code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = 1 __A : Optional[int] = 3 __A : List[Any] = (32, 32) __A : List[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(_UpperCAmelCase) return image @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' torch.manual_seed(0) __A : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' torch.manual_seed(0) __A : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' torch.manual_seed(0) __A : Tuple = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(_UpperCAmelCase) @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' def extract(*_UpperCAmelCase , **_UpperCAmelCase): class SCREAMING_SNAKE_CASE : def __init__( self): '''simple docstring''' __A : Optional[int] = torch.ones([0]) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' self.pixel_values.to(_UpperCAmelCase) return self return Out() return extract def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = 'cpu' # ensure determinism for the device-dependent torch.Generator __A : int = self.dummy_cond_unet __A : List[str] = PNDMScheduler(skip_prk_steps=_UpperCAmelCase) __A : str = self.dummy_vae __A : str = self.dummy_text_encoder __A : int = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta') __A : Union[str, Any] = 77 __A : Union[str, Any] = self.dummy_image.to(_UpperCAmelCase) __A : Tuple = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk __A : Dict = AltDiffusionImgaImgPipeline( unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=self.dummy_extractor , ) __A : Union[str, Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_UpperCAmelCase) __A : int = alt_pipe.to(_UpperCAmelCase) alt_pipe.set_progress_bar_config(disable=_UpperCAmelCase) __A : Dict = 'A painting of a squirrel eating a burger' __A : Optional[Any] = torch.Generator(device=_UpperCAmelCase).manual_seed(0) __A : Tuple = alt_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_UpperCAmelCase , ) __A : Union[str, Any] = output.images __A : List[Any] = torch.Generator(device=_UpperCAmelCase).manual_seed(0) __A : Dict = alt_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_UpperCAmelCase , return_dict=_UpperCAmelCase , )[0] __A : Optional[int] = image[0, -3:, -3:, -1] __A : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __A : int = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 5e-3 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = self.dummy_cond_unet __A : Dict = PNDMScheduler(skip_prk_steps=_UpperCAmelCase) __A : Optional[int] = self.dummy_vae __A : Union[str, Any] = self.dummy_text_encoder __A : Tuple = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta') __A : Optional[Any] = 77 __A : Any = self.dummy_image.to(_UpperCAmelCase) # put models in fp16 __A : Optional[Any] = unet.half() __A : Optional[int] = vae.half() __A : str = bert.half() # make sure here that pndm scheduler skips prk __A : Any = AltDiffusionImgaImgPipeline( unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=self.dummy_extractor , ) __A : Dict = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_UpperCAmelCase) __A : List[Any] = alt_pipe.to(_UpperCAmelCase) alt_pipe.set_progress_bar_config(disable=_UpperCAmelCase) __A : Dict = 'A painting of a squirrel eating a burger' __A : Tuple = torch.manual_seed(0) __A : List[str] = alt_pipe( [prompt] , generator=_UpperCAmelCase , num_inference_steps=2 , output_type='np' , image=_UpperCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') # resize to resolution that is divisible by 8 but not 16 or 32 __A : int = init_image.resize((760, 504)) __A : List[str] = 'BAAI/AltDiffusion' __A : Dict = AltDiffusionImgaImgPipeline.from_pretrained( _UpperCAmelCase , safety_checker=_UpperCAmelCase , ) pipe.to(_UpperCAmelCase) pipe.set_progress_bar_config(disable=_UpperCAmelCase) pipe.enable_attention_slicing() __A : Any = 'A fantasy landscape, trending on artstation' __A : List[str] = torch.manual_seed(0) __A : Any = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_UpperCAmelCase , output_type='np' , ) __A : Tuple = output.images[0] __A : List[str] = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) __A : List[str] = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') __A : List[str] = init_image.resize((768, 512)) __A : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy') __A : Tuple = 'BAAI/AltDiffusion' __A : Optional[Any] = AltDiffusionImgaImgPipeline.from_pretrained( _UpperCAmelCase , safety_checker=_UpperCAmelCase , ) pipe.to(_UpperCAmelCase) pipe.set_progress_bar_config(disable=_UpperCAmelCase) pipe.enable_attention_slicing() __A : Optional[int] = 'A fantasy landscape, trending on artstation' __A : List[str] = torch.manual_seed(0) __A : Optional[Any] = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_UpperCAmelCase , output_type='np' , ) __A : Any = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image).max() < 1e-2
8
'''simple docstring''' import argparse import os import re lowercase__ : Optional[int] = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowercase__ : Dict = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowercase__ : List[str] = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase__ : Tuple = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowercase__ : str = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase__ : str = re.compile(r'''\[([^\]]+)\]''') def _lowerCAmelCase ( __snake_case : str ) -> Tuple: __A : List[Any] = _re_indent.search(__snake_case ) return "" if search is None else search.groups()[0] def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : str="" , __snake_case : Any=None , __snake_case : List[Any]=None ) -> Optional[int]: __A : Tuple = 0 __A : Optional[int] = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(__snake_case ): index += 1 __A : Optional[int] = ['\n'.join(lines[:index] )] else: __A : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __A : Tuple = [lines[index]] index += 1 while index < len(__snake_case ) and (end_prompt is None or not lines[index].startswith(__snake_case )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__snake_case ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(__snake_case ) ) if index < len(__snake_case ) - 1: __A : Union[str, Any] = [lines[index + 1]] index += 1 else: __A : Union[str, Any] = [] else: blocks.append('\n'.join(__snake_case ) ) __A : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__snake_case ) > 0: blocks.append('\n'.join(__snake_case ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__snake_case ): blocks.append('\n'.join(lines[index:] ) ) return blocks def _lowerCAmelCase ( __snake_case : List[Any] ) -> int: def _inner(__snake_case : List[Any] ): return key(__snake_case ).lower().replace('_' , '' ) return _inner def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any=None ) -> List[Any]: # If no key is provided, we use a noop. def noop(__snake_case : List[Any] ): return x if key is None: __A : Optional[Any] = noop # Constants are all uppercase, they go first. __A : str = [obj for obj in objects if key(__snake_case ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __A : List[str] = [obj for obj in objects if key(__snake_case )[0].isupper() and not key(__snake_case ).isupper()] # Functions begin with a lowercase, they go last. __A : str = [obj for obj in objects if not key(__snake_case )[0].isupper()] __A : Tuple = ignore_underscore(__snake_case ) return sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Tuple: # This inner function sort imports between [ ]. def _replace(__snake_case : Tuple ): __A : List[str] = match.groups()[0] if "," not in imports: return f'[{imports}]' __A : int = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Dict = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(__snake_case )] ) + "]" __A : List[Any] = import_statement.split('\n' ) if len(__snake_case ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __A : Optional[int] = 2 if lines[1].strip() == '[' else 1 __A : Any = [(i, _re_strip_line.search(__snake_case ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __A : Optional[int] = sort_objects(__snake_case , key=lambda __snake_case : x[1] ) __A : Any = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__snake_case ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __A : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] ) else: __A : Dict = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Tuple = keys[:-1] __A : List[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(__snake_case )] ) return "\n".join(__snake_case ) else: # Finally we have to deal with imports fitting on one line __A : Optional[Any] = _re_bracket_content.sub(_replace , __snake_case ) return import_statement def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : List[Any]=True ) -> Optional[Any]: with open(__snake_case , 'r' ) as f: __A : Dict = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __A : str = split_code_in_indented_blocks( __snake_case , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__snake_case ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __A : Tuple = main_blocks[block_idx] __A : int = block.split('\n' ) # Get to the start of the imports. __A : Tuple = 0 while line_idx < len(__snake_case ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __A : Optional[int] = len(__snake_case ) else: line_idx += 1 if line_idx >= len(__snake_case ): continue # Ignore beginning and last line: they don't contain anything. __A : Dict = '\n'.join(block_lines[line_idx:-1] ) __A : int = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __A : Optional[int] = split_code_in_indented_blocks(__snake_case , indent_level=__snake_case ) # We have two categories of import key: list or _import_structure[key].append/extend __A : Any = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __A : Dict = [(pattern.search(__snake_case ).groups()[0] if pattern.search(__snake_case ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __A : Optional[Any] = [(i, key) for i, key in enumerate(__snake_case ) if key is not None] __A : Tuple = [x[0] for x in sorted(__snake_case , key=lambda __snake_case : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __A : str = 0 __A : Any = [] for i in range(len(__snake_case ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __A : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(__snake_case ) count += 1 # And we put our main block back together with its first and last line. __A : int = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(__snake_case ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(__snake_case , 'w' ) as f: f.write('\n'.join(__snake_case ) ) def _lowerCAmelCase ( __snake_case : int=True ) -> Optional[Any]: __A : Tuple = [] for root, _, files in os.walk(__snake_case ): if "__init__.py" in files: __A : List[Any] = sort_imports(os.path.join(__snake_case , '__init__.py' ) , check_only=__snake_case ) if result: __A : Dict = [os.path.join(__snake_case , '__init__.py' )] if len(__snake_case ) > 0: raise ValueError(f'Would overwrite {len(__snake_case )} files, run `make style`.' ) if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowercase__ : Union[str, Any] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
8
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ : str = { '''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''], '''tokenization_convbert''': ['''ConvBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = ['''ConvBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : int = [ '''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvBertForMaskedLM''', '''ConvBertForMultipleChoice''', '''ConvBertForQuestionAnswering''', '''ConvBertForSequenceClassification''', '''ConvBertForTokenClassification''', '''ConvBertLayer''', '''ConvBertModel''', '''ConvBertPreTrainedModel''', '''load_tf_weights_in_convbert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[Any] = [ '''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFConvBertForMaskedLM''', '''TFConvBertForMultipleChoice''', '''TFConvBertForQuestionAnswering''', '''TFConvBertForSequenceClassification''', '''TFConvBertForTokenClassification''', '''TFConvBertLayer''', '''TFConvBertModel''', '''TFConvBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowercase__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int ) -> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') lowercase__ : int = int(input('''Enter number: ''').strip()) print(f"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
8
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ : Any = {'''configuration_mbart''': ['''MBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MBartConfig''', '''MBartOnnxConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Union[str, Any] = ['''MBartTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = ['''MBartTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[str] = [ '''MBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MBartForCausalLM''', '''MBartForConditionalGeneration''', '''MBartForQuestionAnswering''', '''MBartForSequenceClassification''', '''MBartModel''', '''MBartPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = [ '''TFMBartForConditionalGeneration''', '''TFMBartModel''', '''TFMBartPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : str = [ '''FlaxMBartForConditionalGeneration''', '''FlaxMBartForQuestionAnswering''', '''FlaxMBartForSequenceClassification''', '''FlaxMBartModel''', '''FlaxMBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys lowercase__ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : str = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def _lowerCAmelCase ( __snake_case : List[Any] ) -> Tuple: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __A : Optional[Any] = k.replace(__snake_case , __snake_case ) if k.startswith('encoder' ): __A : Any = k.replace('.attn' , '.self_attn' ) __A : Any = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): __A : Tuple = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'encoder_attn_layer_norm' ) __A : int = k.replace('norm3' , 'final_layer_norm' ) return k def _lowerCAmelCase ( __snake_case : List[Any] ) -> Dict: __A : Optional[int] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: __A : Tuple = sd.pop(__snake_case ) __A : Union[str, Any] = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd __A : str = v lowercase__ : Tuple = ['''START'''] @torch.no_grad() def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any , __snake_case : List[Any] ) -> int: __A : List[str] = torch.load(__snake_case , map_location='cpu' ) __A : Tuple = model['model'] __A : str = BlenderbotConfig.from_json_file(__snake_case ) __A : int = BlenderbotForConditionalGeneration(__snake_case ) __A : List[Any] = m.model.state_dict().keys() __A : Optional[int] = [] __A : Optional[int] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __A : Union[str, Any] = rename_state_dict_key(__snake_case ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __A : Optional[Any] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__snake_case ) m.model.load_state_dict(__snake_case , strict=__snake_case ) m.half() m.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
8
1
'''simple docstring''' # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar lowercase__ : List[str] = TypeVar('''T''') class SCREAMING_SNAKE_CASE (Generic[T] ): def __init__( self , _UpperCAmelCase = True): '''simple docstring''' __A : dict[T, list[T]] = {} # dictionary of lists __A : Any = directed def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_UpperCAmelCase) self.adj_list[destination_vertex].append(_UpperCAmelCase) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_UpperCAmelCase) __A : str = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(_UpperCAmelCase) __A : Any = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: __A : int = [destination_vertex] __A : int = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_UpperCAmelCase) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_UpperCAmelCase) __A : Tuple = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: __A : str = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: __A : Any = [destination_vertex] __A : List[Any] = [] return self def __repr__( self): '''simple docstring''' return pformat(self.adj_list)
8
'''simple docstring''' import mpmath # for roots of unity import numpy as np class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None): '''simple docstring''' __A : List[Any] = list(poly_a or [0])[:] __A : Optional[int] = list(poly_b or [0])[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __A : Union[str, Any] = len(self.polyA) while self.polyB[-1] == 0: self.polyB.pop() __A : Optional[int] = len(self.polyB) # Add 0 to make lengths equal a power of 2 __A : Optional[Any] = int( 2 ** np.ceil(np.loga(len(self.polyA) + len(self.polyB) - 1))) while len(self.polyA) < self.c_max_length: self.polyA.append(0) while len(self.polyB) < self.c_max_length: self.polyB.append(0) # A complex root used for the fourier transform __A : str = complex(mpmath.root(x=1 , n=self.c_max_length , k=1)) # The product __A : Tuple = self.__multiply() def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(_UpperCAmelCase) <= 1: return dft[0] # __A : Dict = self.c_max_length // 2 while next_ncol > 0: __A : Optional[Any] = [[] for i in range(_UpperCAmelCase)] __A : Tuple = self.root**next_ncol # First half of next step __A : Optional[Any] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j]) current_root *= root # Second half of next step __A : List[str] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j]) current_root *= root # Update __A : Optional[int] = new_dft __A : Tuple = next_ncol // 2 return dft[0] def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.__dft('A') __A : Optional[Any] = self.__dft('B') __A : str = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]] del dft_a del dft_b # Corner Case if len(inverce_c[0]) <= 1: return inverce_c[0] # Inverse DFT __A : Dict = 2 while next_ncol <= self.c_max_length: __A : Optional[int] = [[] for i in range(_UpperCAmelCase)] __A : Any = self.root ** (next_ncol // 2) __A : Tuple = 1 # First half of next step for j in range(self.c_max_length // next_ncol): for i in range(next_ncol // 2): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root)) current_root *= root # Update __A : int = new_inverse_c next_ncol *= 2 # Unpack __A : Optional[int] = [round(x[0].real , 8) + round(x[0].imag , 8) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self): '''simple docstring''' __A : int = 'A = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A])) __A : Optional[Any] = 'B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B])) __A : str = 'A*B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.product)) return F'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int = 50 ) -> int: __A : Optional[Any] = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f"""{solution() = }""")
8
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=[30, 30] , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=None , _UpperCAmelCase=8 , _UpperCAmelCase=10 , ): '''simple docstring''' __A : Union[str, Any] = parent __A : Tuple = batch_size __A : List[str] = image_size __A : Dict = patch_size __A : Optional[Any] = num_channels __A : Tuple = is_training __A : Dict = use_labels __A : List[Any] = hidden_size __A : Tuple = num_hidden_layers __A : int = num_attention_heads __A : Optional[int] = intermediate_size __A : Tuple = hidden_act __A : Any = hidden_dropout_prob __A : Optional[Any] = attention_probs_dropout_prob __A : List[Any] = type_sequence_label_size __A : List[Any] = initializer_range __A : Optional[int] = num_labels __A : List[Any] = scope __A : Any = n_targets __A : Union[str, Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens __A : List[str] = (image_size[1] // patch_size) * (image_size[0] // patch_size) __A : int = num_patches + 1 + self.num_detection_tokens def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]]) __A : Tuple = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) __A : List[Any] = [] for i in range(self.batch_size): __A : Optional[int] = {} __A : Union[str, Any] = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=_UpperCAmelCase) __A : str = torch.rand(self.n_targets , 4 , device=_UpperCAmelCase) labels.append(_UpperCAmelCase) __A : Any = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosModel(config=_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosForObjectDetection(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : str = model(pixel_values=_UpperCAmelCase) __A : List[str] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) __A : Union[str, Any] = model(pixel_values=_UpperCAmelCase , labels=_UpperCAmelCase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.prepare_config_and_inputs() __A ,__A ,__A : Tuple = config_and_inputs __A : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowerCAmelCase = ( {'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' __A : Optional[Any] = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase) if return_labels: if model_class.__name__ == "YolosForObjectDetection": __A : Any = [] for i in range(self.model_tester.batch_size): __A : Tuple = {} __A : Tuple = torch.ones( size=(self.model_tester.n_targets,) , device=_UpperCAmelCase , dtype=torch.long) __A : Optional[Any] = torch.ones( self.model_tester.n_targets , 4 , device=_UpperCAmelCase , dtype=torch.float) labels.append(_UpperCAmelCase) __A : str = labels return inputs_dict def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = YolosModelTester(self) __A : Dict = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Tuple = model_class(_UpperCAmelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __A : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[Any] = model_class(_UpperCAmelCase) __A : str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : int = [*signature.parameters.keys()] __A : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Optional[int] = True # in YOLOS, the seq_len is different __A : Dict = self.model_tester.expected_seq_len for model_class in self.all_model_classes: __A : Dict = True __A : Dict = False __A : Union[str, Any] = True __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : Any = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] __A : List[Any] = True __A : List[str] = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __A : str = len(_UpperCAmelCase) # Check attention is always last and order is fine __A : Dict = True __A : Dict = True __A : Dict = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = 1 self.assertEqual(out_len + added_hidden_states , len(_UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.hidden_states __A : List[str] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) # YOLOS has a different seq_length __A : Dict = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[str] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A : Optional[int] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : List[Any] = YolosModel.from_pretrained(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase) def _lowerCAmelCase ( ) -> int: __A : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return AutoImageProcessor.from_pretrained('hustvl/yolos-small') if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = YolosForObjectDetection.from_pretrained('hustvl/yolos-small').to(_UpperCAmelCase) __A : Any = self.default_image_processor __A : str = prepare_img() __A : int = image_processor(images=_UpperCAmelCase , return_tensors='pt').to(_UpperCAmelCase) # forward pass with torch.no_grad(): __A : str = model(inputs.pixel_values) # verify outputs __A : Tuple = torch.Size((1, 100, 92)) self.assertEqual(outputs.logits.shape , _UpperCAmelCase) __A : Dict = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=_UpperCAmelCase , ) __A : int = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=_UpperCAmelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) # verify postprocessing __A : List[str] = image_processor.post_process_object_detection( _UpperCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]])[0] __A : Optional[int] = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861]).to(_UpperCAmelCase) __A : Union[str, Any] = [75, 75, 17, 63, 17] __A : Any = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495]).to(_UpperCAmelCase) self.assertEqual(len(results['scores']) , 5) self.assertTrue(torch.allclose(results['scores'] , _UpperCAmelCase , atol=1e-4)) self.assertSequenceEqual(results['labels'].tolist() , _UpperCAmelCase) self.assertTrue(torch.allclose(results['boxes'][0, :] , _UpperCAmelCase))
8
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType lowercase__ : Dict = logging.get_logger(__name__) lowercase__ : Union[str, Any] = { '''openai/imagegpt-small''': '''''', '''openai/imagegpt-medium''': '''''', '''openai/imagegpt-large''': '''''', } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''imagegpt''' lowerCAmelCase = ['''past_key_values'''] lowerCAmelCase = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _UpperCAmelCase=512 + 1 , _UpperCAmelCase=32 * 32 , _UpperCAmelCase=512 , _UpperCAmelCase=24 , _UpperCAmelCase=8 , _UpperCAmelCase=None , _UpperCAmelCase="quick_gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , **_UpperCAmelCase , ): '''simple docstring''' __A : str = vocab_size __A : List[Any] = n_positions __A : List[Any] = n_embd __A : Dict = n_layer __A : str = n_head __A : List[str] = n_inner __A : Optional[Any] = activation_function __A : Optional[Any] = resid_pdrop __A : str = embd_pdrop __A : Tuple = attn_pdrop __A : str = layer_norm_epsilon __A : Union[str, Any] = initializer_range __A : Union[str, Any] = scale_attn_weights __A : List[str] = use_cache __A : int = scale_attn_by_inverse_layer_idx __A : Optional[Any] = reorder_and_upcast_attn __A : Optional[int] = tie_word_embeddings super().__init__(tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase) class SCREAMING_SNAKE_CASE (a__ ): @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ]) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = 1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = 3 , _UpperCAmelCase = 32 , _UpperCAmelCase = 32 , ): '''simple docstring''' __A : List[str] = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : Any = dict(preprocessor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase)) return inputs
8
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: lowercase__ : Optional[int] = None lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ : List[str] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } lowercase__ : Dict = { '''camembert-base''': 5_12, } lowercase__ : str = '''▁''' class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] lowerCAmelCase = CamembertTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **_UpperCAmelCase , ): '''simple docstring''' __A : int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __A : List[str] = vocab_file __A : Optional[int] = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A : Optional[Any] = [self.cls_token_id] __A : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' __A : Optional[int] = [self.sep_token_id] __A : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(_UpperCAmelCase): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return __A : List[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCAmelCase): copyfile(self.vocab_file , _UpperCAmelCase) return (out_vocab_file,)
8
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : Optional[Any] = { '''microsoft/swinv2-tiny-patch4-window8-256''': ( '''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''swinv2''' lowerCAmelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _UpperCAmelCase=224 , _UpperCAmelCase=4 , _UpperCAmelCase=3 , _UpperCAmelCase=96 , _UpperCAmelCase=[2, 2, 6, 2] , _UpperCAmelCase=[3, 6, 12, 24] , _UpperCAmelCase=7 , _UpperCAmelCase=4.0 , _UpperCAmelCase=True , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase="gelu" , _UpperCAmelCase=False , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=32 , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(**_UpperCAmelCase) __A : Dict = image_size __A : Optional[int] = patch_size __A : int = num_channels __A : Tuple = embed_dim __A : Dict = depths __A : str = len(_UpperCAmelCase) __A : int = num_heads __A : Optional[int] = window_size __A : int = mlp_ratio __A : Optional[Any] = qkv_bias __A : Dict = hidden_dropout_prob __A : Union[str, Any] = attention_probs_dropout_prob __A : Any = drop_path_rate __A : List[Any] = hidden_act __A : Optional[Any] = use_absolute_embeddings __A : List[Any] = layer_norm_eps __A : Union[str, Any] = initializer_range __A : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __A : List[str] = int(embed_dim * 2 ** (len(_UpperCAmelCase) - 1)) __A : Dict = (0, 0, 0, 0)
8
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowercase__ : Any = '''hf-internal-testing/tiny-random-bert''' lowercase__ : Optional[Any] = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') lowercase__ : List[Any] = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase)) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase))) with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Any = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) self.assertTrue(os.path.isfile(_UpperCAmelCase)) # File is cached at the same place the second time. __A : Tuple = cached_file(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) # Using a specific revision to test the full commit hash. __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='9b8c223') self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): __A : Dict = cached_file('tiny-random-bert' , _UpperCAmelCase) with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): __A : Optional[int] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='aaaa') with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : int = cached_file(_UpperCAmelCase , 'conf') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : Any = cached_file(_UpperCAmelCase , 'conf') with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Dict = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '.no_exist' , _UpperCAmelCase , 'conf'))) __A : List[Any] = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : str = cached_file(_UpperCAmelCase , 'conf' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : List[str] = mock.Mock() __A : Dict = 500 __A : List[str] = {} __A : List[Any] = HTTPError __A : Optional[Any] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=_UpperCAmelCase) as mock_head: __A : Dict = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_connection_errors=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt')) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): get_file_from_repo('bert-base-case' , _UpperCAmelCase) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): get_file_from_repo('bert-base-cased' , _UpperCAmelCase , revision='ahaha') __A : List[str] = get_file_from_repo('bert-base-cased' , _UpperCAmelCase) # The name is the cached name which is not very easy to test, so instead we load the content. __A : List[str] = json.loads(open(_UpperCAmelCase , 'r').read()) self.assertEqual(config['hidden_size'] , 768) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __A : Tuple = Path(_UpperCAmelCase) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , 'a.txt') , str(_UpperCAmelCase)) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , 'b.txt'))
8
1
'''simple docstring''' import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model lowercase__ : int = '''0.12''' # assumed parallelism: 8 if is_torch_available(): import torch def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : Dict , __snake_case : str=None ) -> Tuple: if rng is None: __A : str = random.Random() __A : Optional[Any] = 1 for dim in shape: total_dims *= dim __A : str = [] for _ in range(__snake_case ): values.append(rng.randint(0 , vocab_size - 1 ) ) __A : List[Any] = np.array(__snake_case , dtype=jnp.intaa ).reshape(__snake_case ) return output def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : Optional[int]=None ) -> str: __A : Optional[int] = ids_tensor(__snake_case , vocab_size=2 , rng=__snake_case ) # make sure that at least one token is attended to for each batch __A : Any = 1 return attn_mask @require_flax class SCREAMING_SNAKE_CASE : lowerCAmelCase = None lowerCAmelCase = () def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 __A : str = 2 __A : Dict = inputs['input_ids'].shape[-1] // 2 __A : Union[str, Any] = inputs['input_ids'][:max_batch_size, :sequence_length] __A : Dict = jnp.ones_like(_UpperCAmelCase) __A : List[str] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens __A : Optional[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` __A : Dict = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A ,__A ,__A : List[Any] = self._get_input_ids_and_config() __A : Optional[int] = False __A : List[Any] = max_length __A : Union[str, Any] = 0 for model_class in self.all_generative_model_classes: __A : List[Any] = model_class(_UpperCAmelCase) __A : Optional[int] = model_class.__name__[4:] # Skip the "Flax" at the beginning __A : List[Any] = getattr(_UpperCAmelCase , _UpperCAmelCase) __A : str = pt_model_class(_UpperCAmelCase).eval() __A : int = load_flax_weights_in_pytorch_model(_UpperCAmelCase , flax_model.params) __A : Dict = flax_model.generate(_UpperCAmelCase).sequences __A : Optional[Any] = pt_model.generate(torch.tensor(_UpperCAmelCase , dtype=torch.long)) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: __A : Optional[int] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist()) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A ,__A ,__A : List[Any] = self._get_input_ids_and_config() __A : Optional[Any] = False __A : str = max_length for model_class in self.all_generative_model_classes: __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : int = model.generate(_UpperCAmelCase).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase) __A : Dict = jit(model.generate) __A : Any = jit_generate(_UpperCAmelCase).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A ,__A ,__A : int = self._get_input_ids_and_config() __A : Any = True __A : int = max_length for model_class in self.all_generative_model_classes: __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : Tuple = model.generate(_UpperCAmelCase).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase) __A : Dict = jit(model.generate) __A : List[Any] = jit_generate(_UpperCAmelCase).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A ,__A ,__A : Union[str, Any] = self._get_input_ids_and_config() __A : int = False __A : int = max_length __A : str = 2 for model_class in self.all_generative_model_classes: __A : Optional[int] = model_class(_UpperCAmelCase) __A : Tuple = model.generate(_UpperCAmelCase).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase) __A : Dict = jit(model.generate) __A : str = jit_generate(_UpperCAmelCase).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A ,__A ,__A : str = self._get_input_ids_and_config() __A : Optional[Any] = False __A : Optional[Any] = max_length __A : Any = 2 __A : Dict = 2 for model_class in self.all_generative_model_classes: __A : Dict = model_class(_UpperCAmelCase) __A : Any = model.generate(_UpperCAmelCase).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A ,__A ,__A : Any = self._get_input_ids_and_config() __A : Tuple = True __A : Any = max_length __A : Optional[Any] = 0.8 __A : Any = 10 __A : Optional[int] = 0.3 __A : str = 1 __A : Dict = 8 __A : str = 9 for model_class in self.all_generative_model_classes: __A : Dict = model_class(_UpperCAmelCase) __A : Tuple = model.generate(_UpperCAmelCase).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase) __A : List[Any] = jit(model.generate) __A : List[Any] = jit_generate(_UpperCAmelCase).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A ,__A ,__A : Optional[Any] = self._get_input_ids_and_config() __A : Union[str, Any] = max_length __A : Any = 1 __A : str = 8 __A : Dict = 9 for model_class in self.all_generative_model_classes: __A : int = model_class(_UpperCAmelCase) __A : Any = model.generate(_UpperCAmelCase).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase) __A : str = jit(model.generate) __A : int = jit_generate(_UpperCAmelCase).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A ,__A ,__A : Any = self._get_input_ids_and_config() __A : str = max_length __A : Tuple = 2 __A : Optional[Any] = 1 __A : List[Any] = 8 __A : str = 9 for model_class in self.all_generative_model_classes: __A : Tuple = model_class(_UpperCAmelCase) __A : Optional[int] = model.generate(_UpperCAmelCase).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase) __A : Union[str, Any] = jit(model.generate) __A : str = jit_generate(_UpperCAmelCase).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A ,__A ,__A : List[Any] = self._get_input_ids_and_config() # pad attention mask on the left __A : Any = attention_mask.at[(0, 0)].set(0) __A : Optional[Any] = False __A : Union[str, Any] = max_length for model_class in self.all_generative_model_classes: __A : Any = model_class(_UpperCAmelCase) __A : Any = model.generate(_UpperCAmelCase , attention_mask=_UpperCAmelCase).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase) __A : Optional[int] = jit(model.generate) __A : Union[str, Any] = jit_generate(_UpperCAmelCase , attention_mask=_UpperCAmelCase).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A ,__A ,__A : Optional[Any] = self._get_input_ids_and_config() # pad attention mask on the left __A : Dict = attention_mask.at[(0, 0)].set(0) __A : str = True __A : Dict = max_length for model_class in self.all_generative_model_classes: __A : Any = model_class(_UpperCAmelCase) __A : List[str] = model.generate(_UpperCAmelCase , attention_mask=_UpperCAmelCase).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase) __A : Optional[Any] = jit(model.generate) __A : Union[str, Any] = jit_generate(_UpperCAmelCase , attention_mask=_UpperCAmelCase).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A ,__A ,__A : Optional[int] = self._get_input_ids_and_config() # pad attention mask on the left __A : List[str] = attention_mask.at[(0, 0)].set(0) __A : int = 2 __A : str = max_length for model_class in self.all_generative_model_classes: __A : str = model_class(_UpperCAmelCase) __A : Optional[Any] = model.generate(_UpperCAmelCase , attention_mask=_UpperCAmelCase).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase) __A : str = jit(model.generate) __A : List[Any] = jit_generate(_UpperCAmelCase , attention_mask=_UpperCAmelCase).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) @require_flax class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-bert') __A : List[str] = FlaxAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-bert-flax-only') __A : List[Any] = 'Hello world' __A : Union[str, Any] = tokenizer(_UpperCAmelCase , return_tensors='np').input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(_UpperCAmelCase , 'do_samples'): model.generate(_UpperCAmelCase , do_samples=_UpperCAmelCase) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(_UpperCAmelCase , 'foo'): __A : List[str] = {'foo': 'bar'} model.generate(_UpperCAmelCase , **_UpperCAmelCase)
