ = MaMaaaConfig( vocab_size=__UpperCamelCase , max_position_embeddings=1_024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , ) A__ = state_dict['decoder.embed_tokens.weight'] A__ = MaMaaaForConditionalGeneration(__UpperCamelCase ) model.model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) A__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
9
import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def A ( __UpperCamelCase ) -> Union[str, Any]: if hor == 128: A__ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A__ = (32, 128, 256) A__ = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: A__ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A__ = (32, 64, 128, 256) A__ = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') A__ = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) A__ = model.state_dict() A__ = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 65_536, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } A__ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A__ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A__ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() , f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , 'w' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) def A ( ) -> List[str]: A__ = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 128, 256), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 65_536, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } A__ = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) A__ = model A__ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A__ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A__ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() , 'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' , 'w' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": unet(3_2) # unet(128) value_function()
9
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def A ( __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=False ) -> Dict: A__ = 'backbone.' if is_semantic else '' A__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (f'''{prefix}cls_token''', 'beit.embeddings.cls_token'), (f'''{prefix}patch_embed.proj.weight''', 'beit.embeddings.patch_embeddings.projection.weight'), (f'''{prefix}patch_embed.proj.bias''', 'beit.embeddings.patch_embeddings.projection.bias'), (f'''{prefix}pos_embed''', 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=False ) -> Optional[Any]: for i in range(config.num_hidden_layers ): A__ = 'backbone.' if is_semantic else '' # queries, keys and values A__ = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' ) A__ = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' ) A__ = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' ) A__ = in_proj_weight[ : config.hidden_size, : ] A__ = q_bias A__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ = in_proj_weight[ -config.hidden_size :, : ] A__ = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained A__ = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' ) A__ = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' ) A__ = gamma_a A__ = gamma_a def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: A__ = dct.pop(__UpperCamelCase ) A__ = val def A ( ) -> Dict: A__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' A__ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False ) -> str: A__ = False if 'rvlcdip' in checkpoint_url else True A__ = BeitConfig(use_absolute_position_embeddings=__UpperCamelCase , use_mask_token=__UpperCamelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: A__ = 1_024 A__ = 4_096 A__ = 24 A__ = 16 # labels if "rvlcdip" in checkpoint_url: A__ = 16 A__ = 'huggingface/label-files' A__ = 'rvlcdip-id2label.json' A__ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='dataset' ) , 'r' ) ) A__ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys A__ = torch.hub.load_state_dict_from_url(__UpperCamelCase , map_location='cpu' )['model'] A__ = create_rename_keys(__UpperCamelCase , has_lm_head=__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) read_in_q_k_v(__UpperCamelCase , __UpperCamelCase , has_lm_head=__UpperCamelCase ) # load HuggingFace model A__ = BeitForMaskedImageModeling(__UpperCamelCase ) if has_lm_head else BeitForImageClassification(__UpperCamelCase ) model.eval() model.load_state_dict(__UpperCamelCase ) # Check outputs on an image A__ = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__UpperCamelCase ) A__ = prepare_img() A__ = image_processor(images=__UpperCamelCase , return_tensors='pt' ) A__ = encoding['pixel_values'] A__ = model(__UpperCamelCase ) A__ = outputs.logits # verify logits A__ = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 196, 8_192] assert logits.shape == torch.Size(__UpperCamelCase ), "Shape of logits not as expected" Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if push_to_hub: if has_lm_head: A__ = 'dit-base' if 'base' in checkpoint_url else 'dit-large' else: A__ = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip' image_processor.push_to_hub( repo_path_or_name=Path(__UpperCamelCase , __UpperCamelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=__UpperCamelCase , ) model.push_to_hub( repo_path_or_name=Path(__UpperCamelCase , __UpperCamelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=__UpperCamelCase , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
9
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase : """simple docstring""" def __init__( self : Dict , _snake_case : Union[str, Any] , _snake_case : Optional[Any]=12 , _snake_case : Any=7 , _snake_case : List[str]=True , _snake_case : int=True , _snake_case : int=True , _snake_case : Tuple=99 , _snake_case : List[Any]=32 , _snake_case : Optional[int]=32 , _snake_case : List[str]=2 , _snake_case : List[str]=4 , _snake_case : List[Any]=37 , _snake_case : Union[str, Any]=0.1 , _snake_case : Tuple=0.1 , _snake_case : Dict=5_12 , _snake_case : Union[str, Any]=0.02 , _snake_case : Any=0 , _snake_case : Optional[Any]=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = projection_dim A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = dropout A__ = attention_dropout A__ = max_position_embeddings A__ = initializer_range A__ = scope A__ = bos_token_id def _a ( self : Optional[Any] ): """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: A__ = input_mask.numpy() A__ , A__ = input_mask.shape A__ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_snake_case ): A__ = 1 A__ = 0 A__ = self.get_config() return config, input_ids, tf.convert_to_tensor(_snake_case ) def _a ( self : Tuple ): """simple docstring""" return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _a ( self : int , _snake_case : Union[str, Any] , _snake_case : Any , _snake_case : List[str] ): """simple docstring""" A__ = TFBlipTextModel(config=_snake_case ) A__ = model(_snake_case , attention_mask=_snake_case , training=_snake_case ) A__ = model(_snake_case , training=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _a ( self : str ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Tuple = (TFBlipTextModel,) if is_tf_available() else () A__ : Optional[int] = False A__ : Union[str, Any] = False A__ : Union[str, Any] = False def _a ( self : Any ): """simple docstring""" A__ = BlipTextModelTester(self ) A__ = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def _a ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Union[str, Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def _a ( self : Tuple ): """simple docstring""" pass def _a ( self : int ): """simple docstring""" pass @unittest.skip(reason='Blip does not use inputs_embeds' ) def _a ( self : Any ): """simple docstring""" pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _a ( self : str ): """simple docstring""" pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _a ( self : Optional[Any] ): """simple docstring""" pass @slow def _a ( self : Union[str, Any] ): """simple docstring""" for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFBlipTextModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def _a ( self : int , _snake_case : int=True ): """simple docstring""" super().test_pt_tf_model_equivalence(allow_missing_keys=_snake_case )
