code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE__ : int = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l=''' def A ( _SCREAMING_SNAKE_CASE = "mumbai" ) -> Generator[tuple[str, str], None, None]: lowerCamelCase : List[str] = BeautifulSoup(requests.get(url + location ).content ,"html.parser" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("div" ,attrs={"data-tn-component": "organicJob"} ): lowerCamelCase : List[str] = job.find("a" ,attrs={"data-tn-element": "jobTitle"} ).text.strip() lowerCamelCase : List[Any] = job.find("span" ,{"class": "company"} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
311
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : str = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def _lowerCAmelCase ( __snake_case : List[Any] ) -> Tuple: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __A : Optional[Any] = k.replace(__snake_case , __snake_case ) if k.startswith('encoder' ): __A : Any = k.replace('.attn' , '.self_attn' ) __A : Any = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): __A : Tuple = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'encoder_attn_layer_norm' ) __A : int = k.replace('norm3' , 'final_layer_norm' ) return k def _lowerCAmelCase ( __snake_case : List[Any] ) -> Dict: __A : Optional[int] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: __A : Tuple = sd.pop(__snake_case ) __A : Union[str, Any] = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd __A : str = v lowercase__ : Tuple = ['''START'''] @torch.no_grad() def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any , __snake_case : List[Any] ) -> int: __A : List[str] = torch.load(__snake_case , map_location='cpu' ) __A : Tuple = model['model'] __A : str = BlenderbotConfig.from_json_file(__snake_case ) __A : int = BlenderbotForConditionalGeneration(__snake_case ) __A : List[Any] = m.model.state_dict().keys() __A : Optional[int] = [] __A : Optional[int] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __A : Union[str, Any] = rename_state_dict_key(__snake_case ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __A : Optional[Any] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__snake_case ) m.model.load_state_dict(__snake_case , strict=__snake_case ) m.half() m.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
8
0
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _A ( unittest.TestCase ): def __a ( self : Optional[Any] ) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __a ( self : str ) -> str: """simple docstring""" lowercase : List[Any] = 1 lowercase : Optional[int] = 3 lowercase : List[Any] = (32, 32) lowercase : List[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_UpperCAmelCase ) return image @property def __a ( self : Any ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) lowercase : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def __a ( self : Tuple ) -> Dict: """simple docstring""" torch.manual_seed(0 ) lowercase : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def __a ( self : List[str] ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) lowercase : Tuple = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(_UpperCAmelCase ) @property def __a ( self : Optional[Any] ) -> Dict: """simple docstring""" def extract(*_A : Dict , **_A : int ): class _A : def __init__( self : Any ) -> Dict: """simple docstring""" lowercase : Optional[int] = torch.ones([0] ) def __a ( self : Union[str, Any] , _A : int ) -> int: """simple docstring""" self.pixel_values.to(_UpperCAmelCase ) return self return Out() return extract def __a ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase : Any = 'cpu' # ensure determinism for the device-dependent torch.Generator lowercase : int = self.dummy_cond_unet lowercase : List[str] = PNDMScheduler(skip_prk_steps=_UpperCAmelCase ) lowercase : str = self.dummy_vae lowercase : str = self.dummy_text_encoder lowercase : int = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowercase : Union[str, Any] = 77 lowercase : Union[str, Any] = self.dummy_image.to(_UpperCAmelCase ) lowercase : Tuple = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowercase : Dict = AltDiffusionImgaImgPipeline( unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase : Union[str, Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_UpperCAmelCase ) lowercase : int = alt_pipe.to(_UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase : Dict = 'A painting of a squirrel eating a burger' lowercase : Optional[Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) lowercase : Tuple = alt_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=_UpperCAmelCase , ) lowercase : Union[str, Any] = output.images lowercase : List[Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) lowercase : Dict = alt_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=_UpperCAmelCase , return_dict=_UpperCAmelCase , )[0] lowercase : Optional[int] = image[0, -3:, -3:, -1] lowercase : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase : int = np.array([0.4_427, 0.3_731, 0.4_249, 0.4_941, 0.4_546, 0.4_148, 0.4_193, 0.4_666, 0.4_499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def __a ( self : str ) -> str: """simple docstring""" lowercase : Dict = self.dummy_cond_unet lowercase : Dict = PNDMScheduler(skip_prk_steps=_UpperCAmelCase ) lowercase : Optional[int] = self.dummy_vae lowercase : Union[str, Any] = self.dummy_text_encoder lowercase : Tuple = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) lowercase : Optional[Any] = 77 lowercase : Any = self.dummy_image.to(_UpperCAmelCase ) # put models in fp16 lowercase : Optional[Any] = unet.half() lowercase : Optional[int] = vae.half() lowercase : str = bert.half() # make sure here that pndm scheduler skips prk lowercase : Any = AltDiffusionImgaImgPipeline( unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase : Dict = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_UpperCAmelCase ) lowercase : List[Any] = alt_pipe.to(_UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase : Dict = 'A painting of a squirrel eating a burger' lowercase : Tuple = torch.manual_seed(0 ) lowercase : List[str] = alt_pipe( [prompt] , generator=_UpperCAmelCase , num_inference_steps=2 , output_type='''np''' , image=_UpperCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def __a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 lowercase : int = init_image.resize((760, 504) ) lowercase : List[str] = 'BAAI/AltDiffusion' lowercase : Dict = AltDiffusionImgaImgPipeline.from_pretrained( _UpperCAmelCase , safety_checker=_UpperCAmelCase , ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase : Any = 'A fantasy landscape, trending on artstation' lowercase : List[str] = torch.manual_seed(0 ) lowercase : Any = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_UpperCAmelCase , output_type='''np''' , ) lowercase : Tuple = output.images[0] lowercase : List[str] = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) lowercase : List[str] = np.array([0.9_358, 0.9_397, 0.9_599, 0.9_901, 1.0_000, 1.0_000, 0.9_882, 1.0_000, 1.0_000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _A ( unittest.TestCase ): def __a ( self : List[str] ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) lowercase : List[str] = init_image.resize((768, 512) ) lowercase : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) lowercase : Tuple = 'BAAI/AltDiffusion' lowercase : Optional[Any] = AltDiffusionImgaImgPipeline.from_pretrained( _UpperCAmelCase , safety_checker=_UpperCAmelCase , ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowercase : Optional[int] = 'A fantasy landscape, trending on artstation' lowercase : List[str] = torch.manual_seed(0 ) lowercase : Optional[Any] = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_UpperCAmelCase , output_type='''np''' , ) lowercase : Any = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
217
'''simple docstring''' import mpmath # for roots of unity import numpy as np class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None): '''simple docstring''' __A : List[Any] = list(poly_a or [0])[:] __A : Optional[int] = list(poly_b or [0])[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __A : Union[str, Any] = len(self.polyA) while self.polyB[-1] == 0: self.polyB.pop() __A : Optional[int] = len(self.polyB) # Add 0 to make lengths equal a power of 2 __A : Optional[Any] = int( 2 ** np.ceil(np.loga(len(self.polyA) + len(self.polyB) - 1))) while len(self.polyA) < self.c_max_length: self.polyA.append(0) while len(self.polyB) < self.c_max_length: self.polyB.append(0) # A complex root used for the fourier transform __A : str = complex(mpmath.root(x=1 , n=self.c_max_length , k=1)) # The product __A : Tuple = self.__multiply() def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(_UpperCAmelCase) <= 1: return dft[0] # __A : Dict = self.c_max_length // 2 while next_ncol > 0: __A : Optional[Any] = [[] for i in range(_UpperCAmelCase)] __A : Tuple = self.root**next_ncol # First half of next step __A : Optional[Any] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j]) current_root *= root # Second half of next step __A : List[str] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j]) current_root *= root # Update __A : Optional[int] = new_dft __A : Tuple = next_ncol // 2 return dft[0] def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.__dft('A') __A : Optional[Any] = self.__dft('B') __A : str = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]] del dft_a del dft_b # Corner Case if len(inverce_c[0]) <= 1: return inverce_c[0] # Inverse DFT __A : Dict = 2 while next_ncol <= self.c_max_length: __A : Optional[int] = [[] for i in range(_UpperCAmelCase)] __A : Any = self.root ** (next_ncol // 2) __A : Tuple = 1 # First half of next step for j in range(self.c_max_length // next_ncol): for i in range(next_ncol // 2): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root)) current_root *= root # Update __A : int = new_inverse_c next_ncol *= 2 # Unpack __A : Optional[int] = [round(x[0].real , 8) + round(x[0].imag , 8) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self): '''simple docstring''' __A : int = 'A = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A])) __A : Optional[Any] = 'B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B])) __A : str = 'A*B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.product)) return F'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowercase__ ( a__, a__, a__, unittest.TestCase ): '''simple docstring''' _snake_case = StableUnCLIPImgaImgPipeline _snake_case = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _snake_case = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _snake_case = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _snake_case = frozenset([] ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = 3_2 UpperCamelCase = embedder_hidden_size # image encoding components UpperCamelCase = CLIPImageProcessor(crop_size=3_2 , size=3_2 ) torch.manual_seed(0 ) UpperCamelCase = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=_UpperCAmelCase , projection_dim=_UpperCAmelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=3_2 , intermediate_size=3_7 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) UpperCamelCase = StableUnCLIPImageNormalizer(embedding_dim=_UpperCAmelCase ) UpperCamelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) UpperCamelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_UpperCAmelCase , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) UpperCamelCase = UNetaDConditionModel( sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(3_2, 6_4) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_UpperCAmelCase , layers_per_block=1 , upcast_attention=_UpperCAmelCase , use_linear_projection=_UpperCAmelCase , ) torch.manual_seed(0 ) UpperCamelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_UpperCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) UpperCamelCase = AutoencoderKL() UpperCamelCase = { # image encoding components 'feature_extractor': feature_extractor, 'image_encoder': image_encoder.eval(), # image noising components 'image_normalizer': image_normalizer.eval(), 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder.eval(), 'unet': unet.eval(), 'scheduler': scheduler, 'vae': vae.eval(), } return components def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__=0 , lowerCamelCase__=True ): '''simple docstring''' if str(_UpperCAmelCase ).startswith('''mps''' ): UpperCamelCase = torch.manual_seed(_UpperCAmelCase ) else: UpperCamelCase = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) UpperCamelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if pil_image: UpperCamelCase = input_image * 0.5 + 0.5 UpperCamelCase = input_image.clamp(0 , 1 ) UpperCamelCase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCamelCase = DiffusionPipeline.numpy_to_pil(_UpperCAmelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableUnCLIPImgaImgPipeline(**_UpperCAmelCase ) UpperCamelCase = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase = self.get_dummy_inputs(_UpperCAmelCase ) inputs.update({'''image_embeds''': None} ) UpperCamelCase = sd_pipe(**_UpperCAmelCase ).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) UpperCamelCase = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = torch_device in ['cpu', 'mps'] self._test_attention_slicing_forward_pass(test_max_difference=_UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=_UpperCAmelCase ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=_UpperCAmelCase ) @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy''' ) UpperCamelCase = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-l-img2img''' , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCamelCase = pipe(_UpperCAmelCase , '''anime turle''' , generator=_UpperCAmelCase , output_type='''np''' ) UpperCamelCase = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy''' ) UpperCamelCase = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCamelCase = pipe(_UpperCAmelCase , '''anime turle''' , generator=_UpperCAmelCase , output_type='''np''' ) UpperCamelCase = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) UpperCamelCase = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCamelCase = pipe( _UpperCAmelCase , '''anime turtle''' , num_inference_steps=2 , output_type='''np''' , ) UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 1_0**9
212
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=[30, 30] , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=None , _UpperCAmelCase=8 , _UpperCAmelCase=10 , ): '''simple docstring''' __A : Union[str, Any] = parent __A : Tuple = batch_size __A : List[str] = image_size __A : Dict = patch_size __A : Optional[Any] = num_channels __A : Tuple = is_training __A : Dict = use_labels __A : List[Any] = hidden_size __A : Tuple = num_hidden_layers __A : int = num_attention_heads __A : Optional[int] = intermediate_size __A : Tuple = hidden_act __A : Any = hidden_dropout_prob __A : Optional[Any] = attention_probs_dropout_prob __A : List[Any] = type_sequence_label_size __A : List[Any] = initializer_range __A : Optional[int] = num_labels __A : List[Any] = scope __A : Any = n_targets __A : Union[str, Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens __A : List[str] = (image_size[1] // patch_size) * (image_size[0] // patch_size) __A : int = num_patches + 1 + self.num_detection_tokens def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]]) __A : Tuple = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) __A : List[Any] = [] for i in range(self.batch_size): __A : Optional[int] = {} __A : Union[str, Any] = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=_UpperCAmelCase) __A : str = torch.rand(self.n_targets , 4 , device=_UpperCAmelCase) labels.append(_UpperCAmelCase) __A : Any = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosModel(config=_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosForObjectDetection(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : str = model(pixel_values=_UpperCAmelCase) __A : List[str] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) __A : Union[str, Any] = model(pixel_values=_UpperCAmelCase , labels=_UpperCAmelCase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.prepare_config_and_inputs() __A ,__A ,__A : Tuple = config_and_inputs __A : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowerCAmelCase = ( {'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' __A : Optional[Any] = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase) if return_labels: if model_class.__name__ == "YolosForObjectDetection": __A : Any = [] for i in range(self.model_tester.batch_size): __A : Tuple = {} __A : Tuple = torch.ones( size=(self.model_tester.n_targets,) , device=_UpperCAmelCase , dtype=torch.long) __A : Optional[Any] = torch.ones( self.model_tester.n_targets , 4 , device=_UpperCAmelCase , dtype=torch.float) labels.append(_UpperCAmelCase) __A : str = labels return inputs_dict def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = YolosModelTester(self) __A : Dict = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Tuple = model_class(_UpperCAmelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __A : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[Any] = model_class(_UpperCAmelCase) __A : str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : int = [*signature.parameters.keys()] __A : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Optional[int] = True # in YOLOS, the seq_len is different __A : Dict = self.model_tester.expected_seq_len for model_class in self.all_model_classes: __A : Dict = True __A : Dict = False __A : Union[str, Any] = True __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : Any = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] __A : List[Any] = True __A : List[str] = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __A : str = len(_UpperCAmelCase) # Check attention is always last and order is fine __A : Dict = True __A : Dict = True __A : Dict = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = 1 self.assertEqual(out_len + added_hidden_states , len(_UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.hidden_states __A : List[str] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) # YOLOS has a different seq_length __A : Dict = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[str] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A : Optional[int] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : List[Any] = YolosModel.from_pretrained(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase) def _lowerCAmelCase ( ) -> int: __A : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return AutoImageProcessor.from_pretrained('hustvl/yolos-small') if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = YolosForObjectDetection.from_pretrained('hustvl/yolos-small').to(_UpperCAmelCase) __A : Any = self.default_image_processor __A : str = prepare_img() __A : int = image_processor(images=_UpperCAmelCase , return_tensors='pt').to(_UpperCAmelCase) # forward pass with torch.no_grad(): __A : str = model(inputs.pixel_values) # verify outputs __A : Tuple = torch.Size((1, 100, 92)) self.assertEqual(outputs.logits.shape , _UpperCAmelCase) __A : Dict = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=_UpperCAmelCase , ) __A : int = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=_UpperCAmelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) # verify postprocessing __A : List[str] = image_processor.post_process_object_detection( _UpperCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]])[0] __A : Optional[int] = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861]).to(_UpperCAmelCase) __A : Union[str, Any] = [75, 75, 17, 63, 17] __A : Any = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495]).to(_UpperCAmelCase) self.assertEqual(len(results['scores']) , 5) self.assertTrue(torch.allclose(results['scores'] , _UpperCAmelCase , atol=1e-4)) self.assertSequenceEqual(results['labels'].tolist() , _UpperCAmelCase) self.assertTrue(torch.allclose(results['boxes'][0, :] , _UpperCAmelCase))
8
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : List[Any] = logging.get_logger(__name__) a_ : Optional[int] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class __UpperCamelCase ( a__ ): lowercase : Optional[Any] ='lxmert' lowercase : Any ={} def __init__( self, lowerCAmelCase=30_522, lowerCAmelCase=768, lowerCAmelCase=12, lowerCAmelCase=9_500, lowerCAmelCase=1_600, lowerCAmelCase=400, lowerCAmelCase=3_072, lowerCAmelCase="gelu", lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=512, lowerCAmelCase=2, lowerCAmelCase=0.0_2, lowerCAmelCase=1e-12, lowerCAmelCase=9, lowerCAmelCase=5, lowerCAmelCase=5, lowerCAmelCase=2_048, lowerCAmelCase=4, lowerCAmelCase=6.6_7, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =vocab_size lowerCamelCase_ =hidden_size lowerCamelCase_ =num_attention_heads lowerCamelCase_ =hidden_act lowerCamelCase_ =intermediate_size lowerCamelCase_ =hidden_dropout_prob lowerCamelCase_ =attention_probs_dropout_prob lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =type_vocab_size lowerCamelCase_ =initializer_range lowerCamelCase_ =layer_norm_eps lowerCamelCase_ =num_qa_labels lowerCamelCase_ =num_object_labels lowerCamelCase_ =num_attr_labels lowerCamelCase_ =l_layers lowerCamelCase_ =x_layers lowerCamelCase_ =r_layers lowerCamelCase_ =visual_feat_dim lowerCamelCase_ =visual_pos_dim lowerCamelCase_ =visual_loss_normalizer lowerCamelCase_ =task_matched lowerCamelCase_ =task_mask_lm lowerCamelCase_ =task_obj_predict lowerCamelCase_ =task_qa lowerCamelCase_ =visual_obj_loss lowerCamelCase_ =visual_attr_loss lowerCamelCase_ =visual_feat_loss lowerCamelCase_ ={'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**_UpperCAmelCase )
676
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: lowercase__ : Optional[int] = None lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ : List[str] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } lowercase__ : Dict = { '''camembert-base''': 5_12, } lowercase__ : str = '''▁''' class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] lowerCAmelCase = CamembertTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **_UpperCAmelCase , ): '''simple docstring''' __A : int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __A : List[str] = vocab_file __A : Optional[int] = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A : Optional[Any] = [self.cls_token_id] __A : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' __A : Optional[int] = [self.sep_token_id] __A : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(_UpperCAmelCase): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return __A : List[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCAmelCase): copyfile(self.vocab_file , _UpperCAmelCase) return (out_vocab_file,)
8
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase : Optional[Any] = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase : int = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase : Tuple = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase : Any = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } __UpperCamelCase : int = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } __UpperCamelCase : Tuple = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } __UpperCamelCase : Union[str, Any] = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } __UpperCamelCase : Any = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } __UpperCamelCase : Optional[Any] = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class lowercase__ ( a__): UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = DPRContextEncoderTokenizer class lowercase__ ( a__): UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = DPRQuestionEncoderTokenizer __UpperCamelCase : Union[str, Any] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) __UpperCamelCase : List[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) __UpperCamelCase : Tuple = r''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(a__) class lowercase__ : def __call__( self : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple = None , UpperCamelCase__ : Dict = None , UpperCamelCase__ : int = False , UpperCamelCase__ : Union[str, Any] = False , UpperCamelCase__ : str = None , UpperCamelCase__ : int = None , UpperCamelCase__ : Union[str, Any] = None , **UpperCamelCase__ : int , ): '''simple docstring''' if titles is None and texts is None: return super().__call__( _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE : List[str] = titles if texts is None else texts return super().__call__( _UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) SCREAMING_SNAKE_CASE : Optional[int] = titles if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [titles] SCREAMING_SNAKE_CASE : Optional[int] = texts if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [texts] SCREAMING_SNAKE_CASE : Union[str, Any] = len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE : Any = questions if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [questions] * n_passages assert len(_UpperCAmelCase ) == len( _UpperCAmelCase ), f"""There should be as many titles than texts but got {len(_UpperCAmelCase )} titles and {len(_UpperCAmelCase )} texts.""" SCREAMING_SNAKE_CASE : Union[str, Any] = super().__call__(_UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )['input_ids'] SCREAMING_SNAKE_CASE : Optional[int] = super().__call__(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )['input_ids'] SCREAMING_SNAKE_CASE : List[str] = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_UpperCAmelCase , _UpperCAmelCase ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE : Any = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE : List[Any] = attention_mask return self.pad(_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) def __A ( self : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : int = 16 , UpperCamelCase__ : str = 64 , UpperCamelCase__ : Optional[int] = 4 , ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = reader_input['input_ids'] SCREAMING_SNAKE_CASE : Optional[Any] = reader_output[:3] SCREAMING_SNAKE_CASE : str = len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE : Any = sorted(range(_UpperCAmelCase ) , reverse=_UpperCAmelCase , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE : List[DPRReaderOutput] = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE : Union[str, Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE : Tuple = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE : int = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE : Optional[int] = len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_UpperCAmelCase , top_spans=_UpperCAmelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_UpperCAmelCase , start_index=_UpperCAmelCase , end_index=_UpperCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_UpperCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __A ( self : str , UpperCamelCase__ : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = [] for start_index, start_score in enumerate(_UpperCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE : Any = sorted(_UpperCAmelCase , key=lambda UpperCamelCase__ : x[1] , reverse=_UpperCAmelCase ) SCREAMING_SNAKE_CASE : List[str] = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]""" SCREAMING_SNAKE_CASE : int = end_index - start_index + 1 assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_UpperCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a__) class lowercase__ ( a__ , a__): UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = ["""input_ids""", """attention_mask"""] UpperCamelCase_ = DPRReaderTokenizer
248
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowercase__ : Any = '''hf-internal-testing/tiny-random-bert''' lowercase__ : Optional[Any] = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') lowercase__ : List[Any] = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase)) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase))) with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Any = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) self.assertTrue(os.path.isfile(_UpperCAmelCase)) # File is cached at the same place the second time. __A : Tuple = cached_file(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) # Using a specific revision to test the full commit hash. __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='9b8c223') self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): __A : Dict = cached_file('tiny-random-bert' , _UpperCAmelCase) with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): __A : Optional[int] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='aaaa') with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : int = cached_file(_UpperCAmelCase , 'conf') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : Any = cached_file(_UpperCAmelCase , 'conf') with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Dict = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '.no_exist' , _UpperCAmelCase , 'conf'))) __A : List[Any] = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : str = cached_file(_UpperCAmelCase , 'conf' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : List[str] = mock.Mock() __A : Dict = 500 __A : List[str] = {} __A : List[Any] = HTTPError __A : Optional[Any] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=_UpperCAmelCase) as mock_head: __A : Dict = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_connection_errors=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt')) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): get_file_from_repo('bert-base-case' , _UpperCAmelCase) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): get_file_from_repo('bert-base-cased' , _UpperCAmelCase , revision='ahaha') __A : List[str] = get_file_from_repo('bert-base-cased' , _UpperCAmelCase) # The name is the cached name which is not very easy to test, so instead we load the content. __A : List[str] = json.loads(open(_UpperCAmelCase , 'r').read()) self.assertEqual(config['hidden_size'] , 768) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __A : Tuple = Path(_UpperCAmelCase) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , 'a.txt') , str(_UpperCAmelCase)) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , 'b.txt'))
8
0
import re def SCREAMING_SNAKE_CASE ( lowercase_ ) -> bool: """simple docstring""" A__ = re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' ) if match := re.search(__snake_case , __snake_case ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("""+918827897895"""))
87
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _lowerCAmelCase ( __snake_case : str , __snake_case : str , **__snake_case : List[Any] ) -> Any: __A : Optional[Any] = AutoConfig.from_pretrained(__snake_case , **__snake_case ) __A : int = AutoModelForSeqaSeqLM.from_config(__snake_case ) model.save_pretrained(__snake_case ) AutoTokenizer.from_pretrained(__snake_case ).save_pretrained(__snake_case ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
8
0
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowercase_ ( a__ ): def __init__( self , __A , __A , __A , __A , ) -> Optional[int]: super().__init__() SCREAMING_SNAKE_CASE_ : List[Any] =value_function SCREAMING_SNAKE_CASE_ : str =unet SCREAMING_SNAKE_CASE_ : Tuple =scheduler SCREAMING_SNAKE_CASE_ : List[Any] =env SCREAMING_SNAKE_CASE_ : List[str] =env.get_dataset() SCREAMING_SNAKE_CASE_ : List[str] ={} for key in self.data.keys(): try: SCREAMING_SNAKE_CASE_ : Optional[int] =self.data[key].mean() except: # noqa: E722 pass SCREAMING_SNAKE_CASE_ : str ={} for key in self.data.keys(): try: SCREAMING_SNAKE_CASE_ : Optional[int] =self.data[key].std() except: # noqa: E722 pass SCREAMING_SNAKE_CASE_ : Optional[Any] =env.observation_space.shape[0] SCREAMING_SNAKE_CASE_ : List[Any] =env.action_space.shape[0] def _snake_case ( self , __A , __A ) -> int: return (x_in - self.means[key]) / self.stds[key] def _snake_case ( self , __A , __A ) -> Optional[int]: return x_in * self.stds[key] + self.means[key] def _snake_case ( self , __A ) -> int: if type(_UpperCAmelCase ) is dict: return {k: self.to_torch(_UpperCAmelCase ) for k, v in x_in.items()} elif torch.is_tensor(_UpperCAmelCase ): return x_in.to(self.unet.device ) return torch.tensor(_UpperCAmelCase , device=self.unet.device ) def _snake_case ( self , __A , __A , __A ) -> Tuple: for key, val in cond.items(): SCREAMING_SNAKE_CASE_ : List[Any] =val.clone() return x_in def _snake_case ( self , __A , __A , __A , __A ) -> str: SCREAMING_SNAKE_CASE_ : List[str] =x.shape[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] =None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model SCREAMING_SNAKE_CASE_ : str =torch.full((batch_size,) , _UpperCAmelCase , device=self.unet.device , dtype=torch.long ) for _ in range(_UpperCAmelCase ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models SCREAMING_SNAKE_CASE_ : Optional[int] =self.value_function(x.permute(0 , 2 , 1 ) , _UpperCAmelCase ).sample SCREAMING_SNAKE_CASE_ : int =torch.autograd.grad([y.sum()] , [x] )[0] SCREAMING_SNAKE_CASE_ : Optional[Any] =self.scheduler._get_variance(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : int =torch.exp(0.5 * posterior_variance ) SCREAMING_SNAKE_CASE_ : int =model_std * grad SCREAMING_SNAKE_CASE_ : Optional[Any] =0 SCREAMING_SNAKE_CASE_ : List[str] =x.detach() SCREAMING_SNAKE_CASE_ : Tuple =x + scale * grad SCREAMING_SNAKE_CASE_ : Optional[Any] =self.reset_xa(_UpperCAmelCase , _UpperCAmelCase , self.action_dim ) SCREAMING_SNAKE_CASE_ : int =self.unet(x.permute(0 , 2 , 1 ) , _UpperCAmelCase ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg SCREAMING_SNAKE_CASE_ : int =self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , predict_epsilon=_UpperCAmelCase )['prev_sample'] # apply conditions to the trajectory (set the initial state) SCREAMING_SNAKE_CASE_ : Optional[int] =self.reset_xa(_UpperCAmelCase , _UpperCAmelCase , self.action_dim ) SCREAMING_SNAKE_CASE_ : Dict =self.to_torch(_UpperCAmelCase ) return x, y def __call__( self , __A , __A=64 , __A=32 , __A=2 , __A=0.1 ) -> str: SCREAMING_SNAKE_CASE_ : str =self.normalize(_UpperCAmelCase , '''observations''' ) SCREAMING_SNAKE_CASE_ : str =obs[None].repeat(_UpperCAmelCase , axis=0 ) SCREAMING_SNAKE_CASE_ : Any ={0: self.to_torch(_UpperCAmelCase )} SCREAMING_SNAKE_CASE_ : Any =(batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) SCREAMING_SNAKE_CASE_ : Tuple =randn_tensor(_UpperCAmelCase , device=self.unet.device ) SCREAMING_SNAKE_CASE_ : Tuple =self.reset_xa(_UpperCAmelCase , _UpperCAmelCase , self.action_dim ) SCREAMING_SNAKE_CASE_ : Tuple =self.to_torch(_UpperCAmelCase ) # run the diffusion process SCREAMING_SNAKE_CASE_ : Any =self.run_diffusion(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # sort output trajectories by value SCREAMING_SNAKE_CASE_ : Any =y.argsort(0 , descending=_UpperCAmelCase ).squeeze() SCREAMING_SNAKE_CASE_ : str =x[sorted_idx] SCREAMING_SNAKE_CASE_ : Dict =sorted_values[:, :, : self.action_dim] SCREAMING_SNAKE_CASE_ : Dict =actions.detach().cpu().numpy() SCREAMING_SNAKE_CASE_ : Dict =self.de_normalize(_UpperCAmelCase , key='''actions''' ) # select the action with the highest value if y is not None: SCREAMING_SNAKE_CASE_ : int =0 else: # if we didn't run value guiding, select a random action SCREAMING_SNAKE_CASE_ : Any =np.random.randint(0 , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : str =denorm_actions[selected_index, 0] return denorm_actions
443
'''simple docstring''' from ...configuration_utils import PretrainedConfig lowercase__ : Any = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''tapas''' def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1024 , _UpperCAmelCase=[3, 256, 256, 2, 256, 256, 10] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase=10.0 , _UpperCAmelCase=0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase="ratio" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __A : Dict = vocab_size __A : Tuple = hidden_size __A : Any = num_hidden_layers __A : int = num_attention_heads __A : Tuple = hidden_act __A : Tuple = intermediate_size __A : List[Any] = hidden_dropout_prob __A : int = attention_probs_dropout_prob __A : List[str] = max_position_embeddings __A : Optional[int] = type_vocab_sizes __A : str = initializer_range __A : List[str] = layer_norm_eps # Fine-tuning task hyperparameters __A : List[str] = positive_label_weight __A : List[Any] = num_aggregation_labels __A : Optional[Any] = aggregation_loss_weight __A : Tuple = use_answer_as_supervision __A : List[str] = answer_loss_importance __A : Any = use_normalized_answer_loss __A : Any = huber_loss_delta __A : Union[str, Any] = temperature __A : Tuple = aggregation_temperature __A : Optional[Any] = use_gumbel_for_cells __A : List[str] = use_gumbel_for_aggregation __A : Tuple = average_approximation_function __A : List[str] = cell_selection_preference __A : Dict = answer_loss_cutoff __A : Union[str, Any] = max_num_rows __A : Optional[Any] = max_num_columns __A : int = average_logits_per_cell __A : Optional[Any] = select_one_column __A : int = allow_empty_column_selection __A : List[Any] = init_cell_selection_weights_to_zero __A : int = reset_position_index_per_cell __A : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters __A : Optional[Any] = aggregation_labels __A : List[str] = no_aggregation_label_index if isinstance(self.aggregation_labels , _UpperCAmelCase): __A : Optional[Any] = {int(_UpperCAmelCase): v for k, v in aggregation_labels.items()}
8
0
class snake_case_ : # Public class to implement a graph '''simple docstring''' def __init__( self, A_, A_, A_ ) -> Any: UpperCAmelCase__ =row UpperCAmelCase__ =col UpperCAmelCase__ =graph def __UpperCAmelCase ( self, A_, A_, A_ ) -> List[Any]: return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __UpperCAmelCase ( self, A_, A_, A_ ) -> str: UpperCAmelCase__ =[-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order UpperCAmelCase__ =[-1, 0, 1, -1, 1, -1, 0, 1] UpperCAmelCase__ =True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k], j + col_nbr[k], _UpperCAmelCase ): self.diffs(i + row_nbr[k], j + col_nbr[k], _UpperCAmelCase ) def __UpperCAmelCase ( self ) -> Optional[int]: # And finally, count all islands. UpperCAmelCase__ =[[False for j in range(self.COL )] for i in range(self.ROW )] UpperCAmelCase__ =0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) count += 1 return count
625
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=sys.maxsize): '''simple docstring''' __A : Union[str, Any] = 'bilinear' __A : int = max_size __A : Optional[Any] = short_edge_length def __call__( self , _UpperCAmelCase): '''simple docstring''' __A : int = [] for img in imgs: __A ,__A : Dict = img.shape[:2] # later: provide list and randomly choose index for resize __A : List[Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1) if size == 0: return img __A : Tuple = size * 1.0 / min(_UpperCAmelCase , _UpperCAmelCase) if h < w: __A ,__A : Optional[Any] = size, scale * w else: __A ,__A : Optional[Any] = scale * h, size if max(_UpperCAmelCase , _UpperCAmelCase) > self.max_size: __A : Tuple = self.max_size * 1.0 / max(_UpperCAmelCase , _UpperCAmelCase) __A : Tuple = newh * scale __A : Dict = neww * scale __A : Dict = int(neww + 0.5) __A : Optional[int] = int(newh + 0.5) if img.dtype == np.uinta: __A : int = Image.fromarray(_UpperCAmelCase) __A : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR) __A : Dict = np.asarray(_UpperCAmelCase) else: __A : Optional[Any] = img.permute(2 , 0 , 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw __A : Dict = nn.functional.interpolate( _UpperCAmelCase , (newh, neww) , mode=self.interp_method , align_corners=_UpperCAmelCase).squeeze(0) img_augs.append(_UpperCAmelCase) return img_augs class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST) __A : List[Any] = cfg.INPUT.FORMAT __A : Dict = cfg.SIZE_DIVISIBILITY __A : str = cfg.PAD_VALUE __A : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST __A : int = cfg.MODEL.DEVICE __A : Tuple = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : int = lambda _UpperCAmelCase: (x - self.pixel_mean) / self.pixel_std def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = tuple(max(_UpperCAmelCase) for s in zip(*[img.shape for img in images])) __A : Dict = [im.shape[-2:] for im in images] __A : Optional[int] = [ nn.functional.pad( _UpperCAmelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_UpperCAmelCase , _UpperCAmelCase) ] return torch.stack(_UpperCAmelCase), torch.tensor(_UpperCAmelCase) def __call__( self , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' with torch.no_grad(): if not isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : int = [images] if single_image: assert len(_UpperCAmelCase) == 1 for i in range(len(_UpperCAmelCase)): if isinstance(images[i] , torch.Tensor): images.insert(_UpperCAmelCase , images.pop(_UpperCAmelCase).to(self.device).float()) elif not isinstance(images[i] , torch.Tensor): images.insert( _UpperCAmelCase , torch.as_tensor(img_tensorize(images.pop(_UpperCAmelCase) , input_format=self.input_format)) .to(self.device) .float() , ) # resize smallest edge __A : str = torch.tensor([im.shape[:2] for im in images]) __A : List[str] = self.aug(_UpperCAmelCase) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __A : Any = [self.normalizer(_UpperCAmelCase) for x in images] # now pad them to do the following operations __A ,__A : Any = self.pad(_UpperCAmelCase) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __A : str = torch.true_divide(_UpperCAmelCase , _UpperCAmelCase) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _lowerCAmelCase ( __snake_case : Dict , __snake_case : str ) -> Dict: boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : Tuple[int, int] ) -> int: assert torch.isfinite(__snake_case ).all(), "Box tensor contains infinite or NaN!" __A ,__A : int = box_size tensor[:, 0].clamp_(min=0 , max=__snake_case ) tensor[:, 1].clamp_(min=0 , max=__snake_case ) tensor[:, 2].clamp_(min=0 , max=__snake_case ) tensor[:, 3].clamp_(min=0 , max=__snake_case )
8
0
'''simple docstring''' from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING __A : int = logging.get_logger(__name__) @add_end_docstrings(a__ ) class __UpperCamelCase ( a__ ): def __init__( self :Optional[Any] ,*_UpperCamelCase :str ,**_UpperCamelCase :str ): super().__init__(*_UpperCAmelCase ,**_UpperCAmelCase ) requires_backends(self ,"""vision""" ) self.check_model_type(_UpperCAmelCase ) def __call__( self :Optional[int] ,_UpperCamelCase :Tuple ,**_UpperCamelCase :str ): return super().__call__(_UpperCAmelCase ,**_UpperCAmelCase ) def a__ ( self :List[str] ,**_UpperCamelCase :str ): return {}, {}, {} def a__ ( self :str ,_UpperCamelCase :Optional[int] ): snake_case_ : str = load_image(_UpperCAmelCase ) snake_case_ : Optional[int] = image.size snake_case_ : Union[str, Any] = self.image_processor(images=_UpperCAmelCase ,return_tensors=self.framework ) return model_inputs def a__ ( self :Dict ,_UpperCamelCase :List[Any] ): snake_case_ : Any = self.model(**_UpperCAmelCase ) return model_outputs def a__ ( self :List[Any] ,_UpperCamelCase :str ): snake_case_ : List[str] = model_outputs.predicted_depth snake_case_ : Optional[int] = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) ,size=self.image_size[::-1] ,mode="""bicubic""" ,align_corners=_UpperCAmelCase ) snake_case_ : List[str] = prediction.squeeze().cpu().numpy() snake_case_ : Tuple = (output * 2_5_5 / np.max(_UpperCAmelCase )).astype("""uint8""" ) snake_case_ : int = Image.fromarray(_UpperCAmelCase ) snake_case_ : Union[str, Any] = {} snake_case_ : Tuple = predicted_depth snake_case_ : List[str] = depth return output_dict
334
'''simple docstring''' def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Optional[Any]: # noqa: E741 __A : Tuple = len(__snake_case ) __A : Optional[int] = 0 __A : str = [0] * n __A : int = [False] * n __A : Tuple = [False] * n def dfs(__snake_case : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : int ): if parent == root: out_edge_count += 1 __A : str = True __A : Tuple = at for to in l[at]: if to == parent: pass elif not visited[to]: __A : Optional[int] = dfs(__snake_case , __snake_case , __snake_case , __snake_case ) __A : int = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __A : Tuple = True # AP found via cycle if at == low[to]: __A : Optional[Any] = True else: __A : Any = min(low[at] , __snake_case ) return out_edge_count for i in range(__snake_case ): if not visited[i]: __A : Tuple = 0 __A : List[Any] = dfs(__snake_case , __snake_case , -1 , __snake_case ) __A : Union[str, Any] = out_edge_count > 1 for x in range(len(__snake_case ) ): if is_art[x] is True: print(__snake_case ) # Adjacency list of graph lowercase__ : Tuple = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
8
0
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowerCAmelCase_ : List[str] = Mapping[str, np.ndarray] lowerCAmelCase_ : Dict = Mapping[str, Any] # Is a nested dict. lowerCAmelCase_ : Dict = 0.01 @dataclasses.dataclass(frozen=a__ ) class UpperCamelCase__ : lowerCAmelCase__ : Union[str, Any] = 42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. lowerCAmelCase__ : Optional[Any] = 42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. lowerCAmelCase__ : str = 42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. lowerCAmelCase__ : Optional[int] = 42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. lowerCAmelCase__ : Tuple = 42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions lowerCAmelCase__ : List[Any] = None # Optional remark about the protein. Included as a comment in output PDB # files lowerCAmelCase__ : Optional[int] = None # Templates used to generate this protein (prediction-only) lowerCAmelCase__ : Optional[int] = None # Chain corresponding to each parent lowerCAmelCase__ : Dict = None def _lowerCamelCase (__lowerCamelCase : str ) -> Protein: a__ = r'(\[[A-Z]+\]\n)' a__ = [tag.strip() for tag in re.split(__snake_case , __snake_case ) if len(__snake_case ) > 0] a__ = zip(tags[0::2] , [l.split("\n" ) for l in tags[1::2]] ) a__ = ["N", "CA", "C"] a__ = None a__ = None a__ = None for g in groups: if "[PRIMARY]" == g[0]: a__ = g[1][0].strip() for i in range(len(__snake_case ) ): if seq[i] not in residue_constants.restypes: a__ = 'X' # FIXME: strings are immutable a__ = np.array( [residue_constants.restype_order.get(__snake_case , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: a__ = [] for axis in range(3 ): tertiary.append(list(map(__snake_case , g[1][axis].split() ) ) ) a__ = np.array(__snake_case ) a__ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__snake_case ): a__ = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: a__ = np.array(list(map({"-": 0, "+": 1}.get , g[1][0].strip() ) ) ) a__ = np.zeros( ( len(__snake_case ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__snake_case ): a__ = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__snake_case , atom_mask=__snake_case , aatype=__snake_case , residue_index=np.arange(len(__snake_case ) ) , b_factors=__snake_case , ) def _lowerCamelCase (__lowerCamelCase : Protein , __lowerCamelCase : int = 0 ) -> List[str]: a__ = [] a__ = prot.remark if remark is not None: pdb_headers.append(f'''REMARK {remark}''' ) a__ = prot.parents a__ = prot.parents_chain_index if parents is not None and parents_chain_index is not None: a__ = [p for i, p in zip(__snake_case , __snake_case ) if i == chain_id] if parents is None or len(__snake_case ) == 0: a__ = ['N/A'] pdb_headers.append(f'''PARENT {" ".join(__snake_case )}''' ) return pdb_headers def _lowerCamelCase (__lowerCamelCase : Protein , __lowerCamelCase : str ) -> str: a__ = [] a__ = pdb_str.split("\n" ) a__ = prot.remark if remark is not None: out_pdb_lines.append(f'''REMARK {remark}''' ) a__ = 42 if prot.parents is not None and len(prot.parents ) > 0: a__ = [] if prot.parents_chain_index is not None: a__ = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__snake_case ) , [] ) parent_dict[str(__snake_case )].append(__snake_case ) a__ = max([int(__snake_case ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): a__ = parent_dict.get(str(__snake_case ) , ["N/A"] ) parents_per_chain.append(__snake_case ) else: parents_per_chain.append(list(prot.parents ) ) else: a__ = [['N/A']] def make_parent_line(__lowerCamelCase : Sequence[str] ) -> str: return f'''PARENT {" ".join(__snake_case )}''' out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) a__ = 0 for i, l in enumerate(__snake_case ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__snake_case ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__snake_case ): a__ = parents_per_chain[chain_counter] else: a__ = ['N/A'] out_pdb_lines.append(make_parent_line(__snake_case ) ) return "\n".join(__snake_case ) def _lowerCamelCase (__lowerCamelCase : Protein ) -> str: a__ = residue_constants.restypes + ['X'] def res_atoa(__lowerCamelCase : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , "UNK" ) a__ = residue_constants.atom_types a__ = [] a__ = prot.atom_mask a__ = prot.aatype a__ = prot.atom_positions a__ = prot.residue_index.astype(np.intaa ) a__ = prot.b_factors a__ = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) a__ = get_pdb_headers(__snake_case ) if len(__snake_case ) > 0: pdb_lines.extend(__snake_case ) a__ = aatype.shape[0] a__ = 1 a__ = 0 a__ = string.ascii_uppercase a__ = None # Add all atom sites. for i in range(__snake_case ): a__ = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__snake_case , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue a__ = 'ATOM' a__ = atom_name if len(__snake_case ) == 4 else f''' {atom_name}''' a__ = '' a__ = '' a__ = 1.00 a__ = atom_name[0] # Protein supports only C, N, O, S, this works. a__ = '' a__ = 'A' if chain_index is not None: a__ = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! a__ = ( f'''{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}''' f'''{res_name_a:>3} {chain_tag:>1}''' f'''{residue_index[i]:>4}{insertion_code:>1} ''' f'''{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}''' f'''{occupancy:>6.2f}{b_factor:>6.2f} ''' f'''{element:>2}{charge:>2}''' ) pdb_lines.append(__snake_case ) atom_index += 1 a__ = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: a__ = True a__ = chain_index[i + 1] if should_terminate: # Close the chain. a__ = 'TER' a__ = ( f'''{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}''' ) pdb_lines.append(__snake_case ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__snake_case , __snake_case ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(__snake_case ) def _lowerCamelCase (__lowerCamelCase : Protein ) -> np.ndarray: return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def _lowerCamelCase (__lowerCamelCase : FeatureDict , __lowerCamelCase : ModelOutput , __lowerCamelCase : Optional[np.ndarray] = None , __lowerCamelCase : Optional[np.ndarray] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[Sequence[str]] = None , __lowerCamelCase : Optional[Sequence[int]] = None , ) -> Protein: return Protein( aatype=features["aatype"] , atom_positions=result["final_atom_positions"] , atom_mask=result["final_atom_mask"] , residue_index=features["residue_index"] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) , chain_index=__snake_case , remark=__snake_case , parents=__snake_case , parents_chain_index=__snake_case , )
489
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : int = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } lowercase__ : Dict = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _lowerCAmelCase ( __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Any , __snake_case : List[str] ) -> Union[str, Any]: for attribute in key.split('.' ): __A : int = getattr(__snake_case , __snake_case ) if weight_type is not None: __A : Optional[int] = getattr(__snake_case , __snake_case ).shape else: __A : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __A : Tuple = value elif weight_type == "weight_g": __A : Union[str, Any] = value elif weight_type == "weight_v": __A : Optional[Any] = value elif weight_type == "bias": __A : Optional[int] = value else: __A : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( __snake_case : Any , __snake_case : List[str] ) -> List[Any]: __A : Optional[Any] = [] __A : Any = fairseq_model.state_dict() __A : Union[str, Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): __A : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == 'group' , ) __A : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __A : int = True if "*" in mapped_key: __A : Any = name.split(__snake_case )[0].split('.' )[-2] __A : List[Any] = mapped_key.replace('*' , __snake_case ) if "weight_g" in name: __A : Optional[Any] = 'weight_g' elif "weight_v" in name: __A : Union[str, Any] = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: __A : Optional[Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __A : Tuple = 'weight' else: __A : Dict = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[int] ) -> int: __A : int = full_name.split('conv_layers.' )[-1] __A : List[str] = name.split('.' ) __A : Optional[int] = int(items[0] ) __A : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __A : Optional[int] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __A : Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) __A : Dict = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __A : Any = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) @torch.no_grad() def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple=None ) -> Any: # load the pre-trained checkpoints __A : List[str] = torch.load(__snake_case ) __A : Dict = WavLMConfigOrig(checkpoint['cfg'] ) __A : Optional[int] = WavLMOrig(__snake_case ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: __A : List[Any] = WavLMConfig.from_pretrained(__snake_case ) else: __A : Dict = WavLMConfig() __A : Optional[Any] = WavLMModel(__snake_case ) recursively_load_weights(__snake_case , __snake_case ) hf_wavlm.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowercase__ : Any = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
8
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any]=7 , __UpperCAmelCase : Any=3 , __UpperCAmelCase : Tuple=30 , __UpperCAmelCase : Optional[Any]=400 , __UpperCAmelCase : int=True , __UpperCAmelCase : Any=None , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Dict=[0.5, 0.5, 0.5] , __UpperCAmelCase : Any=[0.5, 0.5, 0.5] , __UpperCAmelCase : str=True , __UpperCAmelCase : Any=1 / 255 , __UpperCAmelCase : Dict=True , ): '''simple docstring''' _A = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} _A = parent _A = batch_size _A = num_channels _A = min_resolution _A = max_resolution _A = do_resize _A = size _A = do_normalize _A = image_mean _A = image_std _A = do_rescale _A = rescale_factor _A = do_pad def lowerCAmelCase ( self : Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : int=False ): '''simple docstring''' if not batched: _A = image_inputs[0] if isinstance(_UpperCAmelCase , Image.Image ): _A = image.size else: _A = image.shape[1], image.shape[2] if w < h: _A = int(self.size["shortest_edge"] * h / w ) _A = self.size['shortest_edge'] elif w > h: _A = self.size['shortest_edge'] _A = int(self.size["shortest_edge"] * w / h ) else: _A = self.size['shortest_edge'] _A = self.size['shortest_edge'] else: _A = [] for image in image_inputs: _A = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _A = max(_UpperCAmelCase , key=lambda __UpperCAmelCase : item[0] )[0] _A = max(_UpperCAmelCase , key=lambda __UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _UpperCAmelCase ( a__ , unittest.TestCase ): """simple docstring""" snake_case = DeformableDetrImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = DeformableDetrImageProcessingTester(self ) @property def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , "image_mean" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "image_std" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "do_normalize" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "do_rescale" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "do_pad" ) ) self.assertTrue(hasattr(_UpperCAmelCase , "size" ) ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad , _UpperCAmelCase ) _A = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_UpperCAmelCase ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , _UpperCAmelCase ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' pass def lowerCAmelCase ( self : str ): '''simple docstring''' _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _A = self.image_processor_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase ) _A = image_processing(_UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _A = self.image_processor_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(_UpperCAmelCase , return_tensors="pt" ).pixel_values _A = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase ( self : str ): '''simple docstring''' _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _A = self.image_processor_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(_UpperCAmelCase , return_tensors="pt" ).pixel_values _A = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase ( self : Dict ): '''simple docstring''' _A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: _A = json.loads(f.read() ) _A = {'image_id': 39769, 'annotations': target} # encode them _A = DeformableDetrImageProcessor() _A = image_processing(images=_UpperCAmelCase , annotations=_UpperCAmelCase , return_tensors="pt" ) # verify pixel values _A = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , _UpperCAmelCase ) _A = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , _UpperCAmelCase , atol=1E-4 ) ) # verify area _A = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , _UpperCAmelCase ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , _UpperCAmelCase ) _A = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , _UpperCAmelCase , atol=1E-3 ) ) # verify image_id _A = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , _UpperCAmelCase ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , _UpperCAmelCase ) ) # verify class_labels _A = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , _UpperCAmelCase ) ) # verify orig_size _A = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , _UpperCAmelCase ) ) # verify size _A = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , _UpperCAmelCase ) ) @slow def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: _A = json.loads(f.read() ) _A = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} _A = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them _A = DeformableDetrImageProcessor(format="coco_panoptic" ) _A = image_processing(images=_UpperCAmelCase , annotations=_UpperCAmelCase , masks_path=_UpperCAmelCase , return_tensors="pt" ) # verify pixel values _A = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , _UpperCAmelCase ) _A = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , _UpperCAmelCase , atol=1E-4 ) ) # verify area _A = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , _UpperCAmelCase ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , _UpperCAmelCase ) _A = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , _UpperCAmelCase , atol=1E-3 ) ) # verify image_id _A = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , _UpperCAmelCase ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , _UpperCAmelCase ) ) # verify class_labels _A = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , _UpperCAmelCase ) ) # verify masks _A = 822873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , _UpperCAmelCase ) # verify orig_size _A = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , _UpperCAmelCase ) ) # verify size _A = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , _UpperCAmelCase ) )
330
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = 42 class SCREAMING_SNAKE_CASE (a__ , a__ ): @register_to_config def __init__( self , _UpperCAmelCase = 6_5536 , _UpperCAmelCase = None , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = 0 , _UpperCAmelCase = "fourier" , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = 0.0 , _UpperCAmelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _UpperCAmelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _UpperCAmelCase = "UNetMidBlock1D" , _UpperCAmelCase = None , _UpperCAmelCase = (32, 32, 64) , _UpperCAmelCase = None , _UpperCAmelCase = 8 , _UpperCAmelCase = 1 , _UpperCAmelCase = False , ): '''simple docstring''' super().__init__() __A : Dict = sample_size # time if time_embedding_type == "fourier": __A : int = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_UpperCAmelCase , log=_UpperCAmelCase , flip_sin_to_cos=_UpperCAmelCase) __A : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": __A : List[str] = Timesteps( block_out_channels[0] , flip_sin_to_cos=_UpperCAmelCase , downscale_freq_shift=_UpperCAmelCase) __A : List[str] = block_out_channels[0] if use_timestep_embedding: __A : Optional[Any] = block_out_channels[0] * 4 __A : Optional[int] = TimestepEmbedding( in_channels=_UpperCAmelCase , time_embed_dim=_UpperCAmelCase , act_fn=_UpperCAmelCase , out_dim=block_out_channels[0] , ) __A : Dict = nn.ModuleList([]) __A : Dict = None __A : Tuple = nn.ModuleList([]) __A : Tuple = None # down __A : Any = in_channels for i, down_block_type in enumerate(_UpperCAmelCase): __A : Tuple = output_channel __A : Optional[Any] = block_out_channels[i] if i == 0: input_channel += extra_in_channels __A : List[str] = i == len(_UpperCAmelCase) - 1 __A : int = get_down_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_UpperCAmelCase) # mid __A : str = get_mid_block( _UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_UpperCAmelCase , add_downsample=_UpperCAmelCase , ) # up __A : Optional[int] = list(reversed(_UpperCAmelCase)) __A : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: __A : str = out_channels else: __A : List[Any] = block_out_channels[0] for i, up_block_type in enumerate(_UpperCAmelCase): __A : Optional[Any] = output_channel __A : Optional[Any] = ( reversed_block_out_channels[i + 1] if i < len(_UpperCAmelCase) - 1 else final_upsample_channels ) __A : Dict = i == len(_UpperCAmelCase) - 1 __A : str = get_up_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_UpperCAmelCase) __A : Optional[int] = output_channel # out __A : str = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32) __A : Optional[Any] = get_out_block( out_block_type=_UpperCAmelCase , num_groups_out=_UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=_UpperCAmelCase , act_fn=_UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , ): '''simple docstring''' __A : Any = timestep if not torch.is_tensor(_UpperCAmelCase): __A : Any = torch.tensor([timesteps] , dtype=torch.long , device=sample.device) elif torch.is_tensor(_UpperCAmelCase) and len(timesteps.shape) == 0: __A : Any = timesteps[None].to(sample.device) __A : List[Any] = self.time_proj(_UpperCAmelCase) if self.config.use_timestep_embedding: __A : Dict = self.time_mlp(_UpperCAmelCase) else: __A : Dict = timestep_embed[..., None] __A : Tuple = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) __A : List[Any] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) # 2. down __A : int = () for downsample_block in self.down_blocks: __A ,__A : int = downsample_block(hidden_states=_UpperCAmelCase , temb=_UpperCAmelCase) down_block_res_samples += res_samples # 3. mid if self.mid_block: __A : Optional[int] = self.mid_block(_UpperCAmelCase , _UpperCAmelCase) # 4. up for i, upsample_block in enumerate(self.up_blocks): __A : Any = down_block_res_samples[-1:] __A : Optional[int] = down_block_res_samples[:-1] __A : Any = upsample_block(_UpperCAmelCase , res_hidden_states_tuple=_UpperCAmelCase , temb=_UpperCAmelCase) # 5. post-process if self.out_block: __A : Dict = self.out_block(_UpperCAmelCase , _UpperCAmelCase) if not return_dict: return (sample,) return UNetaDOutput(sample=_UpperCAmelCase)
8
0