8
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _lowerCAmelCase ( __snake_case : str , __snake_case : str , **__snake_case : List[Any] ) -> Any: __A : Optional[Any] = AutoConfig.from_pretrained(__snake_case , **__snake_case ) __A : int = AutoModelForSeqaSeqLM.from_config(__snake_case ) model.save_pretrained(__snake_case ) AutoTokenizer.from_pretrained(__snake_case ).save_pretrained(__snake_case ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
8
1
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( __snake_case : int , __snake_case : int ) -> list[list[int]]: __A : list[list[int]] = [] create_all_state(1 , __snake_case , __snake_case , [] , __snake_case ) return result def _lowerCAmelCase ( __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : list[int] , __snake_case : list[list[int]] , ) -> None: if level == 0: total_list.append(current_list[:] ) return for i in range(__snake_case , total_number - level + 2 ): current_list.append(__snake_case ) create_all_state(i + 1 , __snake_case , level - 1 , __snake_case , __snake_case ) current_list.pop() def _lowerCAmelCase ( __snake_case : list[list[int]] ) -> None: for i in total_list: print(*__snake_case ) if __name__ == "__main__": lowercase__ : List[str] = 4 lowercase__ : List[str] = 2 lowercase__ : int = generate_all_combinations(n, k) print_all_state(total_list)
8
'''simple docstring''' from ...configuration_utils import PretrainedConfig lowercase__ : Any = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''tapas''' def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1024 , _UpperCAmelCase=[3, 256, 256, 2, 256, 256, 10] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase=10.0 , _UpperCAmelCase=0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase="ratio" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __A : Dict = vocab_size __A : Tuple = hidden_size __A : Any = num_hidden_layers __A : int = num_attention_heads __A : Tuple = hidden_act __A : Tuple = intermediate_size __A : List[Any] = hidden_dropout_prob __A : int = attention_probs_dropout_prob __A : List[str] = max_position_embeddings __A : Optional[int] = type_vocab_sizes __A : str = initializer_range __A : List[str] = layer_norm_eps # Fine-tuning task hyperparameters __A : List[str] = positive_label_weight __A : List[Any] = num_aggregation_labels __A : Optional[Any] = aggregation_loss_weight __A : Tuple = use_answer_as_supervision __A : List[str] = answer_loss_importance __A : Any = use_normalized_answer_loss __A : Any = huber_loss_delta __A : Union[str, Any] = temperature __A : Tuple = aggregation_temperature __A : Optional[Any] = use_gumbel_for_cells __A : List[str] = use_gumbel_for_aggregation __A : Tuple = average_approximation_function __A : List[str] = cell_selection_preference __A : Dict = answer_loss_cutoff __A : Union[str, Any] = max_num_rows __A : Optional[Any] = max_num_columns __A : int = average_logits_per_cell __A : Optional[Any] = select_one_column __A : int = allow_empty_column_selection __A : List[Any] = init_cell_selection_weights_to_zero __A : int = reset_position_index_per_cell __A : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters __A : Optional[Any] = aggregation_labels __A : List[str] = no_aggregation_label_index if isinstance(self.aggregation_labels , _UpperCAmelCase): __A : Optional[Any] = {int(_UpperCAmelCase): v for k, v in aggregation_labels.items()}
8
1
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase__ : List[str] = logging.getLogger(__name__) def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : List[Any] ) -> int: # save results if os.path.exists(__snake_case ): if os.path.exists(os.path.join(__snake_case , 'config.json' ) ) and os.path.isfile( os.path.join(__snake_case , 'config.json' ) ): os.remove(os.path.join(__snake_case , 'config.json' ) ) if os.path.exists(os.path.join(__snake_case , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(__snake_case , 'pytorch_model.bin' ) ): os.remove(os.path.join(__snake_case , 'pytorch_model.bin' ) ) else: os.makedirs(__snake_case ) model.save_pretrained(__snake_case ) def _lowerCAmelCase ( __snake_case : Dict , __snake_case : List[Any]=False ) -> Any: __A : Optional[Any] = 2 if unlogit: __A : Optional[Any] = torch.pow(__snake_case , __snake_case ) __A : Tuple = p * torch.log(__snake_case ) __A : Any = 0 return -plogp.sum(dim=-1 ) def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Optional[int]: logger.info('lv, h >\t' + '\t'.join(f'{x + 1}' for x in range(len(__snake_case ) ) ) ) for row in range(len(__snake_case ) ): if tensor.dtype != torch.long: logger.info(f'layer {row + 1}:\t' + '\t'.join(f'{x:.5f}' for x in tensor[row].cpu().data ) ) else: logger.info(f'layer {row + 1}:\t' + '\t'.join(f'{x:d}' for x in tensor[row].cpu().data ) ) def _lowerCAmelCase ( __snake_case : Any , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[Any]=True , __snake_case : str=True , __snake_case : List[Any]=None , __snake_case : Union[str, Any]=False ) -> Optional[Any]: __A ,__A : str = model.config.num_hidden_layers, model.config.num_attention_heads __A : Dict = torch.zeros(__snake_case , __snake_case ).to(args.device ) __A : str = torch.zeros(__snake_case , __snake_case ).to(args.device ) if head_mask is None: __A : List[Any] = torch.ones(__snake_case , __snake_case ).to(args.device ) head_mask.requires_grad_(requires_grad=__snake_case ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: __A : int = None __A : int = 0.0 __A : Optional[Any] = 0.0 for step, inputs in enumerate(tqdm(__snake_case , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): __A : Dict = tuple(t.to(args.device ) for t in inputs ) ((__A) ,) : Union[str, Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) __A : Any = model(__snake_case , labels=__snake_case , head_mask=__snake_case ) # (loss), lm_logits, presents, (all hidden_states), (attentions) __A ,__A ,__A : Union[str, Any] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(__snake_case ): __A : List[Any] = entropy(attn.detach() , __snake_case ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(__snake_case ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: __A : Tuple = 2 __A : Dict = torch.pow(torch.pow(__snake_case , __snake_case ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-2_0 if not args.dont_normalize_global_importance: __A : Any = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(__snake_case ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(__snake_case ) logger.info('Head ranked by importance scores' ) __A : Any = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) __A : int = torch.arange( head_importance.numel() , device=args.device ) __A : Tuple = head_ranks.view_as(__snake_case ) print_ad_tensor(__snake_case ) return attn_entropy, head_importance, total_loss def _lowerCAmelCase ( __snake_case : Any , __snake_case : Optional[Any] , __snake_case : Any ) -> Tuple: __A ,__A ,__A : List[Any] = compute_heads_importance(__snake_case , __snake_case , __snake_case , compute_entropy=__snake_case ) __A : Union[str, Any] = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , __snake_case , original_score * args.masking_threshold ) __A : Optional[int] = torch.ones_like(__snake_case ) __A : Union[str, Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) __A : List[str] = original_score while current_score >= original_score * args.masking_threshold: __A : Any = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads __A : Dict = float('Inf' ) __A : List[str] = head_importance.view(-1 ).sort()[1] if len(__snake_case ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads __A : List[Any] = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) __A : Optional[Any] = new_head_mask.view(-1 ) __A : Dict = 0.0 __A : Union[str, Any] = new_head_mask.view_as(__snake_case ) __A : Optional[Any] = new_head_mask.clone().detach() print_ad_tensor(__snake_case ) # Compute metric and head importance again __A ,__A ,__A : Tuple = compute_heads_importance( __snake_case , __snake_case , __snake_case , compute_entropy=__snake_case , head_mask=__snake_case ) __A : Tuple = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , __snake_case , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('Final head mask' ) print_ad_tensor(__snake_case ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : str , __snake_case : int ) -> int: __A : Any = datetime.now() __A ,__A ,__A : Union[str, Any] = compute_heads_importance( __snake_case , __snake_case , __snake_case , compute_entropy=__snake_case , compute_importance=__snake_case , head_mask=__snake_case ) __A : Tuple = 1 / loss __A : str = datetime.now() - before_time __A : Union[str, Any] = sum(p.numel() for p in model.parameters() ) __A : str = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(__snake_case ) ) } for k, v in heads_to_prune.items(): if isinstance(__snake_case , __snake_case ): __A : Optional[int] = [ v, ] assert sum(len(__snake_case ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(__snake_case ) __A : int = sum(p.numel() for p in model.parameters() ) __A : Dict = datetime.now() __A ,__A ,__A : Any = compute_heads_importance( __snake_case , __snake_case , __snake_case , compute_entropy=__snake_case , compute_importance=__snake_case , head_mask=__snake_case , actually_pruned=__snake_case , ) __A : Dict = 1 / loss __A : Optional[Any] = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , __snake_case , __snake_case , pruned_num_params / original_num_params * 1_00 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , __snake_case , __snake_case ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_00 ) save_model(__snake_case , args.output_dir ) def _lowerCAmelCase ( ) -> Optional[int]: __A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=__snake_case , type=__snake_case , required=__snake_case , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=__snake_case , type=__snake_case , required=__snake_case , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=__snake_case , type=__snake_case , required=__snake_case , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=__snake_case , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=__snake_case , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=__snake_case , type=__snake_case , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=__snake_case , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=__snake_case , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=__snake_case , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=__snake_case , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_28 , type=__snake_case , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=__snake_case , help='Batch size.' ) parser.add_argument('--seed' , type=__snake_case , default=42 ) parser.add_argument('--local_rank' , type=__snake_case , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=__snake_case , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=__snake_case , default='' , help='Can be used for distant debugging.' ) __A : Tuple = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__snake_case ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: __A : Optional[int] = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) __A : Optional[Any] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) __A : Dict = torch.device('cuda' , args.local_rank ) __A : int = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) __A : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: __A : List[str] = nn.parallel.DistributedDataParallel( __snake_case , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=__snake_case ) elif args.n_gpu > 1: __A : Tuple = nn.DataParallel(__snake_case ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=__snake_case ) torch.save(__snake_case , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , __snake_case ) # Prepare dataset __A : Any = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) __A : List[Any] = (torch.from_numpy(__snake_case ),) __A : List[str] = TensorDataset(*__snake_case ) __A : Any = RandomSampler(__snake_case ) __A : List[str] = DataLoader(__snake_case , sampler=__snake_case , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(__snake_case , __snake_case , __snake_case ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: __A : Optional[int] = mask_heads(__snake_case , __snake_case , __snake_case ) prune_heads(__snake_case , __snake_case , __snake_case , __snake_case ) if __name__ == "__main__": main()
8
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=sys.maxsize): '''simple docstring''' __A : Union[str, Any] = 'bilinear' __A : int = max_size __A : Optional[Any] = short_edge_length def __call__( self , _UpperCAmelCase): '''simple docstring''' __A : int = [] for img in imgs: __A ,__A : Dict = img.shape[:2] # later: provide list and randomly choose index for resize __A : List[Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1) if size == 0: return img __A : Tuple = size * 1.0 / min(_UpperCAmelCase , _UpperCAmelCase) if h < w: __A ,__A : Optional[Any] = size, scale * w else: __A ,__A : Optional[Any] = scale * h, size if max(_UpperCAmelCase , _UpperCAmelCase) > self.max_size: __A : Tuple = self.max_size * 1.0 / max(_UpperCAmelCase , _UpperCAmelCase) __A : Tuple = newh * scale __A : Dict = neww * scale __A : Dict = int(neww + 0.5) __A : Optional[int] = int(newh + 0.5) if img.dtype == np.uinta: __A : int = Image.fromarray(_UpperCAmelCase) __A : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR) __A : Dict = np.asarray(_UpperCAmelCase) else: __A : Optional[Any] = img.permute(2 , 0 , 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw __A : Dict = nn.functional.interpolate( _UpperCAmelCase , (newh, neww) , mode=self.interp_method , align_corners=_UpperCAmelCase).squeeze(0) img_augs.append(_UpperCAmelCase) return img_augs class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST) __A : List[Any] = cfg.INPUT.FORMAT __A : Dict = cfg.SIZE_DIVISIBILITY __A : str = cfg.PAD_VALUE __A : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST __A : int = cfg.MODEL.DEVICE __A : Tuple = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : int = lambda _UpperCAmelCase: (x - self.pixel_mean) / self.pixel_std def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = tuple(max(_UpperCAmelCase) for s in zip(*[img.shape for img in images])) __A : Dict = [im.shape[-2:] for im in images] __A : Optional[int] = [ nn.functional.pad( _UpperCAmelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_UpperCAmelCase , _UpperCAmelCase) ] return torch.stack(_UpperCAmelCase), torch.tensor(_UpperCAmelCase) def __call__( self , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' with torch.no_grad(): if not isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : int = [images] if single_image: assert len(_UpperCAmelCase) == 1 for i in range(len(_UpperCAmelCase)): if isinstance(images[i] , torch.Tensor): images.insert(_UpperCAmelCase , images.pop(_UpperCAmelCase).to(self.device).float()) elif not isinstance(images[i] , torch.Tensor): images.insert( _UpperCAmelCase , torch.as_tensor(img_tensorize(images.pop(_UpperCAmelCase) , input_format=self.input_format)) .to(self.device) .float() , ) # resize smallest edge __A : str = torch.tensor([im.shape[:2] for im in images]) __A : List[str] = self.aug(_UpperCAmelCase) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __A : Any = [self.normalizer(_UpperCAmelCase) for x in images] # now pad them to do the following operations __A ,__A : Any = self.pad(_UpperCAmelCase) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __A : str = torch.true_divide(_UpperCAmelCase , _UpperCAmelCase) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _lowerCAmelCase ( __snake_case : Dict , __snake_case : str ) -> Dict: boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : Tuple[int, int] ) -> int: assert torch.isfinite(__snake_case ).all(), "Box tensor contains infinite or NaN!" __A ,__A : int = box_size tensor[:, 0].clamp_(min=0 , max=__snake_case ) tensor[:, 1].clamp_(min=0 , max=__snake_case ) tensor[:, 2].clamp_(min=0 , max=__snake_case ) tensor[:, 3].clamp_(min=0 , max=__snake_case )
8
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase__ : Optional[int] = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Union[str, Any] = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys lowercase__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Optional[Any]: # noqa: E741 __A : Tuple = len(__snake_case ) __A : Optional[int] = 0 __A : str = [0] * n __A : int = [False] * n __A : Tuple = [False] * n def dfs(__snake_case : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : int ): if parent == root: out_edge_count += 1 __A : str = True __A : Tuple = at for to in l[at]: if to == parent: pass elif not visited[to]: __A : Optional[int] = dfs(__snake_case , __snake_case , __snake_case , __snake_case ) __A : int = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __A : Tuple = True # AP found via cycle if at == low[to]: __A : Optional[Any] = True else: __A : Any = min(low[at] , __snake_case ) return out_edge_count for i in range(__snake_case ): if not visited[i]: __A : Tuple = 0 __A : List[Any] = dfs(__snake_case , __snake_case , -1 , __snake_case ) __A : Union[str, Any] = out_edge_count > 1 for x in range(len(__snake_case ) ): if is_art[x] is True: print(__snake_case ) # Adjacency list of graph lowercase__ : Tuple = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
8
1
'''simple docstring''' import requests from bsa import BeautifulSoup def _lowerCAmelCase ( __snake_case : str = "AAPL" ) -> str: __A : Optional[Any] = f'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' __A : Optional[int] = BeautifulSoup(requests.get(__snake_case ).text , 'html.parser' ) __A : Tuple = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_ ).find('span' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
8
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : int = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } lowercase__ : Dict = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _lowerCAmelCase ( __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Any , __snake_case : List[str] ) -> Union[str, Any]: for attribute in key.split('.' ): __A : int = getattr(__snake_case , __snake_case ) if weight_type is not None: __A : Optional[int] = getattr(__snake_case , __snake_case ).shape else: __A : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __A : Tuple = value elif weight_type == "weight_g": __A : Union[str, Any] = value elif weight_type == "weight_v": __A : Optional[Any] = value elif weight_type == "bias": __A : Optional[int] = value else: __A : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( __snake_case : Any , __snake_case : List[str] ) -> List[Any]: __A : Optional[Any] = [] __A : Any = fairseq_model.state_dict() __A : Union[str, Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): __A : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == 'group' , ) __A : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __A : int = True if "*" in mapped_key: __A : Any = name.split(__snake_case )[0].split('.' )[-2] __A : List[Any] = mapped_key.replace('*' , __snake_case ) if "weight_g" in name: __A : Optional[Any] = 'weight_g' elif "weight_v" in name: __A : Union[str, Any] = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: __A : Optional[Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __A : Tuple = 'weight' else: __A : Dict = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[int] ) -> int: __A : int = full_name.split('conv_layers.' )[-1] __A : List[str] = name.split('.' ) __A : Optional[int] = int(items[0] ) __A : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __A : Optional[int] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __A : Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) __A : Dict = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __A : Any = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) @torch.no_grad() def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple=None ) -> Any: # load the pre-trained checkpoints __A : List[str] = torch.load(__snake_case ) __A : Dict = WavLMConfigOrig(checkpoint['cfg'] ) __A : Optional[int] = WavLMOrig(__snake_case ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: __A : List[Any] = WavLMConfig.from_pretrained(__snake_case ) else: __A : Dict = WavLMConfig() __A : Optional[Any] = WavLMModel(__snake_case ) recursively_load_weights(__snake_case , __snake_case ) hf_wavlm.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowercase__ : Any = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
8
1
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : int = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } lowercase__ : Dict = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _lowerCAmelCase ( __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Any , __snake_case : List[str] ) -> Union[str, Any]: for attribute in key.split('.' ): __A : int = getattr(__snake_case , __snake_case ) if weight_type is not None: __A : Optional[int] = getattr(__snake_case , __snake_case ).shape else: __A : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __A : Tuple = value elif weight_type == "weight_g": __A : Union[str, Any] = value elif weight_type == "weight_v": __A : Optional[Any] = value elif weight_type == "bias": __A : Optional[int] = value else: __A : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( __snake_case : Any , __snake_case : List[str] ) -> List[Any]: __A : Optional[Any] = [] __A : Any = fairseq_model.state_dict() __A : Union[str, Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): __A : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == 'group' , ) __A : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __A : int = True if "*" in mapped_key: __A : Any = name.split(__snake_case )[0].split('.' )[-2] __A : List[Any] = mapped_key.replace('*' , __snake_case ) if "weight_g" in name: __A : Optional[Any] = 'weight_g' elif "weight_v" in name: __A : Union[str, Any] = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: __A : Optional[Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __A : Tuple = 'weight' else: __A : Dict = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[int] ) -> int: __A : int = full_name.split('conv_layers.' )[-1] __A : List[str] = name.split('.' ) __A : Optional[int] = int(items[0] ) __A : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __A : Optional[int] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __A : Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) __A : Dict = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __A : Any = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) @torch.no_grad() def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple=None ) -> Any: # load the pre-trained checkpoints __A : List[str] = torch.load(__snake_case ) __A : Dict = WavLMConfigOrig(checkpoint['cfg'] ) __A : Optional[int] = WavLMOrig(__snake_case ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: __A : List[Any] = WavLMConfig.from_pretrained(__snake_case ) else: __A : Dict = WavLMConfig() __A : Optional[Any] = WavLMModel(__snake_case ) recursively_load_weights(__snake_case , __snake_case ) hf_wavlm.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowercase__ : Any = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
8
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = 42 class SCREAMING_SNAKE_CASE (a__ , a__ ): @register_to_config def __init__( self , _UpperCAmelCase = 6_5536 , _UpperCAmelCase = None , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = 0 , _UpperCAmelCase = "fourier" , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = 0.0 , _UpperCAmelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _UpperCAmelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _UpperCAmelCase = "UNetMidBlock1D" , _UpperCAmelCase = None , _UpperCAmelCase = (32, 32, 64) , _UpperCAmelCase = None , _UpperCAmelCase = 8 , _UpperCAmelCase = 1 , _UpperCAmelCase = False , ): '''simple docstring''' super().__init__() __A : Dict = sample_size # time if time_embedding_type == "fourier": __A : int = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_UpperCAmelCase , log=_UpperCAmelCase , flip_sin_to_cos=_UpperCAmelCase) __A : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": __A : List[str] = Timesteps( block_out_channels[0] , flip_sin_to_cos=_UpperCAmelCase , downscale_freq_shift=_UpperCAmelCase) __A : List[str] = block_out_channels[0] if use_timestep_embedding: __A : Optional[Any] = block_out_channels[0] * 4 __A : Optional[int] = TimestepEmbedding( in_channels=_UpperCAmelCase , time_embed_dim=_UpperCAmelCase , act_fn=_UpperCAmelCase , out_dim=block_out_channels[0] , ) __A : Dict = nn.ModuleList([]) __A : Dict = None __A : Tuple = nn.ModuleList([]) __A : Tuple = None # down __A : Any = in_channels for i, down_block_type in enumerate(_UpperCAmelCase): __A : Tuple = output_channel __A : Optional[Any] = block_out_channels[i] if i == 0: input_channel += extra_in_channels __A : List[str] = i == len(_UpperCAmelCase) - 1 __A : int = get_down_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_UpperCAmelCase) # mid __A : str = get_mid_block( _UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_UpperCAmelCase , add_downsample=_UpperCAmelCase , ) # up __A : Optional[int] = list(reversed(_UpperCAmelCase)) __A : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: __A : str = out_channels else: __A : List[Any] = block_out_channels[0] for i, up_block_type in enumerate(_UpperCAmelCase): __A : Optional[Any] = output_channel __A : Optional[Any] = ( reversed_block_out_channels[i + 1] if i < len(_UpperCAmelCase) - 1 else final_upsample_channels ) __A : Dict = i == len(_UpperCAmelCase) - 1 __A : str = get_up_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_UpperCAmelCase) __A : Optional[int] = output_channel # out __A : str = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32) __A : Optional[Any] = get_out_block( out_block_type=_UpperCAmelCase , num_groups_out=_UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=_UpperCAmelCase , act_fn=_UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , ): '''simple docstring''' __A : Any = timestep if not torch.is_tensor(_UpperCAmelCase): __A : Any = torch.tensor([timesteps] , dtype=torch.long , device=sample.device) elif torch.is_tensor(_UpperCAmelCase) and len(timesteps.shape) == 0: __A : Any = timesteps[None].to(sample.device) __A : List[Any] = self.time_proj(_UpperCAmelCase) if self.config.use_timestep_embedding: __A : Dict = self.time_mlp(_UpperCAmelCase) else: __A : Dict = timestep_embed[..., None] __A : Tuple = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) __A : List[Any] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) # 2. down __A : int = () for downsample_block in self.down_blocks: __A ,__A : int = downsample_block(hidden_states=_UpperCAmelCase , temb=_UpperCAmelCase) down_block_res_samples += res_samples # 3. mid if self.mid_block: __A : Optional[int] = self.mid_block(_UpperCAmelCase , _UpperCAmelCase) # 4. up for i, upsample_block in enumerate(self.up_blocks): __A : Any = down_block_res_samples[-1:] __A : Optional[int] = down_block_res_samples[:-1] __A : Any = upsample_block(_UpperCAmelCase , res_hidden_states_tuple=_UpperCAmelCase , temb=_UpperCAmelCase) # 5. post-process if self.out_block: __A : Dict = self.out_block(_UpperCAmelCase , _UpperCAmelCase) if not return_dict: return (sample,) return UNetaDOutput(sample=_UpperCAmelCase)
8
1