9
1
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path SCREAMING_SNAKE_CASE__ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) SCREAMING_SNAKE_CASE__ = [ord(letter) for letter in string.ascii_lowercase] SCREAMING_SNAKE_CASE__ = {ord(char) for char in VALID_CHARS} SCREAMING_SNAKE_CASE__ = ["the", "be", "to", "of", "and", "in", "that", "have"] def A ( __UpperCamelCase , __UpperCamelCase ) -> str | None: A__ = "" A__ = 42 A__ = 42 A__ = 42 for keychar, cipherchar in zip(cycle(__UpperCamelCase ) , __UpperCamelCase ): A__ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__UpperCamelCase ) return decoded def A ( __UpperCamelCase ) -> list[str]: A__ = [] for key in product(__UpperCamelCase , repeat=3 ): A__ = try_key(__UpperCamelCase , __UpperCamelCase ) if encoded is not None: possibles.append(__UpperCamelCase ) return possibles def A ( __UpperCamelCase , __UpperCamelCase ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def A ( __UpperCamelCase = "p059_cipher.txt" ) -> int: A__ = 42 A__ = 42 A__ = 42 A__ = 42 A__ = Path(__UpperCamelCase ).parent.joinpath(__UpperCamelCase ).read_text(encoding='utf-8' ) A__ = [int(__UpperCamelCase ) for number in data.strip().split(',' )] A__ = filter_valid_chars(__UpperCamelCase ) for common_word in COMMON_WORDS: A__ = filter_common_word(__UpperCamelCase , __UpperCamelCase ) if len(__UpperCamelCase ) == 1: break A__ = possibles[0] return sum(ord(__UpperCamelCase ) for char in decoded_text ) if __name__ == "__main__": print(f'{solution() = }')
9
from __future__ import annotations from typing import Any def A ( __UpperCamelCase ) -> int: if not postfix_notation: return 0 A__ = {'+', '-', '*', '/'} A__ = [] for token in postfix_notation: if token in operations: A__ , A__ = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(__UpperCamelCase ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
9
1
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def _a ( self : Any ): """simple docstring""" A__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_snake_case , 'tf_padding' ) ) self.parent.assertTrue(hasattr(_snake_case , 'depth_multiplier' ) ) class __lowerCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , _snake_case : Optional[int] , _snake_case : Tuple=13 , _snake_case : int=3 , _snake_case : Optional[Any]=32 , _snake_case : List[str]=0.25 , _snake_case : Optional[int]=8 , _snake_case : List[Any]=8 , _snake_case : Dict=6 , _snake_case : List[str]=32 , _snake_case : Tuple=True , _snake_case : Union[str, Any]=True , _snake_case : Any=True , _snake_case : List[str]="relu6" , _snake_case : Optional[int]=12_80 , _snake_case : List[Any]=0.1 , _snake_case : Optional[int]=0.02 , _snake_case : List[Any]=True , _snake_case : List[Any]=True , _snake_case : List[str]=10 , _snake_case : str=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = num_channels A__ = image_size A__ = depth_multiplier A__ = depth_divisible_by A__ = min_depth A__ = expand_ratio A__ = tf_padding A__ = output_stride A__ = first_layer_is_expansion A__ = finegrained_output A__ = hidden_act A__ = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) A__ = classifier_dropout_prob A__ = use_labels A__ = is_training A__ = num_labels A__ = initializer_range A__ = scope def _a ( self : Optional[Any] ): """simple docstring""" A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.num_labels ) A__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A__ = self.get_config() return config, pixel_values, labels, pixel_labels def _a ( self : Optional[Any] ): """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _a ( self : Tuple , _snake_case : List[Any] , _snake_case : Tuple , _snake_case : Optional[int] , _snake_case : Optional[Any] ): """simple docstring""" A__ = MobileNetVaModel(config=_snake_case ) model.to(_snake_case ) model.eval() A__ = model(_snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def _a ( self : List[str] , _snake_case : Dict , _snake_case : Optional[Any] , _snake_case : Optional[Any] , _snake_case : List[str] ): """simple docstring""" A__ = self.num_labels A__ = MobileNetVaForImageClassification(_snake_case ) model.to(_snake_case ) model.eval() A__ = model(_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Optional[Any] , _snake_case : List[str] , _snake_case : Optional[int] , _snake_case : Tuple , _snake_case : Optional[Any] ): """simple docstring""" A__ = self.num_labels A__ = MobileNetVaForSemanticSegmentation(_snake_case ) model.to(_snake_case ) model.eval() A__ = model(_snake_case ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) A__ = model(_snake_case , labels=_snake_case ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _a ( self : Optional[Any] ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ , A__ = config_and_inputs A__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Optional[Any] = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) A__ : str = ( { "feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification, "image-segmentation": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) A__ : List[Any] = False A__ : Any = False A__ : Optional[Any] = False A__ : str = False def _a ( self : List[str] ): """simple docstring""" A__ = MobileNetVaModelTester(self ) A__ = MobileNetVaConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case ) def _a ( self : Union[str, Any] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='MobileNetV2 does not use inputs_embeds' ) def _a ( self : Optional[Any] ): """simple docstring""" pass @unittest.skip(reason='MobileNetV2 does not support input and output embeddings' ) def _a ( self : List[str] ): """simple docstring""" pass @unittest.skip(reason='MobileNetV2 does not output attentions' ) def _a ( self : Any ): """simple docstring""" pass def _a ( self : str ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(_snake_case ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _snake_case ) def _a ( self : str ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def _a ( self : str ): """simple docstring""" def check_hidden_states_output(_snake_case : Any , _snake_case : List[str] , _snake_case : Any ): A__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) A__ = outputs.hidden_states A__ = 16 self.assertEqual(len(_snake_case ) , _snake_case ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) def _a ( self : Tuple ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) def _a ( self : List[str] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_snake_case ) @slow def _a ( self : Dict ): """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = MobileNetVaModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def A ( ) -> Tuple: A__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self : Optional[int] ): """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v2_1.0_224' ) if is_vision_available() else None ) @slow def _a ( self : Any ): """simple docstring""" A__ = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v2_1.0_224' ).to(_snake_case ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='pt' ).to(_snake_case ) # forward pass with torch.no_grad(): A__ = model(**_snake_case ) # verify the logits A__ = torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape , _snake_case ) A__ = torch.tensor([0.2445, -1.1993, 0.1905] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1E-4 ) ) @slow def _a ( self : List[Any] ): """simple docstring""" A__ = MobileNetVaForSemanticSegmentation.