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> List[Any]: lowerCamelCase : Tuple = tempfile.mkdtemp() # fmt: off lowerCamelCase : List[Any] = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest'] # fmt: on lowerCamelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) lowerCamelCase : List[Any] = { 'do_resize': True, 'size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.5, 0.5, 0.5], 'image_std': [0.5, 0.5, 0.5], } lowerCamelCase : int = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def _lowercase ( self , **UpperCamelCase__ ) -> Tuple: return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _lowercase ( self , **UpperCamelCase__ ) -> Any: return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _lowercase ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def _lowercase ( self ) -> Tuple: lowerCamelCase : Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase : List[str] = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowercase ( self ) -> Dict: lowerCamelCase : Optional[Any] = self.get_tokenizer() lowerCamelCase : List[Any] = self.get_image_processor() lowerCamelCase : Dict = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase : Union[str, Any] = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def _lowercase ( self ) -> Optional[int]: lowerCamelCase : Optional[int] = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase : Optional[Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCamelCase : Optional[Any] = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) lowerCamelCase : Tuple = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def _lowercase ( self ) -> List[Any]: lowerCamelCase : Any = self.get_image_processor() lowerCamelCase : Any = self.get_tokenizer() lowerCamelCase : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowerCamelCase : List[Any] = self.prepare_image_inputs() lowerCamelCase : str = image_processor(_UpperCAmelCase , return_tensors="np" ) lowerCamelCase : Tuple = processor(images=_UpperCAmelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowercase ( self ) -> Any: lowerCamelCase : Optional[int] = self.get_image_processor() lowerCamelCase : Optional[int] = self.get_tokenizer() lowerCamelCase : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowerCamelCase : Union[str, Any] = 'lower newer' lowerCamelCase : Optional[Any] = processor(text=_UpperCAmelCase ) lowerCamelCase : List[Any] = tokenizer(_UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowercase ( self ) -> int: lowerCamelCase : List[str] = self.get_image_processor() lowerCamelCase : Any = self.get_tokenizer() lowerCamelCase : Any = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowerCamelCase : Union[str, Any] = 'lower newer' lowerCamelCase : Dict = self.prepare_image_inputs() lowerCamelCase : Dict = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with self.assertRaises(_UpperCAmelCase ): processor() def _lowercase ( self ) -> List[Any]: lowerCamelCase : List[Any] = self.get_image_processor() lowerCamelCase : Optional[int] = self.get_tokenizer() lowerCamelCase : List[str] = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowerCamelCase : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase : List[str] = processor.batch_decode(_UpperCAmelCase ) lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowercase ( self ) -> List[str]: lowerCamelCase : Union[str, Any] = self.get_image_processor() lowerCamelCase : Union[str, Any] = self.get_tokenizer() lowerCamelCase : str = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowerCamelCase : Optional[Any] = 'lower newer' lowerCamelCase : str = self.prepare_image_inputs() lowerCamelCase : str = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
311
'''simple docstring''' def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> int: if len(__snake_case ) != len(__snake_case ): raise ValueError('String lengths must match!' ) __A : Optional[Any] = 0 for chara, chara in zip(__snake_case , __snake_case ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
8
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _A ( a__ ): _UpperCamelCase : Union[str, Any] = ['''image_processor''', '''tokenizer'''] _UpperCamelCase : Union[str, Any] = '''LayoutLMv2ImageProcessor''' _UpperCamelCase : Dict = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self : int , _A : Tuple=None , _A : List[str]=None , **_A : Optional[int] ) -> Any: """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _UpperCAmelCase , ) lowercase : str = kwargs.pop('''feature_extractor''' ) lowercase : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : int , _A : List[str] , _A : str = None , _A : int = None , _A : str = None , _A : Any = None , _A : Union[str, Any] = True , _A : Optional[Any] = False , _A : int = None , _A : Optional[int] = None , _A : int = 0 , _A : List[str] = None , _A : Tuple = None , _A : List[Any] = None , _A : List[Any] = False , _A : str = False , _A : Optional[int] = False , _A : Tuple = False , _A : int = True , _A : Any = None , **_A : Dict , ) -> Optional[int]: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor lowercase : Dict = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase : Optional[int] = [text] # add batch dimension (as the image processor always adds a batch dimension) lowercase : Dict = features['words'] lowercase : Any = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # add pixel values lowercase : Dict = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowercase : str = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs['''overflow_to_sample_mapping'''] ) lowercase : str = images return encoded_inputs def __a ( self : Any , _A : Union[str, Any] , _A : List[str] ) -> Tuple: """simple docstring""" lowercase : Tuple = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f""" {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}""" ) return images_with_overflow def __a ( self : Tuple , *_A : int , **_A : str ) -> Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def __a ( self : Any , *_A : Optional[int] , **_A : List[str] ) -> Any: """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def __a ( self : Any ) -> List[Any]: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def __a ( self : List[Any] ) -> Optional[Any]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _UpperCAmelCase , ) return self.image_processor_class @property def __a ( self : Optional[Any] ) -> Any: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _UpperCAmelCase , ) return self.image_processor
217
'''simple docstring''' import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> Union[str, Any]: __A : int = RobertaPreLayerNormConfig.from_pretrained( __snake_case , architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict __A : Tuple = torch.load(hf_hub_download(repo_id=__snake_case , filename='pytorch_model.bin' ) ) __A : str = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): __A : Dict = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue __A : str = tensor_value __A : Union[str, Any] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__snake_case , config=__snake_case , state_dict=__snake_case ) model.save_pretrained(__snake_case ) # convert tokenizer __A : List[Any] = AutoTokenizer.from_pretrained(__snake_case ) tokenizer.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
8
0
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case_ : int = logging.get_logger(__name__) snake_case_ : Optional[int] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} snake_case_ : Optional[int] = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } snake_case_ : Optional[int] = { '''allenai/longformer-base-4096''': 4_096, '''allenai/longformer-large-4096''': 4_096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4_096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4_096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __snake_case ( ): UpperCamelCase = ( list(range(ord('''!'''), ord('''~''') + 1)) + list(range(ord('''¡'''), ord('''¬''') + 1)) + list(range(ord('''®'''), ord('''ÿ''') + 1)) ) UpperCamelCase = bs[:] UpperCamelCase = 0 for b in range(2**8): if b not in bs: bs.append(__snake_case) cs.append(2**8 + n) n += 1 UpperCamelCase = [chr(__snake_case) for n in cs] return dict(zip(__snake_case, __snake_case)) def __snake_case ( _UpperCAmelCase : Optional[Any]): UpperCamelCase = set() UpperCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char)) UpperCamelCase = char return pairs class lowercase__ ( a__ ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="replace" , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<mask>" , lowerCamelCase__=False , **lowerCamelCase__ , ): '''simple docstring''' UpperCamelCase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else bos_token UpperCamelCase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else eos_token UpperCamelCase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else sep_token UpperCamelCase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else cls_token UpperCamelCase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token UpperCamelCase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token super().__init__( errors=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , **_UpperCAmelCase , ) with open(_UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: UpperCamelCase = json.load(_UpperCAmelCase ) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = errors # how to handle errors in decoding UpperCamelCase = bytes_to_unicode() UpperCamelCase = {v: k for k, v in self.byte_encoder.items()} with open(_UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: UpperCamelCase = merges_handle.read().split('''\n''' )[1:-1] UpperCamelCase = [tuple(merge.split() ) for merge in bpe_merges] UpperCamelCase = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) UpperCamelCase = {} UpperCamelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def UpperCAmelCase ( self ): '''simple docstring''' return len(self.encoder ) def UpperCAmelCase ( self ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' if token in self.cache: return self.cache[token] UpperCamelCase = tuple(_UpperCAmelCase ) UpperCamelCase = get_pairs(_UpperCAmelCase ) if not pairs: return token while True: UpperCamelCase = min(_UpperCAmelCase , key=lambda lowerCamelCase__ : self.bpe_ranks.get(_UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase = bigram UpperCamelCase = [] UpperCamelCase = 0 while i < len(_UpperCAmelCase ): try: UpperCamelCase = word.index(_UpperCAmelCase , _UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCamelCase = j if word[i] == first and i < len(_UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase = tuple(_UpperCAmelCase ) UpperCamelCase = new_word if len(_UpperCAmelCase ) == 1: break else: UpperCamelCase = get_pairs(_UpperCAmelCase ) UpperCamelCase = ' '.join(_UpperCAmelCase ) UpperCamelCase = word return word def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = [] for token in re.findall(self.pat , _UpperCAmelCase ): UpperCamelCase = ''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_UpperCAmelCase ).split(''' ''' ) ) return bpe_tokens def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' return self.encoder.get(_UpperCAmelCase , self.encoder.get(self.unk_token ) ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' return self.decoder.get(_UpperCAmelCase ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = ''.join(_UpperCAmelCase ) UpperCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): '''simple docstring''' if not os.path.isdir(_UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCamelCase = os.path.join( _UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase = os.path.join( _UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCAmelCase , ensure_ascii=_UpperCAmelCase ) + '''\n''' ) UpperCamelCase = 0 with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase__ : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) UpperCamelCase = token_index writer.write(''' '''.join(_UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] + ([0] * len(_UpperCAmelCase )) + [1] def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): '''simple docstring''' UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__=False , **lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_UpperCAmelCase ) > 0 and not text[0].isspace()): UpperCamelCase = ' ' + text return (text, kwargs)
212
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings lowercase__ : Dict = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = field(default=a__ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = super().to_dict() for k, v in d.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : List[Any] = v.to_dict() return d
8
0
'''simple docstring''' def a_ ( __snake_case : int = 6008_5147_5143 ) -> int: """simple docstring""" try: lowerCamelCase_ =int(__snake_case ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) lowerCamelCase_ =1 lowerCamelCase_ =2 while i * i <= n: while n % i == 0: lowerCamelCase_ =i n //= i i += 1 if n > 1: lowerCamelCase_ =n return int(__snake_case ) if __name__ == "__main__": print(F"""{solution() = }""")
676
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : Optional[int] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''lxmert''' lowerCAmelCase = {} def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=9500 , _UpperCAmelCase=1600 , _UpperCAmelCase=400 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=9 , _UpperCAmelCase=5 , _UpperCAmelCase=5 , _UpperCAmelCase=2048 , _UpperCAmelCase=4 , _UpperCAmelCase=6.67 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , **_UpperCAmelCase , ): '''simple docstring''' __A : Tuple = vocab_size __A : int = hidden_size __A : str = num_attention_heads __A : Tuple = hidden_act __A : int = intermediate_size __A : str = hidden_dropout_prob __A : Optional[int] = attention_probs_dropout_prob __A : Optional[Any] = max_position_embeddings __A : Tuple = type_vocab_size __A : Optional[int] = initializer_range __A : Any = layer_norm_eps __A : Optional[Any] = num_qa_labels __A : Optional[int] = num_object_labels __A : Any = num_attr_labels __A : Union[str, Any] = l_layers __A : Optional[int] = x_layers __A : List[Any] = r_layers __A : Tuple = visual_feat_dim __A : Tuple = visual_pos_dim __A : Optional[int] = visual_loss_normalizer __A : int = task_matched __A : List[Any] = task_mask_lm __A : Optional[Any] = task_obj_predict __A : str = task_qa __A : List[Any] = visual_obj_loss __A : Optional[Any] = visual_attr_loss __A : Union[str, Any] = visual_feat_loss __A : Union[str, Any] = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**_UpperCAmelCase)
8
0
from __future__ import annotations def A ( _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : list[list[int]] = [] create_all_state(1 , __snake_case , __snake_case , [] , __snake_case ) return result def A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ): if level == 0: total_list.append(current_list[:] ) return for i in range(__snake_case , total_number - level + 2 ): current_list.append(__snake_case ) create_all_state(i + 1 , __snake_case , level - 1 , __snake_case , __snake_case ) current_list.pop() def A ( _lowercase ): for i in total_list: print(*__snake_case ) if __name__ == "__main__": __UpperCamelCase : List[str] = 4 __UpperCamelCase : List[str] = 2 __UpperCamelCase : int = generate_all_combinations(n, k) print_all_state(total_list)
248
'''simple docstring''' import math import sys def _lowerCAmelCase ( __snake_case : int ) -> int: if number != int(__snake_case ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 __A : str = [-1] * (number + 1) __A : Dict = 0 for i in range(1 , number + 1 ): __A : int = sys.maxsize __A : int = int(math.sqrt(__snake_case ) ) for j in range(1 , root + 1 ): __A : str = 1 + answers[i - (j**2)] __A : Dict = min(__snake_case , __snake_case ) __A : Union[str, Any] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
8
0
from dataclasses import dataclass, field from typing import Optional @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be trained.'''} ) UpperCAmelCase__ = field( default='''./''' , metadata={'''help''': '''Save dir where model repo is cloned and models updates are saved to.'''} ) UpperCAmelCase__ = field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path of training dataset.'''} ) UpperCAmelCase__ = field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) UpperCAmelCase__ = field(default=2 , metadata={'''help''': '''Batch size for training.'''} ) UpperCAmelCase__ = field(default=2 , metadata={'''help''': '''Batch size for evaluation.'''} ) UpperCAmelCase__ = field(default=0.1 , metadata={'''help''': '''Value of weight decay.'''} ) UpperCAmelCase__ = field( default=1_0000 , metadata={'''help''': '''Size of buffer used to shuffle streaming dataset.'''} ) UpperCAmelCase__ = field(default=2E-4 , metadata={'''help''': '''Learning rate fo training.'''} ) UpperCAmelCase__ = field(default='''cosine''' , metadata={'''help''': '''Learning rate.'''} ) UpperCAmelCase__ = field( default=750 , metadata={'''help''': '''Number of warmup steps in the learning rate schedule.'''} ) UpperCAmelCase__ = field( default=16 , metadata={'''help''': '''Number of gradient accumulation steps.'''} ) UpperCAmelCase__ = field( default=a__ , metadata={'''help''': '''Use gradient checkpointing to reduce memory footprint.'''} ) UpperCAmelCase__ = field(default=5_0000 , metadata={'''help''': '''Maximum number of training steps.'''} ) UpperCAmelCase__ = field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) UpperCAmelCase__ = field(default=1024 , metadata={'''help''': '''Sequence lengths used for training.'''} ) UpperCAmelCase__ = field(default=1 , metadata={'''help''': '''Training seed.'''} ) UpperCAmelCase__ = field( default=1024 , metadata={'''help''': '''Interval to save checkpoints. Measured as number of forward passes not training steps.'''} , ) UpperCAmelCase__ = field( default=a__ , metadata={'''help''': '''States path if the training should continue from a checkpoint folder.'''} ) UpperCAmelCase__ = field(default=a__ , metadata={'''help''': '''If True the data is pretokenized.'''} ) @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) UpperCAmelCase__ = field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) UpperCAmelCase__ = field(default=2 , metadata={'''help''': '''Batch size used for evaluation.'''} ) UpperCAmelCase__ = field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) UpperCAmelCase__ = field(default=1024 , metadata={'''help''': '''Length of sequences to be evaluated.'''} ) UpperCAmelCase__ = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) UpperCAmelCase__ = field(default=a__ , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) UpperCAmelCase__ = field( default=a__ , metadata={'''help''': '''The number of human-eval tasks to run. If not included all tasks are evaluated.'''} , ) UpperCAmelCase__ = field( default=a__ , metadata={'''help''': '''Sample from the language model\'s output distribution.'''} ) UpperCAmelCase__ = field(default=0.2 , metadata={'''help''': '''Sampling temperature used for generation.'''} ) UpperCAmelCase__ = field(default=256 , metadata={'''help''': '''Maximum number of newly generated tokens.'''} ) UpperCAmelCase__ = field(default=0 , metadata={'''help''': '''Top-k parameter used for generation.'''} ) UpperCAmelCase__ = field(default=0.9_5 , metadata={'''help''': '''Top-p parameter used for nucleus sampling.'''} ) UpperCAmelCase__ = field(default=10 , metadata={'''help''': '''Number of generations to run in parallel.'''} ) UpperCAmelCase__ = field( default=200 , metadata={'''help''': '''Number of completions to generate for each sample.'''} ) UpperCAmelCase__ = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) UpperCAmelCase__ = field( default='''eval_results.json''' , metadata={'''help''': '''Random seed used for evaluation.'''} ) UpperCAmelCase__ = field( default='''0''' , metadata={'''help''': '''Allow `code_eval` to execute Python code on machine'''} ) UpperCAmelCase__ = field( default=-1 , metadata={ '''help''': ( '''Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive''' ''' number corresponds to which GPU device id to run on.''' ) } , ) @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = field( default=a__ , metadata={ '''help''': '''The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.''' } , ) UpperCAmelCase__ = field( default='''transformersbook/codeparrot''' , metadata={'''help''': '''Folder or name of dataset to process.'''} ) UpperCAmelCase__ = field( default='''codeparrot-clean''' , metadata={'''help''': '''Folder to save processed processed dataset.'''} ) UpperCAmelCase__ = field( default=10_0000 , metadata={'''help''': '''Number of files to save per JSON output file.'''} ) UpperCAmelCase__ = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) UpperCAmelCase__ = field( default=1000 , metadata={'''help''': '''Maximum line length in file, otherwise file is filtered.'''} ) UpperCAmelCase__ = field( default=100 , metadata={'''help''': '''Maximum mean line length in file, otherwise file is filtered.'''} ) UpperCAmelCase__ = field( default=0.2_5 , metadata={'''help''': '''Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'''} ) UpperCAmelCase__ = field( default=1.5 , metadata={'''help''': '''Minimum character token ratio for the file, otherwise file is filtered.'''} ) UpperCAmelCase__ = field( default=0.7 , metadata={'''help''': '''Probability for filtering config, test and uncommon files.'''} ) UpperCAmelCase__ = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} , ) UpperCAmelCase__ = field( default=a__ , metadata={'''help''': '''If True, near-duplicate samples are removed.'''} ) UpperCAmelCase__ = field( default=0.8_5 , metadata={'''help''': '''Jaccard threshold for near-duplicate samples.'''} ) @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = field( default='''gpt2''' , metadata={'''help''': '''Base tokenizer to build new tokenizer from.'''} ) UpperCAmelCase__ = field( default='''transformersbook/codeparrot-train''' , metadata={'''help''': '''Dataset to train tokenizer on.'''} ) UpperCAmelCase__ = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) UpperCAmelCase__ = field(default=20_0000 , metadata={'''help''': '''Number of examples to train tokenizer on.'''} ) UpperCAmelCase__ = field( default=3_2768 , metadata={'''help''': '''Number of examples to train the tokenizer on.'''} ) UpperCAmelCase__ = field(default='''codeparrot''' , metadata={'''help''': '''Name of new tokenizer.'''} ) UpperCAmelCase__ = field(default=a__ , metadata={'''help''': '''Push saved tokenizer to the hub.'''} ) @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} ) UpperCAmelCase__ = field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path to the dataset to pretokenize.'''} ) UpperCAmelCase__ = field( default='''tokenized-codeparrot-train''' , metadata={'''help''': '''Repo name of the pretokenized data.'''} ) UpperCAmelCase__ = field(default=a__ , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = field( default='''gpt2-large''' , metadata={'''help''': '''Configuration to use for model initialization.'''} ) UpperCAmelCase__ = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Tokenizer attached to model.'''} ) UpperCAmelCase__ = field(default='''codeparrot''' , metadata={'''help''': '''Name of the created model.'''} ) UpperCAmelCase__ = field(default=a__ , metadata={'''help''': '''Push saved tokenizer to the hub.'''} )
87
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( __snake_case : list[int] , __snake_case : list[int] , __snake_case : int ) -> tuple[float, list[float]]: __A : int = list(range(len(__snake_case ) ) ) __A : Optional[Any] = [v / w for v, w in zip(__snake_case , __snake_case )] index.sort(key=lambda __snake_case : ratio[i] , reverse=__snake_case ) __A : float = 0 __A : list[float] = [0] * len(__snake_case ) for i in index: if weight[i] <= capacity: __A : Optional[int] = 1 max_value += value[i] capacity -= weight[i] else: __A : List[Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
8
0
_lowercase = { '''a''': '''AAAAA''', '''b''': '''AAAAB''', '''c''': '''AAABA''', '''d''': '''AAABB''', '''e''': '''AABAA''', '''f''': '''AABAB''', '''g''': '''AABBA''', '''h''': '''AABBB''', '''i''': '''ABAAA''', '''j''': '''BBBAA''', '''k''': '''ABAAB''', '''l''': '''ABABA''', '''m''': '''ABABB''', '''n''': '''ABBAA''', '''o''': '''ABBAB''', '''p''': '''ABBBA''', '''q''': '''ABBBB''', '''r''': '''BAAAA''', '''s''': '''BAAAB''', '''t''': '''BAABA''', '''u''': '''BAABB''', '''v''': '''BBBAB''', '''w''': '''BABAA''', '''x''': '''BABAB''', '''y''': '''BABBA''', '''z''': '''BABBB''', ''' ''': ''' ''', } _lowercase = {value: key for key, value in encode_dict.items()} def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : str ) -> str: SCREAMING_SNAKE_CASE_ : Optional[int] ='' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : str ) -> str: if set(__snake_case ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) SCREAMING_SNAKE_CASE_ : str ='' for word in coded.split(): while len(__snake_case ) != 0: decoded += decode_dict[word[:5]] SCREAMING_SNAKE_CASE_ : Dict =word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
443
'''simple docstring''' from __future__ import annotations import math class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : int = size # approximate the overall size of segment tree with given value __A : Optional[Any] = [0 for i in range(0 , 4 * size)] # create array to store lazy update __A : Optional[Any] = [0 for i in range(0 , 4 * size)] __A : str = [0 for i in range(0 , 4 * size)] # flag for lazy update def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return idx * 2 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return idx * 2 + 1 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if left_element == right_element: __A : List[Any] = a[left_element - 1] else: __A : List[str] = (left_element + right_element) // 2 self.build(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.build(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase) __A : Any = max( self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)]) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.flag[idx] is True: __A : Optional[Any] = self.lazy[idx] __A : Optional[Any] = False if left_element != right_element: __A : List[Any] = self.lazy[idx] __A : Dict = self.lazy[idx] __A : Tuple = True __A : Union[str, Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: __A : Optional[int] = val if left_element != right_element: __A : Tuple = val __A : Any = val __A : Tuple = True __A : Union[str, Any] = True return True __A : str = (left_element + right_element) // 2 self.update(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.update(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : int = max( self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)]) return True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.flag[idx] is True: __A : Union[str, Any] = self.lazy[idx] __A : List[str] = False if left_element != right_element: __A : Union[str, Any] = self.lazy[idx] __A : Optional[int] = self.lazy[idx] __A : str = True __A : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] __A : Any = (left_element + right_element) // 2 __A : int = self.query(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : Union[str, Any] = self.query(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) return max(_UpperCAmelCase , _UpperCAmelCase) def __str__( self): '''simple docstring''' return str([self.query(1 , 1 , self.size , _UpperCAmelCase , _UpperCAmelCase) for i in range(1 , self.size + 1)]) if __name__ == "__main__": lowercase__ : Union[str, Any] = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] lowercase__ : str = 15 lowercase__ : List[Any] = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 1_11) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 2_35) print(segt)
8
0
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def _UpperCAmelCase ( A , A , A , A ): '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def _UpperCAmelCase ( A , A , A , A , A=True ): '''simple docstring''' model.train() UpperCAmelCase__ =model(__snake_case ) UpperCAmelCase__ =F.mse_loss(__snake_case , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(__snake_case ) def _UpperCAmelCase ( A , A=False ): '''simple docstring''' set_seed(42 ) UpperCAmelCase__ =RegressionModel() UpperCAmelCase__ =deepcopy(__snake_case ) UpperCAmelCase__ =RegressionDataset(length=80 ) UpperCAmelCase__ =DataLoader(__snake_case , batch_size=16 ) model.to(accelerator.device ) if sched: UpperCAmelCase__ =AdamW(params=model.parameters() , lr=1e-3 ) UpperCAmelCase__ =AdamW(params=ddp_model.parameters() , lr=1e-3 ) UpperCAmelCase__ =LambdaLR(__snake_case , lr_lambda=lambda A : epoch**0.65 ) UpperCAmelCase__ =LambdaLR(__snake_case , lr_lambda=lambda A : epoch**0.65 ) # Make a copy of `model` if sched: UpperCAmelCase__ =accelerator.prepare(__snake_case , __snake_case , __snake_case , __snake_case ) else: UpperCAmelCase__ =accelerator.prepare(__snake_case , __snake_case ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def _UpperCAmelCase ( A ): '''simple docstring''' UpperCAmelCase__ =get_training_setup(__snake_case ) # Use a single batch UpperCAmelCase__ =next(iter(__snake_case ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase__ =accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase__ =input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__snake_case , __snake_case , __snake_case , __snake_case ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__snake_case ): step_model(__snake_case , __snake_case , __snake_case , __snake_case ) else: # Sync grads step_model(__snake_case , __snake_case , __snake_case , __snake_case ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(__snake_case , __snake_case , __snake_case , __snake_case ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCAmelCase__ =ddp_input[torch.randperm(len(__snake_case ) )] def _UpperCAmelCase ( A ): '''simple docstring''' UpperCAmelCase__ =get_training_setup(__snake_case ) # Use a single batch UpperCAmelCase__ =next(iter(__snake_case ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCAmelCase__ =accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase__ =input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__snake_case , __snake_case , __snake_case , __snake_case ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__snake_case ): step_model(__snake_case , __snake_case , __snake_case , __snake_case ) else: # Sync grads step_model(__snake_case , __snake_case , __snake_case , __snake_case ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCAmelCase__ =ddp_input[torch.randperm(len(__snake_case ) )] def _UpperCAmelCase ( A=False , A=False ): '''simple docstring''' UpperCAmelCase__ =Accelerator( split_batches=__snake_case , dispatch_batches=__snake_case , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase__ =get_training_setup(__snake_case ) for iteration, batch in enumerate(__snake_case ): UpperCAmelCase__ =batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase__ =accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase__ =input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # Do "gradient accumulation" (noop) with accelerator.accumulate(__snake_case ): step_model(__snake_case , __snake_case , __snake_case , __snake_case ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(__snake_case ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCAmelCase__ =ddp_input[torch.randperm(len(__snake_case ) )] GradientState._reset_state() def _UpperCAmelCase ( A=False , A=False ): '''simple docstring''' UpperCAmelCase__ =Accelerator( split_batches=__snake_case , dispatch_batches=__snake_case , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCAmelCase__ =get_training_setup(__snake_case , __snake_case ) for iteration, batch in enumerate(__snake_case ): UpperCAmelCase__ =batch.values() # Gather the distributed inputs and targs for the base model UpperCAmelCase__ =accelerator.gather((ddp_input, ddp_target) ) UpperCAmelCase__ =input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(__snake_case )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(__snake_case ): step_model(__snake_case , __snake_case , __snake_case , __snake_case ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n""" UpperCAmelCase__ =(((iteration + 1) % 2) == 0) or ((iteration + 1) == len(__snake_case )) if accelerator.num_processes > 1: check_model_parameters(__snake_case , __snake_case , __snake_case , __snake_case ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def _UpperCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ =Accelerator() UpperCAmelCase__ =RegressionDataset(length=80 ) UpperCAmelCase__ =DataLoader(__snake_case , batch_size=16 ) UpperCAmelCase__ =RegressionDataset(length=96 ) UpperCAmelCase__ =DataLoader(__snake_case , batch_size=16 ) UpperCAmelCase__ =accelerator.prepare(__snake_case , __snake_case ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(__snake_case ): assert id(accelerator.gradient_state.active_dataloader ) == id(__snake_case ) if iteration < len(__snake_case ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(__snake_case ): assert id(accelerator.gradient_state.active_dataloader ) == id(__snake_case ) if batch_num < len(__snake_case ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def _UpperCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ =Accelerator() UpperCAmelCase__ =accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(__snake_case ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(__snake_case ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(__snake_case , __snake_case ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(__snake_case , __snake_case ) def _UpperCAmelCase ( A ): '''simple docstring''' main() if __name__ == "__main__": main()
625
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int , __snake_case : int , __snake_case : int ) -> float: __A : Dict = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def _lowerCAmelCase ( ) -> Union[str, Any]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :int ): '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) snake_case_ : Optional[Any] = str(bin(__snake_case ) ) binary_number += "0" * shift_amount return binary_number def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :int ): '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) snake_case_ : List[str] = str(bin(__snake_case ) )[2:] if shift_amount >= len(__snake_case ): return "0b0" snake_case_ : Any = binary_number[: len(__snake_case ) - shift_amount] return "0b" + shifted_binary_number def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :int ): '''simple docstring''' if number >= 0: # Get binary representation of positive number snake_case_ : Optional[Any] = '0' + str(bin(__snake_case ) ).strip("""-""" )[2:] else: # Get binary (2's complement) representation of negative number snake_case_ : Union[str, Any] = len(bin(__snake_case )[3:] ) # Find 2's complement of number snake_case_ : Any = bin(abs(__snake_case ) - (1 << binary_number_length) )[3:] snake_case_ : Optional[Any] = ( '1' + '0' * (binary_number_length - len(__snake_case )) + binary_number ) if shift_amount >= len(__snake_case ): return "0b" + binary_number[0] * len(__snake_case ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__snake_case ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
334
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): '''simple docstring''' __A : Optional[int] = parent __A : str = 13 __A : List[Any] = 7 __A : List[str] = True __A : str = True __A : Optional[Any] = True __A : int = True __A : Dict = 99 __A : Dict = 384 __A : Any = 2 __A : int = 4 __A : Optional[Any] = 37 __A : Optional[int] = 'gelu' __A : Dict = 0.1 __A : Optional[int] = 0.1 __A : Any = 512 __A : int = 16 __A : List[str] = 2 __A : str = 0.02 __A : Any = 3 __A : str = 4 __A : Union[str, Any] = 128 __A : int = 2 __A : List[Any] = 9 __A : List[Any] = 1 __A : List[Any] = None def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __A : str = None if self.use_input_mask: __A : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __A : Optional[Any] = None if self.use_token_type_ids: __A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __A : Optional[int] = None __A : List[str] = None __A : Dict = None if self.use_labels: __A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) __A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __A : str = ids_tensor([self.batch_size] , self.num_choices) __A : List[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = TFConvBertModel(config=_UpperCAmelCase) __A : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __A : Tuple = [input_ids, input_mask] __A : Any = model(_UpperCAmelCase) __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : str = TFConvBertForMaskedLM(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : str = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = self.num_labels __A : Any = TFConvBertForSequenceClassification(config=_UpperCAmelCase) __A : Optional[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Tuple = self.num_choices __A : List[str] = TFConvBertForMultipleChoice(config=_UpperCAmelCase) __A : int = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : Optional[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : List[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : int = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __A : Optional[Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = self.num_labels __A : List[Any] = TFConvBertForTokenClassification(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : int = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = TFConvBertForQuestionAnswering(config=_UpperCAmelCase) __A : Any = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Union[str, Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.prepare_config_and_inputs() ( ( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) , ) : Union[str, Any] = config_and_inputs __A : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = TFConvBertModelTester(self) __A : str = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __A : List[str] = True __A : List[str] = True if hasattr(_UpperCAmelCase , 'use_cache'): __A : List[Any] = True __A : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : Union[str, Any] = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) for model_class in self.all_model_classes: __A : List[str] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase) __A : Optional[int] = model_class(_UpperCAmelCase) __A : Optional[Any] = len(model(_UpperCAmelCase)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase) __A : Union[str, Any] = os.path.join(_UpperCAmelCase , 'saved_model' , '1') __A : Tuple = tf.keras.models.load_model(_UpperCAmelCase) __A : str = model(_UpperCAmelCase) if self.is_encoder_decoder: __A : Optional[int] = outputs['encoder_hidden_states'] __A : str = outputs['encoder_attentions'] else: __A : List[Any] = outputs['hidden_states'] __A : Optional[Any] = outputs['attentions'] self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) __A : str = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) self.assertListEqual( list(output_hidden_states[0].shape[-2:]) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(output_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') self.assertIsNotNone(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Any = True __A : str = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length) __A : Any = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : int = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) __A : Tuple = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) def check_decoder_attentions_output(_UpperCAmelCase): __A : List[str] = len(_UpperCAmelCase) self.assertEqual(out_len % 2 , 0) __A : Any = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCAmelCase): __A : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __A : Dict = True __A : Any = False __A : str = model_class(_UpperCAmelCase) __A : List[str] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : List[str] = len(_UpperCAmelCase) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) if self.is_encoder_decoder: __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : int = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_decoder_attentions_output(_UpperCAmelCase) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __A : int = True __A : Tuple = model_class(_UpperCAmelCase) __A : Dict = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) # Check attention is always last and order is fine __A : Any = True __A : str = True __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : Union[str, Any] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase)) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) @require_tf class SCREAMING_SNAKE_CASE (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') __A : str = tf.constant([[0, 1, 2, 3, 4, 5]]) __A : Optional[int] = model(_UpperCAmelCase)[0] __A : List[Any] = [1, 6, 768] self.assertEqual(output.shape , _UpperCAmelCase) __A : Tuple = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ]) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4)
8
0
'''simple docstring''' import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) lowerCAmelCase_ : str = logging.getLogger(__name__) def _lowerCamelCase (__lowerCamelCase : Tuple , __lowerCamelCase : Optional[int] ) -> Optional[int]: a__ = np.argmax(__snake_case , axis=1 ) return np.sum(outputs == labels ) def _lowerCamelCase (__lowerCamelCase : Optional[int] ) -> int: with open(__snake_case , encoding="utf_8" ) as f: a__ = csv.reader(__snake_case ) a__ = [] next(__snake_case ) # skip the first line for line in tqdm(__snake_case ): output.append((" ".join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def _lowerCamelCase (__lowerCamelCase : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] ) -> Any: a__ = [] for dataset in encoded_datasets: a__ = len(__snake_case ) a__ = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) a__ = np.zeros((n_batch, 2) , dtype=np.intaa ) a__ = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) a__ = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(__snake_case ): a__ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] a__ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] a__ = with_conta a__ = with_conta a__ = len(__snake_case ) - 1 a__ = len(__snake_case ) - 1 a__ = with_conta a__ = with_conta a__ = mc_label a__ = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(__snake_case ) for t in all_inputs ) ) return tensor_datasets def _lowerCamelCase () -> Union[str, Any]: a__ = argparse.ArgumentParser() parser.add_argument("--model_name" , type=__snake_case , default="openai-gpt" , help="pretrained model name" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_eval" , action="store_true" , help="Whether to run eval on the dev set." ) parser.add_argument( "--output_dir" , default=__snake_case , type=__snake_case , required=__snake_case , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument("--train_dataset" , type=__snake_case , default="" ) parser.add_argument("--eval_dataset" , type=__snake_case , default="" ) parser.add_argument("--seed" , type=__snake_case , default=42 ) parser.add_argument("--num_train_epochs" , type=__snake_case , default=3 ) parser.add_argument("--train_batch_size" , type=__snake_case , default=8 ) parser.add_argument("--eval_batch_size" , type=__snake_case , default=16 ) parser.add_argument("--adam_epsilon" , default=1e-8 , type=__snake_case , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , type=__snake_case , default=1 ) parser.add_argument( "--max_steps" , default=-1 , type=__snake_case , help=( "If > 0: set total number of training steps to perform. Override num_train_epochs." ) , ) parser.add_argument( "--gradient_accumulation_steps" , type=__snake_case , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--learning_rate" , type=__snake_case , default=6.25e-5 ) parser.add_argument("--warmup_steps" , default=0 , type=__snake_case , help="Linear warmup over warmup_steps." ) parser.add_argument("--lr_schedule" , type=__snake_case , default="warmup_linear" ) parser.add_argument("--weight_decay" , type=__snake_case , default=0.01 ) parser.add_argument("--lm_coef" , type=__snake_case , default=0.9 ) parser.add_argument("--n_valid" , type=__snake_case , default=374 ) parser.add_argument("--server_ip" , type=__snake_case , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=__snake_case , default="" , help="Can be used for distant debugging." ) a__ = parser.parse_args() print(__snake_case ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__snake_case ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) a__ = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) a__ = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(__snake_case , __snake_case ) ) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True." ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset a__ = ['_start_', '_delimiter_', '_classify_'] a__ = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(__snake_case ) a__ = tokenizer.convert_tokens_to_ids(__snake_case ) a__ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(__snake_case ) ) model.to(__snake_case ) # Load and encode the datasets def tokenize_and_encode(__lowerCamelCase : Optional[Any] ): if isinstance(__snake_case , __snake_case ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(__snake_case ) ) elif isinstance(__snake_case , __snake_case ): return obj return [tokenize_and_encode(__snake_case ) for o in obj] logger.info("Encoding dataset..." ) a__ = load_rocstories_dataset(args.train_dataset ) a__ = load_rocstories_dataset(args.eval_dataset ) a__ = (train_dataset, eval_dataset) a__ = tokenize_and_encode(__snake_case ) # Compute the max input length for the Transformer a__ = model.config.n_positions // 2 - 2 a__ = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) a__ = min(__snake_case , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders a__ = pre_process_datasets(__snake_case , __snake_case , __snake_case , *__snake_case ) a__ = tensor_datasets[0], tensor_datasets[1] a__ = TensorDataset(*__snake_case ) a__ = RandomSampler(__snake_case ) a__ = DataLoader(__snake_case , sampler=__snake_case , batch_size=args.train_batch_size ) a__ = TensorDataset(*__snake_case ) a__ = SequentialSampler(__snake_case ) a__ = DataLoader(__snake_case , sampler=__snake_case , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: a__ = args.max_steps a__ = args.max_steps // (len(__snake_case ) // args.gradient_accumulation_steps) + 1 else: a__ = len(__snake_case ) // args.gradient_accumulation_steps * args.num_train_epochs a__ = list(model.named_parameters() ) a__ = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] a__ = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] a__ = AdamW(__snake_case , lr=args.learning_rate , eps=args.adam_epsilon ) a__ = get_linear_schedule_with_warmup( __snake_case , num_warmup_steps=args.warmup_steps , num_training_steps=__snake_case ) if args.do_train: a__ = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="Epoch" ): a__ = 0 a__ = 0 a__ = tqdm(__snake_case , desc="Training" ) for step, batch in enumerate(__snake_case ): a__ = tuple(t.to(__snake_case ) for t in batch ) a__ = batch a__ = model(__snake_case , mc_token_ids=__snake_case , lm_labels=__snake_case , mc_labels=__snake_case ) a__ = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() a__ = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 a__ = 'Training loss: {:.2e} lr: {:.2e}'.format(__snake_case , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer a__ = model.module if hasattr(__snake_case , "module" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` a__ = os.path.join(args.output_dir , __snake_case ) a__ = os.path.join(args.output_dir , __snake_case ) torch.save(model_to_save.state_dict() , __snake_case ) model_to_save.config.to_json_file(__snake_case ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned a__ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) a__ = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(__snake_case ) if args.do_eval: model.eval() a__ = 0, 0 a__ = 0, 0 for batch in tqdm(__snake_case , desc="Evaluating" ): a__ = tuple(t.to(__snake_case ) for t in batch ) a__ = batch with torch.no_grad(): a__ = model( __snake_case , mc_token_ids=__snake_case , lm_labels=__snake_case , mc_labels=__snake_case ) a__ = mc_logits.detach().cpu().numpy() a__ = mc_labels.to("cpu" ).numpy() a__ = accuracy(__snake_case , __snake_case ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 a__ = eval_loss / nb_eval_steps a__ = eval_accuracy / nb_eval_examples a__ = tr_loss / nb_tr_steps if args.do_train else None a__ = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} a__ = os.path.join(args.output_dir , "eval_results.txt" ) with open(__snake_case , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , __snake_case , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) if __name__ == "__main__": main()
489
'''simple docstring''' import argparse import os import re lowercase__ : Optional[int] = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowercase__ : Dict = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowercase__ : List[str] = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase__ : Tuple = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowercase__ : str = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase__ : str = re.compile(r'''\[([^\]]+)\]''') def _lowerCAmelCase ( __snake_case : str ) -> Tuple: __A : List[Any] = _re_indent.search(__snake_case ) return "" if search is None else search.groups()[0] def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : str="" , __snake_case : Any=None , __snake_case : List[Any]=None ) -> Optional[int]: __A : Tuple = 0 __A : Optional[int] = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(__snake_case ): index += 1 __A : Optional[int] = ['\n'.join(lines[:index] )] else: __A : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __A : Tuple = [lines[index]] index += 1 while index < len(__snake_case ) and (end_prompt is None or not lines[index].startswith(__snake_case )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__snake_case ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(__snake_case ) ) if index < len(__snake_case ) - 1: __A : Union[str, Any] = [lines[index + 1]] index += 1 else: __A : Union[str, Any] = [] else: blocks.append('\n'.join(__snake_case ) ) __A : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__snake_case ) > 0: blocks.append('\n'.join(__snake_case ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__snake_case ): blocks.append('\n'.join(lines[index:] ) ) return blocks def _lowerCAmelCase ( __snake_case : List[Any] ) -> int: def _inner(__snake_case : List[Any] ): return key(__snake_case ).lower().replace('_' , '' ) return _inner def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any=None ) -> List[Any]: # If no key is provided, we use a noop. def noop(__snake_case : List[Any] ): return x if key is None: __A : Optional[Any] = noop # Constants are all uppercase, they go first. __A : str = [obj for obj in objects if key(__snake_case ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __A : List[str] = [obj for obj in objects if key(__snake_case )[0].isupper() and not key(__snake_case ).isupper()] # Functions begin with a lowercase, they go last. __A : str = [obj for obj in objects if not key(__snake_case )[0].isupper()] __A : Tuple = ignore_underscore(__snake_case ) return sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Tuple: # This inner function sort imports between [ ]. def _replace(__snake_case : Tuple ): __A : List[str] = match.groups()[0] if "," not in imports: return f'[{imports}]' __A : int = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Dict = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(__snake_case )] ) + "]" __A : List[Any] = import_statement.split('\n' ) if len(__snake_case ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __A : Optional[int] = 2 if lines[1].strip() == '[' else 1 __A : Any = [(i, _re_strip_line.search(__snake_case ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __A : Optional[int] = sort_objects(__snake_case , key=lambda __snake_case : x[1] ) __A : Any = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__snake_case ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __A : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] ) else: __A : Dict = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Tuple = keys[:-1] __A : List[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(__snake_case )] ) return "\n".join(__snake_case ) else: # Finally we have to deal with imports fitting on one line __A : Optional[Any] = _re_bracket_content.sub(_replace , __snake_case ) return import_statement def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : List[Any]=True ) -> Optional[Any]: with open(__snake_case , 'r' ) as f: __A : Dict = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __A : str = split_code_in_indented_blocks( __snake_case , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__snake_case ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __A : Tuple = main_blocks[block_idx] __A : int = block.split('\n' ) # Get to the start of the imports. __A : Tuple = 0 while line_idx < len(__snake_case ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __A : Optional[int] = len(__snake_case ) else: line_idx += 1 if line_idx >= len(__snake_case ): continue # Ignore beginning and last line: they don't contain anything. __A : Dict = '\n'.join(block_lines[line_idx:-1] ) __A : int = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __A : Optional[int] = split_code_in_indented_blocks(__snake_case , indent_level=__snake_case ) # We have two categories of import key: list or _import_structure[key].append/extend __A : Any = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __A : Dict = [(pattern.search(__snake_case ).groups()[0] if pattern.search(__snake_case ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __A : Optional[Any] = [(i, key) for i, key in enumerate(__snake_case ) if key is not None] __A : Tuple = [x[0] for x in sorted(__snake_case , key=lambda __snake_case : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __A : str = 0 __A : Any = [] for i in range(len(__snake_case ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __A : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(__snake_case ) count += 1 # And we put our main block back together with its first and last line. __A : int = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(__snake_case ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(__snake_case , 'w' ) as f: f.write('\n'.join(__snake_case ) ) def _lowerCAmelCase ( __snake_case : int=True ) -> Optional[Any]: __A : Tuple = [] for root, _, files in os.walk(__snake_case ): if "__init__.py" in files: __A : List[Any] = sort_imports(os.path.join(__snake_case , '__init__.py' ) , check_only=__snake_case ) if result: __A : Dict = [os.path.join(__snake_case , '__init__.py' )] if len(__snake_case ) > 0: raise ValueError(f'Would overwrite {len(__snake_case )} files, run `make style`.' ) if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowercase__ : Union[str, Any] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
8
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase_ = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
330
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int ) -> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') lowercase__ : int = int(input('''Enter number: ''').strip()) print(f"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
8
0
from __future__ import annotations import numpy as np def A ( _SCREAMING_SNAKE_CASE ) -> Optional[int]: return np.maximum(0 ,__snake_case ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
311
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : str = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def _lowerCAmelCase ( __snake_case : List[Any] ) -> Tuple: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __A : Optional[Any] = k.replace(__snake_case , __snake_case ) if k.startswith('encoder' ): __A : Any = k.replace('.attn' , '.self_attn' ) __A : Any = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): __A : Tuple = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'encoder_attn_layer_norm' ) __A : int = k.replace('norm3' , 'final_layer_norm' ) return k def _lowerCAmelCase ( __snake_case : List[Any] ) -> Dict: __A : Optional[int] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: __A : Tuple = sd.pop(__snake_case ) __A : Union[str, Any] = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd __A : str = v lowercase__ : Tuple = ['''START'''] @torch.no_grad() def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any , __snake_case : List[Any] ) -> int: __A : List[str] = torch.load(__snake_case , map_location='cpu' ) __A : Tuple = model['model'] __A : str = BlenderbotConfig.from_json_file(__snake_case ) __A : int = BlenderbotForConditionalGeneration(__snake_case ) __A : List[Any] = m.model.state_dict().keys() __A : Optional[int] = [] __A : Optional[int] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __A : Union[str, Any] = rename_state_dict_key(__snake_case ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __A : Optional[Any] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__snake_case ) m.model.load_state_dict(__snake_case , strict=__snake_case ) m.half() m.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
8
0
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings lowerCAmelCase_ = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class _A ( a__ ): _UpperCamelCase : List[str] = field(default=a__ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) _UpperCamelCase : Union[str, Any] = field( default=a__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) _UpperCamelCase : Union[str, Any] = field( default=a__ , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) _UpperCamelCase : str = field( default=a__ , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) _UpperCamelCase : Any = field( default=a__ , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def __a ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase : List[Any] = super().to_dict() for k, v in d.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase : List[Any] = v.to_dict() return d
217
'''simple docstring''' import mpmath # for roots of unity import numpy as np class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None): '''simple docstring''' __A : List[Any] = list(poly_a or [0])[:] __A : Optional[int] = list(poly_b or [0])[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __A : Union[str, Any] = len(self.polyA) while self.polyB[-1] == 0: self.polyB.pop() __A : Optional[int] = len(self.polyB) # Add 0 to make lengths equal a power of 2 __A : Optional[Any] = int( 2 ** np.ceil(np.loga(len(self.polyA) + len(self.polyB) - 1))) while len(self.polyA) < self.c_max_length: self.polyA.append(0) while len(self.polyB) < self.c_max_length: self.polyB.append(0) # A complex root used for the fourier transform __A : str = complex(mpmath.root(x=1 , n=self.c_max_length , k=1)) # The product __A : Tuple = self.__multiply() def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(_UpperCAmelCase) <= 1: return dft[0] # __A : Dict = self.c_max_length // 2 while next_ncol > 0: __A : Optional[Any] = [[] for i in range(_UpperCAmelCase)] __A : Tuple = self.root**next_ncol # First half of next step __A : Optional[Any] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j]) current_root *= root # Second half of next step __A : List[str] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j]) current_root *= root # Update __A : Optional[int] = new_dft __A : Tuple = next_ncol // 2 return dft[0] def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.__dft('A') __A : Optional[Any] = self.__dft('B') __A : str = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]] del dft_a del dft_b # Corner Case if len(inverce_c[0]) <= 1: return inverce_c[0] # Inverse DFT __A : Dict = 2 while next_ncol <= self.c_max_length: __A : Optional[int] = [[] for i in range(_UpperCAmelCase)] __A : Any = self.root ** (next_ncol // 2) __A : Tuple = 1 # First half of next step for j in range(self.c_max_length // next_ncol): for i in range(next_ncol // 2): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root)) current_root *= root # Update __A : int = new_inverse_c next_ncol *= 2 # Unpack __A : Optional[int] = [round(x[0].real , 8) + round(x[0].imag , 8) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self): '''simple docstring''' __A : int = 'A = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A])) __A : Optional[Any] = 'B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B])) __A : str = 'A*B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.product)) return F'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class lowercase__ ( a__ ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' super().__init__() self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__( self , lowerCamelCase__ = 1 , lowerCamelCase__ = None , lowerCamelCase__ = 5_0 , lowerCamelCase__ = "pil" , lowerCamelCase__ = True , **lowerCamelCase__ , ): '''simple docstring''' UpperCamelCase = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=_UpperCAmelCase , ) UpperCamelCase = image.to(self.device ) # set step values self.scheduler.set_timesteps(_UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCamelCase = self.unet(_UpperCAmelCase , _UpperCAmelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCamelCase = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=_UpperCAmelCase ), "This is a local test"
212
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=[30, 30] , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=None , _UpperCAmelCase=8 , _UpperCAmelCase=10 , ): '''simple docstring''' __A : Union[str, Any] = parent __A : Tuple = batch_size __A : List[str] = image_size __A : Dict = patch_size __A : Optional[Any] = num_channels __A : Tuple = is_training __A : Dict = use_labels __A : List[Any] = hidden_size __A : Tuple = num_hidden_layers __A : int = num_attention_heads __A : Optional[int] = intermediate_size __A : Tuple = hidden_act __A : Any = hidden_dropout_prob __A : Optional[Any] = attention_probs_dropout_prob __A : List[Any] = type_sequence_label_size __A : List[Any] = initializer_range __A : Optional[int] = num_labels __A : List[Any] = scope __A : Any = n_targets __A : Union[str, Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens __A : List[str] = (image_size[1] // patch_size) * (image_size[0] // patch_size) __A : int = num_patches + 1 + self.num_detection_tokens def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]]) __A : Tuple = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) __A : List[Any] = [] for i in range(self.batch_size): __A : Optional[int] = {} __A : Union[str, Any] = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=_UpperCAmelCase) __A : str = torch.rand(self.n_targets , 4 , device=_UpperCAmelCase) labels.append(_UpperCAmelCase) __A : Any = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosModel(config=_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosForObjectDetection(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : str = model(pixel_values=_UpperCAmelCase) __A : List[str] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) __A : Union[str, Any] = model(pixel_values=_UpperCAmelCase , labels=_UpperCAmelCase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.prepare_config_and_inputs() __A ,__A ,__A : Tuple = config_and_inputs __A : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowerCAmelCase = ( {'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' __A : Optional[Any] = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase) if return_labels: if model_class.__name__ == "YolosForObjectDetection": __A : Any = [] for i in range(self.model_tester.batch_size): __A : Tuple = {} __A : Tuple = torch.ones( size=(self.model_tester.n_targets,) , device=_UpperCAmelCase , dtype=torch.long) __A : Optional[Any] = torch.ones( self.model_tester.n_targets , 4 , device=_UpperCAmelCase , dtype=torch.float) labels.append(_UpperCAmelCase) __A : str = labels return inputs_dict def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = YolosModelTester(self) __A : Dict = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Tuple = model_class(_UpperCAmelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __A : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[Any] = model_class(_UpperCAmelCase) __A : str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : int = [*signature.parameters.keys()] __A : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Optional[int] = True # in YOLOS, the seq_len is different __A : Dict = self.model_tester.expected_seq_len for model_class in self.all_model_classes: __A : Dict = True __A : Dict = False __A : Union[str, Any] = True __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : Any = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] __A : List[Any] = True __A : List[str] = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __A : str = len(_UpperCAmelCase) # Check attention is always last and order is fine __A : Dict = True __A : Dict = True __A : Dict = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = 1 self.assertEqual(out_len + added_hidden_states , len(_UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.hidden_states __A : List[str] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) # YOLOS has a different seq_length __A : Dict = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[str] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A : Optional[int] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : List[Any] = YolosModel.from_pretrained(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase) def _lowerCAmelCase ( ) -> int: __A : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return AutoImageProcessor.from_pretrained('hustvl/yolos-small') if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = YolosForObjectDetection.from_pretrained('hustvl/yolos-small').to(_UpperCAmelCase) __A : Any = self.default_image_processor __A : str = prepare_img() __A : int = image_processor(images=_UpperCAmelCase , return_tensors='pt').to(_UpperCAmelCase) # forward pass with torch.no_grad(): __A : str = model(inputs.pixel_values) # verify outputs __A : Tuple = torch.Size((1, 100, 92)) self.assertEqual(outputs.logits.shape , _UpperCAmelCase) __A : Dict = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=_UpperCAmelCase , ) __A : int = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=_UpperCAmelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) # verify postprocessing __A : List[str] = image_processor.post_process_object_detection( _UpperCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]])[0] __A : Optional[int] = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861]).to(_UpperCAmelCase) __A : Union[str, Any] = [75, 75, 17, 63, 17] __A : Any = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495]).to(_UpperCAmelCase) self.assertEqual(len(results['scores']) , 5) self.assertTrue(torch.allclose(results['scores'] , _UpperCAmelCase , atol=1e-4)) self.assertSequenceEqual(results['labels'].tolist() , _UpperCAmelCase) self.assertTrue(torch.allclose(results['boxes'][0, :] , _UpperCAmelCase))