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = 0 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = AutoImageProcessor.from_pretrained('openai/clip-vit-base-patch32') self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __A : Union[str, Any] = Path(_UpperCAmelCase) / 'preprocessor_config.json' __A : Dict = Path(_UpperCAmelCase) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_UpperCAmelCase , 'w') , ) json.dump({'model_type': 'clip'} , open(_UpperCAmelCase , 'w')) __A : List[Any] = AutoImageProcessor.from_pretrained(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __A : Tuple = Path(_UpperCAmelCase) / 'preprocessor_config.json' __A : Tuple = Path(_UpperCAmelCase) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(_UpperCAmelCase , 'w') , ) json.dump({'model_type': 'clip'} , open(_UpperCAmelCase , 'w')) __A : int = AutoImageProcessor.from_pretrained(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __A : Optional[int] = CLIPConfig() # Create a dummy config file with image_proceesor_type __A : Union[str, Any] = Path(_UpperCAmelCase) / 'preprocessor_config.json' __A : List[Any] = Path(_UpperCAmelCase) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_UpperCAmelCase , 'w') , ) json.dump({'model_type': 'clip'} , open(_UpperCAmelCase , 'w')) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __A : int = AutoImageProcessor.from_pretrained(_UpperCAmelCase).to_dict() config_dict.pop('image_processor_type') __A : List[Any] = CLIPImageProcessor(**_UpperCAmelCase) # save in new folder model_config.save_pretrained(_UpperCAmelCase) config.save_pretrained(_UpperCAmelCase) __A : str = AutoImageProcessor.from_pretrained(_UpperCAmelCase) # make sure private variable is not incorrectly saved __A : List[str] = json.loads(config.to_json_string()) self.assertTrue('_processor_class' not in dict_as_saved) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __A : Dict = Path(_UpperCAmelCase) / 'preprocessor_config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_UpperCAmelCase , 'w') , ) __A : int = AutoImageProcessor.from_pretrained(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase , 'clip-base is not a local folder and is not a valid model identifier'): __A : Optional[Any] = AutoImageProcessor.from_pretrained('clip-base') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'): __A : List[Any] = AutoImageProcessor.from_pretrained(_UpperCAmelCase , revision='aaaaaa') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): __A : Dict = AutoImageProcessor.from_pretrained('hf-internal-testing/config-no-model') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaises(_UpperCAmelCase): __A : int = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor') # If remote code is disabled, we can't load this config. with self.assertRaises(_UpperCAmelCase): __A : Dict = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_UpperCAmelCase) __A : Union[str, Any] = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_UpperCAmelCase) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor') # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_UpperCAmelCase) __A : List[Any] = AutoImageProcessor.from_pretrained(_UpperCAmelCase , trust_remote_code=_UpperCAmelCase) self.assertEqual(reloaded_image_processor.__class__.__name__ , 'NewImageProcessor') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' try: AutoConfig.register('custom' , _UpperCAmelCase) AutoImageProcessor.register(_UpperCAmelCase , _UpperCAmelCase) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_UpperCAmelCase): AutoImageProcessor.register(_UpperCAmelCase , _UpperCAmelCase) with tempfile.TemporaryDirectory() as tmpdirname: __A : Optional[int] = Path(_UpperCAmelCase) / 'preprocessor_config.json' __A : Optional[Any] = Path(_UpperCAmelCase) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(_UpperCAmelCase , 'w') , ) json.dump({'model_type': 'clip'} , open(_UpperCAmelCase , 'w')) __A : Union[str, Any] = CustomImageProcessor.from_pretrained(_UpperCAmelCase) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_UpperCAmelCase) __A : List[str] = AutoImageProcessor.from_pretrained(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = True try: AutoConfig.register('custom' , _UpperCAmelCase) AutoImageProcessor.register(_UpperCAmelCase , _UpperCAmelCase) # If remote code is not set, the default is to use local __A : Dict = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor') self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor') self.assertTrue(image_processor.is_local) # If remote code is disabled, we load the local one. __A : Dict = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_UpperCAmelCase) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor') self.assertTrue(image_processor.is_local) # If remote is enabled, we load from the Hub __A : Tuple = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_UpperCAmelCase) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor') self.assertTrue(not hasattr(_UpperCAmelCase , 'is_local')) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> int: if len(__snake_case ) != len(__snake_case ): raise ValueError('String lengths must match!' ) __A : Optional[Any] = 0 for chara, chara in zip(__snake_case , __snake_case ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): '''simple docstring''' __A : Optional[int] = parent __A : str = 13 __A : List[Any] = 7 __A : List[str] = True __A : str = True __A : Optional[Any] = True __A : int = True __A : Dict = 99 __A : Dict = 384 __A : Any = 2 __A : int = 4 __A : Optional[Any] = 37 __A : Optional[int] = 'gelu' __A : Dict = 0.1 __A : Optional[int] = 0.1 __A : Any = 512 __A : int = 16 __A : List[str] = 2 __A : str = 0.02 __A : Any = 3 __A : str = 4 __A : Union[str, Any] = 128 __A : int = 2 __A : List[Any] = 9 __A : List[Any] = 1 __A : List[Any] = None def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __A : str = None if self.use_input_mask: __A : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __A : Optional[Any] = None if self.use_token_type_ids: __A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __A : Optional[int] = None __A : List[str] = None __A : Dict = None if self.use_labels: __A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) __A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __A : str = ids_tensor([self.batch_size] , self.num_choices) __A : List[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = TFConvBertModel(config=_UpperCAmelCase) __A : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __A : Tuple = [input_ids, input_mask] __A : Any = model(_UpperCAmelCase) __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : str = TFConvBertForMaskedLM(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : str = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = self.num_labels __A : Any = TFConvBertForSequenceClassification(config=_UpperCAmelCase) __A : Optional[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Tuple = self.num_choices __A : List[str] = TFConvBertForMultipleChoice(config=_UpperCAmelCase) __A : int = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : Optional[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : List[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : int = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __A : Optional[Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = self.num_labels __A : List[Any] = TFConvBertForTokenClassification(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : int = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = TFConvBertForQuestionAnswering(config=_UpperCAmelCase) __A : Any = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Union[str, Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.prepare_config_and_inputs() ( ( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) , ) : Union[str, Any] = config_and_inputs __A : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = TFConvBertModelTester(self) __A : str = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __A : List[str] = True __A : List[str] = True if hasattr(_UpperCAmelCase , 'use_cache'): __A : List[Any] = True __A : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : Union[str, Any] = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) for model_class in self.all_model_classes: __A : List[str] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase) __A : Optional[int] = model_class(_UpperCAmelCase) __A : Optional[Any] = len(model(_UpperCAmelCase)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase) __A : Union[str, Any] = os.path.join(_UpperCAmelCase , 'saved_model' , '1') __A : Tuple = tf.keras.models.load_model(_UpperCAmelCase) __A : str = model(_UpperCAmelCase) if self.is_encoder_decoder: __A : Optional[int] = outputs['encoder_hidden_states'] __A : str = outputs['encoder_attentions'] else: __A : List[Any] = outputs['hidden_states'] __A : Optional[Any] = outputs['attentions'] self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) __A : str = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) self.assertListEqual( list(output_hidden_states[0].shape[-2:]) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(output_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') self.assertIsNotNone(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Any = True __A : str = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length) __A : Any = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : int = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) __A : Tuple = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) def check_decoder_attentions_output(_UpperCAmelCase): __A : List[str] = len(_UpperCAmelCase) self.assertEqual(out_len % 2 , 0) __A : Any = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCAmelCase): __A : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __A : Dict = True __A : Any = False __A : str = model_class(_UpperCAmelCase) __A : List[str] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : List[str] = len(_UpperCAmelCase) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) if self.is_encoder_decoder: __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : int = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_decoder_attentions_output(_UpperCAmelCase) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __A : int = True __A : Tuple = model_class(_UpperCAmelCase) __A : Dict = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) # Check attention is always last and order is fine __A : Any = True __A : str = True __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : Union[str, Any] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase)) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) @require_tf class SCREAMING_SNAKE_CASE (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') __A : str = tf.constant([[0, 1, 2, 3, 4, 5]]) __A : Optional[int] = model(_UpperCAmelCase)[0] __A : List[Any] = [1, 6, 768] self.assertEqual(output.shape , _UpperCAmelCase) __A : Tuple = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ]) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4)
8
'''simple docstring''' import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> Union[str, Any]: __A : int = RobertaPreLayerNormConfig.from_pretrained( __snake_case , architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict __A : Tuple = torch.load(hf_hub_download(repo_id=__snake_case , filename='pytorch_model.bin' ) ) __A : str = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): __A : Dict = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue __A : str = tensor_value __A : Union[str, Any] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__snake_case , config=__snake_case , state_dict=__snake_case ) model.save_pretrained(__snake_case ) # convert tokenizer __A : List[Any] = AutoTokenizer.from_pretrained(__snake_case ) tokenizer.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
8
1
'''simple docstring''' import mpmath # for roots of unity import numpy as np class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None): '''simple docstring''' __A : List[Any] = list(poly_a or [0])[:] __A : Optional[int] = list(poly_b or [0])[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __A : Union[str, Any] = len(self.polyA) while self.polyB[-1] == 0: self.polyB.pop() __A : Optional[int] = len(self.polyB) # Add 0 to make lengths equal a power of 2 __A : Optional[Any] = int( 2 ** np.ceil(np.loga(len(self.polyA) + len(self.polyB) - 1))) while len(self.polyA) < self.c_max_length: self.polyA.append(0) while len(self.polyB) < self.c_max_length: self.polyB.append(0) # A complex root used for the fourier transform __A : str = complex(mpmath.root(x=1 , n=self.c_max_length , k=1)) # The product __A : Tuple = self.__multiply() def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(_UpperCAmelCase) <= 1: return dft[0] # __A : Dict = self.c_max_length // 2 while next_ncol > 0: __A : Optional[Any] = [[] for i in range(_UpperCAmelCase)] __A : Tuple = self.root**next_ncol # First half of next step __A : Optional[Any] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j]) current_root *= root # Second half of next step __A : List[str] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j]) current_root *= root # Update __A : Optional[int] = new_dft __A : Tuple = next_ncol // 2 return dft[0] def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.__dft('A') __A : Optional[Any] = self.__dft('B') __A : str = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]] del dft_a del dft_b # Corner Case if len(inverce_c[0]) <= 1: return inverce_c[0] # Inverse DFT __A : Dict = 2 while next_ncol <= self.c_max_length: __A : Optional[int] = [[] for i in range(_UpperCAmelCase)] __A : Any = self.root ** (next_ncol // 2) __A : Tuple = 1 # First half of next step for j in range(self.c_max_length // next_ncol): for i in range(next_ncol // 2): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root)) current_root *= root # Update __A : int = new_inverse_c next_ncol *= 2 # Unpack __A : Optional[int] = [round(x[0].real , 8) + round(x[0].imag , 8) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self): '''simple docstring''' __A : int = 'A = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A])) __A : Optional[Any] = 'B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B])) __A : str = 'A*B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.product)) return F'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings lowercase__ : Dict = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = field(default=a__ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = super().to_dict() for k, v in d.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : List[Any] = v.to_dict() return d
8
1
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean lowercase__ : str = 0 lowercase__ : Optional[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase__ : List[str] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right lowercase__ : List[Any] = tuple[int, int] class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): '''simple docstring''' __A : Optional[int] = pos_x __A : Union[str, Any] = pos_y __A : List[Any] = (pos_y, pos_x) __A : str = goal_x __A : str = goal_y __A : Any = g_cost __A : str = parent __A : Any = self.calculate_heuristic() __A : List[str] = self.g_cost + self.h_cost def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.pos_x - self.goal_x __A : Tuple = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_UpperCAmelCase) + abs(_UpperCAmelCase) else: return sqrt(dy**2 + dx**2) def __lt__( self , _UpperCAmelCase): '''simple docstring''' return self.f_cost < other.f_cost class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Dict = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _UpperCAmelCase) __A : List[str] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , _UpperCAmelCase) __A : Dict = [self.start] __A : list[Node] = [] __A : Optional[Any] = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __A : List[str] = self.open_nodes.pop(0) if current_node.pos == self.target.pos: return self.retrace_path(_UpperCAmelCase) self.closed_nodes.append(_UpperCAmelCase) __A : Tuple = self.get_successors(_UpperCAmelCase) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_UpperCAmelCase) else: # retrieve the best current path __A : str = self.open_nodes.pop(self.open_nodes.index(_UpperCAmelCase)) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_UpperCAmelCase) else: self.open_nodes.append(_UpperCAmelCase) return [self.start.pos] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Tuple = [] for action in delta: __A : Union[str, Any] = parent.pos_x + action[1] __A : List[str] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(_UpperCAmelCase) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _UpperCAmelCase , _UpperCAmelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _UpperCAmelCase , )) return successors def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = node __A : Optional[int] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x)) __A : Optional[Any] = current_node.parent path.reverse() return path class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Union[str, Any] = AStar(_UpperCAmelCase , _UpperCAmelCase) __A : List[Any] = AStar(_UpperCAmelCase , _UpperCAmelCase) __A : int = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __A : Tuple = self.fwd_astar.open_nodes.pop(0) __A : Union[str, Any] = self.bwd_astar.open_nodes.pop(0) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _UpperCAmelCase , _UpperCAmelCase) self.fwd_astar.closed_nodes.append(_UpperCAmelCase) self.bwd_astar.closed_nodes.append(_UpperCAmelCase) __A : str = current_bwd_node __A : str = current_fwd_node __A : str = { self.fwd_astar: self.fwd_astar.get_successors(_UpperCAmelCase), self.bwd_astar: self.bwd_astar.get_successors(_UpperCAmelCase), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_UpperCAmelCase) else: # retrieve the best current path __A : List[Any] = astar.open_nodes.pop( astar.open_nodes.index(_UpperCAmelCase)) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_UpperCAmelCase) else: astar.open_nodes.append(_UpperCAmelCase) return [self.fwd_astar.start.pos] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = self.fwd_astar.retrace_path(_UpperCAmelCase) __A : Optional[int] = self.bwd_astar.retrace_path(_UpperCAmelCase) bwd_path.pop() bwd_path.reverse() __A : Tuple = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] lowercase__ : str = (0, 0) lowercase__ : Optional[int] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowercase__ : Dict = time.time() lowercase__ : Optional[int] = AStar(init, goal) lowercase__ : List[Any] = a_star.search() lowercase__ : Dict = time.time() - start_time print(f"""AStar execution time = {end_time:f} seconds""") lowercase__ : Optional[Any] = time.time() lowercase__ : Optional[int] = BidirectionalAStar(init, goal) lowercase__ : int = time.time() - bd_start_time print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
8
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : Optional[int] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''lxmert''' lowerCAmelCase = {} def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=9500 , _UpperCAmelCase=1600 , _UpperCAmelCase=400 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=9 , _UpperCAmelCase=5 , _UpperCAmelCase=5 , _UpperCAmelCase=2048 , _UpperCAmelCase=4 , _UpperCAmelCase=6.67 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , **_UpperCAmelCase , ): '''simple docstring''' __A : Tuple = vocab_size __A : int = hidden_size __A : str = num_attention_heads __A : Tuple = hidden_act __A : int = intermediate_size __A : str = hidden_dropout_prob __A : Optional[int] = attention_probs_dropout_prob __A : Optional[Any] = max_position_embeddings __A : Tuple = type_vocab_size __A : Optional[int] = initializer_range __A : Any = layer_norm_eps __A : Optional[Any] = num_qa_labels __A : Optional[int] = num_object_labels __A : Any = num_attr_labels __A : Union[str, Any] = l_layers __A : Optional[int] = x_layers __A : List[Any] = r_layers __A : Tuple = visual_feat_dim __A : Tuple = visual_pos_dim __A : Optional[int] = visual_loss_normalizer __A : int = task_matched __A : List[Any] = task_mask_lm __A : Optional[Any] = task_obj_predict __A : str = task_qa __A : List[Any] = visual_obj_loss __A : Optional[Any] = visual_attr_loss __A : Union[str, Any] = visual_feat_loss __A : Union[str, Any] = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**_UpperCAmelCase)
8
1
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( __snake_case : list[int] , __snake_case : list[int] , __snake_case : int ) -> tuple[float, list[float]]: __A : int = list(range(len(__snake_case ) ) ) __A : Optional[Any] = [v / w for v, w in zip(__snake_case , __snake_case )] index.sort(key=lambda __snake_case : ratio[i] , reverse=__snake_case ) __A : float = 0 __A : list[float] = [0] * len(__snake_case ) for i in index: if weight[i] <= capacity: __A : Optional[int] = 1 max_value += value[i] capacity -= weight[i] else: __A : List[Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
8
'''simple docstring''' import math import sys def _lowerCAmelCase ( __snake_case : int ) -> int: if number != int(__snake_case ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 __A : str = [-1] * (number + 1) __A : Dict = 0 for i in range(1 , number + 1 ): __A : int = sys.maxsize __A : int = int(math.sqrt(__snake_case ) ) for j in range(1 , root + 1 ): __A : str = 1 + answers[i - (j**2)] __A : Dict = min(__snake_case , __snake_case ) __A : Union[str, Any] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=3 , _UpperCAmelCase=32 , _UpperCAmelCase=3 , _UpperCAmelCase=10 , _UpperCAmelCase=[8, 16, 32, 64] , _UpperCAmelCase=[1, 1, 2, 1] , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase="relu" , _UpperCAmelCase=3 , _UpperCAmelCase=None , _UpperCAmelCase=["stage2", "stage3", "stage4"] , _UpperCAmelCase=[2, 3, 4] , _UpperCAmelCase=1 , ): '''simple docstring''' __A : int = parent __A : List[str] = batch_size __A : Dict = image_size __A : Dict = num_channels __A : List[str] = embeddings_size __A : Optional[int] = hidden_sizes __A : List[str] = depths __A : List[str] = is_training __A : Union[str, Any] = use_labels __A : Dict = hidden_act __A : Tuple = num_labels __A : int = scope __A : Optional[int] = len(_UpperCAmelCase) __A : Tuple = out_features __A : List[Any] = out_indices __A : Optional[Any] = num_groups def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __A : Tuple = None if self.use_labels: __A : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels) __A : Optional[Any] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Dict = BitModel(config=_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : str = model(_UpperCAmelCase) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = self.num_labels __A : Optional[int] = BitForImageClassification(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : List[Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Dict = BitBackbone(config=_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : int = model(_UpperCAmelCase) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:]) # verify backbone works with out_features=None __A : List[Any] = None __A : Optional[int] = BitBackbone(config=_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : Optional[Any] = model(_UpperCAmelCase) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.prepare_config_and_inputs() __A ,__A ,__A : List[str] = config_and_inputs __A : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () lowerCAmelCase = ( {'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification} if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = BitModelTester(self) __A : str = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return @unittest.skip(reason='Bit does not output attentions') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass @unittest.skip(reason='Bit does not use inputs_embeds') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass @unittest.skip(reason='Bit does not support input and output embeddings') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Dict = model_class(_UpperCAmelCase) __A : Tuple = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : List[Any] = [*signature.parameters.keys()] __A : str = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Any = model_class(config=_UpperCAmelCase) for name, module in model.named_modules(): if isinstance(_UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1) , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0) , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): __A : List[str] = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : Union[str, Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __A : str = self.model_tester.num_stages self.assertEqual(len(_UpperCAmelCase) , expected_num_stages + 1) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __A ,__A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __A : Tuple = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: __A : Union[str, Any] = layer_type __A : str = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A : Union[str, Any] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) @unittest.skip(reason='Bit does not use feedforward chunking') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : int = BitModel.from_pretrained(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase) def _lowerCAmelCase ( ) -> Tuple: __A : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(_UpperCAmelCase) __A : str = self.default_image_processor __A : List[str] = prepare_img() __A : int = image_processor(images=_UpperCAmelCase , return_tensors='pt').to(_UpperCAmelCase) # forward pass with torch.no_grad(): __A : Union[str, Any] = model(**_UpperCAmelCase) # verify the logits __A : Tuple = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , _UpperCAmelCase) __A : Any = torch.tensor([[-0.6526, -0.5263, -1.4398]]).to(_UpperCAmelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4)) @require_torch class SCREAMING_SNAKE_CASE (a__ , unittest.TestCase ): lowerCAmelCase = (BitBackbone,) if is_torch_available() else () lowerCAmelCase = BitConfig lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = BitModelTester(self)
8
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( __snake_case : list[int] , __snake_case : list[int] , __snake_case : int ) -> tuple[float, list[float]]: __A : int = list(range(len(__snake_case ) ) ) __A : Optional[Any] = [v / w for v, w in zip(__snake_case , __snake_case )] index.sort(key=lambda __snake_case : ratio[i] , reverse=__snake_case ) __A : float = 0 __A : list[float] = [0] * len(__snake_case ) for i in index: if weight[i] <= capacity: __A : Optional[int] = 1 max_value += value[i] capacity -= weight[i] else: __A : List[Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) lowercase__ : List[Any] = logging.getLogger() def _lowerCAmelCase ( __snake_case : Path , __snake_case : list ) -> List[str]: __A : Tuple = '\n'.join(__snake_case ) Path(__snake_case ).open('w' ).writelines(__snake_case ) lowercase__ : Optional[Any] = '''patrickvonplaten/t5-tiny-random''' lowercase__ : List[Any] = '''sshleifer/bart-tiny-random''' lowercase__ : Optional[Any] = '''sshleifer/tiny-mbart''' lowercase__ : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class SCREAMING_SNAKE_CASE (a__ ): def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Dict = Path(self.get_auto_remove_tmp_dir()) / 'utest_input.source' __A : Optional[Any] = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() __A : Optional[int] = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(_UpperCAmelCase , _UpperCAmelCase) __A : Optional[int] = str(Path(self.get_auto_remove_tmp_dir()) / 'scores.json') __A : Dict = 'translation_en_to_de' if model == T5_TINY else 'summarization' __A : Any = F'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(_UpperCAmelCase , 'argv' , _UpperCAmelCase): run_generate() assert Path(_UpperCAmelCase).exists() # os.remove(Path(output_file_name)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.run_eval_tester(_UpperCAmelCase) @parameterized.expand([BART_TINY, MBART_TINY]) @slow def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' self.run_eval_tester(_UpperCAmelCase) @parameterized.expand([T5_TINY, MBART_TINY]) @slow def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Tuple = Path(self.get_auto_remove_tmp_dir()) / 'utest_input.source' __A : str = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() __A : int = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } __A : Dict = Path(self.get_auto_remove_tmp_dir()) __A : str = str(tmp_dir / 'scores.json') __A : int = str(tmp_dir / 'val.target') _dump_articles(_UpperCAmelCase , text['en']) _dump_articles(_UpperCAmelCase , text['de']) __A : Optional[int] = 'translation_en_to_de' if model == T5_TINY else 'summarization' __A : int = F'\n run_eval_search.py\n {model}\n {str(_UpperCAmelCase)}\n {str(_UpperCAmelCase)}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0']) with patch.object(_UpperCAmelCase , 'argv' , _UpperCAmelCase): with CaptureStdout() as cs: run_search() __A : str = [' num_beams | length_penalty', model, 'Best score args'] __A : List[Any] = ['Info'] if "translation" in task: expected_strings.append('bleu') else: expected_strings.extend(_UpperCAmelCase) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(_UpperCAmelCase).exists() os.remove(Path(_UpperCAmelCase))
8
'''simple docstring''' from __future__ import annotations import math class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : int = size # approximate the overall size of segment tree with given value __A : Optional[Any] = [0 for i in range(0 , 4 * size)] # create array to store lazy update __A : Optional[Any] = [0 for i in range(0 , 4 * size)] __A : str = [0 for i in range(0 , 4 * size)] # flag for lazy update def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return idx * 2 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return idx * 2 + 1 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if left_element == right_element: __A : List[Any] = a[left_element - 1] else: __A : List[str] = (left_element + right_element) // 2 self.build(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.build(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase) __A : Any = max( self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)]) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.flag[idx] is True: __A : Optional[Any] = self.lazy[idx] __A : Optional[Any] = False if left_element != right_element: __A : List[Any] = self.lazy[idx] __A : Dict = self.lazy[idx] __A : Tuple = True __A : Union[str, Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: __A : Optional[int] = val if left_element != right_element: __A : Tuple = val __A : Any = val __A : Tuple = True __A : Union[str, Any] = True return True __A : str = (left_element + right_element) // 2 self.update(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.update(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : int = max( self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)]) return True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.flag[idx] is True: __A : Union[str, Any] = self.lazy[idx] __A : List[str] = False if left_element != right_element: __A : Union[str, Any] = self.lazy[idx] __A : Optional[int] = self.lazy[idx] __A : str = True __A : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] __A : Any = (left_element + right_element) // 2 __A : int = self.query(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : Union[str, Any] = self.query(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) return max(_UpperCAmelCase , _UpperCAmelCase) def __str__( self): '''simple docstring''' return str([self.query(1 , 1 , self.size , _UpperCAmelCase , _UpperCAmelCase) for i in range(1 , self.size + 1)]) if __name__ == "__main__": lowercase__ : Union[str, Any] = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] lowercase__ : str = 15 lowercase__ : List[Any] = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 1_11) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 2_35) print(segt)
8
1
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowercase__ : Optional[Any] = sys.version_info >= (3, 10) def _lowerCAmelCase ( __snake_case : Union[str, Any]=None , __snake_case : int=None ) -> str: return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = 42 lowerCAmelCase = field(default='''toto''' , metadata={'''help''': '''help message'''} ) @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = False lowerCAmelCase = True lowerCAmelCase = None class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''titi''' lowerCAmelCase = '''toto''' class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''titi''' lowerCAmelCase = '''toto''' lowerCAmelCase = 42 @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = "toto" def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = BasicEnum(self.foo) @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = "toto" def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = MixedTypeEnum(self.foo) @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = None lowerCAmelCase = field(default=a__ , metadata={'''help''': '''help message'''} ) lowerCAmelCase = None lowerCAmelCase = list_field(default=[] ) lowerCAmelCase = list_field(default=[] ) @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = list_field(default=[] ) lowerCAmelCase = list_field(default=[1, 2, 3] ) lowerCAmelCase = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) lowerCAmelCase = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = field() lowerCAmelCase = field() lowerCAmelCase = field() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = BasicEnum(self.required_enum) @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = 42 lowerCAmelCase = field() lowerCAmelCase = None lowerCAmelCase = field(default='''toto''' , metadata={'''help''': '''help message'''} ) lowerCAmelCase = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) if is_python_no_less_than_3_10: @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = False lowerCAmelCase = True lowerCAmelCase = None @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = None lowerCAmelCase = field(default=a__ , metadata={'''help''': '''help message'''} ) lowerCAmelCase = None lowerCAmelCase = list_field(default=[] ) lowerCAmelCase = list_field(default=[] ) class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' self.assertEqual(len(a._actions) , len(b._actions)) for x, y in zip(a._actions , b._actions): __A : List[Any] = {k: v for k, v in vars(_UpperCAmelCase).items() if k != 'container'} __A : Union[str, Any] = {k: v for k, v in vars(_UpperCAmelCase).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , _UpperCAmelCase) and yy.get('choices' , _UpperCAmelCase): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](_UpperCAmelCase) , yy['type'](_UpperCAmelCase)) del xx["type"], yy["type"] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = HfArgumentParser(_UpperCAmelCase) __A : int = argparse.ArgumentParser() expected.add_argument('--foo' , type=_UpperCAmelCase , required=_UpperCAmelCase) expected.add_argument('--bar' , type=_UpperCAmelCase , required=_UpperCAmelCase) expected.add_argument('--baz' , type=_UpperCAmelCase , required=_UpperCAmelCase) expected.add_argument('--flag' , type=_UpperCAmelCase , default=_UpperCAmelCase , const=_UpperCAmelCase , nargs='?') self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase) __A : int = ['--foo', '1', '--baz', 'quux', '--bar', '0.5'] ((__A) ,) : Any = parser.parse_args_into_dataclasses(_UpperCAmelCase , look_for_args_file=_UpperCAmelCase) self.assertFalse(example.flag) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = HfArgumentParser(_UpperCAmelCase) __A : List[str] = argparse.ArgumentParser() expected.add_argument('--foo' , default=42 , type=_UpperCAmelCase) expected.add_argument('--baz' , default='toto' , type=_UpperCAmelCase , help='help message') self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = argparse.ArgumentParser() expected.add_argument('--foo' , type=_UpperCAmelCase , default=_UpperCAmelCase , const=_UpperCAmelCase , nargs='?') expected.add_argument('--baz' , type=_UpperCAmelCase , default=_UpperCAmelCase , const=_UpperCAmelCase , nargs='?') # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=_UpperCAmelCase , dest='baz') expected.add_argument('--opt' , type=_UpperCAmelCase , default=_UpperCAmelCase) __A : str = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCAmelCase) for dataclass_type in dataclass_types: __A : Tuple = HfArgumentParser(_UpperCAmelCase) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase) __A : str = parser.parse_args([]) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase)) __A : Tuple = parser.parse_args(['--foo', '--no_baz']) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase)) __A : Optional[Any] = parser.parse_args(['--foo', '--baz']) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase)) __A : Optional[int] = parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True']) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase)) __A : List[Any] = parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False']) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , baz=_UpperCAmelCase , opt=_UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = HfArgumentParser(_UpperCAmelCase) __A : Tuple = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42]) , ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase) __A : int = parser.parse_args([]) self.assertEqual(args.foo , 'toto') __A : Optional[Any] = parser.parse_args_into_dataclasses([])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto) __A : Union[str, Any] = parser.parse_args(['--foo', 'titi']) self.assertEqual(args.foo , 'titi') __A : List[Any] = parser.parse_args_into_dataclasses(['--foo', 'titi'])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi) __A : Dict = parser.parse_args(['--foo', '42']) self.assertEqual(args.foo , 42) __A : Tuple = parser.parse_args_into_dataclasses(['--foo', '42'])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = "toto" __A : str = HfArgumentParser(_UpperCAmelCase) __A : Optional[Any] = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42]) , ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase) __A : Dict = parser.parse_args([]) self.assertEqual(args.foo , 'toto') __A : Optional[int] = parser.parse_args(['--foo', 'titi']) self.assertEqual(args.foo , 'titi') __A : Optional[Any] = parser.parse_args(['--foo', '42']) self.assertEqual(args.foo , 42) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = HfArgumentParser(_UpperCAmelCase) __A : Union[str, Any] = argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=_UpperCAmelCase) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=_UpperCAmelCase) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=_UpperCAmelCase) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=_UpperCAmelCase) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase) __A : int = parser.parse_args([]) self.assertEqual( _UpperCAmelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3]) , ) __A : Optional[int] = parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split()) self.assertEqual(_UpperCAmelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7])) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = argparse.ArgumentParser() expected.add_argument('--foo' , default=_UpperCAmelCase , type=_UpperCAmelCase) expected.add_argument('--bar' , default=_UpperCAmelCase , type=_UpperCAmelCase , help='help message') expected.add_argument('--baz' , default=_UpperCAmelCase , type=_UpperCAmelCase) expected.add_argument('--ces' , nargs='+' , default=[] , type=_UpperCAmelCase) expected.add_argument('--des' , nargs='+' , default=[] , type=_UpperCAmelCase) __A : Optional[int] = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCAmelCase) for dataclass_type in dataclass_types: __A : Dict = HfArgumentParser(_UpperCAmelCase) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase) __A : Union[str, Any] = parser.parse_args([]) self.assertEqual(_UpperCAmelCase , Namespace(foo=_UpperCAmelCase , bar=_UpperCAmelCase , baz=_UpperCAmelCase , ces=[] , des=[])) __A : str = parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split()) self.assertEqual(_UpperCAmelCase , Namespace(foo=12 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3])) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = HfArgumentParser(_UpperCAmelCase) __A : Optional[int] = argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=_UpperCAmelCase , required=_UpperCAmelCase) expected.add_argument('--required_str' , type=_UpperCAmelCase , required=_UpperCAmelCase) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto']) , choices=['titi', 'toto'] , required=_UpperCAmelCase , ) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = HfArgumentParser(_UpperCAmelCase) __A : Tuple = argparse.ArgumentParser() expected.add_argument('--foo' , type=_UpperCAmelCase , required=_UpperCAmelCase) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto']) , choices=['titi', 'toto'] , required=_UpperCAmelCase , ) expected.add_argument('--opt' , type=_UpperCAmelCase , default=_UpperCAmelCase) expected.add_argument('--baz' , default='toto' , type=_UpperCAmelCase , help='help message') expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=_UpperCAmelCase) self.argparsersEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = HfArgumentParser(_UpperCAmelCase) __A : List[str] = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } __A : str = parser.parse_dict(_UpperCAmelCase)[0] __A : Optional[Any] = BasicExample(**_UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = HfArgumentParser(_UpperCAmelCase) __A : List[Any] = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(_UpperCAmelCase , parser.parse_dict , _UpperCAmelCase , allow_extra_keys=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = HfArgumentParser(_UpperCAmelCase) __A : Union[str, Any] = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: __A : List[Any] = os.path.join(_UpperCAmelCase , 'temp_json') os.mkdir(_UpperCAmelCase) with open(temp_local_path + '.json' , 'w+') as f: json.dump(_UpperCAmelCase , _UpperCAmelCase) __A : Union[str, Any] = parser.parse_yaml_file(Path(temp_local_path + '.json'))[0] __A : str = BasicExample(**_UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = HfArgumentParser(_UpperCAmelCase) __A : Optional[Any] = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: __A : List[str] = os.path.join(_UpperCAmelCase , 'temp_yaml') os.mkdir(_UpperCAmelCase) with open(temp_local_path + '.yaml' , 'w+') as f: yaml.dump(_UpperCAmelCase , _UpperCAmelCase) __A : str = parser.parse_yaml_file(Path(temp_local_path + '.yaml'))[0] __A : Optional[Any] = BasicExample(**_UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = HfArgumentParser(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase)