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) A__ = model.to(_snake_case ) A__ = MobileNetVaImageProcessor.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='pt' ).to(_snake_case ) # forward pass with torch.no_grad(): A__ = model(**_snake_case ) A__ = outputs.logits # verify the logits A__ = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , _snake_case ) A__ = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=_snake_case , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _snake_case , atol=1E-4 ) )
9
from __future__ import annotations def A ( __UpperCamelCase = 4 ) -> list[list[int]]: A__ = abs(__UpperCamelCase ) or 4 return [[1 + x + y * row_size for x in range(__UpperCamelCase )] for y in range(__UpperCamelCase )] def A ( __UpperCamelCase ) -> list[list[int]]: return reverse_row(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_column(matrix)) def A ( __UpperCamelCase ) -> list[list[int]]: return reverse_row(reverse_column(__UpperCamelCase ) ) # OR.. reverse_column(reverse_row(matrix)) def A ( __UpperCamelCase ) -> list[list[int]]: return reverse_column(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_row(matrix)) def A ( __UpperCamelCase ) -> list[list[int]]: A__ = [list(__UpperCamelCase ) for x in zip(*__UpperCamelCase )] return matrix def A ( __UpperCamelCase ) -> list[list[int]]: A__ = matrix[::-1] return matrix def A ( __UpperCamelCase ) -> list[list[int]]: A__ = [x[::-1] for x in matrix] return matrix def A ( __UpperCamelCase ) -> None: for i in matrix: print(*__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 90 counterclockwise:\n''') print_matrix(rotate_aa(matrix)) SCREAMING_SNAKE_CASE__ = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 180:\n''') print_matrix(rotate_aaa(matrix)) SCREAMING_SNAKE_CASE__ = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 270 counterclockwise:\n''') print_matrix(rotate_aaa(matrix))
9
1
import pickle import numpy as np from matplotlib import pyplot as plt class __lowerCAmelCase : """simple docstring""" def __init__( self : int , _snake_case : Optional[Any] , _snake_case : Tuple , _snake_case : int , _snake_case : List[Any] , _snake_case : Union[str, Any] , _snake_case : List[str]=0.2 , _snake_case : Any=0.2 ): """simple docstring""" A__ = bp_numa A__ = bp_numa A__ = bp_numa A__ = conva_get[:2] A__ = conva_get[2] A__ = size_pa A__ = rate_w A__ = rate_t A__ = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] A__ = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) A__ = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) A__ = -2 * np.random.rand(self.conva[1] ) + 1 A__ = -2 * np.random.rand(self.num_bpa ) + 1 A__ = -2 * np.random.rand(self.num_bpa ) + 1 def _a ( self : Optional[int] , _snake_case : Optional[Any] ): """simple docstring""" A__ = { 'num_bp1': self.num_bpa, 'num_bp2': self.num_bpa, 'num_bp3': self.num_bpa, 'conv1': self.conva, 'step_conv1': self.step_conva, 'size_pooling1': self.size_poolinga, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conva, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conva, 'thre_bp2': self.thre_bpa, 'thre_bp3': self.thre_bpa, } with open(_snake_case , 'wb' ) as f: pickle.dump(_snake_case , _snake_case ) print(F'''Model saved: {save_path}''' ) @classmethod def _a ( cls : Union[str, Any] , _snake_case : int ): """simple docstring""" with open(_snake_case , 'rb' ) as f: A__ = pickle.load(_snake_case ) # noqa: S301 A__ = model_dic.get('conv1' ) conv_get.append(model_dic.get('step_conv1' ) ) A__ = model_dic.get('size_pooling1' ) A__ = model_dic.get('num_bp1' ) A__ = model_dic.get('num_bp2' ) A__ = model_dic.get('num_bp3' ) A__ = model_dic.get('rate_weight' ) A__ = model_dic.get('rate_thre' ) # create model instance A__ = CNN(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) # modify model parameter A__ = model_dic.get('w_conv1' ) A__ = model_dic.get('wkj' ) A__ = model_dic.get('vji' ) A__ = model_dic.get('thre_conv1' ) A__ = model_dic.get('thre_bp2' ) A__ = model_dic.get('thre_bp3' ) return conv_ins def _a ( self : int , _snake_case : List[Any] ): """simple docstring""" return 1 / (1 + np.exp(-1 * x )) def _a ( self : int , _snake_case : str ): """simple docstring""" return round(_snake_case , 3 ) def _a ( self : Any , _snake_case : str , _snake_case : List[str] , _snake_case : Optional[int] , _snake_case : Any , _snake_case : List[Any] ): """simple docstring""" A__ = convs[0] A__ = convs[1] A__ = np.shape(_snake_case )[0] # get the data slice of original image data, data_focus A__ = [] for i_focus in range(0 , size_data - size_conv + 1 , _snake_case ): for j_focus in range(0 , size_data - size_conv + 1 , _snake_case ): A__ = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_snake_case ) # calculate the feature map of every single kernel, and saved as list of matrix A__ = [] A__ = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_snake_case ): A__ = [] for i_focus in range(len(_snake_case ) ): A__ = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_snake_case ) ) A__ = np.asmatrix(_snake_case ).reshape( _snake_case , _snake_case ) data_featuremap.append(_snake_case ) # expanding the data slice to One dimenssion A__ = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_snake_case ) ) A__ = np.asarray(_snake_case ) return focus_list, data_featuremap def _a ( self : Optional[int] , _snake_case : List[str] , _snake_case : Tuple , _snake_case : int="average_pool" ): """simple docstring""" A__ = len(featuremaps[0] ) A__ = int(size_map / size_pooling ) A__ = [] for i_map in range(len(_snake_case ) ): A__ = featuremaps[i_map] A__ = [] for i_focus in range(0 , _snake_case , _snake_case ): for j_focus in range(0 , _snake_case , _snake_case ): A__ = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_snake_case ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_snake_case ) ) A__ = np.asmatrix(_snake_case ).reshape(_snake_case , _snake_case ) featuremap_pooled.append(_snake_case ) return featuremap_pooled def _a ( self : str , _snake_case : List[Any] ): """simple docstring""" A__ = [] for i in range(len(_snake_case ) ): A__ = np.shape(data[i] ) A__ = data[i].reshape(1 , shapes[0] * shapes[1] ) A__ = data_listed.getA().tolist()[0] data_expanded.extend(_snake_case ) A__ = np.asarray(_snake_case ) return data_expanded def _a ( self : Optional[Any] , _snake_case : Optional[Any] ): """simple docstring""" A__ = np.asarray(_snake_case ) A__ = np.shape(_snake_case ) A__ = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def _a ( self : List[str] , _snake_case : List[str] , _snake_case : List[str] , _snake_case : Tuple , _snake_case : Optional[Any] , _snake_case : Optional[int] ): """simple docstring""" A__ = [] A__ = 0 for i_map in range(_snake_case ): A__ = np.ones((size_map, size_map) ) for i in range(0 , _snake_case , _snake_case ): for j in range(0 , _snake_case , _snake_case ): A__ = pd_pool[ i_pool ] A__ = i_pool + 1 A__ = np.multiply( _snake_case , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_snake_case ) return pd_all def _a ( self : List[str] , _snake_case : Union[str, Any] , _snake_case : List[Any] , _snake_case : str , _snake_case : Optional[int] , _snake_case : List[str] , _snake_case : List[Any]=bool ): """simple docstring""" print('----------------------Start Training-------------------------' ) print((' - - Shape: Train_Data ', np.shape(_snake_case )) ) print((' - - Shape: Teach_Data ', np.shape(_snake_case )) ) A__ = 0 A__ = [] A__ = 1_00_00 while rp < n_repeat and mse >= error_accuracy: A__ = 0 print(F'''-------------Learning Time {rp}--------------''' ) for p in range(len(_snake_case ) ): # print('------------Learning Image: %d--------------'%p) A__ = np.asmatrix(datas_train[p] ) A__ = np.asarray(datas_teach[p] ) A__ , A__ = self.convolute( _snake_case , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) A__ = self.pooling(_snake_case , self.size_poolinga ) A__ = np.shape(_snake_case ) A__ = self._expand(_snake_case ) A__ = data_bp_input A__ = np.dot(_snake_case , self.vji.T ) - self.thre_bpa A__ = self.sig(_snake_case ) A__ = np.dot(_snake_case , self.wkj.T ) - self.thre_bpa A__ = self.sig(_snake_case ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- A__ = np.multiply( (data_teach - bp_outa) , np.multiply(_snake_case , (1 - bp_outa) ) ) A__ = np.multiply( np.dot(_snake_case , self.wkj ) , np.multiply(_snake_case , (1 - bp_outa) ) ) A__ = np.dot(_snake_case , self.vji ) A__ = pd_i_all / (self.size_poolinga * self.size_poolinga) A__ = pd_conva_pooled.T.getA().tolist() A__ = self._calculate_gradient_from_pool( _snake_case , _snake_case , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): A__ = self._expand_mat(pd_conva_all[k_conv] ) A__ = self.rate_weight * np.dot(_snake_case , _snake_case ) A__ = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) A__ = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer A__ = self.wkj + pd_k_all.T * bp_outa * self.rate_weight A__ = self.vji + pd_j_all.T * bp_outa * self.rate_weight A__ = self.thre_bpa - pd_k_all * self.rate_thre A__ = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image A__ = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) A__ = rp + 1 A__ = error_count / patterns all_mse.append(_snake_case ) def draw_error(): A__ = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_snake_case , '+-' ) plt.plot(_snake_case , 'r--' ) plt.xlabel('Learning Times' ) plt.ylabel('All_mse' ) plt.grid(_snake_case , alpha=0.5 ) plt.show() print('------------------Training Complished---------------------' ) print((' - - Training epoch: ', rp, F''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def _a ( self : Union[str, Any] , _snake_case : Any ): """simple docstring""" A__ = [] print('-------------------Start Testing-------------------------' ) print((' - - Shape: Test_Data ', np.shape(_snake_case )) ) for p in range(len(_snake_case ) ): A__ = np.asmatrix(datas_test[p] ) A__ , A__ = self.convolute( _snake_case , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) A__ = self.pooling(_snake_case , self.size_poolinga ) A__ = self._expand(_snake_case ) A__ = data_bp_input A__ = bp_outa * self.vji.T - self.thre_bpa A__ = self.sig(_snake_case ) A__ = bp_outa * self.wkj.T - self.thre_bpa A__ = self.sig(_snake_case ) produce_out.extend(bp_outa.getA().tolist() ) A__ = [list(map(self.do_round , _snake_case ) ) for each in produce_out] return np.asarray(_snake_case ) def _a ( self : Any , _snake_case : Any ): """simple docstring""" A__ = np.asmatrix(_snake_case ) A__ , A__ = self.convolute( _snake_case , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) A__ = self.pooling(_snake_case , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
9
from __future__ import annotations from fractions import Fraction def A ( __UpperCamelCase , __UpperCamelCase ) -> bool: return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def A ( __UpperCamelCase ) -> list[str]: A__ = [] A__ = 11 A__ = int('1' + '0' * digit_len ) for num in range(__UpperCamelCase , __UpperCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(__UpperCamelCase , __UpperCamelCase ): solutions.append(f'''{num}/{den}''' ) den += 1 num += 1 A__ = 10 return solutions def A ( __UpperCamelCase = 2 ) -> int: A__ = 1.0 for fraction in fraction_list(__UpperCamelCase ): A__ = Fraction(__UpperCamelCase ) result *= frac.denominator / frac.numerator return int(__UpperCamelCase ) if __name__ == "__main__": print(solution())
9
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''adapter_layer''': '''encoder.layers.*.adapter_layer''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', '''pooling_layer.linear''': '''projector''', '''pooling_layer.projection''': '''classifier''', } SCREAMING_SNAKE_CASE__ = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''projector''', '''classifier''', ] def A ( __UpperCamelCase ) -> Optional[int]: A__ = {} with open(__UpperCamelCase , 'r' ) as file: for line_number, line in enumerate(__UpperCamelCase ): A__ = line.strip() if line: A__ = line.split() A__ = line_number A__ = words[0] A__ = value return result def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Tuple: for attribute in key.split('.' ): A__ = getattr(__UpperCamelCase , __UpperCamelCase ) A__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__UpperCamelCase ): A__ = PARAM_MAPPING[full_name.split('.' )[-1]] A__ = 'param' if weight_type is not None and weight_type != "param": A__ = getattr(__UpperCamelCase , __UpperCamelCase ).shape elif weight_type is not None and weight_type == "param": A__ = hf_pointer for attribute in hf_param_name.split('.' ): A__ = getattr(__UpperCamelCase , __UpperCamelCase ) A__ = shape_pointer.shape # let's reduce dimension A__ = value[0] else: A__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": A__ = value elif weight_type == "weight_g": A__ = value elif weight_type == "weight_v": A__ = value elif weight_type == "bias": A__ = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): A__ = getattr(__UpperCamelCase , __UpperCamelCase ) A__ = value else: A__ = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Tuple: A__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__UpperCamelCase ): A__ = PARAM_MAPPING[full_name.split('.' )[-1]] A__ = 'param' if weight_type is not None and weight_type != "param": A__ = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": A__ = '.'