8
0
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCamelCase ( a__ , unittest.TestCase ): lowercase : Optional[int] =OpenAIGPTTokenizer lowercase : str =OpenAIGPTTokenizerFast lowercase : Dict =True lowercase : Union[str, Any] =False def lowercase__ ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase_ =[ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] lowerCamelCase_ =dict(zip(_UpperCAmelCase, range(len(_UpperCAmelCase ) ) ) ) lowerCamelCase_ =['#version: 0.2', 'l o', 'lo w', 'e r</w>', ''] lowerCamelCase_ =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file, '''w''' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) ) with open(self.merges_file, '''w''' ) as fp: fp.write('''\n'''.join(_UpperCAmelCase ) ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return "lower newer", "lower newer" def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =OpenAIGPTTokenizer(self.vocab_file, self.merges_file ) lowerCamelCase_ ='lower' lowerCamelCase_ =['low', 'er</w>'] lowerCamelCase_ =tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) lowerCamelCase_ =tokens + ['<unk>'] lowerCamelCase_ =[14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ), _UpperCAmelCase ) def lowercase__ ( self, lowerCAmelCase=15 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCamelCase_ =self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase, **_UpperCAmelCase ) # Simple input lowerCamelCase_ ='This is a simple input' lowerCamelCase_ =['This is a simple input 1', 'This is a simple input 2'] lowerCamelCase_ =('This is a simple input', 'This is a pair') lowerCamelCase_ =[ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(_UpperCAmelCase, tokenizer_r.encode, _UpperCAmelCase, max_length=_UpperCAmelCase, padding='''max_length''' ) # Simple input self.assertRaises(_UpperCAmelCase, tokenizer_r.encode_plus, _UpperCAmelCase, max_length=_UpperCAmelCase, padding='''max_length''' ) # Simple input self.assertRaises( _UpperCAmelCase, tokenizer_r.batch_encode_plus, _UpperCAmelCase, max_length=_UpperCAmelCase, padding='''max_length''', ) # Pair input self.assertRaises(_UpperCAmelCase, tokenizer_r.encode, _UpperCAmelCase, max_length=_UpperCAmelCase, padding='''max_length''' ) # Pair input self.assertRaises(_UpperCAmelCase, tokenizer_r.encode_plus, _UpperCAmelCase, max_length=_UpperCAmelCase, padding='''max_length''' ) # Pair input self.assertRaises( _UpperCAmelCase, tokenizer_r.batch_encode_plus, _UpperCAmelCase, max_length=_UpperCAmelCase, padding='''max_length''', ) def lowercase__ ( self ): """simple docstring""" pass @require_ftfy @require_spacy @require_tokenizers class __UpperCamelCase ( a__ ): pass
676
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: lowercase__ : Optional[int] = None lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ : List[str] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } lowercase__ : Dict = { '''camembert-base''': 5_12, } lowercase__ : str = '''▁''' class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] lowerCAmelCase = CamembertTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **_UpperCAmelCase , ): '''simple docstring''' __A : int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __A : List[str] = vocab_file __A : Optional[int] = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A : Optional[Any] = [self.cls_token_id] __A : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' __A : Optional[int] = [self.sep_token_id] __A : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(_UpperCAmelCase): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return __A : List[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCAmelCase): copyfile(self.vocab_file , _UpperCAmelCase) return (out_vocab_file,)
8
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : List[Any] = logging.get_logger() @dataclass class lowercase__ : UpperCamelCase_ = 42 UpperCamelCase_ = field(default_factory=a__) UpperCamelCase_ = field(default_factory=a__) def __A ( self : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = len(list(m.modules() ) ) == 1 or isinstance(_UpperCAmelCase , nn.Convad ) or isinstance(_UpperCAmelCase , nn.BatchNormad ) if has_not_submodules: self.traced.append(_UpperCAmelCase ) def __call__( self : Tuple , UpperCamelCase__ : List[str] ): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(_UpperCAmelCase ) [x.remove() for x in self.handles] return self @property def __A ( self : Dict ): '''simple docstring''' return list(filter(lambda UpperCamelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowercase__ : UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = 1 UpperCamelCase_ = field(default_factory=a__) UpperCamelCase_ = field(default_factory=a__) UpperCamelCase_ = True def __call__( self : List[Any] , UpperCamelCase__ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = Tracker(self.dest )(_UpperCAmelCase ).parametrized SCREAMING_SNAKE_CASE : Any = Tracker(self.src )(_UpperCAmelCase ).parametrized SCREAMING_SNAKE_CASE : int = list(filter(lambda UpperCamelCase__ : type(_UpperCAmelCase ) not in self.src_skip , _UpperCAmelCase ) ) SCREAMING_SNAKE_CASE : Tuple = list(filter(lambda UpperCamelCase__ : type(_UpperCAmelCase ) not in self.dest_skip , _UpperCAmelCase ) ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ) and self.raise_if_mismatch: raise Exception( f"""Numbers of operations are different. Source module has {len(_UpperCAmelCase )} operations while""" f""" destination module has {len(_UpperCAmelCase )}.""" ) for dest_m, src_m in zip(_UpperCAmelCase , _UpperCAmelCase ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) class lowercase__ ( nn.Module): def __init__( self : List[str] , UpperCamelCase__ : List[Any] ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(('''conv1''', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('''block''' ), f"""Unexpected layer name {k}""" SCREAMING_SNAKE_CASE : Union[str, Any] = len(_UpperCAmelCase ) + 1 feature_blocks.append((f"""res{block_index}""", v) ) SCREAMING_SNAKE_CASE : List[str] = nn.ModuleDict(_UpperCAmelCase ) def __A ( self : int , UpperCamelCase__ : Any ): '''simple docstring''' return get_trunk_forward_outputs( _UpperCAmelCase , out_feat_keys=_UpperCAmelCase , feature_blocks=self._feature_blocks , ) class lowercase__ ( a__): def __A ( self : Union[str, Any] , UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = x.split('''-''' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Union[str, Any] , UpperCamelCase__ : Optional[int] ): '''simple docstring''' if x not in self: SCREAMING_SNAKE_CASE : Dict = self.convert_name_to_timm(_UpperCAmelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = partial(lambda: (timm.create_model(_UpperCAmelCase , pretrained=_UpperCAmelCase ).eval(), None) ) else: SCREAMING_SNAKE_CASE : Tuple = super().__getitem__(_UpperCAmelCase ) return val class lowercase__ ( a__): def __getitem__( self : Optional[int] , UpperCamelCase__ : List[str] ): '''simple docstring''' if "seer" in x and "in1k" not in x: SCREAMING_SNAKE_CASE : Union[str, Any] = RegNetModel else: SCREAMING_SNAKE_CASE : Union[str, Any] = RegNetForImageClassification return val def A ( _lowercase , _lowercase , _lowercase ): for from_key, to_key in keys: SCREAMING_SNAKE_CASE : Optional[int] = from_state_dict[from_key].clone() print(f"""Copied key={from_key} to={to_key}""" ) return to_state_dict def A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = True , ): print(f"""Converting {name}...""" ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = from_model_func() SCREAMING_SNAKE_CASE : Optional[int] = our_model_func(__snake_case ).eval() SCREAMING_SNAKE_CASE : Optional[int] = ModuleTransfer(src=__snake_case , dest=__snake_case , raise_if_mismatch=__snake_case ) SCREAMING_SNAKE_CASE : int = torch.randn((1, 3, 224, 224) ) module_transfer(__snake_case ) if from_state_dict is not None: SCREAMING_SNAKE_CASE : int = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: SCREAMING_SNAKE_CASE : str = [('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')] SCREAMING_SNAKE_CASE : Tuple = manually_copy_vissl_head(__snake_case , our_model.state_dict() , __snake_case ) our_model.load_state_dict(__snake_case ) SCREAMING_SNAKE_CASE : Tuple = our_model(__snake_case , output_hidden_states=__snake_case ) SCREAMING_SNAKE_CASE : Optional[int] = ( our_outputs.logits if isinstance(__snake_case , __snake_case ) else our_outputs.last_hidden_state ) SCREAMING_SNAKE_CASE : Union[str, Any] = from_model(__snake_case ) SCREAMING_SNAKE_CASE : int = from_output[-1] if type(__snake_case ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: SCREAMING_SNAKE_CASE : List[Any] = our_outputs.hidden_states[-1] assert torch.allclose(__snake_case , __snake_case ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add model''' , use_temp_dir=__snake_case , ) SCREAMING_SNAKE_CASE : List[Any] = 224 if 'seer' not in name else 384 # we can use the convnext one SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' , size=__snake_case ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add image processor''' , use_temp_dir=__snake_case , ) print(f"""Pushed {name}""" ) def A ( _lowercase , _lowercase = None , _lowercase = True ): SCREAMING_SNAKE_CASE : List[Any] = 'imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE : int = 1_000 SCREAMING_SNAKE_CASE : int = (1, num_labels) SCREAMING_SNAKE_CASE : Dict = 'huggingface/label-files' SCREAMING_SNAKE_CASE : Dict = num_labels SCREAMING_SNAKE_CASE : List[Any] = json.load(open(cached_download(hf_hub_url(__snake_case , __snake_case , repo_type='''dataset''' ) ) , '''r''' ) ) SCREAMING_SNAKE_CASE : Optional[Any] = {int(__snake_case ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : Optional[Any] = idalabel SCREAMING_SNAKE_CASE : Tuple = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : Optional[Any] = partial(__snake_case , num_labels=__snake_case , idalabel=__snake_case , labelaid=__snake_case ) SCREAMING_SNAKE_CASE : Union[str, Any] = { 'regnet-x-002': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type='''x''' ), 'regnet-x-004': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type='''x''' ), 'regnet-x-006': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type='''x''' ), 'regnet-x-008': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type='''x''' ), 'regnet-x-016': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type='''x''' ), 'regnet-x-032': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1_008] , groups_width=48 , layer_type='''x''' ), 'regnet-x-040': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1_360] , groups_width=40 , layer_type='''x''' ), 'regnet-x-064': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1_624] , groups_width=56 , layer_type='''x''' ), 'regnet-x-080': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1_920] , groups_width=120 , layer_type='''x''' ), 'regnet-x-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2_240] , groups_width=112 , layer_type='''x''' ), 'regnet-x-160': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2_048] , groups_width=128 , layer_type='''x''' ), 'regnet-x-320': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1_344, 2_520] , groups_width=168 , layer_type='''x''' ), # y variant 'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), 'regnet-y-004': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), 'regnet-y-006': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), 'regnet-y-008': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), 'regnet-y-016': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), 'regnet-y-032': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1_512] , groups_width=24 ), 'regnet-y-040': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1_088] , groups_width=64 ), 'regnet-y-064': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1_296] , groups_width=72 ), 'regnet-y-080': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2_016] , groups_width=56 ), 'regnet-y-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2_240] , groups_width=112 ), 'regnet-y-160': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1_232, 3_024] , groups_width=112 ), 'regnet-y-320': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ), 'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1_968, 4_920] , groups_width=328 ), 'regnet-y-1280-seer': RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1_056, 2_904, 7_392] , groups_width=264 ), 'regnet-y-2560-seer': RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1_696, 2_544, 5_088] , groups_width=640 ), 'regnet-y-10b-seer': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2_020, 4_040, 11_110, 28_280] , groups_width=1_010 ), # finetuned on imagenet 'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ), 'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1_968, 4_920] , groups_width=328 ), 'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1_056, 2_904, 7_392] , groups_width=264 ), 'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1_696, 2_544, 5_088] , groups_width=640 ), 'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2_020, 4_040, 11_110, 28_280] , groups_width=1_010 ), } SCREAMING_SNAKE_CASE : List[Any] = NameToOurModelFuncMap() SCREAMING_SNAKE_CASE : List[str] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(_lowercase , _lowercase ) -> Tuple[nn.Module, Dict]: SCREAMING_SNAKE_CASE : Tuple = torch.hub.load_state_dict_from_url(__snake_case , model_dir=str(__snake_case ) , map_location='''cpu''' ) SCREAMING_SNAKE_CASE : Dict = model_func() # check if we have a head, if yes add it SCREAMING_SNAKE_CASE : List[Any] = files['classy_state_dict']['base_model']['model'] SCREAMING_SNAKE_CASE : Optional[int] = model_state_dict['trunk'] model.load_state_dict(__snake_case ) return model.eval(), model_state_dict["heads"] # pretrained SCREAMING_SNAKE_CASE : int = partial( __snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) SCREAMING_SNAKE_CASE : Optional[Any] = partial( __snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) SCREAMING_SNAKE_CASE : int = partial( __snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) SCREAMING_SNAKE_CASE : Any = partial( __snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1_010 , w_a=1_744 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned SCREAMING_SNAKE_CASE : Dict = partial( __snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) SCREAMING_SNAKE_CASE : List[str] = partial( __snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) SCREAMING_SNAKE_CASE : Optional[int] = partial( __snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) SCREAMING_SNAKE_CASE : int = partial( __snake_case , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1_010 , w_a=1_744 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( __snake_case , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , __snake_case , __snake_case , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( __snake_case , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , __snake_case , __snake_case , __snake_case , ) return config, expected_shape if __name__ == "__main__": __UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported regnet* architecture,' ' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) __UpperCamelCase : Optional[int] = parser.parse_args() __UpperCamelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
248
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowercase__ : Any = '''hf-internal-testing/tiny-random-bert''' lowercase__ : Optional[Any] = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') lowercase__ : List[Any] = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase)) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase))) with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Any = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) self.assertTrue(os.path.isfile(_UpperCAmelCase)) # File is cached at the same place the second time. __A : Tuple = cached_file(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) # Using a specific revision to test the full commit hash. __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='9b8c223') self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): __A : Dict = cached_file('tiny-random-bert' , _UpperCAmelCase) with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): __A : Optional[int] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='aaaa') with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : int = cached_file(_UpperCAmelCase , 'conf') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : Any = cached_file(_UpperCAmelCase , 'conf') with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Dict = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '.no_exist' , _UpperCAmelCase , 'conf'))) __A : List[Any] = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : str = cached_file(_UpperCAmelCase , 'conf' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : List[str] = mock.Mock() __A : Dict = 500 __A : List[str] = {} __A : List[Any] = HTTPError __A : Optional[Any] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=_UpperCAmelCase) as mock_head: __A : Dict = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_connection_errors=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt')) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): get_file_from_repo('bert-base-case' , _UpperCAmelCase) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): get_file_from_repo('bert-base-cased' , _UpperCAmelCase , revision='ahaha') __A : List[str] = get_file_from_repo('bert-base-cased' , _UpperCAmelCase) # The name is the cached name which is not very easy to test, so instead we load the content. __A : List[str] = json.loads(open(_UpperCAmelCase , 'r').read()) self.assertEqual(config['hidden_size'] , 768) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __A : Tuple = Path(_UpperCAmelCase) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , 'a.txt') , str(_UpperCAmelCase)) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , 'b.txt'))
8
0
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _lowerCamelCase : int = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" for pegasus_name, hf_name in PATTERNS: A__ = k.replace(__snake_case , __snake_case ) return k def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> PegasusForConditionalGeneration: """simple docstring""" A__ = DEFAULTS.copy() cfg_kwargs.update(__snake_case ) A__ = PegasusConfig(**__snake_case ) A__ = PegasusForConditionalGeneration(__snake_case ) A__ = torch_model.model.state_dict() A__ = {} for k, v in tf_weights.items(): A__ = rename_state_dict_key(__snake_case ) if new_k not in sd: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: A__ = v.T A__ = torch.tensor(__snake_case , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected A__ = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) A__ = mapping['shared.weight'] A__ = mapping['shared.weight'] A__ = {k: torch.zeros_like(__snake_case ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**__snake_case ) A__ = torch_model.model.load_state_dict(__snake_case , strict=__snake_case ) A__ = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def SCREAMING_SNAKE_CASE ( lowercase_="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: """simple docstring""" A__ = tf.train.list_variables(__snake_case ) A__ = {} A__ = ['Adafactor', 'global_step'] for name, shape in tqdm(__snake_case , desc='''converting tf checkpoint to dict''' ): A__ = any(pat in name for pat in ignore_name ) if skip_key: continue A__ = tf.train.load_variable(__snake_case , __snake_case ) A__ = array return tf_weights def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple: """simple docstring""" A__ = Path(__snake_case ).parent.name A__ = task_specific_params[f"""summarization_{dataset}"""]['max_position_embeddings'] A__ = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' , model_max_length=__snake_case ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(__snake_case ) # convert model A__ = get_tf_weights_as_numpy(__snake_case ) A__ = task_specific_params[f"""summarization_{dataset}"""] if dataset == "large": A__ = task_specific_params A__ = convert_pegasus(__snake_case , __snake_case ) torch_model.save_pretrained(__snake_case ) A__ = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(__snake_case , Path(__snake_case ) / '''pytorch_model.bin''' ) if __name__ == "__main__": _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") _lowerCamelCase : Any = parser.parse_args() if args.save_dir is None: _lowerCamelCase : Tuple = Path(args.tf_ckpt_path).parent.name _lowerCamelCase : Any = os.path.join("""pegasus""", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
87
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _lowerCAmelCase ( __snake_case : str , __snake_case : str , **__snake_case : List[Any] ) -> Any: __A : Optional[Any] = AutoConfig.from_pretrained(__snake_case , **__snake_case ) __A : int = AutoModelForSeqaSeqLM.from_config(__snake_case ) model.save_pretrained(__snake_case ) AutoTokenizer.from_pretrained(__snake_case ).save_pretrained(__snake_case ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
8
0
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowercase_ ( unittest.TestCase ): @require_torch def _snake_case ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ : List[str] =pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''' ) SCREAMING_SNAKE_CASE_ : str =load_dataset('''ashraq/esc50''' ) SCREAMING_SNAKE_CASE_ : str =dataset['train']['audio'][-1]['array'] SCREAMING_SNAKE_CASE_ : Union[str, Any] =audio_classifier(_UpperCAmelCase , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [{'''score''': 0.501, '''label''': '''Sound of a dog'''}, {'''score''': 0.499, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''' ) def _snake_case ( self ) -> List[str]: pass @slow @require_torch def _snake_case ( self ) -> int: SCREAMING_SNAKE_CASE_ : List[str] =pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog SCREAMING_SNAKE_CASE_ : Any =load_dataset('''ashraq/esc50''' ) SCREAMING_SNAKE_CASE_ : Dict =dataset['train']['audio'][-1]['array'] SCREAMING_SNAKE_CASE_ : Tuple =audio_classifier(_UpperCAmelCase , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ {'''score''': 0.999, '''label''': '''Sound of a dog'''}, {'''score''': 0.001, '''label''': '''Sound of vaccum cleaner'''}, ] , ) SCREAMING_SNAKE_CASE_ : Tuple =audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ [ {'''score''': 0.999, '''label''': '''Sound of a dog'''}, {'''score''': 0.001, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) SCREAMING_SNAKE_CASE_ : List[str] =audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5 ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , [ [ {'''score''': 0.999, '''label''': '''Sound of a dog'''}, {'''score''': 0.001, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''' ) def _snake_case ( self ) -> Dict: pass
443
'''simple docstring''' from ...configuration_utils import PretrainedConfig lowercase__ : Any = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''tapas''' def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1024 , _UpperCAmelCase=[3, 256, 256, 2, 256, 256, 10] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase=10.0 , _UpperCAmelCase=0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase="ratio" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __A : Dict = vocab_size __A : Tuple = hidden_size __A : Any = num_hidden_layers __A : int = num_attention_heads __A : Tuple = hidden_act __A : Tuple = intermediate_size __A : List[Any] = hidden_dropout_prob __A : int = attention_probs_dropout_prob __A : List[str] = max_position_embeddings __A : Optional[int] = type_vocab_sizes __A : str = initializer_range __A : List[str] = layer_norm_eps # Fine-tuning task hyperparameters __A : List[str] = positive_label_weight __A : List[Any] = num_aggregation_labels __A : Optional[Any] = aggregation_loss_weight __A : Tuple = use_answer_as_supervision __A : List[str] = answer_loss_importance __A : Any = use_normalized_answer_loss __A : Any = huber_loss_delta __A : Union[str, Any] = temperature __A : Tuple = aggregation_temperature __A : Optional[Any] = use_gumbel_for_cells __A : List[str] = use_gumbel_for_aggregation __A : Tuple = average_approximation_function __A : List[str] = cell_selection_preference __A : Dict = answer_loss_cutoff __A : Union[str, Any] = max_num_rows __A : Optional[Any] = max_num_columns __A : int = average_logits_per_cell __A : Optional[Any] = select_one_column __A : int = allow_empty_column_selection __A : List[Any] = init_cell_selection_weights_to_zero __A : int = reset_position_index_per_cell __A : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters __A : Optional[Any] = aggregation_labels __A : List[str] = no_aggregation_label_index if isinstance(self.aggregation_labels , _UpperCAmelCase): __A : Optional[Any] = {int(_UpperCAmelCase): v for k, v in aggregation_labels.items()}
8
0
import os UpperCamelCase_ = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 1_00, '''D''': 5_00, '''M''': 10_00} def _UpperCAmelCase ( A ): '''simple docstring''' UpperCAmelCase__ =0 UpperCAmelCase__ =0 while index < len(__snake_case ) - 1: UpperCAmelCase__ =SYMBOLS[numerals[index]] UpperCAmelCase__ =SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def _UpperCAmelCase ( A ): '''simple docstring''' UpperCAmelCase__ ='' UpperCAmelCase__ =num // 1000 numerals += m_count * "M" num %= 1000 UpperCAmelCase__ =num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 UpperCAmelCase__ =num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def _UpperCAmelCase ( A = "/p089_roman.txt" ): '''simple docstring''' UpperCAmelCase__ =0 with open(os.path.dirname(__snake_case ) + roman_numerals_filename ) as filea: UpperCAmelCase__ =filea.readlines() for line in lines: UpperCAmelCase__ =line.strip() UpperCAmelCase__ =parse_roman_numerals(__snake_case ) UpperCAmelCase__ =generate_roman_numerals(__snake_case ) savings += len(__snake_case ) - len(__snake_case ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
625
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=sys.maxsize): '''simple docstring''' __A : Union[str, Any] = 'bilinear' __A : int = max_size __A : Optional[Any] = short_edge_length def __call__( self , _UpperCAmelCase): '''simple docstring''' __A : int = [] for img in imgs: __A ,__A : Dict = img.shape[:2] # later: provide list and randomly choose index for resize __A : List[Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1) if size == 0: return img __A : Tuple = size * 1.0 / min(_UpperCAmelCase , _UpperCAmelCase) if h < w: __A ,__A : Optional[Any] = size, scale * w else: __A ,__A : Optional[Any] = scale * h, size if max(_UpperCAmelCase , _UpperCAmelCase) > self.max_size: __A : Tuple = self.max_size * 1.0 / max(_UpperCAmelCase , _UpperCAmelCase) __A : Tuple = newh * scale __A : Dict = neww * scale __A : Dict = int(neww + 0.5) __A : Optional[int] = int(newh + 0.5) if img.dtype == np.uinta: __A : int = Image.fromarray(_UpperCAmelCase) __A : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR) __A : Dict = np.asarray(_UpperCAmelCase) else: __A : Optional[Any] = img.permute(2 , 0 , 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw __A : Dict = nn.functional.interpolate( _UpperCAmelCase , (newh, neww) , mode=self.interp_method , align_corners=_UpperCAmelCase).squeeze(0) img_augs.append(_UpperCAmelCase) return img_augs class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST) __A : List[Any] = cfg.INPUT.FORMAT __A : Dict = cfg.SIZE_DIVISIBILITY __A : str = cfg.PAD_VALUE __A : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST __A : int = cfg.MODEL.DEVICE __A : Tuple = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : int = lambda _UpperCAmelCase: (x - self.pixel_mean) / self.pixel_std def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = tuple(max(_UpperCAmelCase) for s in zip(*[img.shape for img in images])) __A : Dict = [im.shape[-2:] for im in images] __A : Optional[int] = [ nn.functional.pad( _UpperCAmelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_UpperCAmelCase , _UpperCAmelCase) ] return torch.stack(_UpperCAmelCase), torch.tensor(_UpperCAmelCase) def __call__( self , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' with torch.no_grad(): if not isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : int = [images] if single_image: assert len(_UpperCAmelCase) == 1 for i in range(len(_UpperCAmelCase)): if isinstance(images[i] , torch.Tensor): images.insert(_UpperCAmelCase , images.pop(_UpperCAmelCase).to(self.device).float()) elif not isinstance(images[i] , torch.Tensor): images.insert( _UpperCAmelCase , torch.as_tensor(img_tensorize(images.pop(_UpperCAmelCase) , input_format=self.input_format)) .to(self.device) .float() , ) # resize smallest edge __A : str = torch.tensor([im.shape[:2] for im in images]) __A : List[str] = self.aug(_UpperCAmelCase) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __A : Any = [self.normalizer(_UpperCAmelCase) for x in images] # now pad them to do the following operations __A ,__A : Any = self.pad(_UpperCAmelCase) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __A : str = torch.true_divide(_UpperCAmelCase , _UpperCAmelCase) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _lowerCAmelCase ( __snake_case : Dict , __snake_case : str ) -> Dict: boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : Tuple[int, int] ) -> int: assert torch.isfinite(__snake_case ).all(), "Box tensor contains infinite or NaN!" __A ,__A : int = box_size tensor[:, 0].clamp_(min=0 , max=__snake_case ) tensor[:, 1].clamp_(min=0 , max=__snake_case ) tensor[:, 2].clamp_(min=0 , max=__snake_case ) tensor[:, 3].clamp_(min=0 , max=__snake_case )
8
0
'''simple docstring''' def UpperCAmelCase ( lowerCamelCase_ :Optional[Any] ): # noqa: E741 '''simple docstring''' snake_case_ : Tuple = len(__snake_case ) snake_case_ : Optional[int] = 0 snake_case_ : str = [0] * n snake_case_ : int = [False] * n snake_case_ : Tuple = [False] * n def dfs(lowerCamelCase_ :List[str] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :int ): if parent == root: out_edge_count += 1 snake_case_ : str = True snake_case_ : Tuple = at for to in l[at]: if to == parent: pass elif not visited[to]: snake_case_ : Optional[int] = dfs(__snake_case , __snake_case , __snake_case , __snake_case ) snake_case_ : int = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: snake_case_ : Tuple = True # AP found via cycle if at == low[to]: snake_case_ : Optional[Any] = True else: snake_case_ : Any = min(low[at] , __snake_case ) return out_edge_count for i in range(__snake_case ): if not visited[i]: snake_case_ : Tuple = 0 snake_case_ : List[Any] = dfs(__snake_case , __snake_case , -1 , __snake_case ) snake_case_ : Union[str, Any] = out_edge_count > 1 for x in range(len(__snake_case ) ): if is_art[x] is True: print(__snake_case ) # Adjacency list of graph __A : Tuple = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
334
'''simple docstring''' def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Optional[Any]: # noqa: E741 __A : Tuple = len(__snake_case ) __A : Optional[int] = 0 __A : str = [0] * n __A : int = [False] * n __A : Tuple = [False] * n def dfs(__snake_case : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : int ): if parent == root: out_edge_count += 1 __A : str = True __A : Tuple = at for to in l[at]: if to == parent: pass elif not visited[to]: __A : Optional[int] = dfs(__snake_case , __snake_case , __snake_case , __snake_case ) __A : int = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __A : Tuple = True # AP found via cycle if at == low[to]: __A : Optional[Any] = True else: __A : Any = min(low[at] , __snake_case ) return out_edge_count for i in range(__snake_case ): if not visited[i]: __A : Tuple = 0 __A : List[Any] = dfs(__snake_case , __snake_case , -1 , __snake_case ) __A : Union[str, Any] = out_edge_count > 1 for x in range(len(__snake_case ) ): if is_art[x] is True: print(__snake_case ) # Adjacency list of graph lowercase__ : Tuple = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
8
0
'''simple docstring''' class UpperCamelCase__ : def __init__( self : Dict ): '''simple docstring''' a__ = {} # Mapping from char to TrieNode a__ = False def __a ( self : Optional[Any] , lowerCamelCase : Dict ): '''simple docstring''' for word in words: self.insert(_UpperCAmelCase ) def __a ( self : Optional[Any] , lowerCamelCase : Optional[Any] ): '''simple docstring''' a__ = self for char in word: if char not in curr.nodes: a__ = TrieNode() a__ = curr.nodes[char] a__ = True def __a ( self : int , lowerCamelCase : List[str] ): '''simple docstring''' a__ = self for char in word: if char not in curr.nodes: return False a__ = curr.nodes[char] return curr.is_leaf def __a ( self : Dict , lowerCamelCase : Optional[int] ): '''simple docstring''' def _delete(lowerCamelCase : List[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : str ) -> bool: if index == len(_UpperCAmelCase ): # If word does not exist if not curr.is_leaf: return False a__ = False return len(curr.nodes ) == 0 a__ = word[index] a__ = curr.nodes.get(_UpperCAmelCase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted a__ = _delete(_UpperCAmelCase , _UpperCAmelCase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , _UpperCAmelCase , 0 ) def _lowerCamelCase (__lowerCamelCase : TrieNode , __lowerCamelCase : str ) -> None: if node.is_leaf: print(__snake_case , end=" " ) for key, value in node.nodes.items(): print_words(__snake_case , word + key ) def _lowerCamelCase () -> bool: a__ = 'banana bananas bandana band apple all beast'.split() a__ = TrieNode() root.insert_many(__snake_case ) # print_words(root, "") assert all(root.find(__snake_case ) for word in words ) assert root.find("banana" ) assert not root.find("bandanas" ) assert not root.find("apps" ) assert root.find("apple" ) assert root.find("all" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def _lowerCamelCase (__lowerCamelCase : str , __lowerCamelCase : bool ) -> None: print(str(__snake_case ) , "works!" if passes else "doesn\'t work :(" ) def _lowerCamelCase () -> None: assert test_trie() def _lowerCamelCase () -> None: print_results("Testing trie functionality" , test_trie() ) if __name__ == "__main__": main()
489
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : int = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } lowercase__ : Dict = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _lowerCAmelCase ( __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Any , __snake_case : List[str] ) -> Union[str, Any]: for attribute in key.split('.' ): __A : int = getattr(__snake_case , __snake_case ) if weight_type is not None: __A : Optional[int] = getattr(__snake_case , __snake_case ).shape else: __A : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __A : Tuple = value elif weight_type == "weight_g": __A : Union[str, Any] = value elif weight_type == "weight_v": __A : Optional[Any] = value elif weight_type == "bias": __A : Optional[int] = value else: __A : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( __snake_case : Any , __snake_case : List[str] ) -> List[Any]: __A : Optional[Any] = [] __A : Any = fairseq_model.state_dict() __A : Union[str, Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): __A : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == 'group' , ) __A : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __A : int = True if "*" in mapped_key: __A : Any = name.split(__snake_case )[0].split('.' )[-2] __A : List[Any] = mapped_key.replace('*' , __snake_case ) if "weight_g" in name: __A : Optional[Any] = 'weight_g' elif "weight_v" in name: __A : Union[str, Any] = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: __A : Optional[Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __A : Tuple = 'weight' else: __A : Dict = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[int] ) -> int: __A : int = full_name.split('conv_layers.' )[-1] __A : List[str] = name.split('.' ) __A : Optional[int] = int(items[0] ) __A : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __A : Optional[int] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __A : Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) __A : Dict = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __A : Any = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) @torch.no_grad() def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple=None ) -> Any: # load the pre-trained checkpoints __A : List[str] = torch.load(__snake_case ) __A : Dict = WavLMConfigOrig(checkpoint['cfg'] ) __A : Optional[int] = WavLMOrig(__snake_case ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: __A : List[Any] = WavLMConfig.from_pretrained(__snake_case ) else: __A : Dict = WavLMConfig() __A : Optional[Any] = WavLMModel(__snake_case ) recursively_load_weights(__snake_case , __snake_case ) hf_wavlm.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowercase__ : Any = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
8
0
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class _UpperCAmelCase ( a__ ): """simple docstring""" snake_case = '''informer''' snake_case = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : int , __UpperCAmelCase : List[str] = None , __UpperCAmelCase : Tuple = None , __UpperCAmelCase : Tuple = "student_t" , __UpperCAmelCase : int = "nll" , __UpperCAmelCase : int = 1 , __UpperCAmelCase : Optional[Any] = None , __UpperCAmelCase : Optional[int] = "mean" , __UpperCAmelCase : Any = 0 , __UpperCAmelCase : Dict = 0 , __UpperCAmelCase : Optional[Any] = 0 , __UpperCAmelCase : Dict = 0 , __UpperCAmelCase : Dict = None , __UpperCAmelCase : List[str] = None , __UpperCAmelCase : List[Any] = 64 , __UpperCAmelCase : Dict = 32 , __UpperCAmelCase : str = 32 , __UpperCAmelCase : Dict = 2 , __UpperCAmelCase : List[str] = 2 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : Dict = 2 , __UpperCAmelCase : List[Any] = True , __UpperCAmelCase : Any = "gelu" , __UpperCAmelCase : Tuple = 0.05 , __UpperCAmelCase : List[str] = 0.1 , __UpperCAmelCase : str = 0.1 , __UpperCAmelCase : str = 0.1 , __UpperCAmelCase : List[str] = 0.1 , __UpperCAmelCase : List[Any] = 100 , __UpperCAmelCase : str = 0.02 , __UpperCAmelCase : Dict=True , __UpperCAmelCase : int = "prob" , __UpperCAmelCase : List[Any] = 5 , __UpperCAmelCase : List[str] = True , **__UpperCAmelCase : str , ): '''simple docstring''' _A = prediction_length _A = context_length or prediction_length _A = distribution_output _A = loss _A = input_size _A = num_time_features _A = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] _A = scaling _A = num_dynamic_real_features _A = num_static_real_features _A = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_UpperCAmelCase ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) _A = cardinality else: _A = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_UpperCAmelCase ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) _A = embedding_dimension else: _A = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] _A = num_parallel_samples # Transformer architecture configuration _A = input_size * len(self.lags_sequence ) + self._number_of_features _A = d_model _A = encoder_attention_heads _A = decoder_attention_heads _A = encoder_ffn_dim _A = decoder_ffn_dim _A = encoder_layers _A = decoder_layers _A = dropout _A = attention_dropout _A = activation_dropout _A = encoder_layerdrop _A = decoder_layerdrop _A = activation_function _A = init_std _A = use_cache # Informer _A = attention_type _A = sampling_factor _A = distil super().__init__(is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
330
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = 42 class SCREAMING_SNAKE_CASE (a__ , a__ ): @register_to_config def __init__( self , _UpperCAmelCase = 6_5536 , _UpperCAmelCase = None , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = 0 , _UpperCAmelCase = "fourier" , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = 0.0 , _UpperCAmelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _UpperCAmelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _UpperCAmelCase = "UNetMidBlock1D" , _UpperCAmelCase = None , _UpperCAmelCase = (32, 32, 64) , _UpperCAmelCase = None , _UpperCAmelCase = 8 , _UpperCAmelCase = 1 , _UpperCAmelCase = False , ): '''simple docstring''' super().__init__() __A : Dict = sample_size # time if time_embedding_type == "fourier": __A : int = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_UpperCAmelCase , log=_UpperCAmelCase , flip_sin_to_cos=_UpperCAmelCase) __A : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": __A : List[str] = Timesteps( block_out_channels[0] , flip_sin_to_cos=_UpperCAmelCase , downscale_freq_shift=_UpperCAmelCase) __A : List[str] = block_out_channels[0] if use_timestep_embedding: __A : Optional[Any] = block_out_channels[0] * 4 __A : Optional[int] = TimestepEmbedding( in_channels=_UpperCAmelCase , time_embed_dim=_UpperCAmelCase , act_fn=_UpperCAmelCase , out_dim=block_out_channels[0] , ) __A : Dict = nn.ModuleList([]) __A : Dict = None __A : Tuple = nn.ModuleList([]) __A : Tuple = None # down __A : Any = in_channels for i, down_block_type in enumerate(_UpperCAmelCase): __A : Tuple = output_channel __A : Optional[Any] = block_out_channels[i] if i == 0: input_channel += extra_in_channels __A : List[str] = i == len(_UpperCAmelCase) - 1 __A : int = get_down_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_UpperCAmelCase) # mid __A : str = get_mid_block( _UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_UpperCAmelCase , add_downsample=_UpperCAmelCase , ) # up __A : Optional[int] = list(reversed(_UpperCAmelCase)) __A : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: __A : str = out_channels else: __A : List[Any] = block_out_channels[0] for i, up_block_type in enumerate(_UpperCAmelCase): __A : Optional[Any] = output_channel __A : Optional[Any] = ( reversed_block_out_channels[i + 1] if i < len(_UpperCAmelCase) - 1 else final_upsample_channels ) __A : Dict = i == len(_UpperCAmelCase) - 1 __A : str = get_up_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_UpperCAmelCase) __A : Optional[int] = output_channel # out __A : str = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32) __A : Optional[Any] = get_out_block( out_block_type=_UpperCAmelCase , num_groups_out=_UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=_UpperCAmelCase , act_fn=_UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , ): '''simple docstring''' __A : Any = timestep if not torch.is_tensor(_UpperCAmelCase): __A : Any = torch.tensor([timesteps] , dtype=torch.long , device=sample.device) elif torch.is_tensor(_UpperCAmelCase) and len(timesteps.shape) == 0: __A : Any = timesteps[None].to(sample.device) __A : List[Any] = self.time_proj(_UpperCAmelCase) if self.config.use_timestep_embedding: __A : Dict = self.time_mlp(_UpperCAmelCase) else: __A : Dict = timestep_embed[..., None] __A : Tuple = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) __A : List[Any] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) # 2. down __A : int = () for downsample_block in self.down_blocks: __A ,__A : int = downsample_block(hidden_states=_UpperCAmelCase , temb=_UpperCAmelCase) down_block_res_samples += res_samples # 3. mid if self.mid_block: __A : Optional[int] = self.mid_block(_UpperCAmelCase , _UpperCAmelCase) # 4. up for i, upsample_block in enumerate(self.up_blocks): __A : Any = down_block_res_samples[-1:] __A : Optional[int] = down_block_res_samples[:-1] __A : Any = upsample_block(_UpperCAmelCase , res_hidden_states_tuple=_UpperCAmelCase , temb=_UpperCAmelCase) # 5. post-process if self.out_block: __A : Dict = self.out_block(_UpperCAmelCase , _UpperCAmelCase) if not return_dict: return (sample,) return UNetaDOutput(sample=_UpperCAmelCase)
8
0
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCamelCase__ : '''simple docstring''' @staticmethod def _lowercase ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: pass def A ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. SCREAMING_SNAKE_CASE__ : List[Any] = ( '''https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png''' ) @is_pipeline_test @require_torch @require_vision class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : Union[str, Any] = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: lowerCamelCase : Dict = pipeline( "document-question-answering" , model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) lowerCamelCase : Optional[int] = INVOICE_URL lowerCamelCase : Any = list(zip(*apply_tesseract(load_image(_UpperCAmelCase ) , _UpperCAmelCase , "" ) ) ) lowerCamelCase : Tuple = 'What is the placebo?' lowerCamelCase : List[Any] = [ { 'image': load_image(_UpperCAmelCase ), 'question': question, }, { 'image': image, 'question': question, }, { 'image': image, 'question': question, 'word_boxes': word_boxes, }, ] return dqa_pipeline, examples def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> str: lowerCamelCase : str = dqa_pipeline(_UpperCAmelCase , top_k=2 ) self.assertEqual( _UpperCAmelCase , [ [ {"score": ANY(_UpperCAmelCase ), "answer": ANY(_UpperCAmelCase ), "start": ANY(_UpperCAmelCase ), "end": ANY(_UpperCAmelCase )}, {"score": ANY(_UpperCAmelCase ), "answer": ANY(_UpperCAmelCase ), "start": ANY(_UpperCAmelCase ), "end": ANY(_UpperCAmelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _lowercase ( self ) -> int: lowerCamelCase : List[str] = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) lowerCamelCase : Any = INVOICE_URL lowerCamelCase : List[str] = 'How many cats are there?' lowerCamelCase : Union[str, Any] = [ {'score': 0.0001, 'answer': 'oy 2312/2019', 'start': 38, 'end': 39}, {'score': 0.0001, 'answer': 'oy 2312/2019 DUE', 'start': 38, 'end': 40}, ] lowerCamelCase : Optional[Any] = dqa_pipeline(image=_UpperCAmelCase , question=_UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(_UpperCAmelCase , decimals=4 ) , _UpperCAmelCase ) lowerCamelCase : Union[str, Any] = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(_UpperCAmelCase , decimals=4 ) , _UpperCAmelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowerCamelCase : List[Any] = './tests/fixtures/tests_samples/COCO/000000039769.png' lowerCamelCase : List[str] = dqa_pipeline(image=_UpperCAmelCase , question=_UpperCAmelCase , top_k=2 ) self.assertEqual(_UpperCAmelCase , [] ) # We can optionnally pass directly the words and bounding boxes lowerCamelCase : Tuple = './tests/fixtures/tests_samples/COCO/000000039769.png' lowerCamelCase : str = [] lowerCamelCase : str = [] lowerCamelCase : Any = dqa_pipeline(image=_UpperCAmelCase , question=_UpperCAmelCase , words=_UpperCAmelCase , boxes=_UpperCAmelCase , top_k=2 ) self.assertEqual(_UpperCAmelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _lowercase ( self ) -> str: lowerCamelCase : List[str] = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) lowerCamelCase : Optional[Any] = INVOICE_URL lowerCamelCase : int = 'What is the invoice number?' lowerCamelCase : Tuple = dqa_pipeline(image=_UpperCAmelCase , question=_UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCamelCase : Union[str, Any] = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCamelCase : Optional[Any] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ [ {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _lowercase ( self ) -> Tuple: lowerCamelCase : str = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) lowerCamelCase : Optional[int] = INVOICE_URL lowerCamelCase : List[str] = 'What is the invoice number?' lowerCamelCase : List[str] = dqa_pipeline(image=_UpperCAmelCase , question=_UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCamelCase : Tuple = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCamelCase : List[str] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ [ {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _lowercase ( self ) -> Tuple: lowerCamelCase : Tuple = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=_UpperCAmelCase ) lowerCamelCase : List[Any] = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=_UpperCAmelCase , revision="3dc6de3" , ) lowerCamelCase : Tuple = INVOICE_URL lowerCamelCase : List[Any] = 'What is the invoice number?' lowerCamelCase : Dict = dqa_pipeline(image=_UpperCAmelCase , question=_UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) lowerCamelCase : List[Any] = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) lowerCamelCase : Optional[int] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) lowerCamelCase : Tuple = list(zip(*apply_tesseract(load_image(_UpperCAmelCase ) , _UpperCAmelCase , "" ) ) ) # This model should also work if `image` is set to None lowerCamelCase : Union[str, Any] = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _lowercase ( self ) -> List[str]: lowerCamelCase : int = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=_UpperCAmelCase ) lowerCamelCase : Dict = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=_UpperCAmelCase , revision="3dc6de3" , max_seq_len=50 , ) lowerCamelCase : str = INVOICE_URL lowerCamelCase : List[Any] = 'What is the invoice number?' lowerCamelCase : Tuple = dqa_pipeline(image=_UpperCAmelCase , question=_UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16}, ] , ) lowerCamelCase : Any = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ [ {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) lowerCamelCase : Tuple = list(zip(*apply_tesseract(load_image(_UpperCAmelCase ) , _UpperCAmelCase , "" ) ) ) # This model should also work if `image` is set to None lowerCamelCase : Any = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def _lowercase ( self ) -> Tuple: lowerCamelCase : Optional[Any] = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) lowerCamelCase : int = INVOICE_URL lowerCamelCase : Union[str, Any] = 'What is the invoice number?' lowerCamelCase : List[Any] = dqa_pipeline(image=_UpperCAmelCase , question=_UpperCAmelCase , top_k=2 ) self.assertEqual(nested_simplify(_UpperCAmelCase , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def _lowercase ( self ) -> Optional[int]: pass
311
'''simple docstring''' def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> int: if len(__snake_case ) != len(__snake_case ): raise ValueError('String lengths must match!' ) __A : Optional[Any] = 0 for chara, chara in zip(__snake_case , __snake_case ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
8
0
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowerCAmelCase_ = logging.getLogger(__name__) def snake_case( __magic_name__ , __magic_name__ ) -> int: '''simple docstring''' if os.path.exists(__snake_case ): if os.path.exists(os.path.join(__snake_case , '''config.json''' ) ) and os.path.isfile( os.path.join(__snake_case , '''config.json''' ) ): os.remove(os.path.join(__snake_case , '''config.json''' ) ) if os.path.exists(os.path.join(__snake_case , '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(__snake_case , '''pytorch_model.bin''' ) ): os.remove(os.path.join(__snake_case , '''pytorch_model.bin''' ) ) else: os.makedirs(__snake_case ) model.save_pretrained(__snake_case ) def snake_case( __magic_name__ , __magic_name__=False ) -> Any: '''simple docstring''' lowercase : Optional[Any] = 2 if unlogit: lowercase : Optional[Any] = torch.pow(__snake_case , __snake_case ) lowercase : Tuple = p * torch.log(__snake_case ) lowercase : Any = 0 return -plogp.sum(dim=-1 ) def snake_case( __magic_name__ ) -> Optional[int]: '''simple docstring''' logger.info('''lv, h >\t''' + '''\t'''.join(F"""{x + 1}""" for x in range(len(__snake_case ) ) ) ) for row in range(len(__snake_case ) ): if tensor.dtype != torch.long: logger.info(F"""layer {row + 1}:\t""" + '''\t'''.join(F"""{x:.5f}""" for x in tensor[row].cpu().data ) ) else: logger.info(F"""layer {row + 1}:\t""" + '''\t'''.join(F"""{x:d}""" for x in tensor[row].cpu().data ) ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=True , __magic_name__=True , __magic_name__=None , __magic_name__=False ) -> Optional[Any]: '''simple docstring''' lowercase : str = model.config.num_hidden_layers, model.config.num_attention_heads lowercase : Dict = torch.zeros(__snake_case , __snake_case ).to(args.device ) lowercase : str = torch.zeros(__snake_case , __snake_case ).to(args.device ) if head_mask is None: lowercase : List[Any] = torch.ones(__snake_case , __snake_case ).to(args.device ) head_mask.requires_grad_(requires_grad=__snake_case ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: lowercase : int = None lowercase : int = 0.0 lowercase : Optional[Any] = 0.0 for step, inputs in enumerate(tqdm(__snake_case , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ): lowercase : Dict = tuple(t.to(args.device ) for t in inputs ) (lowercase) : Union[str, Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) lowercase : Any = model(__snake_case , labels=__snake_case , head_mask=__snake_case ) # (loss), lm_logits, presents, (all hidden_states), (attentions) lowercase : Union[str, Any] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__snake_case ): lowercase : List[Any] = entropy(attn.detach() , __snake_case ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__snake_case ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: lowercase : Tuple = 2 lowercase : Dict = torch.pow(torch.pow(__snake_case , __snake_case ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: lowercase : Any = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(__snake_case ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(__snake_case ) logger.info('''Head ranked by importance scores''' ) lowercase : Any = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) lowercase : int = torch.arange( head_importance.numel() , device=args.device ) lowercase : Tuple = head_ranks.view_as(__snake_case ) print_ad_tensor(__snake_case ) return attn_entropy, head_importance, total_loss def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : List[Any] = compute_heads_importance(__snake_case , __snake_case , __snake_case , compute_entropy=__snake_case ) lowercase : Union[str, Any] = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , __snake_case , original_score * args.masking_threshold ) lowercase : Optional[int] = torch.ones_like(__snake_case ) lowercase : Union[str, Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) lowercase : List[str] = original_score while current_score >= original_score * args.masking_threshold: lowercase : Any = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads lowercase : Dict = float('''Inf''' ) lowercase : List[str] = head_importance.view(-1 ).sort()[1] if len(__snake_case ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads lowercase : List[Any] = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) ) lowercase : Optional[Any] = new_head_mask.view(-1 ) lowercase : Dict = 0.0 lowercase : Union[str, Any] = new_head_mask.view_as(__snake_case ) lowercase : Optional[Any] = new_head_mask.clone().detach() print_ad_tensor(__snake_case ) # Compute metric and head importance again lowercase : Tuple = compute_heads_importance( __snake_case , __snake_case , __snake_case , compute_entropy=__snake_case , head_mask=__snake_case ) lowercase : Tuple = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , __snake_case , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('''Final head mask''' ) print_ad_tensor(__snake_case ) np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() ) return head_mask def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> int: '''simple docstring''' lowercase : Any = datetime.now() lowercase : Union[str, Any] = compute_heads_importance( __snake_case , __snake_case , __snake_case , compute_entropy=__snake_case , compute_importance=__snake_case , head_mask=__snake_case ) lowercase : Tuple = 1 / loss lowercase : str = datetime.now() - before_time lowercase : Union[str, Any] = sum(p.numel() for p in model.parameters() ) lowercase : str = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__snake_case ) ) } for k, v in heads_to_prune.items(): if isinstance(__snake_case , __snake_case ): lowercase : Optional[int] = [ v, ] assert sum(len(__snake_case ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__snake_case ) lowercase : int = sum(p.numel() for p in model.parameters() ) lowercase : Dict = datetime.now() lowercase : Any = compute_heads_importance( __snake_case , __snake_case , __snake_case , compute_entropy=__snake_case , compute_importance=__snake_case , head_mask=__snake_case , actually_pruned=__snake_case , ) lowercase : Dict = 1 / loss lowercase : Optional[Any] = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , __snake_case , __snake_case , pruned_num_params / original_num_params * 1_00 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , __snake_case , __snake_case ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 1_00 ) save_model(__snake_case , args.output_dir ) def snake_case( ) -> Optional[int]: '''simple docstring''' lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=__snake_case , type=__snake_case , required=__snake_case , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=__snake_case , type=__snake_case , required=__snake_case , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=__snake_case , type=__snake_case , required=__snake_case , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=__snake_case , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=__snake_case , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=__snake_case , type=__snake_case , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=__snake_case , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''' , default=0.9 , type=__snake_case , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=__snake_case , help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''' , default='''acc''' , type=__snake_case , help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''' , default=1_28 , type=__snake_case , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=__snake_case , help='''Batch size.''' ) parser.add_argument('''--seed''' , type=__snake_case , default=42 ) parser.add_argument('''--local_rank''' , type=__snake_case , default=-1 , help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''' , type=__snake_case , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=__snake_case , default='''''' , help='''Can be used for distant debugging.''' ) lowercase : Tuple = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__snake_case ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: lowercase : Optional[int] = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) lowercase : Optional[Any] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) lowercase : Dict = torch.device('''cuda''' , args.local_rank ) lowercase : int = 1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) lowercase : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: lowercase : List[str] = nn.parallel.DistributedDataParallel( __snake_case , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__snake_case ) elif args.n_gpu > 1: lowercase : Tuple = nn.DataParallel(__snake_case ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__snake_case ) torch.save(__snake_case , os.path.join(args.output_dir , '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Prepare dataset lowercase : Any = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) lowercase : List[Any] = (torch.from_numpy(__snake_case ),) lowercase : List[str] = TensorDataset(*__snake_case ) lowercase : Any = RandomSampler(__snake_case ) lowercase : List[str] = DataLoader(__snake_case , sampler=__snake_case , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__snake_case , __snake_case , __snake_case ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: lowercase : Optional[int] = mask_heads(__snake_case , __snake_case , __snake_case ) prune_heads(__snake_case , __snake_case , __snake_case , __snake_case ) if __name__ == "__main__": main()
217
'''simple docstring''' import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> Union[str, Any]: __A : int = RobertaPreLayerNormConfig.from_pretrained( __snake_case , architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict __A : Tuple = torch.load(hf_hub_download(repo_id=__snake_case , filename='pytorch_model.bin' ) ) __A : str = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): __A : Dict = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue __A : str = tensor_value __A : Union[str, Any] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__snake_case , config=__snake_case , state_dict=__snake_case ) model.save_pretrained(__snake_case ) # convert tokenizer __A : List[Any] = AutoTokenizer.from_pretrained(__snake_case ) tokenizer.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
8
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() snake_case_ : Optional[int] = logging.get_logger(__name__) def __snake_case ( _UpperCAmelCase : Tuple, _UpperCAmelCase : List[str]=False): UpperCamelCase = [] for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight')) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias')) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight')) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias')) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight')) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias')) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight')) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias')) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight')) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias')) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ]) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ]) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCamelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''') else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ]) return rename_keys def __snake_case ( _UpperCAmelCase : Optional[Any], _UpperCAmelCase : Optional[Any], _UpperCAmelCase : List[Any]=False): for i in range(config.num_hidden_layers): if base_model: UpperCamelCase = '' else: UpperCamelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase = state_dict.pop(f'blocks.{i}.attn.qkv.weight') UpperCamelCase = state_dict.pop(f'blocks.{i}.attn.qkv.bias') # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase = in_proj_bias[: config.hidden_size] UpperCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase = in_proj_bias[-config.hidden_size :] def __snake_case ( _UpperCAmelCase : List[Any]): UpperCamelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(__snake_case, __snake_case) def __snake_case ( _UpperCAmelCase : Optional[int], _UpperCAmelCase : Optional[Any], _UpperCAmelCase : Union[str, Any]): UpperCamelCase = dct.pop(__snake_case) UpperCamelCase = val def __snake_case ( ): UpperCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase = Image.open(requests.get(__snake_case, stream=__snake_case).raw) return im @torch.no_grad() def __snake_case ( _UpperCAmelCase : List[Any], _UpperCAmelCase : Tuple): UpperCamelCase = ViTConfig() UpperCamelCase = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": UpperCamelCase = True UpperCamelCase = int(vit_name[-12:-10]) UpperCamelCase = int(vit_name[-9:-6]) else: UpperCamelCase = 1000 UpperCamelCase = 'huggingface/label-files' UpperCamelCase = 'imagenet-1k-id2label.json' UpperCamelCase = json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type='''dataset'''), '''r''')) UpperCamelCase = {int(__snake_case): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} UpperCamelCase = int(vit_name[-6:-4]) UpperCamelCase = int(vit_name[-3:]) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny'''): UpperCamelCase = 192 UpperCamelCase = 768 UpperCamelCase = 12 UpperCamelCase = 3 elif vit_name[9:].startswith('''small'''): UpperCamelCase = 384 UpperCamelCase = 1536 UpperCamelCase = 12 UpperCamelCase = 6 else: pass else: if vit_name[4:].startswith('''small'''): UpperCamelCase = 768 UpperCamelCase = 2304 UpperCamelCase = 8 UpperCamelCase = 8 elif vit_name[4:].startswith('''base'''): pass elif vit_name[4:].startswith('''large'''): UpperCamelCase = 1024 UpperCamelCase = 4096 UpperCamelCase = 24 UpperCamelCase = 16 elif vit_name[4:].startswith('''huge'''): UpperCamelCase = 1280 UpperCamelCase = 5120 UpperCamelCase = 32 UpperCamelCase = 16 # load original model from timm UpperCamelCase = timm.create_model(__snake_case, pretrained=__snake_case) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCamelCase = timm_model.state_dict() if base_model: remove_classification_head_(__snake_case) UpperCamelCase = create_rename_keys(__snake_case, __snake_case) for src, dest in rename_keys: rename_key(__snake_case, __snake_case, __snake_case) read_in_q_k_v(__snake_case, __snake_case, __snake_case) # load HuggingFace model if vit_name[-5:] == "in21k": UpperCamelCase = ViTModel(__snake_case).eval() else: UpperCamelCase = ViTForImageClassification(__snake_case).eval() model.load_state_dict(__snake_case) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: UpperCamelCase = DeiTImageProcessor(size=config.image_size) else: UpperCamelCase = ViTImageProcessor(size=config.image_size) UpperCamelCase = image_processor(images=prepare_img(), return_tensors='''pt''') UpperCamelCase = encoding['pixel_values'] UpperCamelCase = model(__snake_case) if base_model: UpperCamelCase = timm_model.forward_features(__snake_case) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__snake_case, outputs.pooler_output, atol=1E-3) else: UpperCamelCase = timm_model(__snake_case) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__snake_case, outputs.logits, atol=1E-3) Path(__snake_case).mkdir(exist_ok=__snake_case) print(f'Saving model {vit_name} to {pytorch_dump_folder_path}') model.save_pretrained(__snake_case) print(f'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(__snake_case) if __name__ == "__main__": snake_case_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) snake_case_ : Tuple = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