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int , __snake_case : int , __snake_case : int ) -> float: __A : Dict = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def _lowerCAmelCase ( ) -> Union[str, Any]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Optional[int] = logging.get_logger(__name__) lowercase__ : str = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''trocr''' lowerCAmelCase = ['''past_key_values'''] lowerCAmelCase = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self , _UpperCAmelCase=5_0265 , _UpperCAmelCase=1024 , _UpperCAmelCase=12 , _UpperCAmelCase=16 , _UpperCAmelCase=4096 , _UpperCAmelCase="gelu" , _UpperCAmelCase=512 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , **_UpperCAmelCase , ): '''simple docstring''' __A : List[str] = vocab_size __A : List[str] = d_model __A : List[Any] = decoder_layers __A : List[Any] = decoder_attention_heads __A : List[str] = decoder_ffn_dim __A : Union[str, Any] = activation_function __A : str = max_position_embeddings __A : Tuple = dropout __A : Union[str, Any] = attention_dropout __A : List[Any] = activation_dropout __A : Optional[int] = init_std __A : int = decoder_layerdrop __A : List[Any] = use_cache __A : str = scale_embedding __A : Optional[int] = use_learned_position_embeddings __A : Optional[Any] = layernorm_embedding super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
8
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): '''simple docstring''' __A : Optional[int] = parent __A : str = 13 __A : List[Any] = 7 __A : List[str] = True __A : str = True __A : Optional[Any] = True __A : int = True __A : Dict = 99 __A : Dict = 384 __A : Any = 2 __A : int = 4 __A : Optional[Any] = 37 __A : Optional[int] = 'gelu' __A : Dict = 0.1 __A : Optional[int] = 0.1 __A : Any = 512 __A : int = 16 __A : List[str] = 2 __A : str = 0.02 __A : Any = 3 __A : str = 4 __A : Union[str, Any] = 128 __A : int = 2 __A : List[Any] = 9 __A : List[Any] = 1 __A : List[Any] = None def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __A : str = None if self.use_input_mask: __A : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __A : Optional[Any] = None if self.use_token_type_ids: __A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __A : Optional[int] = None __A : List[str] = None __A : Dict = None if self.use_labels: __A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) __A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __A : str = ids_tensor([self.batch_size] , self.num_choices) __A : List[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = TFConvBertModel(config=_UpperCAmelCase) __A : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __A : Tuple = [input_ids, input_mask] __A : Any = model(_UpperCAmelCase) __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : str = TFConvBertForMaskedLM(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : str = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = self.num_labels __A : Any = TFConvBertForSequenceClassification(config=_UpperCAmelCase) __A : Optional[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Tuple = self.num_choices __A : List[str] = TFConvBertForMultipleChoice(config=_UpperCAmelCase) __A : int = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : Optional[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : List[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : int = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __A : Optional[Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = self.num_labels __A : List[Any] = TFConvBertForTokenClassification(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : int = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = TFConvBertForQuestionAnswering(config=_UpperCAmelCase) __A : Any = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Union[str, Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.prepare_config_and_inputs() ( ( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) , ) : Union[str, Any] = config_and_inputs __A : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = TFConvBertModelTester(self) __A : str = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __A : List[str] = True __A : List[str] = True if hasattr(_UpperCAmelCase , 'use_cache'): __A : List[Any] = True __A : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : Union[str, Any] = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) for model_class in self.all_model_classes: __A : List[str] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase) __A : Optional[int] = model_class(_UpperCAmelCase) __A : Optional[Any] = len(model(_UpperCAmelCase)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase) __A : Union[str, Any] = os.path.join(_UpperCAmelCase , 'saved_model' , '1') __A : Tuple = tf.keras.models.load_model(_UpperCAmelCase) __A : str = model(_UpperCAmelCase) if self.is_encoder_decoder: __A : Optional[int] = outputs['encoder_hidden_states'] __A : str = outputs['encoder_attentions'] else: __A : List[Any] = outputs['hidden_states'] __A : Optional[Any] = outputs['attentions'] self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) __A : str = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) self.assertListEqual( list(output_hidden_states[0].shape[-2:]) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(output_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') self.assertIsNotNone(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Any = True __A : str = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length) __A : Any = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : int = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) __A : Tuple = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) def check_decoder_attentions_output(_UpperCAmelCase): __A : List[str] = len(_UpperCAmelCase) self.assertEqual(out_len % 2 , 0) __A : Any = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCAmelCase): __A : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __A : Dict = True __A : Any = False __A : str = model_class(_UpperCAmelCase) __A : List[str] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : List[str] = len(_UpperCAmelCase) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) if self.is_encoder_decoder: __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : int = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_decoder_attentions_output(_UpperCAmelCase) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __A : int = True __A : Tuple = model_class(_UpperCAmelCase) __A : Dict = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) # Check attention is always last and order is fine __A : Any = True __A : str = True __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : Union[str, Any] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase)) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) @require_tf class SCREAMING_SNAKE_CASE (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') __A : str = tf.constant([[0, 1, 2, 3, 4, 5]]) __A : Optional[int] = model(_UpperCAmelCase)[0] __A : List[Any] = [1, 6, 768] self.assertEqual(output.shape , _UpperCAmelCase) __A : Tuple = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ]) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4)
8
1
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = ['''image_processor''', '''tokenizer'''] lowerCAmelCase = '''AutoImageProcessor''' lowerCAmelCase = '''AutoTokenizer''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' super().__init__(_UpperCAmelCase , _UpperCAmelCase) __A : Optional[Any] = self.image_processor def __call__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.') if text is not None: __A : int = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase) if images is not None: __A : List[Any] = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase) if text is not None and images is not None: __A : int = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase) , tensor_type=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase) @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
8
'''simple docstring''' import argparse import os import re lowercase__ : Optional[int] = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowercase__ : Dict = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowercase__ : List[str] = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase__ : Tuple = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowercase__ : str = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase__ : str = re.compile(r'''\[([^\]]+)\]''') def _lowerCAmelCase ( __snake_case : str ) -> Tuple: __A : List[Any] = _re_indent.search(__snake_case ) return "" if search is None else search.groups()[0] def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : str="" , __snake_case : Any=None , __snake_case : List[Any]=None ) -> Optional[int]: __A : Tuple = 0 __A : Optional[int] = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(__snake_case ): index += 1 __A : Optional[int] = ['\n'.join(lines[:index] )] else: __A : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __A : Tuple = [lines[index]] index += 1 while index < len(__snake_case ) and (end_prompt is None or not lines[index].startswith(__snake_case )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__snake_case ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(__snake_case ) ) if index < len(__snake_case ) - 1: __A : Union[str, Any] = [lines[index + 1]] index += 1 else: __A : Union[str, Any] = [] else: blocks.append('\n'.join(__snake_case ) ) __A : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__snake_case ) > 0: blocks.append('\n'.join(__snake_case ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__snake_case ): blocks.append('\n'.join(lines[index:] ) ) return blocks def _lowerCAmelCase ( __snake_case : List[Any] ) -> int: def _inner(__snake_case : List[Any] ): return key(__snake_case ).lower().replace('_' , '' ) return _inner def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any=None ) -> List[Any]: # If no key is provided, we use a noop. def noop(__snake_case : List[Any] ): return x if key is None: __A : Optional[Any] = noop # Constants are all uppercase, they go first. __A : str = [obj for obj in objects if key(__snake_case ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __A : List[str] = [obj for obj in objects if key(__snake_case )[0].isupper() and not key(__snake_case ).isupper()] # Functions begin with a lowercase, they go last. __A : str = [obj for obj in objects if not key(__snake_case )[0].isupper()] __A : Tuple = ignore_underscore(__snake_case ) return sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Tuple: # This inner function sort imports between [ ]. def _replace(__snake_case : Tuple ): __A : List[str] = match.groups()[0] if "," not in imports: return f'[{imports}]' __A : int = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Dict = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(__snake_case )] ) + "]" __A : List[Any] = import_statement.split('\n' ) if len(__snake_case ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __A : Optional[int] = 2 if lines[1].strip() == '[' else 1 __A : Any = [(i, _re_strip_line.search(__snake_case ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __A : Optional[int] = sort_objects(__snake_case , key=lambda __snake_case : x[1] ) __A : Any = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__snake_case ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __A : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] ) else: __A : Dict = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Tuple = keys[:-1] __A : List[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(__snake_case )] ) return "\n".join(__snake_case ) else: # Finally we have to deal with imports fitting on one line __A : Optional[Any] = _re_bracket_content.sub(_replace , __snake_case ) return import_statement def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : List[Any]=True ) -> Optional[Any]: with open(__snake_case , 'r' ) as f: __A : Dict = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __A : str = split_code_in_indented_blocks( __snake_case , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__snake_case ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __A : Tuple = main_blocks[block_idx] __A : int = block.split('\n' ) # Get to the start of the imports. __A : Tuple = 0 while line_idx < len(__snake_case ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __A : Optional[int] = len(__snake_case ) else: line_idx += 1 if line_idx >= len(__snake_case ): continue # Ignore beginning and last line: they don't contain anything. __A : Dict = '\n'.join(block_lines[line_idx:-1] ) __A : int = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __A : Optional[int] = split_code_in_indented_blocks(__snake_case , indent_level=__snake_case ) # We have two categories of import key: list or _import_structure[key].append/extend __A : Any = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __A : Dict = [(pattern.search(__snake_case ).groups()[0] if pattern.search(__snake_case ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __A : Optional[Any] = [(i, key) for i, key in enumerate(__snake_case ) if key is not None] __A : Tuple = [x[0] for x in sorted(__snake_case , key=lambda __snake_case : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __A : str = 0 __A : Any = [] for i in range(len(__snake_case ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __A : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(__snake_case ) count += 1 # And we put our main block back together with its first and last line. __A : int = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(__snake_case ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(__snake_case , 'w' ) as f: f.write('\n'.join(__snake_case ) ) def _lowerCAmelCase ( __snake_case : int=True ) -> Optional[Any]: __A : Tuple = [] for root, _, files in os.walk(__snake_case ): if "__init__.py" in files: __A : List[Any] = sort_imports(os.path.join(__snake_case , '__init__.py' ) , check_only=__snake_case ) if result: __A : Dict = [os.path.join(__snake_case , '__init__.py' )] if len(__snake_case ) > 0: raise ValueError(f'Would overwrite {len(__snake_case )} files, run `make style`.' ) if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowercase__ : Union[str, Any] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
8
1
'''simple docstring''' lowercase__ : Tuple = '''Alexander Joslin''' import operator as op from .stack import Stack def _lowerCAmelCase ( __snake_case : str ) -> int: __A : Any = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} __A : Stack[int] = Stack() __A : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__snake_case ) ) elif i in operators: # RULE 2 operator_stack.push(__snake_case ) elif i == ")": # RULE 4 __A : List[str] = operator_stack.peek() operator_stack.pop() __A : int = operand_stack.peek() operand_stack.pop() __A : str = operand_stack.peek() operand_stack.pop() __A : int = operators[opr](__snake_case , __snake_case ) operand_stack.push(__snake_case ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowercase__ : Tuple = '''(5 + ((4 * 2) * (2 + 3)))''' # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int ) -> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') lowercase__ : int = int(input('''Enter number: ''').strip()) print(f"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
8
1
'''simple docstring''' import math def _lowerCAmelCase ( __snake_case : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCAmelCase ( __snake_case : float = 0.1 ) -> int: __A : Any = 3 __A : Optional[Any] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__snake_case ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
8
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : str = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def _lowerCAmelCase ( __snake_case : List[Any] ) -> Tuple: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __A : Optional[Any] = k.replace(__snake_case , __snake_case ) if k.startswith('encoder' ): __A : Any = k.replace('.attn' , '.self_attn' ) __A : Any = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): __A : Tuple = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'encoder_attn_layer_norm' ) __A : int = k.replace('norm3' , 'final_layer_norm' ) return k def _lowerCAmelCase ( __snake_case : List[Any] ) -> Dict: __A : Optional[int] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: __A : Tuple = sd.pop(__snake_case ) __A : Union[str, Any] = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd __A : str = v lowercase__ : Tuple = ['''START'''] @torch.no_grad() def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any , __snake_case : List[Any] ) -> int: __A : List[str] = torch.load(__snake_case , map_location='cpu' ) __A : Tuple = model['model'] __A : str = BlenderbotConfig.from_json_file(__snake_case ) __A : int = BlenderbotForConditionalGeneration(__snake_case ) __A : List[Any] = m.model.state_dict().keys() __A : Optional[int] = [] __A : Optional[int] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __A : Union[str, Any] = rename_state_dict_key(__snake_case ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __A : Optional[Any] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__snake_case ) m.model.load_state_dict(__snake_case , strict=__snake_case ) m.half() m.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
8
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = 1 __A : List[str] = 3 __A : str = (32, 32) __A : List[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(_UpperCAmelCase) return image @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' torch.manual_seed(0) __A : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=_UpperCAmelCase , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' torch.manual_seed(0) __A : Optional[Any] = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' torch.manual_seed(0) __A : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) return CLIPTextModel(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator __A : Tuple = self.dummy_cond_unet_upscale __A : Optional[Any] = DDPMScheduler() __A : str = DDIMScheduler(prediction_type='v_prediction') __A : int = self.dummy_vae __A : Tuple = self.dummy_text_encoder __A : int = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') __A : str = self.dummy_image.cpu().permute(0 , 2 , 3 , 1)[0] __A : Tuple = Image.fromarray(np.uinta(_UpperCAmelCase)).convert('RGB').resize((64, 64)) # make sure here that pndm scheduler skips prk __A : Dict = StableDiffusionUpscalePipeline( unet=_UpperCAmelCase , low_res_scheduler=_UpperCAmelCase , scheduler=_UpperCAmelCase , vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , max_noise_level=350 , ) __A : Dict = sd_pipe.to(_UpperCAmelCase) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase) __A : Dict = 'A painting of a squirrel eating a burger' __A : Optional[int] = torch.Generator(device=_UpperCAmelCase).manual_seed(0) __A : Dict = sd_pipe( [prompt] , image=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) __A : Tuple = output.images __A : Dict = torch.Generator(device=_UpperCAmelCase).manual_seed(0) __A : str = sd_pipe( [prompt] , image=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , return_dict=_UpperCAmelCase , )[0] __A : Union[str, Any] = image[0, -3:, -3:, -1] __A : List[Any] = image_from_tuple[0, -3:, -3:, -1] __A : Dict = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) __A : Optional[Any] = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = 'cpu' # ensure determinism for the device-dependent torch.Generator __A : Optional[Any] = self.dummy_cond_unet_upscale __A : Any = DDPMScheduler() __A : Union[str, Any] = DDIMScheduler(prediction_type='v_prediction') __A : List[str] = self.dummy_vae __A : Optional[Any] = self.dummy_text_encoder __A : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') __A : List[str] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1)[0] __A : List[Any] = Image.fromarray(np.uinta(_UpperCAmelCase)).convert('RGB').resize((64, 64)) # make sure here that pndm scheduler skips prk __A : Optional[int] = StableDiffusionUpscalePipeline( unet=_UpperCAmelCase , low_res_scheduler=_UpperCAmelCase , scheduler=_UpperCAmelCase , vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , max_noise_level=350 , ) __A : Any = sd_pipe.to(_UpperCAmelCase) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase) __A : Optional[Any] = 'A painting of a squirrel eating a burger' __A : List[str] = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) __A : int = output.images assert image.shape[0] == 2 __A : int = torch.Generator(device=_UpperCAmelCase).manual_seed(0) __A : int = sd_pipe( [prompt] , image=_UpperCAmelCase , generator=_UpperCAmelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) __A : Optional[Any] = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.dummy_cond_unet_upscale __A : Any = DDPMScheduler() __A : Optional[Any] = DDIMScheduler(prediction_type='v_prediction') __A : Any = self.dummy_vae __A : Union[str, Any] = self.dummy_text_encoder __A : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') __A : Any = self.dummy_image.cpu().permute(0 , 2 , 3 , 1)[0] __A : Union[str, Any] = Image.fromarray(np.uinta(_UpperCAmelCase)).convert('RGB').resize((64, 64)) # put models in fp16, except vae as it overflows in fp16 __A : Optional[Any] = unet.half() __A : str = text_encoder.half() # make sure here that pndm scheduler skips prk __A : Union[str, Any] = StableDiffusionUpscalePipeline( unet=_UpperCAmelCase , low_res_scheduler=_UpperCAmelCase , scheduler=_UpperCAmelCase , vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , max_noise_level=350 , ) __A : Any = sd_pipe.to(_UpperCAmelCase) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase) __A : int = 'A painting of a squirrel eating a burger' __A : int = torch.manual_seed(0) __A : Optional[Any] = sd_pipe( [prompt] , image=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=2 , output_type='np' , ).images __A : List[str] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png') __A : Union[str, Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat.npy') __A : Optional[Any] = 'stabilityai/stable-diffusion-x4-upscaler' __A : Any = StableDiffusionUpscalePipeline.from_pretrained(_UpperCAmelCase) pipe.to(_UpperCAmelCase) pipe.set_progress_bar_config(disable=_UpperCAmelCase) pipe.enable_attention_slicing() __A : List[Any] = 'a cat sitting on a park bench' __A : Optional[int] = torch.manual_seed(0) __A : Any = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , generator=_UpperCAmelCase , output_type='np' , ) __A : Tuple = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 1e-3 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png') __A : Union[str, Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat_fp16.npy') __A : Any = 'stabilityai/stable-diffusion-x4-upscaler' __A : Tuple = StableDiffusionUpscalePipeline.from_pretrained( _UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(_UpperCAmelCase) pipe.set_progress_bar_config(disable=_UpperCAmelCase) pipe.enable_attention_slicing() __A : List[str] = 'a cat sitting on a park bench' __A : Tuple = torch.manual_seed(0) __A : int = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , generator=_UpperCAmelCase , output_type='np' , ) __A : List[str] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 5e-1 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __A : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png') __A : Any = 'stabilityai/stable-diffusion-x4-upscaler' __A : Dict = StableDiffusionUpscalePipeline.from_pretrained( _UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(_UpperCAmelCase) pipe.set_progress_bar_config(disable=_UpperCAmelCase) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() __A : Optional[int] = 'a cat sitting on a park bench' __A : Dict = torch.manual_seed(0) __A : Tuple = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=5 , output_type='np' , ) __A : Any = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
8
'''simple docstring''' import mpmath # for roots of unity import numpy as np class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None): '''simple docstring''' __A : List[Any] = list(poly_a or [0])[:] __A : Optional[int] = list(poly_b or [0])[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __A : Union[str, Any] = len(self.polyA) while self.polyB[-1] == 0: self.polyB.pop() __A : Optional[int] = len(self.polyB) # Add 0 to make lengths equal a power of 2 __A : Optional[Any] = int( 2 ** np.ceil(np.loga(len(self.polyA) + len(self.polyB) - 1))) while len(self.polyA) < self.c_max_length: self.polyA.append(0) while len(self.polyB) < self.c_max_length: self.polyB.append(0) # A complex root used for the fourier transform __A : str = complex(mpmath.root(x=1 , n=self.c_max_length , k=1)) # The product __A : Tuple = self.__multiply() def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(_UpperCAmelCase) <= 1: return dft[0] # __A : Dict = self.c_max_length // 2 while next_ncol > 0: __A : Optional[Any] = [[] for i in range(_UpperCAmelCase)] __A : Tuple = self.root**next_ncol # First half of next step __A : Optional[Any] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j]) current_root *= root # Second half of next step __A : List[str] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j]) current_root *= root # Update __A : Optional[int] = new_dft __A : Tuple = next_ncol // 2 return dft[0] def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.__dft('A') __A : Optional[Any] = self.__dft('B') __A : str = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]] del dft_a del dft_b # Corner Case if len(inverce_c[0]) <= 1: return inverce_c[0] # Inverse DFT __A : Dict = 2 while next_ncol <= self.c_max_length: __A : Optional[int] = [[] for i in range(_UpperCAmelCase)] __A : Any = self.root ** (next_ncol // 2) __A : Tuple = 1 # First half of next step for j in range(self.c_max_length // next_ncol): for i in range(next_ncol // 2): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root)) current_root *= root # Update __A : int = new_inverse_c next_ncol *= 2 # Unpack __A : Optional[int] = [round(x[0].real , 8) + round(x[0].imag , 8) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self): '''simple docstring''' __A : int = 'A = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A])) __A : Optional[Any] = 'B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B])) __A : str = 'A*B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.product)) return F'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import random def _lowerCAmelCase ( __snake_case : int ) -> bool: __A : Tuple = num - 1 __A : Optional[Any] = 0 while s % 2 == 0: __A : Optional[int] = s // 2 t += 1 for _ in range(5 ): __A : List[str] = random.randrange(2 , num - 1 ) __A : str = pow(__snake_case , __snake_case , __snake_case ) if v != 1: __A : Optional[int] = 0 while v != (num - 1): if i == t - 1: return False else: __A : Optional[int] = i + 1 __A : Optional[int] = (v**2) % num return True def _lowerCAmelCase ( __snake_case : int ) -> bool: if num < 2: return False __A : Optional[int] = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(__snake_case ) def _lowerCAmelCase ( __snake_case : int = 10_24 ) -> int: while True: __A : Any = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(__snake_case ): return num if __name__ == "__main__": lowercase__ : List[str] = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
8
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=[30, 30] , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=None , _UpperCAmelCase=8 , _UpperCAmelCase=10 , ): '''simple docstring''' __A : Union[str, Any] = parent __A : Tuple = batch_size __A : List[str] = image_size __A : Dict = patch_size __A : Optional[Any] = num_channels __A : Tuple = is_training __A : Dict = use_labels __A : List[Any] = hidden_size __A : Tuple = num_hidden_layers __A : int = num_attention_heads __A : Optional[int] = intermediate_size __A : Tuple = hidden_act __A : Any = hidden_dropout_prob __A : Optional[Any] = attention_probs_dropout_prob __A : List[Any] = type_sequence_label_size __A : List[Any] = initializer_range __A : Optional[int] = num_labels __A : List[Any] = scope __A : Any = n_targets __A : Union[str, Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens __A : List[str] = (image_size[1] // patch_size) * (image_size[0] // patch_size) __A : int = num_patches + 1 + self.num_detection_tokens def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]]) __A : Tuple = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) __A : List[Any] = [] for i in range(self.batch_size): __A : Optional[int] = {} __A : Union[str, Any] = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=_UpperCAmelCase) __A : str = torch.rand(self.n_targets , 4 , device=_UpperCAmelCase) labels.append(_UpperCAmelCase) __A : Any = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosModel(config=_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosForObjectDetection(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : str = model(pixel_values=_UpperCAmelCase) __A : List[str] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) __A : Union[str, Any] = model(pixel_values=_UpperCAmelCase , labels=_UpperCAmelCase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.prepare_config_and_inputs() __A ,__A ,__A : Tuple = config_and_inputs __A : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowerCAmelCase = ( {'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' __A : Optional[Any] = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase) if return_labels: if model_class.__name__ == "YolosForObjectDetection": __A : Any = [] for i in range(self.model_tester.batch_size): __A : Tuple = {} __A : Tuple = torch.ones( size=(self.model_tester.n_targets,) , device=_UpperCAmelCase , dtype=torch.long) __A : Optional[Any] = torch.ones( self.model_tester.n_targets , 4 , device=_UpperCAmelCase , dtype=torch.float) labels.append(_UpperCAmelCase) __A : str = labels return inputs_dict def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = YolosModelTester(self) __A : Dict = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Tuple = model_class(_UpperCAmelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __A : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[Any] = model_class(_UpperCAmelCase) __A : str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : int = [*signature.parameters.keys()] __A : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Optional[int] = True # in YOLOS, the seq_len is different __A : Dict = self.model_tester.expected_seq_len for model_class in self.all_model_classes: __A : Dict = True __A : Dict = False __A : Union[str, Any] = True __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : Any = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] __A : List[Any] = True __A : List[str] = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __A : str = len(_UpperCAmelCase) # Check attention is always last and order is fine __A : Dict = True __A : Dict = True __A : Dict = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = 1 self.assertEqual(out_len + added_hidden_states , len(_UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.hidden_states __A : List[str] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) # YOLOS has a different seq_length __A : Dict = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[str] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A : Optional[int] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : List[Any] = YolosModel.from_pretrained(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase) def _lowerCAmelCase ( ) -> int: __A : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return AutoImageProcessor.from_pretrained('hustvl/yolos-small') if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = YolosForObjectDetection.from_pretrained('hustvl/yolos-small').to(_UpperCAmelCase) __A : Any = self.default_image_processor __A : str = prepare_img() __A : int = image_processor(images=_UpperCAmelCase , return_tensors='pt').to(_UpperCAmelCase) # forward pass with torch.no_grad(): __A : str = model(inputs.pixel_values) # verify outputs __A : Tuple = torch.Size((1, 100, 92)) self.assertEqual(outputs.logits.shape , _UpperCAmelCase) __A : Dict = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=_UpperCAmelCase , ) __A : int = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=_UpperCAmelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) # verify postprocessing __A : List[str] = image_processor.post_process_object_detection( _UpperCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]])[0] __A : Optional[int] = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861]).to(_UpperCAmelCase) __A : Union[str, Any] = [75, 75, 17, 63, 17] __A : Any = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495]).to(_UpperCAmelCase) self.assertEqual(len(results['scores']) , 5) self.assertTrue(torch.allclose(results['scores'] , _UpperCAmelCase , atol=1e-4)) self.assertSequenceEqual(results['labels'].tolist() , _UpperCAmelCase) self.assertTrue(torch.allclose(results['boxes'][0, :] , _UpperCAmelCase))