.join([key, hf_param_name] ) else: A__ = key A__ = value if 'lm_head' in full_key else value[0] SCREAMING_SNAKE_CASE__ = { '''W_a''': '''linear_1.weight''', '''W_b''': '''linear_2.weight''', '''b_a''': '''linear_1.bias''', '''b_b''': '''linear_2.bias''', '''ln_W''': '''norm.weight''', '''ln_b''': '''norm.bias''', } def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None ) -> Union[str, Any]: A__ = False for key, mapped_key in MAPPING.items(): A__ = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: A__ = True if "*" in mapped_key: A__ = name.split(__UpperCamelCase )[0].split('.' )[-2] A__ = mapped_key.replace('*' , __UpperCamelCase ) if "weight_g" in name: A__ = 'weight_g' elif "weight_v" in name: A__ = 'weight_v' elif "bias" in name: A__ = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj A__ = 'weight' else: A__ = None if hf_dict is not None: rename_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: set_recursively(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return is_used return is_used def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[str]: A__ = [] A__ = fairseq_model.state_dict() A__ = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): A__ = False if "conv_layers" in name: load_conv_layer( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , hf_model.config.feat_extract_norm == 'group' , ) A__ = True else: A__ = load_wavaveca_layer(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if not is_used: unused_weights.append(__UpperCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: A__ = full_name.split('conv_layers.' )[-1] A__ = name.split('.' ) A__ = int(items[0] ) A__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) A__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) A__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) A__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) A__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__UpperCamelCase ) @torch.no_grad() def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=False ) -> int: if config_path is not None: A__ = WavaVecaConfig.from_pretrained(__UpperCamelCase ) else: A__ = WavaVecaConfig() if is_seq_class: A__ = read_txt_into_dict(__UpperCamelCase ) A__ = idalabel A__ = WavaVecaForSequenceClassification(__UpperCamelCase ) A__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=__UpperCamelCase , return_attention_mask=__UpperCamelCase , ) feature_extractor.save_pretrained(__UpperCamelCase ) elif is_finetuned: if dict_path: A__ = Dictionary.load(__UpperCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A__ = target_dict.pad_index A__ = target_dict.bos_index A__ = target_dict.eos_index A__ = len(target_dict.symbols ) A__ = os.path.join(__UpperCamelCase , 'vocab.json' ) if not os.path.isdir(__UpperCamelCase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(__UpperCamelCase ) ) return os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) A__ = target_dict.indices # fairseq has the <pad> and <s> switched A__ = 0 A__ = 1 with open(__UpperCamelCase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(__UpperCamelCase , __UpperCamelCase ) A__ = WavaVecaCTCTokenizer( __UpperCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=__UpperCamelCase , ) A__ = True if config.feat_extract_norm == 'layer' else False A__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=__UpperCamelCase , return_attention_mask=__UpperCamelCase , ) A__ = WavaVecaProcessor(feature_extractor=__UpperCamelCase , tokenizer=__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) A__ = WavaVecaForCTC(__UpperCamelCase ) else: A__ = WavaVecaForPreTraining(__UpperCamelCase ) if is_finetuned or is_seq_class: A__ , A__ , A__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: A__ = argparse.Namespace(task='audio_pretraining' ) A__ = fairseq.tasks.setup_task(__UpperCamelCase ) A__ , A__ , A__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__UpperCamelCase ) A__ = model[0].eval() recursively_load_weights(__UpperCamelCase , __UpperCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) parser.add_argument( '''--is_seq_class''', action='''store_true''', help='''Whether the model to convert is a fine-tuned sequence classification model or not''', ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
9
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
9
1
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def A ( __UpperCamelCase ) -> List[str]: # picklable for multiprocessing return x.sum() def A ( __UpperCamelCase ) -> Optional[Any]: # picklable for multiprocessing return i + 1 @dataclass class __lowerCAmelCase : """simple docstring""" A__ : int A__ : str class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def _a ( self : List[str] ): """simple docstring""" A__ = {} A__ = [] A__ = 1 A__ = [1, 2] A__ = {'a': 1, 'b': 2} A__ = {'a': [1, 2], 'b': [3, 4]} A__ = {'a': {'1': 1}, 'b': 2} A__ = {'a': 1, 'b': 2, 'c': 3, 'd': 4} A__ = {} A__ = [] A__ = 2 A__ = [2, 3] A__ = {'a': 2, 'b': 3} A__ = {'a': [2, 3], 'b': [4, 5]} A__ = {'a': {'1': 2}, 'b': 3} A__ = {'a': 2, 'b': 3, 'c': 4, 'd': 5} self.assertEqual(map_nested(_snake_case , _snake_case ) , _snake_case ) self.assertEqual(map_nested(_snake_case , _snake_case ) , _snake_case ) self.assertEqual(map_nested(_snake_case , _snake_case ) , _snake_case ) self.assertEqual(map_nested(_snake_case , _snake_case ) , _snake_case ) self.assertEqual(map_nested(_snake_case , _snake_case ) , _snake_case ) self.assertEqual(map_nested(_snake_case , _snake_case ) , _snake_case ) self.assertEqual(map_nested(_snake_case , _snake_case ) , _snake_case ) self.assertEqual(map_nested(_snake_case , _snake_case ) , _snake_case ) A__ = 2 self.assertEqual(map_nested(_snake_case , _snake_case , num_proc=_snake_case ) , _snake_case ) self.assertEqual(map_nested(_snake_case , _snake_case , num_proc=_snake_case ) , _snake_case ) self.assertEqual(map_nested(_snake_case , _snake_case , num_proc=_snake_case ) , _snake_case ) self.assertEqual(map_nested(_snake_case , _snake_case , num_proc=_snake_case ) , _snake_case ) self.assertEqual(map_nested(_snake_case , _snake_case , num_proc=_snake_case ) , _snake_case ) self.assertEqual(map_nested(_snake_case , _snake_case , num_proc=_snake_case ) , _snake_case ) self.assertEqual(map_nested(_snake_case , _snake_case , num_proc=_snake_case ) , _snake_case ) self.assertEqual(map_nested(_snake_case , _snake_case , num_proc=_snake_case ) , _snake_case ) A__ = {'a': np.eye(2 ), 'b': np.zeros(3 ), 'c': np.ones(2 )} A__ = {'a': 2, 'b': 0, 'c': 2} A__ = { 'a': np.eye(2 ).astype(_snake_case ), 'b': np.zeros(3 ).astype(_snake_case ), 'c': np.ones(2 ).astype(_snake_case ), } self.assertEqual(map_nested(_snake_case , _snake_case , map_numpy=_snake_case ) , _snake_case ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_snake_case , _snake_case , map_numpy=_snake_case ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(_snake_case , _snake_case , map_numpy=_snake_case , num_proc=_snake_case ) , _snake_case ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_snake_case , _snake_case , map_numpy=_snake_case , num_proc=_snake_case ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(_snake_case ): # can't pickle a local lambda map_nested(lambda _snake_case : x + 1 , _snake_case , num_proc=_snake_case ) def _a ( self : Optional[int] ): """simple docstring""" A__ = {'a': 1, 'b': 2} A__ = {'a': 3, 'b': 4} A__ = {'a': 5, 'b': 6} A__ = sorted([('a', (1, 3, 5)), ('b', (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(_snake_case , _snake_case , _snake_case ) ) , _snake_case ) def _a ( self : Tuple ): """simple docstring""" class __lowerCAmelCase : """simple docstring""" A__ : int = "bar" A__ = Foo() self.assertEqual(foo.my_attr , 'bar' ) with temporary_assignment(_snake_case , 'my_attr' , 'BAR' ): self.assertEqual(foo.my_attr , 'BAR' ) self.assertEqual(foo.my_attr , 'bar' ) @pytest.mark.parametrize( 'iterable_length, num_proc, expected_num_proc' , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[str]: with patch('datasets.utils.py_utils._single_map_nested' ) as