212
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings lowercase__ : Dict = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = field(default=a__ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = super().to_dict() for k, v in d.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : List[Any] = v.to_dict() return d
8
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ : Any = { '''configuration_roformer''': ['''ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoFormerConfig''', '''RoFormerOnnxConfig'''], '''tokenization_roformer''': ['''RoFormerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[Any] = ['''RoFormerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[Any] = [ '''ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoFormerForCausalLM''', '''RoFormerForMaskedLM''', '''RoFormerForMultipleChoice''', '''RoFormerForQuestionAnswering''', '''RoFormerForSequenceClassification''', '''RoFormerForTokenClassification''', '''RoFormerLayer''', '''RoFormerModel''', '''RoFormerPreTrainedModel''', '''load_tf_weights_in_roformer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = [ '''TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRoFormerForCausalLM''', '''TFRoFormerForMaskedLM''', '''TFRoFormerForMultipleChoice''', '''TFRoFormerForQuestionAnswering''', '''TFRoFormerForSequenceClassification''', '''TFRoFormerForTokenClassification''', '''TFRoFormerLayer''', '''TFRoFormerModel''', '''TFRoFormerPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = [ '''FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxRoFormerForMaskedLM''', '''FlaxRoFormerForMultipleChoice''', '''FlaxRoFormerForQuestionAnswering''', '''FlaxRoFormerForSequenceClassification''', '''FlaxRoFormerForTokenClassification''', '''FlaxRoFormerModel''', '''FlaxRoFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys a_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
676
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : Optional[int] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''lxmert''' lowerCAmelCase = {} def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=9500 , _UpperCAmelCase=1600 , _UpperCAmelCase=400 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=9 , _UpperCAmelCase=5 , _UpperCAmelCase=5 , _UpperCAmelCase=2048 , _UpperCAmelCase=4 , _UpperCAmelCase=6.67 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , **_UpperCAmelCase , ): '''simple docstring''' __A : Tuple = vocab_size __A : int = hidden_size __A : str = num_attention_heads __A : Tuple = hidden_act __A : int = intermediate_size __A : str = hidden_dropout_prob __A : Optional[int] = attention_probs_dropout_prob __A : Optional[Any] = max_position_embeddings __A : Tuple = type_vocab_size __A : Optional[int] = initializer_range __A : Any = layer_norm_eps __A : Optional[Any] = num_qa_labels __A : Optional[int] = num_object_labels __A : Any = num_attr_labels __A : Union[str, Any] = l_layers __A : Optional[int] = x_layers __A : List[Any] = r_layers __A : Tuple = visual_feat_dim __A : Tuple = visual_pos_dim __A : Optional[int] = visual_loss_normalizer __A : int = task_matched __A : List[Any] = task_mask_lm __A : Optional[Any] = task_obj_predict __A : str = task_qa __A : List[Any] = visual_obj_loss __A : Optional[Any] = visual_attr_loss __A : Union[str, Any] = visual_feat_loss __A : Union[str, Any] = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**_UpperCAmelCase)
8
0
from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __UpperCamelCase : str = logging.get_logger(__name__) class lowercase__ ( a__): UpperCamelCase_ = ["""input_features""", """attention_mask"""] def __init__( self : Optional[Any] , UpperCamelCase__ : Any=80 , UpperCamelCase__ : Union[str, Any]=1_6000 , UpperCamelCase__ : Optional[Any]=80 , UpperCamelCase__ : List[str]=0.0 , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : int=True , UpperCamelCase__ : int=True , **UpperCamelCase__ : Tuple , ): '''simple docstring''' super().__init__(feature_size=_UpperCAmelCase , sampling_rate=_UpperCAmelCase , padding_value=_UpperCAmelCase , **_UpperCAmelCase ) SCREAMING_SNAKE_CASE : str = num_mel_bins SCREAMING_SNAKE_CASE : Optional[Any] = do_ceptral_normalize SCREAMING_SNAKE_CASE : Optional[Any] = normalize_means SCREAMING_SNAKE_CASE : int = normalize_vars SCREAMING_SNAKE_CASE : int = True def __A ( self : Union[str, Any] , UpperCamelCase__ : Tuple , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = waveform * (2**15) # Kaldi compliance: 16-bit signed integers SCREAMING_SNAKE_CASE : Union[str, Any] = torch.from_numpy(_UpperCAmelCase ).unsqueeze(0 ) SCREAMING_SNAKE_CASE : List[str] = ta_kaldi.fbank(_UpperCAmelCase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def __A ( UpperCamelCase__ : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Dict = True , UpperCamelCase__ : List[Any] = True , UpperCamelCase__ : Any = 0.0 , ): '''simple docstring''' if normalize_means: SCREAMING_SNAKE_CASE : Any = x[:input_length].mean(axis=0 ) SCREAMING_SNAKE_CASE : Dict = np.subtract(_UpperCAmelCase , _UpperCAmelCase ) if normalize_vars: SCREAMING_SNAKE_CASE : Optional[Any] = x[:input_length].std(axis=0 ) SCREAMING_SNAKE_CASE : List[Any] = np.divide(_UpperCAmelCase , _UpperCAmelCase ) if input_length < x.shape[0]: SCREAMING_SNAKE_CASE : Dict = padding_value # make sure array is in float32 SCREAMING_SNAKE_CASE : List[str] = x.astype(np.floataa ) return x def __A ( self : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(_UpperCAmelCase , _UpperCAmelCase , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(_UpperCAmelCase , _UpperCAmelCase ) ] def __call__( self : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str = False , UpperCamelCase__ : Dict = None , UpperCamelCase__ : Dict = False , UpperCamelCase__ : Optional[Any] = None , UpperCamelCase__ : List[str] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Dict = None , **UpperCamelCase__ : Any , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) SCREAMING_SNAKE_CASE : Tuple = isinstance(_UpperCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) SCREAMING_SNAKE_CASE : Any = is_batched_numpy or ( isinstance(_UpperCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_UpperCAmelCase , np.ndarray ): SCREAMING_SNAKE_CASE : Any = np.asarray(_UpperCAmelCase , dtype=np.floataa ) elif isinstance(_UpperCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE : Tuple = [raw_speech] # extract fbank features SCREAMING_SNAKE_CASE : Union[str, Any] = [self._extract_fbank_features(_UpperCAmelCase ) for waveform in raw_speech] # convert into correct format for padding SCREAMING_SNAKE_CASE : int = BatchFeature({'''input_features''': features} ) SCREAMING_SNAKE_CASE : List[Any] = self.pad( _UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) # make sure list is in array format SCREAMING_SNAKE_CASE : Optional[int] = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , _UpperCAmelCase ): SCREAMING_SNAKE_CASE : Tuple = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for feature in input_features] SCREAMING_SNAKE_CASE : Any = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray(_UpperCAmelCase , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: SCREAMING_SNAKE_CASE : int = ( np.array(_UpperCAmelCase , dtype=np.intaa ) if self._get_padding_strategies(_UpperCAmelCase , max_length=_UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) SCREAMING_SNAKE_CASE : Optional[int] = self.normalize( padded_inputs['''input_features'''] , attention_mask=_UpperCAmelCase ) if return_tensors is not None: SCREAMING_SNAKE_CASE : Optional[Any] = padded_inputs.convert_to_tensors(_UpperCAmelCase ) return padded_inputs
248
'''simple docstring''' import math import sys def _lowerCAmelCase ( __snake_case : int ) -> int: if number != int(__snake_case ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 __A : str = [-1] * (number + 1) __A : Dict = 0 for i in range(1 , number + 1 ): __A : int = sys.maxsize __A : int = int(math.sqrt(__snake_case ) ) for j in range(1 , root + 1 ): __A : str = 1 + answers[i - (j**2)] __A : Dict = min(__snake_case , __snake_case ) __A : Union[str, Any] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
8
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = { '''microsoft/swinv2-tiny-patch4-window8-256''': ( '''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json''' ), } class UpperCamelCase_ ( a__ ): '''simple docstring''' UpperCAmelCase__ = '''swinv2''' UpperCAmelCase__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Any , UpperCAmelCase__ : List[str]=224 , UpperCAmelCase__ : Dict=4 , UpperCAmelCase__ : Tuple=3 , UpperCAmelCase__ : Union[str, Any]=96 , UpperCAmelCase__ : Any=[2, 2, 6, 2] , UpperCAmelCase__ : Tuple=[3, 6, 12, 24] , UpperCAmelCase__ : Optional[int]=7 , UpperCAmelCase__ : Any=4.0 , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Optional[Any]="gelu" , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : str=0.02 , UpperCAmelCase__ : List[str]=1e-5 , UpperCAmelCase__ : Union[str, Any]=32 , **UpperCAmelCase__ : List[str] , ) ->Optional[Any]: '''simple docstring''' super().__init__(**_UpperCAmelCase) A__ = image_size A__ = patch_size A__ = num_channels A__ = embed_dim A__ = depths A__ = len(_UpperCAmelCase) A__ = num_heads A__ = window_size A__ = mlp_ratio A__ = qkv_bias A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = drop_path_rate A__ = hidden_act A__ = use_absolute_embeddings A__ = layer_norm_eps A__ = initializer_range A__ = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A__ = int(embed_dim * 2 ** (len(_UpperCAmelCase) - 1)) A__ = (0, 0, 0, 0)
87
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( __snake_case : list[int] , __snake_case : list[int] , __snake_case : int ) -> tuple[float, list[float]]: __A : int = list(range(len(__snake_case ) ) ) __A : Optional[Any] = [v / w for v, w in zip(__snake_case , __snake_case )] index.sort(key=lambda __snake_case : ratio[i] , reverse=__snake_case ) __A : float = 0 __A : list[float] = [0] * len(__snake_case ) for i in index: if weight[i] <= capacity: __A : Optional[int] = 1 max_value += value[i] capacity -= weight[i] else: __A : List[Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
8
0
import argparse import os import re _lowercase = '''src/diffusers''' # Pattern that looks at the indentation in a line. _lowercase = re.compile(R"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. _lowercase = re.compile(R"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _lowercase = re.compile(R"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. _lowercase = re.compile(R"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _lowercase = re.compile(R"""\[([^\]]+)\]""") def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : str ) -> Tuple: SCREAMING_SNAKE_CASE_ : List[Any] =_re_indent.search(__snake_case ) return "" if search is None else search.groups()[0] def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str="" , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[Any]=None ) -> Optional[int]: SCREAMING_SNAKE_CASE_ : Tuple =0 SCREAMING_SNAKE_CASE_ : Optional[int] =code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(__snake_case ): index += 1 SCREAMING_SNAKE_CASE_ : Optional[int] =['\n'.join(lines[:index] )] else: SCREAMING_SNAKE_CASE_ : Any =[] # We split into blocks until we get to the `end_prompt` (or the end of the block). SCREAMING_SNAKE_CASE_ : Tuple =[lines[index]] index += 1 while index < len(__snake_case ) and (end_prompt is None or not lines[index].startswith(__snake_case )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__snake_case ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(__snake_case ) ) if index < len(__snake_case ) - 1: SCREAMING_SNAKE_CASE_ : Union[str, Any] =[lines[index + 1]] index += 1 else: SCREAMING_SNAKE_CASE_ : Union[str, Any] =[] else: blocks.append('''\n'''.join(__snake_case ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] =[lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__snake_case ) > 0: blocks.append('''\n'''.join(__snake_case ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__snake_case ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : List[Any] ) -> int: def _inner(UpperCAmelCase_ : List[Any] ): return key(__snake_case ).lower().replace('''_''' , '''''' ) return _inner def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any=None ) -> List[Any]: # If no key is provided, we use a noop. def noop(UpperCAmelCase_ : List[Any] ): return x if key is None: SCREAMING_SNAKE_CASE_ : Optional[Any] =noop # Constants are all uppercase, they go first. SCREAMING_SNAKE_CASE_ : str =[obj for obj in objects if key(__snake_case ).isupper()] # Classes are not all uppercase but start with a capital, they go second. SCREAMING_SNAKE_CASE_ : List[str] =[obj for obj in objects if key(__snake_case )[0].isupper() and not key(__snake_case ).isupper()] # Functions begin with a lowercase, they go last. SCREAMING_SNAKE_CASE_ : str =[obj for obj in objects if not key(__snake_case )[0].isupper()] SCREAMING_SNAKE_CASE_ : Tuple =ignore_underscore(__snake_case ) return sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Optional[int] ) -> Tuple: # This inner function sort imports between [ ]. def _replace(UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE_ : List[str] =match.groups()[0] if "," not in imports: return f'[{imports}]' SCREAMING_SNAKE_CASE_ : int =[part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: SCREAMING_SNAKE_CASE_ : Dict =keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(__snake_case )] ) + "]" SCREAMING_SNAKE_CASE_ : List[Any] =import_statement.split('''\n''' ) if len(__snake_case ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. SCREAMING_SNAKE_CASE_ : Optional[int] =2 if lines[1].strip() == '[' else 1 SCREAMING_SNAKE_CASE_ : Any =[(i, _re_strip_line.search(__snake_case ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] SCREAMING_SNAKE_CASE_ : Optional[int] =sort_objects(__snake_case , key=lambda UpperCAmelCase_ : x[1] ) SCREAMING_SNAKE_CASE_ : Any =[lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__snake_case ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: SCREAMING_SNAKE_CASE_ : Union[str, Any] =_re_bracket_content.sub(_replace , lines[1] ) else: SCREAMING_SNAKE_CASE_ : Dict =[part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: SCREAMING_SNAKE_CASE_ : Tuple =keys[:-1] SCREAMING_SNAKE_CASE_ : List[Any] =get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(__snake_case )] ) return "\n".join(__snake_case ) else: # Finally we have to deal with imports fitting on one line SCREAMING_SNAKE_CASE_ : Optional[Any] =_re_bracket_content.sub(_replace , __snake_case ) return import_statement def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any]=True ) -> Optional[Any]: with open(__snake_case , '''r''' ) as f: SCREAMING_SNAKE_CASE_ : Dict =f.read() if "_import_structure" not in code: return # Blocks of indent level 0 SCREAMING_SNAKE_CASE_ : str =split_code_in_indented_blocks( __snake_case , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__snake_case ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. SCREAMING_SNAKE_CASE_ : Tuple =main_blocks[block_idx] SCREAMING_SNAKE_CASE_ : int =block.split('''\n''' ) # Get to the start of the imports. SCREAMING_SNAKE_CASE_ : Tuple =0 while line_idx < len(__snake_case ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: SCREAMING_SNAKE_CASE_ : Optional[int] =len(__snake_case ) else: line_idx += 1 if line_idx >= len(__snake_case ): continue # Ignore beginning and last line: they don't contain anything. SCREAMING_SNAKE_CASE_ : Dict ='\n'.join(block_lines[line_idx:-1] ) SCREAMING_SNAKE_CASE_ : int =get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. SCREAMING_SNAKE_CASE_ : Optional[int] =split_code_in_indented_blocks(__snake_case , indent_level=__snake_case ) # We have two categories of import key: list or _import_structure[key].append/extend SCREAMING_SNAKE_CASE_ : Any =_re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. SCREAMING_SNAKE_CASE_ : Dict =[(pattern.search(__snake_case ).groups()[0] if pattern.search(__snake_case ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. SCREAMING_SNAKE_CASE_ : Optional[Any] =[(i, key) for i, key in enumerate(__snake_case ) if key is not None] SCREAMING_SNAKE_CASE_ : Tuple =[x[0] for x in sorted(__snake_case , key=lambda UpperCAmelCase_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. SCREAMING_SNAKE_CASE_ : str =0 SCREAMING_SNAKE_CASE_ : Any =[] for i in range(len(__snake_case ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: SCREAMING_SNAKE_CASE_ : str =sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(__snake_case ) count += 1 # And we put our main block back together with its first and last line. SCREAMING_SNAKE_CASE_ : int ='\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(__snake_case ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(__snake_case , '''w''' ) as f: f.write('''\n'''.join(__snake_case ) ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : int=True ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ : Tuple =[] for root, _, files in os.walk(__snake_case ): if "__init__.py" in files: SCREAMING_SNAKE_CASE_ : List[Any] =sort_imports(os.path.join(__snake_case , '''__init__.py''' ) , check_only=__snake_case ) if result: SCREAMING_SNAKE_CASE_ : Dict =[os.path.join(__snake_case , '''__init__.py''' )] if len(__snake_case ) > 0: raise ValueError(f'Would overwrite {len(__snake_case )} files, run `make style`.' ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") _lowercase = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
443
'''simple docstring''' from __future__ import annotations import math class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : int = size # approximate the overall size of segment tree with given value __A : Optional[Any] = [0 for i in range(0 , 4 * size)] # create array to store lazy update __A : Optional[Any] = [0 for i in range(0 , 4 * size)] __A : str = [0 for i in range(0 , 4 * size)] # flag for lazy update def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return idx * 2 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return idx * 2 + 1 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if left_element == right_element: __A : List[Any] = a[left_element - 1] else: __A : List[str] = (left_element + right_element) // 2 self.build(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.build(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase) __A : Any = max( self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)]) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.flag[idx] is True: __A : Optional[Any] = self.lazy[idx] __A : Optional[Any] = False if left_element != right_element: __A : List[Any] = self.lazy[idx] __A : Dict = self.lazy[idx] __A : Tuple = True __A : Union[str, Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: __A : Optional[int] = val if left_element != right_element: __A : Tuple = val __A : Any = val __A : Tuple = True __A : Union[str, Any] = True return True __A : str = (left_element + right_element) // 2 self.update(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.update(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : int = max( self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)]) return True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.flag[idx] is True: __A : Union[str, Any] = self.lazy[idx] __A : List[str] = False if left_element != right_element: __A : Union[str, Any] = self.lazy[idx] __A : Optional[int] = self.lazy[idx] __A : str = True __A : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] __A : Any = (left_element + right_element) // 2 __A : int = self.query(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : Union[str, Any] = self.query(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) return max(_UpperCAmelCase , _UpperCAmelCase) def __str__( self): '''simple docstring''' return str([self.query(1 , 1 , self.size , _UpperCAmelCase , _UpperCAmelCase) for i in range(1 , self.size + 1)]) if __name__ == "__main__": lowercase__ : Union[str, Any] = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] lowercase__ : str = 15 lowercase__ : List[Any] = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 1_11) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 2_35) print(segt)
8
0
import os from pathlib import Path def _UpperCAmelCase ( ): '''simple docstring''' from torch.utils.cpp_extension import load UpperCAmelCase__ =Path(__snake_case ).resolve().parent.parent.parent / 'kernels' / 'deformable_detr' UpperCAmelCase__ =[ root / filename for filename in [ 'vision.cpp', os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ), os.path.join("cuda" , "ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention" , __snake_case , with_cuda=__snake_case , extra_include_paths=[str(__snake_case )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
625
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int , __snake_case : int , __snake_case : int ) -> float: __A : Dict = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def _lowerCAmelCase ( ) -> Union[str, Any]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A : Optional[int] = logging.get_logger(__name__) __A : int = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} __A : Tuple = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } __A : str = { '''abeja/gpt-neox-japanese-2.7b''': 2_048, } def UpperCAmelCase ( lowerCamelCase_ :Dict , lowerCamelCase_ :Dict ): '''simple docstring''' with open(__snake_case , """r""" , encoding="""utf-8""" ) as f: snake_case_ : Optional[int] = json.loads(f.read() ) snake_case_ : Any = collections.OrderedDict() snake_case_ : Optional[Any] = collections.OrderedDict() snake_case_ : Union[str, Any] = collections.OrderedDict() with open(__snake_case , """r""" , encoding="""utf-8""" ) as f: snake_case_ : Dict = f.readlines() snake_case_ : Tuple = [[t.rstrip("""\n""" )] if (t == ',' or ',' not in t) else t.rstrip("""\n""" ).split(""",""" ) for t in token] for idx, b in enumerate(__snake_case ): snake_case_ : int = b snake_case_ : int = idx for wd in b: snake_case_ : Any = idx return vocab, raw_vocab, ids_to_tokens, emoji class __UpperCamelCase ( a__ ): lowercase : Union[str, Any] = VOCAB_FILES_NAMES lowercase : List[str] = PRETRAINED_VOCAB_FILES_MAP lowercase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : str = ['input_ids', 'attention_mask'] def __init__( self :Union[str, Any] ,_UpperCamelCase :List[Any] ,_UpperCamelCase :Any ,_UpperCamelCase :Optional[Any]="<|endoftext|>" ,_UpperCamelCase :List[str]="<|endoftext|>" ,_UpperCamelCase :Dict="<|startoftext|>" ,_UpperCamelCase :Tuple="<|endoftext|>" ,_UpperCamelCase :List[str]=False ,**_UpperCamelCase :Union[str, Any] ,): super().__init__( unk_token=_UpperCAmelCase ,pad_token=_UpperCAmelCase ,bos_token=_UpperCAmelCase ,eos_token=_UpperCAmelCase ,do_clean_text=_UpperCAmelCase ,**_UpperCAmelCase ,) if not os.path.isfile(_UpperCAmelCase ): raise ValueError( F'''Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained''' """ model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) if not os.path.isfile(_UpperCAmelCase ): raise ValueError( F'''Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google''' """ pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) snake_case_ : Tuple = do_clean_text snake_case_ : Dict = load_vocab_and_emoji(_UpperCAmelCase ,_UpperCAmelCase ) snake_case_ : int = SubWordJapaneseTokenizer( vocab=self.vocab ,ids_to_tokens=self.ids_to_tokens ,emoji=self.emoji ) @property def a__ ( self :Optional[Any] ): return len(self.raw_vocab ) def a__ ( self :Optional[int] ): return dict(self.raw_vocab ,**self.added_tokens_encoder ) def a__ ( self :Tuple ,_UpperCamelCase :List[Any] ): return self.subword_tokenizer.tokenize(_UpperCAmelCase ,clean=self.do_clean_text ) def a__ ( self :Union[str, Any] ,_UpperCamelCase :Any ): return self.vocab.get(_UpperCAmelCase ,self.vocab.get(self.unk_token ) ) def a__ ( self :Dict ,_UpperCamelCase :Tuple ): return self.subword_tokenizer.convert_id_to_token(_UpperCAmelCase ) def a__ ( self :str ,_UpperCamelCase :Tuple ): snake_case_ : int = ''.join(_UpperCAmelCase ).strip() return out_string def a__ ( self :Any ,_UpperCamelCase :Optional[Any] ): snake_case_ : int = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_UpperCAmelCase ,add_special_tokens=_UpperCAmelCase ) + [self.eos_token_id] ) if len(_UpperCAmelCase ) > self.model_max_length: snake_case_ : Optional[int] = input_ids[-self.model_max_length :] return input_ids def a__ ( self :str ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :Optional[int] = None ): snake_case_ : List[str] = 0 if os.path.isdir(_UpperCAmelCase ): snake_case_ : Dict = os.path.join( _UpperCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case_ : int = os.path.join( _UpperCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""emoji_file"""] ) else: snake_case_ : Tuple = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) snake_case_ : int = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(_UpperCAmelCase ,"""w""" ,encoding="""utf-8""" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) snake_case_ : Dict = token_index writer.write(""",""".join(_UpperCAmelCase ) + """\n""" ) index += 1 with open(_UpperCAmelCase ,"""w""" ,encoding="""utf-8""" ) as writer: json.dump(self.emoji ,_UpperCAmelCase ) return vocab_file, emoji_file class __UpperCamelCase ( a__ ): def __init__( self :Union[str, Any] ,_UpperCamelCase :str ,_UpperCamelCase :List[str] ,_UpperCamelCase :Union[str, Any] ): snake_case_ : int = vocab # same as swe snake_case_ : Union[str, Any] = ids_to_tokens # same as bpe snake_case_ : Optional[int] = emoji snake_case_ : List[str] = np.max([len(_UpperCAmelCase ) for w in self.vocab.keys()] ) snake_case_ : Optional[int] = re.compile(R"""(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)""" ) snake_case_ : Optional[Any] = re.compile(R"""[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*""" ) snake_case_ : str = re.compile(R"""[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}""" ) snake_case_ : Any = re.compile( R"""([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) snake_case_ : List[str] = re.compile( R"""(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) snake_case_ : Any = re.compile( R"""((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*""" ) snake_case_ : str = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' snake_case_ : Dict = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' snake_case_ : int = str.maketrans({k: """<BLOCK>""" for k in keisen + blocks} ) def __len__( self :Tuple ): return len(self.ids_to_tokens ) def a__ ( self :List[Any] ,_UpperCamelCase :Optional[int] ): snake_case_ : Tuple = self.content_repattera.sub("""<URL>""" ,_UpperCAmelCase ) snake_case_ : Any = self.content_repattera.sub("""<EMAIL>""" ,_UpperCAmelCase ) snake_case_ : Union[str, Any] = self.content_repattera.sub("""<TEL>""" ,_UpperCAmelCase ) snake_case_ : List[str] = self.content_repattera.sub("""<DATE>""" ,_UpperCAmelCase ) snake_case_ : Optional[Any] = self.content_repattera.sub("""<DATE>""" ,_UpperCAmelCase ) snake_case_ : Optional[int] = self.content_repattera.sub("""<PRICE>""" ,_UpperCAmelCase ) snake_case_ : List[str] = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: snake_case_ : str = content.replace("""<BLOCK><BLOCK>""" ,"""<BLOCK>""" ) return content def a__ ( self :Union[str, Any] ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :List[str]=False ): snake_case_ : Union[str, Any] = text.replace(""" """ ,"""<SP>""" ) snake_case_ : Tuple = text.replace(""" """ ,"""<SP>""" ) snake_case_ : Optional[Any] = text.replace("""\r\n""" ,"""<BR>""" ) snake_case_ : Tuple = text.replace("""\n""" ,"""<BR>""" ) snake_case_ : List[Any] = text.replace("""\r""" ,"""<BR>""" ) snake_case_ : Optional[Any] = text.replace("""\t""" ,"""<TAB>""" ) snake_case_ : Union[str, Any] = text.replace("""—""" ,"""ー""" ) snake_case_ : int = text.replace("""−""" ,"""ー""" ) for k, v in self.emoji["emoji"].items(): if k in text: snake_case_ : Union[str, Any] = text.replace(_UpperCAmelCase ,_UpperCAmelCase ) if clean: snake_case_ : int = self.clean_text(_UpperCAmelCase ) def check_simbol(_UpperCamelCase :Union[str, Any] ): snake_case_ : str = x.encode() if len(_UpperCAmelCase ) == 1 and len(_UpperCAmelCase ) == 2: snake_case_ : Dict = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xC_2_A_1 and c <= 0xC_2_B_F) or (c >= 0xC_7_8_0 and c <= 0xC_7_8_3) or (c >= 0xC_A_B_9 and c <= 0xC_B_B_F) or (c >= 0xC_C_8_0 and c <= 0xC_D_A_2) ): return True return False def checkuae(_UpperCamelCase :List[str] ): snake_case_ : Optional[int] = x.encode() if len(_UpperCAmelCase ) == 1 and len(_UpperCAmelCase ) == 3: snake_case_ : Dict = (int(e[0] ) << 1_6) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xE_2_8_0_8_0 and c <= 0xE_2_B_0_7_F: return True return False snake_case_ : Union[str, Any] = 0 snake_case_ : int = [] while pos < len(_UpperCAmelCase ): snake_case_ : Optional[int] = min(len(_UpperCAmelCase ) ,pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 snake_case_ : Dict = [] # (token_id, token, pos) for e in range(_UpperCAmelCase ,_UpperCAmelCase ,-1 ): snake_case_ : List[str] = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(_UpperCAmelCase ) > 2: snake_case_ : Union[str, Any] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(_UpperCAmelCase ) > 0: # the smallest token_id is adopted snake_case_ : List[Any] = sorted(_UpperCAmelCase ,key=lambda _UpperCamelCase : x[0] )[0] result.append(_UpperCAmelCase ) snake_case_ : Optional[int] = e else: snake_case_ : int = pos + 1 snake_case_ : List[Any] = text[pos:end] if check_simbol(_UpperCAmelCase ): result.append("""<KIGOU>""" ) elif checkuae(_UpperCAmelCase ): result.append("""<U2000U2BFF>""" ) else: for i in wd.encode("""utf-8""" ): result.append("""<|byte%d|>""" % i ) snake_case_ : Optional[Any] = end return result def a__ ( self :Union[str, Any] ,_UpperCamelCase :Any ,_UpperCamelCase :Tuple="\n" ): snake_case_ : Optional[int] = [] snake_case_ : Tuple = [] snake_case_ : Any = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(_UpperCAmelCase ) > 0: words.append(bytearray(_UpperCAmelCase ).decode("""utf-8""" ,errors="""replace""" ) ) snake_case_ : Tuple = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["""emoji_inv"""][word] ) elif word == "<SP>": words.append(""" """ ) elif word == "<BR>": words.append(_UpperCAmelCase ) elif word == "<TAB>": words.append("""\t""" ) elif word == "<BLOCK>": words.append("""▀""" ) elif word == "<KIGOU>": words.append("""ǀ""" ) elif word == "<U2000U2BFF>": words.append("""‖""" ) else: words.append(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: words.append(bytearray(_UpperCAmelCase ).decode("""utf-8""" ,errors="""replace""" ) ) snake_case_ : Optional[int] = ''.join(_UpperCAmelCase ) return text
334
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): '''simple docstring''' __A : Optional[int] = parent __A : str = 13 __A : List[Any] = 7 __A : List[str] = True __A : str = True __A : Optional[Any] = True __A : int = True __A : Dict = 99 __A : Dict = 384 __A : Any = 2 __A : int = 4 __A : Optional[Any] = 37 __A : Optional[int] = 'gelu' __A : Dict = 0.1 __A : Optional[int] = 0.1 __A : Any = 512 __A : int = 16 __A : List[str] = 2 __A : str = 0.02 __A : Any = 3 __A : str = 4 __A : Union[str, Any] = 128 __A : int = 2 __A : List[Any] = 9 __A : List[Any] = 1 __A : List[Any] = None def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __A : str = None if self.use_input_mask: __A : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __A : Optional[Any] = None if self.use_token_type_ids: __A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __A : Optional[int] = None __A : List[str] = None __A : Dict = None if self.use_labels: __A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) __A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __A : str = ids_tensor([self.batch_size] , self.num_choices) __A : List[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = TFConvBertModel(config=_UpperCAmelCase) __A : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __A : Tuple = [input_ids, input_mask] __A : Any = model(_UpperCAmelCase) __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : str = TFConvBertForMaskedLM(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : str = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = self.num_labels __A : Any = TFConvBertForSequenceClassification(config=_UpperCAmelCase) __A : Optional[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Tuple = self.num_choices __A : List[str] = TFConvBertForMultipleChoice(config=_UpperCAmelCase) __A : int = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : Optional[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : List[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : int = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __A : Optional[Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = self.num_labels __A : List[Any] = TFConvBertForTokenClassification(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : int = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = TFConvBertForQuestionAnswering(config=_UpperCAmelCase) __A : Any = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Union[str, Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.prepare_config_and_inputs() ( ( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) , ) : Union[str, Any] = config_and_inputs __A : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = TFConvBertModelTester(self) __A : str = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __A : List[str] = True __A : List[str] = True if hasattr(_UpperCAmelCase , 'use_cache'): __A : List[Any] = True __A : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : Union[str, Any] = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) for model_class in self.all_model_classes: __A : List[str] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase) __A : Optional[int] = model_class(_UpperCAmelCase) __A : Optional[Any] = len(model(_UpperCAmelCase)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase) __A : Union[str, Any] = os.path.join(_UpperCAmelCase , 'saved_model' , '1') __A : Tuple = tf.keras.models.load_model(_UpperCAmelCase) __A : str = model(_UpperCAmelCase) if self.is_encoder_decoder: __A : Optional[int] = outputs['encoder_hidden_states'] __A : str = outputs['encoder_attentions'] else: __A : List[Any] = outputs['hidden_states'] __A : Optional[Any] = outputs['attentions'] self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) __A : str = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) self.assertListEqual( list(output_hidden_states[0].shape[-2:]) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(output_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') self.assertIsNotNone(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Any = True __A : str = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length) __A : Any = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : int = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) __A : Tuple = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) def check_decoder_attentions_output(_UpperCAmelCase): __A : List[str] = len(_UpperCAmelCase) self.assertEqual(out_len % 2 , 0) __A : Any = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCAmelCase): __A : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __A : Dict = True __A : Any = False __A : str = model_class(_UpperCAmelCase) __A : List[str] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : List[str] = len(_UpperCAmelCase) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) if self.is_encoder_decoder: __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : int = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_decoder_attentions_output(_UpperCAmelCase) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __A : int = True __A : Tuple = model_class(_UpperCAmelCase) __A : Dict = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) # Check attention is always last and order is fine __A : Any = True __A : str = True __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : Union[str, Any] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase)) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) @require_tf class SCREAMING_SNAKE_CASE (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') __A : str = tf.constant([[0, 1, 2, 3, 4, 5]]) __A : Optional[int] = model(_UpperCAmelCase)[0] __A : List[Any] = [1, 6, 768] self.assertEqual(output.shape , _UpperCAmelCase) __A : Tuple = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ]) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4)
8
0
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class UpperCamelCase__ ( a__ ): def __a ( self : str ): '''simple docstring''' a__ = SMALL_MODEL_IDENTIFIER a__ = 'pt' a__ = 'tf' def __a ( self : Any , lowerCamelCase : List[Any] ): '''simple docstring''' a__ = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(_UpperCAmelCase ) def __a ( self : int , lowerCamelCase : List[str] ): '''simple docstring''' a__ = TFAutoModel.from_pretrained(self.test_model , from_pt=_UpperCAmelCase ) model_tf.save_pretrained(_UpperCAmelCase ) def __a ( self : Dict ): '''simple docstring''' a__ = 'mock_framework' # Framework provided - return whatever the user provides a__ = FeaturesManager.determine_framework(self.test_model , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_UpperCAmelCase ) a__ = FeaturesManager.determine_framework(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_UpperCAmelCase ) a__ = FeaturesManager.determine_framework(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def __a ( self : Optional[int] ): '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_UpperCAmelCase ) a__ = FeaturesManager.determine_framework(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_UpperCAmelCase ) a__ = FeaturesManager.determine_framework(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_UpperCAmelCase ): a__ = FeaturesManager.determine_framework(_UpperCAmelCase ) def __a ( self : List[Any] ): '''simple docstring''' a__ = MagicMock(return_value=_UpperCAmelCase ) with patch("transformers.onnx.features.is_tf_available" , _UpperCAmelCase ): a__ = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_UpperCAmelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow a__ = MagicMock(return_value=_UpperCAmelCase ) with patch("transformers.onnx.features.is_torch_available" , _UpperCAmelCase ): a__ = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_UpperCAmelCase , self.framework_tf ) # Both in environment -> use PyTorch a__ = MagicMock(return_value=_UpperCAmelCase ) a__ = MagicMock(return_value=_UpperCAmelCase ) with patch("transformers.onnx.features.is_tf_available" , _UpperCAmelCase ), patch( "transformers.onnx.features.is_torch_available" , _UpperCAmelCase ): a__ = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_UpperCAmelCase , self.framework_pt ) # Both not in environment -> raise error a__ = MagicMock(return_value=_UpperCAmelCase ) a__ = MagicMock(return_value=_UpperCAmelCase ) with patch("transformers.onnx.features.is_tf_available" , _UpperCAmelCase ), patch( "transformers.onnx.features.is_torch_available" , _UpperCAmelCase ): with self.assertRaises(_UpperCAmelCase ): a__ = FeaturesManager.determine_framework(self.test_model )
489
'''simple docstring''' import argparse import os import re lowercase__ : Optional[int] = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowercase__ : Dict = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowercase__ : List[str] = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase__ : Tuple = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowercase__ : str = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase__ : str = re.compile(r'''\[([^\]]+)\]''') def _lowerCAmelCase ( __snake_case : str ) -> Tuple: __A : List[Any] = _re_indent.search(__snake_case ) return "" if search is None else search.groups()[0] def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : str="" , __snake_case : Any=None , __snake_case : List[Any]=None ) -> Optional[int]: __A : Tuple = 0 __A : Optional[int] = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(__snake_case ): index += 1 __A : Optional[int] = ['\n'.join(lines[:index] )] else: __A : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __A : Tuple = [lines[index]] index += 1 while index < len(__snake_case ) and (end_prompt is None or not lines[index].startswith(__snake_case )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__snake_case ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(__snake_case ) ) if index < len(__snake_case ) - 1: __A : Union[str, Any] = [lines[index + 1]] index += 1 else: __A : Union[str, Any] = [] else: blocks.append('\n'.join(__snake_case ) ) __A : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__snake_case ) > 0: blocks.append('\n'.join(__snake_case ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__snake_case ): blocks.append('\n'.join(lines[index:] ) ) return blocks def _lowerCAmelCase ( __snake_case : List[Any] ) -> int: def _inner(__snake_case : List[Any] ): return key(__snake_case ).lower().replace('_' , '' ) return _inner def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any=None ) -> List[Any]: # If no key is provided, we use a noop. def noop(__snake_case : List[Any] ): return x if key is None: __A : Optional[Any] = noop # Constants are all uppercase, they go first. __A : str = [obj for obj in objects if key(__snake_case ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __A : List[str] = [obj for obj in objects if key(__snake_case )[0].isupper() and not key(__snake_case ).isupper()] # Functions begin with a lowercase, they go last. __A : str = [obj for obj in objects if not key(__snake_case )[0].isupper()] __A : Tuple = ignore_underscore(__snake_case ) return sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Tuple: # This inner function sort imports between [ ]. def _replace(__snake_case : Tuple ): __A : List[str] = match.groups()[0] if "," not in imports: return f'[{imports}]' __A : int = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Dict = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(__snake_case )] ) + "]" __A : List[Any] = import_statement.split('\n' ) if len(__snake_case ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __A : Optional[int] = 2 if lines[1].strip() == '[' else 1 __A : Any = [(i, _re_strip_line.search(__snake_case ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __A : Optional[int] = sort_objects(__snake_case , key=lambda __snake_case : x[1] ) __A : Any = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__snake_case ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __A : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] ) else: __A : Dict = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Tuple = keys[:-1] __A : List[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(__snake_case )] ) return "\n".join(__snake_case ) else: # Finally we have to deal with imports fitting on one line __A : Optional[Any] = _re_bracket_content.sub(_replace , __snake_case ) return import_statement def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : List[Any]=True ) -> Optional[Any]: with open(__snake_case , 'r' ) as f: __A : Dict = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __A : str = split_code_in_indented_blocks( __snake_case , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__snake_case ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __A : Tuple = main_blocks[block_idx] __A : int = block.split('\n' ) # Get to the start of the imports. __A : Tuple = 0 while line_idx < len(__snake_case ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __A : Optional[int] = len(__snake_case ) else: line_idx += 1 if line_idx >= len(__snake_case ): continue # Ignore beginning and last line: they don't contain anything. __A : Dict = '\n'.join(block_lines[line_idx:-1] ) __A : int = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __A : Optional[int] = split_code_in_indented_blocks(__snake_case , indent_level=__snake_case ) # We have two categories of import key: list or _import_structure[key].append/extend __A : Any = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __A : Dict = [(pattern.search(__snake_case ).groups()[0] if pattern.search(__snake_case ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __A : Optional[Any] = [(i, key) for i, key in enumerate(__snake_case ) if key is not None] __A : Tuple = [x[0] for x in sorted(__snake_case , key=lambda __snake_case : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __A : str = 0 __A : Any = [] for i in range(len(__snake_case ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __A : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(__snake_case ) count += 1 # And we put our main block back together with its first and last line. __A : int = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(__snake_case ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(__snake_case , 'w' ) as f: f.write('\n'.join(__snake_case ) ) def _lowerCAmelCase ( __snake_case : int=True ) -> Optional[Any]: __A : Tuple = [] for root, _, files in os.walk(__snake_case ): if "__init__.py" in files: __A : List[Any] = sort_imports(os.path.join(__snake_case , '__init__.py' ) , check_only=__snake_case ) if result: __A : Dict = [os.path.join(__snake_case , '__init__.py' )] if len(__snake_case ) > 0: raise ValueError(f'Would overwrite {len(__snake_case )} files, run `make style`.' ) if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowercase__ : Union[str, Any] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
8
0
'''simple docstring''' import random def __lowercase ( __lowercase ) -> bool: '''simple docstring''' _A = num - 1 _A = 0 while s % 2 == 0: _A = s // 2 t += 1 for _ in range(5 ): _A = random.randrange(2 , num - 1 ) _A = pow(__snake_case , __snake_case , __snake_case ) if v != 1: _A = 0 while v != (num - 1): if i == t - 1: return False else: _A = i + 1 _A = (v**2) % num return True def __lowercase ( __lowercase ) -> bool: '''simple docstring''' if num < 2: return False _A = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(__snake_case ) def __lowercase ( __lowercase = 1024 ) -> int: '''simple docstring''' while True: _A = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(__snake_case ): return num if __name__ == "__main__": lowerCamelCase_ = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
330
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int ) -> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') lowercase__ : int = int(input('''Enter number: ''').strip()) print(f"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
8
0
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) SCREAMING_SNAKE_CASE__ : Any = '''hf-internal-testing/tiny-random-bert''' SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(TRANSFORMERS_CACHE, 'models--hf-internal-testing--tiny-random-bert') SCREAMING_SNAKE_CASE__ : List[Any] = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Any: lowerCamelCase : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) ) with open(os.path.join(_UpperCAmelCase , "refs" , "main" ) ) as f: lowerCamelCase : Any = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , "snapshots" , _UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(os.path.isfile(_UpperCAmelCase ) ) # File is cached at the same place the second time. lowerCamelCase : Tuple = cached_file(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) # Using a specific revision to test the full commit hash. lowerCamelCase : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision="9b8c223" ) self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , "snapshots" , _UpperCAmelCase , _UpperCAmelCase ) ) def _lowercase ( self ) -> Dict: with self.assertRaisesRegex(_UpperCAmelCase , "is not a valid model identifier" ): lowerCamelCase : Dict = cached_file("tiny-random-bert" , _UpperCAmelCase ) with self.assertRaisesRegex(_UpperCAmelCase , "is not a valid git identifier" ): lowerCamelCase : Optional[int] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision="aaaa" ) with self.assertRaisesRegex(_UpperCAmelCase , "does not appear to have a file named" ): lowerCamelCase : int = cached_file(_UpperCAmelCase , "conf" ) def _lowercase ( self ) -> Optional[int]: with self.assertRaisesRegex(_UpperCAmelCase , "does not appear to have a file named" ): lowerCamelCase : Any = cached_file(_UpperCAmelCase , "conf" ) with open(os.path.join(_UpperCAmelCase , "refs" , "main" ) ) as f: lowerCamelCase : Dict = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , ".no_exist" , _UpperCAmelCase , "conf" ) ) ) lowerCamelCase : List[Any] = cached_file(_UpperCAmelCase , "conf" , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowerCamelCase : str = cached_file(_UpperCAmelCase , "conf" , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) lowerCamelCase : List[str] = mock.Mock() lowerCamelCase : Dict = 500 lowerCamelCase : List[str] = {} lowerCamelCase : List[Any] = HTTPError lowerCamelCase : Optional[Any] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=_UpperCAmelCase ) as mock_head: lowerCamelCase : Dict = cached_file(_UpperCAmelCase , "conf" , _raise_exceptions_for_connection_errors=_UpperCAmelCase ) self.assertIsNone(_UpperCAmelCase ) # This check we did call the fake head request mock_head.assert_called() def _lowercase ( self ) -> Any: self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , _UpperCAmelCase ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , _UpperCAmelCase ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , _UpperCAmelCase ) ) def _lowercase ( self ) -> Dict: self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , "is not a valid model identifier" ): get_file_from_repo("bert-base-case" , _UpperCAmelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , "is not a valid git identifier" ): get_file_from_repo("bert-base-cased" , _UpperCAmelCase , revision="ahaha" ) lowerCamelCase : List[str] = get_file_from_repo("bert-base-cased" , _UpperCAmelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. lowerCamelCase : List[str] = json.loads(open(_UpperCAmelCase , "r" ).read() ) self.assertEqual(config["hidden_size"] , 768 ) def _lowercase ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase : Tuple = Path(_UpperCAmelCase ) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , "a.txt" ) , str(_UpperCAmelCase ) ) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , "b.txt" ) )
311
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : str = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def _lowerCAmelCase ( __snake_case : List[Any] ) -> Tuple: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __A : Optional[Any] = k.replace(__snake_case , __snake_case ) if k.startswith('encoder' ): __A : Any = k.replace('.attn' , '.self_attn' ) __A : Any = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): __A : Tuple = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'encoder_attn_layer_norm' ) __A : int = k.replace('norm3' , 'final_layer_norm' ) return k def _lowerCAmelCase ( __snake_case : List[Any] ) -> Dict: __A : Optional[int] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: __A : Tuple = sd.pop(__snake_case ) __A : Union[str, Any] = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd __A : str = v lowercase__ : Tuple = ['''START'''] @torch.no_grad() def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any , __snake_case : List[Any] ) -> int: __A : List[str] = torch.load(__snake_case , map_location='cpu' ) __A : Tuple = model['model'] __A : str = BlenderbotConfig.from_json_file(__snake_case ) __A : int = BlenderbotForConditionalGeneration(__snake_case ) __A : List[Any] = m.model.state_dict().keys() __A : Optional[int] = [] __A : Optional[int] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __A : Union[str, Any] = rename_state_dict_key(__snake_case ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __A : Optional[Any] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__snake_case ) m.model.load_state_dict(__snake_case , strict=__snake_case ) m.half() m.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
8
0
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''google/umt5-small''': '''https://huggingface.co/google/umt5-small/resolve/main/config.json''', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class _A ( a__ ): _UpperCamelCase : Optional[int] = '''umt5''' _UpperCamelCase : Dict = ['''past_key_values'''] def __init__( self : Union[str, Any] , _A : Optional[int]=250_112 , _A : Dict=512 , _A : str=64 , _A : Optional[Any]=1_024 , _A : Any=8 , _A : Optional[int]=None , _A : Optional[Any]=6 , _A : Tuple=32 , _A : Tuple=128 , _A : Tuple=0.1 , _A : List[Any]=1E-6 , _A : Optional[Any]=1.0 , _A : List[Any]="gated-gelu" , _A : Optional[Any]=True , _A : int=True , _A : str="T5Tokenizer" , _A : Tuple=True , _A : Dict=0 , _A : List[str]=1 , _A : Optional[Any]=0 , **_A : List[Any] , ) -> str: """simple docstring""" super().__init__( is_encoder_decoder=_UpperCAmelCase , tokenizer_class=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase : List[str] = vocab_size lowercase : List[Any] = d_model lowercase : Union[str, Any] = d_kv lowercase : Dict = d_ff lowercase : Tuple = num_layers lowercase : Any = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase : List[Any] = num_heads lowercase : Any = relative_attention_num_buckets lowercase : Tuple = relative_attention_max_distance lowercase : Optional[int] = dropout_rate lowercase : List[Any] = layer_norm_epsilon lowercase : Optional[int] = initializer_factor lowercase : str = feed_forward_proj lowercase : int = use_cache lowercase : str = self.feed_forward_proj.split('''-''' ) lowercase : Dict = act_info[-1] lowercase : str = act_info[0] == 'gated' if len(_UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(_UpperCAmelCase ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) if feed_forward_proj == "gated-gelu": lowercase : Tuple = 'gelu_new' @property def __a ( self : Tuple ) -> int: """simple docstring""" return self.d_model @property def __a ( self : Dict ) -> int: """simple docstring""" return self.num_heads @property def __a ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return self.num_layers class _A ( a__ ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def __a ( self : Optional[int] ) -> List[str]: """simple docstring""" lowercase : Any = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: lowercase : int = 'past_encoder_sequence + sequence' lowercase : List[str] = {0: 'batch'} lowercase : Dict = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: lowercase : List[Any] = {0: 'batch', 1: 'decoder_sequence'} lowercase : Optional[Any] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='''inputs''' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def __a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return 13 @property def __a ( self : str ) -> str: """simple docstring""" return 5E-4
217
'''simple docstring''' import mpmath # for roots of unity import numpy as np class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None): '''simple docstring''' __A : List[Any] = list(poly_a or [0])[:] __A : Optional[int] = list(poly_b or [0])[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __A : Union[str, Any] = len(self.polyA) while self.polyB[-1] == 0: self.polyB.pop() __A : Optional[int] = len(self.polyB) # Add 0 to make lengths equal a power of 2 __A : Optional[Any] = int( 2 ** np.ceil(np.loga(len(self.polyA) + len(self.polyB) - 1))) while len(self.polyA) < self.c_max_length: self.polyA.append(0) while len(self.polyB) < self.c_max_length: self.polyB.append(0) # A complex root used for the fourier transform __A : str = complex(mpmath.root(x=1 , n=self.c_max_length , k=1)) # The product __A : Tuple = self.__multiply() def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(_UpperCAmelCase) <= 1: return dft[0] # __A : Dict = self.c_max_length // 2 while next_ncol > 0: __A : Optional[Any] = [[] for i in range(_UpperCAmelCase)] __A : Tuple = self.root**next_ncol # First half of next step __A : Optional[Any] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j]) current_root *= root # Second half of next step __A : List[str] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j]) current_root *= root # Update __A : Optional[int] = new_dft __A : Tuple = next_ncol // 2 return dft[0] def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.__dft('A') __A : Optional[Any] = self.__dft('B') __A : str = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]] del dft_a del dft_b # Corner Case if len(inverce_c[0]) <= 1: return inverce_c[0] # Inverse DFT __A : Dict = 2 while next_ncol <= self.c_max_length: __A : Optional[int] = [[] for i in range(_UpperCAmelCase)] __A : Any = self.root ** (next_ncol // 2) __A : Tuple = 1 # First half of next step for j in range(self.c_max_length // next_ncol): for i in range(next_ncol // 2): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root)) current_root *= root # Update __A : int = new_inverse_c next_ncol *= 2 # Unpack __A : Optional[int] = [round(x[0].real , 8) + round(x[0].imag , 8) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self): '''simple docstring''' __A : int = 'A = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A])) __A : Optional[Any] = 'B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B])) __A : str = 'A*B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.product)) return F'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def __snake_case ( _UpperCAmelCase : Union[str, Any]): UpperCamelCase = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:]) class lowercase__ ( a__, a__, a__, unittest.TestCase ): '''simple docstring''' _snake_case = StableDiffusionLatentUpscalePipeline _snake_case = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''height''', '''width''', '''cross_attention_kwargs''', '''negative_prompt_embeds''', '''prompt_embeds''', } _snake_case = PipelineTesterMixin.required_optional_params - {'''num_images_per_prompt'''} _snake_case = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _snake_case = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _snake_case = frozenset([] ) _snake_case = True @property def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = 1 UpperCamelCase = 4 UpperCamelCase = (1_6, 1_6) UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_UpperCAmelCase ) return image def UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_UpperCAmelCase , block_out_channels=[3_2, 3_2, 6_4, 6_4] , time_cond_proj_dim=1_6_0 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=3_2 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=_UpperCAmelCase , only_cross_attention=_UpperCAmelCase , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4, 6_4] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) UpperCamelCase = EulerDiscreteScheduler(prediction_type='''sample''' ) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''quick_gelu''' , projection_dim=5_1_2 , ) UpperCamelCase = CLIPTextModel(_UpperCAmelCase ) UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCamelCase = { 'unet': model.eval(), 'vae': vae.eval(), 'scheduler': scheduler, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__=0 ): '''simple docstring''' if str(_UpperCAmelCase ).startswith('''mps''' ): UpperCamelCase = torch.manual_seed(_UpperCAmelCase ) else: UpperCamelCase = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': self.dummy_image.cpu(), 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = 'cpu' UpperCamelCase = self.get_dummy_components() UpperCamelCase = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase = self.get_dummy_inputs(_UpperCAmelCase ) UpperCamelCase = pipe(**_UpperCAmelCase ).images UpperCamelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_5_6, 2_5_6, 3) ) UpperCamelCase = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) UpperCamelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1e-3 ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_save_load_local(expected_max_difference=3e-3 ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3e-3 ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = [ 'DDIMScheduler', 'DDPMScheduler', 'PNDMScheduler', 'HeunDiscreteScheduler', 'EulerAncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'KDPM2AncestralDiscreteScheduler', 'DPMSolverSDEScheduler', ] UpperCamelCase = self.get_dummy_components() UpperCamelCase = self.pipeline_class(**_UpperCAmelCase ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase = self.get_dummy_inputs(_UpperCAmelCase ) UpperCamelCase = 2 UpperCamelCase = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue UpperCamelCase = getattr(_UpperCAmelCase , scheduler_enum.name ) UpperCamelCase = scheduler_cls.from_config(pipe.scheduler.config ) UpperCamelCase = pipe(**_UpperCAmelCase )[0] outputs.append(_UpperCAmelCase ) assert check_same_shape(_UpperCAmelCase ) @require_torch_gpu @slow class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = torch.manual_seed(3_3 ) UpperCamelCase = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) UpperCamelCase = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) UpperCamelCase = 'a photo of an astronaut high resolution, unreal engine, ultra realistic' UpperCamelCase = pipe(_UpperCAmelCase , generator=_UpperCAmelCase , output_type='''latent''' ).images UpperCamelCase = upscaler( prompt=_UpperCAmelCase , image=_UpperCAmelCase , num_inference_steps=2_0 , guidance_scale=0 , generator=_UpperCAmelCase , output_type='''np''' , ).images[0] UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = torch.manual_seed(3_3 ) UpperCamelCase = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) UpperCamelCase = 'the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas' UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) UpperCamelCase = upscaler( prompt=_UpperCAmelCase , image=_UpperCAmelCase , num_inference_steps=2_0 , guidance_scale=0 , generator=_UpperCAmelCase , output_type='''np''' , ).images[0] UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-2
212