8
1
'''simple docstring''' import re def _lowerCAmelCase ( __snake_case : str ) -> bool: __A : Dict = re.compile(r'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' ) if match := re.search(__snake_case , __snake_case ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('''+918827897895'''))
8
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: lowercase__ : Optional[int] = None lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ : List[str] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } lowercase__ : Dict = { '''camembert-base''': 5_12, } lowercase__ : str = '''▁''' class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] lowerCAmelCase = CamembertTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **_UpperCAmelCase , ): '''simple docstring''' __A : int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __A : List[str] = vocab_file __A : Optional[int] = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A : Optional[Any] = [self.cls_token_id] __A : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' __A : Optional[int] = [self.sep_token_id] __A : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(_UpperCAmelCase): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return __A : List[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCAmelCase): copyfile(self.vocab_file , _UpperCAmelCase) return (out_vocab_file,)
8
1
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : Optional[Any] = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''informer''' lowerCAmelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = "student_t" , _UpperCAmelCase = "nll" , _UpperCAmelCase = 1 , _UpperCAmelCase = None , _UpperCAmelCase = "mean" , _UpperCAmelCase = 0 , _UpperCAmelCase = 0 , _UpperCAmelCase = 0 , _UpperCAmelCase = 0 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = 64 , _UpperCAmelCase = 32 , _UpperCAmelCase = 32 , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = True , _UpperCAmelCase = "gelu" , _UpperCAmelCase = 0.05 , _UpperCAmelCase = 0.1 , _UpperCAmelCase = 0.1 , _UpperCAmelCase = 0.1 , _UpperCAmelCase = 0.1 , _UpperCAmelCase = 100 , _UpperCAmelCase = 0.02 , _UpperCAmelCase=True , _UpperCAmelCase = "prob" , _UpperCAmelCase = 5 , _UpperCAmelCase = True , **_UpperCAmelCase , ): '''simple docstring''' __A : str = prediction_length __A : str = context_length or prediction_length __A : int = distribution_output __A : int = loss __A : Optional[Any] = input_size __A : Optional[int] = num_time_features __A : List[Any] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] __A : int = scaling __A : int = num_dynamic_real_features __A : Tuple = num_static_real_features __A : Optional[Any] = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_UpperCAmelCase) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`') __A : Tuple = cardinality else: __A : Tuple = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_UpperCAmelCase) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`') __A : Union[str, Any] = embedding_dimension else: __A : Optional[Any] = [min(50 , (cat + 1) // 2) for cat in self.cardinality] __A : List[Any] = num_parallel_samples # Transformer architecture configuration __A : int = input_size * len(self.lags_sequence) + self._number_of_features __A : Union[str, Any] = d_model __A : str = encoder_attention_heads __A : str = decoder_attention_heads __A : str = encoder_ffn_dim __A : List[Any] = decoder_ffn_dim __A : str = encoder_layers __A : Optional[Any] = decoder_layers __A : Dict = dropout __A : List[Any] = attention_dropout __A : int = activation_dropout __A : List[str] = encoder_layerdrop __A : Union[str, Any] = decoder_layerdrop __A : str = activation_function __A : str = init_std __A : str = use_cache # Informer __A : Union[str, Any] = attention_type __A : int = sampling_factor __A : Union[str, Any] = distil super().__init__(is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase) @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return ( sum(self.embedding_dimension) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
8
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowercase__ : Any = '''hf-internal-testing/tiny-random-bert''' lowercase__ : Optional[Any] = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') lowercase__ : List[Any] = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase)) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase))) with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Any = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) self.assertTrue(os.path.isfile(_UpperCAmelCase)) # File is cached at the same place the second time. __A : Tuple = cached_file(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) # Using a specific revision to test the full commit hash. __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='9b8c223') self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): __A : Dict = cached_file('tiny-random-bert' , _UpperCAmelCase) with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): __A : Optional[int] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='aaaa') with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : int = cached_file(_UpperCAmelCase , 'conf') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : Any = cached_file(_UpperCAmelCase , 'conf') with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Dict = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '.no_exist' , _UpperCAmelCase , 'conf'))) __A : List[Any] = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : str = cached_file(_UpperCAmelCase , 'conf' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : List[str] = mock.Mock() __A : Dict = 500 __A : List[str] = {} __A : List[Any] = HTTPError __A : Optional[Any] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=_UpperCAmelCase) as mock_head: __A : Dict = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_connection_errors=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt')) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): get_file_from_repo('bert-base-case' , _UpperCAmelCase) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): get_file_from_repo('bert-base-cased' , _UpperCAmelCase , revision='ahaha') __A : List[str] = get_file_from_repo('bert-base-cased' , _UpperCAmelCase) # The name is the cached name which is not very easy to test, so instead we load the content. __A : List[str] = json.loads(open(_UpperCAmelCase , 'r').read()) self.assertEqual(config['hidden_size'] , 768) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __A : Tuple = Path(_UpperCAmelCase) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , 'a.txt') , str(_UpperCAmelCase)) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , 'b.txt'))
8
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass lowercase__ : int = (3, 9, -11, 0, 7, 5, 1, -1) lowercase__ : List[str] = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = 42 lowerCAmelCase = 42 class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : Node | None = None for i in sorted(_UpperCAmelCase , reverse=_UpperCAmelCase): __A : Dict = Node(_UpperCAmelCase , self.head) def __iter__( self): '''simple docstring''' __A : Dict = self.head while node: yield node.data __A : Dict = node.next_node def __len__( self): '''simple docstring''' return sum(1 for _ in self) def __str__( self): '''simple docstring''' return " -> ".join([str(_UpperCAmelCase) for node in self]) def _lowerCAmelCase ( __snake_case : SortedLinkedList , __snake_case : SortedLinkedList ) -> SortedLinkedList: return SortedLinkedList(list(__snake_case ) + list(__snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() lowercase__ : List[Any] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
8
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _lowerCAmelCase ( __snake_case : str , __snake_case : str , **__snake_case : List[Any] ) -> Any: __A : Optional[Any] = AutoConfig.from_pretrained(__snake_case , **__snake_case ) __A : int = AutoModelForSeqaSeqLM.from_config(__snake_case ) model.save_pretrained(__snake_case ) AutoTokenizer.from_pretrained(__snake_case ).save_pretrained(__snake_case ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
8
1
'''simple docstring''' def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> int: if len(__snake_case ) != len(__snake_case ): raise ValueError('String lengths must match!' ) __A : Optional[Any] = 0 for chara, chara in zip(__snake_case , __snake_case ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
8
'''simple docstring''' from ...configuration_utils import PretrainedConfig lowercase__ : Any = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''tapas''' def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1024 , _UpperCAmelCase=[3, 256, 256, 2, 256, 256, 10] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase=10.0 , _UpperCAmelCase=0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase="ratio" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __A : Dict = vocab_size __A : Tuple = hidden_size __A : Any = num_hidden_layers __A : int = num_attention_heads __A : Tuple = hidden_act __A : Tuple = intermediate_size __A : List[Any] = hidden_dropout_prob __A : int = attention_probs_dropout_prob __A : List[str] = max_position_embeddings __A : Optional[int] = type_vocab_sizes __A : str = initializer_range __A : List[str] = layer_norm_eps # Fine-tuning task hyperparameters __A : List[str] = positive_label_weight __A : List[Any] = num_aggregation_labels __A : Optional[Any] = aggregation_loss_weight __A : Tuple = use_answer_as_supervision __A : List[str] = answer_loss_importance __A : Any = use_normalized_answer_loss __A : Any = huber_loss_delta __A : Union[str, Any] = temperature __A : Tuple = aggregation_temperature __A : Optional[Any] = use_gumbel_for_cells __A : List[str] = use_gumbel_for_aggregation __A : Tuple = average_approximation_function __A : List[str] = cell_selection_preference __A : Dict = answer_loss_cutoff __A : Union[str, Any] = max_num_rows __A : Optional[Any] = max_num_columns __A : int = average_logits_per_cell __A : Optional[Any] = select_one_column __A : int = allow_empty_column_selection __A : List[Any] = init_cell_selection_weights_to_zero __A : int = reset_position_index_per_cell __A : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters __A : Optional[Any] = aggregation_labels __A : List[str] = no_aggregation_label_index if isinstance(self.aggregation_labels , _UpperCAmelCase): __A : Optional[Any] = {int(_UpperCAmelCase): v for k, v in aggregation_labels.items()}
8
1
'''simple docstring''' lowercase__ : str = tuple[float, float, float] lowercase__ : Dict = tuple[float, float, float] def _lowerCAmelCase ( __snake_case : Pointad , __snake_case : Pointad ) -> Vectorad: __A : List[Any] = end_pointa[0] - end_pointa[0] __A : Union[str, Any] = end_pointa[1] - end_pointa[1] __A : Union[str, Any] = end_pointa[2] - end_pointa[2] return (x, y, z) def _lowerCAmelCase ( __snake_case : Vectorad , __snake_case : Vectorad ) -> Vectorad: __A : Tuple = ab[1] * ac[2] - ab[2] * ac[1] # *i __A : Union[str, Any] = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j __A : int = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _lowerCAmelCase ( __snake_case : Vectorad , __snake_case : int ) -> bool: return tuple(round(__snake_case , __snake_case ) for x in vector ) == (0, 0, 0) def _lowerCAmelCase ( __snake_case : Pointad , __snake_case : Pointad , __snake_case : Pointad , __snake_case : int = 10 ) -> bool: __A : int = create_vector(__snake_case , __snake_case ) __A : Union[str, Any] = create_vector(__snake_case , __snake_case ) return is_zero_vector(get_ad_vectors_cross(__snake_case , __snake_case ) , __snake_case )
8
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=sys.maxsize): '''simple docstring''' __A : Union[str, Any] = 'bilinear' __A : int = max_size __A : Optional[Any] = short_edge_length def __call__( self , _UpperCAmelCase): '''simple docstring''' __A : int = [] for img in imgs: __A ,__A : Dict = img.shape[:2] # later: provide list and randomly choose index for resize __A : List[Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1) if size == 0: return img __A : Tuple = size * 1.0 / min(_UpperCAmelCase , _UpperCAmelCase) if h < w: __A ,__A : Optional[Any] = size, scale * w else: __A ,__A : Optional[Any] = scale * h, size if max(_UpperCAmelCase , _UpperCAmelCase) > self.max_size: __A : Tuple = self.max_size * 1.0 / max(_UpperCAmelCase , _UpperCAmelCase) __A : Tuple = newh * scale __A : Dict = neww * scale __A : Dict = int(neww + 0.5) __A : Optional[int] = int(newh + 0.5) if img.dtype == np.uinta: __A : int = Image.fromarray(_UpperCAmelCase) __A : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR) __A : Dict = np.asarray(_UpperCAmelCase) else: __A : Optional[Any] = img.permute(2 , 0 , 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw __A : Dict = nn.functional.interpolate( _UpperCAmelCase , (newh, neww) , mode=self.interp_method , align_corners=_UpperCAmelCase).squeeze(0) img_augs.append(_UpperCAmelCase) return img_augs class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST) __A : List[Any] = cfg.INPUT.FORMAT __A : Dict = cfg.SIZE_DIVISIBILITY __A : str = cfg.PAD_VALUE __A : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST __A : int = cfg.MODEL.DEVICE __A : Tuple = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : int = lambda _UpperCAmelCase: (x - self.pixel_mean) / self.pixel_std def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = tuple(max(_UpperCAmelCase) for s in zip(*[img.shape for img in images])) __A : Dict = [im.shape[-2:] for im in images] __A : Optional[int] = [ nn.functional.pad( _UpperCAmelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_UpperCAmelCase , _UpperCAmelCase) ] return torch.stack(_UpperCAmelCase), torch.tensor(_UpperCAmelCase) def __call__( self , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' with torch.no_grad(): if not isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : int = [images] if single_image: assert len(_UpperCAmelCase) == 1 for i in range(len(_UpperCAmelCase)): if isinstance(images[i] , torch.Tensor): images.insert(_UpperCAmelCase , images.pop(_UpperCAmelCase).to(self.device).float()) elif not isinstance(images[i] , torch.Tensor): images.insert( _UpperCAmelCase , torch.as_tensor(img_tensorize(images.pop(_UpperCAmelCase) , input_format=self.input_format)) .to(self.device) .float() , ) # resize smallest edge __A : str = torch.tensor([im.shape[:2] for im in images]) __A : List[str] = self.aug(_UpperCAmelCase) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __A : Any = [self.normalizer(_UpperCAmelCase) for x in images] # now pad them to do the following operations __A ,__A : Any = self.pad(_UpperCAmelCase) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __A : str = torch.true_divide(_UpperCAmelCase , _UpperCAmelCase) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _lowerCAmelCase ( __snake_case : Dict , __snake_case : str ) -> Dict: boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : Tuple[int, int] ) -> int: assert torch.isfinite(__snake_case ).all(), "Box tensor contains infinite or NaN!" __A ,__A : int = box_size tensor[:, 0].clamp_(min=0 , max=__snake_case ) tensor[:, 1].clamp_(min=0 , max=__snake_case ) tensor[:, 2].clamp_(min=0 , max=__snake_case ) tensor[:, 3].clamp_(min=0 , max=__snake_case )
8
1
'''simple docstring''' class SCREAMING_SNAKE_CASE : def __init__( self): '''simple docstring''' __A : Union[str, Any] = {} def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' print(self.vertex) for i in self.vertex: print(_UpperCAmelCase , ' -> ' , ' -> '.join([str(_UpperCAmelCase) for j in self.vertex[i]])) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(_UpperCAmelCase) else: # else make a new vertex __A : Tuple = [to_vertex] def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = [False] * len(self.vertex) # call the recursive helper function for i in range(len(self.vertex)): if not visited[i]: self.dfs_recursive(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Dict = True print(_UpperCAmelCase , end=' ') # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_UpperCAmelCase , _UpperCAmelCase) if __name__ == "__main__": lowercase__ : Any = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('''DFS:''') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Optional[Any]: # noqa: E741 __A : Tuple = len(__snake_case ) __A : Optional[int] = 0 __A : str = [0] * n __A : int = [False] * n __A : Tuple = [False] * n def dfs(__snake_case : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : int ): if parent == root: out_edge_count += 1 __A : str = True __A : Tuple = at for to in l[at]: if to == parent: pass elif not visited[to]: __A : Optional[int] = dfs(__snake_case , __snake_case , __snake_case , __snake_case ) __A : int = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __A : Tuple = True # AP found via cycle if at == low[to]: __A : Optional[Any] = True else: __A : Any = min(low[at] , __snake_case ) return out_edge_count for i in range(__snake_case ): if not visited[i]: __A : Tuple = 0 __A : List[Any] = dfs(__snake_case , __snake_case , -1 , __snake_case ) __A : Union[str, Any] = out_edge_count > 1 for x in range(len(__snake_case ) ): if is_art[x] is True: print(__snake_case ) # Adjacency list of graph lowercase__ : Tuple = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
8
1
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = 'ylacombe/bark-small' __A : List[str] = tempfile.mkdtemp() __A : int = 'en_speaker_1' __A : List[Any] = 'This is a test string' __A : Any = 'speaker_embeddings_path.json' __A : int = 'speaker_embeddings' def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.get_tokenizer() __A : Optional[int] = BarkProcessor(tokenizer=_UpperCAmelCase) processor.save_pretrained(self.tmpdirname) __A : Optional[Any] = BarkProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __A : Dict = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') __A : List[str] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __A : str = 35 __A : Tuple = 2 __A : str = 8 __A : Union[str, Any] = { 'semantic_prompt': np.ones(_UpperCAmelCase), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len)), 'fine_prompt': np.ones((nb_codebooks_total, seq_len)), } # test providing already loaded voice_preset __A : int = processor(text=self.input_string , voice_preset=_UpperCAmelCase) __A : int = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([])).tolist()) # test loading voice preset from npz file __A : int = os.path.join(self.tmpdirname , 'file.npz') np.savez(_UpperCAmelCase , **_UpperCAmelCase) __A : Optional[int] = processor(text=self.input_string , voice_preset=_UpperCAmelCase) __A : Any = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([])).tolist()) # test loading voice preset from the hub __A : List[Any] = processor(text=self.input_string , voice_preset=self.voice_preset) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = self.get_tokenizer() __A : Optional[int] = BarkProcessor(tokenizer=_UpperCAmelCase) __A : Dict = processor(text=self.input_string) __A : str = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist())
8
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : int = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } lowercase__ : Dict = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _lowerCAmelCase ( __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Any , __snake_case : List[str] ) -> Union[str, Any]: for attribute in key.split('.' ): __A : int = getattr(__snake_case , __snake_case ) if weight_type is not None: __A : Optional[int] = getattr(__snake_case , __snake_case ).shape else: __A : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __A : Tuple = value elif weight_type == "weight_g": __A : Union[str, Any] = value elif weight_type == "weight_v": __A : Optional[Any] = value elif weight_type == "bias": __A : Optional[int] = value else: __A : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( __snake_case : Any , __snake_case : List[str] ) -> List[Any]: __A : Optional[Any] = [] __A : Any = fairseq_model.state_dict() __A : Union[str, Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): __A : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == 'group' , ) __A : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __A : int = True if "*" in mapped_key: __A : Any = name.split(__snake_case )[0].split('.' )[-2] __A : List[Any] = mapped_key.replace('*' , __snake_case ) if "weight_g" in name: __A : Optional[Any] = 'weight_g' elif "weight_v" in name: __A : Union[str, Any] = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: __A : Optional[Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __A : Tuple = 'weight' else: __A : Dict = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[int] ) -> int: __A : int = full_name.split('conv_layers.' )[-1] __A : List[str] = name.split('.' ) __A : Optional[int] = int(items[0] ) __A : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __A : Optional[int] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __A : Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) __A : Dict = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __A : Any = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) @torch.no_grad() def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple=None ) -> Any: # load the pre-trained checkpoints __A : List[str] = torch.load(__snake_case ) __A : Dict = WavLMConfigOrig(checkpoint['cfg'] ) __A : Optional[int] = WavLMOrig(__snake_case ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: __A : List[Any] = WavLMConfig.from_pretrained(__snake_case ) else: __A : Dict = WavLMConfig() __A : Optional[Any] = WavLMModel(__snake_case ) recursively_load_weights(__snake_case , __snake_case ) hf_wavlm.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowercase__ : Any = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
8
1
'''simple docstring''' def _lowerCAmelCase ( __snake_case : list[list[int]] , __snake_case : int , __snake_case : int , __snake_case : set ) -> int: __A ,__A : str = len(__snake_case ), len(grid[0] ) if ( min(__snake_case , __snake_case ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) __A : int = 0 count += depth_first_search(__snake_case , row + 1 , __snake_case , __snake_case ) count += depth_first_search(__snake_case , row - 1 , __snake_case , __snake_case ) count += depth_first_search(__snake_case , __snake_case , col + 1 , __snake_case ) count += depth_first_search(__snake_case , __snake_case , col - 1 , __snake_case ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
8
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = 42 class SCREAMING_SNAKE_CASE (a__ , a__ ): @register_to_config def __init__( self , _UpperCAmelCase = 6_5536 , _UpperCAmelCase = None , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = 0 , _UpperCAmelCase = "fourier" , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = 0.0 , _UpperCAmelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _UpperCAmelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _UpperCAmelCase = "UNetMidBlock1D" , _UpperCAmelCase = None , _UpperCAmelCase = (32, 32, 64) , _UpperCAmelCase = None , _UpperCAmelCase = 8 , _UpperCAmelCase = 1 , _UpperCAmelCase = False , ): '''simple docstring''' super().__init__() __A : Dict = sample_size # time if time_embedding_type == "fourier": __A : int = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_UpperCAmelCase , log=_UpperCAmelCase , flip_sin_to_cos=_UpperCAmelCase) __A : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": __A : List[str] = Timesteps( block_out_channels[0] , flip_sin_to_cos=_UpperCAmelCase , downscale_freq_shift=_UpperCAmelCase) __A : List[str] = block_out_channels[0] if use_timestep_embedding: __A : Optional[Any] = block_out_channels[0] * 4 __A : Optional[int] = TimestepEmbedding( in_channels=_UpperCAmelCase , time_embed_dim=_UpperCAmelCase , act_fn=_UpperCAmelCase , out_dim=block_out_channels[0] , ) __A : Dict = nn.ModuleList([]) __A : Dict = None __A : Tuple = nn.ModuleList([]) __A : Tuple = None # down __A : Any = in_channels for i, down_block_type in enumerate(_UpperCAmelCase): __A : Tuple = output_channel __A : Optional[Any] = block_out_channels[i] if i == 0: input_channel += extra_in_channels __A : List[str] = i == len(_UpperCAmelCase) - 1 __A : int = get_down_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_UpperCAmelCase) # mid __A : str = get_mid_block( _UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_UpperCAmelCase , add_downsample=_UpperCAmelCase , ) # up __A : Optional[int] = list(reversed(_UpperCAmelCase)) __A : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: __A : str = out_channels else: __A : List[Any] = block_out_channels[0] for i, up_block_type in enumerate(_UpperCAmelCase): __A : Optional[Any] = output_channel __A : Optional[Any] = ( reversed_block_out_channels[i + 1] if i < len(_UpperCAmelCase) - 1 else final_upsample_channels ) __A : Dict = i == len(_UpperCAmelCase) - 1 __A : str = get_up_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_UpperCAmelCase) __A : Optional[int] = output_channel # out __A : str = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32) __A : Optional[Any] = get_out_block( out_block_type=_UpperCAmelCase , num_groups_out=_UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=_UpperCAmelCase , act_fn=_UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , ): '''simple docstring''' __A : Any = timestep if not torch.is_tensor(_UpperCAmelCase): __A : Any = torch.tensor([timesteps] , dtype=torch.long , device=sample.device) elif torch.is_tensor(_UpperCAmelCase) and len(timesteps.shape) == 0: __A : Any = timesteps[None].to(sample.device) __A : List[Any] = self.time_proj(_UpperCAmelCase) if self.config.use_timestep_embedding: __A : Dict = self.time_mlp(_UpperCAmelCase) else: __A : Dict = timestep_embed[..., None] __A : Tuple = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) __A : List[Any] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) # 2. down __A : int = () for downsample_block in self.down_blocks: __A ,__A : int = downsample_block(hidden_states=_UpperCAmelCase , temb=_UpperCAmelCase) down_block_res_samples += res_samples # 3. mid if self.mid_block: __A : Optional[int] = self.mid_block(_UpperCAmelCase , _UpperCAmelCase) # 4. up for i, upsample_block in enumerate(self.up_blocks): __A : Any = down_block_res_samples[-1:] __A : Optional[int] = down_block_res_samples[:-1] __A : Any = upsample_block(_UpperCAmelCase , res_hidden_states_tuple=_UpperCAmelCase , temb=_UpperCAmelCase) # 5. post-process if self.out_block: __A : Dict = self.out_block(_UpperCAmelCase , _UpperCAmelCase) if not return_dict: return (sample,) return UNetaDOutput(sample=_UpperCAmelCase)
8
1
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowercase__ : Dict = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE (a__ ): def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : List[Any] = [label.strip() for label in labels.split(',') if label.strip()] return labels def __call__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if len(_UpperCAmelCase) == 0 or len(_UpperCAmelCase) == 0: raise ValueError('You must include at least one label and at least one sequence.') if hypothesis_template.format(labels[0]) == hypothesis_template: raise ValueError( ( 'The provided hypothesis_template "{}" was not able to be formatted with the target labels. ' 'Make sure the passed template includes formatting syntax such as {{}} where the label should go.' ).format(_UpperCAmelCase)) if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : Dict = [sequences] __A : Optional[int] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(_UpperCAmelCase)] for label in labels]) return sequence_pairs, sequences @add_end_docstrings(a__ ) class SCREAMING_SNAKE_CASE (a__ ): def __init__( self , _UpperCAmelCase=ZeroShotClassificationArgumentHandler() , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = args_parser super().__init__(*_UpperCAmelCase , **_UpperCAmelCase) if self.entailment_id == -1: logger.warning( 'Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to ' '-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.') @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith('entail'): return ind return -1 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=TruncationStrategy.ONLY_FIRST , **_UpperCAmelCase): '''simple docstring''' __A : List[str] = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( 'Tokenizer was not supporting padding necessary for zero-shot, attempting to use ' ' `pad_token=eos_token`') __A : Any = self.tokenizer.eos_token try: __A : Dict = self.tokenizer( _UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , ) except Exception as e: if "too short" in str(_UpperCAmelCase): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. __A : Optional[Any] = self.tokenizer( _UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' if kwargs.get('multi_class' , _UpperCAmelCase) is not None: __A : Union[str, Any] = kwargs['multi_class'] logger.warning( 'The `multi_class` argument has been deprecated and renamed to `multi_label`. ' '`multi_class` will be removed in a future version of Transformers.') __A : List[Any] = {} if "candidate_labels" in kwargs: __A : Dict = self._args_parser._parse_labels(kwargs['candidate_labels']) if "hypothesis_template" in kwargs: __A : Optional[Any] = kwargs['hypothesis_template'] __A : Tuple = {} if "multi_label" in kwargs: __A : Dict = kwargs['multi_label'] return preprocess_params, {}, postprocess_params def __call__( self , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase , ): '''simple docstring''' if len(_UpperCAmelCase) == 0: pass elif len(_UpperCAmelCase) == 1 and "candidate_labels" not in kwargs: __A : Dict = args[0] else: raise ValueError(F'Unable to understand extra arguments {args}') return super().__call__(_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase="This example is {}."): '''simple docstring''' __A ,__A : int = self._args_parser(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) for i, (candidate_label, sequence_pair) in enumerate(zip(_UpperCAmelCase , _UpperCAmelCase)): __A : Optional[int] = self._parse_and_tokenize([sequence_pair]) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(_UpperCAmelCase) - 1, **model_input, } def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : List[str] = inputs['candidate_label'] __A : Any = inputs['sequence'] __A : List[str] = {k: inputs[k] for k in self.tokenizer.model_input_names} __A : Optional[int] = self.model(**_UpperCAmelCase) __A : Optional[Any] = { 'candidate_label': candidate_label, 'sequence': sequence, 'is_last': inputs['is_last'], **outputs, } return model_outputs def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' __A : Optional[int] = [outputs['candidate_label'] for outputs in model_outputs] __A : List[Any] = [outputs['sequence'] for outputs in model_outputs] __A : int = np.concatenate([output['logits'].numpy() for output in model_outputs]) __A : Optional[Any] = logits.shape[0] __A : Optional[int] = len(_UpperCAmelCase) __A : Tuple = N // n __A : List[Any] = logits.reshape((num_sequences, n, -1)) if multi_label or len(_UpperCAmelCase) == 1: # softmax over the entailment vs. contradiction dim for each label independently __A : Any = self.entailment_id __A : List[Any] = -1 if entailment_id == 0 else 0 __A : Tuple = reshaped_outputs[..., [contradiction_id, entailment_id]] __A : str = np.exp(_UpperCAmelCase) / np.exp(_UpperCAmelCase).sum(-1 , keepdims=_UpperCAmelCase) __A : Any = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels __A : List[str] = reshaped_outputs[..., self.entailment_id] __A : str = np.exp(_UpperCAmelCase) / np.exp(_UpperCAmelCase).sum(-1 , keepdims=_UpperCAmelCase) __A : Dict = list(reversed(scores[0].argsort())) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> int: if len(__snake_case ) != len(__snake_case ): raise ValueError('String lengths must match!' ) __A : Optional[Any] = 0 for chara, chara in zip(__snake_case , __snake_case ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' from math import pi def _lowerCAmelCase ( __snake_case : int , __snake_case : int ) -> float: return 2 * pi * radius * (angle / 3_60) if __name__ == "__main__": print(arc_length(90, 10))
8
'''simple docstring''' import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> Union[str, Any]: __A : int = RobertaPreLayerNormConfig.from_pretrained( __snake_case , architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict __A : Tuple = torch.load(hf_hub_download(repo_id=__snake_case , filename='pytorch_model.bin' ) ) __A : str = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): __A : Dict = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue __A : str = tensor_value __A : Union[str, Any] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__snake_case , config=__snake_case , state_dict=__snake_case ) model.save_pretrained(__snake_case ) # convert tokenizer __A : List[Any] = AutoTokenizer.from_pretrained(__snake_case ) tokenizer.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
8
1
'''simple docstring''' import heapq def _lowerCAmelCase ( __snake_case : dict ) -> set[int]: __A : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(__snake_case , [-1 * len(__snake_case ), (key, value)] ) # chosen_vertices = set of chosen vertices __A : Union[str, Any] = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __A : Any = heapq.heappop(__snake_case )[1][0] chosen_vertices.add(__snake_case ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __A : Dict = elem[1][1].index(__snake_case ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(__snake_case ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() lowercase__ : str = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
8
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings lowercase__ : Dict = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = field(default=a__ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = super().to_dict() for k, v in d.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : List[Any] = v.to_dict() return d
8
1
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC lowercase__ : Any = parse(importlib.metadata.version('''torch''')) def _lowerCAmelCase ( __snake_case : Union[str, Version] , __snake_case : str , __snake_case : str ) -> Optional[Any]: if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) __A : List[str] = STR_OPERATION_TO_FUNC[operation] if isinstance(__snake_case , __snake_case ): __A : Optional[int] = parse(importlib.metadata.version(__snake_case ) ) return operation(__snake_case , parse(__snake_case ) ) def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> Dict: return compare_versions(__snake_case , __snake_case , __snake_case )
8