mock_single_map_nested, patch( 'datasets.parallel.parallel.Pool' ) as mock_multiprocessing_pool: A__ = {f'''{i}''': i for i in range(__UpperCamelCase )} A__ = map_nested(lambda __UpperCamelCase : x + 10 , __UpperCamelCase , num_proc=__UpperCamelCase , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" @require_tf def _a ( self : Optional[int] ): """simple docstring""" import tensorflow as tf from tensorflow.keras import layers A__ = layers.Dense(2 ) def gen_random_output(): A__ = tf.random.uniform((1, 3) ) return model(_snake_case ).numpy() with temp_seed(42 , set_tensorflow=_snake_case ): A__ = gen_random_output() with temp_seed(42 , set_tensorflow=_snake_case ): A__ = gen_random_output() A__ = gen_random_output() np.testing.assert_equal(_snake_case , _snake_case ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def _a ( self : Optional[Any] ): """simple docstring""" import torch def gen_random_output(): A__ = torch.nn.Linear(3 , 2 ) A__ = torch.rand(1 , 3 ) return model(_snake_case ).detach().numpy() with temp_seed(42 , set_pytorch=_snake_case ): A__ = gen_random_output() with temp_seed(42 , set_pytorch=_snake_case ): A__ = gen_random_output() A__ = gen_random_output() np.testing.assert_equal(_snake_case , _snake_case ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def _a ( self : List[Any] ): """simple docstring""" def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): A__ = gen_random_output() with temp_seed(42 ): A__ = gen_random_output() A__ = gen_random_output() np.testing.assert_equal(_snake_case , _snake_case ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize('input_data' , [{}] ) def A ( __UpperCamelCase ) -> List[str]: A__ = NestedDataStructure(__UpperCamelCase ).data assert output_data == input_data @pytest.mark.parametrize( 'data, expected_output' , [ ({}, []), ([], []), ('foo', ['foo']), (['foo', 'bar'], ['foo', 'bar']), ([['foo', 'bar']], ['foo', 'bar']), ([[['foo'], ['bar']]], ['foo', 'bar']), ([[['foo'], 'bar']], ['foo', 'bar']), ({'a': 1, 'b': 2}, [1, 2]), ({'a': [1, 2], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[1, 2]], 'b': [[3, 4]]}, [1, 2, 3, 4]), ({'a': [[1, 2]], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [[[3], [4]]]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [[3, 4]]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [3, [4]]}, [1, 2, 3, 4]), ({'a': {'1': 1}, 'b': 2}, [1, 2]), ({'a': {'1': [1]}, 'b': 2}, [1, 2]), ({'a': {'1': [1]}, 'b': [2]}, [1, 2]), ] , ) def A ( __UpperCamelCase , __UpperCamelCase ) -> str: A__ = NestedDataStructure(__UpperCamelCase ).flatten() assert output == expected_output def A ( ) -> Tuple: A__ = A(x=1 , y='foobar' ) A__ = {'x': 1, 'y': 'foobar'} assert asdict(__UpperCamelCase ) == expected_output A__ = {'a': {'b': A(x=10 , y='foo' )}, 'c': [A(x=20 , y='bar' )]} A__ = {'a': {'b': {'x': 10, 'y': 'foo'}}, 'c': [{'x': 20, 'y': 'bar'}]} assert asdict(__UpperCamelCase ) == expected_output with pytest.raises(__UpperCamelCase ): asdict([1, A(x=10 , y='foo' )] ) def A ( __UpperCamelCase ) -> str: return text.split() def A ( __UpperCamelCase ) -> Tuple: yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def A ( ) -> Any: with Pool(2 ) as pool: A__ = list(iflatmap_unordered(__UpperCamelCase , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 10 ) ) assert out.count('hello' ) == 10 assert out.count('there' ) == 10 assert len(__UpperCamelCase ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: A__ = list(iflatmap_unordered(__UpperCamelCase , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 10 ) ) assert out.count('hello' ) == 10 assert out.count('there' ) == 10 assert len(__UpperCamelCase ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: A__ = [] for yield_time, content in iflatmap_unordered( __UpperCamelCase , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{'content': 'a'}, {'content': 'b'}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(__UpperCamelCase ) assert out.count('a' ) == 2 assert out.count('b' ) == 2 assert len(__UpperCamelCase ) == 4
9
SCREAMING_SNAKE_CASE__ = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' SCREAMING_SNAKE_CASE__ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] SCREAMING_SNAKE_CASE__ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
9
1
from abc import ABC, abstractmethod from argparse import ArgumentParser class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" @staticmethod @abstractmethod def _a ( _snake_case : ArgumentParser ): """simple docstring""" raise NotImplementedError() @abstractmethod def _a ( self : Union[str, Any] ): """simple docstring""" raise NotImplementedError()
9
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : """simple docstring""" @staticmethod def _a ( *_snake_case : Any , **_snake_case : Optional[int] ): """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" A__ : Union[str, Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def _a ( self : List[Any] , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : Union[str, Any] ): """simple docstring""" A__ = pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' ) A__ = [ { 'image': Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'question': 'How many cats are there?', }, { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'question': 'How many cats are there?', }, ] return vqa_pipeline, examples def _a ( self : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : List[str] ): """simple docstring""" A__ = vqa_pipeline(_snake_case , top_k=1 ) self.assertEqual( _snake_case , [ [{'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}], [{'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}], ] , ) @require_torch def _a ( self : Any ): """simple docstring""" A__ = pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' ) A__ = './tests/fixtures/tests_samples/COCO/000000039769.png' A__ = 'How many cats are there?' A__ = vqa_pipeline(image=_snake_case , question='How many cats are there?' , top_k=2 ) self.assertEqual( _snake_case , [{'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}, {'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}] ) A__ = vqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( _snake_case , [{'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}, {'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}] ) @slow @require_torch def _a ( self : Any ): """simple docstring""" A__ = pipeline('visual-question-answering' , model='dandelin/vilt-b32-finetuned-vqa' ) A__ = './tests/fixtures/tests_samples/COCO/000000039769.png' A__ = 'How many cats are there?' A__ = vqa_pipeline(image=_snake_case , question=_snake_case , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}] ) A__ = vqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}] ) A__ = vqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [[{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}]] * 2 , ) @require_tf @unittest.skip('Visual question answering not implemented in TF' ) def _a ( self : Dict ): """simple docstring""" pass
9
1