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=[30, 30] , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=None , _UpperCAmelCase=8 , _UpperCAmelCase=10 , ): '''simple docstring''' __A : Union[str, Any] = parent __A : Tuple = batch_size __A : List[str] = image_size __A : Dict = patch_size __A : Optional[Any] = num_channels __A : Tuple = is_training __A : Dict = use_labels __A : List[Any] = hidden_size __A : Tuple = num_hidden_layers __A : int = num_attention_heads __A : Optional[int] = intermediate_size __A : Tuple = hidden_act __A : Any = hidden_dropout_prob __A : Optional[Any] = attention_probs_dropout_prob __A : List[Any] = type_sequence_label_size __A : List[Any] = initializer_range __A : Optional[int] = num_labels __A : List[Any] = scope __A : Any = n_targets __A : Union[str, Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens __A : List[str] = (image_size[1] // patch_size) * (image_size[0] // patch_size) __A : int = num_patches + 1 + self.num_detection_tokens def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]]) __A : Tuple = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) __A : List[Any] = [] for i in range(self.batch_size): __A : Optional[int] = {} __A : Union[str, Any] = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=_UpperCAmelCase) __A : str = torch.rand(self.n_targets , 4 , device=_UpperCAmelCase) labels.append(_UpperCAmelCase) __A : Any = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosModel(config=_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosForObjectDetection(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : str = model(pixel_values=_UpperCAmelCase) __A : List[str] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) __A : Union[str, Any] = model(pixel_values=_UpperCAmelCase , labels=_UpperCAmelCase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.prepare_config_and_inputs() __A ,__A ,__A : Tuple = config_and_inputs __A : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowerCAmelCase = ( {'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' __A : Optional[Any] = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase) if return_labels: if model_class.__name__ == "YolosForObjectDetection": __A : Any = [] for i in range(self.model_tester.batch_size): __A : Tuple = {} __A : Tuple = torch.ones( size=(self.model_tester.n_targets,) , device=_UpperCAmelCase , dtype=torch.long) __A : Optional[Any] = torch.ones( self.model_tester.n_targets , 4 , device=_UpperCAmelCase , dtype=torch.float) labels.append(_UpperCAmelCase) __A : str = labels return inputs_dict def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = YolosModelTester(self) __A : Dict = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Tuple = model_class(_UpperCAmelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __A : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[Any] = model_class(_UpperCAmelCase) __A : str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : int = [*signature.parameters.keys()] __A : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Optional[int] = True # in YOLOS, the seq_len is different __A : Dict = self.model_tester.expected_seq_len for model_class in self.all_model_classes: __A : Dict = True __A : Dict = False __A : Union[str, Any] = True __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : Any = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] __A : List[Any] = True __A : List[str] = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __A : str = len(_UpperCAmelCase) # Check attention is always last and order is fine __A : Dict = True __A : Dict = True __A : Dict = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = 1 self.assertEqual(out_len + added_hidden_states , len(_UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.hidden_states __A : List[str] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) # YOLOS has a different seq_length __A : Dict = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[str] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A : Optional[int] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : List[Any] = YolosModel.from_pretrained(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase) def _lowerCAmelCase ( ) -> int: __A : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return AutoImageProcessor.from_pretrained('hustvl/yolos-small') if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = YolosForObjectDetection.from_pretrained('hustvl/yolos-small').to(_UpperCAmelCase) __A : Any = self.default_image_processor __A : str = prepare_img() __A : int = image_processor(images=_UpperCAmelCase , return_tensors='pt').to(_UpperCAmelCase) # forward pass with torch.no_grad(): __A : str = model(inputs.pixel_values) # verify outputs __A : Tuple = torch.Size((1, 100, 92)) self.assertEqual(outputs.logits.shape , _UpperCAmelCase) __A : Dict = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=_UpperCAmelCase , ) __A : int = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=_UpperCAmelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) # verify postprocessing __A : List[str] = image_processor.post_process_object_detection( _UpperCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]])[0] __A : Optional[int] = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861]).to(_UpperCAmelCase) __A : Union[str, Any] = [75, 75, 17, 63, 17] __A : Any = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495]).to(_UpperCAmelCase) self.assertEqual(len(results['scores']) , 5) self.assertTrue(torch.allclose(results['scores'] , _UpperCAmelCase , atol=1e-4)) self.assertSequenceEqual(results['labels'].tolist() , _UpperCAmelCase) self.assertTrue(torch.allclose(results['boxes'][0, :] , _UpperCAmelCase))
8
0
'''simple docstring''' def a_ ( __snake_case : str , __snake_case : str ) -> int: """simple docstring""" if len(__snake_case ) != len(__snake_case ): raise ValueError('''String lengths must match!''' ) lowerCamelCase_ =0 for chara, chara in zip(__snake_case , __snake_case ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
676
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: lowercase__ : Optional[int] = None lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ : List[str] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } lowercase__ : Dict = { '''camembert-base''': 5_12, } lowercase__ : str = '''▁''' class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] lowerCAmelCase = CamembertTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **_UpperCAmelCase , ): '''simple docstring''' __A : int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __A : List[str] = vocab_file __A : Optional[int] = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A : Optional[Any] = [self.cls_token_id] __A : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' __A : Optional[int] = [self.sep_token_id] __A : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(_UpperCAmelCase): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return __A : List[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCAmelCase): copyfile(self.vocab_file , _UpperCAmelCase) return (out_vocab_file,)
8
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { '''openai/imagegpt-small''': '''''', '''openai/imagegpt-medium''': '''''', '''openai/imagegpt-large''': '''''', } class lowercase__ ( a__): UpperCamelCase_ = """imagegpt""" UpperCamelCase_ = ["""past_key_values"""] UpperCamelCase_ = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any , UpperCamelCase__ : Tuple=512 + 1 , UpperCamelCase__ : Tuple=32 * 32 , UpperCamelCase__ : Any=512 , UpperCamelCase__ : Union[str, Any]=24 , UpperCamelCase__ : List[Any]=8 , UpperCamelCase__ : Dict=None , UpperCamelCase__ : List[Any]="quick_gelu" , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : int=0.1 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Any=1E-5 , UpperCamelCase__ : Union[str, Any]=0.02 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Dict=True , UpperCamelCase__ : str=False , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : List[Any]=False , **UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : List[Any] = n_positions SCREAMING_SNAKE_CASE : List[Any] = n_embd SCREAMING_SNAKE_CASE : Dict = n_layer SCREAMING_SNAKE_CASE : str = n_head SCREAMING_SNAKE_CASE : List[str] = n_inner SCREAMING_SNAKE_CASE : Optional[Any] = activation_function SCREAMING_SNAKE_CASE : Optional[Any] = resid_pdrop SCREAMING_SNAKE_CASE : str = embd_pdrop SCREAMING_SNAKE_CASE : Tuple = attn_pdrop SCREAMING_SNAKE_CASE : str = layer_norm_epsilon SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = scale_attn_weights SCREAMING_SNAKE_CASE : List[str] = use_cache SCREAMING_SNAKE_CASE : int = scale_attn_by_inverse_layer_idx SCREAMING_SNAKE_CASE : Optional[Any] = reorder_and_upcast_attn SCREAMING_SNAKE_CASE : Optional[int] = tie_word_embeddings super().__init__(tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( a__): @property def __A ( self : Dict ): '''simple docstring''' return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def __A ( self : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict = 1 , UpperCamelCase__ : Optional[Any] = -1 , UpperCamelCase__ : Optional[Any] = False , UpperCamelCase__ : List[str] = None , UpperCamelCase__ : Dict = 3 , UpperCamelCase__ : List[Any] = 32 , UpperCamelCase__ : List[Any] = 32 , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE : Any = dict(preprocessor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) ) return inputs
248
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowercase__ : Any = '''hf-internal-testing/tiny-random-bert''' lowercase__ : Optional[Any] = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') lowercase__ : List[Any] = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase)) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase))) with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Any = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) self.assertTrue(os.path.isfile(_UpperCAmelCase)) # File is cached at the same place the second time. __A : Tuple = cached_file(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) # Using a specific revision to test the full commit hash. __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='9b8c223') self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): __A : Dict = cached_file('tiny-random-bert' , _UpperCAmelCase) with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): __A : Optional[int] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='aaaa') with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : int = cached_file(_UpperCAmelCase , 'conf') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : Any = cached_file(_UpperCAmelCase , 'conf') with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Dict = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '.no_exist' , _UpperCAmelCase , 'conf'))) __A : List[Any] = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : str = cached_file(_UpperCAmelCase , 'conf' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : List[str] = mock.Mock() __A : Dict = 500 __A : List[str] = {} __A : List[Any] = HTTPError __A : Optional[Any] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=_UpperCAmelCase) as mock_head: __A : Dict = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_connection_errors=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt')) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): get_file_from_repo('bert-base-case' , _UpperCAmelCase) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): get_file_from_repo('bert-base-cased' , _UpperCAmelCase , revision='ahaha') __A : List[str] = get_file_from_repo('bert-base-cased' , _UpperCAmelCase) # The name is the cached name which is not very easy to test, so instead we load the content. __A : List[str] = json.loads(open(_UpperCAmelCase , 'r').read()) self.assertEqual(config['hidden_size'] , 768) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __A : Tuple = Path(_UpperCAmelCase) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , 'a.txt') , str(_UpperCAmelCase)) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , 'b.txt'))
8
0
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 _lowerCamelCase : Optional[Any] = sys.version_info >= (3, 10) def SCREAMING_SNAKE_CASE ( lowercase_=None , lowercase_=None ) -> str: """simple docstring""" return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = 42 UpperCAmelCase__ = field(default='''toto''' , metadata={'''help''': '''help message'''} ) @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = None class UpperCamelCase_ ( a__ ): '''simple docstring''' UpperCAmelCase__ = '''titi''' UpperCAmelCase__ = '''toto''' class UpperCamelCase_ ( a__ ): '''simple docstring''' UpperCAmelCase__ = '''titi''' UpperCAmelCase__ = '''toto''' UpperCAmelCase__ = 42 @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = '''toto''' def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Dict: '''simple docstring''' A__ = BasicEnum(self.foo) @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = '''toto''' def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]: '''simple docstring''' A__ = MixedTypeEnum(self.foo) @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = None UpperCAmelCase__ = field(default=a__ , metadata={'''help''': '''help message'''} ) UpperCAmelCase__ = None UpperCAmelCase__ = list_field(default=[] ) UpperCAmelCase__ = list_field(default=[] ) @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = list_field(default=[] ) UpperCAmelCase__ = list_field(default=[1, 2, 3] ) UpperCAmelCase__ = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) UpperCAmelCase__ = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = field() UpperCAmelCase__ = field() UpperCAmelCase__ = field() def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]: '''simple docstring''' A__ = BasicEnum(self.required_enum) @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = 42 UpperCAmelCase__ = field() UpperCAmelCase__ = None UpperCAmelCase__ = field(default='''toto''' , metadata={'''help''': '''help message'''} ) UpperCAmelCase__ = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) if is_python_no_less_than_3_10: @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = None @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = None UpperCAmelCase__ = field(default=a__ , metadata={'''help''': '''help message'''} ) UpperCAmelCase__ = None UpperCAmelCase__ = list_field(default=[] ) UpperCAmelCase__ = list_field(default=[] ) class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple) ->Optional[int]: '''simple docstring''' self.assertEqual(len(a._actions) , len(b._actions)) for x, y in zip(a._actions , b._actions): A__ = {k: v for k, v in vars(_UpperCAmelCase).items() if k != 'container'} A__ = {k: v for k, v in vars(_UpperCAmelCase).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _UpperCAmelCase) and yy.get('''choices''' , _UpperCAmelCase): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_UpperCAmelCase) , yy['''type'''](_UpperCAmelCase)) del xx["type"], yy["type"] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[int]: '''simple docstring''' A__ = HfArgumentParser(_UpperCAmelCase) A__ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCAmelCase , required=_UpperCAmelCase) expected.add_argument('''--bar''' , type=_UpperCAmelCase , required=_UpperCAmelCase) expected.add_argument('''--baz''' , type=_UpperCAmelCase , required=_UpperCAmelCase) expected.add_argument('''--flag''' , type=_UpperCAmelCase , default=_UpperCAmelCase , const=_UpperCAmelCase , nargs='''?''') self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase) A__ = ['--foo', '1', '--baz', 'quux', '--bar', '0.5'] (A__) = parser.parse_args_into_dataclasses(_UpperCAmelCase , look_for_args_file=_UpperCAmelCase) self.assertFalse(example.flag) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int: '''simple docstring''' A__ = HfArgumentParser(_UpperCAmelCase) A__ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=_UpperCAmelCase) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCAmelCase , help='''help message''') self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self : Dict) ->List[Any]: '''simple docstring''' A__ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCAmelCase , default=_UpperCAmelCase , const=_UpperCAmelCase , nargs='''?''') expected.add_argument('''--baz''' , type=_UpperCAmelCase , default=_UpperCAmelCase , const=_UpperCAmelCase , nargs='''?''') # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_UpperCAmelCase , dest='''baz''') expected.add_argument('''--opt''' , type=_UpperCAmelCase , default=_UpperCAmelCase) A__ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCAmelCase) for dataclass_type in dataclass_types: A__ = HfArgumentParser(_UpperCAmelCase) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase) A__ = parser.parse_args([]) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase)) A__ = parser.parse_args(['''--foo''', '''--no_baz''']) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase)) A__ = parser.parse_args(['''--foo''', '''--baz''']) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase)) A__ = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True''']) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase)) A__ = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False''']) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self : int) ->Any: '''simple docstring''' A__ = HfArgumentParser(_UpperCAmelCase) A__ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42]) , ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase) A__ = parser.parse_args([]) self.assertEqual(args.foo , '''toto''') A__ = parser.parse_args_into_dataclasses([])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto) A__ = parser.parse_args(['''--foo''', '''titi''']) self.assertEqual(args.foo , '''titi''') A__ = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi) A__ = parser.parse_args(['''--foo''', '''42''']) self.assertEqual(args.foo , 42) A__ = parser.parse_args_into_dataclasses(['''--foo''', '''42'''])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo) def SCREAMING_SNAKE_CASE ( self : List[str]) ->int: '''simple docstring''' @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = '''toto''' A__ = HfArgumentParser(_UpperCAmelCase) A__ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42]) , ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase) A__ = parser.parse_args([]) self.assertEqual(args.foo , '''toto''') A__ = parser.parse_args(['''--foo''', '''titi''']) self.assertEqual(args.foo , '''titi''') A__ = parser.parse_args(['''--foo''', '''42''']) self.assertEqual(args.foo , 42) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: '''simple docstring''' A__ = HfArgumentParser(_UpperCAmelCase) A__ = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_UpperCAmelCase) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_UpperCAmelCase) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCAmelCase) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_UpperCAmelCase) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase) A__ = parser.parse_args([]) self.assertEqual( _UpperCAmelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3]) , ) A__ = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split()) self.assertEqual(_UpperCAmelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7])) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->int: '''simple docstring''' A__ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_UpperCAmelCase , type=_UpperCAmelCase) expected.add_argument('''--bar''' , default=_UpperCAmelCase , type=_UpperCAmelCase , help='''help message''') expected.add_argument('''--baz''' , default=_UpperCAmelCase , type=_UpperCAmelCase) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_UpperCAmelCase) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_UpperCAmelCase) A__ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCAmelCase) for dataclass_type in dataclass_types: A__ = HfArgumentParser(_UpperCAmelCase) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase) A__ = parser.parse_args([]) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , bar=_UpperCAmelCase , baz=_UpperCAmelCase , ces=[] , des=[])) A__ = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split()) self.assertEqual(_UpperCAmelCase , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3])) def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: '''simple docstring''' A__ = HfArgumentParser(_UpperCAmelCase) A__ = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_UpperCAmelCase , required=_UpperCAmelCase) expected.add_argument('''--required_str''' , type=_UpperCAmelCase , required=_UpperCAmelCase) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto''']) , choices=['''titi''', '''toto'''] , required=_UpperCAmelCase , ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self : int) ->Union[str, Any]: '''simple docstring''' A__ = HfArgumentParser(_UpperCAmelCase) A__ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCAmelCase , required=_UpperCAmelCase) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto''']) , choices=['''titi''', '''toto'''] , required=_UpperCAmelCase , ) expected.add_argument('''--opt''' , type=_UpperCAmelCase , default=_UpperCAmelCase) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCAmelCase , help='''help message''') expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCAmelCase) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]: '''simple docstring''' A__ = HfArgumentParser(_UpperCAmelCase) A__ = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } A__ = parser.parse_dict(_UpperCAmelCase)[0] A__ = BasicExample(**_UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple: '''simple docstring''' A__ = HfArgumentParser(_UpperCAmelCase) A__ = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(_UpperCAmelCase , parser.parse_dict , _UpperCAmelCase , allow_extra_keys=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self : int) ->Optional[Any]: '''simple docstring''' A__ = HfArgumentParser(_UpperCAmelCase) A__ = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: A__ = os.path.join(_UpperCAmelCase , '''temp_json''') os.mkdir(_UpperCAmelCase) with open(temp_local_path + '''.json''' , '''w+''') as f: json.dump(_UpperCAmelCase , _UpperCAmelCase) A__ = parser.parse_yaml_file(Path(temp_local_path + '''.json'''))[0] A__ = BasicExample(**_UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self : str) ->List[Any]: '''simple docstring''' A__ = HfArgumentParser(_UpperCAmelCase) A__ = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: A__ = os.path.join(_UpperCAmelCase , '''temp_yaml''') os.mkdir(_UpperCAmelCase) with open(temp_local_path + '''.yaml''' , '''w+''') as f: yaml.dump(_UpperCAmelCase , _UpperCAmelCase) A__ = parser.parse_yaml_file(Path(temp_local_path + '''.yaml'''))[0] A__ = BasicExample(**_UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[Any]: '''simple docstring''' A__ = HfArgumentParser(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase)
87
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _lowerCAmelCase ( __snake_case : str , __snake_case : str , **__snake_case : List[Any] ) -> Any: __A : Optional[Any] = AutoConfig.from_pretrained(__snake_case , **__snake_case ) __A : int = AutoModelForSeqaSeqLM.from_config(__snake_case ) model.save_pretrained(__snake_case ) AutoTokenizer.from_pretrained(__snake_case ).save_pretrained(__snake_case ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
8
0
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowercase_ ( unittest.TestCase ): def __init__( self , __A , __A=13 , __A=7 , __A=True , __A=True , __A=True , __A=True , __A=99 , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=16 , __A=2 , __A=0.02 , __A=4 , ) -> str: SCREAMING_SNAKE_CASE_ : Optional[int] =parent SCREAMING_SNAKE_CASE_ : List[str] =batch_size SCREAMING_SNAKE_CASE_ : Tuple =seq_length SCREAMING_SNAKE_CASE_ : Optional[Any] =is_training SCREAMING_SNAKE_CASE_ : str =use_attention_mask SCREAMING_SNAKE_CASE_ : Dict =use_token_type_ids SCREAMING_SNAKE_CASE_ : int =use_labels SCREAMING_SNAKE_CASE_ : Any =vocab_size SCREAMING_SNAKE_CASE_ : List[str] =hidden_size SCREAMING_SNAKE_CASE_ : str =num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[Any] =num_attention_heads SCREAMING_SNAKE_CASE_ : Any =intermediate_size SCREAMING_SNAKE_CASE_ : Dict =hidden_act SCREAMING_SNAKE_CASE_ : Any =hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] =max_position_embeddings SCREAMING_SNAKE_CASE_ : Optional[int] =type_vocab_size SCREAMING_SNAKE_CASE_ : int =type_sequence_label_size SCREAMING_SNAKE_CASE_ : str =initializer_range SCREAMING_SNAKE_CASE_ : Tuple =num_choices def _snake_case ( self ) -> int: SCREAMING_SNAKE_CASE_ : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =None if self.use_attention_mask: SCREAMING_SNAKE_CASE_ : Tuple =random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : Dict =None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : Any =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : int =RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _snake_case ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ : List[Any] =self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ : Any =config_and_inputs SCREAMING_SNAKE_CASE_ : Tuple ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def _snake_case ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ : Dict =self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ : Optional[int] =config_and_inputs SCREAMING_SNAKE_CASE_ : Any =True SCREAMING_SNAKE_CASE_ : str =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) SCREAMING_SNAKE_CASE_ : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowercase_ ( a__ , unittest.TestCase ): __lowerCamelCase = True __lowerCamelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def _snake_case ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ : str =FlaxRobertaModelTester(self ) @slow def _snake_case ( self ) -> Optional[int]: for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Any =model_class_name.from_pretrained('''roberta-base''' , from_pt=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] =model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
443
'''simple docstring''' from ...configuration_utils import PretrainedConfig lowercase__ : Any = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''tapas''' def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1024 , _UpperCAmelCase=[3, 256, 256, 2, 256, 256, 10] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase=10.0 , _UpperCAmelCase=0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase="ratio" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __A : Dict = vocab_size __A : Tuple = hidden_size __A : Any = num_hidden_layers __A : int = num_attention_heads __A : Tuple = hidden_act __A : Tuple = intermediate_size __A : List[Any] = hidden_dropout_prob __A : int = attention_probs_dropout_prob __A : List[str] = max_position_embeddings __A : Optional[int] = type_vocab_sizes __A : str = initializer_range __A : List[str] = layer_norm_eps # Fine-tuning task hyperparameters __A : List[str] = positive_label_weight __A : List[Any] = num_aggregation_labels __A : Optional[Any] = aggregation_loss_weight __A : Tuple = use_answer_as_supervision __A : List[str] = answer_loss_importance __A : Any = use_normalized_answer_loss __A : Any = huber_loss_delta __A : Union[str, Any] = temperature __A : Tuple = aggregation_temperature __A : Optional[Any] = use_gumbel_for_cells __A : List[str] = use_gumbel_for_aggregation __A : Tuple = average_approximation_function __A : List[str] = cell_selection_preference __A : Dict = answer_loss_cutoff __A : Union[str, Any] = max_num_rows __A : Optional[Any] = max_num_columns __A : int = average_logits_per_cell __A : Optional[Any] = select_one_column __A : int = allow_empty_column_selection __A : List[Any] = init_cell_selection_weights_to_zero __A : int = reset_position_index_per_cell __A : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters __A : Optional[Any] = aggregation_labels __A : List[str] = no_aggregation_label_index if isinstance(self.aggregation_labels , _UpperCAmelCase): __A : Optional[Any] = {int(_UpperCAmelCase): v for k, v in aggregation_labels.items()}
8
0
from __future__ import annotations def _UpperCAmelCase ( A , A , A ): '''simple docstring''' UpperCAmelCase__ =list(range(len(__snake_case ) ) ) UpperCAmelCase__ =[v / w for v, w in zip(__snake_case , __snake_case )] index.sort(key=lambda A : ratio[i] , reverse=__snake_case ) UpperCAmelCase__ =0 UpperCAmelCase__ =[0] * len(__snake_case ) for i in index: if weight[i] <= capacity: UpperCAmelCase__ =1 max_value += value[i] capacity -= weight[i] else: UpperCAmelCase__ =capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
625
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=sys.maxsize): '''simple docstring''' __A : Union[str, Any] = 'bilinear' __A : int = max_size __A : Optional[Any] = short_edge_length def __call__( self , _UpperCAmelCase): '''simple docstring''' __A : int = [] for img in imgs: __A ,__A : Dict = img.shape[:2] # later: provide list and randomly choose index for resize __A : List[Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1) if size == 0: return img __A : Tuple = size * 1.0 / min(_UpperCAmelCase , _UpperCAmelCase) if h < w: __A ,__A : Optional[Any] = size, scale * w else: __A ,__A : Optional[Any] = scale * h, size if max(_UpperCAmelCase , _UpperCAmelCase) > self.max_size: __A : Tuple = self.max_size * 1.0 / max(_UpperCAmelCase , _UpperCAmelCase) __A : Tuple = newh * scale __A : Dict = neww * scale __A : Dict = int(neww + 0.5) __A : Optional[int] = int(newh + 0.5) if img.dtype == np.uinta: __A : int = Image.fromarray(_UpperCAmelCase) __A : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR) __A : Dict = np.asarray(_UpperCAmelCase) else: __A : Optional[Any] = img.permute(2 , 0 , 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw __A : Dict = nn.functional.interpolate( _UpperCAmelCase , (newh, neww) , mode=self.interp_method , align_corners=_UpperCAmelCase).squeeze(0) img_augs.append(_UpperCAmelCase) return img_augs class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST) __A : List[Any] = cfg.INPUT.FORMAT __A : Dict = cfg.SIZE_DIVISIBILITY __A : str = cfg.PAD_VALUE __A : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST __A : int = cfg.MODEL.DEVICE __A : Tuple = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : int = lambda _UpperCAmelCase: (x - self.pixel_mean) / self.pixel_std def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = tuple(max(_UpperCAmelCase) for s in zip(*[img.shape for img in images])) __A : Dict = [im.shape[-2:] for im in images] __A : Optional[int] = [ nn.functional.pad( _UpperCAmelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_UpperCAmelCase , _UpperCAmelCase) ] return torch.stack(_UpperCAmelCase), torch.tensor(_UpperCAmelCase) def __call__( self , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' with torch.no_grad(): if not isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : int = [images] if single_image: assert len(_UpperCAmelCase) == 1 for i in range(len(_UpperCAmelCase)): if isinstance(images[i] , torch.Tensor): images.insert(_UpperCAmelCase , images.pop(_UpperCAmelCase).to(self.device).float()) elif not isinstance(images[i] , torch.Tensor): images.insert( _UpperCAmelCase , torch.as_tensor(img_tensorize(images.pop(_UpperCAmelCase) , input_format=self.input_format)) .to(self.device) .float() , ) # resize smallest edge __A : str = torch.tensor([im.shape[:2] for im in images]) __A : List[str] = self.aug(_UpperCAmelCase) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __A : Any = [self.normalizer(_UpperCAmelCase) for x in images] # now pad them to do the following operations __A ,__A : Any = self.pad(_UpperCAmelCase) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __A : str = torch.true_divide(_UpperCAmelCase , _UpperCAmelCase) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _lowerCAmelCase ( __snake_case : Dict , __snake_case : str ) -> Dict: boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : Tuple[int, int] ) -> int: assert torch.isfinite(__snake_case ).all(), "Box tensor contains infinite or NaN!" __A ,__A : int = box_size tensor[:, 0].clamp_(min=0 , max=__snake_case ) tensor[:, 1].clamp_(min=0 , max=__snake_case ) tensor[:, 2].clamp_(min=0 , max=__snake_case ) tensor[:, 3].clamp_(min=0 , max=__snake_case )
8
0
'''simple docstring''' import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): __A : str = True from torch.cuda.amp import autocast __A : Optional[int] = logging.getLogger(__name__) @dataclass class __UpperCamelCase : lowercase : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowercase : Optional[int] = field( default=a__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowercase : int = field( default=a__ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) lowercase : Optional[int] = field( default=a__ , metadata={'help': 'Whether to log verbose messages or not.'} , ) lowercase : Optional[int] = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'} ) lowercase : List[Any] = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'} ) lowercase : List[str] = field( default=0.9_9_9_9_9_5 , metadata={'help': 'Decay of gumbel temperature during training.'} ) def UpperCAmelCase ( lowerCamelCase_ :ModelArguments , lowerCamelCase_ :TrainingArguments ): '''simple docstring''' logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) snake_case_ : Union[str, Any] = logging.WARNING if model_args.verbose_logging: snake_case_ : Optional[int] = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): snake_case_ : str = logging.INFO logger.setLevel(__snake_case ) @dataclass class __UpperCamelCase : lowercase : int = field( default=a__ , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) lowercase : Tuple = field( default=a__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowercase : List[str] = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowercase : Tuple = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowercase : str = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) lowercase : Dict = field( default=a__ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) lowercase : int = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) lowercase : Any = field( default=a__ , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowercase : List[Any] = field( default=2_0.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'} ) @dataclass class __UpperCamelCase : lowercase : Optional[Any] = 4_2 lowercase : List[str] = 4_2 lowercase : Dict = 'longest' lowercase : List[str] = None lowercase : Dict = None def __call__( self :Tuple ,_UpperCamelCase :int ): snake_case_ : Optional[int] = self.feature_extractor.pad( _UpperCAmelCase ,max_length=self.max_length ,padding=self.padding ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors="""pt""" ,) snake_case_ : Tuple = self.model._get_feat_extract_output_lengths(batch["""input_values"""].shape[-1] ) snake_case_ : Any = batch['input_values'].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula snake_case_ : Union[str, Any] = self.model._get_feat_extract_output_lengths(batch["""attention_mask"""].sum(-1 ) ).to( torch.long ) snake_case_ : Dict = torch.zeros( (batch_size, mask_indices_seq_length) ,dtype=torch.long ,device=batch["""input_values"""].device ) # these two operations makes sure that all values # before the output lengths indices are attended to snake_case_ : List[str] = 1 snake_case_ : Optional[Any] = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices snake_case_ : Optional[Any] = _compute_mask_indices( (batch_size, mask_indices_seq_length) ,self.model.config.mask_time_prob ,self.model.config.mask_time_length ,attention_mask=_UpperCAmelCase ,min_masks=2 ,) return batch class __UpperCamelCase ( a__ ): def __init__( self :List[str] ,*_UpperCamelCase :Dict ,_UpperCamelCase :Dict=1 ,_UpperCamelCase :str=0 ,_UpperCamelCase :Any=1.0 ,**_UpperCamelCase :Optional[int] ): super().__init__(*_UpperCAmelCase ,**_UpperCAmelCase ) snake_case_ : Tuple = 0 snake_case_ : List[Any] = max_gumbel_temp snake_case_ : int = min_gumbel_temp snake_case_ : Union[str, Any] = gumbel_temp_decay def a__ ( self :Dict ,_UpperCamelCase :List[str] ,_UpperCamelCase :Dict ): model.train() snake_case_ : Any = self._prepare_inputs(_UpperCAmelCase ) if self.use_amp: with autocast(): snake_case_ : Any = self.compute_loss(_UpperCAmelCase ,_UpperCAmelCase ) else: snake_case_ : Tuple = self.compute_loss(_UpperCAmelCase ,_UpperCAmelCase ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": snake_case_ : Optional[Any] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": snake_case_ : List[Any] = loss.sum() / (inputs['mask_time_indices']).sum() else: raise ValueError(F'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: snake_case_ : Dict = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_UpperCAmelCase ).backward() elif self.use_apex: with amp.scale_loss(_UpperCAmelCase ,self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_UpperCAmelCase ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step ,self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step ,self.min_gumbel_temp ) ) return loss.detach() def UpperCAmelCase ( ): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case_ : Any = parser.parse_args_into_dataclasses() configure_logger(__snake_case , __snake_case ) # Downloading and loading a dataset from the hub. snake_case_ : Optional[int] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" snake_case_ : Optional[int] = DatasetDict() snake_case_ : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}[:{data_args.validation_split_percentage}%]''' , cache_dir=model_args.cache_dir , ) snake_case_ : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}[{data_args.validation_split_percentage}%:]''' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" snake_case_ : Dict = DatasetDict() snake_case_ : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="""validation""" , cache_dir=model_args.cache_dir , ) snake_case_ : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}''' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported snake_case_ : List[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=__snake_case ) def prepare_dataset(lowerCamelCase_ :Optional[Any] ): # check that all files have the correct sampling rate snake_case_ : Tuple = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays snake_case_ : List[str] = datasets.map( __snake_case , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["""train"""].column_names ) # filter audio files that are too long snake_case_ : List[str] = vectorized_datasets.filter( lambda lowerCamelCase_ : len(data["""speech"""] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(lowerCamelCase_ :int ): return feature_extractor(batch["""speech"""] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` snake_case_ : str = vectorized_datasets.map( __snake_case , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["""train"""].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 snake_case_ : int = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( """PreTraining is only supported for ``config.do_stable_layer_norm=True`` and""" """ ``config.feat_extract_norm=\'layer\'""" ) snake_case_ : int = WavaVecaForPreTraining(__snake_case ) snake_case_ : Optional[int] = DataCollatorForWavaVecaPretraining(model=__snake_case , feature_extractor=__snake_case ) snake_case_ : Dict = WavaVecaPreTrainer( model=__snake_case , data_collator=__snake_case , args=__snake_case , train_dataset=vectorized_datasets["""train"""] , eval_dataset=vectorized_datasets["""validation"""] , tokenizer=__snake_case , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
334
'''simple docstring''' def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Optional[Any]: # noqa: E741 __A : Tuple = len(__snake_case ) __A : Optional[int] = 0 __A : str = [0] * n __A : int = [False] * n __A : Tuple = [False] * n def dfs(__snake_case : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : int ): if parent == root: out_edge_count += 1 __A : str = True __A : Tuple = at for to in l[at]: if to == parent: pass elif not visited[to]: __A : Optional[int] = dfs(__snake_case , __snake_case , __snake_case , __snake_case ) __A : int = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __A : Tuple = True # AP found via cycle if at == low[to]: __A : Optional[Any] = True else: __A : Any = min(low[at] , __snake_case ) return out_edge_count for i in range(__snake_case ): if not visited[i]: __A : Tuple = 0 __A : List[Any] = dfs(__snake_case , __snake_case , -1 , __snake_case ) __A : Union[str, Any] = out_edge_count > 1 for x in range(len(__snake_case ) ): if is_art[x] is True: print(__snake_case ) # Adjacency list of graph lowercase__ : Tuple = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
8
0
'''simple docstring''' from __future__ import annotations import pandas as pd def _lowerCamelCase (__lowerCamelCase : list[int] , __lowerCamelCase : list[int] , __lowerCamelCase : int ) -> list[int]: a__ = [0] * no_of_processes a__ = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(__snake_case ): a__ = burst_time[i] a__ = 0 a__ = 0 a__ = 9_9999_9999 a__ = 0 a__ = False # Process until all processes are completed while complete != no_of_processes: for j in range(__snake_case ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: a__ = remaining_time[j] a__ = j a__ = True if not check: increment_time += 1 continue remaining_time[short] -= 1 a__ = remaining_time[short] if minm == 0: a__ = 9_9999_9999 if remaining_time[short] == 0: complete += 1 a__ = False # Find finish time of current process a__ = increment_time + 1 # Calculate waiting time a__ = finish_time - arrival_time[short] a__ = finar - burst_time[short] if waiting_time[short] < 0: a__ = 0 # Increment time increment_time += 1 return waiting_time def _lowerCamelCase (__lowerCamelCase : list[int] , __lowerCamelCase : int , __lowerCamelCase : list[int] ) -> list[int]: a__ = [0] * no_of_processes for i in range(__snake_case ): a__ = burst_time[i] + waiting_time[i] return turn_around_time def _lowerCamelCase (__lowerCamelCase : list[int] , __lowerCamelCase : list[int] , __lowerCamelCase : int ) -> None: a__ = 0 a__ = 0 for i in range(__snake_case ): a__ = total_waiting_time + waiting_time[i] a__ = total_turn_around_time + turn_around_time[i] print(f'''Average waiting time = {total_waiting_time / no_of_processes:.5f}''' ) print("Average turn around time =" , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("Enter how many process you want to analyze") lowerCAmelCase_ : Dict = int(input()) lowerCAmelCase_ : str = [0] * no_of_processes lowerCAmelCase_ : int = [0] * no_of_processes lowerCAmelCase_ : Tuple = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("Enter the arrival time and burst time for process:--" + str(i + 1)) lowerCAmelCase_ : Dict = map(int, input().split()) lowerCAmelCase_ : int = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowerCAmelCase_ : Any = burst_time lowerCAmelCase_ : Tuple = no_of_processes lowerCAmelCase_ : List[str] = waiting_time lowerCAmelCase_ : List[Any] = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) lowerCAmelCase_ : str = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ "Process", "BurstTime", "ArrivalTime", "WaitingTime", "TurnAroundTime", ], ) # Printing the dataFrame pd.set_option("display.max_rows", fcfs.shape[0] + 1) print(fcfs)
489
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : int = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } lowercase__ : Dict = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _lowerCAmelCase ( __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Any , __snake_case : List[str] ) -> Union[str, Any]: for attribute in key.split('.' ): __A : int = getattr(__snake_case , __snake_case ) if weight_type is not None: __A : Optional[int] = getattr(__snake_case , __snake_case ).shape else: __A : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __A : Tuple = value elif weight_type == "weight_g": __A : Union[str, Any] = value elif weight_type == "weight_v": __A : Optional[Any] = value elif weight_type == "bias": __A : Optional[int] = value else: __A : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( __snake_case : Any , __snake_case : List[str] ) -> List[Any]: __A : Optional[Any] = [] __A : Any = fairseq_model.state_dict() __A : Union[str, Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): __A : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == 'group' , ) __A : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __A : int = True if "*" in mapped_key: __A : Any = name.split(__snake_case )[0].split('.' )[-2] __A : List[Any] = mapped_key.replace('*' , __snake_case ) if "weight_g" in name: __A : Optional[Any] = 'weight_g' elif "weight_v" in name: __A : Union[str, Any] = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: __A : Optional[Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __A : Tuple = 'weight' else: __A : Dict = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[int] ) -> int: __A : int = full_name.split('conv_layers.' )[-1] __A : List[str] = name.split('.' ) __A : Optional[int] = int(items[0] ) __A : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __A : Optional[int] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __A : Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) __A : Dict = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __A : Any = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) @torch.no_grad() def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple=None ) -> Any: # load the pre-trained checkpoints __A : List[str] = torch.load(__snake_case ) __A : Dict = WavLMConfigOrig(checkpoint['cfg'] ) __A : Optional[int] = WavLMOrig(__snake_case ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: __A : List[Any] = WavLMConfig.from_pretrained(__snake_case ) else: __A : Dict = WavLMConfig() __A : Optional[Any] = WavLMModel(__snake_case ) recursively_load_weights(__snake_case , __snake_case ) hf_wavlm.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowercase__ : Any = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
8
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class _UpperCAmelCase ( a__ ): """simple docstring""" snake_case = 42 class _UpperCAmelCase ( a__ , a__ ): """simple docstring""" @register_to_config def __init__( self : Optional[Any] , __UpperCAmelCase : Tuple = 3 , __UpperCAmelCase : Union[str, Any] = 3 , __UpperCAmelCase : Union[str, Any] = ("DownEncoderBlock2D",) , __UpperCAmelCase : int = ("UpDecoderBlock2D",) , __UpperCAmelCase : Optional[Any] = (64,) , __UpperCAmelCase : Tuple = 1 , __UpperCAmelCase : Dict = "silu" , __UpperCAmelCase : Dict = 3 , __UpperCAmelCase : str = 32 , __UpperCAmelCase : Union[str, Any] = 256 , __UpperCAmelCase : str = 32 , __UpperCAmelCase : List[Any] = None , __UpperCAmelCase : List[str] = 0.18215 , __UpperCAmelCase : str = "group" , ): '''simple docstring''' super().__init__() # pass init params to Encoder _A = Encoder( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , down_block_types=_UpperCAmelCase , block_out_channels=_UpperCAmelCase , layers_per_block=_UpperCAmelCase , act_fn=_UpperCAmelCase , norm_num_groups=_UpperCAmelCase , double_z=_UpperCAmelCase , ) _A = vq_embed_dim if vq_embed_dim is not None else latent_channels _A = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , 1 ) _A = VectorQuantizer(_UpperCAmelCase , _UpperCAmelCase , beta=0.25 , remap=_UpperCAmelCase , sane_index_shape=_UpperCAmelCase ) _A = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , 1 ) # pass init params to Decoder _A = Decoder( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , up_block_types=_UpperCAmelCase , block_out_channels=_UpperCAmelCase , layers_per_block=_UpperCAmelCase , act_fn=_UpperCAmelCase , norm_num_groups=_UpperCAmelCase , norm_type=_UpperCAmelCase , ) @apply_forward_hook def lowerCAmelCase ( self : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] = True ): '''simple docstring''' _A = self.encoder(_UpperCAmelCase ) _A = self.quant_conv(_UpperCAmelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=_UpperCAmelCase ) @apply_forward_hook def lowerCAmelCase ( self : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] = False , __UpperCAmelCase : List[str] = True ): '''simple docstring''' if not force_not_quantize: _A = self.quantize(_UpperCAmelCase ) else: _A = h _A = self.post_quant_conv(_UpperCAmelCase ) _A = self.decoder(_UpperCAmelCase , quant if self.config.norm_type == "spatial" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCAmelCase ) def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any] = True ): '''simple docstring''' _A = sample _A = self.encode(_UpperCAmelCase ).latents _A = self.decode(_UpperCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCAmelCase )
330
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = 42 class SCREAMING_SNAKE_CASE (a__ , a__ ): @register_to_config def __init__( self , _UpperCAmelCase = 6_5536 , _UpperCAmelCase = None , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = 0 , _UpperCAmelCase = "fourier" , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = 0.0 , _UpperCAmelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _UpperCAmelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _UpperCAmelCase = "UNetMidBlock1D" , _UpperCAmelCase = None , _UpperCAmelCase = (32, 32, 64) , _UpperCAmelCase = None , _UpperCAmelCase = 8 , _UpperCAmelCase = 1 , _UpperCAmelCase = False , ): '''simple docstring''' super().__init__() __A : Dict = sample_size # time if time_embedding_type == "fourier": __A : int = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_UpperCAmelCase , log=_UpperCAmelCase , flip_sin_to_cos=_UpperCAmelCase) __A : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": __A : List[str] = Timesteps( block_out_channels[0] , flip_sin_to_cos=_UpperCAmelCase , downscale_freq_shift=_UpperCAmelCase) __A : List[str] = block_out_channels[0] if use_timestep_embedding: __A : Optional[Any] = block_out_channels[0] * 4 __A : Optional[int] = TimestepEmbedding( in_channels=_UpperCAmelCase , time_embed_dim=_UpperCAmelCase , act_fn=_UpperCAmelCase , out_dim=block_out_channels[0] , ) __A : Dict = nn.ModuleList([]) __A : Dict = None __A : Tuple = nn.ModuleList([]) __A : Tuple = None # down __A : Any = in_channels for i, down_block_type in enumerate(_UpperCAmelCase): __A : Tuple = output_channel __A : Optional[Any] = block_out_channels[i] if i == 0: input_channel += extra_in_channels __A : List[str] = i == len(_UpperCAmelCase) - 1 __A : int = get_down_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_UpperCAmelCase) # mid __A : str = get_mid_block( _UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_UpperCAmelCase , add_downsample=_UpperCAmelCase , ) # up __A : Optional[int] = list(reversed(_UpperCAmelCase)) __A : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: __A : str = out_channels else: __A : List[Any] = block_out_channels[0] for i, up_block_type in enumerate(_UpperCAmelCase): __A : Optional[Any] = output_channel __A : Optional[Any] = ( reversed_block_out_channels[i + 1] if i < len(_UpperCAmelCase) - 1 else final_upsample_channels ) __A : Dict = i == len(_UpperCAmelCase) - 1 __A : str = get_up_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_UpperCAmelCase) __A : Optional[int] = output_channel # out __A : str = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32) __A : Optional[Any] = get_out_block( out_block_type=_UpperCAmelCase , num_groups_out=_UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=_UpperCAmelCase , act_fn=_UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , ): '''simple docstring''' __A : Any = timestep if not torch.is_tensor(_UpperCAmelCase): __A : Any = torch.tensor([timesteps] , dtype=torch.long , device=sample.device) elif torch.is_tensor(_UpperCAmelCase) and len(timesteps.shape) == 0: __A : Any = timesteps[None].to(sample.device) __A : List[Any] = self.time_proj(_UpperCAmelCase) if self.config.use_timestep_embedding: __A : Dict = self.time_mlp(_UpperCAmelCase) else: __A : Dict = timestep_embed[..., None] __A : Tuple = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) __A : List[Any] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) # 2. down __A : int = () for downsample_block in self.down_blocks: __A ,__A : int = downsample_block(hidden_states=_UpperCAmelCase , temb=_UpperCAmelCase) down_block_res_samples += res_samples # 3. mid if self.mid_block: __A : Optional[int] = self.mid_block(_UpperCAmelCase , _UpperCAmelCase) # 4. up for i, upsample_block in enumerate(self.up_blocks): __A : Any = down_block_res_samples[-1:] __A : Optional[int] = down_block_res_samples[:-1] __A : Any = upsample_block(_UpperCAmelCase , res_hidden_states_tuple=_UpperCAmelCase , temb=_UpperCAmelCase) # 5. post-process if self.out_block: __A : Dict = self.out_block(_UpperCAmelCase , _UpperCAmelCase) if not return_dict: return (sample,) return UNetaDOutput(sample=_UpperCAmelCase)
8
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : List[Any] = { '''SCUT-DLVCLab/lilt-roberta-en-base''': ( '''https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json''' ), } class UpperCamelCase__ (a__ ): '''simple docstring''' lowerCamelCase_ : List[str] = """lilt""" def __init__( self , UpperCamelCase__=3_0522 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-12 , UpperCamelCase__=0 , UpperCamelCase__="absolute" , UpperCamelCase__=None , UpperCamelCase__=4 , UpperCamelCase__=1024 , **UpperCamelCase__ , ) -> int: super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowerCamelCase : str = vocab_size lowerCamelCase : Any = hidden_size lowerCamelCase : Optional[int] = num_hidden_layers lowerCamelCase : List[Any] = num_attention_heads lowerCamelCase : Union[str, Any] = hidden_act lowerCamelCase : Union[str, Any] = intermediate_size lowerCamelCase : str = hidden_dropout_prob lowerCamelCase : str = attention_probs_dropout_prob lowerCamelCase : Any = max_position_embeddings lowerCamelCase : Tuple = type_vocab_size lowerCamelCase : Optional[int] = initializer_range lowerCamelCase : Union[str, Any] = layer_norm_eps lowerCamelCase : str = position_embedding_type lowerCamelCase : int = classifier_dropout lowerCamelCase : int = channel_shrink_ratio lowerCamelCase : int = max_ad_position_embeddings
311
'''simple docstring''' def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> int: if len(__snake_case ) != len(__snake_case ): raise ValueError('String lengths must match!' ) __A : Optional[Any] = 0 for chara, chara in zip(__snake_case , __snake_case ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
8
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''xlm-mlm-en-2048''': '''https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json''', '''xlm-mlm-ende-1024''': '''https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json''', '''xlm-mlm-enfr-1024''': '''https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json''', '''xlm-mlm-enro-1024''': '''https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json''', '''xlm-mlm-tlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json''', '''xlm-mlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json''', '''xlm-clm-enfr-1024''': '''https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json''', '''xlm-clm-ende-1024''': '''https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json''', '''xlm-mlm-17-1280''': '''https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json''', '''xlm-mlm-100-1280''': '''https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json''', } class _A ( a__ ): _UpperCamelCase : Optional[int] = '''xlm''' _UpperCamelCase : List[Any] = { '''hidden_size''': '''emb_dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', '''n_words''': '''vocab_size''', # For backward compatibility } def __init__( self : Dict , _A : Tuple=30_145 , _A : Union[str, Any]=2_048 , _A : Tuple=12 , _A : Tuple=16 , _A : str=0.1 , _A : List[Any]=0.1 , _A : List[str]=True , _A : List[str]=False , _A : str=False , _A : int=False , _A : Optional[Any]=1 , _A : List[str]=True , _A : Union[str, Any]=512 , _A : List[str]=2_048**-0.5 , _A : Optional[int]=1E-12 , _A : Any=0.02 , _A : Optional[int]=0 , _A : str=1 , _A : Any=2 , _A : Optional[Any]=3 , _A : str=5 , _A : Optional[Any]=True , _A : int="first" , _A : int=True , _A : Union[str, Any]=None , _A : List[Any]=True , _A : List[str]=0.1 , _A : List[Any]=5 , _A : List[Any]=5 , _A : Optional[Any]=0 , _A : Optional[int]=0 , _A : List[Any]=2 , _A : List[Any]=0 , **_A : Dict , ) -> Any: """simple docstring""" lowercase : int = vocab_size lowercase : Optional[int] = emb_dim lowercase : Any = n_layers lowercase : Optional[Any] = n_heads lowercase : Optional[Any] = dropout lowercase : Optional[int] = attention_dropout lowercase : List[str] = gelu_activation lowercase : Any = sinusoidal_embeddings lowercase : List[Any] = causal lowercase : Any = asm lowercase : int = n_langs lowercase : List[Any] = use_lang_emb lowercase : Tuple = layer_norm_eps lowercase : Any = bos_index lowercase : Any = eos_index lowercase : Optional[Any] = pad_index lowercase : int = unk_index lowercase : List[Any] = mask_index lowercase : List[str] = is_encoder lowercase : Dict = max_position_embeddings lowercase : Any = embed_init_std lowercase : Tuple = init_std lowercase : Any = summary_type lowercase : Dict = summary_use_proj lowercase : Dict = summary_activation lowercase : Dict = summary_proj_to_labels lowercase : List[Any] = summary_first_dropout lowercase : str = start_n_top lowercase : Any = end_n_top lowercase : Tuple = mask_token_id lowercase : Tuple = lang_id if "n_words" in kwargs: lowercase : Dict = kwargs['n_words'] super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) class _A ( a__ ): @property def __a ( self : Tuple ) -> List[str]: """simple docstring""" if self.task == "multiple-choice": lowercase : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowercase : List[str] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
217
'''simple docstring''' import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> Union[str, Any]: __A : int = RobertaPreLayerNormConfig.from_pretrained( __snake_case , architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict __A : Tuple = torch.load(hf_hub_download(repo_id=__snake_case , filename='pytorch_model.bin' ) ) __A : str = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): __A : Dict = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue __A : str = tensor_value __A : Union[str, Any] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__snake_case , config=__snake_case , state_dict=__snake_case ) model.save_pretrained(__snake_case ) # convert tokenizer __A : List[Any] = AutoTokenizer.from_pretrained(__snake_case ) tokenizer.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
8
0
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType snake_case_ : Optional[int] = False, False, False @dataclass class lowercase__ : '''simple docstring''' _snake_case = None _snake_case = True _snake_case = True _snake_case = None # Automatically constructed _snake_case = '''dict''' _snake_case = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) _snake_case = field(default='''Audio''', init=a__, repr=a__ ) def __call__( self ): '''simple docstring''' return self.pa_type def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''' ) from err if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return {"bytes": None, "path": value} elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes UpperCamelCase = BytesIO() sf.write(_UpperCAmelCase , value['''array'''] , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm''' ): # "PCM" only has raw audio bytes if value.get('''sampling_rate''' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''' ) if value.get('''bytes''' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) UpperCamelCase = np.frombuffer(value['''bytes'''] , dtype=np.intaa ).astype(np.floataa ) / 3_2_7_6_7 else: UpperCamelCase = np.memmap(value['''path'''] , dtype='''h''' , mode='''r''' ).astype(np.floataa ) / 3_2_7_6_7 UpperCamelCase = BytesIO(bytes() ) sf.write(_UpperCAmelCase , _UpperCAmelCase , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( f'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): '''simple docstring''' if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''' ) UpperCamelCase = (value['path'], BytesIO(value['''bytes'''] )) if value['bytes'] is not None else (value['path'], None) if path is None and file is None: raise ValueError(f'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''' ) from err UpperCamelCase = xsplitext(_UpperCAmelCase )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) if file is None: UpperCamelCase = token_per_repo_id or {} UpperCamelCase = path.split('''::''' )[-1] try: UpperCamelCase = string_to_dict(_UpperCAmelCase , config.HUB_DATASETS_URL )['repo_id'] UpperCamelCase = token_per_repo_id[repo_id] except (ValueError, KeyError): UpperCamelCase = None with xopen(_UpperCAmelCase , '''rb''' , use_auth_token=_UpperCAmelCase ) as f: UpperCamelCase = sf.read(_UpperCAmelCase ) else: UpperCamelCase = sf.read(_UpperCAmelCase ) UpperCamelCase = array.T if self.mono: UpperCamelCase = librosa.to_mono(_UpperCAmelCase ) if self.sampling_rate and self.sampling_rate != sampling_rate: UpperCamelCase = librosa.resample(_UpperCAmelCase , orig_sr=_UpperCAmelCase , target_sr=self.sampling_rate ) UpperCamelCase = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def UpperCAmelCase ( self ): '''simple docstring''' from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''' ) return { "bytes": Value('''binary''' ), "path": Value('''string''' ), } def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' if pa.types.is_string(storage.type ): UpperCamelCase = pa.array([None] * len(_UpperCAmelCase ) , type=pa.binary() ) UpperCamelCase = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCamelCase = pa.array([None] * len(_UpperCAmelCase ) , type=pa.string() ) UpperCamelCase = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('''array''' ): UpperCamelCase = pa.array([Audio().encode_example(_UpperCAmelCase ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: UpperCamelCase = storage.field('''bytes''' ) else: UpperCamelCase = pa.array([None] * len(_UpperCAmelCase ) , type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: UpperCamelCase = storage.field('''path''' ) else: UpperCamelCase = pa.array([None] * len(_UpperCAmelCase ) , type=pa.string() ) UpperCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) return array_cast(_UpperCAmelCase , self.pa_type ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(lowerCamelCase__ ): with xopen(_UpperCAmelCase , '''rb''' ) as f: UpperCamelCase = f.read() return bytes_ UpperCamelCase = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCamelCase = pa.array( [os.path.basename(_UpperCAmelCase ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , ) UpperCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(_UpperCAmelCase , self.pa_type )
212
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings lowercase__ : Dict = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = field(default=a__ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = super().to_dict() for k, v in d.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : List[Any] = v.to_dict() return d
8
0
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a_ ( ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =ArgumentParser( description=( '''PyTorch TPU distributed training launch ''' '''helper utility that will spawn up ''' '''multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=__snake_case , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=__snake_case , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=__snake_case ) return parser.parse_args() def a_ ( ) -> Any: """simple docstring""" lowerCamelCase_ =parse_args() # Import training_script as a module. lowerCamelCase_ =Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowerCamelCase_ =script_fpath.stem lowerCamelCase_ =importlib.import_module(__snake_case ) # Patch sys.argv lowerCamelCase_ =[args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
676
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : Optional[int] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''lxmert''' lowerCAmelCase = {} def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=9500 , _UpperCAmelCase=1600 , _UpperCAmelCase=400 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=9 , _UpperCAmelCase=5 , _UpperCAmelCase=5 , _UpperCAmelCase=2048 , _UpperCAmelCase=4 , _UpperCAmelCase=6.67 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , **_UpperCAmelCase , ): '''simple docstring''' __A : Tuple = vocab_size __A : int = hidden_size __A : str = num_attention_heads __A : Tuple = hidden_act __A : int = intermediate_size __A : str = hidden_dropout_prob __A : Optional[int] = attention_probs_dropout_prob __A : Optional[Any] = max_position_embeddings __A : Tuple = type_vocab_size __A : Optional[int] = initializer_range __A : Any = layer_norm_eps __A : Optional[Any] = num_qa_labels __A : Optional[int] = num_object_labels __A : Any = num_attr_labels __A : Union[str, Any] = l_layers __A : Optional[int] = x_layers __A : List[Any] = r_layers __A : Tuple = visual_feat_dim __A : Tuple = visual_pos_dim __A : Optional[int] = visual_loss_normalizer __A : int = task_matched __A : List[Any] = task_mask_lm __A : Optional[Any] = task_obj_predict __A : str = task_qa __A : List[Any] = visual_obj_loss __A : Optional[Any] = visual_attr_loss __A : Union[str, Any] = visual_feat_loss __A : Union[str, Any] = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**_UpperCAmelCase)
8