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : Optional[int] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''lxmert''' lowerCAmelCase = {} def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=9500 , _UpperCAmelCase=1600 , _UpperCAmelCase=400 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=9 , _UpperCAmelCase=5 , _UpperCAmelCase=5 , _UpperCAmelCase=2048 , _UpperCAmelCase=4 , _UpperCAmelCase=6.67 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , **_UpperCAmelCase , ): '''simple docstring''' __A : Tuple = vocab_size __A : int = hidden_size __A : str = num_attention_heads __A : Tuple = hidden_act __A : int = intermediate_size __A : str = hidden_dropout_prob __A : Optional[int] = attention_probs_dropout_prob __A : Optional[Any] = max_position_embeddings __A : Tuple = type_vocab_size __A : Optional[int] = initializer_range __A : Any = layer_norm_eps __A : Optional[Any] = num_qa_labels __A : Optional[int] = num_object_labels __A : Any = num_attr_labels __A : Union[str, Any] = l_layers __A : Optional[int] = x_layers __A : List[Any] = r_layers __A : Tuple = visual_feat_dim __A : Tuple = visual_pos_dim __A : Optional[int] = visual_loss_normalizer __A : int = task_matched __A : List[Any] = task_mask_lm __A : Optional[Any] = task_obj_predict __A : str = task_qa __A : List[Any] = visual_obj_loss __A : Optional[Any] = visual_attr_loss __A : Union[str, Any] = visual_feat_loss __A : Union[str, Any] = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**_UpperCAmelCase)
8
1
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer lowercase__ : Optional[Any] = logging.get_logger(__name__) lowercase__ : List[str] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ : List[Any] = { '''vocab_file''': { '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json''', }, '''merges_file''': { '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''Salesforce/codegen-350M-mono''': ( '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json''' ), }, } lowercase__ : Optional[int] = { '''Salesforce/codegen-350M-mono''': 20_48, } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] lowerCAmelCase = CodeGenTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<|endoftext|>" , _UpperCAmelCase="<|endoftext|>" , _UpperCAmelCase="<|endoftext|>" , _UpperCAmelCase=False , **_UpperCAmelCase , ): '''simple docstring''' super().__init__( _UpperCAmelCase , _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , unk_token=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , **_UpperCAmelCase , ) if kwargs.pop('add_bos_token' , _UpperCAmelCase): __A : List[Any] = kwargs.pop('name_or_path' , '') raise ValueError( 'Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.' 'Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n' F'`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n' F'`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n' 'This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.' ' so that the fast tokenizer works correctly.') __A : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , _UpperCAmelCase) != add_prefix_space: __A : Dict = getattr(_UpperCAmelCase , pre_tok_state.pop('type')) __A : Optional[int] = add_prefix_space __A : Union[str, Any] = pre_tok_class(**_UpperCAmelCase) __A : Tuple = add_prefix_space def SCREAMING_SNAKE_CASE ( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' __A : Dict = kwargs.get('is_split_into_words' , _UpperCAmelCase) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' __A : str = kwargs.get('is_split_into_words' , _UpperCAmelCase) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' __A : List[str] = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase) return tuple(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' __A : List[str] = super().decode( token_ids=_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase , **_UpperCAmelCase , ) if truncate_before_pattern is not None and len(_UpperCAmelCase) > 0: __A : Union[str, Any] = self.truncate(_UpperCAmelCase , _UpperCAmelCase) return decoded_text def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' def find_re(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): __A : Union[str, Any] = pattern.search(_UpperCAmelCase , _UpperCAmelCase) return m.start() if m else -1 __A : int = [re.compile(_UpperCAmelCase , re.MULTILINE) for pattern in truncate_before_pattern] __A : Union[str, Any] = list(re.finditer('^print' , _UpperCAmelCase , re.MULTILINE)) if len(_UpperCAmelCase) > 1: __A : Dict = completion[: prints[1].start()] __A : List[Any] = list(re.finditer('^def' , _UpperCAmelCase , re.MULTILINE)) if len(_UpperCAmelCase) > 1: __A : Any = completion[: defs[1].start()] __A : Union[str, Any] = 0 __A : int = [ pos for pos in [find_re(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) for terminal in terminals] if pos != -1 ] if len(_UpperCAmelCase) > 0: return completion[: min(_UpperCAmelCase)] else: return completion
8
'''simple docstring''' import math import sys def _lowerCAmelCase ( __snake_case : int ) -> int: if number != int(__snake_case ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 __A : str = [-1] * (number + 1) __A : Dict = 0 for i in range(1 , number + 1 ): __A : int = sys.maxsize __A : int = int(math.sqrt(__snake_case ) ) for j in range(1 , root + 1 ): __A : str = 1 + answers[i - (j**2)] __A : Dict = min(__snake_case , __snake_case ) __A : Union[str, Any] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
8
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
0
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( __snake_case : list[int] , __snake_case : list[int] , __snake_case : int ) -> tuple[float, list[float]]: __A : int = list(range(len(__snake_case ) ) ) __A : Optional[Any] = [v / w for v, w in zip(__snake_case , __snake_case )] index.sort(key=lambda __snake_case : ratio[i] , reverse=__snake_case ) __A : float = 0 __A : list[float] = [0] * len(__snake_case ) for i in index: if weight[i] <= capacity: __A : Optional[int] = 1 max_value += value[i] capacity -= weight[i] else: __A : List[Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
8
0
def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" return abs(_lowercase ) if a == 0 else greatest_common_divisor(b % a , _lowercase ) def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" while y: # --> when y=0 then loop will terminate and return x as final GCD. __UpperCamelCase, __UpperCamelCase = y, x % y return abs(_lowercase ) def _A ( ) -> Optional[int]: """simple docstring""" try: __UpperCamelCase = input('Enter two integers separated by comma (,): ' ).split(',' ) __UpperCamelCase = int(nums[0] ) __UpperCamelCase = int(nums[1] ) print( f'''greatest_common_divisor({num_a}, {num_a}) = ''' f'''{greatest_common_divisor(_lowercase , _lowercase )}''' ) print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(_lowercase , _lowercase )}''' ) except (IndexError, UnboundLocalError, ValueError): print('Wrong input' ) if __name__ == "__main__": main()
1
'''simple docstring''' from __future__ import annotations import math class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : int = size # approximate the overall size of segment tree with given value __A : Optional[Any] = [0 for i in range(0 , 4 * size)] # create array to store lazy update __A : Optional[Any] = [0 for i in range(0 , 4 * size)] __A : str = [0 for i in range(0 , 4 * size)] # flag for lazy update def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return idx * 2 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return idx * 2 + 1 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if left_element == right_element: __A : List[Any] = a[left_element - 1] else: __A : List[str] = (left_element + right_element) // 2 self.build(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.build(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase) __A : Any = max( self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)]) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.flag[idx] is True: __A : Optional[Any] = self.lazy[idx] __A : Optional[Any] = False if left_element != right_element: __A : List[Any] = self.lazy[idx] __A : Dict = self.lazy[idx] __A : Tuple = True __A : Union[str, Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: __A : Optional[int] = val if left_element != right_element: __A : Tuple = val __A : Any = val __A : Tuple = True __A : Union[str, Any] = True return True __A : str = (left_element + right_element) // 2 self.update(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.update(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : int = max( self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)]) return True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.flag[idx] is True: __A : Union[str, Any] = self.lazy[idx] __A : List[str] = False if left_element != right_element: __A : Union[str, Any] = self.lazy[idx] __A : Optional[int] = self.lazy[idx] __A : str = True __A : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] __A : Any = (left_element + right_element) // 2 __A : int = self.query(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : Union[str, Any] = self.query(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) return max(_UpperCAmelCase , _UpperCAmelCase) def __str__( self): '''simple docstring''' return str([self.query(1 , 1 , self.size , _UpperCAmelCase , _UpperCAmelCase) for i in range(1 , self.size + 1)]) if __name__ == "__main__": lowercase__ : Union[str, Any] = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] lowercase__ : str = 15 lowercase__ : List[Any] = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 1_11) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 2_35) print(segt)
8
0
def SCREAMING_SNAKE_CASE_ ( _snake_case :list[int] , _snake_case :list[int] , _snake_case :int ) -> bool: return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(_snake_case ) ) def SCREAMING_SNAKE_CASE_ ( _snake_case :list[list[int]] , _snake_case :int , _snake_case :list[int] , _snake_case :int ) -> bool: # Base Case if index == len(_snake_case ): return True # Recursive Step for i in range(_snake_case ): if valid_coloring(graph[index] , _snake_case , _snake_case ): # Color current vertex _A = i # Validate coloring if util_color(_snake_case , _snake_case , _snake_case , index + 1 ): return True # Backtrack _A = -1 return False def SCREAMING_SNAKE_CASE_ ( _snake_case :list[list[int]] , _snake_case :int ) -> list[int]: _A = [-1] * len(_snake_case ) if util_color(_snake_case , _snake_case , _snake_case , 0 ): return colored_vertices return []
2
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int , __snake_case : int , __snake_case : int ) -> float: __A : Dict = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def _lowerCAmelCase ( ) -> Union[str, Any]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def A_( A : str): # picklable for multiprocessing return x.sum() def A_( A : Union[str, Any]): # picklable for multiprocessing return i + 1 @dataclass class SCREAMING_SNAKE_CASE__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 class SCREAMING_SNAKE_CASE__ ( snake_case_): def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = {} UpperCamelCase = [] UpperCamelCase = 1 UpperCamelCase = [1, 2] UpperCamelCase = {'a': 1, 'b': 2} UpperCamelCase = {'a': [1, 2], 'b': [3, 4]} UpperCamelCase = {'a': {'1': 1}, 'b': 2} UpperCamelCase = {'a': 1, 'b': 2, 'c': 3, 'd': 4} UpperCamelCase = {} UpperCamelCase = [] UpperCamelCase = 2 UpperCamelCase = [2, 3] UpperCamelCase = {'a': 2, 'b': 3} UpperCamelCase = {'a': [2, 3], 'b': [4, 5]} UpperCamelCase = {'a': {'1': 2}, 'b': 3} UpperCamelCase = {'a': 2, 'b': 3, 'c': 4, 'd': 5} self.assertEqual(map_nested(A_ , A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ ) , A_ ) UpperCamelCase = 2 self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ ) self.assertEqual(map_nested(A_ , A_ , num_proc=A_ ) , A_ ) UpperCamelCase = {'a': np.eye(2 ), 'b': np.zeros(3 ), 'c': np.ones(2 )} UpperCamelCase = {'a': 2, 'b': 0, 'c': 2} UpperCamelCase = { 'a': np.eye(2 ).astype(A_ ), 'b': np.zeros(3 ).astype(A_ ), 'c': np.ones(2 ).astype(A_ ), } self.assertEqual(map_nested(A_ , A_ , map_numpy=A_ ) , A_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(A_ , A_ , map_numpy=A_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(A_ , A_ , map_numpy=A_ , num_proc=A_ ) , A_ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(A_ , A_ , map_numpy=A_ , num_proc=A_ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(A_ ): # can't pickle a local lambda map_nested(lambda A_ : x + 1 , A_ , num_proc=A_ ) def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase = {'a': 1, 'b': 2} UpperCamelCase = {'a': 3, 'b': 4} UpperCamelCase = {'a': 5, 'b': 6} UpperCamelCase = sorted([('a', (1, 3, 5)), ('b', (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(A_ , A_ , A_ ) ) , A_ ) def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' class SCREAMING_SNAKE_CASE__ : lowerCAmelCase_ = """bar""" UpperCamelCase = Foo() self.assertEqual(foo.my_attr , 'bar' ) with temporary_assignment(A_ , 'my_attr' , 'BAR' ): self.assertEqual(foo.my_attr , 'BAR' ) self.assertEqual(foo.my_attr , 'bar' ) @pytest.mark.parametrize( 'iterable_length, num_proc, expected_num_proc' , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def A_( A : Optional[Any] , A : str , A : Optional[Any]): with patch('datasets.utils.py_utils._single_map_nested') as mock_single_map_nested, patch( 'datasets.parallel.parallel.Pool') as mock_multiprocessing_pool: UpperCamelCase = {f'''{i}''': i for i in range(A)} UpperCamelCase = map_nested(lambda A: x + 10 , A , num_proc=A , parallel_min_length=16) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class SCREAMING_SNAKE_CASE__ ( snake_case_): @require_tf def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' import tensorflow as tf from tensorflow.keras import layers UpperCamelCase = layers.Dense(2 ) def gen_random_output(): UpperCamelCase = tf.random.uniform((1, 3) ) return model(A_ ).numpy() with temp_seed(42 , set_tensorflow=A_ ): UpperCamelCase = gen_random_output() with temp_seed(42 , set_tensorflow=A_ ): UpperCamelCase = gen_random_output() UpperCamelCase = gen_random_output() np.testing.assert_equal(A_ , A_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def UpperCAmelCase_ ( self )-> int: '''simple docstring''' import torch def gen_random_output(): UpperCamelCase = torch.nn.Linear(3 , 2 ) UpperCamelCase = torch.rand(1 , 3 ) return model(A_ ).detach().numpy() with temp_seed(42 , set_pytorch=A_ ): UpperCamelCase = gen_random_output() with temp_seed(42 , set_pytorch=A_ ): UpperCamelCase = gen_random_output() UpperCamelCase = gen_random_output() np.testing.assert_equal(A_ , A_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): UpperCamelCase = gen_random_output() with temp_seed(42 ): UpperCamelCase = gen_random_output() UpperCamelCase = gen_random_output() np.testing.assert_equal(A_ , A_ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize('input_data' , [{}]) def A_( A : Any): UpperCamelCase = NestedDataStructure(A).data assert output_data == input_data @pytest.mark.parametrize( 'data, expected_output' , [ ({}, []), ([], []), ('foo', ['foo']), (['foo', 'bar'], ['foo', 'bar']), ([['foo', 'bar']], ['foo', 'bar']), ([[['foo'], ['bar']]], ['foo', 'bar']), ([[['foo'], 'bar']], ['foo', 'bar']), ({'a': 1, 'b': 2}, [1, 2]), ({'a': [1, 2], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[1, 2]], 'b': [[3, 4]]}, [1, 2, 3, 4]), ({'a': [[1, 2]], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [[[3], [4]]]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [[3, 4]]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [3, [4]]}, [1, 2, 3, 4]), ({'a': {'1': 1}, 'b': 2}, [1, 2]), ({'a': {'1': [1]}, 'b': 2}, [1, 2]), ({'a': {'1': [1]}, 'b': [2]}, [1, 2]), ] , ) def A_( A : Optional[Any] , A : Optional[int]): UpperCamelCase = NestedDataStructure(A).flatten() assert output == expected_output def A_( ): UpperCamelCase = A(x=1 , y='foobar') UpperCamelCase = {'x': 1, 'y': 'foobar'} assert asdict(A) == expected_output UpperCamelCase = {'a': {'b': A(x=10 , y='foo')}, 'c': [A(x=20 , y='bar')]} UpperCamelCase = {'a': {'b': {'x': 10, 'y': 'foo'}}, 'c': [{'x': 20, 'y': 'bar'}]} assert asdict(A) == expected_output with pytest.raises(A): asdict([1, A(x=10 , y='foo')]) def A_( A : str): return text.split() def A_( A : Optional[int]): yield (time.time(), content) time.sleep(2) yield (time.time(), content) def A_( ): with Pool(2) as pool: UpperCamelCase = list(iflatmap_unordered(A , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 10)) assert out.count('hello') == 10 assert out.count('there') == 10 assert len(A) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2) as pool: UpperCamelCase = list(iflatmap_unordered(A , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 10)) assert out.count('hello') == 10 assert out.count('there') == 10 assert len(A) == 20 # check that we get items as fast as possible with Pool(2) as pool: UpperCamelCase = [] for yield_time, content in iflatmap_unordered( A , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{'content': 'a'}, {'content': 'b'}]): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(A) assert out.count('a') == 2 assert out.count('b') == 2 assert len(A) == 4
3
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): '''simple docstring''' __A : Optional[int] = parent __A : str = 13 __A : List[Any] = 7 __A : List[str] = True __A : str = True __A : Optional[Any] = True __A : int = True __A : Dict = 99 __A : Dict = 384 __A : Any = 2 __A : int = 4 __A : Optional[Any] = 37 __A : Optional[int] = 'gelu' __A : Dict = 0.1 __A : Optional[int] = 0.1 __A : Any = 512 __A : int = 16 __A : List[str] = 2 __A : str = 0.02 __A : Any = 3 __A : str = 4 __A : Union[str, Any] = 128 __A : int = 2 __A : List[Any] = 9 __A : List[Any] = 1 __A : List[Any] = None def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __A : str = None if self.use_input_mask: __A : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __A : Optional[Any] = None if self.use_token_type_ids: __A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __A : Optional[int] = None __A : List[str] = None __A : Dict = None if self.use_labels: __A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) __A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __A : str = ids_tensor([self.batch_size] , self.num_choices) __A : List[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = TFConvBertModel(config=_UpperCAmelCase) __A : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __A : Tuple = [input_ids, input_mask] __A : Any = model(_UpperCAmelCase) __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : str = TFConvBertForMaskedLM(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : str = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = self.num_labels __A : Any = TFConvBertForSequenceClassification(config=_UpperCAmelCase) __A : Optional[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Tuple = self.num_choices __A : List[str] = TFConvBertForMultipleChoice(config=_UpperCAmelCase) __A : int = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : Optional[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : List[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : int = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __A : Optional[Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = self.num_labels __A : List[Any] = TFConvBertForTokenClassification(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : int = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = TFConvBertForQuestionAnswering(config=_UpperCAmelCase) __A : Any = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Union[str, Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.prepare_config_and_inputs() ( ( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) , ) : Union[str, Any] = config_and_inputs __A : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = TFConvBertModelTester(self) __A : str = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __A : List[str] = True __A : List[str] = True if hasattr(_UpperCAmelCase , 'use_cache'): __A : List[Any] = True __A : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : Union[str, Any] = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) for model_class in self.all_model_classes: __A : List[str] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase) __A : Optional[int] = model_class(_UpperCAmelCase) __A : Optional[Any] = len(model(_UpperCAmelCase)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase) __A : Union[str, Any] = os.path.join(_UpperCAmelCase , 'saved_model' , '1') __A : Tuple = tf.keras.models.load_model(_UpperCAmelCase) __A : str = model(_UpperCAmelCase) if self.is_encoder_decoder: __A : Optional[int] = outputs['encoder_hidden_states'] __A : str = outputs['encoder_attentions'] else: __A : List[Any] = outputs['hidden_states'] __A : Optional[Any] = outputs['attentions'] self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) __A : str = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) self.assertListEqual( list(output_hidden_states[0].shape[-2:]) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(output_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') self.assertIsNotNone(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Any = True __A : str = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length) __A : Any = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : int = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) __A : Tuple = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) def check_decoder_attentions_output(_UpperCAmelCase): __A : List[str] = len(_UpperCAmelCase) self.assertEqual(out_len % 2 , 0) __A : Any = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCAmelCase): __A : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __A : Dict = True __A : Any = False __A : str = model_class(_UpperCAmelCase) __A : List[str] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : List[str] = len(_UpperCAmelCase) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) if self.is_encoder_decoder: __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : int = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_decoder_attentions_output(_UpperCAmelCase) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __A : int = True __A : Tuple = model_class(_UpperCAmelCase) __A : Dict = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) # Check attention is always last and order is fine __A : Any = True __A : str = True __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : Union[str, Any] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase)) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) @require_tf class SCREAMING_SNAKE_CASE (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') __A : str = tf.constant([[0, 1, 2, 3, 4, 5]]) __A : Optional[int] = model(_UpperCAmelCase)[0] __A : List[Any] = [1, 6, 768] self.assertEqual(output.shape , _UpperCAmelCase) __A : Tuple = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ]) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4)
8
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : str = { '''configuration_deberta''': ['''DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DebertaConfig''', '''DebertaOnnxConfig'''], '''tokenization_deberta''': ['''DebertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = ['''DebertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ '''DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DebertaForMaskedLM''', '''DebertaForQuestionAnswering''', '''DebertaForSequenceClassification''', '''DebertaForTokenClassification''', '''DebertaModel''', '''DebertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = [ '''TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDebertaForMaskedLM''', '''TFDebertaForQuestionAnswering''', '''TFDebertaForSequenceClassification''', '''TFDebertaForTokenClassification''', '''TFDebertaModel''', '''TFDebertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
'''simple docstring''' import argparse import os import re lowercase__ : Optional[int] = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowercase__ : Dict = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowercase__ : List[str] = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase__ : Tuple = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowercase__ : str = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase__ : str = re.compile(r'''\[([^\]]+)\]''') def _lowerCAmelCase ( __snake_case : str ) -> Tuple: __A : List[Any] = _re_indent.search(__snake_case ) return "" if search is None else search.groups()[0] def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : str="" , __snake_case : Any=None , __snake_case : List[Any]=None ) -> Optional[int]: __A : Tuple = 0 __A : Optional[int] = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(__snake_case ): index += 1 __A : Optional[int] = ['\n'.join(lines[:index] )] else: __A : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __A : Tuple = [lines[index]] index += 1 while index < len(__snake_case ) and (end_prompt is None or not lines[index].startswith(__snake_case )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__snake_case ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(__snake_case ) ) if index < len(__snake_case ) - 1: __A : Union[str, Any] = [lines[index + 1]] index += 1 else: __A : Union[str, Any] = [] else: blocks.append('\n'.join(__snake_case ) ) __A : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__snake_case ) > 0: blocks.append('\n'.join(__snake_case ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__snake_case ): blocks.append('\n'.join(lines[index:] ) ) return blocks def _lowerCAmelCase ( __snake_case : List[Any] ) -> int: def _inner(__snake_case : List[Any] ): return key(__snake_case ).lower().replace('_' , '' ) return _inner def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any=None ) -> List[Any]: # If no key is provided, we use a noop. def noop(__snake_case : List[Any] ): return x if key is None: __A : Optional[Any] = noop # Constants are all uppercase, they go first. __A : str = [obj for obj in objects if key(__snake_case ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __A : List[str] = [obj for obj in objects if key(__snake_case )[0].isupper() and not key(__snake_case ).isupper()] # Functions begin with a lowercase, they go last. __A : str = [obj for obj in objects if not key(__snake_case )[0].isupper()] __A : Tuple = ignore_underscore(__snake_case ) return sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Tuple: # This inner function sort imports between [ ]. def _replace(__snake_case : Tuple ): __A : List[str] = match.groups()[0] if "," not in imports: return f'[{imports}]' __A : int = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Dict = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(__snake_case )] ) + "]" __A : List[Any] = import_statement.split('\n' ) if len(__snake_case ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __A : Optional[int] = 2 if lines[1].strip() == '[' else 1 __A : Any = [(i, _re_strip_line.search(__snake_case ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __A : Optional[int] = sort_objects(__snake_case , key=lambda __snake_case : x[1] ) __A : Any = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__snake_case ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __A : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] ) else: __A : Dict = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Tuple = keys[:-1] __A : List[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(__snake_case )] ) return "\n".join(__snake_case ) else: # Finally we have to deal with imports fitting on one line __A : Optional[Any] = _re_bracket_content.sub(_replace , __snake_case ) return import_statement def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : List[Any]=True ) -> Optional[Any]: with open(__snake_case , 'r' ) as f: __A : Dict = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __A : str = split_code_in_indented_blocks( __snake_case , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__snake_case ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __A : Tuple = main_blocks[block_idx] __A : int = block.split('\n' ) # Get to the start of the imports. __A : Tuple = 0 while line_idx < len(__snake_case ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __A : Optional[int] = len(__snake_case ) else: line_idx += 1 if line_idx >= len(__snake_case ): continue # Ignore beginning and last line: they don't contain anything. __A : Dict = '\n'.join(block_lines[line_idx:-1] ) __A : int = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __A : Optional[int] = split_code_in_indented_blocks(__snake_case , indent_level=__snake_case ) # We have two categories of import key: list or _import_structure[key].append/extend __A : Any = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __A : Dict = [(pattern.search(__snake_case ).groups()[0] if pattern.search(__snake_case ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __A : Optional[Any] = [(i, key) for i, key in enumerate(__snake_case ) if key is not None] __A : Tuple = [x[0] for x in sorted(__snake_case , key=lambda __snake_case : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __A : str = 0 __A : Any = [] for i in range(len(__snake_case ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __A : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(__snake_case ) count += 1 # And we put our main block back together with its first and last line. __A : int = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(__snake_case ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(__snake_case , 'w' ) as f: f.write('\n'.join(__snake_case ) ) def _lowerCAmelCase ( __snake_case : int=True ) -> Optional[Any]: __A : Tuple = [] for root, _, files in os.walk(__snake_case ): if "__init__.py" in files: __A : List[Any] = sort_imports(os.path.join(__snake_case , '__init__.py' ) , check_only=__snake_case ) if result: __A : Dict = [os.path.join(__snake_case , '__init__.py' )] if len(__snake_case ) > 0: raise ValueError(f'Would overwrite {len(__snake_case )} files, run `make style`.' ) if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowercase__ : Union[str, Any] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
8
0
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase , _lowercase=13 , _lowercase=32 , _lowercase=3 , _lowercase=4 , _lowercase=[10, 20, 30, 40] , _lowercase=[2, 2, 3, 2] , _lowercase=True , _lowercase=True , _lowercase=37 , _lowercase="gelu" , _lowercase=10 , _lowercase=0.02 , _lowercase=["stage2", "stage3", "stage4"] , _lowercase=3 , _lowercase=None , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = num_channels _lowerCAmelCase = num_stages _lowerCAmelCase = hidden_sizes _lowerCAmelCase = depths _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = out_features _lowerCAmelCase = num_labels _lowerCAmelCase = scope _lowerCAmelCase = num_stages def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels def _lowercase ( self ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def _lowercase ( self ): """simple docstring""" return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_lowercase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_lowercase , loss_ignore_index=255 , num_labels=self.num_labels , ) def _lowercase ( self , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = UperNetForSemanticSegmentation(config=_lowercase ) model.to(_lowercase ) model.eval() _lowerCAmelCase = model(_lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : Dict = (UperNetForSemanticSegmentation,) if is_torch_available() else () _lowercase : int = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {} _lowercase : int = False _lowercase : Dict = False _lowercase : List[str] = False _lowercase : List[str] = False _lowercase : str = False _lowercase : Any = False def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = UperNetModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase , hidden_size=37 ) def _lowercase ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase ( self ): """simple docstring""" return def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(_lowercase ) _lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowercase ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip(reason="""UperNet does not have a base model""" ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip(reason="""UperNet does not have a base model""" ) def _lowercase ( self ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" def check_hidden_states_output(_lowercase , _lowercase , _lowercase ): _lowerCAmelCase = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): _lowerCAmelCase = model(**self._prepare_for_class(_lowercase , _lowercase ) ) _lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(_lowercase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = _config_zero_init(_lowercase ) _lowerCAmelCase = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _lowerCAmelCase = model_class(config=_lowercase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def _lowercase ( self ): """simple docstring""" pass @slow def _lowercase ( self ): """simple docstring""" for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def A (): _lowerCAmelCase = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) _lowerCAmelCase = Image.open(__lowerCamelCase ).convert("""RGB""" ) return image @require_torch @require_vision @slow class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) _lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(_lowercase ) _lowerCAmelCase = prepare_img() _lowerCAmelCase = processor(images=_lowercase , return_tensors="""pt""" ).to(_lowercase ) with torch.no_grad(): _lowerCAmelCase = model(**_lowercase ) _lowerCAmelCase = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowercase ) _lowerCAmelCase = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowercase , atol=1e-4 ) ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) _lowerCAmelCase = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(_lowercase ) _lowerCAmelCase = prepare_img() _lowerCAmelCase = processor(images=_lowercase , return_tensors="""pt""" ).to(_lowercase ) with torch.no_grad(): _lowerCAmelCase = model(**_lowercase ) _lowerCAmelCase = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowercase ) _lowerCAmelCase = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowercase , atol=1e-4 ) )
5
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int ) -> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') lowercase__ : int = int(input('''Enter number: ''').strip()) print(f"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
8
0