import os import string import sys SCREAMING_SNAKE_CASE__ = 1 << 8 SCREAMING_SNAKE_CASE__ = { '''tab''': ord('''\t'''), '''newline''': ord('''\r'''), '''esc''': 2_7, '''up''': 6_5 + ARROW_KEY_FLAG, '''down''': 6_6 + ARROW_KEY_FLAG, '''right''': 6_7 + ARROW_KEY_FLAG, '''left''': 6_8 + ARROW_KEY_FLAG, '''mod_int''': 9_1, '''undefined''': sys.maxsize, '''interrupt''': 3, '''insert''': 5_0, '''delete''': 5_1, '''pg_up''': 5_3, '''pg_down''': 5_4, } SCREAMING_SNAKE_CASE__ = KEYMAP['''up'''] SCREAMING_SNAKE_CASE__ = KEYMAP['''left'''] if sys.platform == "win32": SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = { b'''\xe0H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, b'''\x00H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, b'''\xe0P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, b'''\x00P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, b'''\xe0M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, b'''\x00M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, b'''\xe0K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, b'''\x00K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, } for i in range(1_0): SCREAMING_SNAKE_CASE__ = ord(str(i)) def A ( ) -> Union[str, Any]: if os.name == "nt": import msvcrt A__ = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__UpperCamelCase ) == 0: # Read the keystroke A__ = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): A__ = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: A__ = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(__UpperCamelCase ) if ord(__UpperCamelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) A__ = chr(KEYMAP['esc'] ) except KeyError: A__ = cha[1] else: A__ = ch.decode(__UpperCamelCase ) else: A__ = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty A__ = sys.stdin.fileno() A__ = termios.tcgetattr(__UpperCamelCase ) try: tty.setraw(__UpperCamelCase ) A__ = sys.stdin.read(1 ) finally: termios.tcsetattr(__UpperCamelCase , termios.TCSADRAIN , __UpperCamelCase ) return ch def A ( ) -> Dict: A__ = get_raw_chars() if ord(__UpperCamelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__UpperCamelCase ) == KEYMAP["esc"]: A__ = get_raw_chars() if ord(__UpperCamelCase ) == KEYMAP["mod_int"]: A__ = get_raw_chars() if ord(__UpperCamelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__UpperCamelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__UpperCamelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
9
def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: if exponent == 1: return base if exponent % 2 == 0: A__ = _modexpt(__UpperCamelCase , exponent // 2 , __UpperCamelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__UpperCamelCase , exponent - 1 , __UpperCamelCase )) % modulo_value def A ( __UpperCamelCase = 1_777 , __UpperCamelCase = 1_855 , __UpperCamelCase = 8 ) -> int: A__ = base for _ in range(1 , __UpperCamelCase ): A__ = _modexpt(__UpperCamelCase , __UpperCamelCase , 10**digits ) return result if __name__ == "__main__": print(f'{solution() = }')
9
1
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def A ( __UpperCamelCase ) -> List[Any]: print('Loading config file...' ) def flatten_yaml_as_dict(__UpperCamelCase , __UpperCamelCase="" , __UpperCamelCase="." ): A__ = [] for k, v in d.items(): A__ = parent_key + sep + k if parent_key else k if isinstance(__UpperCamelCase , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(__UpperCamelCase , __UpperCamelCase , sep=__UpperCamelCase ).items() ) else: items.append((new_key, v) ) return dict(__UpperCamelCase ) A__ = argparse.Namespace() with open(__UpperCamelCase , 'r' ) as yaml_file: try: A__ = yaml.load(__UpperCamelCase , Loader=yaml.FullLoader ) A__ = flatten_yaml_as_dict(__UpperCamelCase ) for k, v in flat_cfg.items(): setattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) except yaml.YAMLError as exc: logger.error('Error while loading config file: {}. Error message: {}'.format(__UpperCamelCase , str(__UpperCamelCase ) ) ) return config def A ( __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: A__ = MobileViTVaConfig() A__ = False # dataset if task_name.startswith('imagenet1k_' ): A__ = 1_000 if int(task_name.strip().split('_' )[-1] ) == 384: A__ = 384 else: A__ = 256 A__ = 'imagenet-1k-id2label.json' elif task_name.startswith('imagenet21k_to_1k_' ): A__ = 21_000 if int(task_name.strip().split('_' )[-1] ) == 384: A__ = 384 else: A__ = 256 A__ = 'imagenet-22k-id2label.json' elif task_name.startswith('ade20k_' ): A__ = 151 A__ = 512 A__ = 'ade20k-id2label.json' A__ = True elif task_name.startswith('voc_' ): A__ = 21 A__ = 512 A__ = 'pascal-voc-id2label.json' A__ = True # orig_config A__ = load_orig_config_file(__UpperCamelCase ) assert getattr(__UpperCamelCase , 'model.classification.name' , -1 ) == "mobilevit_v2", "Invalid model" A__ = getattr(__UpperCamelCase , 'model.classification.mitv2.width_multiplier' , 1.0 ) assert ( getattr(__UpperCamelCase , 'model.classification.mitv2.attn_norm_layer' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" A__ = getattr(__UpperCamelCase , 'model.classification.activation.name' , 'swish' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: A__ = getattr(__UpperCamelCase , 'model.segmentation.output_stride' , 16 ) if "_deeplabv3" in task_name: A__ = getattr(__UpperCamelCase , 'model.segmentation.deeplabv3.aspp_rates' , [12, 24, 36] ) A__ = getattr(__UpperCamelCase , 'model.segmentation.deeplabv3.aspp_out_channels' , 512 ) A__ = getattr(__UpperCamelCase , 'model.segmentation.deeplabv3.aspp_dropout' , 0.1 ) # id2label A__ = 'huggingface/label-files' A__ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='dataset' ) , 'r' ) ) A__ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} return config def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[str]: A__ = dct.pop(__UpperCamelCase ) A__ = val def A ( __UpperCamelCase , __UpperCamelCase=False ) -> Dict: if base_model: A__ = '' else: A__ = 'mobilevitv2.' A__ = [] for k in state_dict.keys(): if k[:8] == "encoder.": A__ = k[8:] else: A__ = k if ".block." in k: A__ = k_new.replace('.block.' , '.' ) if ".conv." in k: A__ = k_new.replace('.conv.' , '.convolution.' ) if ".norm." in k: A__ = k_new.replace('.norm.' , '.normalization.' ) if "conv_1." in k: A__ = k_new.replace('conv_1.' , f'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if f'''layer_{i}.''' in k: A__ = k_new.replace(f'''layer_{i}.''' , f'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: A__ = k_new.replace('.exp_1x1.' , '.expand_1x1.' ) if ".red_1x1." in k: A__ = k_new.replace('.red_1x1.' , '.reduce_1x1.' ) for i in [3, 4, 5]: if f'''layer_{i}.0.''' in k: A__ = k_new.replace(f'''layer_{i}.0.''' , f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if f'''layer_{i}.1.local_rep.0.''' in k: A__ = k_new.replace(f'''layer_{i}.1.local_rep.0.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if f'''layer_{i}.1.local_rep.1.''' in k: A__ = k_new.replace(f'''layer_{i}.1.local_rep.1.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: A__ = [0, 1] elif i == 4: A__ = [0, 1, 2, 3] elif i == 5: A__ = [0, 1, 2] for j in j_in: if f'''layer_{i}.1.global_rep.{j}.''' in k: A__ = k_new.replace( f'''layer_{i}.1.global_rep.{j}.''' , f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if f'''layer_{i}.1.global_rep.{j+1}.''' in k: A__ = k_new.replace( f'''layer_{i}.1.global_rep.{j+1}.''' , f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if f'''layer_{i}.1.conv_proj.''' in k: A__ = k_new.replace(f'''layer_{i}.1.conv_proj.