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { '''microsoft/table-transformer-detection''': ( '''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json''' ), } class lowercase__ ( a__): UpperCamelCase_ = """table-transformer""" UpperCamelCase_ = ["""past_key_values"""] UpperCamelCase_ = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Optional[Any] , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : str=3 , UpperCamelCase__ : List[str]=100 , UpperCamelCase__ : Union[str, Any]=6 , UpperCamelCase__ : Tuple=2048 , UpperCamelCase__ : Tuple=8 , UpperCamelCase__ : Union[str, Any]=6 , UpperCamelCase__ : Union[str, Any]=2048 , UpperCamelCase__ : Optional[int]=8 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : str=True , UpperCamelCase__ : Union[str, Any]="relu" , UpperCamelCase__ : Optional[Any]=256 , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : Union[str, Any]=0.0 , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : Optional[int]=0.02 , UpperCamelCase__ : Optional[Any]=1.0 , UpperCamelCase__ : str=False , UpperCamelCase__ : List[str]="sine" , UpperCamelCase__ : Optional[Any]="resnet50" , UpperCamelCase__ : int=True , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : Optional[Any]=1 , UpperCamelCase__ : List[str]=5 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : Optional[int]=1 , UpperCamelCase__ : str=1 , UpperCamelCase__ : str=5 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : List[Any]=0.1 , **UpperCamelCase__ : Tuple , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) SCREAMING_SNAKE_CASE : int = CONFIG_MAPPING['resnet'](out_features=['''stage4'''] ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE : Any = backbone_config.get('''model_type''' ) SCREAMING_SNAKE_CASE : int = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE : str = config_class.from_dict(_UpperCAmelCase ) # set timm attributes to None SCREAMING_SNAKE_CASE : Optional[Any] = None, None, None SCREAMING_SNAKE_CASE : str = use_timm_backbone SCREAMING_SNAKE_CASE : Optional[Any] = backbone_config SCREAMING_SNAKE_CASE : Dict = num_channels SCREAMING_SNAKE_CASE : Optional[int] = num_queries SCREAMING_SNAKE_CASE : Optional[int] = d_model SCREAMING_SNAKE_CASE : Tuple = encoder_ffn_dim SCREAMING_SNAKE_CASE : str = encoder_layers SCREAMING_SNAKE_CASE : Optional[int] = encoder_attention_heads SCREAMING_SNAKE_CASE : Dict = decoder_ffn_dim SCREAMING_SNAKE_CASE : Tuple = decoder_layers SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_attention_heads SCREAMING_SNAKE_CASE : Tuple = dropout SCREAMING_SNAKE_CASE : Optional[int] = attention_dropout SCREAMING_SNAKE_CASE : Union[str, Any] = activation_dropout SCREAMING_SNAKE_CASE : Optional[int] = activation_function SCREAMING_SNAKE_CASE : Optional[Any] = init_std SCREAMING_SNAKE_CASE : Tuple = init_xavier_std SCREAMING_SNAKE_CASE : Tuple = encoder_layerdrop SCREAMING_SNAKE_CASE : List[str] = decoder_layerdrop SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layers SCREAMING_SNAKE_CASE : Optional[int] = auxiliary_loss SCREAMING_SNAKE_CASE : Any = position_embedding_type SCREAMING_SNAKE_CASE : Optional[int] = backbone SCREAMING_SNAKE_CASE : Any = use_pretrained_backbone SCREAMING_SNAKE_CASE : Tuple = dilation # Hungarian matcher SCREAMING_SNAKE_CASE : int = class_cost SCREAMING_SNAKE_CASE : List[Any] = bbox_cost SCREAMING_SNAKE_CASE : Any = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE : Optional[int] = mask_loss_coefficient SCREAMING_SNAKE_CASE : Dict = dice_loss_coefficient SCREAMING_SNAKE_CASE : Dict = bbox_loss_coefficient SCREAMING_SNAKE_CASE : int = giou_loss_coefficient SCREAMING_SNAKE_CASE : int = eos_coefficient super().__init__(is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase ) @property def __A ( self : Any ): '''simple docstring''' return self.encoder_attention_heads @property def __A ( self : Tuple ): '''simple docstring''' return self.d_model class lowercase__ ( a__): UpperCamelCase_ = version.parse("""1.11""") @property def __A ( self : Optional[int] ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def __A ( self : Any ): '''simple docstring''' return 1E-5 @property def __A ( self : Tuple ): '''simple docstring''' return 12
248
'''simple docstring''' import math import sys def _lowerCAmelCase ( __snake_case : int ) -> int: if number != int(__snake_case ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 __A : str = [-1] * (number + 1) __A : Dict = 0 for i in range(1 , number + 1 ): __A : int = sys.maxsize __A : int = int(math.sqrt(__snake_case ) ) for j in range(1 , root + 1 ): __A : str = 1 + answers[i - (j**2)] __A : Dict = min(__snake_case , __snake_case ) __A : Union[str, Any] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
8
0
import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = { '''bart''': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''bert''': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-base-cased-finetuned-mrpc''': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''dpr''': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''gpt2''': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlnet''': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm''': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm-roberta''': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''transfo-xl''': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''openai-gpt''': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''roberta''': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''layoutlm''': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''roberta-large-mnli''': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''camembert''': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''flaubert''': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert''': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert-base-distilled-squad''': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert''': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert-visual-feature-encoder''': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''ctrl''': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''albert''': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''t5''': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''electra''': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''wav2vec2''': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=True ) -> List[Any]: if model_type not in MODEL_CLASSES: raise ValueError(f'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' ) A__ , A__ , A__ , A__ = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: A__ = cached_file(__UpperCamelCase , __UpperCamelCase , force_download=not use_cached_models ) A__ = config_class.from_json_file(__UpperCamelCase ) A__ = True A__ = True print(f'''Building TensorFlow model from configuration: {config}''' ) A__ = model_class(__UpperCamelCase ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): A__ = cached_file( __UpperCamelCase , __UpperCamelCase , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: A__ = load_pytorch_checkpoint_in_tfa_model(__UpperCamelCase , __UpperCamelCase ) if compare_with_pt_model: A__ = tf_model(tf_model.dummy_inputs , training=__UpperCamelCase ) # build the network A__ = torch.load(__UpperCamelCase , map_location='cpu' ) A__ = pt_model_class.from_pretrained( pretrained_model_name_or_path=__UpperCamelCase , config=__UpperCamelCase , state_dict=__UpperCamelCase ) with torch.no_grad(): A__ = pt_model(**pt_model.dummy_inputs ) A__ = pto[0].numpy() A__ = tfo[0].numpy() A__ = np.amax(np.abs(np_pt - np_tf ) ) print(f'''Max absolute difference between models outputs {diff}''' ) assert diff <= 2E-2, f'''Error, model absolute difference is >2e-2: {diff}''' # Save pytorch-model print(f'''Save TensorFlow model to {tf_dump_path}''' ) tf_model.save_weights(__UpperCamelCase , save_format='h5' ) def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=False , __UpperCamelCase=False , __UpperCamelCase=False , __UpperCamelCase=False , ) -> Optional[int]: if args_model_type is None: A__ = list(MODEL_CLASSES.keys() ) else: A__ = [args_model_type] for j, model_type in enumerate(__UpperCamelCase , start=1 ): print('=' * 100 ) print(f''' Converting model type {j}/{len(__UpperCamelCase )}: {model_type}''' ) print('=' * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(f'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' ) A__ , A__ , A__ , A__ , A__ = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: A__ = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: A__ = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(__UpperCamelCase , __UpperCamelCase ) , start=1 ): print('-' * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(f''' Skipping finetuned checkpoint {model_shortcut_name}''' ) continue A__ = model_shortcut_name elif only_convert_finetuned_models: print(f''' Skipping not finetuned checkpoint {model_shortcut_name}''' ) continue print( f''' Converting checkpoint {i}/{len(__UpperCamelCase )}: {model_shortcut_name} - model_type {model_type}''' ) print('-' * 100 ) if config_shortcut_name in aws_config_map: A__ = cached_file(__UpperCamelCase , __UpperCamelCase , force_download=not use_cached_models ) else: A__ = config_shortcut_name if model_shortcut_name in aws_model_maps: A__ = cached_file(__UpperCamelCase , __UpperCamelCase , force_download=not use_cached_models ) else: A__ = model_shortcut_name if os.path.isfile(__UpperCamelCase ): A__ = 'converted_model' convert_pt_checkpoint_to_tf( model_type=__UpperCamelCase , pytorch_checkpoint_path=__UpperCamelCase , config_file=__UpperCamelCase , tf_dump_path=os.path.join(__UpperCamelCase , model_shortcut_name + '-tf_model.h5' ) , compare_with_pt_model=__UpperCamelCase , ) if remove_cached_files: os.remove(__UpperCamelCase ) os.remove(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_dump_path''', default=None, type=str, required=True, help='''Path to the output Tensorflow dump file.''' ) parser.add_argument( '''--model_type''', default=None, type=str, help=( f'Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and ' '''convert all the models from AWS.''' ), ) parser.add_argument( '''--pytorch_checkpoint_path''', default=None, type=str, help=( '''Path to the PyTorch checkpoint path or shortcut name to download from AWS. ''' '''If not given, will download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--config_file''', default=None, type=str, help=( '''The config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture. If not given and ''' '''--pytorch_checkpoint_path is not given or is a shortcut name ''' '''use the configuration associated to the shortcut name on the AWS''' ), ) parser.add_argument( '''--compare_with_pt_model''', action='''store_true''', help='''Compare Tensorflow and PyTorch model predictions.''' ) parser.add_argument( '''--use_cached_models''', action='''store_true''', help='''Use cached models if possible instead of updating to latest checkpoint versions.''', ) parser.add_argument( '''--remove_cached_files''', action='''store_true''', help='''Remove pytorch models after conversion (save memory when converting in batches).''', ) parser.add_argument('''--only_convert_finetuned_models''', action='''store_true''', help='''Only convert finetuned models.''') SCREAMING_SNAKE_CASE__ = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
9
from __future__ import annotations def A ( __UpperCamelCase = 4 ) -> list[list[int]]: A__ = abs(__UpperCamelCase ) or 4 return [[1 + x + y * row_size for x in range(__UpperCamelCase )] for y in range(__UpperCamelCase )] def A ( __UpperCamelCase ) -> list[list[int]]: return reverse_row(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_column(matrix)) def A ( __UpperCamelCase ) -> list[list[int]]: return reverse_row(reverse_column(__UpperCamelCase ) ) # OR.. reverse_column(reverse_row(matrix)) def A ( __UpperCamelCase ) -> list[list[int]]: return reverse_column(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_row(matrix)) def A ( __UpperCamelCase ) -> list[list[int]]: A__ = [list(__UpperCamelCase ) for x in zip(*__UpperCamelCase )] return matrix def A ( __UpperCamelCase ) -> list[list[int]]: A__ = matrix[::-1] return matrix def A ( __UpperCamelCase ) -> list[list[int]]: A__ = [x[::-1] for x in matrix] return matrix def A ( __UpperCamelCase ) -> None: for i in matrix: print(*__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 90 counterclockwise:\n''') print_matrix(rotate_aa(matrix)) SCREAMING_SNAKE_CASE__ = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 180:\n''') print_matrix(rotate_aaa(matrix)) SCREAMING_SNAKE_CASE__ = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 270 counterclockwise:\n''') print_matrix(rotate_aaa(matrix))
9
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , _snake_case : AutoencoderKL , _snake_case : CLIPTextModel , _snake_case : CLIPTokenizer , _snake_case : UNetaDConditionModel , _snake_case : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _snake_case : StableDiffusionSafetyChecker , _snake_case : CLIPImageProcessor , ): """simple docstring""" super().__init__() self.register_modules( vae=_snake_case , text_encoder=_snake_case , tokenizer=_snake_case , unet=_snake_case , scheduler=_snake_case , safety_checker=_snake_case , feature_extractor=_snake_case , ) def _a ( self : List[Any] , _snake_case : Optional[Union[str, int]] = "auto" ): """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory A__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_snake_case ) def _a ( self : str ): """simple docstring""" self.enable_attention_slicing(_snake_case ) @torch.no_grad() def __call__( self : Optional[int] , _snake_case : Union[str, List[str]] , _snake_case : int = 5_12 , _snake_case : int = 5_12 , _snake_case : int = 50 , _snake_case : float = 7.5 , _snake_case : Optional[Union[str, List[str]]] = None , _snake_case : Optional[int] = 1 , _snake_case : float = 0.0 , _snake_case : Optional[torch.Generator] = None , _snake_case : Optional[torch.FloatTensor] = None , _snake_case : Optional[str] = "pil" , _snake_case : bool = True , _snake_case : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _snake_case : int = 1 , _snake_case : Optional[torch.FloatTensor] = None , **_snake_case : List[str] , ): """simple docstring""" if isinstance(_snake_case , _snake_case ): A__ = 1 elif isinstance(_snake_case , _snake_case ): A__ = len(_snake_case ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(_snake_case )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_snake_case , _snake_case ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(_snake_case )}.''' ) # get prompt text embeddings A__ = self.tokenizer( _snake_case , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) A__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: A__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) A__ = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: A__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method A__ , A__ , A__ = text_embeddings.shape A__ = text_embeddings.repeat(1 , _snake_case , 1 ) A__ = text_embeddings.view(bs_embed * num_images_per_prompt , _snake_case , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A__ = 42 if negative_prompt is None: A__ = [''] elif type(_snake_case ) is not type(_snake_case ): raise TypeError( F'''`negative_prompt` should be the same type to `prompt`, but got {type(_snake_case )} !=''' F''' {type(_snake_case )}.''' ) elif isinstance(_snake_case , _snake_case ): A__ = [negative_prompt] elif batch_size != len(_snake_case ): raise ValueError( F'''`negative_prompt`: {negative_prompt} has batch size {len(_snake_case )}, but `prompt`:''' F''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' ' the batch size of `prompt`.' ) else: A__ = negative_prompt A__ = text_input_ids.shape[-1] A__ = self.tokenizer( _snake_case , padding='max_length' , max_length=_snake_case , truncation=_snake_case , return_tensors='pt' , ) A__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A__ = uncond_embeddings.shape[1] A__ = uncond_embeddings.repeat(_snake_case , _snake_case , 1 ) A__ = uncond_embeddings.view(batch_size * num_images_per_prompt , _snake_case , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) A__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) A__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps A__ = torch.randn( _snake_case , generator=_snake_case , device='cpu' , dtype=_snake_case ).to(self.device ) A__ = torch.randn(_snake_case , generator=_snake_case , device='cpu' , dtype=_snake_case ).to( self.device ) else: A__ = torch.randn( _snake_case , generator=_snake_case , device=self.device , dtype=_snake_case ) A__ = torch.randn(_snake_case , generator=_snake_case , device=self.device , dtype=_snake_case ) else: if latents_reference.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) A__ = latents_reference.to(self.device ) A__ = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images A__ = (latents_shape[3] - latents_shape_reference[3]) // 2 A__ = (latents_shape[2] - latents_shape_reference[2]) // 2 A__ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx A__ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy A__ = 0 if dx < 0 else dx A__ = 0 if dy < 0 else dy A__ = max(-dx , 0 ) A__ = max(-dy , 0 ) # import pdb # pdb.set_trace() A__ = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(_snake_case ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand A__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A__ = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A__ = {} if accepts_eta: A__ = eta for i, t in enumerate(self.progress_bar(_snake_case ) ): # expand the latents if we are doing classifier free guidance A__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A__ = self.scheduler.scale_model_input(_snake_case , _snake_case ) # predict the noise residual A__ = self.unet(_snake_case , _snake_case , encoder_hidden_states=_snake_case ).sample # perform guidance if do_classifier_free_guidance: A__ , A__ = noise_pred.chunk(2 ) A__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 A__ = self.scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_snake_case , _snake_case , _snake_case ) A__ = 1 / 0.1_8215 * latents A__ = self.vae.decode(_snake_case ).sample A__ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: A__ = self.feature_extractor(self.numpy_to_pil(_snake_case ) , return_tensors='pt' ).to( self.device ) A__ , A__ = self.safety_checker( images=_snake_case , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: A__ = None if output_type == "pil": A__ = self.numpy_to_pil(_snake_case ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=_snake_case , nsfw_content_detected=_snake_case )
9
from __future__ import annotations from fractions import Fraction def A ( __UpperCamelCase , __UpperCamelCase ) -> bool: return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def A ( __UpperCamelCase ) -> list[str]: A__ = [] A__ = 11 A__ = int('1' + '0' * digit_len ) for num in range(__UpperCamelCase , __UpperCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(__UpperCamelCase , __UpperCamelCase ): solutions.append(f'''{num}/{den}''' ) den += 1 num += 1 A__ = 10 return solutions def A ( __UpperCamelCase = 2 ) -> int: A__ = 1.0 for fraction in fraction_list(__UpperCamelCase ): A__ = Fraction(__UpperCamelCase ) result *= frac.denominator / frac.numerator return int(__UpperCamelCase ) if __name__ == "__main__": print(solution())
9
1
import os import numpy import onnx def A ( __UpperCamelCase , __UpperCamelCase ) -> int: A__ = a.name A__ = b.name A__ = '' A__ = '' A__ = a == b A__ = name_a A__ = name_b return res def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(__UpperCamelCase , __UpperCamelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , __UpperCamelCase , __UpperCamelCase ) _graph_replace_input_with(node_proto.attribute[1].g , __UpperCamelCase , __UpperCamelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , __UpperCamelCase , __UpperCamelCase ) def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Dict: for n in graph_proto.node: _node_replace_input_with(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: A__ = list(model.graph.initializer ) A__ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i A__ = inits[i].name A__ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , __UpperCamelCase , __UpperCamelCase ) def A ( __UpperCamelCase ) -> Tuple: A__ = os.path.dirname(__UpperCamelCase ) A__ = os.path.basename(__UpperCamelCase ) A__ = onnx.load(os.path.join(__UpperCamelCase , __UpperCamelCase ) ) A__ = list(model.graph.initializer ) A__ = set() A__ = {} A__ = [] A__ = 0 for i in range(len(__UpperCamelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(__UpperCamelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(__UpperCamelCase ) dup_set.add(__UpperCamelCase ) A__ = inits[j].data_type A__ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , __UpperCamelCase ) total_reduced_size += mem_size A__ = inits[i].name A__ = inits[j].name if name_i in dup_map: dup_map[name_i].append(__UpperCamelCase ) else: A__ = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1_024 / 1_024 / 1_024 , 'GB' ) A__ = sorted(__UpperCamelCase ) _remove_dup_initializers_from_model(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) A__ = 'optimized_' + model_file_name A__ = os.path.join(__UpperCamelCase , __UpperCamelCase ) onnx.save(__UpperCamelCase , __UpperCamelCase ) return new_model
9
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
9
1
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class __lowerCAmelCase : """simple docstring""" def __init__( self : Any , _snake_case : Optional[int] , _snake_case : int=13 , _snake_case : List[Any]=7 , _snake_case : Any=True , _snake_case : Dict=True , _snake_case : Optional[Any]=True , _snake_case : int=True , _snake_case : int=99 , _snake_case : Union[str, Any]=64 , _snake_case : List[Any]=32 , _snake_case : int=5 , _snake_case : Union[str, Any]=4 , _snake_case : int=37 , _snake_case : int="gelu" , _snake_case : Any=0.1 , _snake_case : List[str]=0.1 , _snake_case : List[Any]=5_12 , _snake_case : int=16 , _snake_case : Optional[int]=2 , _snake_case : Any=0.02 , _snake_case : Optional[Any]=3 , _snake_case : Any=4 , _snake_case : List[str]=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = embedding_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope def _a ( self : int ): """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = ids_tensor([self.batch_size] , self.num_choices ) A__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self : str ): """simple docstring""" return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , ) def _a ( self : Dict , _snake_case : Any , _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : int , _snake_case : Optional[Any] , _snake_case : str , _snake_case : Union[str, Any] ): """simple docstring""" A__ = MegatronBertModel(config=_snake_case ) model.to(_snake_case ) model.eval() A__ = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) A__ = model(_snake_case , token_type_ids=_snake_case ) A__ = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _a ( self : Tuple , _snake_case : List[str] , _snake_case : Any , _snake_case : str , _snake_case : Optional[int] , _snake_case : str , _snake_case : List[Any] , _snake_case : Optional[int] ): """simple docstring""" A__ = MegatronBertForMaskedLM(config=_snake_case ) model.to(_snake_case ) model.eval() A__ = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : str , _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : str , _snake_case : Any , _snake_case : Any , _snake_case : Optional[int] , _snake_case : Dict ): """simple docstring""" A__ = MegatronBertForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() A__ = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : Union[str, Any] , _snake_case : Any , _snake_case : List[str] , _snake_case : List[str] , _snake_case : List[Any] , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : List[Any] ): """simple docstring""" A__ = MegatronBertForNextSentencePrediction(config=_snake_case ) model.to(_snake_case ) model.eval() A__ = model( _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _a ( self : Dict , _snake_case : Optional[Any] , _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : Tuple , _snake_case : str , _snake_case : str , _snake_case : Dict ): """simple docstring""" A__ = MegatronBertForPreTraining(config=_snake_case ) model.to(_snake_case ) model.eval() A__ = model( _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case , next_sentence_label=_snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _a ( self : List[Any] , _snake_case : Union[str, Any] , _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : int , _snake_case : List[Any] , _snake_case : str ): """simple docstring""" A__ = MegatronBertForQuestionAnswering(config=_snake_case ) model.to(_snake_case ) model.eval() A__ = model( _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , start_positions=_snake_case , end_positions=_snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self : Optional[int] , _snake_case : str , _snake_case : Any , _snake_case : int , _snake_case : Dict , _snake_case : int , _snake_case : List[Any] , _snake_case : Tuple ): """simple docstring""" A__ = self.num_labels A__ = MegatronBertForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() A__ = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Union[str, Any] , _snake_case : Tuple , _snake_case : Union[str, Any] , _snake_case : List[str] , _snake_case : str , _snake_case : Optional[Any] , _snake_case : Any , _snake_case : Tuple ): """simple docstring""" A__ = self.num_labels A__ = MegatronBertForTokenClassification(config=_snake_case ) model.to(_snake_case ) model.eval() A__ = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self : str , _snake_case : Dict , _snake_case : Any , _snake_case : Dict , _snake_case : int , _snake_case : Dict , _snake_case : List[Any] , _snake_case : Optional[int] ): """simple docstring""" A__ = self.num_choices A__ = MegatronBertForMultipleChoice(config=_snake_case ) model.to(_snake_case ) model.eval() A__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ = model( _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self : Any ): """simple docstring""" A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : str = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) A__ : List[Any] = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) A__ : Dict = True # test_resize_embeddings = False A__ : List[str] = False def _a ( self : Dict , _snake_case : Tuple , _snake_case : str , _snake_case : Optional[Any]=False ): """simple docstring""" A__ = super()._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) if return_labels: if model_class in get_values(_snake_case ): A__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_snake_case ) A__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_snake_case ) return inputs_dict def _a ( self : str ): """simple docstring""" A__ = MegatronBertModelTester(self ) A__ = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def _a ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Any ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*_snake_case ) def _a ( self : Dict ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*_snake_case ) def _a ( self : Union[str, Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*_snake_case ) def _a ( self : Tuple ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*_snake_case ) def _a ( self : Dict ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*_snake_case ) def _a ( self : int ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*_snake_case ) def _a ( self : Tuple ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*_snake_case ) def _a ( self : Optional[Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*_snake_case ) def A ( __UpperCamelCase ) -> Any: return torch.tensor( __UpperCamelCase , dtype=torch.long , device=__UpperCamelCase , ) SCREAMING_SNAKE_CASE__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip('Model is not available.' ) def _a ( self : int ): """simple docstring""" A__ = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: A__ = os.path.join(os.environ['MYDIR'] , _snake_case ) A__ = MegatronBertModel.from_pretrained(_snake_case ) model.to(_snake_case ) model.half() A__ = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): A__ = model(_snake_case )[0] A__ = torch.Size((1, 9, 10_24) ) self.assertEqual(output.shape , _snake_case ) A__ = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): A__ = output[0, ii, jj] A__ = expected[3 * ii + jj] A__ = 'ii={} jj={} a={} b={}'.format(_snake_case , _snake_case , _snake_case , _snake_case ) self.assertTrue(math.isclose(_snake_case , _snake_case , rel_tol=_snake_case , abs_tol=_snake_case ) , msg=_snake_case )
9
SCREAMING_SNAKE_CASE__ = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' SCREAMING_SNAKE_CASE__ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] SCREAMING_SNAKE_CASE__ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
9
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available SCREAMING_SNAKE_CASE__ = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
9
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : """simple docstring""" @staticmethod def _a ( *_snake_case : Any , **_snake_case : Optional[int] ): """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" A__ : Union[str, Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def _a ( self : List[Any] , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : Union[str, Any] ): """simple docstring""" A__ = pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' ) A__ = [ { 'image': Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'question': 'How many cats are there?', }, { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'question': 'How many cats are there?', }, ] return vqa_pipeline, examples def _a ( self : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : List[str] ): """simple docstring""" A__ = vqa_pipeline(_snake_case , top_k=1 ) self.assertEqual( _snake_case , [ [{'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}], [{'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}], ] , ) @require_torch def _a ( self : Any ): """simple docstring""" A__ = pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' ) A__ = './tests/fixtures/tests_samples/COCO/000000039769.png' A__ = 'How many cats are there?' A__ = vqa_pipeline(image=_snake_case , question='How many cats are there?' , top_k=2 ) self.assertEqual( _snake_case , [{'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}, {'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}] ) A__ = vqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( _snake_case , [{'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}, {'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}] ) @slow @require_torch def _a ( self : Any ): """simple docstring""" A__ = pipeline('visual-question-answering' , model='dandelin/vilt-b32-finetuned-vqa' ) A__ = './tests/fixtures/tests_samples/COCO/000000039769.png' A__ = 'How many cats are there?' A__ = vqa_pipeline(image=_snake_case , question=_snake_case , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}] ) A__ = vqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}] ) A__ = vqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [[{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}]] * 2 , ) @require_tf @unittest.skip('Visual question answering not implemented in TF' ) def _a ( self : Dict ): """simple docstring""" pass
9
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = { '''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegatronBertForCausalLM''', '''MegatronBertForMaskedLM''', '''MegatronBertForMultipleChoice''', '''MegatronBertForNextSentencePrediction''', '''MegatronBertForPreTraining''', '''MegatronBertForQuestionAnswering''', '''MegatronBertForSequenceClassification''', '''MegatronBertForTokenClassification''', '''MegatronBertModel''', '''MegatronBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
9
def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: if exponent == 1: return base if exponent % 2 == 0: A__ = _modexpt(__UpperCamelCase , exponent // 2 , __UpperCamelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__UpperCamelCase , exponent - 1 , __UpperCamelCase )) % modulo_value def A ( __UpperCamelCase = 1_777 , __UpperCamelCase = 1_855 , __UpperCamelCase = 8 ) -> int: A__ = base for _ in range(1 , __UpperCamelCase ): A__ = _modexpt(__UpperCamelCase , __UpperCamelCase , 10**digits ) return result if __name__ == "__main__": print(f'{solution() = }')
9
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : UNetaDModel A__ : KarrasVeScheduler def __init__( self : List[str] , _snake_case : UNetaDModel , _snake_case : KarrasVeScheduler ): """simple docstring""" super().__init__() self.register_modules(unet=_snake_case , scheduler=_snake_case ) @torch.no_grad() def __call__( self : Optional[int] , _snake_case : int = 1 , _snake_case : int = 50 , _snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _snake_case : Optional[str] = "pil" , _snake_case : bool = True , **_snake_case : int , ): """simple docstring""" A__ = self.unet.config.sample_size A__ = (batch_size, 3, img_size, img_size) A__ = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) A__ = randn_tensor(_snake_case , generator=_snake_case , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_snake_case ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper A__ = self.scheduler.schedule[t] A__ = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat A__ , A__ = self.scheduler.add_noise_to_input(_snake_case , _snake_case , generator=_snake_case ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. A__ = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev A__ = self.scheduler.step(_snake_case , _snake_case , _snake_case , _snake_case ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. A__ = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample A__ = self.scheduler.step_correct( _snake_case , _snake_case , _snake_case , _snake_case , step_output.prev_sample , step_output['derivative'] , ) A__ = step_output.prev_sample A__ = (sample / 2 + 0.5).clamp(0 , 1 ) A__ = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A__ = self.numpy_to_pil(_snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=_snake_case )
9
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def A ( __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=False ) -> Dict: A__ = 'backbone.' if is_semantic else '' A__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (f'''{prefix}cls_token''', 'beit.embeddings.cls_token'), (f'''{prefix}patch_embed.proj.weight''', 'beit.embeddings.patch_embeddings.projection.weight'), (f'''{prefix}patch_embed.proj.bias''', 'beit.embeddings.patch_embeddings.projection.bias'), (f'''{prefix}pos_embed''', 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=False ) -> Optional[Any]: for i in range(config.num_hidden_layers ): A__ = 'backbone.' if is_semantic else '' # queries, keys and values A__ = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' ) A__ = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' ) A__ = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' ) A__ = in_proj_weight[ : config.hidden_size, : ] A__ = q_bias A__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ = in_proj_weight[ -config.hidden_size :, : ] A__ = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained A__ = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' ) A__ = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' ) A__ = gamma_a A__ = gamma_a def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: A__ = dct.pop(__UpperCamelCase ) A__ = val def A ( ) -> Dict: A__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' A__ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False ) -> str: A__ = False if 'rvlcdip' in checkpoint_url else True A__ = BeitConfig(use_absolute_position_embeddings=__UpperCamelCase , use_mask_token=__UpperCamelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: A__ = 1_024 A__ = 4_096 A__ = 24 A__ = 16 # labels if "rvlcdip" in checkpoint_url: A__ = 16 A__ = 'huggingface/label-files' A__ = 'rvlcdip-id2label.json' A__ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='dataset' ) , 'r' ) ) A__ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys A__ = torch.hub.load_state_dict_from_url(__UpperCamelCase , map_location='cpu' )['model'] A__ = create_rename_keys(__UpperCamelCase , has_lm_head=__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) read_in_q_k_v(__UpperCamelCase , __UpperCamelCase , has_lm_head=__UpperCamelCase ) # load HuggingFace model A__ = BeitForMaskedImageModeling(__UpperCamelCase ) if has_lm_head else BeitForImageClassification(__UpperCamelCase ) model.eval() model.load_state_dict(__UpperCamelCase ) # Check outputs on an image A__ = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__UpperCamelCase ) A__ = prepare_img() A__ = image_processor(images=__UpperCamelCase , return_tensors='pt' ) A__ = encoding['pixel_values'] A__ = model(__UpperCamelCase ) A__ = outputs.logits # verify logits A__ = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 196, 8_192] assert logits.shape == torch.Size(__UpperCamelCase ), "Shape of logits not as expected" Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if push_to_hub: if has_lm_head: A__ = 'dit-base' if 'base' in checkpoint_url else 'dit-large' else: A__ = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip' image_processor.push_to_hub( repo_path_or_name=Path(__UpperCamelCase , __UpperCamelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=__UpperCamelCase , ) model.push_to_hub( repo_path_or_name=Path(__UpperCamelCase , __UpperCamelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=__UpperCamelCase , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
9
1
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline SCREAMING_SNAKE_CASE__ = { '''n_samples''': 6_4, '''horizon''': 3_2, '''num_inference_steps''': 2_0, '''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network '''scale_grad_by_std''': True, '''scale''': 0.1, '''eta''': 0.0, '''t_grad_cutoff''': 2, '''device''': '''cpu''', } if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = '''hopper-medium-v2''' SCREAMING_SNAKE_CASE__ = gym.make(env_name) SCREAMING_SNAKE_CASE__ = ValueGuidedRLPipeline.from_pretrained( '''bglick13/hopper-medium-v2-value-function-hor32''', env=env, ) env.seed(0) SCREAMING_SNAKE_CASE__ = env.reset() SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 1_0_0_0 SCREAMING_SNAKE_CASE__ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy SCREAMING_SNAKE_CASE__ = pipeline(obs, planning_horizon=3_2) # execute action in environment SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = env.step(denorm_actions) SCREAMING_SNAKE_CASE__ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f'Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:' f' {total_score}' ) # save observations for rendering rollout.append(next_observation.copy()) SCREAMING_SNAKE_CASE__ = next_observation except KeyboardInterrupt: pass print(f'Total reward: {total_reward}')
9
SCREAMING_SNAKE_CASE__ = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> list[str]: A__ = set() # keep track of all the paths to be checked A__ = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue A__ = queue.pop(0 ) # get the last node from the path A__ = path[-1] if node not in explored: A__ = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: A__ = list(__UpperCamelCase ) new_path.append(__UpperCamelCase ) queue.append(__UpperCamelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(__UpperCamelCase ) # in case there's no path between the 2 nodes return [] def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 A__ = [start] A__ = set(__UpperCamelCase ) # Keep tab on distances from `start` node. A__ = {start: 0, target: -1} while queue: A__ = queue.pop(0 ) if node == target: A__ = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(__UpperCamelCase ) queue.append(__UpperCamelCase ) A__ = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
9
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 6_50, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 6_00, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 6_00, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ] ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _a ( self : int ): """simple docstring""" if self.framework == "pytorch": subprocess.run( F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='utf-8' , check=_snake_case , ) assert hasattr(self , 'env' ) def _a ( self : Tuple , _snake_case : int ): """simple docstring""" A__ = F'''{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}''' # distributed data settings A__ = {'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=_snake_case , instance_count=_snake_case , instance_type=self.instance_type , debugger_hook_config=_snake_case , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=_snake_case , py_version='py36' , ) def _a ( self : Dict , _snake_case : str ): """simple docstring""" TrainingJobAnalytics(_snake_case ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def _a ( self : List[str] , _snake_case : int ): """simple docstring""" A__ = self.create_estimator(_snake_case ) # run training estimator.fit() # result dataframe A__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis A__ = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) A__ = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping A__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'''{estimator.latest_training_job.name}.json''' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , _snake_case )
9
def A ( __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: A__ = 0 A__ = len(__UpperCamelCase ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__UpperCamelCase ): return None A__ = sorted_collection[point] if current_item == item: return point else: if point < left: A__ = left A__ = point elif point > right: A__ = right A__ = point else: if item < current_item: A__ = point - 1 else: A__ = point + 1 return None def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__UpperCamelCase ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) elif point > right: return interpolation_search_by_recursion(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , point - 1 ) else: return interpolation_search_by_recursion( __UpperCamelCase , __UpperCamelCase , point + 1 , __UpperCamelCase ) def A ( __UpperCamelCase ) -> List[str]: if collection != sorted(__UpperCamelCase ): raise ValueError('Collection must be ascending sorted' ) return True if __name__ == "__main__": import sys SCREAMING_SNAKE_CASE__ = 0 if debug == 1: SCREAMING_SNAKE_CASE__ = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit('''Sequence must be ascending sorted to apply interpolation search''') SCREAMING_SNAKE_CASE__ = 6_7 SCREAMING_SNAKE_CASE__ = interpolation_search(collection, target) if result is not None: print(f'{target} found at positions: {result}') else: print('''Not found''')
9
1
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _a ( self : Optional[Any] ): """simple docstring""" super().tearDown() gc.collect() def _a ( self : str ): """simple docstring""" A__ , A__ = FlaxStableDiffusionPipeline.from_pretrained( 'stabilityai/stable-diffusion-2' , revision='bf16' , dtype=jnp.bfloataa , ) A__ = 'A painting of a squirrel eating a burger' A__ = jax.device_count() A__ = num_samples * [prompt] A__ = sd_pipe.prepare_inputs(_snake_case ) A__ = replicate(_snake_case ) A__ = shard(_snake_case ) A__ = jax.random.PRNGKey(0 ) A__ = jax.random.split(_snake_case , jax.device_count() ) A__ = sd_pipe(_snake_case , _snake_case , _snake_case , num_inference_steps=25 , jit=_snake_case )[0] assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3) A__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) A__ = images[0, 2_53:2_56, 2_53:2_56, -1] A__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) A__ = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.4_5508, 0.4512] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def _a ( self : Optional[int] ): """simple docstring""" A__ = 'stabilityai/stable-diffusion-2' A__ , A__ = FlaxDPMSolverMultistepScheduler.from_pretrained(_snake_case , subfolder='scheduler' ) A__ , A__ = FlaxStableDiffusionPipeline.from_pretrained( _snake_case , scheduler=_snake_case , revision='bf16' , dtype=jnp.bfloataa , ) A__ = scheduler_params A__ = 'A painting of a squirrel eating a burger' A__ = jax.device_count() A__ = num_samples * [prompt] A__ = sd_pipe.prepare_inputs(_snake_case ) A__ = replicate(_snake_case ) A__ = shard(_snake_case ) A__ = jax.random.PRNGKey(0 ) A__ = jax.random.split(_snake_case , jax.device_count() ) A__ = sd_pipe(_snake_case , _snake_case , _snake_case , num_inference_steps=25 , jit=_snake_case )[0] assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3) A__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) A__ = images[0, 2_53:2_56, 2_53:2_56, -1] A__ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) A__ = jnp.array([0.4336, 0.4_2969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
9
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , *_snake_case : int , **_snake_case : Optional[int] ): """simple docstring""" warnings.warn( 'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use CLIPImageProcessor instead.' , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
9
1
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase : """simple docstring""" def __init__( self : Dict , _snake_case : Union[str, Any] , _snake_case : Optional[Any]=12 , _snake_case : Any=7 , _snake_case : List[str]=True , _snake_case : int=True , _snake_case : int=True , _snake_case : Tuple=99 , _snake_case : List[Any]=32 , _snake_case : Optional[int]=32 , _snake_case : List[str]=2 , _snake_case : List[str]=4 , _snake_case : List[Any]=37 , _snake_case : Union[str, Any]=0.1 , _snake_case : Tuple=0.1 , _snake_case : Dict=5_12 , _snake_case : Union[str, Any]=0.02 , _snake_case : Any=0 , _snake_case : Optional[Any]=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = projection_dim A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = dropout A__ = attention_dropout A__ = max_position_embeddings A__ = initializer_range A__ = scope A__ = bos_token_id def _a ( self : Optional[Any] ): """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: A__ = input_mask.numpy() A__ , A__ = input_mask.shape A__ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_snake_case ): A__ = 1 A__ = 0 A__ = self.get_config() return config, input_ids, tf.convert_to_tensor(_snake_case ) def _a ( self : Tuple ): """simple docstring""" return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _a ( self : int , _snake_case : Union[str, Any] , _snake_case : Any , _snake_case : List[str] ): """simple docstring""" A__ = TFBlipTextModel(config=_snake_case ) A__ = model(_snake_case , attention_mask=_snake_case , training=_snake_case ) A__ = model(_snake_case , training=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _a ( self : str ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Tuple = (TFBlipTextModel,) if is_tf_available() else () A__ : Optional[int] = False A__ : Union[str, Any] = False A__ : Union[str, Any] = False def _a ( self : Any ): """simple docstring""" A__ = BlipTextModelTester(self ) A__ = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def _a ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Union[str, Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def _a ( self : Tuple ): """simple docstring""" pass def _a ( self : int ): """simple docstring""" pass @unittest.skip(reason='Blip does not use inputs_embeds' ) def _a ( self : Any ): """simple docstring""" pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _a ( self : str ): """simple docstring""" pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _a ( self : Optional[Any] ): """simple docstring""" pass @slow def _a ( self : Union[str, Any] ): """simple docstring""" for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFBlipTextModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def _a ( self : int , _snake_case : int=True ): """simple docstring""" super().test_pt_tf_model_equivalence(allow_missing_keys=_snake_case )
9
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () SCREAMING_SNAKE_CASE__ = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). SCREAMING_SNAKE_CASE__ = [0, 2_5, 5_0] SCREAMING_SNAKE_CASE__ = [2_5, 5_0, 7_5] SCREAMING_SNAKE_CASE__ = fuzz.membership.trimf(X, abca) SCREAMING_SNAKE_CASE__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. SCREAMING_SNAKE_CASE__ = np.ones(7_5) SCREAMING_SNAKE_CASE__ = np.zeros((7_5,)) # 1. Union = max(µA(x), µB(x)) SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] SCREAMING_SNAKE_CASE__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) SCREAMING_SNAKE_CASE__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
9
1
import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def A ( __UpperCamelCase ) -> Union[str, Any]: if hor == 128: A__ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A__ = (32, 128, 256) A__ = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: A__ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A__ = (32, 64, 128, 256) A__ = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') A__ = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) A__ = model.state_dict() A__ = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 65_536, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } A__ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A__ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A__ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() , f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , 'w' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) def A ( ) -> List[str]: A__ = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 128, 256), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 65_536, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } A__ = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) A__ = model A__ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A__ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A__ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() , 'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' , 'w' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": unet(3_2) # unet(128) value_function()
9
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : """simple docstring""" @staticmethod def _a ( *_snake_case : int , **_snake_case : List[str] ): """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" A__ : List[str] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def _a ( self : Any , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : Optional[Any] ): """simple docstring""" A__ = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) A__ = [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] return object_detector, examples def _a ( self : int , _snake_case : int , _snake_case : List[str] ): """simple docstring""" A__ = object_detector(examples[0] , threshold=0.0 ) A__ = len(_snake_case ) self.assertGreater(_snake_case , 0 ) self.assertEqual( _snake_case , [ { 'score': ANY(_snake_case ), 'label': ANY(_snake_case ), 'box': {'xmin': ANY(_snake_case ), 'ymin': ANY(_snake_case ), 'xmax': ANY(_snake_case ), 'ymax': ANY(_snake_case )}, } for i in range(_snake_case ) ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def _a ( self : List[str] ): """simple docstring""" pass @require_torch def _a ( self : Optional[int] ): """simple docstring""" A__ = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) A__ = object_detector( './tests/fixtures/tests_samples/COCO/000000039769.png' , candidate_labels=['cat', 'remote', 'couch'] , threshold=0.64 , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {'score': 0.7235, 'label': 'cat', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7218, 'label': 'remote', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7184, 'label': 'couch', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.6748, 'label': 'remote', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6656, 'label': 'cat', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6614, 'label': 'couch', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6456, 'label': 'remote', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 2_74, 'xmax': 93, 'ymax': 2_97}}, {'score': 0.6419, 'label': 'cat', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, ] , ) A__ = object_detector( [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ [ {'score': 0.7235, 'label': 'cat', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7218, 'label': 'remote', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7184, 'label': 'couch', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.6748, 'label': 'remote', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6656, 'label': 'cat', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6614, 'label': 'couch', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6456, 'label': 'remote', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 2_74, 'xmax': 93, 'ymax': 2_97}}, {'score': 0.6419, 'label': 'cat', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, ] ] , ) @require_torch @slow def _a ( self : int ): """simple docstring""" A__ = pipeline('zero-shot-object-detection' ) A__ = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ] , ) A__ = object_detector( [ { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, ] , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ], [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ], ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def _a ( self : int ): """simple docstring""" pass @require_torch @slow def _a ( self : str ): """simple docstring""" A__ = 0.2 A__ = pipeline('zero-shot-object-detection' ) A__ = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , threshold=_snake_case , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, ] , ) @require_torch @slow def _a ( self : Any ): """simple docstring""" A__ = 2 A__ = pipeline('zero-shot-object-detection' ) A__ = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , top_k=_snake_case , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, ] , )
9
1
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , ) -> Optional[int]: if config_name_or_path is None: A__ = 'facebook/rag-token-base' if model_type == 'rag_token' else 'facebook/rag-sequence-base' if generator_tokenizer_name_or_path is None: A__ = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: A__ = question_encoder_name_or_path A__ = RagTokenForGeneration if model_type == 'rag_token' else RagSequenceForGeneration # Save model. A__ = RagConfig.from_pretrained(__UpperCamelCase ) A__ = AutoConfig.from_pretrained(__UpperCamelCase ) A__ = AutoConfig.from_pretrained(__UpperCamelCase ) A__ = gen_config A__ = question_encoder_config A__ = model_class.from_pretrained_question_encoder_generator( __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase ) rag_model.save_pretrained(__UpperCamelCase ) # Sanity check. model_class.from_pretrained(__UpperCamelCase ) # Save tokenizers. A__ = AutoTokenizer.from_pretrained(__UpperCamelCase ) gen_tokenizer.save_pretrained(dest_dir / 'generator_tokenizer/' ) A__ = AutoTokenizer.from_pretrained(__UpperCamelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / 'question_encoder_tokenizer/' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
9
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml SCREAMING_SNAKE_CASE__ = NewType('''DataClass''', Any) SCREAMING_SNAKE_CASE__ = NewType('''DataClassType''', Any) def A ( __UpperCamelCase ) -> List[Any]: if isinstance(__UpperCamelCase , __UpperCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def A ( __UpperCamelCase ) -> Callable[[str], Any]: A__ = {str(__UpperCamelCase ): choice for choice in choices} return lambda __UpperCamelCase : str_to_choice.get(__UpperCamelCase , __UpperCamelCase ) def A ( *, __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = dataclasses.MISSING , __UpperCamelCase = dataclasses.MISSING , __UpperCamelCase = None , **__UpperCamelCase , ) -> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls A__ = {} if aliases is not None: A__ = aliases if help is not None: A__ = help return dataclasses.field(metadata=__UpperCamelCase , default=__UpperCamelCase , default_factory=__UpperCamelCase , **__UpperCamelCase ) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Iterable[DataClassType] def __init__( self : Optional[int] , _snake_case : Union[DataClassType, Iterable[DataClassType]] , **_snake_case : Tuple ): """simple docstring""" if "formatter_class" not in kwargs: A__ = ArgumentDefaultsHelpFormatter super().__init__(**_snake_case ) if dataclasses.is_dataclass(_snake_case ): A__ = [dataclass_types] A__ = list(_snake_case ) for dtype in self.dataclass_types: self._add_dataclass_arguments(_snake_case ) @staticmethod def _a ( _snake_case : ArgumentParser , _snake_case : dataclasses.Field ): """simple docstring""" A__ = F'''--{field.name}''' A__ = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , _snake_case ): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default' ) A__ = kwargs.pop('aliases' , [] ) if isinstance(_snake_case , _snake_case ): A__ = [aliases] A__ = getattr(field.type , '__origin__' , field.type ) if origin_type is Union or (hasattr(_snake_case , 'UnionType' ) and isinstance(_snake_case , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(_snake_case ) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' F''' Problem encountered in field \'{field.name}\'.''' ) if type(_snake_case ) not in field.type.__args__: # filter `str` in Union A__ = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] A__ = getattr(field.type , '__origin__' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) A__ = ( field.type.__args__[0] if isinstance(_snake_case , field.type.__args__[1] ) else field.type.__args__[1] ) A__ = getattr(field.type , '__origin__' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) A__ = {} if origin_type is Literal or (isinstance(field.type , _snake_case ) and issubclass(field.type , _snake_case )): if origin_type is Literal: A__ = field.type.__args__ else: A__ = [x.value for x in field.type] A__ = make_choice_type_function(kwargs['choices'] ) if field.default is not dataclasses.MISSING: A__ = field.default else: A__ = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument A__ = copy(_snake_case ) # Hack because type=bool in argparse does not behave as we want. A__ = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. A__ = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way A__ = default # This tells argparse we accept 0 or 1 value after --field_name A__ = '?' # This is the value that will get picked if we do --field_name (without value) A__ = True elif isclass(_snake_case ) and issubclass(_snake_case , _snake_case ): A__ = field.type.__args__[0] A__ = '+' if field.default_factory is not dataclasses.MISSING: A__ = field.default_factory() elif field.default is dataclasses.MISSING: A__ = True else: A__ = field.type if field.default is not dataclasses.MISSING: A__ = field.default elif field.default_factory is not dataclasses.MISSING: A__ = field.default_factory() else: A__ = True parser.add_argument(_snake_case , *_snake_case , **_snake_case ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): A__ = False parser.add_argument(F'''--no_{field.name}''' , action='store_false' , dest=field.name , **_snake_case ) def _a ( self : Any , _snake_case : DataClassType ): """simple docstring""" if hasattr(_snake_case , '_argument_group_name' ): A__ = self.add_argument_group(dtype._argument_group_name ) else: A__ = self try: A__ = get_type_hints(_snake_case ) except NameError: raise RuntimeError( F'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_snake_case ): A__ = '.'.join(map(_snake_case , sys.version_info[:3] ) ) raise RuntimeError( F'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.' ) from ex raise for field in dataclasses.fields(_snake_case ): if not field.init: continue A__ = type_hints[field.name] self._parse_dataclass_field(_snake_case , _snake_case ) def _a ( self : Optional[int] , _snake_case : Optional[Any]=None , _snake_case : Any=False , _snake_case : int=True , _snake_case : List[Any]=None , _snake_case : int=None , ): """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): A__ = [] if args_filename: args_files.append(Path(_snake_case ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('.args' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values A__ = ArgumentParser() args_file_parser.add_argument(_snake_case , type=_snake_case , action='append' ) # Use only remaining args for further parsing (remove the args_file_flag) A__ , A__ = args_file_parser.parse_known_args(args=_snake_case ) A__ = vars(_snake_case ).get(args_file_flag.lstrip('-' ) , _snake_case ) if cmd_args_file_paths: args_files.extend([Path(_snake_case ) for p in cmd_args_file_paths] ) A__ = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last A__ = file_args + args if args is not None else file_args + sys.argv[1:] A__ , A__ = self.parse_known_args(args=_snake_case ) A__ = [] for dtype in self.dataclass_types: A__ = {f.name for f in dataclasses.fields(_snake_case ) if f.init} A__ = {k: v for k, v in vars(_snake_case ).items() if k in keys} for k in keys: delattr(_snake_case , _snake_case ) A__ = dtype(**_snake_case ) outputs.append(_snake_case ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(_snake_case ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def _a ( self : Dict , _snake_case : Dict[str, Any] , _snake_case : bool = False ): """simple docstring""" A__ = set(args.keys() ) A__ = [] for dtype in self.dataclass_types: A__ = {f.name for f in dataclasses.fields(_snake_case ) if f.init} A__ = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) A__ = dtype(**_snake_case ) outputs.append(_snake_case ) if not allow_extra_keys and unused_keys: raise ValueError(F'''Some keys are not used by the HfArgumentParser: {sorted(_snake_case )}''' ) return tuple(_snake_case ) def _a ( self : Dict , _snake_case : str , _snake_case : bool = False ): """simple docstring""" with open(Path(_snake_case ) , encoding='utf-8' ) as open_json_file: A__ = json.loads(open_json_file.read() ) A__ = self.parse_dict(_snake_case , allow_extra_keys=_snake_case ) return tuple(_snake_case ) def _a ( self : Tuple , _snake_case : str , _snake_case : bool = False ): """simple docstring""" A__ = self.parse_dict(yaml.safe_load(Path(_snake_case ).read_text() ) , allow_extra_keys=_snake_case ) return tuple(_snake_case )
9
1
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration SCREAMING_SNAKE_CASE__ = 5_0_0_0_0_0 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = os.path.split(__file__) SCREAMING_SNAKE_CASE__ = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def A ( __UpperCamelCase , **__UpperCamelCase ) -> List[Any]: A__ = dataset.map(**__UpperCamelCase ) @get_duration def A ( __UpperCamelCase , **__UpperCamelCase ) -> Optional[Any]: A__ = dataset.filter(**__UpperCamelCase ) def A ( ) -> Any: A__ = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: A__ = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) A__ = generate_example_dataset( os.path.join(__UpperCamelCase , 'dataset.arrow' ) , __UpperCamelCase , num_examples=__UpperCamelCase ) A__ = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=__UpperCamelCase ) def tokenize(__UpperCamelCase ): return tokenizer(examples['text'] ) A__ = map(__UpperCamelCase ) A__ = map(__UpperCamelCase , batched=__UpperCamelCase ) A__ = map(__UpperCamelCase , function=lambda __UpperCamelCase : None , batched=__UpperCamelCase ) with dataset.formatted_as(type='numpy' ): A__ = map(__UpperCamelCase , function=lambda __UpperCamelCase : None , batched=__UpperCamelCase ) with dataset.formatted_as(type='pandas' ): A__ = map(__UpperCamelCase , function=lambda __UpperCamelCase : None , batched=__UpperCamelCase ) with dataset.formatted_as(type='torch' , columns='numbers' ): A__ = map(__UpperCamelCase , function=lambda __UpperCamelCase : None , batched=__UpperCamelCase ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): A__ = map(__UpperCamelCase , function=lambda __UpperCamelCase : None , batched=__UpperCamelCase ) A__ = map(__UpperCamelCase , function=__UpperCamelCase , batched=__UpperCamelCase ) A__ = filter(__UpperCamelCase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(__UpperCamelCase , 'wb' ) as f: f.write(json.dumps(__UpperCamelCase ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
9