class UpperCamelCase_ : def __init__( self :Optional[int] , __A :str = "" , __A :bool = False ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ = {} # A node will be a leaf if the tree contains its word SCREAMING_SNAKE_CASE__ = is_leaf SCREAMING_SNAKE_CASE__ = prefix def _snake_case ( self :Optional[int] , __A :str ) -> tuple[str, str, str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = 0 for q, w in zip(self.prefix , __A ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def _snake_case ( self :Any , __A :list[str] ) -> None: """simple docstring""" for word in words: self.insert(__A ) def _snake_case ( self :Tuple , __A :str ) -> None: """simple docstring""" if self.prefix == word: SCREAMING_SNAKE_CASE__ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: SCREAMING_SNAKE_CASE__ = RadixNode(prefix=__A , is_leaf=__A ) else: SCREAMING_SNAKE_CASE__ = self.nodes[word[0]] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = incoming_node.match( __A ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(__A ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: SCREAMING_SNAKE_CASE__ = remaining_prefix SCREAMING_SNAKE_CASE__ = self.nodes[matching_string[0]] SCREAMING_SNAKE_CASE__ = RadixNode(__A , __A ) SCREAMING_SNAKE_CASE__ = aux_node if remaining_word == "": SCREAMING_SNAKE_CASE__ = True else: self.nodes[matching_string[0]].insert(__A ) def _snake_case ( self :Optional[int] , __A :str ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.nodes.get(word[0] , __A ) if not incoming_node: return False else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = incoming_node.match( __A ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(__A ) def _snake_case ( self :Optional[Any] , __A :str ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.nodes.get(word[0] , __A ) if not incoming_node: return False else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = incoming_node.match( __A ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(__A ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: SCREAMING_SNAKE_CASE__ = list(self.nodes.values() )[0] SCREAMING_SNAKE_CASE__ = merging_node.is_leaf self.prefix += merging_node.prefix SCREAMING_SNAKE_CASE__ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: SCREAMING_SNAKE_CASE__ = False # If there is 1 edge, we merge it with its child else: SCREAMING_SNAKE_CASE__ = list(incoming_node.nodes.values() )[0] SCREAMING_SNAKE_CASE__ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix SCREAMING_SNAKE_CASE__ = merging_node.nodes return True def _snake_case ( self :Optional[Any] , __A :int = 0 ) -> None: """simple docstring""" if self.prefix != "": print("""-""" * height , self.prefix , """ (leaf)""" if self.is_leaf else """""" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = """banana bananas bandana band apple all beast""".split() SCREAMING_SNAKE_CASE__ = RadixNode() root.insert_many(UpperCamelCase__ ) assert all(root.find(UpperCamelCase__ ) for word in words ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def SCREAMING_SNAKE_CASE__ ( ): assert test_trie() def SCREAMING_SNAKE_CASE__ ( ): SCREAMING_SNAKE_CASE__ = RadixNode() SCREAMING_SNAKE_CASE__ = """banana bananas bandanas bandana band apple all beast""".split() root.insert_many(UpperCamelCase__ ) print("""Words:""" , UpperCamelCase__ ) print("""Tree:""" ) root.print_tree() if __name__ == "__main__": main()
6
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : str = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def _lowerCAmelCase ( __snake_case : List[Any] ) -> Tuple: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __A : Optional[Any] = k.replace(__snake_case , __snake_case ) if k.startswith('encoder' ): __A : Any = k.replace('.attn' , '.self_attn' ) __A : Any = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): __A : Tuple = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'encoder_attn_layer_norm' ) __A : int = k.replace('norm3' , 'final_layer_norm' ) return k def _lowerCAmelCase ( __snake_case : List[Any] ) -> Dict: __A : Optional[int] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: __A : Tuple = sd.pop(__snake_case ) __A : Union[str, Any] = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd __A : str = v lowercase__ : Tuple = ['''START'''] @torch.no_grad() def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any , __snake_case : List[Any] ) -> int: __A : List[str] = torch.load(__snake_case , map_location='cpu' ) __A : Tuple = model['model'] __A : str = BlenderbotConfig.from_json_file(__snake_case ) __A : int = BlenderbotForConditionalGeneration(__snake_case ) __A : List[Any] = m.model.state_dict().keys() __A : Optional[int] = [] __A : Optional[int] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __A : Union[str, Any] = rename_state_dict_key(__snake_case ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __A : Optional[Any] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__snake_case ) m.model.load_state_dict(__snake_case , strict=__snake_case ) m.half() m.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
8
0
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=13_37 , num_examples=42 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=13_37 , num_examples=42 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def _snake_case ( _snake_case : SplitDict ) -> Optional[Any]: '''simple docstring''' _A = split_dict._to_yaml_list() assert len(_snake_case ) == len(_snake_case ) _A = SplitDict._from_yaml_list(_snake_case ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump _A = None # the split name of split_dict takes over the name of the split info object _A = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=_snake_case ), SplitInfo(dataset_name='my_dataset' )] ) def _snake_case ( _snake_case : Any ) -> Dict: '''simple docstring''' _A = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
7
'''simple docstring''' import mpmath # for roots of unity import numpy as np class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None): '''simple docstring''' __A : List[Any] = list(poly_a or [0])[:] __A : Optional[int] = list(poly_b or [0])[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __A : Union[str, Any] = len(self.polyA) while self.polyB[-1] == 0: self.polyB.pop() __A : Optional[int] = len(self.polyB) # Add 0 to make lengths equal a power of 2 __A : Optional[Any] = int( 2 ** np.ceil(np.loga(len(self.polyA) + len(self.polyB) - 1))) while len(self.polyA) < self.c_max_length: self.polyA.append(0) while len(self.polyB) < self.c_max_length: self.polyB.append(0) # A complex root used for the fourier transform __A : str = complex(mpmath.root(x=1 , n=self.c_max_length , k=1)) # The product __A : Tuple = self.__multiply() def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(_UpperCAmelCase) <= 1: return dft[0] # __A : Dict = self.c_max_length // 2 while next_ncol > 0: __A : Optional[Any] = [[] for i in range(_UpperCAmelCase)] __A : Tuple = self.root**next_ncol # First half of next step __A : Optional[Any] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j]) current_root *= root # Second half of next step __A : List[str] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j]) current_root *= root # Update __A : Optional[int] = new_dft __A : Tuple = next_ncol // 2 return dft[0] def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.__dft('A') __A : Optional[Any] = self.__dft('B') __A : str = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]] del dft_a del dft_b # Corner Case if len(inverce_c[0]) <= 1: return inverce_c[0] # Inverse DFT __A : Dict = 2 while next_ncol <= self.c_max_length: __A : Optional[int] = [[] for i in range(_UpperCAmelCase)] __A : Any = self.root ** (next_ncol // 2) __A : Tuple = 1 # First half of next step for j in range(self.c_max_length // next_ncol): for i in range(next_ncol // 2): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root)) current_root *= root # Update __A : int = new_inverse_c next_ncol *= 2 # Unpack __A : Optional[int] = [round(x[0].real , 8) + round(x[0].imag , 8) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self): '''simple docstring''' __A : int = 'A = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A])) __A : Optional[Any] = 'B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B])) __A : str = 'A*B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.product)) return F'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
0
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def A ( __UpperCamelCase ) -> Union[str, Any]: A__ = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224' , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) A__ = MaskFormerConfig(backbone_config=__UpperCamelCase ) A__ = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok A__ = 847 A__ = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok A__ = 150 A__ = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok A__ = 171 A__ = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO A__ = 133 A__ = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok A__ = 19 A__ = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok A__ = 65 A__ = 'mapillary-vistas-id2label.json' A__ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='dataset' ) , 'r' ) ) A__ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} return config def A ( __UpperCamelCase ) -> Dict: A__ = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.layers.{i}.downsample.reduction.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.layers.{i}.downsample.norm.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.layers.{i}.downsample.norm.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f'''sem_seg_head.adapter_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') ) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') ) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') ) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') ) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') ) for i in range(3 ): rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', f'''mask_embedder.{i}.0.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', f'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[str]: A__ = dct.pop(__UpperCamelCase ) A__ = val def A ( __UpperCamelCase , __UpperCamelCase ) -> str: A__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): A__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) A__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) A__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[:dim, :] A__ = in_proj_bias[: dim] A__ = in_proj_weight[ dim : dim * 2, : ] A__ = in_proj_bias[ dim : dim * 2 ] A__ = in_proj_weight[ -dim :, : ] A__ = in_proj_bias[-dim :] # fmt: on def A ( __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: # fmt: off A__ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) A__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) A__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[: hidden_size, :] A__ = in_proj_bias[:config.hidden_size] A__ = in_proj_weight[hidden_size : hidden_size * 2, :] A__ = in_proj_bias[hidden_size : hidden_size * 2] A__ = in_proj_weight[-hidden_size :, :] A__ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) A__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) A__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[: hidden_size, :] A__ = in_proj_bias[:config.hidden_size] A__ = in_proj_weight[hidden_size : hidden_size * 2, :] A__ = in_proj_bias[hidden_size : hidden_size * 2] A__ = in_proj_weight[-hidden_size :, :] A__ = in_proj_bias[-hidden_size :] # fmt: on def A ( ) -> torch.Tensor: A__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' A__ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = False ) -> List[Any]: A__ = get_maskformer_config(__UpperCamelCase ) # load original state_dict with open(__UpperCamelCase , 'rb' ) as f: A__ = pickle.load(__UpperCamelCase ) A__ = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys A__ = create_rename_keys(__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) read_in_swin_q_k_v(__UpperCamelCase , config.backbone_config ) read_in_decoder_q_k_v(__UpperCamelCase , __UpperCamelCase ) # update to torch tensors for key, value in state_dict.items(): A__ = torch.from_numpy(__UpperCamelCase ) # load 🤗 model A__ = MaskFormerForInstanceSegmentation(__UpperCamelCase ) model.eval() for name, param in model.named_parameters(): print(__UpperCamelCase , param.shape ) A__ , A__ = model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__UpperCamelCase ) == 0, f'''Unexpected keys: {unexpected_keys}''' # verify results A__ = prepare_img() if "vistas" in model_name: A__ = 65 elif "cityscapes" in model_name: A__ = 65_535 else: A__ = 255 A__ = True if 'ade' in model_name else False A__ = MaskFormerImageProcessor(ignore_index=__UpperCamelCase , reduce_labels=__UpperCamelCase ) A__ = image_processor(__UpperCamelCase , return_tensors='pt' ) A__ = model(**__UpperCamelCase ) print('Logits:' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": A__ = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , __UpperCamelCase , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) image_processor.save_pretrained(__UpperCamelCase ) if push_to_hub: print('Pushing model and image processor to the hub...' ) model.push_to_hub(f'''nielsr/{model_name}''' ) image_processor.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''maskformer-swin-tiny-ade''', type=str, help=('''Name of the MaskFormer model you\'d like to convert''',), ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl''', type=str, help='''Path to the original state dict (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
9
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=[30, 30] , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=None , _UpperCAmelCase=8 , _UpperCAmelCase=10 , ): '''simple docstring''' __A : Union[str, Any] = parent __A : Tuple = batch_size __A : List[str] = image_size __A : Dict = patch_size __A : Optional[Any] = num_channels __A : Tuple = is_training __A : Dict = use_labels __A : List[Any] = hidden_size __A : Tuple = num_hidden_layers __A : int = num_attention_heads __A : Optional[int] = intermediate_size __A : Tuple = hidden_act __A : Any = hidden_dropout_prob __A : Optional[Any] = attention_probs_dropout_prob __A : List[Any] = type_sequence_label_size __A : List[Any] = initializer_range __A : Optional[int] = num_labels __A : List[Any] = scope __A : Any = n_targets __A : Union[str, Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens __A : List[str] = (image_size[1] // patch_size) * (image_size[0] // patch_size) __A : int = num_patches + 1 + self.num_detection_tokens def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]]) __A : Tuple = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) __A : List[Any] = [] for i in range(self.batch_size): __A : Optional[int] = {} __A : Union[str, Any] = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=_UpperCAmelCase) __A : str = torch.rand(self.n_targets , 4 , device=_UpperCAmelCase) labels.append(_UpperCAmelCase) __A : Any = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosModel(config=_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosForObjectDetection(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : str = model(pixel_values=_UpperCAmelCase) __A : List[str] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) __A : Union[str, Any] = model(pixel_values=_UpperCAmelCase , labels=_UpperCAmelCase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.prepare_config_and_inputs() __A ,__A ,__A : Tuple = config_and_inputs __A : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowerCAmelCase = ( {'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' __A : Optional[Any] = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase) if return_labels: if model_class.__name__ == "YolosForObjectDetection": __A : Any = [] for i in range(self.model_tester.batch_size): __A : Tuple = {} __A : Tuple = torch.ones( size=(self.model_tester.n_targets,) , device=_UpperCAmelCase , dtype=torch.long) __A : Optional[Any] = torch.ones( self.model_tester.n_targets , 4 , device=_UpperCAmelCase , dtype=torch.float) labels.append(_UpperCAmelCase) __A : str = labels return inputs_dict def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = YolosModelTester(self) __A : Dict = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Tuple = model_class(_UpperCAmelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __A : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[Any] = model_class(_UpperCAmelCase) __A : str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : int = [*signature.parameters.keys()] __A : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Optional[int] = True # in YOLOS, the seq_len is different __A : Dict = self.model_tester.expected_seq_len for model_class in self.all_model_classes: __A : Dict = True __A : Dict = False __A : Union[str, Any] = True __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : Any = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] __A : List[Any] = True __A : List[str] = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __A : str = len(_UpperCAmelCase) # Check attention is always last and order is fine __A : Dict = True __A : Dict = True __A : Dict = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = 1 self.assertEqual(out_len + added_hidden_states , len(_UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.hidden_states __A : List[str] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) # YOLOS has a different seq_length __A : Dict = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[str] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A : Optional[int] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : List[Any] = YolosModel.from_pretrained(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase) def _lowerCAmelCase ( ) -> int: __A : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return AutoImageProcessor.from_pretrained('hustvl/yolos-small') if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = YolosForObjectDetection.from_pretrained('hustvl/yolos-small').to(_UpperCAmelCase) __A : Any = self.default_image_processor __A : str = prepare_img() __A : int = image_processor(images=_UpperCAmelCase , return_tensors='pt').to(_UpperCAmelCase) # forward pass with torch.no_grad(): __A : str = model(inputs.pixel_values) # verify outputs __A : Tuple = torch.Size((1, 100, 92)) self.assertEqual(outputs.logits.shape , _UpperCAmelCase) __A : Dict = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=_UpperCAmelCase , ) __A : int = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=_UpperCAmelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) # verify postprocessing __A : List[str] = image_processor.post_process_object_detection( _UpperCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]])[0] __A : Optional[int] = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861]).to(_UpperCAmelCase) __A : Union[str, Any] = [75, 75, 17, 63, 17] __A : Any = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495]).to(_UpperCAmelCase) self.assertEqual(len(results['scores']) , 5) self.assertTrue(torch.allclose(results['scores'] , _UpperCAmelCase , atol=1e-4)) self.assertSequenceEqual(results['labels'].tolist() , _UpperCAmelCase) self.assertTrue(torch.allclose(results['boxes'][0, :] , _UpperCAmelCase))
8
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase_ : def __init__( self : Union[str, Any] , _A : List[Any] , _A : List[Any]=2 , _A : Tuple=True , _A : Any=False , _A : Dict=10 , _A : Optional[int]=3 , _A : Union[str, Any]=32 * 8 , _A : Optional[Any]=32 * 8 , _A : List[str]=4 , _A : Dict=64 , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = is_training _UpperCamelCase = use_auxiliary_loss _UpperCamelCase = num_queries _UpperCamelCase = num_channels _UpperCamelCase = min_size _UpperCamelCase = max_size _UpperCamelCase = num_labels _UpperCamelCase = hidden_dim _UpperCamelCase = hidden_dim def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _A ) _UpperCamelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_A ) _UpperCamelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_A ) > 0.5 ).float() _UpperCamelCase = (torch.rand((self.batch_size, self.num_labels) , device=_A ) > 0.5).long() _UpperCamelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCamelCase_ ( self : int ): _UpperCamelCase = MaskaFormerConfig( hidden_size=self.hidden_dim , ) _UpperCamelCase = self.num_queries _UpperCamelCase = self.num_labels _UpperCamelCase = [1, 1, 1, 1] _UpperCamelCase = self.num_channels _UpperCamelCase = 64 _UpperCamelCase = 128 _UpperCamelCase = self.hidden_dim _UpperCamelCase = self.hidden_dim _UpperCamelCase = self.hidden_dim return config def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def UpperCamelCase_ ( self : List[str] , _A : Optional[int] , _A : Union[str, Any] ): _UpperCamelCase = output.encoder_hidden_states _UpperCamelCase = output.pixel_decoder_hidden_states _UpperCamelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_A ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_A ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_A ) , config.decoder_layers ) def UpperCamelCase_ ( self : Union[str, Any] , _A : List[Any] , _A : Dict , _A : int , _A : List[Any]=False ): with torch.no_grad(): _UpperCamelCase = MaskaFormerModel(config=_A ) model.to(_A ) model.eval() _UpperCamelCase = model(pixel_values=_A , pixel_mask=_A ) _UpperCamelCase = model(_A , output_hidden_states=_A ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_A , _A ) def UpperCamelCase_ ( self : Union[str, Any] , _A : Optional[Any] , _A : Any , _A : Any , _A : Any , _A : Tuple ): _UpperCamelCase = MaskaFormerForUniversalSegmentation(config=_A ) model.to(_A ) model.eval() def comm_check_on_output(_A : List[Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _UpperCamelCase = model(pixel_values=_A , pixel_mask=_A ) _UpperCamelCase = model(_A ) comm_check_on_output(_A ) _UpperCamelCase = model( pixel_values=_A , pixel_mask=_A , mask_labels=_A , class_labels=_A ) comm_check_on_output(_A ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () UpperCAmelCase = {"feature-extraction": MaskaFormerModel} if is_torch_available() else {} UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = MaskaFormerModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , has_text_modality=_A ) def UpperCamelCase_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_A , **_A , output_hidden_states=_A ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_A ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def UpperCamelCase_ ( self : str ): pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def UpperCamelCase_ ( self : Union[str, Any] ): pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def UpperCamelCase_ ( self : List[str] ): pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCamelCase_ ( self : Union[str, Any] ): pass def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(_A ) _UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) @slow def UpperCamelCase_ ( self : int ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: _UpperCamelCase = MaskaFormerModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = (self.model_tester.min_size,) * 2 _UpperCamelCase = { '''pixel_values''': torch.randn((2, 3, *size) , device=_A ), '''mask_labels''': torch.randn((2, 10, *size) , device=_A ), '''class_labels''': torch.zeros(2 , 10 , device=_A ).long(), } _UpperCamelCase = self.model_tester.get_config() _UpperCamelCase = MaskaFormerForUniversalSegmentation(_A ).to(_A ) _UpperCamelCase = model(**_A ) self.assertTrue(outputs.loss is not None ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_A , **_A , output_hidden_states=_A ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(_A ).to(_A ) _UpperCamelCase = model(**_A , output_attentions=_A ) self.assertTrue(outputs.attentions is not None ) def UpperCamelCase_ ( self : Optional[Any] ): if not self.model_tester.is_training: return _UpperCamelCase = self.all_model_classes[1] _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs() _UpperCamelCase = model_class(_A ) model.to(_A ) model.train() _UpperCamelCase = model(_A , mask_labels=_A , class_labels=_A ).loss loss.backward() def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.all_model_classes[1] _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs() _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = model_class(_A ).to(_A ) model.train() _UpperCamelCase = model(_A , mask_labels=_A , class_labels=_A ) _UpperCamelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _UpperCamelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() _UpperCamelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _UpperCamelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_A ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _lowerCAmelCase = 1E-4 def _snake_case ( ): _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self : Any ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def UpperCamelCase_ ( self : Union[str, Any] ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_A ) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(_A , return_tensors='''pt''' ).to(_A ) _UpperCamelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_A , (1, 3, 384, 384) ) with torch.no_grad(): _UpperCamelCase = model(**_A ) _UpperCamelCase = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(_A ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _A , atol=_A ) ) _UpperCamelCase = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(_A ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _A , atol=_A ) ) _UpperCamelCase = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(_A ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _A , atol=_A ) ) def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_A ).eval() _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(_A , return_tensors='''pt''' ).to(_A ) _UpperCamelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_A , (1, 3, 384, 384) ) with torch.no_grad(): _UpperCamelCase = model(**_A ) # masks_queries_logits _UpperCamelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) _UpperCamelCase = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] _UpperCamelCase = torch.tensor(_A ).to(_A ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _A , atol=_A ) ) # class_queries_logits _UpperCamelCase = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) _UpperCamelCase = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(_A ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _A , atol=_A ) ) def UpperCamelCase_ ( self : str ): _UpperCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_A ).eval() _UpperCamelCase = self.default_image_processor _UpperCamelCase = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) _UpperCamelCase = inputs['''pixel_values'''].to(_A ) _UpperCamelCase = [el.to(_A ) for el in inputs['''mask_labels''']] _UpperCamelCase = [el.to(_A ) for el in inputs['''class_labels''']] with torch.no_grad(): _UpperCamelCase = model(**_A ) self.assertTrue(outputs.loss is not None )
10
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: lowercase__ : Optional[int] = None lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ : List[str] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } lowercase__ : Dict = { '''camembert-base''': 5_12, } lowercase__ : str = '''▁''' class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] lowerCAmelCase = CamembertTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **_UpperCAmelCase , ): '''simple docstring''' __A : int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __A : List[str] = vocab_file __A : Optional[int] = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A : Optional[Any] = [self.cls_token_id] __A : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' __A : Optional[int] = [self.sep_token_id] __A : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(_UpperCAmelCase): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return __A : List[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCAmelCase): copyfile(self.vocab_file , _UpperCAmelCase) return (out_vocab_file,)
8
0
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise ValueError('''multiplicative_persistence() only accepts integral values''') if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''') _a = 0 _a = str(__A) while len(__A) != 1: _a = [int(__A) for i in num_string] _a = 1 for i in range(0 , len(__A)): total *= numbers[i] _a = str(__A) steps += 1 return steps def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise ValueError('''additive_persistence() only accepts integral values''') if num < 0: raise ValueError('''additive_persistence() does not accept negative values''') _a = 0 _a = str(__A) while len(__A) != 1: _a = [int(__A) for i in num_string] _a = 0 for i in range(0 , len(__A)): total += numbers[i] _a = str(__A) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
11
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowercase__ : Any = '''hf-internal-testing/tiny-random-bert''' lowercase__ : Optional[Any] = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') lowercase__ : List[Any] = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase)) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase))) with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Any = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) self.assertTrue(os.path.isfile(_UpperCAmelCase)) # File is cached at the same place the second time. __A : Tuple = cached_file(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) # Using a specific revision to test the full commit hash. __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='9b8c223') self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): __A : Dict = cached_file('tiny-random-bert' , _UpperCAmelCase) with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): __A : Optional[int] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='aaaa') with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : int = cached_file(_UpperCAmelCase , 'conf') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : Any = cached_file(_UpperCAmelCase , 'conf') with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Dict = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '.no_exist' , _UpperCAmelCase , 'conf'))) __A : List[Any] = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : str = cached_file(_UpperCAmelCase , 'conf' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : List[str] = mock.Mock() __A : Dict = 500 __A : List[str] = {} __A : List[Any] = HTTPError __A : Optional[Any] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=_UpperCAmelCase) as mock_head: __A : Dict = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_connection_errors=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt')) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): get_file_from_repo('bert-base-case' , _UpperCAmelCase) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): get_file_from_repo('bert-base-cased' , _UpperCAmelCase , revision='ahaha') __A : List[str] = get_file_from_repo('bert-base-cased' , _UpperCAmelCase) # The name is the cached name which is not very easy to test, so instead we load the content. __A : List[str] = json.loads(open(_UpperCAmelCase , 'r').read()) self.assertEqual(config['hidden_size'] , 768) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __A : Tuple = Path(_UpperCAmelCase) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , 'a.txt') , str(_UpperCAmelCase)) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , 'b.txt'))
8
0
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase_ ) class _snake_case ( UpperCAmelCase_ ): def __init__( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_) if self.framework == "tf": raise ValueError(f'The {self.__class__} is only available in PyTorch.') requires_backends(self , """vision""") self.check_model_type(SCREAMING_SNAKE_CASE_) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' if "text_queries" in kwargs: lowercase__ : Any = kwargs.pop("""text_queries""") if isinstance(SCREAMING_SNAKE_CASE_ , (str, Image.Image)): lowercase__ : Optional[Any] = {"""image""": image, """candidate_labels""": candidate_labels} else: lowercase__ : int = image lowercase__ : List[str] = super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) return results def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = {} if "threshold" in kwargs: lowercase__ : List[Any] = kwargs["""threshold"""] if "top_k" in kwargs: lowercase__ : int = kwargs["""top_k"""] return {}, {}, postprocess_params def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : str = load_image(inputs["""image"""]) lowercase__ : Any = inputs["""candidate_labels"""] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): lowercase__ : List[str] = candidate_labels.split(""",""") lowercase__ : Tuple = torch.tensor([[image.height, image.width]] , dtype=torch.intaa) for i, candidate_label in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Optional[Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework) lowercase__ : Union[str, Any] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework) yield { "is_last": i == len(SCREAMING_SNAKE_CASE_) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : str = model_inputs.pop("""target_size""") lowercase__ : Optional[int] = model_inputs.pop("""candidate_label""") lowercase__ : Dict = model_inputs.pop("""is_last""") lowercase__ : Union[str, Any] = self.model(**SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' lowercase__ : Union[str, Any] = [] for model_output in model_outputs: lowercase__ : Optional[int] = model_output["""candidate_label"""] lowercase__ : Tuple = BaseModelOutput(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = self.image_processor.post_process_object_detection( outputs=SCREAMING_SNAKE_CASE_ , threshold=SCREAMING_SNAKE_CASE_ , target_sizes=model_output["""target_size"""])[0] for index in outputs["scores"].nonzero(): lowercase__ : Optional[Any] = outputs["""scores"""][index].item() lowercase__ : Optional[Any] = self._get_bounding_box(outputs["""boxes"""][index][0]) lowercase__ : Tuple = {"""score""": score, """label""": label, """box""": box} results.append(SCREAMING_SNAKE_CASE_) lowercase__ : int = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: x["score"] , reverse=SCREAMING_SNAKE_CASE_) if top_k: lowercase__ : Any = results[:top_k] return results def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""") lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = box.int().tolist() lowercase__ : Optional[int] = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
12
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _lowerCAmelCase ( __snake_case : str , __snake_case : str , **__snake_case : List[Any] ) -> Any: __A : Optional[Any] = AutoConfig.from_pretrained(__snake_case , **__snake_case ) __A : int = AutoModelForSeqaSeqLM.from_config(__snake_case ) model.save_pretrained(__snake_case ) AutoTokenizer.from_pretrained(__snake_case ).save_pretrained(__snake_case ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
8
0