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: A__ = k_new.replace('pre_norm_attn.0.' , 'layernorm_before.' ) if "pre_norm_attn.1." in k: A__ = k_new.replace('pre_norm_attn.1.' , 'attention.' ) if "pre_norm_ffn.0." in k: A__ = k_new.replace('pre_norm_ffn.0.' , 'layernorm_after.' ) if "pre_norm_ffn.1." in k: A__ = k_new.replace('pre_norm_ffn.1.' , 'ffn.conv1.' ) if "pre_norm_ffn.3." in k: A__ = k_new.replace('pre_norm_ffn.3.' , 'ffn.conv2.' ) if "classifier.1." in k: A__ = k_new.replace('classifier.1.' , 'classifier.' ) if "seg_head." in k: A__ = k_new.replace('seg_head.' , 'segmentation_head.' ) if ".aspp_layer." in k: A__ = k_new.replace('.aspp_layer.' , '.' ) if ".aspp_pool." in k: A__ = k_new.replace('.aspp_pool.' , '.' ) rename_keys.append((k, k_new) ) return rename_keys def A ( __UpperCamelCase ) -> Tuple: A__ = [] for k in state_dict.keys(): if k.startswith('seg_head.aux_head.' ): keys_to_ignore.append(__UpperCamelCase ) for k in keys_to_ignore: state_dict.pop(__UpperCamelCase , __UpperCamelCase ) def A ( ) -> str: A__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" A__ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: A__ = get_mobilevitva_config(__UpperCamelCase , __UpperCamelCase ) # load original state_dict A__ = torch.load(__UpperCamelCase , map_location='cpu' ) # load huggingface model if task_name.startswith('ade20k_' ) or task_name.startswith('voc_' ): A__ = MobileViTVaForSemanticSegmentation(__UpperCamelCase ).eval() A__ = False else: A__ = MobileViTVaForImageClassification(__UpperCamelCase ).eval() A__ = False # remove and rename some keys of load the original model A__ = checkpoint remove_unused_keys(__UpperCamelCase ) A__ = create_rename_keys(__UpperCamelCase , base_model=__UpperCamelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # load modified state_dict model.load_state_dict(__UpperCamelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor A__ = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) A__ = image_processor(images=prepare_img() , return_tensors='pt' ) A__ = model(**__UpperCamelCase ) # verify classification model if task_name.startswith('imagenet' ): A__ = outputs.logits A__ = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('imagenet1k_256' ) and config.width_multiplier == 1.0: # expected_logits for base variant A__ = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ) assert torch.allclose(logits[0, :3] , __UpperCamelCase , atol=1E-4 ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''imagenet1k_256''', type=str, help=( '''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ''' ''' Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 ''' ), choices=[ '''imagenet1k_256''', '''imagenet1k_384''', '''imagenet21k_to_1k_256''', '''imagenet21k_to_1k_384''', '''ade20k_deeplabv3''', '''voc_deeplabv3''', ], ) parser.add_argument( '''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
9
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def A ( __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=False ) -> Dict: A__ = 'backbone.' if is_semantic else '' A__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (f'''{prefix}cls_token''', 'beit.embeddings.cls_token'), (f'''{prefix}patch_embed.proj.weight''', 'beit.embeddings.patch_embeddings.projection.weight'), (f'''{prefix}patch_embed.proj.bias''', 'beit.embeddings.patch_embeddings.projection.bias'), (f'''{prefix}pos_embed''', 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=False ) -> Optional[Any]: for i in range(config.num_hidden_layers ): A__ = 'backbone.' if is_semantic else '' # queries, keys and values A__ = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' ) A__ = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' ) A__ = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' ) A__ = in_proj_weight[ : config.hidden_size, : ] A__ = q_bias A__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ = in_proj_weight[ -config.hidden_size :, : ] A__ = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained A__ = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' ) A__ = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' ) A__ = gamma_a A__ = gamma_a def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: A__ = dct.pop(__UpperCamelCase ) A__ = val def A ( ) -> Dict: A__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' A__ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False ) -> str: A__ = False if 'rvlcdip' in checkpoint_url else True A__ = BeitConfig(use_absolute_position_embeddings=__UpperCamelCase , use_mask_token=__UpperCamelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: A__ = 1_024 A__ = 4_096 A__ = 24 A__ = 16 # labels if "rvlcdip" in checkpoint_url: A__ = 16 A__ = 'huggingface/label-files' A__ = 'rvlcdip-id2label.json' A__ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='dataset' ) , 'r' ) ) A__ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys A__ = torch.hub.load_state_dict_from_url(__UpperCamelCase , map_location='cpu' )['model'] A__ = create_rename_keys(__UpperCamelCase , has_lm_head=__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) read_in_q_k_v(__UpperCamelCase , __UpperCamelCase , has_lm_head=__UpperCamelCase ) # load HuggingFace model A__ = BeitForMaskedImageModeling(__UpperCamelCase ) if has_lm_head else BeitForImageClassification(__UpperCamelCase ) model.eval() model.load_state_dict(__UpperCamelCase ) # Check outputs on an image A__ = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__UpperCamelCase ) A__ = prepare_img() A__ = image_processor(images=__UpperCamelCase , return_tensors='pt' ) A__ = encoding['pixel_values'] A__ = model(__UpperCamelCase ) A__ = outputs.logits # verify logits A__ = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 196, 8_192] assert logits.shape == torch.Size(__UpperCamelCase ), "Shape of logits not as expected" Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if push_to_hub: if has_lm_head: A__ = 'dit-base' if 'base' in checkpoint_url else 'dit-large' else: A__ = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip' image_processor.push_to_hub( repo_path_or_name=Path(__UpperCamelCase , __UpperCamelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=__UpperCamelCase , ) model.push_to_hub( repo_path_or_name=Path(__UpperCamelCase , __UpperCamelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=__UpperCamelCase , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
9
1
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , *_snake_case : Optional[int] , **_snake_case : Optional[Any] ): """simple docstring""" warnings.warn( 'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PerceiverImageProcessor instead.' , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
9
SCREAMING_SNAKE_CASE__ = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> list[str]: A__ = set() # keep track of all the paths to be checked A__ = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue A__ = queue.pop(0 ) # get the last node from the path A__ = path[-1] if node not in explored: A__ = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: A__ = list(__UpperCamelCase ) new_path.append(__UpperCamelCase ) queue.append(__UpperCamelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(__UpperCamelCase ) # in case there's no path between the 2 nodes return [] def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 A__ = [start] A__ = set(__UpperCamelCase ) # Keep tab on distances from `start` node. A__ = {start: 0, target: -1} while queue: A__ = queue.pop(0 ) if node == target: A__ = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(__UpperCamelCase ) queue.append(__UpperCamelCase ) A__ = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
9
1