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def A ( __UpperCamelCase ) -> List[Any]: print('Loading config file...' ) def flatten_yaml_as_dict(__UpperCamelCase , __UpperCamelCase="" , __UpperCamelCase="." ): A__ = [] for k, v in d.items(): A__ = parent_key + sep + k if parent_key else k if isinstance(__UpperCamelCase , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(__UpperCamelCase , __UpperCamelCase , sep=__UpperCamelCase ).items() ) else: items.append((new_key, v) ) return dict(__UpperCamelCase ) A__ = argparse.Namespace() with open(__UpperCamelCase , 'r' ) as yaml_file: try: A__ = yaml.load(__UpperCamelCase , Loader=yaml.FullLoader ) A__ = flatten_yaml_as_dict(__UpperCamelCase ) for k, v in flat_cfg.items(): setattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) except yaml.YAMLError as exc: logger.error('Error while loading config file: {}. Error message: {}'.format(__UpperCamelCase , str(__UpperCamelCase ) ) ) return config def A ( __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: A__ = MobileViTVaConfig() A__ = False # dataset if task_name.startswith('imagenet1k_' ): A__ = 1_000 if int(task_name.strip().split('_' )[-1] ) == 384: A__ = 384 else: A__ = 256 A__ = 'imagenet-1k-id2label.json' elif task_name.startswith('imagenet21k_to_1k_' ): A__ = 21_000 if int(task_name.strip().split('_' )[-1] ) == 384: A__ = 384 else: A__ = 256 A__ = 'imagenet-22k-id2label.json' elif task_name.startswith('ade20k_' ): A__ = 151 A__ = 512 A__ = 'ade20k-id2label.json' A__ = True elif task_name.startswith('voc_' ): A__ = 21 A__ = 512 A__ = 'pascal-voc-id2label.json' A__ = True # orig_config A__ = load_orig_config_file(__UpperCamelCase ) assert getattr(__UpperCamelCase , 'model.classification.name' , -1 ) == "mobilevit_v2", "Invalid model" A__ = getattr(__UpperCamelCase , 'model.classification.mitv2.width_multiplier' , 1.0 ) assert ( getattr(__UpperCamelCase , 'model.classification.mitv2.attn_norm_layer' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" A__ = getattr(__UpperCamelCase , 'model.classification.activation.name' , 'swish' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: A__ = getattr(__UpperCamelCase , 'model.segmentation.output_stride' , 16 ) if "_deeplabv3" in task_name: A__ = getattr(__UpperCamelCase , 'model.segmentation.deeplabv3.aspp_rates' , [12, 24, 36] ) A__ = getattr(__UpperCamelCase , 'model.segmentation.deeplabv3.aspp_out_channels' , 512 ) A__ = getattr(__UpperCamelCase , 'model.segmentation.deeplabv3.aspp_dropout' , 0.1 ) # id2label A__ = 'huggingface/label-files' A__ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='dataset' ) , 'r' ) ) A__ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} return config def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[str]: A__ = dct.pop(__UpperCamelCase ) A__ = val def A ( __UpperCamelCase , __UpperCamelCase=False ) -> Dict: if base_model: A__ = '' else: A__ = 'mobilevitv2.' A__ = [] for k in state_dict.keys(): if k[:8] == "encoder.": A__ = k[8:] else: A__ = k if ".block." in k: A__ = k_new.replace('.block.' , '.' ) if ".conv." in k: A__ = k_new.replace('.conv.' , '.convolution.' ) if ".norm." in k: A__ = k_new.replace('.norm.' , '.normalization.' ) if "conv_1." in k: A__ = k_new.replace('conv_1.' , f'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if f'''layer_{i}.''' in k: A__ = k_new.replace(f'''layer_{i}.''' , f'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: A__ = k_new.replace('.exp_1x1.' , '.expand_1x1.' ) if ".red_1x1." in k: A__ = k_new.replace('.red_1x1.' , '.reduce_1x1.' ) for i in [3, 4, 5]: if f'''layer_{i}.0.''' in k: A__ = k_new.replace(f'''layer_{i}.0.''' , f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if f'''layer_{i}.1.local_rep.0.''' in k: A__ = k_new.replace(f'''layer_{i}.1.local_rep.0.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if f'''layer_{i}.1.local_rep.1.''' in k: A__ = k_new.replace(f'''layer_{i}.1.local_rep.1.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: A__ = [0, 1] elif i == 4: A__ = [0, 1, 2, 3] elif i == 5: A__ = [0, 1, 2] for j in j_in: if f'''layer_{i}.1.global_rep.{j}.''' in k: A__ = k_new.replace( f'''layer_{i}.1.global_rep.{j}.''' , f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if f'''layer_{i}.1.global_rep.{j+1}.''' in k: A__ = k_new.replace( f'''layer_{i}.1.global_rep.{j+1}.''' , f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if f'''layer_{i}.1.conv_proj.''' in k: A__ = k_new.replace(f'''layer_{i}.1.conv_proj.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: A__ = k_new.replace('pre_norm_attn.0.' , 'layernorm_before.' ) if "pre_norm_attn.1." in k: A__ = k_new.replace('pre_norm_attn.1.' , 'attention.' ) if "pre_norm_ffn.0." in k: A__ = k_new.replace('pre_norm_ffn.0.' , 'layernorm_after.' ) if "pre_norm_ffn.1." in k: A__ = k_new.replace('pre_norm_ffn.1.' , 'ffn.conv1.' ) if "pre_norm_ffn.3." in k: A__ = k_new.replace('pre_norm_ffn.3.' , 'ffn.conv2.' ) if "classifier.1." in k: A__ = k_new.replace('classifier.1.' , 'classifier.' ) if "seg_head." in k: A__ = k_new.replace('seg_head.' , 'segmentation_head.' ) if ".aspp_layer." in k: A__ = k_new.replace('.aspp_layer.' , '.' ) if ".aspp_pool." in k: A__ = k_new.replace('.aspp_pool.' , '.' ) rename_keys.append((k, k_new) ) return rename_keys def A ( __UpperCamelCase ) -> Tuple: A__ = [] for k in state_dict.keys(): if k.startswith('seg_head.aux_head.' ): keys_to_ignore.append(__UpperCamelCase ) for k in keys_to_ignore: state_dict.pop(__UpperCamelCase , __UpperCamelCase ) def A ( ) -> str: A__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" A__ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: A__ = get_mobilevitva_config(__UpperCamelCase , __UpperCamelCase ) # load original state_dict A__ = torch.load(__UpperCamelCase , map_location='cpu' ) # load huggingface model if task_name.startswith('ade20k_' ) or task_name.startswith('voc_' ): A__ = MobileViTVaForSemanticSegmentation(__UpperCamelCase ).eval() A__ = False else: A__ = MobileViTVaForImageClassification(__UpperCamelCase ).eval() A__ = False # remove and rename some keys of load the original model A__ = checkpoint remove_unused_keys(__UpperCamelCase ) A__ = create_rename_keys(__UpperCamelCase , base_model=__UpperCamelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # load modified state_dict model.load_state_dict(__UpperCamelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor A__ = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) A__ = image_processor(images=prepare_img() , return_tensors='pt' ) A__ = model(**__UpperCamelCase ) # verify classification model if task_name.startswith('imagenet' ): A__ = outputs.logits A__ = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('imagenet1k_256' ) and config.width_multiplier == 1.0: # expected_logits for base variant A__ = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ) assert torch.allclose(logits[0, :3] , __UpperCamelCase , atol=1E-4 ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''imagenet1k_256''', type=str, help=( '''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ''' ''' Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 ''' ), choices=[ '''imagenet1k_256''', '''imagenet1k_384''', '''imagenet21k_to_1k_256''', '''imagenet21k_to_1k_384''', '''ade20k_deeplabv3''', '''voc_deeplabv3''', ], ) parser.add_argument( '''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
9
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
9
import argparse from collections import defaultdict import yaml SCREAMING_SNAKE_CASE__ = '''docs/source/en/_toctree.yml''' def A ( __UpperCamelCase ) -> Optional[Any]: A__ = defaultdict(__UpperCamelCase ) for doc in model_doc: counts[doc["local"]] += 1 A__ = [key for key, value in counts.items() if value > 1] A__ = [] for duplicate_key in duplicates: A__ = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(__UpperCamelCase ) > 1: raise ValueError( f'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(__UpperCamelCase , key=lambda __UpperCamelCase : s["title"].lower() ) def A ( __UpperCamelCase=False ) -> str: with open(__UpperCamelCase , encoding='utf-8' ) as f: A__ = yaml.safe_load(f.read() ) # Get to the API doc A__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 A__ = content[api_idx]['sections'] # Then to the model doc A__ = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 A__ = api_doc[model_idx]['sections'] A__ = [(idx, section) for idx, section in enumerate(__UpperCamelCase ) if 'sections' in section] A__ = False for idx, modality_doc in modalities_docs: A__ = modality_doc['sections'] A__ = clean_model_doc_toc(__UpperCamelCase ) if old_modality_doc != new_modality_doc: A__ = True if overwrite: A__ = new_modality_doc if diff: if overwrite: A__ = model_doc A__ = api_doc with open(__UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(__UpperCamelCase , allow_unicode=__UpperCamelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') SCREAMING_SNAKE_CASE__ = parser.parse_args() check_model_doc(args.fix_and_overwrite)
9
1
from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # pylint: disable=invalid-name SCREAMING_SNAKE_CASE__ = ''' Examples: ```py >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline >>> import torch >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior") >>> pipe_prior.to("cuda") >>> prompt = "red cat, 4k photo" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> negative_image_emb = out.negative_image_embeds >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1") >>> pipe.to("cuda") >>> image = pipe( ... prompt, ... image_embeds=image_emb, ... negative_image_embeds=negative_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... ).images >>> image[0].save("cat.png") ``` ''' def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=8 ) -> Tuple: A__ = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 A__ = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Tuple , _snake_case : MultilingualCLIP , _snake_case : XLMRobertaTokenizer , _snake_case : UNetaDConditionModel , _snake_case : Union[DDIMScheduler, DDPMScheduler] , _snake_case : VQModel , ): """simple docstring""" super().__init__() self.register_modules( text_encoder=_snake_case , tokenizer=_snake_case , unet=_snake_case , scheduler=_snake_case , movq=_snake_case , ) A__ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _a ( self : List[Any] , _snake_case : List[str] , _snake_case : int , _snake_case : Tuple , _snake_case : Any , _snake_case : Tuple , _snake_case : Optional[Any] ): """simple docstring""" if latents is None: A__ = randn_tensor(_snake_case , generator=_snake_case , device=_snake_case , dtype=_snake_case ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) A__ = latents.to(_snake_case ) A__ = latents * scheduler.init_noise_sigma return latents def _a ( self : Dict , _snake_case : List[str] , _snake_case : Any , _snake_case : Union[str, Any] , _snake_case : Any , _snake_case : Tuple=None , ): """simple docstring""" A__ = len(_snake_case ) if isinstance(_snake_case , _snake_case ) else 1 # get prompt text embeddings A__ = self.tokenizer( _snake_case , padding='max_length' , truncation=_snake_case , max_length=77 , return_attention_mask=_snake_case , add_special_tokens=_snake_case , return_tensors='pt' , ) A__ = text_inputs.input_ids A__ = self.tokenizer(_snake_case , padding='longest' , return_tensors='pt' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(_snake_case , _snake_case ): A__ = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) A__ = text_input_ids.to(_snake_case ) A__ = text_inputs.attention_mask.to(_snake_case ) A__ , A__ = self.text_encoder( input_ids=_snake_case , attention_mask=_snake_case ) A__ = prompt_embeds.repeat_interleave(_snake_case , dim=0 ) A__ = text_encoder_hidden_states.repeat_interleave(_snake_case , dim=0 ) A__ = text_mask.repeat_interleave(_snake_case , dim=0 ) if do_classifier_free_guidance: A__ = 42 if negative_prompt is None: A__ = [''] * batch_size elif type(_snake_case ) is not type(_snake_case ): raise TypeError( F'''`negative_prompt` should be the same type to `prompt`, but got {type(_snake_case )} !=''' F''' {type(_snake_case )}.''' ) elif isinstance(_snake_case , _snake_case ): A__ = [negative_prompt] elif batch_size != len(_snake_case ): raise ValueError( F'''`negative_prompt`: {negative_prompt} has batch size {len(_snake_case )}, but `prompt`:''' F''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' ' the batch size of `prompt`.' ) else: A__ = negative_prompt A__ = self.tokenizer( _snake_case , padding='max_length' , max_length=77 , truncation=_snake_case , return_attention_mask=_snake_case , add_special_tokens=_snake_case , return_tensors='pt' , ) A__ = uncond_input.input_ids.to(_snake_case ) A__ = uncond_input.attention_mask.to(_snake_case ) A__ , A__ = self.text_encoder( input_ids=_snake_case , attention_mask=_snake_case ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A__ = negative_prompt_embeds.shape[1] A__ = negative_prompt_embeds.repeat(1 , _snake_case ) A__ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _snake_case ) A__ = uncond_text_encoder_hidden_states.shape[1] A__ = uncond_text_encoder_hidden_states.repeat(1 , _snake_case , 1 ) A__ = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , _snake_case , -1 ) A__ = uncond_text_mask.repeat_interleave(_snake_case , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A__ = torch.cat([negative_prompt_embeds, prompt_embeds] ) A__ = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) A__ = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def _a ( self : Union[str, Any] , _snake_case : int=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) A__ = torch.device(F'''cuda:{gpu_id}''' ) A__ = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_snake_case , _snake_case ) def _a ( self : Any , _snake_case : Optional[Any]=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) A__ = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_snake_case ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) A__ = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: A__ , A__ = cpu_offload_with_hook(_snake_case , _snake_case , prev_module_hook=_snake_case ) if self.safety_checker is not None: A__ , A__ = cpu_offload_with_hook(self.safety_checker , _snake_case , prev_module_hook=_snake_case ) # We'll offload the last model manually. A__ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _a ( self : Union[str, Any] ): """simple docstring""" if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_snake_case , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_snake_case ) def __call__( self : List[str] , _snake_case : Union[str, List[str]] , _snake_case : Union[torch.FloatTensor, List[torch.FloatTensor]] , _snake_case : Union[torch.FloatTensor, List[torch.FloatTensor]] , _snake_case : Optional[Union[str, List[str]]] = None , _snake_case : int = 5_12 , _snake_case : int = 5_12 , _snake_case : int = 1_00 , _snake_case : float = 4.0 , _snake_case : int = 1 , _snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _snake_case : Optional[torch.FloatTensor] = None , _snake_case : Optional[str] = "pil" , _snake_case : bool = True , ): """simple docstring""" if isinstance(_snake_case , _snake_case ): A__ = 1 elif isinstance(_snake_case , _snake_case ): A__ = len(_snake_case ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(_snake_case )}''' ) A__ = self._execution_device A__ = batch_size * num_images_per_prompt A__ = guidance_scale > 1.0 A__ , A__ , A__ = self._encode_prompt( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) if isinstance(_snake_case , _snake_case ): A__ = torch.cat(_snake_case , dim=0 ) if isinstance(_snake_case , _snake_case ): A__ = torch.cat(_snake_case , dim=0 ) if do_classifier_free_guidance: A__ = image_embeds.repeat_interleave(_snake_case , dim=0 ) A__ = negative_image_embeds.repeat_interleave(_snake_case , dim=0 ) A__ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=_snake_case ) self.scheduler.set_timesteps(_snake_case , device=_snake_case ) A__ = self.scheduler.timesteps A__ = self.unet.config.in_channels A__ , A__ = get_new_h_w(_snake_case , _snake_case , self.movq_scale_factor ) # create initial latent A__ = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , _snake_case , _snake_case , _snake_case , self.scheduler , ) for i, t in enumerate(self.progress_bar(_snake_case ) ): # expand the latents if we are doing classifier free guidance A__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A__ = {'text_embeds': prompt_embeds, 'image_embeds': image_embeds} A__ = self.unet( sample=_snake_case , timestep=_snake_case , encoder_hidden_states=_snake_case , added_cond_kwargs=_snake_case , return_dict=_snake_case , )[0] if do_classifier_free_guidance: A__ , A__ = noise_pred.split(latents.shape[1] , dim=1 ) A__ , A__ = noise_pred.chunk(2 ) A__ , A__ = variance_pred.chunk(2 ) A__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) A__ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): A__ , A__ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 A__ = self.scheduler.step( _snake_case , _snake_case , _snake_case , generator=_snake_case , ).prev_sample # post-processing A__ = self.movq.decode(_snake_case , force_not_quantize=_snake_case )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: A__ = image * 0.5 + 0.5 A__ = image.clamp(0 , 1 ) A__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": A__ = self.numpy_to_pil(_snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=_snake_case )
9
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def _a ( self : List[str] ): """simple docstring""" A__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_snake_case , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(_snake_case , 'num_attention_heads' ) ) self.parent.assertTrue(hasattr(_snake_case , 'num_encoder_blocks' ) ) class __lowerCAmelCase : """simple docstring""" def __init__( self : Any , _snake_case : str , _snake_case : Union[str, Any]=13 , _snake_case : Any=64 , _snake_case : Optional[Any]=3 , _snake_case : Dict=4 , _snake_case : Tuple=[2, 2, 2, 2] , _snake_case : str=[8, 4, 2, 1] , _snake_case : Union[str, Any]=[16, 32, 64, 1_28] , _snake_case : int=[1, 4, 8, 16] , _snake_case : List[str]=[1, 2, 4, 8] , _snake_case : int=True , _snake_case : int=True , _snake_case : Union[str, Any]="gelu" , _snake_case : Optional[int]=0.1 , _snake_case : Tuple=0.1 , _snake_case : Dict=0.02 , _snake_case : Tuple=3 , _snake_case : int=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = num_encoder_blocks A__ = sr_ratios A__ = depths A__ = hidden_sizes A__ = downsampling_rates A__ = num_attention_heads A__ = is_training A__ = use_labels A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = num_labels A__ = scope def _a ( self : int ): """simple docstring""" A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A__ = self.get_config() return config, pixel_values, labels def _a ( self : int ): """simple docstring""" return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _a ( self : int , _snake_case : Optional[Any] , _snake_case : int , _snake_case : Any ): """simple docstring""" A__ = SegformerModel(config=_snake_case ) model.to(_snake_case ) model.eval() A__ = model(_snake_case ) A__ = A__ = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def _a ( self : Union[str, Any] , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : Dict ): """simple docstring""" A__ = self.num_labels A__ = SegformerForSemanticSegmentation(_snake_case ) model.to(_snake_case ) model.eval() A__ = model(_snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) A__ = model(_snake_case , labels=_snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def _a ( self : List[str] , _snake_case : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : List[str] ): """simple docstring""" A__ = 1 A__ = SegformerForSemanticSegmentation(config=_snake_case ) model.to(_snake_case ) model.eval() A__ = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(_snake_case ) A__ = model(_snake_case , labels=_snake_case ) self.parent.assertGreater(result.loss , 0.0 ) def _a ( self : List[Any] ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Optional[int] = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) A__ : Union[str, Any] = ( { "feature-extraction": SegformerModel, "image-classification": SegformerForImageClassification, "image-segmentation": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) A__ : Optional[Any] = True A__ : str = False A__ : Tuple = False A__ : Dict = False def _a ( self : Union[str, Any] ): """simple docstring""" A__ = SegformerModelTester(self ) A__ = SegformerConfigTester(self , config_class=_snake_case ) def _a ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Optional[Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def _a ( self : List[Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*_snake_case ) def _a ( self : Tuple ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*_snake_case ) @unittest.skip('SegFormer does not use inputs_embeds' ) def _a ( self : List[Any] ): """simple docstring""" pass @unittest.skip('SegFormer does not have get_input_embeddings method and get_output_embeddings methods' ) def _a ( self : Dict ): """simple docstring""" pass def _a ( self : Dict ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(_snake_case ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _snake_case ) def _a ( self : Dict ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True for model_class in self.all_model_classes: A__ = True A__ = False A__ = True A__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) A__ = outputs.attentions A__ = sum(self.model_tester.depths ) self.assertEqual(len(_snake_case ) , _snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) A__ = outputs.attentions self.assertEqual(len(_snake_case ) , _snake_case ) # verify the first attentions (first block, first layer) A__ = (self.model_tester.image_size // 4) ** 2 A__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) A__ = (self.model_tester.image_size // 32) ** 2 A__ = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) A__ = len(_snake_case ) # Check attention is always last and order is fine A__ = True A__ = True A__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) self.assertEqual(out_len + 1 , len(_snake_case ) ) A__ = outputs.attentions self.assertEqual(len(_snake_case ) , _snake_case ) # verify the first attentions (first block, first layer) A__ = (self.model_tester.image_size // 4) ** 2 A__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def _a ( self : Union[str, Any] ): """simple docstring""" def check_hidden_states_output(_snake_case : Dict , _snake_case : int , _snake_case : List[Any] ): A__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) A__ = outputs.hidden_states A__ = self.model_tester.num_encoder_blocks self.assertEqual(len(_snake_case ) , _snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) def _a ( self : Tuple ): """simple docstring""" if not self.model_tester.is_training: return A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True for model_class in self.all_model_classes: if model_class in get_values(_snake_case ): continue A__ = model_class(_snake_case ) model.to(_snake_case ) model.train() A__ = self._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) A__ = model(**_snake_case ).loss loss.backward() @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _a ( self : Optional[Any] ): """simple docstring""" pass @slow def _a ( self : Tuple ): """simple docstring""" for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = SegformerModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def A ( ) -> str: A__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _a ( self : Dict ): """simple docstring""" A__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_snake_case , align=_snake_case , do_random_crop=_snake_case ) A__ = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( _snake_case ) A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='pt' ) A__ = encoded_inputs.pixel_values.to(_snake_case ) with torch.no_grad(): A__ = model(_snake_case ) A__ = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , _snake_case ) A__ = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _snake_case , atol=1E-4 ) ) @slow def _a ( self : Optional[Any] ): """simple docstring""" A__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_snake_case , align=_snake_case , do_random_crop=_snake_case ) A__ = SegformerForSemanticSegmentation.from_pretrained( 'nvidia/segformer-b1-finetuned-cityscapes-1024-1024' ).to(_snake_case ) A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='pt' ) A__ = encoded_inputs.pixel_values.to(_snake_case ) with torch.no_grad(): A__ = model(_snake_case ) A__ = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , _snake_case ) A__ = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _snake_case , atol=1E-1 ) ) @slow def _a ( self : Any ): """simple docstring""" A__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_snake_case , align=_snake_case , do_random_crop=_snake_case ) A__ = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( _snake_case ) A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='pt' ) A__ = encoded_inputs.pixel_values.to(_snake_case ) with torch.no_grad(): A__ = model(_snake_case ) A__ = outputs.logits.detach().cpu() A__ = image_processor.post_process_semantic_segmentation(outputs=_snake_case , target_sizes=[(5_00, 3_00)] ) A__ = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , _snake_case ) A__ = image_processor.post_process_semantic_segmentation(outputs=_snake_case ) A__ = torch.Size((1_28, 1_28) ) self.assertEqual(segmentation[0].shape , _snake_case )
9
1
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets SCREAMING_SNAKE_CASE__ = '''\ @inproceedings{popovic-2015-chrf, title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation", month = sep, year = "2015", address = "Lisbon, Portugal", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W15-3049", doi = "10.18653/v1/W15-3049", pages = "392--395", } @inproceedings{popovic-2017-chrf, title = "chr{F}++: words helping character n-grams", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Second Conference on Machine Translation", month = sep, year = "2017", address = "Copenhagen, Denmark", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W17-4770", doi = "10.18653/v1/W17-4770", pages = "612--618", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' SCREAMING_SNAKE_CASE__ = '''\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. ''' SCREAMING_SNAKE_CASE__ = ''' Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: \'score\' (float): The chrF (chrF++) score, \'char_order\' (int): The character n-gram order, \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, \'beta\' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): """simple docstring""" def _a ( self : int ): """simple docstring""" if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def _a ( self : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : str , _snake_case : int = CHRF.CHAR_ORDER , _snake_case : int = CHRF.WORD_ORDER , _snake_case : int = CHRF.BETA , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , ): """simple docstring""" A__ = len(references[0] ) if any(len(_snake_case ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) A__ = [[refs[i] for refs in references] for i in range(_snake_case )] A__ = CHRF(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) A__ = sb_chrf.corpus_score(_snake_case , _snake_case ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
9
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A ( __UpperCamelCase ) -> Optional[int]: A__ = filter(lambda __UpperCamelCase : p.requires_grad , model.parameters() ) A__ = sum([np.prod(p.size() ) for p in model_parameters] ) return params SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) def A ( __UpperCamelCase , __UpperCamelCase ) -> Dict: if metric == "rouge2": A__ = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": A__ = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": A__ = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": A__ = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ' function.' ) A__ = ModelCheckpoint( dirpath=__UpperCamelCase , filename=__UpperCamelCase , monitor=f'''val_{metric}''' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def A ( __UpperCamelCase , __UpperCamelCase ) -> Any: return EarlyStopping( monitor=f'''val_{metric}''' , mode='min' if 'loss' in metric else 'max' , patience=__UpperCamelCase , verbose=__UpperCamelCase , ) class __lowerCAmelCase ( pl.Callback ): """simple docstring""" def _a ( self : Dict , _snake_case : Union[str, Any] , _snake_case : str ): """simple docstring""" A__ = {F'''lr_group_{i}''': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_snake_case ) @rank_zero_only def _a ( self : Union[str, Any] , _snake_case : pl.Trainer , _snake_case : pl.LightningModule , _snake_case : str , _snake_case : Optional[Any]=True ): """simple docstring""" logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) A__ = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results A__ = Path(pl_module.hparams.output_dir ) if type_path == "test": A__ = od / 'test_results.txt' A__ = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. A__ = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' A__ = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=_snake_case ) generations_file.parent.mkdir(exist_ok=_snake_case ) with open(_snake_case , 'a+' ) as writer: for key in sorted(_snake_case ): if key in ["log", "progress_bar", "preds"]: continue A__ = metrics[key] if isinstance(_snake_case , torch.Tensor ): A__ = val.item() A__ = F'''{key}: {val:.6f}\n''' writer.write(_snake_case ) if not save_generations: return if "preds" in metrics: A__ = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(_snake_case ) @rank_zero_only def _a ( self : Dict , _snake_case : List[str] , _snake_case : List[Any] ): """simple docstring""" try: A__ = pl_module.model.model.num_parameters() except AttributeError: A__ = pl_module.model.num_parameters() A__ = count_trainable_parameters(_snake_case ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def _a ( self : int , _snake_case : pl.Trainer , _snake_case : pl.LightningModule ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_snake_case , _snake_case , 'test' ) @rank_zero_only def _a ( self : Optional[Any] , _snake_case : pl.Trainer , _snake_case : List[Any] ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
9
1
from datetime import datetime import requests def A ( __UpperCamelCase ) -> bytes: A__ = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' A__ = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(__UpperCamelCase ).content if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = input('''Enter Video/IGTV url: ''').strip() SCREAMING_SNAKE_CASE__ = f'{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4' with open(file_name, '''wb''') as fp: fp.write(download_video(url)) print(f'Done. Video saved to disk as {file_name}.')
9
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Optional[Any] = ["input_values", "attention_mask"] def __init__( self : str , _snake_case : int = 1 , _snake_case : int = 1_60_00 , _snake_case : float = 0.0 , _snake_case : bool = False , _snake_case : int = 80 , _snake_case : int = 16 , _snake_case : int = 64 , _snake_case : str = "hann_window" , _snake_case : float = 1.0 , _snake_case : float = 80 , _snake_case : float = 76_00 , _snake_case : float = 1E-10 , _snake_case : int = 2 , _snake_case : bool = True , **_snake_case : Union[str, Any] , ): """simple docstring""" super().__init__(feature_size=_snake_case , sampling_rate=_snake_case , padding_value=_snake_case , **_snake_case ) A__ = do_normalize A__ = return_attention_mask A__ = num_mel_bins A__ = hop_length A__ = win_length A__ = win_function A__ = frame_signal_scale A__ = fmin A__ = fmax A__ = mel_floor A__ = reduction_factor A__ = win_length * sampling_rate // 10_00 A__ = hop_length * sampling_rate // 10_00 A__ = optimal_fft_length(self.sample_size ) A__ = (self.n_fft // 2) + 1 A__ = window_function(window_length=self.sample_size , name=self.win_function , periodic=_snake_case ) A__ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , _snake_case , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , _snake_case , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _a ( _snake_case : List[np.ndarray] , _snake_case : List[np.ndarray] , _snake_case : float = 0.0 ): """simple docstring""" if attention_mask is not None: A__ = np.array(_snake_case , np.intaa ) A__ = [] for vector, length in zip(_snake_case , attention_mask.sum(-1 ) ): A__ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: A__ = padding_value normed_input_values.append(_snake_case ) else: A__ = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def _a ( self : Tuple , _snake_case : np.ndarray , ): """simple docstring""" A__ = spectrogram( _snake_case , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self : List[str] , _snake_case : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _snake_case : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Optional[int] = None , _snake_case : bool = False , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : Optional[int] = None , **_snake_case : Tuple , ): """simple docstring""" if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: A__ = self._process_audio( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , **_snake_case , ) else: A__ = None if audio_target is not None: A__ = self._process_audio( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , **_snake_case , ) if inputs is None: return inputs_target else: A__ = inputs_target['input_values'] A__ = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def _a ( self : Tuple , _snake_case : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _snake_case : bool = False , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Optional[int] = None , _snake_case : bool = False , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[Union[str, TensorType]] = None , **_snake_case : Tuple , ): """simple docstring""" A__ = isinstance(_snake_case , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) A__ = is_batched_numpy or ( isinstance(_snake_case , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A__ = [np.asarray(_snake_case , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_snake_case , np.ndarray ): A__ = np.asarray(_snake_case , dtype=np.floataa ) elif isinstance(_snake_case , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): A__ = speech.astype(np.floataa ) # always return batch if not is_batched: A__ = [speech] # needed to make pad() work on spectrogram inputs A__ = self.feature_size # convert into correct format for padding if is_target: A__ = [self._extract_mel_features(_snake_case ) for waveform in speech] A__ = BatchFeature({'input_values': features} ) A__ = self.num_mel_bins else: A__ = BatchFeature({'input_values': speech} ) A__ = self.pad( _snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , **_snake_case , ) A__ = feature_size_hack # convert input values to correct format A__ = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray ): A__ = [np.asarray(_snake_case , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_snake_case , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): A__ = [array.astype(np.floataa ) for array in input_values] elif isinstance(_snake_case , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): A__ = input_values.astype(np.floataa ) # convert attention_mask to correct format A__ = padded_inputs.get('attention_mask' ) if attention_mask is not None: A__ = [np.asarray(_snake_case , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: A__ = ( attention_mask if self._get_padding_strategies(_snake_case , max_length=_snake_case ) is not PaddingStrategy.DO_NOT_PAD else None ) A__ = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=_snake_case , padding_value=self.padding_value ) if return_tensors is not None: A__ = padded_inputs.convert_to_tensors(_snake_case ) return padded_inputs def _a ( self : Optional[Any] ): """simple docstring""" A__ = super().to_dict() # Don't serialize these as they are derived from the other properties. A__ = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
9
1
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def A ( __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: A__ = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' A__ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ).convert('RGB' ) A__ = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4814_5466, 0.457_8275, 0.4082_1073) , (0.2686_2954, 0.2613_0258, 0.2757_7711) ), ] ) A__ = transform(__UpperCamelCase ).unsqueeze(0 ).to(__UpperCamelCase ) return image def A ( __UpperCamelCase ) -> Optional[int]: if "visual_encoder" in key: A__ = re.sub('visual_encoder*' , 'vision_model.encoder' , __UpperCamelCase ) if "blocks" in key: A__ = re.sub(r'blocks' , 'layers' , __UpperCamelCase ) if "attn" in key: A__ = re.sub(r'attn' , 'self_attn' , __UpperCamelCase ) if "norm1" in key: A__ = re.sub(r'norm1' , 'layer_norm1' , __UpperCamelCase ) if "norm2" in key: A__ = re.sub(r'norm2' , 'layer_norm2' , __UpperCamelCase ) if "encoder.norm" in key: A__ = re.sub(r'encoder.norm' , 'post_layernorm' , __UpperCamelCase ) if "encoder.patch_embed.proj" in key: A__ = re.sub(r'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , __UpperCamelCase ) if "encoder.pos_embed" in key: A__ = re.sub(r'encoder.pos_embed' , 'embeddings.position_embedding' , __UpperCamelCase ) if "encoder.cls_token" in key: A__ = re.sub(r'encoder.cls_token' , 'embeddings.class_embedding' , __UpperCamelCase ) if "self_attn" in key: A__ = re.sub(r'self_attn.proj' , 'self_attn.projection' , __UpperCamelCase ) return key @torch.no_grad() def A ( __UpperCamelCase , __UpperCamelCase=None ) -> List[Any]: if config_path is not None: A__ = BlipConfig.from_pretrained(__UpperCamelCase ) else: A__ = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) A__ = BlipForConditionalGeneration(__UpperCamelCase ).eval() A__ = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' A__ = blip_decoder(pretrained=__UpperCamelCase , image_size=384 , vit='base' ) A__ = pt_model.eval() A__ = pt_model.state_dict() for key in modified_state_dict.copy(): A__ = modified_state_dict.pop(__UpperCamelCase ) A__ = rename_key(__UpperCamelCase ) A__ = value hf_model.load_state_dict(__UpperCamelCase ) A__ = 384 A__ = load_demo_image(image_size=__UpperCamelCase , device='cpu' ) A__ = BertTokenizer.from_pretrained('bert-base-uncased' ) A__ = tokenizer(['a picture of'] ).input_ids A__ = hf_model.generate(__UpperCamelCase , __UpperCamelCase ) assert out[0].tolist() == [30_522, 1_037, 3_861, 1_997, 1_037, 2_450, 3_564, 2_006, 1_996, 3_509, 2_007, 2_014, 3_899, 102] A__ = hf_model.generate(__UpperCamelCase ) assert out[0].tolist() == [30_522, 1_037, 2_450, 3_564, 2_006, 1_996, 3_509, 2_007, 2_014, 3_899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(__UpperCamelCase ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' A__ = ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) A__ = blip_vqa(pretrained=__UpperCamelCase , image_size=__UpperCamelCase , vit='base' ) vqa_model.eval() A__ = vqa_model.state_dict() for key in modified_state_dict.copy(): A__ = modified_state_dict.pop(__UpperCamelCase ) A__ = rename_key(__UpperCamelCase ) A__ = value A__ = BlipForQuestionAnswering(__UpperCamelCase ) hf_vqa_model.load_state_dict(__UpperCamelCase ) A__ = ['How many dogs are in this image?'] A__ = tokenizer(__UpperCamelCase , return_tensors='pt' ).input_ids A__ = hf_vqa_model.generate(__UpperCamelCase , __UpperCamelCase ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa' ) A__ = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' A__ = blip_itm(pretrained=__UpperCamelCase , image_size=__UpperCamelCase , vit='base' ) itm_model.eval() A__ = itm_model.state_dict() for key in modified_state_dict.copy(): A__ = modified_state_dict.pop(__UpperCamelCase ) A__ = rename_key(__UpperCamelCase ) A__ = value A__ = BlipForImageTextRetrieval(__UpperCamelCase ) A__ = ['A picture of a woman with a dog sitting in a beach'] A__ = tokenizer( __UpperCamelCase , return_tensors='pt' , padding='max_length' , truncation=__UpperCamelCase , max_length=35 , ).input_ids hf_itm_model.load_state_dict(__UpperCamelCase ) hf_itm_model.eval() A__ = hf_itm_model(__UpperCamelCase , __UpperCamelCase , use_itm_head=__UpperCamelCase ) A__ = hf_itm_model(__UpperCamelCase , __UpperCamelCase , use_itm_head=__UpperCamelCase ) assert out[0].item() == 0.2110_6874_9427_7954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5698_8453_8650_5127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
9
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: A__ = OmegaConf.load(__UpperCamelCase ) A__ = torch.load(__UpperCamelCase , map_location='cpu' )['model'] A__ = list(state_dict.keys() ) # extract state_dict for VQVAE A__ = {} A__ = 'first_stage_model.' for key in keys: if key.startswith(__UpperCamelCase ): A__ = state_dict[key] # extract state_dict for UNetLDM A__ = {} A__ = 'model.diffusion_model.' for key in keys: if key.startswith(__UpperCamelCase ): A__ = state_dict[key] A__ = config.model.params.first_stage_config.params A__ = config.model.params.unet_config.params A__ = VQModel(**__UpperCamelCase ).eval() vqvae.load_state_dict(__UpperCamelCase ) A__ = UNetLDMModel(**__UpperCamelCase ).eval() unet.load_state_dict(__UpperCamelCase ) A__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__UpperCamelCase , ) A__ = LDMPipeline(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) pipeline.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
9
1
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def A ( __UpperCamelCase ) -> Tuple: A__ = FileLock(str(tmpdir / 'foo.lock' ) ) A__ = FileLock(str(tmpdir / 'foo.lock' ) ) A__ = 0.01 with locka.acquire(): with pytest.raises(__UpperCamelCase ): A__ = time.time() locka.acquire(__UpperCamelCase ) assert time.time() - _start > timeout def A ( __UpperCamelCase ) -> Tuple: A__ = 'a' * 1_000 + '.lock' A__ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('.lock' ) assert not locka._lock_file.endswith(__UpperCamelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 255 A__ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__UpperCamelCase ): locka.acquire(0 )
9
import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def A ( __UpperCamelCase ) -> Union[str, Any]: if hor == 128: A__ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A__ = (32, 128, 256) A__ = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: A__ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A__ = (32, 64, 128, 256) A__ = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') A__ = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) A__ = model.state_dict() A__ = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 65_536, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } A__ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A__ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A__ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() , f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , 'w' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) def A ( ) -> List[str]: A__ = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 128, 256), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 65_536, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } A__ = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) A__ = model A__ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A__ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A__ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() , 'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' , 'w' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": unet(3_2) # unet(128) value_function()
9
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Optional[Any] = KandinskyInpaintPipeline A__ : Dict = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] A__ : Any = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] A__ : Tuple = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] A__ : Dict = False @property def _a ( self : Optional[Any] ): """simple docstring""" return 32 @property def _a ( self : int ): """simple docstring""" return 32 @property def _a ( self : List[Any] ): """simple docstring""" return self.time_input_dim @property def _a ( self : str ): """simple docstring""" return self.time_input_dim * 4 @property def _a ( self : List[str] ): """simple docstring""" return 1_00 @property def _a ( self : Any ): """simple docstring""" A__ = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def _a ( self : str ): """simple docstring""" torch.manual_seed(0 ) A__ = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) A__ = MultilingualCLIP(_snake_case ) A__ = text_encoder.eval() return text_encoder @property def _a ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) A__ = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } A__ = UNetaDConditionModel(**_snake_case ) return model @property def _a ( self : int ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _a ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) A__ = VQModel(**self.dummy_movq_kwargs ) return model def _a ( self : List[Any] ): """simple docstring""" A__ = self.dummy_text_encoder A__ = self.dummy_tokenizer A__ = self.dummy_unet A__ = self.dummy_movq A__ = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='linear' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_snake_case , set_alpha_to_one=_snake_case , steps_offset=1 , prediction_type='epsilon' , thresholding=_snake_case , ) A__ = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def _a ( self : str , _snake_case : int , _snake_case : List[str]=0 ): """simple docstring""" A__ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_snake_case ) ).to(_snake_case ) A__ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_snake_case ) # create init_image A__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_snake_case ) ).to(_snake_case ) A__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ = Image.fromarray(np.uinta(_snake_case ) ).convert('RGB' ).resize((2_56, 2_56) ) # create mask A__ = np.ones((64, 64) , dtype=np.floataa ) A__ = 0 if str(_snake_case ).startswith('mps' ): A__ = torch.manual_seed(_snake_case ) else: A__ = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) A__ = { 'prompt': 'horse', 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def _a ( self : List[str] ): """simple docstring""" A__ = 'cpu' A__ = self.get_dummy_components() A__ = self.pipeline_class(**_snake_case ) A__ = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) A__ = pipe(**self.get_dummy_inputs(_snake_case ) ) A__ = output.images A__ = pipe( **self.get_dummy_inputs(_snake_case ) , return_dict=_snake_case , )[0] A__ = image[0, -3:, -3:, -1] A__ = image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) A__ = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def _a ( self : Dict ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _a ( self : Optional[int] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Union[str, Any] ): """simple docstring""" A__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' ) A__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) A__ = np.ones((7_68, 7_68) , dtype=np.floataa ) A__ = 0 A__ = 'a hat' A__ = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_snake_case ) A__ = KandinskyInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-inpaint' , torch_dtype=torch.floataa ) A__ = pipeline.to(_snake_case ) pipeline.set_progress_bar_config(disable=_snake_case ) A__ = torch.Generator(device='cpu' ).manual_seed(0 ) A__ , A__ = pipe_prior( _snake_case , generator=_snake_case , num_inference_steps=5 , negative_prompt='' , ).to_tuple() A__ = pipeline( _snake_case , image=_snake_case , mask_image=_snake_case , image_embeds=_snake_case , negative_image_embeds=_snake_case , generator=_snake_case , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type='np' , ) A__ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_snake_case , _snake_case )
9
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase : """simple docstring""" def __init__( self : Dict , _snake_case : Union[str, Any] , _snake_case : Optional[Any]=12 , _snake_case : Any=7 , _snake_case : List[str]=True , _snake_case : int=True , _snake_case : int=True , _snake_case : Tuple=99 , _snake_case : List[Any]=32 , _snake_case : Optional[int]=32 , _snake_case : List[str]=2 , _snake_case : List[str]=4 , _snake_case : List[Any]=37 , _snake_case : Union[str, Any]=0.1 , _snake_case : Tuple=0.1 , _snake_case : Dict=5_12 , _snake_case : Union[str, Any]=0.02 , _snake_case : Any=0 , _snake_case : Optional[Any]=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = projection_dim A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = dropout A__ = attention_dropout A__ = max_position_embeddings A__ = initializer_range A__ = scope A__ = bos_token_id def _a ( self : Optional[Any] ): """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: A__ = input_mask.numpy() A__ , A__ = input_mask.shape A__ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_snake_case ): A__ = 1 A__ = 0 A__ = self.get_config() return config, input_ids, tf.convert_to_tensor(_snake_case ) def _a ( self : Tuple ): """simple docstring""" return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _a ( self : int , _snake_case : Union[str, Any] , _snake_case : Any , _snake_case : List[str] ): """simple docstring""" A__ = TFBlipTextModel(config=_snake_case ) A__ = model(_snake_case , attention_mask=_snake_case , training=_snake_case ) A__ = model(_snake_case , training=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _a ( self : str ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Tuple = (TFBlipTextModel,) if is_tf_available() else () A__ : Optional[int] = False A__ : Union[str, Any] = False A__ : Union[str, Any] = False def _a ( self : Any ): """simple docstring""" A__ = BlipTextModelTester(self ) A__ = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def _a ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Union[str, Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def _a ( self : Tuple ): """simple docstring""" pass def _a ( self : int ): """simple docstring""" pass @unittest.skip(reason='Blip does not use inputs_embeds' ) def _a ( self : Any ): """simple docstring""" pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _a ( self : str ): """simple docstring""" pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _a ( self : Optional[Any] ): """simple docstring""" pass @slow def _a ( self : Union[str, Any] ): """simple docstring""" for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFBlipTextModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def _a ( self : int , _snake_case : int=True ): """simple docstring""" super().test_pt_tf_model_equivalence(allow_missing_keys=_snake_case )
9
1
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def A ( __UpperCamelCase ) -> List[str]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X20000 and cp <= 0X2a6df) # or (cp >= 0X2a700 and cp <= 0X2b73f) # or (cp >= 0X2b740 and cp <= 0X2b81f) # or (cp >= 0X2b820 and cp <= 0X2ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2f800 and cp <= 0X2fa1f) # ): # return True return False def A ( __UpperCamelCase ) -> str: # word like '180' or '身高' or '神' for char in word: A__ = ord(__UpperCamelCase ) if not _is_chinese_char(__UpperCamelCase ): return 0 return 1 def A ( __UpperCamelCase ) -> str: A__ = set() for token in tokens: A__ = len(__UpperCamelCase ) > 1 and is_chinese(__UpperCamelCase ) if chinese_word: word_set.add(__UpperCamelCase ) A__ = list(__UpperCamelCase ) return word_list def A ( __UpperCamelCase , __UpperCamelCase ) -> str: if not chinese_word_set: return bert_tokens A__ = max([len(__UpperCamelCase ) for w in chinese_word_set] ) A__ = bert_tokens A__ , A__ = 0, len(__UpperCamelCase ) while start < end: A__ = True if is_chinese(bert_word[start] ): A__ = min(end - start , __UpperCamelCase ) for i in range(__UpperCamelCase , 1 , -1 ): A__ = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): A__ = '##' + bert_word[j] A__ = start + i A__ = False break if single_word: start += 1 return bert_word def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: A__ = [] for i in range(0 , len(__UpperCamelCase ) , 100 ): A__ = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=['cws'] ).cws A__ = [get_chinese_word(__UpperCamelCase ) for r in res] ltp_res.extend(__UpperCamelCase ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) A__ = [] for i in range(0 , len(__UpperCamelCase ) , 100 ): A__ = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__UpperCamelCase , truncation=__UpperCamelCase , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) A__ = [] for input_ids, chinese_word in zip(__UpperCamelCase , __UpperCamelCase ): A__ = [] for id in input_ids: A__ = bert_tokenizer._convert_id_to_token(__UpperCamelCase ) input_tokens.append(__UpperCamelCase ) A__ = add_sub_symbol(__UpperCamelCase , __UpperCamelCase ) A__ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__UpperCamelCase ): if token[:2] == "##": A__ = token[2:] # save chinese tokens' pos if len(__UpperCamelCase ) == 1 and _is_chinese_char(ord(__UpperCamelCase ) ): ref_id.append(__UpperCamelCase ) ref_ids.append(__UpperCamelCase ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) return ref_ids def A ( __UpperCamelCase ) -> List[str]: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , 'r' , encoding='utf-8' ) as f: A__ = f.readlines() A__ = [line.strip() for line in data if len(__UpperCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A__ = LTP(args.ltp ) # faster in GPU device A__ = BertTokenizer.from_pretrained(args.bert ) A__ = prepare_ref(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: A__ = [json.dumps(__UpperCamelCase ) + '\n' for ref in ref_ids] f.writelines(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) SCREAMING_SNAKE_CASE__ = parser.parse_args() main(args)
9
from __future__ import annotations from typing import Any def A ( __UpperCamelCase ) -> int: if not postfix_notation: return 0 A__ = {'+', '-', '*', '/'} A__ = [] for token in postfix_notation: if token in operations: A__ , A__ = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(__UpperCamelCase ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
9
1
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def A ( __UpperCamelCase ) -> Optional[int]: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def A ( ) -> Tuple: with parallel_backend('spark' ): assert ParallelBackendConfig.backend_name == "spark" A__ = [1, 2, 3] with pytest.raises(__UpperCamelCase ): with parallel_backend('unsupported backend' ): map_nested(__UpperCamelCase , __UpperCamelCase , num_proc=2 ) with pytest.raises(__UpperCamelCase ): with parallel_backend('unsupported backend' ): map_nested(__UpperCamelCase , __UpperCamelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('num_proc' , [2, -1] ) def A ( __UpperCamelCase ) -> Optional[Any]: A__ = [1, 2] A__ = {'a': 1, 'b': 2} A__ = {'a': [1, 2], 'b': [3, 4]} A__ = {'a': {'1': 1}, 'b': 2} A__ = {'a': 1, 'b': 2, 'c': 3, 'd': 4} A__ = [2, 3] A__ = {'a': 2, 'b': 3} A__ = {'a': [2, 3], 'b': [4, 5]} A__ = {'a': {'1': 2}, 'b': 3} A__ = {'a': 2, 'b': 3, 'c': 4, 'd': 5} with parallel_backend('spark' ): assert map_nested(__UpperCamelCase , __UpperCamelCase , num_proc=__UpperCamelCase ) == expected_map_nested_sa assert map_nested(__UpperCamelCase , __UpperCamelCase , num_proc=__UpperCamelCase ) == expected_map_nested_sa assert map_nested(__UpperCamelCase , __UpperCamelCase , num_proc=__UpperCamelCase ) == expected_map_nested_sa assert map_nested(__UpperCamelCase , __UpperCamelCase , num_proc=__UpperCamelCase ) == expected_map_nested_sa assert map_nested(__UpperCamelCase , __UpperCamelCase , num_proc=__UpperCamelCase ) == expected_map_nested_sa
9
from __future__ import annotations def A ( __UpperCamelCase = 4 ) -> list[list[int]]: A__ = abs(__UpperCamelCase ) or 4 return [[1 + x + y * row_size for x in range(__UpperCamelCase )] for y in range(__UpperCamelCase )] def A ( __UpperCamelCase ) -> list[list[int]]: return reverse_row(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_column(matrix)) def A ( __UpperCamelCase ) -> list[list[int]]: return reverse_row(reverse_column(__UpperCamelCase ) ) # OR.. reverse_column(reverse_row(matrix)) def A ( __UpperCamelCase ) -> list[list[int]]: return reverse_column(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_row(matrix)) def A ( __UpperCamelCase ) -> list[list[int]]: A__ = [list(__UpperCamelCase ) for x in zip(*__UpperCamelCase )] return matrix def A ( __UpperCamelCase ) -> list[list[int]]: A__ = matrix[::-1] return matrix def A ( __UpperCamelCase ) -> list[list[int]]: A__ = [x[::-1] for x in matrix] return matrix def A ( __UpperCamelCase ) -> None: for i in matrix: print(*__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 90 counterclockwise:\n''') print_matrix(rotate_aa(matrix)) SCREAMING_SNAKE_CASE__ = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 180:\n''') print_matrix(rotate_aaa(matrix)) SCREAMING_SNAKE_CASE__ = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 270 counterclockwise:\n''') print_matrix(rotate_aaa(matrix))
9
1
from collections import deque def A ( __UpperCamelCase ) -> List[Any]: A__ = len(__UpperCamelCase ) A__ = deque() A__ = [False for _ in range(__UpperCamelCase )] A__ = [-1 for _ in range(__UpperCamelCase )] A__ = index_of[:] def strong_connect(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): A__ = index # the number when this node is seen A__ = index # lowest rank node reachable from here index += 1 stack.append(__UpperCamelCase ) A__ = True for w in g[v]: if index_of[w] == -1: A__ = strong_connect(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) A__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: A__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: A__ = [] A__ = stack.pop() A__ = False component.append(__UpperCamelCase ) while w != v: A__ = stack.pop() A__ = False component.append(__UpperCamelCase ) components.append(__UpperCamelCase ) return index A__ = [] for v in range(__UpperCamelCase ): if index_of[v] == -1: strong_connect(__UpperCamelCase , 0 , __UpperCamelCase ) return components def A ( __UpperCamelCase , __UpperCamelCase ) -> List[Any]: A__ = [[] for _ in range(__UpperCamelCase )] for u, v in edges: g[u].append(__UpperCamelCase ) return g if __name__ == "__main__": # Test SCREAMING_SNAKE_CASE__ = 7 SCREAMING_SNAKE_CASE__ = [0, 0, 1, 2, 3, 3, 4, 4, 6] SCREAMING_SNAKE_CASE__ = [1, 3, 2, 0, 1, 4, 5, 6, 5] SCREAMING_SNAKE_CASE__ = [(u, v) for u, v in zip(source, target)] SCREAMING_SNAKE_CASE__ = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
9
from __future__ import annotations from fractions import Fraction def A ( __UpperCamelCase , __UpperCamelCase ) -> bool: return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def A ( __UpperCamelCase ) -> list[str]: A__ = [] A__ = 11 A__ = int('1' + '0' * digit_len ) for num in range(__UpperCamelCase , __UpperCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(__UpperCamelCase , __UpperCamelCase ): solutions.append(f'''{num}/{den}''' ) den += 1 num += 1 A__ = 10 return solutions def A ( __UpperCamelCase = 2 ) -> int: A__ = 1.0 for fraction in fraction_list(__UpperCamelCase ): A__ = Fraction(__UpperCamelCase ) result *= frac.denominator / frac.numerator return int(__UpperCamelCase ) if __name__ == "__main__": print(solution())
9
1
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class __lowerCAmelCase : """simple docstring""" def __init__( self : str , _snake_case : List[Any] , ): """simple docstring""" A__ = parent A__ = 13 A__ = 7 A__ = True A__ = True A__ = True A__ = 99 A__ = 32 A__ = 2 A__ = 4 A__ = 37 A__ = 'gelu' A__ = 0.1 A__ = 0.1 A__ = 5_12 A__ = 16 A__ = 2 A__ = 0.02 A__ = 3 A__ = 4 A__ = None def _a ( self : Union[str, Any] ): """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = ids_tensor([self.batch_size] , self.num_choices ) A__ = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self : Optional[Any] ): """simple docstring""" ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = self.prepare_config_and_inputs() A__ = True A__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _a ( self : List[Any] , _snake_case : Optional[int] , _snake_case : int , _snake_case : int , _snake_case : Optional[int] , _snake_case : int , _snake_case : str ): """simple docstring""" A__ = TFEsmModel(config=_snake_case ) A__ = {'input_ids': input_ids, 'attention_mask': input_mask} A__ = model(_snake_case ) A__ = [input_ids, input_mask] A__ = model(_snake_case ) A__ = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : str , _snake_case : int , _snake_case : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : List[Any] , _snake_case : List[Any] , _snake_case : Union[str, Any] , _snake_case : List[Any] , _snake_case : List[str] , ): """simple docstring""" A__ = True A__ = TFEsmModel(config=_snake_case ) A__ = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } A__ = model(_snake_case ) A__ = [input_ids, input_mask] A__ = model(_snake_case , encoder_hidden_states=_snake_case ) # Also check the case where encoder outputs are not passed A__ = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : str , _snake_case : Any , _snake_case : Union[str, Any] , _snake_case : Union[str, Any] , _snake_case : Dict , _snake_case : Optional[int] , _snake_case : List[Any] ): """simple docstring""" A__ = TFEsmForMaskedLM(config=_snake_case ) A__ = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : int , _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : int , _snake_case : Tuple , _snake_case : Any , _snake_case : List[str] ): """simple docstring""" A__ = self.num_labels A__ = TFEsmForTokenClassification(config=_snake_case ) A__ = {'input_ids': input_ids, 'attention_mask': input_mask} A__ = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self : Dict ): """simple docstring""" A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : int = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) A__ : Dict = ( { "feature-extraction": TFEsmModel, "fill-mask": TFEsmForMaskedLM, "text-classification": TFEsmForSequenceClassification, "token-classification": TFEsmForTokenClassification, "zero-shot": TFEsmForSequenceClassification, } if is_tf_available() else {} ) A__ : Tuple = False A__ : Optional[int] = False def _a ( self : Dict ): """simple docstring""" A__ = TFEsmModelTester(self ) A__ = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def _a ( self : Union[str, Any] ): """simple docstring""" self.config_tester.run_common_tests() def _a ( self : int ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def _a ( self : str ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_snake_case ) def _a ( self : Union[str, Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def _a ( self : Optional[Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) @slow def _a ( self : List[Any] ): """simple docstring""" for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFEsmModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip('Protein models do not support embedding resizing.' ) def _a ( self : List[Any] ): """simple docstring""" pass @unittest.skip('Protein models do not support embedding resizing.' ) def _a ( self : Union[str, Any] ): """simple docstring""" pass def _a ( self : int ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(_snake_case ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer A__ = model.get_bias() assert isinstance(_snake_case , _snake_case ) for k, v in name.items(): assert isinstance(_snake_case , tf.Variable ) else: A__ = model.get_output_embeddings() assert x is None A__ = model.get_bias() assert name is None @require_tf class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _a ( self : int ): """simple docstring""" A__ = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) A__ = model(_snake_case )[0] A__ = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _snake_case ) # compare the actual values for a slice. A__ = tf.constant( [ [ [8.92_1518, -10.58_9814, -6.467_1307], [-6.396_7156, -13.91_1377, -1.121_1915], [-7.78_1247, -13.95_1557, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def _a ( self : List[str] ): """simple docstring""" A__ = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) A__ = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) A__ = model(_snake_case )[0] # compare the actual values for a slice. A__ = tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
9
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
9
1
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase_ ) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Any , **_snake_case : str ): """simple docstring""" super().__init__(**_snake_case ) requires_backends(self , 'vision' ) requires_backends(self , 'torch' ) if self.framework != "pt": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) self.check_model_type(_snake_case ) def _a ( self : str , **_snake_case : Union[str, Any] ): """simple docstring""" A__ = {} A__ = {} A__ = {} # preprocess args if "points_per_batch" in kwargs: A__ = kwargs['points_per_batch'] if "points_per_crop" in kwargs: A__ = kwargs['points_per_crop'] if "crops_n_layers" in kwargs: A__ = kwargs['crops_n_layers'] if "crop_overlap_ratio" in kwargs: A__ = kwargs['crop_overlap_ratio'] if "crop_n_points_downscale_factor" in kwargs: A__ = kwargs['crop_n_points_downscale_factor'] # postprocess args if "pred_iou_thresh" in kwargs: A__ = kwargs['pred_iou_thresh'] if "stability_score_offset" in kwargs: A__ = kwargs['stability_score_offset'] if "mask_threshold" in kwargs: A__ = kwargs['mask_threshold'] if "stability_score_thresh" in kwargs: A__ = kwargs['stability_score_thresh'] if "crops_nms_thresh" in kwargs: A__ = kwargs['crops_nms_thresh'] if "output_rle_mask" in kwargs: A__ = kwargs['output_rle_mask'] if "output_bboxes_mask" in kwargs: A__ = kwargs['output_bboxes_mask'] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : Union[str, Any] , _snake_case : Tuple , *_snake_case : List[str] , _snake_case : Optional[int]=None , _snake_case : Union[str, Any]=None , **_snake_case : Union[str, Any] ): """simple docstring""" return super().__call__(_snake_case , *_snake_case , num_workers=_snake_case , batch_size=_snake_case , **_snake_case ) def _a ( self : Tuple , _snake_case : Tuple , _snake_case : List[Any]=64 , _snake_case : int = 0 , _snake_case : float = 5_12 / 15_00 , _snake_case : Optional[int] = 32 , _snake_case : Optional[int] = 1 , ): """simple docstring""" A__ = load_image(_snake_case ) A__ = self.image_processor.size['longest_edge'] A__ , A__ , A__ , A__ = self.image_processor.generate_crop_boxes( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) A__ = self.image_processor(images=_snake_case , return_tensors='pt' ) with self.device_placement(): if self.framework == "pt": A__ = self.get_inference_context() with inference_context(): A__ = self._ensure_tensor_on_device(_snake_case , device=self.device ) A__ = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) ) A__ = image_embeddings A__ = grid_points.shape[1] A__ = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( 'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ' 'To return all points at once, set points_per_batch to None' ) for i in range(0 , _snake_case , _snake_case ): A__ = grid_points[:, i : i + points_per_batch, :, :] A__ = input_labels[:, i : i + points_per_batch] A__ = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def _a ( self : Any , _snake_case : str , _snake_case : int=0.88 , _snake_case : Union[str, Any]=0.95 , _snake_case : Any=0 , _snake_case : Dict=1 , ): """simple docstring""" A__ = model_inputs.pop('input_boxes' ) A__ = model_inputs.pop('is_last' ) A__ = model_inputs.pop('original_sizes' ).tolist() A__ = model_inputs.pop('reshaped_input_sizes' ).tolist() A__ = self.model(**_snake_case ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks A__ = model_outputs['pred_masks'] A__ = self.image_processor.post_process_masks( _snake_case , _snake_case , _snake_case , _snake_case , binarize=_snake_case ) A__ = model_outputs['iou_scores'] A__ , A__ , A__ = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , _snake_case , _snake_case , _snake_case , _snake_case , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def _a ( self : Dict , _snake_case : int , _snake_case : Optional[int]=False , _snake_case : Union[str, Any]=False , _snake_case : Tuple=0.7 , ): """simple docstring""" A__ = [] A__ = [] A__ = [] for model_output in model_outputs: all_scores.append(model_output.pop('iou_scores' ) ) all_masks.extend(model_output.pop('masks' ) ) all_boxes.append(model_output.pop('boxes' ) ) A__ = torch.cat(_snake_case ) A__ = torch.cat(_snake_case ) A__ , A__ , A__ , A__ = self.image_processor.post_process_for_mask_generation( _snake_case , _snake_case , _snake_case , _snake_case ) A__ = defaultdict(_snake_case ) for output in model_outputs: for k, v in output.items(): extra[k].append(_snake_case ) A__ = {} if output_rle_mask: A__ = rle_mask if output_bboxes_mask: A__ = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
9
SCREAMING_SNAKE_CASE__ = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' SCREAMING_SNAKE_CASE__ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] SCREAMING_SNAKE_CASE__ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
9
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
9
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : """simple docstring""" @staticmethod def _a ( *_snake_case : Any , **_snake_case : Optional[int] ): """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" A__ : Union[str, Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def _a ( self : List[Any] , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : Union[str, Any] ): """simple docstring""" A__ = pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' ) A__ = [ { 'image': Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'question': 'How many cats are there?', }, { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'question': 'How many cats are there?', }, ] return vqa_pipeline, examples def _a ( self : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : List[str] ): """simple docstring""" A__ = vqa_pipeline(_snake_case , top_k=1 ) self.assertEqual( _snake_case , [ [{'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}], [{'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}], ] , ) @require_torch def _a ( self : Any ): """simple docstring""" A__ = pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' ) A__ = './tests/fixtures/tests_samples/COCO/000000039769.png' A__ = 'How many cats are there?' A__ = vqa_pipeline(image=_snake_case , question='How many cats are there?' , top_k=2 ) self.assertEqual( _snake_case , [{'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}, {'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}] ) A__ = vqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( _snake_case , [{'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}, {'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}] ) @slow @require_torch def _a ( self : Any ): """simple docstring""" A__ = pipeline('visual-question-answering' , model='dandelin/vilt-b32-finetuned-vqa' ) A__ = './tests/fixtures/tests_samples/COCO/000000039769.png' A__ = 'How many cats are there?' A__ = vqa_pipeline(image=_snake_case , question=_snake_case , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}] ) A__ = vqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}] ) A__ = vqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [[{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}]] * 2 , ) @require_tf @unittest.skip('Visual question answering not implemented in TF' ) def _a ( self : Dict ): """simple docstring""" pass
9
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Union[str, Any] = ["pixel_values"] def __init__( self : List[str] , _snake_case : bool = True , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = PILImageResampling.BICUBIC , _snake_case : bool = True , _snake_case : Union[int, float] = 1 / 2_55 , _snake_case : bool = True , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : bool = True , **_snake_case : int , ): """simple docstring""" super().__init__(**_snake_case ) A__ = size if size is not None else {'height': 3_84, 'width': 3_84} A__ = get_size_dict(_snake_case , default_to_square=_snake_case ) A__ = do_resize A__ = size A__ = resample A__ = do_rescale A__ = rescale_factor A__ = do_normalize A__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A__ = image_std if image_std is not None else OPENAI_CLIP_STD A__ = do_convert_rgb def _a ( self : int , _snake_case : np.ndarray , _snake_case : Dict[str, int] , _snake_case : PILImageResampling = PILImageResampling.BICUBIC , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : List[Any] , ): """simple docstring""" A__ = get_size_dict(_snake_case , default_to_square=_snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) A__ = (size['height'], size['width']) return resize(_snake_case , size=_snake_case , resample=_snake_case , data_format=_snake_case , **_snake_case ) def _a ( self : List[Any] , _snake_case : np.ndarray , _snake_case : Union[int, float] , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : Tuple , ): """simple docstring""" return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case ) def _a ( self : int , _snake_case : np.ndarray , _snake_case : Union[float, List[float]] , _snake_case : Union[float, List[float]] , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : Tuple , ): """simple docstring""" return normalize(_snake_case , mean=_snake_case , std=_snake_case , data_format=_snake_case , **_snake_case ) def _a ( self : Dict , _snake_case : ImageInput , _snake_case : Optional[bool] = None , _snake_case : Optional[Dict[str, int]] = None , _snake_case : PILImageResampling = None , _snake_case : Optional[bool] = None , _snake_case : Optional[float] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[Union[float, List[float]]] = None , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : bool = None , _snake_case : ChannelDimension = ChannelDimension.FIRST , **_snake_case : Tuple , ): """simple docstring""" A__ = do_resize if do_resize is not None else self.do_resize A__ = resample if resample is not None else self.resample A__ = do_rescale if do_rescale is not None else self.do_rescale A__ = rescale_factor if rescale_factor is not None else self.rescale_factor A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = image_mean if image_mean is not None else self.image_mean A__ = image_std if image_std is not None else self.image_std A__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A__ = size if size is not None else self.size A__ = get_size_dict(_snake_case , default_to_square=_snake_case ) A__ = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: A__ = [convert_to_rgb(_snake_case ) for image in images] # All transformations expect numpy arrays. A__ = [to_numpy_array(_snake_case ) for image in images] if do_resize: A__ = [self.resize(image=_snake_case , size=_snake_case , resample=_snake_case ) for image in images] if do_rescale: A__ = [self.rescale(image=_snake_case , scale=_snake_case ) for image in images] if do_normalize: A__ = [self.normalize(image=_snake_case , mean=_snake_case , std=_snake_case ) for image in images] A__ = [to_channel_dimension_format(_snake_case , _snake_case ) for image in images] A__ = BatchFeature(data={'pixel_values': images} , tensor_type=_snake_case ) return encoded_outputs
9
def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: if exponent == 1: return base if exponent % 2 == 0: A__ = _modexpt(__UpperCamelCase , exponent // 2 , __UpperCamelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__UpperCamelCase , exponent - 1 , __UpperCamelCase )) % modulo_value def A ( __UpperCamelCase = 1_777 , __UpperCamelCase = 1_855 , __UpperCamelCase = 8 ) -> int: A__ = base for _ in range(1 , __UpperCamelCase ): A__ = _modexpt(__UpperCamelCase , __UpperCamelCase , 10**digits ) return result if __name__ == "__main__": print(f'{solution() = }')
9
1
def A ( __UpperCamelCase ) -> float: A__ = 0 while len(__UpperCamelCase ) > 1: A__ = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): A__ = files.index(min(__UpperCamelCase ) ) temp += files[min_index] files.pop(__UpperCamelCase ) files.append(__UpperCamelCase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
9
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def A ( __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=False ) -> Dict: A__ = 'backbone.' if is_semantic else '' A__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (f'''{prefix}cls_token''', 'beit.embeddings.cls_token'), (f'''{prefix}patch_embed.proj.weight''', 'beit.embeddings.patch_embeddings.projection.weight'), (f'''{prefix}patch_embed.proj.bias''', 'beit.embeddings.patch_embeddings.projection.bias'), (f'''{prefix}pos_embed''', 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=False ) -> Optional[Any]: for i in range(config.num_hidden_layers ): A__ = 'backbone.' if is_semantic else '' # queries, keys and values A__ = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' ) A__ = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' ) A__ = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' ) A__ = in_proj_weight[ : config.hidden_size, : ] A__ = q_bias A__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ = in_proj_weight[ -config.hidden_size :, : ] A__ = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained A__ = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' ) A__ = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' ) A__ = gamma_a A__ = gamma_a def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: A__ = dct.pop(__UpperCamelCase ) A__ = val def A ( ) -> Dict: A__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' A__ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False ) -> str: A__ = False if 'rvlcdip' in checkpoint_url else True A__ = BeitConfig(use_absolute_position_embeddings=__UpperCamelCase , use_mask_token=__UpperCamelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: A__ = 1_024 A__ = 4_096 A__ = 24 A__ = 16 # labels if "rvlcdip" in checkpoint_url: A__ = 16 A__ = 'huggingface/label-files' A__ = 'rvlcdip-id2label.json' A__ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='dataset' ) , 'r' ) ) A__ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys A__ = torch.hub.load_state_dict_from_url(__UpperCamelCase , map_location='cpu' )['model'] A__ = create_rename_keys(__UpperCamelCase , has_lm_head=__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) read_in_q_k_v(__UpperCamelCase , __UpperCamelCase , has_lm_head=__UpperCamelCase ) # load HuggingFace model A__ = BeitForMaskedImageModeling(__UpperCamelCase ) if has_lm_head else BeitForImageClassification(__UpperCamelCase ) model.eval() model.load_state_dict(__UpperCamelCase ) # Check outputs on an image A__ = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__UpperCamelCase ) A__ = prepare_img() A__ = image_processor(images=__UpperCamelCase , return_tensors='pt' ) A__ = encoding['pixel_values'] A__ = model(__UpperCamelCase ) A__ = outputs.logits # verify logits A__ = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 196, 8_192] assert logits.shape == torch.Size(__UpperCamelCase ), "Shape of logits not as expected" Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if push_to_hub: if has_lm_head: A__ = 'dit-base' if 'base' in checkpoint_url else 'dit-large' else: A__ = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip' image_processor.push_to_hub( repo_path_or_name=Path(__UpperCamelCase , __UpperCamelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=__UpperCamelCase , ) model.push_to_hub( repo_path_or_name=Path(__UpperCamelCase , __UpperCamelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=__UpperCamelCase , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
9
1
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge SCREAMING_SNAKE_CASE__ = [ '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the''' ''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe''' ''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''', '''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal''' ''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s''' ''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the''' ''' body.''', '''Amnesty International releases its annual report on the death penalty. The report catalogs the use of''' ''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the''' ''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital''' ''' punishment.''', ] SCREAMING_SNAKE_CASE__ = [ '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''' ''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz''' ''' had informed his Lufthansa training school of an episode of severe depression, airline says .''', '''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .''' ''' Israel and the United States opposed the move, which could open the door to war crimes investigations against''' ''' Israelis .''', '''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to''' ''' death . Organization claims that governments around the world are using the threat of terrorism to advance''' ''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death''' ''' sentences up by 28% .''', ] def A ( ) -> Optional[int]: A__ = calculate_rouge(__UpperCamelCase , __UpperCamelCase , bootstrap_aggregation=__UpperCamelCase , rouge_keys=['rouge2', 'rougeL'] ) assert isinstance(__UpperCamelCase , __UpperCamelCase ) A__ = calculate_rouge(__UpperCamelCase , __UpperCamelCase , bootstrap_aggregation=__UpperCamelCase , rouge_keys=['rouge2'] ) assert ( pd.DataFrame(no_aggregation['rouge2'] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['rouge2'] ).fmeasure.mean() ) def A ( ) -> Optional[Any]: A__ = 'rougeLsum' A__ = calculate_rouge(__UpperCamelCase , __UpperCamelCase , newline_sep=__UpperCamelCase , rouge_keys=[k] )[k] A__ = calculate_rouge(__UpperCamelCase , __UpperCamelCase , newline_sep=__UpperCamelCase , rouge_keys=[k] )[k] assert score > score_no_sep def A ( ) -> Optional[Any]: A__ = ['rouge1', 'rouge2', 'rougeL'] A__ = calculate_rouge(__UpperCamelCase , __UpperCamelCase , newline_sep=__UpperCamelCase , rouge_keys=__UpperCamelCase ) A__ = calculate_rouge(__UpperCamelCase , __UpperCamelCase , newline_sep=__UpperCamelCase , rouge_keys=__UpperCamelCase ) assert score_sep == score_no_sep def A ( ) -> Optional[Any]: A__ = [ 'Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.', 'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .', ] A__ = [ 'Margot Frank, died in 1945, a month earlier than previously thought.', 'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of' ' the final seconds on board Flight 9525.', ] assert calculate_rouge(__UpperCamelCase , __UpperCamelCase , newline_sep=__UpperCamelCase ) == calculate_rouge(__UpperCamelCase , __UpperCamelCase , newline_sep=__UpperCamelCase ) def A ( ) -> Tuple: A__ = [ '" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ' ] A__ = [ ' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .' ] A__ = calculate_rouge(__UpperCamelCase , __UpperCamelCase , rouge_keys=['rougeLsum'] , newline_sep=__UpperCamelCase )['rougeLsum'] A__ = calculate_rouge(__UpperCamelCase , __UpperCamelCase , rouge_keys=['rougeLsum'] )['rougeLsum'] assert new_score > prev_score def A ( ) -> str: A__ = Path('examples/seq2seq/test_data/wmt_en_ro' ) A__ = calculate_rouge_path(data_dir.joinpath('test.source' ) , data_dir.joinpath('test.target' ) ) assert isinstance(__UpperCamelCase , __UpperCamelCase ) A__ = calculate_rouge_path( data_dir.joinpath('test.source' ) , data_dir.joinpath('test.target' ) , bootstrap_aggregation=__UpperCamelCase ) assert isinstance(__UpperCamelCase , __UpperCamelCase )
9
SCREAMING_SNAKE_CASE__ = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> list[str]: A__ = set() # keep track of all the paths to be checked A__ = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue A__ = queue.pop(0 ) # get the last node from the path A__ = path[-1] if node not in explored: A__ = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: A__ = list(__UpperCamelCase ) new_path.append(__UpperCamelCase ) queue.append(__UpperCamelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(__UpperCamelCase ) # in case there's no path between the 2 nodes return [] def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 A__ = [start] A__ = set(__UpperCamelCase ) # Keep tab on distances from `start` node. A__ = {start: 0, target: -1} while queue: A__ = queue.pop(0 ) if node == target: A__ = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(__UpperCamelCase ) queue.append(__UpperCamelCase ) A__ = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
9
1
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _a ( self : Tuple ): """simple docstring""" A__ = inspect.getfile(accelerate.test_utils ) A__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) A__ = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def _a ( self : List[str] ): """simple docstring""" A__ = F''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() A__ = [sys.executable] + distributed_args execute_subprocess_async(_snake_case , env=os.environ.copy() )
9
def A ( __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: A__ = 0 A__ = len(__UpperCamelCase ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__UpperCamelCase ): return None A__ = sorted_collection[point] if current_item == item: return point else: if point < left: A__ = left A__ = point elif point > right: A__ = right A__ = point else: if item < current_item: A__ = point - 1 else: A__ = point + 1 return None def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__UpperCamelCase ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) elif point > right: return interpolation_search_by_recursion(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , point - 1 ) else: return interpolation_search_by_recursion( __UpperCamelCase , __UpperCamelCase , point + 1 , __UpperCamelCase ) def A ( __UpperCamelCase ) -> List[str]: if collection != sorted(__UpperCamelCase ): raise ValueError('Collection must be ascending sorted' ) return True if __name__ == "__main__": import sys SCREAMING_SNAKE_CASE__ = 0 if debug == 1: SCREAMING_SNAKE_CASE__ = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit('''Sequence must be ascending sorted to apply interpolation search''') SCREAMING_SNAKE_CASE__ = 6_7 SCREAMING_SNAKE_CASE__ = interpolation_search(collection, target) if result is not None: print(f'{target} found at positions: {result}') else: print('''Not found''')
9
1
from __future__ import annotations from fractions import Fraction def A ( __UpperCamelCase , __UpperCamelCase ) -> bool: return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def A ( __UpperCamelCase ) -> list[str]: A__ = [] A__ = 11 A__ = int('1' + '0' * digit_len ) for num in range(__UpperCamelCase , __UpperCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(__UpperCamelCase , __UpperCamelCase ): solutions.append(f'''{num}/{den}''' ) den += 1 num += 1 A__ = 10 return solutions def A ( __UpperCamelCase = 2 ) -> int: A__ = 1.0 for fraction in fraction_list(__UpperCamelCase ): A__ = Fraction(__UpperCamelCase ) result *= frac.denominator / frac.numerator return int(__UpperCamelCase ) if __name__ == "__main__": print(solution())
9
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , *_snake_case : int , **_snake_case : Optional[int] ): """simple docstring""" warnings.warn( 'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use CLIPImageProcessor instead.' , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
9
1
def A ( __UpperCamelCase ) -> int: A__ = 1 for i in range(1 , num + 1 ): fact *= i return fact def A ( __UpperCamelCase ) -> int: A__ = 0 while number > 0: A__ = number % 10 sum_of_digits += last_digit A__ = number // 10 # Removing the last_digit from the given number return sum_of_digits def A ( __UpperCamelCase = 100 ) -> int: A__ = factorial(__UpperCamelCase ) A__ = split_and_add(__UpperCamelCase ) return result if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
9
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () SCREAMING_SNAKE_CASE__ = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). SCREAMING_SNAKE_CASE__ = [0, 2_5, 5_0] SCREAMING_SNAKE_CASE__ = [2_5, 5_0, 7_5] SCREAMING_SNAKE_CASE__ = fuzz.membership.trimf(X, abca) SCREAMING_SNAKE_CASE__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. SCREAMING_SNAKE_CASE__ = np.ones(7_5) SCREAMING_SNAKE_CASE__ = np.zeros((7_5,)) # 1. Union = max(µA(x), µB(x)) SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] SCREAMING_SNAKE_CASE__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) SCREAMING_SNAKE_CASE__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
9
1
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , *_snake_case : int , **_snake_case : Optional[int] ): """simple docstring""" warnings.warn( 'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use CLIPImageProcessor instead.' , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
9
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : """simple docstring""" @staticmethod def _a ( *_snake_case : int , **_snake_case : List[str] ): """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" A__ : List[str] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def _a ( self : Any , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : Optional[Any] ): """simple docstring""" A__ = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) A__ = [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] return object_detector, examples def _a ( self : int , _snake_case : int , _snake_case : List[str] ): """simple docstring""" A__ = object_detector(examples[0] , threshold=0.0 ) A__ = len(_snake_case ) self.assertGreater(_snake_case , 0 ) self.assertEqual( _snake_case , [ { 'score': ANY(_snake_case ), 'label': ANY(_snake_case ), 'box': {'xmin': ANY(_snake_case ), 'ymin': ANY(_snake_case ), 'xmax': ANY(_snake_case ), 'ymax': ANY(_snake_case )}, } for i in range(_snake_case ) ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def _a ( self : List[str] ): """simple docstring""" pass @require_torch def _a ( self : Optional[int] ): """simple docstring""" A__ = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) A__ = object_detector( './tests/fixtures/tests_samples/COCO/000000039769.png' , candidate_labels=['cat', 'remote', 'couch'] , threshold=0.64 , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {'score': 0.7235, 'label': 'cat', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7218, 'label': 'remote', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7184, 'label': 'couch', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.6748, 'label': 'remote', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6656, 'label': 'cat', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6614, 'label': 'couch', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6456, 'label': 'remote', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 2_74, 'xmax': 93, 'ymax': 2_97}}, {'score': 0.6419, 'label': 'cat', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, ] , ) A__ = object_detector( [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ [ {'score': 0.7235, 'label': 'cat', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7218, 'label': 'remote', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7184, 'label': 'couch', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.6748, 'label': 'remote', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6656, 'label': 'cat', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6614, 'label': 'couch', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6456, 'label': 'remote', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 2_74, 'xmax': 93, 'ymax': 2_97}}, {'score': 0.6419, 'label': 'cat', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, ] ] , ) @require_torch @slow def _a ( self : int ): """simple docstring""" A__ = pipeline('zero-shot-object-detection' ) A__ = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ] , ) A__ = object_detector( [ { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, ] , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ], [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ], ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def _a ( self : int ): """simple docstring""" pass @require_torch @slow def _a ( self : str ): """simple docstring""" A__ = 0.2 A__ = pipeline('zero-shot-object-detection' ) A__ = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , threshold=_snake_case , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, ] , ) @require_torch @slow def _a ( self : Any ): """simple docstring""" A__ = 2 A__ = pipeline('zero-shot-object-detection' ) A__ = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , top_k=_snake_case , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, ] , )
9
1
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : List[str] , *_snake_case : int , **_snake_case : List[Any] ): """simple docstring""" warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
9
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml SCREAMING_SNAKE_CASE__ = NewType('''DataClass''', Any) SCREAMING_SNAKE_CASE__ = NewType('''DataClassType''', Any) def A ( __UpperCamelCase ) -> List[Any]: if isinstance(__UpperCamelCase , __UpperCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def A ( __UpperCamelCase ) -> Callable[[str], Any]: A__ = {str(__UpperCamelCase ): choice for choice in choices} return lambda __UpperCamelCase : str_to_choice.get(__UpperCamelCase , __UpperCamelCase ) def A ( *, __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = dataclasses.MISSING , __UpperCamelCase = dataclasses.MISSING , __UpperCamelCase = None , **__UpperCamelCase , ) -> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls A__ = {} if aliases is not None: A__ = aliases if help is not None: A__ = help return dataclasses.field(metadata=__UpperCamelCase , default=__UpperCamelCase , default_factory=__UpperCamelCase , **__UpperCamelCase ) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Iterable[DataClassType] def __init__( self : Optional[int] , _snake_case : Union[DataClassType, Iterable[DataClassType]] , **_snake_case : Tuple ): """simple docstring""" if "formatter_class" not in kwargs: A__ = ArgumentDefaultsHelpFormatter super().__init__(**_snake_case ) if dataclasses.is_dataclass(_snake_case ): A__ = [dataclass_types] A__ = list(_snake_case ) for dtype in self.dataclass_types: self._add_dataclass_arguments(_snake_case ) @staticmethod def _a ( _snake_case : ArgumentParser , _snake_case : dataclasses.Field ): """simple docstring""" A__ = F'''--{field.name}''' A__ = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , _snake_case ): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default' ) A__ = kwargs.pop('aliases' , [] ) if isinstance(_snake_case , _snake_case ): A__ = [aliases] A__ = getattr(field.type , '__origin__' , field.type ) if origin_type is Union or (hasattr(_snake_case , 'UnionType' ) and isinstance(_snake_case , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(_snake_case ) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' F''' Problem encountered in field \'{field.name}\'.''' ) if type(_snake_case ) not in field.type.__args__: # filter `str` in Union A__ = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] A__ = getattr(field.type , '__origin__' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) A__ = ( field.type.__args__[0] if isinstance(_snake_case , field.type.__args__[1] ) else field.type.__args__[1] ) A__ = getattr(field.type , '__origin__' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) A__ = {} if origin_type is Literal or (isinstance(field.type , _snake_case ) and issubclass(field.type , _snake_case )): if origin_type is Literal: A__ = field.type.__args__ else: A__ = [x.value for x in field.type] A__ = make_choice_type_function(kwargs['choices'] ) if field.default is not dataclasses.MISSING: A__ = field.default else: A__ = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument A__ = copy(_snake_case ) # Hack because type=bool in argparse does not behave as we want. A__ = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. A__ = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way A__ = default # This tells argparse we accept 0 or 1 value after --field_name A__ = '?' # This is the value that will get picked if we do --field_name (without value) A__ = True elif isclass(_snake_case ) and issubclass(_snake_case , _snake_case ): A__ = field.type.__args__[0] A__ = '+' if field.default_factory is not dataclasses.MISSING: A__ = field.default_factory() elif field.default is dataclasses.MISSING: A__ = True else: A__ = field.type if field.default is not dataclasses.MISSING: A__ = field.default elif field.default_factory is not dataclasses.MISSING: A__ = field.default_factory() else: A__ = True parser.add_argument(_snake_case , *_snake_case , **_snake_case ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): A__ = False parser.add_argument(F'''--no_{field.name}''' , action='store_false' , dest=field.name , **_snake_case ) def _a ( self : Any , _snake_case : DataClassType ): """simple docstring""" if hasattr(_snake_case , '_argument_group_name' ): A__ = self.add_argument_group(dtype._argument_group_name ) else: A__ = self try: A__ = get_type_hints(_snake_case ) except NameError: raise RuntimeError( F'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_snake_case ): A__ = '.'.join(map(_snake_case , sys.version_info[:3] ) ) raise RuntimeError( F'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.' ) from ex raise for field in dataclasses.fields(_snake_case ): if not field.init: continue A__ = type_hints[field.name] self._parse_dataclass_field(_snake_case , _snake_case ) def _a ( self : Optional[int] , _snake_case : Optional[Any]=None , _snake_case : Any=False , _snake_case : int=True , _snake_case : List[Any]=None , _snake_case : int=None , ): """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): A__ = [] if args_filename: args_files.append(Path(_snake_case ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('.args' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values A__ = ArgumentParser() args_file_parser.add_argument(_snake_case , type=_snake_case , action='append' ) # Use only remaining args for further parsing (remove the args_file_flag) A__ , A__ = args_file_parser.parse_known_args(args=_snake_case ) A__ = vars(_snake_case ).get(args_file_flag.lstrip('-' ) , _snake_case ) if cmd_args_file_paths: args_files.extend([Path(_snake_case ) for p in cmd_args_file_paths] ) A__ = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last A__ = file_args + args if args is not None else file_args + sys.argv[1:] A__ , A__ = self.parse_known_args(args=_snake_case ) A__ = [] for dtype in self.dataclass_types: A__ = {f.name for f in dataclasses.fields(_snake_case ) if f.init} A__ = {k: v for k, v in vars(_snake_case ).items() if k in keys} for k in keys: delattr(_snake_case , _snake_case ) A__ = dtype(**_snake_case ) outputs.append(_snake_case ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(_snake_case ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def _a ( self : Dict , _snake_case : Dict[str, Any] , _snake_case : bool = False ): """simple docstring""" A__ = set(args.keys() ) A__ = [] for dtype in self.dataclass_types: A__ = {f.name for f in dataclasses.fields(_snake_case ) if f.init} A__ = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) A__ = dtype(**_snake_case ) outputs.append(_snake_case ) if not allow_extra_keys and unused_keys: raise ValueError(F'''Some keys are not used by the HfArgumentParser: {sorted(_snake_case )}''' ) return tuple(_snake_case ) def _a ( self : Dict , _snake_case : str , _snake_case : bool = False ): """simple docstring""" with open(Path(_snake_case ) , encoding='utf-8' ) as open_json_file: A__ = json.loads(open_json_file.read() ) A__ = self.parse_dict(_snake_case , allow_extra_keys=_snake_case ) return tuple(_snake_case ) def _a ( self : Tuple , _snake_case : str , _snake_case : bool = False ): """simple docstring""" A__ = self.parse_dict(yaml.safe_load(Path(_snake_case ).read_text() ) , allow_extra_keys=_snake_case ) return tuple(_snake_case )
9
1
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class __lowerCAmelCase : """simple docstring""" def __init__( self : Any ): """simple docstring""" A__ = '' A__ = '' A__ = [] A__ = 0 A__ = 2_56 A__ = 0 A__ = 0 A__ = 0 A__ = 0 def _a ( self : Any , _snake_case : Optional[Any] ): """simple docstring""" A__ = cva.imread(_snake_case , 0 ) A__ = copy.deepcopy(self.img ) A__ , A__ , A__ = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label='x' ) A__ = np.sum(_snake_case ) for i in range(len(_snake_case ) ): A__ = x[i] / self.k self.sk += prk A__ = (self.L - 1) * self.sk if self.rem != 0: A__ = int(last % last ) A__ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_snake_case ) A__ = int(np.ma.count(self.img ) / self.img[1].size ) A__ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): A__ = self.img[j][i] if num != self.last_list[num]: A__ = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def _a ( self : int ): """simple docstring""" plt.hist(self.img.ravel() , 2_56 , [0, 2_56] ) def _a ( self : Optional[int] ): """simple docstring""" cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(50_00 ) cva.destroyAllWindows() if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') SCREAMING_SNAKE_CASE__ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
9
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def A ( __UpperCamelCase ) -> List[Any]: print('Loading config file...' ) def flatten_yaml_as_dict(__UpperCamelCase , __UpperCamelCase="" , __UpperCamelCase="." ): A__ = [] for k, v in d.items(): A__ = parent_key + sep + k if parent_key else k if isinstance(__UpperCamelCase , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(__UpperCamelCase , __UpperCamelCase , sep=__UpperCamelCase ).items() ) else: items.append((new_key, v) ) return dict(__UpperCamelCase ) A__ = argparse.Namespace() with open(__UpperCamelCase , 'r' ) as yaml_file: try: A__ = yaml.load(__UpperCamelCase , Loader=yaml.FullLoader ) A__ = flatten_yaml_as_dict(__UpperCamelCase ) for k, v in flat_cfg.items(): setattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) except yaml.YAMLError as exc: logger.error('Error while loading config file: {}. Error message: {}'.format(__UpperCamelCase , str(__UpperCamelCase ) ) ) return config def A ( __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: A__ = MobileViTVaConfig() A__ = False # dataset if task_name.startswith('imagenet1k_' ): A__ = 1_000 if int(task_name.strip().split('_' )[-1] ) == 384: A__ = 384 else: A__ = 256 A__ = 'imagenet-1k-id2label.json' elif task_name.startswith('imagenet21k_to_1k_' ): A__ = 21_000 if int(task_name.strip().split('_' )[-1] ) == 384: A__ = 384 else: A__ = 256 A__ = 'imagenet-22k-id2label.json' elif task_name.startswith('ade20k_' ): A__ = 151 A__ = 512 A__ = 'ade20k-id2label.json' A__ = True elif task_name.startswith('voc_' ): A__ = 21 A__ = 512 A__ = 'pascal-voc-id2label.json' A__ = True # orig_config A__ = load_orig_config_file(__UpperCamelCase ) assert getattr(__UpperCamelCase , 'model.classification.name' , -1 ) == "mobilevit_v2", "Invalid model" A__ = getattr(__UpperCamelCase , 'model.classification.mitv2.width_multiplier' , 1.0 ) assert ( getattr(__UpperCamelCase , 'model.classification.mitv2.attn_norm_layer' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" A__ = getattr(__UpperCamelCase , 'model.classification.activation.name' , 'swish' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: A__ = getattr(__UpperCamelCase , 'model.segmentation.output_stride' , 16 ) if "_deeplabv3" in task_name: A__ = getattr(__UpperCamelCase , 'model.segmentation.deeplabv3.aspp_rates' , [12, 24, 36] ) A__ = getattr(__UpperCamelCase , 'model.segmentation.deeplabv3.aspp_out_channels' , 512 ) A__ = getattr(__UpperCamelCase , 'model.segmentation.deeplabv3.aspp_dropout' , 0.1 ) # id2label A__ = 'huggingface/label-files' A__ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='dataset' ) , 'r' ) ) A__ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} return config def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[str]: A__ = dct.pop(__UpperCamelCase ) A__ = val def A ( __UpperCamelCase , __UpperCamelCase=False ) -> Dict: if base_model: A__ = '' else: A__ = 'mobilevitv2.' A__ = [] for k in state_dict.keys(): if k[:8] == "encoder.": A__ = k[8:] else: A__ = k if ".block." in k: A__ = k_new.replace('.block.' , '.' ) if ".conv." in k: A__ = k_new.replace('.conv.' , '.convolution.' ) if ".norm." in k: A__ = k_new.replace('.norm.' , '.normalization.' ) if "conv_1." in k: A__ = k_new.replace('conv_1.' , f'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if f'''layer_{i}.''' in k: A__ = k_new.replace(f'''layer_{i}.''' , f'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: A__ = k_new.replace('.exp_1x1.' , '.expand_1x1.' ) if ".red_1x1." in k: A__ = k_new.replace('.red_1x1.' , '.reduce_1x1.' ) for i in [3, 4, 5]: if f'''layer_{i}.0.''' in k: A__ = k_new.replace(f'''layer_{i}.0.''' , f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if f'''layer_{i}.1.local_rep.0.''' in k: A__ = k_new.replace(f'''layer_{i}.1.local_rep.0.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if f'''layer_{i}.1.local_rep.1.''' in k: A__ = k_new.replace(f'''layer_{i}.1.local_rep.1.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: A__ = [0, 1] elif i == 4: A__ = [0, 1, 2, 3] elif i == 5: A__ = [0, 1, 2] for j in j_in: if f'''layer_{i}.1.global_rep.{j}.''' in k: A__ = k_new.replace( f'''layer_{i}.1.global_rep.{j}.''' , f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if f'''layer_{i}.1.global_rep.{j+1}.''' in k: A__ = k_new.replace( f'''layer_{i}.1.global_rep.{j+1}.''' , f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if f'''layer_{i}.1.conv_proj.''' in k: A__ = k_new.replace(f'''layer_{i}.1.conv_proj.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: A__ = k_new.replace('pre_norm_attn.0.' , 'layernorm_before.' ) if "pre_norm_attn.1." in k: A__ = k_new.replace('pre_norm_attn.1.' , 'attention.' ) if "pre_norm_ffn.0." in k: A__ = k_new.replace('pre_norm_ffn.0.' , 'layernorm_after.' ) if "pre_norm_ffn.1." in k: A__ = k_new.replace('pre_norm_ffn.1.' , 'ffn.conv1.' ) if "pre_norm_ffn.3." in k: A__ = k_new.replace('pre_norm_ffn.3.' , 'ffn.conv2.' ) if "classifier.1." in k: A__ = k_new.replace('classifier.1.' , 'classifier.' ) if "seg_head." in k: A__ = k_new.replace('seg_head.' , 'segmentation_head.' ) if ".aspp_layer." in k: A__ = k_new.replace('.aspp_layer.' , '.' ) if ".aspp_pool." in k: A__ = k_new.replace('.aspp_pool.' , '.' ) rename_keys.append((k, k_new) ) return rename_keys def A ( __UpperCamelCase ) -> Tuple: A__ = [] for k in state_dict.keys(): if k.startswith('seg_head.aux_head.' ): keys_to_ignore.append(__UpperCamelCase ) for k in keys_to_ignore: state_dict.pop(__UpperCamelCase , __UpperCamelCase ) def A ( ) -> str: A__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" A__ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: A__ = get_mobilevitva_config(__UpperCamelCase , __UpperCamelCase ) # load original state_dict A__ = torch.load(__UpperCamelCase , map_location='cpu' ) # load huggingface model if task_name.startswith('ade20k_' ) or task_name.startswith('voc_' ): A__ = MobileViTVaForSemanticSegmentation(__UpperCamelCase ).eval() A__ = False else: A__ = MobileViTVaForImageClassification(__UpperCamelCase ).eval() A__ = False # remove and rename some keys of load the original model A__ = checkpoint remove_unused_keys(__UpperCamelCase ) A__ = create_rename_keys(__UpperCamelCase , base_model=__UpperCamelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # load modified state_dict model.load_state_dict(__UpperCamelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor A__ = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) A__ = image_processor(images=prepare_img() , return_tensors='pt' ) A__ = model(**__UpperCamelCase ) # verify classification model if task_name.startswith('imagenet' ): A__ = outputs.logits A__ = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('imagenet1k_256' ) and config.width_multiplier == 1.0: # expected_logits for base variant A__ = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ) assert torch.allclose(logits[0, :3] , __UpperCamelCase , atol=1E-4 ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''imagenet1k_256''', type=str, help=( '''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ''' ''' Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 ''' ), choices=[ '''imagenet1k_256''', '''imagenet1k_384''', '''imagenet21k_to_1k_256''', '''imagenet21k_to_1k_384''', '''ade20k_deeplabv3''', '''voc_deeplabv3''', ], ) parser.add_argument( '''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
9
1
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
9
import argparse from collections import defaultdict import yaml SCREAMING_SNAKE_CASE__ = '''docs/source/en/_toctree.yml''' def A ( __UpperCamelCase ) -> Optional[Any]: A__ = defaultdict(__UpperCamelCase ) for doc in model_doc: counts[doc["local"]] += 1 A__ = [key for key, value in counts.items() if value > 1] A__ = [] for duplicate_key in duplicates: A__ = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(__UpperCamelCase ) > 1: raise ValueError( f'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(__UpperCamelCase , key=lambda __UpperCamelCase : s["title"].lower() ) def A ( __UpperCamelCase=False ) -> str: with open(__UpperCamelCase , encoding='utf-8' ) as f: A__ = yaml.safe_load(f.read() ) # Get to the API doc A__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 A__ = content[api_idx]['sections'] # Then to the model doc A__ = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 A__ = api_doc[model_idx]['sections'] A__ = [(idx, section) for idx, section in enumerate(__UpperCamelCase ) if 'sections' in section] A__ = False for idx, modality_doc in modalities_docs: A__ = modality_doc['sections'] A__ = clean_model_doc_toc(__UpperCamelCase ) if old_modality_doc != new_modality_doc: A__ = True if overwrite: A__ = new_modality_doc if diff: if overwrite: A__ = model_doc A__ = api_doc with open(__UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(__UpperCamelCase , allow_unicode=__UpperCamelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') SCREAMING_SNAKE_CASE__ = parser.parse_args() check_model_doc(args.fix_and_overwrite)
9
1
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def A ( __UpperCamelCase ) -> List[str]: A__ = r'\w+[.]\d+' A__ = re.findall(__UpperCamelCase , __UpperCamelCase ) for pat in pats: A__ = key.replace(__UpperCamelCase , '_'.join(pat.split('.' ) ) ) return key def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: A__ = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): A__ = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: A__ = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: A__ = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer A__ = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: A__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer A__ = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": A__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight A__ = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias A__ = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=42 ) -> Optional[int]: # Step 1: Convert pytorch tensor to numpy A__ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params A__ = flax_model.init_weights(PRNGKey(__UpperCamelCase ) ) A__ = flatten_dict(__UpperCamelCase ) A__ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A__ = rename_key(__UpperCamelCase ) A__ = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters A__ , A__ = rename_key_and_reshape_tensor(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown A__ = jnp.asarray(__UpperCamelCase ) return unflatten_dict(__UpperCamelCase )
9
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def _a ( self : List[str] ): """simple docstring""" A__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_snake_case , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(_snake_case , 'num_attention_heads' ) ) self.parent.assertTrue(hasattr(_snake_case , 'num_encoder_blocks' ) ) class __lowerCAmelCase : """simple docstring""" def __init__( self : Any , _snake_case : str , _snake_case : Union[str, Any]=13 , _snake_case : Any=64 , _snake_case : Optional[Any]=3 , _snake_case : Dict=4 , _snake_case : Tuple=[2, 2, 2, 2] , _snake_case : str=[8, 4, 2, 1] , _snake_case : Union[str, Any]=[16, 32, 64, 1_28] , _snake_case : int=[1, 4, 8, 16] , _snake_case : List[str]=[1, 2, 4, 8] , _snake_case : int=True , _snake_case : int=True , _snake_case : Union[str, Any]="gelu" , _snake_case : Optional[int]=0.1 , _snake_case : Tuple=0.1 , _snake_case : Dict=0.02 , _snake_case : Tuple=3 , _snake_case : int=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = image_size A__ = num_channels A__ = num_encoder_blocks A__ = sr_ratios A__ = depths A__ = hidden_sizes A__ = downsampling_rates A__ = num_attention_heads A__ = is_training A__ = use_labels A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = num_labels A__ = scope def _a ( self : int ): """simple docstring""" A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A__ = self.get_config() return config, pixel_values, labels def _a ( self : int ): """simple docstring""" return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _a ( self : int , _snake_case : Optional[Any] , _snake_case : int , _snake_case : Any ): """simple docstring""" A__ = SegformerModel(config=_snake_case ) model.to(_snake_case ) model.eval() A__ = model(_snake_case ) A__ = A__ = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def _a ( self : Union[str, Any] , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : Dict ): """simple docstring""" A__ = self.num_labels A__ = SegformerForSemanticSegmentation(_snake_case ) model.to(_snake_case ) model.eval() A__ = model(_snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) A__ = model(_snake_case , labels=_snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def _a ( self : List[str] , _snake_case : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : List[str] ): """simple docstring""" A__ = 1 A__ = SegformerForSemanticSegmentation(config=_snake_case ) model.to(_snake_case ) model.eval() A__ = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(_snake_case ) A__ = model(_snake_case , labels=_snake_case ) self.parent.assertGreater(result.loss , 0.0 ) def _a ( self : List[Any] ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Optional[int] = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) A__ : Union[str, Any] = ( { "feature-extraction": SegformerModel, "image-classification": SegformerForImageClassification, "image-segmentation": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) A__ : Optional[Any] = True A__ : str = False A__ : Tuple = False A__ : Dict = False def _a ( self : Union[str, Any] ): """simple docstring""" A__ = SegformerModelTester(self ) A__ = SegformerConfigTester(self , config_class=_snake_case ) def _a ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Optional[Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def _a ( self : List[Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*_snake_case ) def _a ( self : Tuple ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*_snake_case ) @unittest.skip('SegFormer does not use inputs_embeds' ) def _a ( self : List[Any] ): """simple docstring""" pass @unittest.skip('SegFormer does not have get_input_embeddings method and get_output_embeddings methods' ) def _a ( self : Dict ): """simple docstring""" pass def _a ( self : Dict ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(_snake_case ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _snake_case ) def _a ( self : Dict ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True for model_class in self.all_model_classes: A__ = True A__ = False A__ = True A__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) A__ = outputs.attentions A__ = sum(self.model_tester.depths ) self.assertEqual(len(_snake_case ) , _snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) A__ = outputs.attentions self.assertEqual(len(_snake_case ) , _snake_case ) # verify the first attentions (first block, first layer) A__ = (self.model_tester.image_size // 4) ** 2 A__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) A__ = (self.model_tester.image_size // 32) ** 2 A__ = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) A__ = len(_snake_case ) # Check attention is always last and order is fine A__ = True A__ = True A__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) self.assertEqual(out_len + 1 , len(_snake_case ) ) A__ = outputs.attentions self.assertEqual(len(_snake_case ) , _snake_case ) # verify the first attentions (first block, first layer) A__ = (self.model_tester.image_size // 4) ** 2 A__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def _a ( self : Union[str, Any] ): """simple docstring""" def check_hidden_states_output(_snake_case : Dict , _snake_case : int , _snake_case : List[Any] ): A__ = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(_snake_case , _snake_case ) ) A__ = outputs.hidden_states A__ = self.model_tester.num_encoder_blocks self.assertEqual(len(_snake_case ) , _snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) def _a ( self : Tuple ): """simple docstring""" if not self.model_tester.is_training: return A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True for model_class in self.all_model_classes: if model_class in get_values(_snake_case ): continue A__ = model_class(_snake_case ) model.to(_snake_case ) model.train() A__ = self._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) A__ = model(**_snake_case ).loss loss.backward() @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _a ( self : Optional[Any] ): """simple docstring""" pass @slow def _a ( self : Tuple ): """simple docstring""" for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = SegformerModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def A ( ) -> str: A__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _a ( self : Dict ): """simple docstring""" A__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_snake_case , align=_snake_case , do_random_crop=_snake_case ) A__ = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( _snake_case ) A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='pt' ) A__ = encoded_inputs.pixel_values.to(_snake_case ) with torch.no_grad(): A__ = model(_snake_case ) A__ = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , _snake_case ) A__ = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _snake_case , atol=1E-4 ) ) @slow def _a ( self : Optional[Any] ): """simple docstring""" A__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_snake_case , align=_snake_case , do_random_crop=_snake_case ) A__ = SegformerForSemanticSegmentation.from_pretrained( 'nvidia/segformer-b1-finetuned-cityscapes-1024-1024' ).to(_snake_case ) A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='pt' ) A__ = encoded_inputs.pixel_values.to(_snake_case ) with torch.no_grad(): A__ = model(_snake_case ) A__ = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , _snake_case ) A__ = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _snake_case , atol=1E-1 ) ) @slow def _a ( self : Any ): """simple docstring""" A__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_snake_case , align=_snake_case , do_random_crop=_snake_case ) A__ = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( _snake_case ) A__ = prepare_img() A__ = image_processor(images=_snake_case , return_tensors='pt' ) A__ = encoded_inputs.pixel_values.to(_snake_case ) with torch.no_grad(): A__ = model(_snake_case ) A__ = outputs.logits.detach().cpu() A__ = image_processor.post_process_semantic_segmentation(outputs=_snake_case , target_sizes=[(5_00, 3_00)] ) A__ = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , _snake_case ) A__ = image_processor.post_process_semantic_segmentation(outputs=_snake_case ) A__ = torch.Size((1_28, 1_28) ) self.assertEqual(segmentation[0].shape , _snake_case )
9
1
SCREAMING_SNAKE_CASE__ = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
9
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A ( __UpperCamelCase ) -> Optional[int]: A__ = filter(lambda __UpperCamelCase : p.requires_grad , model.parameters() ) A__ = sum([np.prod(p.size() ) for p in model_parameters] ) return params SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) def A ( __UpperCamelCase , __UpperCamelCase ) -> Dict: if metric == "rouge2": A__ = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": A__ = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": A__ = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": A__ = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ' function.' ) A__ = ModelCheckpoint( dirpath=__UpperCamelCase , filename=__UpperCamelCase , monitor=f'''val_{metric}''' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def A ( __UpperCamelCase , __UpperCamelCase ) -> Any: return EarlyStopping( monitor=f'''val_{metric}''' , mode='min' if 'loss' in metric else 'max' , patience=__UpperCamelCase , verbose=__UpperCamelCase , ) class __lowerCAmelCase ( pl.Callback ): """simple docstring""" def _a ( self : Dict , _snake_case : Union[str, Any] , _snake_case : str ): """simple docstring""" A__ = {F'''lr_group_{i}''': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_snake_case ) @rank_zero_only def _a ( self : Union[str, Any] , _snake_case : pl.Trainer , _snake_case : pl.LightningModule , _snake_case : str , _snake_case : Optional[Any]=True ): """simple docstring""" logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) A__ = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results A__ = Path(pl_module.hparams.output_dir ) if type_path == "test": A__ = od / 'test_results.txt' A__ = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. A__ = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' A__ = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=_snake_case ) generations_file.parent.mkdir(exist_ok=_snake_case ) with open(_snake_case , 'a+' ) as writer: for key in sorted(_snake_case ): if key in ["log", "progress_bar", "preds"]: continue A__ = metrics[key] if isinstance(_snake_case , torch.Tensor ): A__ = val.item() A__ = F'''{key}: {val:.6f}\n''' writer.write(_snake_case ) if not save_generations: return if "preds" in metrics: A__ = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(_snake_case ) @rank_zero_only def _a ( self : Dict , _snake_case : List[str] , _snake_case : List[Any] ): """simple docstring""" try: A__ = pl_module.model.model.num_parameters() except AttributeError: A__ = pl_module.model.num_parameters() A__ = count_trainable_parameters(_snake_case ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def _a ( self : int , _snake_case : pl.Trainer , _snake_case : pl.LightningModule ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_snake_case , _snake_case , 'test' ) @rank_zero_only def _a ( self : Optional[Any] , _snake_case : pl.Trainer , _snake_case : List[Any] ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
9
1
import argparse import struct import unittest class __lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] , _snake_case : bytes ): """simple docstring""" A__ = data # Initialize hash values A__ = [ 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19, ] # Initialize round constants A__ = [ 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967, 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070, 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2, ] A__ = self.preprocessing(self.data ) self.final_hash() @staticmethod def _a ( _snake_case : bytes ): """simple docstring""" A__ = B'\x80' + (B'\x00' * (63 - (len(_snake_case ) + 8) % 64)) A__ = struct.pack('>Q' , (len(_snake_case ) * 8) ) return data + padding + big_endian_integer def _a ( self : Dict ): """simple docstring""" A__ = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers A__ = list(struct.unpack('>16L' , _snake_case ) ) # add 48 0-ed integers words += [0] * 48 A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array A__ = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) A__ = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) A__ = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x100000000 # Compression A__ = self.ror(_snake_case , 6 ) ^ self.ror(_snake_case , 11 ) ^ self.ror(_snake_case , 25 ) A__ = (e & f) ^ ((~e & 0xFFFFFFFF) & g) A__ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x100000000 A__ = self.ror(_snake_case , 2 ) ^ self.ror(_snake_case , 13 ) ^ self.ror(_snake_case , 22 ) A__ = (a & b) ^ (a & c) ^ (b & c) A__ = (sa + maj) % 0x100000000 A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ = ( g, f, e, ((d + tempa) % 0x100000000), c, b, a, ((tempa + tempa) % 0x100000000), ) A__ = [a, b, c, d, e, f, g, h] # Modify final values A__ = [ ((element + mutated_hash_values[index]) % 0x100000000) for index, element in enumerate(self.hashes ) ] A__ = ''.join([hex(_snake_case )[2:].zfill(8 ) for value in self.hashes] ) def _a ( self : Dict , _snake_case : int , _snake_case : int ): """simple docstring""" return 0xFFFFFFFF & (value << (32 - rotations)) | (value >> rotations) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _a ( self : str ): """simple docstring""" import hashlib A__ = bytes('Test String' , 'utf-8' ) self.assertEqual(SHAaaa(_snake_case ).hash , hashlib.shaaaa(_snake_case ).hexdigest() ) def A ( ) -> None: import doctest doctest.testmod() A__ = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) A__ = parser.parse_args() A__ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: A__ = f.read() else: A__ = bytes(__UpperCamelCase , 'utf-8' ) print(SHAaaa(__UpperCamelCase ).hash ) if __name__ == "__main__": main()
9
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : Optional[Any] = ["input_values", "attention_mask"] def __init__( self : str , _snake_case : int = 1 , _snake_case : int = 1_60_00 , _snake_case : float = 0.0 , _snake_case : bool = False , _snake_case : int = 80 , _snake_case : int = 16 , _snake_case : int = 64 , _snake_case : str = "hann_window" , _snake_case : float = 1.0 , _snake_case : float = 80 , _snake_case : float = 76_00 , _snake_case : float = 1E-10 , _snake_case : int = 2 , _snake_case : bool = True , **_snake_case : Union[str, Any] , ): """simple docstring""" super().__init__(feature_size=_snake_case , sampling_rate=_snake_case , padding_value=_snake_case , **_snake_case ) A__ = do_normalize A__ = return_attention_mask A__ = num_mel_bins A__ = hop_length A__ = win_length A__ = win_function A__ = frame_signal_scale A__ = fmin A__ = fmax A__ = mel_floor A__ = reduction_factor A__ = win_length * sampling_rate // 10_00 A__ = hop_length * sampling_rate // 10_00 A__ = optimal_fft_length(self.sample_size ) A__ = (self.n_fft // 2) + 1 A__ = window_function(window_length=self.sample_size , name=self.win_function , periodic=_snake_case ) A__ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , _snake_case , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , _snake_case , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _a ( _snake_case : List[np.ndarray] , _snake_case : List[np.ndarray] , _snake_case : float = 0.0 ): """simple docstring""" if attention_mask is not None: A__ = np.array(_snake_case , np.intaa ) A__ = [] for vector, length in zip(_snake_case , attention_mask.sum(-1 ) ): A__ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: A__ = padding_value normed_input_values.append(_snake_case ) else: A__ = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def _a ( self : Tuple , _snake_case : np.ndarray , ): """simple docstring""" A__ = spectrogram( _snake_case , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self : List[str] , _snake_case : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _snake_case : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Optional[int] = None , _snake_case : bool = False , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : Optional[int] = None , **_snake_case : Tuple , ): """simple docstring""" if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: A__ = self._process_audio( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , **_snake_case , ) else: A__ = None if audio_target is not None: A__ = self._process_audio( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , **_snake_case , ) if inputs is None: return inputs_target else: A__ = inputs_target['input_values'] A__ = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: A__ = decoder_attention_mask return inputs def _a ( self : Tuple , _snake_case : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _snake_case : bool = False , _snake_case : Union[bool, str, PaddingStrategy] = False , _snake_case : Optional[int] = None , _snake_case : bool = False , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , _snake_case : Optional[Union[str, TensorType]] = None , **_snake_case : Tuple , ): """simple docstring""" A__ = isinstance(_snake_case , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) A__ = is_batched_numpy or ( isinstance(_snake_case , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A__ = [np.asarray(_snake_case , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_snake_case , np.ndarray ): A__ = np.asarray(_snake_case , dtype=np.floataa ) elif isinstance(_snake_case , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): A__ = speech.astype(np.floataa ) # always return batch if not is_batched: A__ = [speech] # needed to make pad() work on spectrogram inputs A__ = self.feature_size # convert into correct format for padding if is_target: A__ = [self._extract_mel_features(_snake_case ) for waveform in speech] A__ = BatchFeature({'input_values': features} ) A__ = self.num_mel_bins else: A__ = BatchFeature({'input_values': speech} ) A__ = self.pad( _snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , **_snake_case , ) A__ = feature_size_hack # convert input values to correct format A__ = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray ): A__ = [np.asarray(_snake_case , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_snake_case , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): A__ = [array.astype(np.floataa ) for array in input_values] elif isinstance(_snake_case , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): A__ = input_values.astype(np.floataa ) # convert attention_mask to correct format A__ = padded_inputs.get('attention_mask' ) if attention_mask is not None: A__ = [np.asarray(_snake_case , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: A__ = ( attention_mask if self._get_padding_strategies(_snake_case , max_length=_snake_case ) is not PaddingStrategy.DO_NOT_PAD else None ) A__ = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=_snake_case , padding_value=self.padding_value ) if return_tensors is not None: A__ = padded_inputs.convert_to_tensors(_snake_case ) return padded_inputs def _a ( self : Optional[Any] ): """simple docstring""" A__ = super().to_dict() # Don't serialize these as they are derived from the other properties. A__ = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
9
1