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput A__ : int = 8 def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int=BITS ) -> int: __lowerCamelCase : List[Any] = x.device __lowerCamelCase : Union[str, Any] = (x * 2_55).int().clamp(0 , 2_55 ) __lowerCamelCase : str = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCAmelCase_ ) __lowerCamelCase : List[str] = rearrange(UpperCAmelCase_ , 'd -> d 1 1' ) __lowerCamelCase : Optional[int] = rearrange(UpperCAmelCase_ , 'b c h w -> b c 1 h w' ) __lowerCamelCase : int = ((x & mask) != 0).float() __lowerCamelCase : List[Any] = rearrange(UpperCAmelCase_ , 'b c d h w -> b (c d) h w' ) __lowerCamelCase : str = bits * 2 - 1 return bits def UpperCAmelCase__ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : str=BITS ) -> Tuple: __lowerCamelCase : int = x.device __lowerCamelCase : Tuple = (x > 0).int() __lowerCamelCase : Optional[int] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCAmelCase_ , dtype=torch.intaa ) __lowerCamelCase : Tuple = rearrange(UpperCAmelCase_ , 'd -> d 1 1' ) __lowerCamelCase : List[Any] = rearrange(UpperCAmelCase_ , 'b (c d) h w -> b c d h w' , d=8 ) __lowerCamelCase : Dict = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' ) return (dec / 2_55).clamp(0.0 , 1.0 ) def UpperCAmelCase__ ( self : str , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : int , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) __lowerCamelCase : Tuple = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas __lowerCamelCase : Any = self.alphas_cumprod[timestep] __lowerCamelCase : int = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod __lowerCamelCase : Dict = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowerCamelCase : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" __lowerCamelCase : Any = self.bit_scale if self.config.clip_sample: __lowerCamelCase : Tuple = torch.clamp(UpperCAmelCase_ , -scale , UpperCAmelCase_ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) __lowerCamelCase : int = self._get_variance(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : Any = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide __lowerCamelCase : Any = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowerCamelCase : List[Any] = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowerCamelCase : List[Any] = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 __lowerCamelCase : int = model_output.device if torch.is_tensor(UpperCAmelCase_ ) else 'cpu' __lowerCamelCase : List[Any] = torch.randn(model_output.shape , dtype=model_output.dtype , generator=UpperCAmelCase_ ).to(UpperCAmelCase_ ) __lowerCamelCase : int = self._get_variance(UpperCAmelCase_ , UpperCAmelCase_ ) ** 0.5 * eta * noise __lowerCamelCase : Tuple = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=UpperCAmelCase_ , pred_original_sample=UpperCAmelCase_ ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : int , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : int="epsilon" , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : bool = True , ) -> Union[DDPMSchedulerOutput, Tuple]: __lowerCamelCase : Tuple = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: __lowerCamelCase , __lowerCamelCase : int = torch.split(UpperCAmelCase_ , sample.shape[1] , dim=1 ) else: __lowerCamelCase : Union[str, Any] = None # 1. compute alphas, betas __lowerCamelCase : Tuple = self.alphas_cumprod[t] __lowerCamelCase : Optional[Any] = self.alphas_cumprod[t - 1] if t > 0 else self.one __lowerCamelCase : Optional[Any] = 1 - alpha_prod_t __lowerCamelCase : int = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": __lowerCamelCase : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": __lowerCamelCase : Union[str, Any] = model_output else: raise ValueError(F'Unsupported prediction_type {prediction_type}.' ) # 3. Clip "predicted x_0" __lowerCamelCase : List[Any] = self.bit_scale if self.config.clip_sample: __lowerCamelCase : List[Any] = torch.clamp(UpperCAmelCase_ , -scale , UpperCAmelCase_ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowerCamelCase : List[str] = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t __lowerCamelCase : Dict = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowerCamelCase : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __lowerCamelCase : Any = 0 if t > 0: __lowerCamelCase : str = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=UpperCAmelCase_ ).to(model_output.device ) __lowerCamelCase : str = (self._get_variance(UpperCAmelCase_ , predicted_variance=UpperCAmelCase_ ) ** 0.5) * noise __lowerCamelCase : List[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=UpperCAmelCase_ , pred_original_sample=UpperCAmelCase_ ) class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1.0 , ) -> Dict: super().__init__() __lowerCamelCase : Tuple = bit_scale __lowerCamelCase : str = ( ddim_bit_scheduler_step if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE_ = 2_56 , SCREAMING_SNAKE_CASE_ = 2_56 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , **SCREAMING_SNAKE_CASE_ , ) -> Union[Tuple, ImagePipelineOutput]: __lowerCamelCase : Optional[Any] = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Optional[Any] = decimal_to_bits(SCREAMING_SNAKE_CASE_ ) * self.bit_scale __lowerCamelCase : Optional[int] = latents.to(self.device ) self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual __lowerCamelCase : List[str] = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase : Tuple = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample __lowerCamelCase : Dict = bits_to_decimal(SCREAMING_SNAKE_CASE_ ) if output_type == "pil": __lowerCamelCase : Tuple = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE_ )
13
'''simple docstring''' from ...configuration_utils import PretrainedConfig lowercase__ : Any = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''tapas''' def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1024 , _UpperCAmelCase=[3, 256, 256, 2, 256, 256, 10] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase=10.0 , _UpperCAmelCase=0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase="ratio" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __A : Dict = vocab_size __A : Tuple = hidden_size __A : Any = num_hidden_layers __A : int = num_attention_heads __A : Tuple = hidden_act __A : Tuple = intermediate_size __A : List[Any] = hidden_dropout_prob __A : int = attention_probs_dropout_prob __A : List[str] = max_position_embeddings __A : Optional[int] = type_vocab_sizes __A : str = initializer_range __A : List[str] = layer_norm_eps # Fine-tuning task hyperparameters __A : List[str] = positive_label_weight __A : List[Any] = num_aggregation_labels __A : Optional[Any] = aggregation_loss_weight __A : Tuple = use_answer_as_supervision __A : List[str] = answer_loss_importance __A : Any = use_normalized_answer_loss __A : Any = huber_loss_delta __A : Union[str, Any] = temperature __A : Tuple = aggregation_temperature __A : Optional[Any] = use_gumbel_for_cells __A : List[str] = use_gumbel_for_aggregation __A : Tuple = average_approximation_function __A : List[str] = cell_selection_preference __A : Dict = answer_loss_cutoff __A : Union[str, Any] = max_num_rows __A : Optional[Any] = max_num_columns __A : int = average_logits_per_cell __A : Optional[Any] = select_one_column __A : int = allow_empty_column_selection __A : List[Any] = init_cell_selection_weights_to_zero __A : int = reset_position_index_per_cell __A : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters __A : Optional[Any] = aggregation_labels __A : List[str] = no_aggregation_label_index if isinstance(self.aggregation_labels , _UpperCAmelCase): __A : Optional[Any] = {int(_UpperCAmelCase): v for k, v in aggregation_labels.items()}
8
0
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging a__ = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) a__ = logging.get_logger(__name__) # pylint: disable=invalid-name def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" _a : Any = '''https://pypi.org/pypi/diffusers/json''' _a : Optional[int] = json.loads(request.urlopen(__a ).read() )['''releases'''].keys() return sorted(__a ,key=lambda __a : version.Version(__a ) ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(__a ) os.makedirs(__a ,exist_ok=__a ) _a : int = Path(__a ) / '''__init__.py''' if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( __a : Union[str, os.PathLike] ) -> Optional[Any]: """simple docstring""" init_hf_modules() _a : List[Any] = Path(__a ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(__a ,exist_ok=__a ) _a : Any = dynamic_module_path / '''__init__.py''' if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( __a : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" with open(__a ,'''r''' ,encoding='''utf-8''' ) as f: _a : Optional[Any] = f.read() # Imports of the form `import .xxx` _a : List[str] = re.findall('''^\s*import\s+\.(\S+)\s*$''' ,__a ,flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('''^\s*from\s+\.(\S+)\s+import''' ,__a ,flags=re.MULTILINE ) # Unique-ify return list(set(__a ) ) def __UpperCAmelCase ( __a : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _a : Optional[int] = False _a : str = [module_file] _a : Dict = [] # Let's recurse through all relative imports while not no_change: _a : Tuple = [] for f in files_to_check: new_imports.extend(get_relative_imports(__a ) ) _a : Any = Path(__a ).parent _a : int = [str(module_path / m ) for m in new_imports] _a : str = [f for f in new_import_files if f not in all_relative_imports] _a : int = [F"""{f}.py""" for f in new_import_files] _a : int = len(__a ) == 0 all_relative_imports.extend(__a ) return all_relative_imports def __UpperCAmelCase ( __a : str ) -> Any: """simple docstring""" with open(__a ,'''r''' ,encoding='''utf-8''' ) as f: _a : List[str] = f.read() # Imports of the form `import xxx` _a : List[str] = re.findall('''^\s*import\s+(\S+)\s*$''' ,__a ,flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('''^\s*from\s+(\S+)\s+import''' ,__a ,flags=re.MULTILINE ) # Only keep the top-level module _a : int = [imp.split('''.''' )[0] for imp in imports if not imp.startswith('''.''' )] # Unique-ify and test we got them all _a : List[str] = list(set(__a ) ) _a : Tuple = [] for imp in imports: try: importlib.import_module(__a ) except ImportError: missing_packages.append(__a ) if len(__a ) > 0: raise ImportError( '''This modeling file requires the following packages that were not found in your environment: ''' F"""{', '.join(__a )}. Run `pip install {' '.join(__a )}`""" ) return get_relative_imports(__a ) def __UpperCAmelCase ( __a : Optional[int] ,__a : Optional[Any] ) -> Optional[int]: """simple docstring""" _a : Any = module_path.replace(os.path.sep ,'''.''' ) _a : Any = importlib.import_module(__a ) if class_name is None: return find_pipeline_class(__a ) return getattr(__a ,__a ) def __UpperCAmelCase ( __a : Any ) -> List[Any]: """simple docstring""" from ..pipelines import DiffusionPipeline _a : Tuple = dict(inspect.getmembers(__a ,inspect.isclass ) ) _a : Optional[int] = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls ,__a ) and cls.__module__.split('''.''' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:""" F""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in""" F""" {loaded_module}.""" ) _a : Optional[int] = cls return pipeline_class def __UpperCAmelCase ( __a : Union[str, os.PathLike] ,__a : str ,__a : Optional[Union[str, os.PathLike]] = None ,__a : bool = False ,__a : bool = False ,__a : Optional[Dict[str, str]] = None ,__a : Optional[Union[bool, str]] = None ,__a : Optional[str] = None ,__a : bool = False ,) -> Optional[Any]: """simple docstring""" _a : List[Any] = str(__a ) _a : Tuple = os.path.join(__a ,__a ) if os.path.isfile(__a ): _a : List[Any] = module_file_or_url _a : str = '''local''' elif pretrained_model_name_or_path.count('''/''' ) == 0: _a : int = get_diffusers_versions() # cut ".dev0" _a : Optional[Any] = '''v''' + '''.'''.join(__version__.split('''.''' )[:3] ) # retrieve github version that matches if revision is None: _a : Union[str, Any] = latest_version if latest_version[1:] in available_versions else '''main''' logger.info(F"""Defaulting to latest_version: {revision}.""" ) elif revision in available_versions: _a : Dict = F"""v{revision}""" elif revision == "main": _a : Dict = revision else: raise ValueError( F"""`custom_revision`: {revision} does not exist. Please make sure to choose one of""" F""" {', '.join(available_versions + ['main'] )}.""" ) # community pipeline on GitHub _a : Union[str, Any] = COMMUNITY_PIPELINES_URL.format(revision=__a ,pipeline=__a ) try: _a : int = cached_download( __a ,cache_dir=__a ,force_download=__a ,proxies=__a ,resume_download=__a ,local_files_only=__a ,use_auth_token=__a ,) _a : Dict = '''git''' _a : str = pretrained_model_name_or_path + '''.py''' except EnvironmentError: logger.error(F"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise else: try: # Load from URL or cache if already cached _a : Optional[Any] = hf_hub_download( __a ,__a ,cache_dir=__a ,force_download=__a ,proxies=__a ,resume_download=__a ,local_files_only=__a ,use_auth_token=__a ,) _a : Union[str, Any] = os.path.join('''local''' ,'''--'''.join(pretrained_model_name_or_path.split('''/''' ) ) ) except EnvironmentError: logger.error(F"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise # Check we have all the requirements in our environment _a : Dict = check_imports(__a ) # Now we move the module inside our cached dynamic modules. _a : int = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(__a ) _a : Tuple = Path(__a ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(__a ,submodule_path / module_file ) for module_needed in modules_needed: _a : Any = F"""{module_needed}.py""" shutil.copy(os.path.join(__a ,__a ) ,submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(__a ,__a ): _a : List[str] = use_auth_token elif use_auth_token is True: _a : Optional[int] = HfFolder.get_token() else: _a : str = None _a : List[Any] = model_info(__a ,revision=__a ,token=__a ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. _a : List[str] = submodule_path / commit_hash _a : Tuple = full_submodule + os.path.sep + commit_hash create_dynamic_module(__a ) if not (submodule_path / module_file).exists(): shutil.copy(__a ,submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( __a ,F"""{module_needed}.py""" ,cache_dir=__a ,force_download=__a ,resume_download=__a ,proxies=__a ,use_auth_token=__a ,revision=__a ,local_files_only=__a ,) return os.path.join(__a ,__a ) def __UpperCAmelCase ( __a : Union[str, os.PathLike] ,__a : str ,__a : Optional[str] = None ,__a : Optional[Union[str, os.PathLike]] = None ,__a : bool = False ,__a : bool = False ,__a : Optional[Dict[str, str]] = None ,__a : Optional[Union[bool, str]] = None ,__a : Optional[str] = None ,__a : bool = False ,**__a : Tuple ,) -> int: """simple docstring""" _a : Any = get_cached_module_file( __a ,__a ,cache_dir=__a ,force_download=__a ,resume_download=__a ,proxies=__a ,use_auth_token=__a ,revision=__a ,local_files_only=__a ,) return get_class_in_module(__a ,final_module.replace('''.py''' ,'''''' ) )
14
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=sys.maxsize): '''simple docstring''' __A : Union[str, Any] = 'bilinear' __A : int = max_size __A : Optional[Any] = short_edge_length def __call__( self , _UpperCAmelCase): '''simple docstring''' __A : int = [] for img in imgs: __A ,__A : Dict = img.shape[:2] # later: provide list and randomly choose index for resize __A : List[Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1) if size == 0: return img __A : Tuple = size * 1.0 / min(_UpperCAmelCase , _UpperCAmelCase) if h < w: __A ,__A : Optional[Any] = size, scale * w else: __A ,__A : Optional[Any] = scale * h, size if max(_UpperCAmelCase , _UpperCAmelCase) > self.max_size: __A : Tuple = self.max_size * 1.0 / max(_UpperCAmelCase , _UpperCAmelCase) __A : Tuple = newh * scale __A : Dict = neww * scale __A : Dict = int(neww + 0.5) __A : Optional[int] = int(newh + 0.5) if img.dtype == np.uinta: __A : int = Image.fromarray(_UpperCAmelCase) __A : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR) __A : Dict = np.asarray(_UpperCAmelCase) else: __A : Optional[Any] = img.permute(2 , 0 , 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw __A : Dict = nn.functional.interpolate( _UpperCAmelCase , (newh, neww) , mode=self.interp_method , align_corners=_UpperCAmelCase).squeeze(0) img_augs.append(_UpperCAmelCase) return img_augs class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST) __A : List[Any] = cfg.INPUT.FORMAT __A : Dict = cfg.SIZE_DIVISIBILITY __A : str = cfg.PAD_VALUE __A : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST __A : int = cfg.MODEL.DEVICE __A : Tuple = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : int = lambda _UpperCAmelCase: (x - self.pixel_mean) / self.pixel_std def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = tuple(max(_UpperCAmelCase) for s in zip(*[img.shape for img in images])) __A : Dict = [im.shape[-2:] for im in images] __A : Optional[int] = [ nn.functional.pad( _UpperCAmelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_UpperCAmelCase , _UpperCAmelCase) ] return torch.stack(_UpperCAmelCase), torch.tensor(_UpperCAmelCase) def __call__( self , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' with torch.no_grad(): if not isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : int = [images] if single_image: assert len(_UpperCAmelCase) == 1 for i in range(len(_UpperCAmelCase)): if isinstance(images[i] , torch.Tensor): images.insert(_UpperCAmelCase , images.pop(_UpperCAmelCase).to(self.device).float()) elif not isinstance(images[i] , torch.Tensor): images.insert( _UpperCAmelCase , torch.as_tensor(img_tensorize(images.pop(_UpperCAmelCase) , input_format=self.input_format)) .to(self.device) .float() , ) # resize smallest edge __A : str = torch.tensor([im.shape[:2] for im in images]) __A : List[str] = self.aug(_UpperCAmelCase) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __A : Any = [self.normalizer(_UpperCAmelCase) for x in images] # now pad them to do the following operations __A ,__A : Any = self.pad(_UpperCAmelCase) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __A : str = torch.true_divide(_UpperCAmelCase , _UpperCAmelCase) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _lowerCAmelCase ( __snake_case : Dict , __snake_case : str ) -> Dict: boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : Tuple[int, int] ) -> int: assert torch.isfinite(__snake_case ).all(), "Box tensor contains infinite or NaN!" __A ,__A : int = box_size tensor[:, 0].clamp_(min=0 , max=__snake_case ) tensor[:, 1].clamp_(min=0 , max=__snake_case ) tensor[:, 2].clamp_(min=0 , max=__snake_case ) tensor[:, 3].clamp_(min=0 , max=__snake_case )
8
0
import math A : List[Any] = 1_0 A : Union[str, Any] = 7 A : List[str] = BALLS_PER_COLOUR * NUM_COLOURS def UpperCamelCase ( __magic_name__ : int = 20 ) -> str: """simple docstring""" lowercase__ = math.comb(__magic_name__ , __magic_name__ ) lowercase__ = math.comb(NUM_BALLS - BALLS_PER_COLOUR , __magic_name__ ) lowercase__ = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(2_0))
15
'''simple docstring''' def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Optional[Any]: # noqa: E741 __A : Tuple = len(__snake_case ) __A : Optional[int] = 0 __A : str = [0] * n __A : int = [False] * n __A : Tuple = [False] * n def dfs(__snake_case : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : int ): if parent == root: out_edge_count += 1 __A : str = True __A : Tuple = at for to in l[at]: if to == parent: pass elif not visited[to]: __A : Optional[int] = dfs(__snake_case , __snake_case , __snake_case , __snake_case ) __A : int = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __A : Tuple = True # AP found via cycle if at == low[to]: __A : Optional[Any] = True else: __A : Any = min(low[at] , __snake_case ) return out_edge_count for i in range(__snake_case ): if not visited[i]: __A : Tuple = 0 __A : List[Any] = dfs(__snake_case , __snake_case , -1 , __snake_case ) __A : Union[str, Any] = out_edge_count > 1 for x in range(len(__snake_case ) ): if is_art[x] is True: print(__snake_case ) # Adjacency list of graph lowercase__ : Tuple = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
8
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Dict = logging.get_logger(__name__) __A : str = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "swin2sr" lowerCamelCase__ = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Dict , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : int=1 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : Any=180 , __lowerCamelCase : str=[6, 6, 6, 6, 6, 6] , __lowerCamelCase : Dict=[6, 6, 6, 6, 6, 6] , __lowerCamelCase : Optional[Any]=8 , __lowerCamelCase : Any=2.0 , __lowerCamelCase : int=True , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : List[str]=False , __lowerCamelCase : Any=0.02 , __lowerCamelCase : Optional[int]=1e-5 , __lowerCamelCase : List[Any]=2 , __lowerCamelCase : List[str]=1.0 , __lowerCamelCase : Union[str, Any]="1conv" , __lowerCamelCase : List[Any]="pixelshuffle" , **__lowerCamelCase : Optional[Any] , ): super().__init__(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embed_dim SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE = num_heads SCREAMING_SNAKE_CASE = window_size SCREAMING_SNAKE_CASE = mlp_ratio SCREAMING_SNAKE_CASE = qkv_bias SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = use_absolute_embeddings SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = upscale SCREAMING_SNAKE_CASE = img_range SCREAMING_SNAKE_CASE = resi_connection SCREAMING_SNAKE_CASE = upsampler
16
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : int = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } lowercase__ : Dict = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _lowerCAmelCase ( __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Any , __snake_case : List[str] ) -> Union[str, Any]: for attribute in key.split('.' ): __A : int = getattr(__snake_case , __snake_case ) if weight_type is not None: __A : Optional[int] = getattr(__snake_case , __snake_case ).shape else: __A : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __A : Tuple = value elif weight_type == "weight_g": __A : Union[str, Any] = value elif weight_type == "weight_v": __A : Optional[Any] = value elif weight_type == "bias": __A : Optional[int] = value else: __A : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( __snake_case : Any , __snake_case : List[str] ) -> List[Any]: __A : Optional[Any] = [] __A : Any = fairseq_model.state_dict() __A : Union[str, Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): __A : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == 'group' , ) __A : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __A : int = True if "*" in mapped_key: __A : Any = name.split(__snake_case )[0].split('.' )[-2] __A : List[Any] = mapped_key.replace('*' , __snake_case ) if "weight_g" in name: __A : Optional[Any] = 'weight_g' elif "weight_v" in name: __A : Union[str, Any] = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: __A : Optional[Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __A : Tuple = 'weight' else: __A : Dict = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[int] ) -> int: __A : int = full_name.split('conv_layers.' )[-1] __A : List[str] = name.split('.' ) __A : Optional[int] = int(items[0] ) __A : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __A : Optional[int] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __A : Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) __A : Dict = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __A : Any = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) @torch.no_grad() def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple=None ) -> Any: # load the pre-trained checkpoints __A : List[str] = torch.load(__snake_case ) __A : Dict = WavLMConfigOrig(checkpoint['cfg'] ) __A : Optional[int] = WavLMOrig(__snake_case ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: __A : List[Any] = WavLMConfig.from_pretrained(__snake_case ) else: __A : Dict = WavLMConfig() __A : Optional[Any] = WavLMModel(__snake_case ) recursively_load_weights(__snake_case , __snake_case ) hf_wavlm.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowercase__ : Any = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
8
0
UpperCAmelCase_ : Optional[int] = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def __SCREAMING_SNAKE_CASE ( a__ : float ) -> str: assert type(a__ ) in (int, float) and decimal == int(a__ ) __A : List[str] = int(a__ ) __A : List[Any] = """""" __A : int = False if decimal < 0: __A : Tuple = True decimal *= -1 while decimal > 0: __A , __A : List[Any] = divmod(a__ ,16 ) __A : Union[str, Any] = values[remainder] + hexadecimal __A : Optional[Any] = """0x""" + hexadecimal if negative: __A : Tuple = """-""" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
17
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = 42 class SCREAMING_SNAKE_CASE (a__ , a__ ): @register_to_config def __init__( self , _UpperCAmelCase = 6_5536 , _UpperCAmelCase = None , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = 0 , _UpperCAmelCase = "fourier" , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = 0.0 , _UpperCAmelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _UpperCAmelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _UpperCAmelCase = "UNetMidBlock1D" , _UpperCAmelCase = None , _UpperCAmelCase = (32, 32, 64) , _UpperCAmelCase = None , _UpperCAmelCase = 8 , _UpperCAmelCase = 1 , _UpperCAmelCase = False , ): '''simple docstring''' super().__init__() __A : Dict = sample_size # time if time_embedding_type == "fourier": __A : int = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_UpperCAmelCase , log=_UpperCAmelCase , flip_sin_to_cos=_UpperCAmelCase) __A : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": __A : List[str] = Timesteps( block_out_channels[0] , flip_sin_to_cos=_UpperCAmelCase , downscale_freq_shift=_UpperCAmelCase) __A : List[str] = block_out_channels[0] if use_timestep_embedding: __A : Optional[Any] = block_out_channels[0] * 4 __A : Optional[int] = TimestepEmbedding( in_channels=_UpperCAmelCase , time_embed_dim=_UpperCAmelCase , act_fn=_UpperCAmelCase , out_dim=block_out_channels[0] , ) __A : Dict = nn.ModuleList([]) __A : Dict = None __A : Tuple = nn.ModuleList([]) __A : Tuple = None # down __A : Any = in_channels for i, down_block_type in enumerate(_UpperCAmelCase): __A : Tuple = output_channel __A : Optional[Any] = block_out_channels[i] if i == 0: input_channel += extra_in_channels __A : List[str] = i == len(_UpperCAmelCase) - 1 __A : int = get_down_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_UpperCAmelCase) # mid __A : str = get_mid_block( _UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_UpperCAmelCase , add_downsample=_UpperCAmelCase , ) # up __A : Optional[int] = list(reversed(_UpperCAmelCase)) __A : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: __A : str = out_channels else: __A : List[Any] = block_out_channels[0] for i, up_block_type in enumerate(_UpperCAmelCase): __A : Optional[Any] = output_channel __A : Optional[Any] = ( reversed_block_out_channels[i + 1] if i < len(_UpperCAmelCase) - 1 else final_upsample_channels ) __A : Dict = i == len(_UpperCAmelCase) - 1 __A : str = get_up_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_UpperCAmelCase) __A : Optional[int] = output_channel # out __A : str = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32) __A : Optional[Any] = get_out_block( out_block_type=_UpperCAmelCase , num_groups_out=_UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=_UpperCAmelCase , act_fn=_UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , ): '''simple docstring''' __A : Any = timestep if not torch.is_tensor(_UpperCAmelCase): __A : Any = torch.tensor([timesteps] , dtype=torch.long , device=sample.device) elif torch.is_tensor(_UpperCAmelCase) and len(timesteps.shape) == 0: __A : Any = timesteps[None].to(sample.device) __A : List[Any] = self.time_proj(_UpperCAmelCase) if self.config.use_timestep_embedding: __A : Dict = self.time_mlp(_UpperCAmelCase) else: __A : Dict = timestep_embed[..., None] __A : Tuple = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) __A : List[Any] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) # 2. down __A : int = () for downsample_block in self.down_blocks: __A ,__A : int = downsample_block(hidden_states=_UpperCAmelCase , temb=_UpperCAmelCase) down_block_res_samples += res_samples # 3. mid if self.mid_block: __A : Optional[int] = self.mid_block(_UpperCAmelCase , _UpperCAmelCase) # 4. up for i, upsample_block in enumerate(self.up_blocks): __A : Any = down_block_res_samples[-1:] __A : Optional[int] = down_block_res_samples[:-1] __A : Any = upsample_block(_UpperCAmelCase , res_hidden_states_tuple=_UpperCAmelCase , temb=_UpperCAmelCase) # 5. post-process if self.out_block: __A : Dict = self.out_block(_UpperCAmelCase , _UpperCAmelCase) if not return_dict: return (sample,) return UNetaDOutput(sample=_UpperCAmelCase)
8
0
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[Any] = "data2vec-audio" def __init__( self , _lowerCAmelCase=32 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase="gelu" , _lowerCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _lowerCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _lowerCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _lowerCAmelCase=False , _lowerCAmelCase=16 , _lowerCAmelCase=19 , _lowerCAmelCase=5 , _lowerCAmelCase=0.05 , _lowerCAmelCase=10 , _lowerCAmelCase=2 , _lowerCAmelCase=0.0 , _lowerCAmelCase=10 , _lowerCAmelCase=0 , _lowerCAmelCase="sum" , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=256 , _lowerCAmelCase=(512, 512, 512, 512, 1500) , _lowerCAmelCase=(5, 3, 3, 1, 1) , _lowerCAmelCase=(1, 2, 3, 1, 1) , _lowerCAmelCase=512 , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=False , _lowerCAmelCase=3 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase=None , **_lowerCAmelCase , ) -> Dict: super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) _lowerCAmelCase = hidden_size _lowerCAmelCase = feat_extract_activation _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = conv_bias _lowerCAmelCase = num_conv_pos_embeddings _lowerCAmelCase = num_conv_pos_embedding_groups _lowerCAmelCase = conv_pos_kernel_size _lowerCAmelCase = len(self.conv_dim ) _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = feat_proj_dropout _lowerCAmelCase = final_dropout _lowerCAmelCase = layerdrop _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range _lowerCAmelCase = vocab_size _lowerCAmelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase = mask_time_prob _lowerCAmelCase = mask_time_length _lowerCAmelCase = mask_time_min_masks _lowerCAmelCase = mask_feature_prob _lowerCAmelCase = mask_feature_length _lowerCAmelCase = mask_feature_min_masks # ctc loss _lowerCAmelCase = ctc_loss_reduction _lowerCAmelCase = ctc_zero_infinity # adapter _lowerCAmelCase = add_adapter _lowerCAmelCase = adapter_kernel_size _lowerCAmelCase = adapter_stride _lowerCAmelCase = num_adapter_layers _lowerCAmelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = list(_lowerCAmelCase ) _lowerCAmelCase = xvector_output_dim @property def _snake_case ( self ) -> str: return math.prod(self.conv_stride )
18
'''simple docstring''' def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> int: if len(__snake_case ) != len(__snake_case ): raise ValueError('String lengths must match!' ) __A : Optional[Any] = 0 for chara, chara in zip(__snake_case , __snake_case ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
8
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowercase__ = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowercase__ = False lowercase__ = False def UpperCAmelCase ( self , __a , __a , __a=False) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = super()._prepare_for_class(__a , __a , return_labels=__a) if return_labels: if model_class in get_values(__a): _UpperCamelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa) return inputs_dict class _UpperCAmelCase( lowerCamelCase ): def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> List[str]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope _UpperCamelCase = embedding_size def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Any: '''simple docstring''' _UpperCamelCase = TFMobileBertModel(config=__a) _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCamelCase = model(__a) _UpperCamelCase = [input_ids, input_mask] _UpperCamelCase = model(__a) _UpperCamelCase = model(__a) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Any: '''simple docstring''' _UpperCamelCase = TFMobileBertForMaskedLM(config=__a) _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCamelCase = model(__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Dict: '''simple docstring''' _UpperCamelCase = TFMobileBertForNextSentencePrediction(config=__a) _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCamelCase = model(__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = TFMobileBertForPreTraining(config=__a) _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCamelCase = model(__a) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = TFMobileBertForSequenceClassification(config=__a) _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCamelCase = model(__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Dict: '''simple docstring''' _UpperCamelCase = self.num_choices _UpperCamelCase = TFMobileBertForMultipleChoice(config=__a) _UpperCamelCase = tf.tile(tf.expand_dims(__a , 1) , (1, self.num_choices, 1)) _UpperCamelCase = tf.tile(tf.expand_dims(__a , 1) , (1, self.num_choices, 1)) _UpperCamelCase = tf.tile(tf.expand_dims(__a , 1) , (1, self.num_choices, 1)) _UpperCamelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } _UpperCamelCase = model(__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Dict: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = TFMobileBertForTokenClassification(config=__a) _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCamelCase = model(__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Any: '''simple docstring''' _UpperCamelCase = TFMobileBertForQuestionAnswering(config=__a) _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCamelCase = model(__a) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = TFMobileBertModelTest.TFMobileBertModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , hidden_size=37) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__a) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__a) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__a) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__a) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__a) @slow def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _UpperCamelCase = TFMobileBertModel.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class _UpperCAmelCase( unittest.TestCase ): @slow def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''') _UpperCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]]) _UpperCamelCase = model(__a)[0] _UpperCamelCase = [1, 6, 3_05_22] self.assertEqual(output.shape , __a) _UpperCamelCase = tf.constant( [ [ [-4.591_9547, -9.24_8295, -9.64_5256], [-6.730_6175, -6.44_0284, -6.605_2837], [-7.274_3506, -6.784_7915, -6.02_4673], ] ]) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-4)
19
'''simple docstring''' import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> Union[str, Any]: __A : int = RobertaPreLayerNormConfig.from_pretrained( __snake_case , architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict __A : Tuple = torch.load(hf_hub_download(repo_id=__snake_case , filename='pytorch_model.bin' ) ) __A : str = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): __A : Dict = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue __A : str = tensor_value __A : Union[str, Any] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__snake_case , config=__snake_case , state_dict=__snake_case ) model.save_pretrained(__snake_case ) # convert tokenizer __A : List[Any] = AutoTokenizer.from_pretrained(__snake_case ) tokenizer.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
8
0
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() _lowerCAmelCase: Union[str, Any] = logging.get_logger('transformers.models.encodec') _lowerCAmelCase: List[Any] = { 'quantizer.vq.layers.*._codebook.inited': 'quantizer.layers.*.codebook.inited', 'quantizer.vq.layers.*._codebook.cluster_size': 'quantizer.layers.*.codebook.cluster_size', 'quantizer.vq.layers.*._codebook.embed': 'quantizer.layers.*.codebook.embed', 'quantizer.vq.layers.*._codebook.embed_avg': 'quantizer.layers.*.codebook.embed_avg', } _lowerCAmelCase: str = { 'encoder.model.0.conv.conv': 'encoder.layers.0.conv', 'encoder.model.1.block.1.conv.conv': 'encoder.layers.1.block.1.conv', 'encoder.model.1.block.3.conv.conv': 'encoder.layers.1.block.3.conv', 'encoder.model.1.shortcut.conv.conv': 'encoder.layers.1.shortcut.conv', 'encoder.model.3.conv.conv': 'encoder.layers.3.conv', 'encoder.model.4.block.1.conv.conv': 'encoder.layers.4.block.1.conv', 'encoder.model.4.block.3.conv.conv': 'encoder.layers.4.block.3.conv', 'encoder.model.4.shortcut.conv.conv': 'encoder.layers.4.shortcut.conv', 'encoder.model.6.conv.conv': 'encoder.layers.6.conv', 'encoder.model.7.block.1.conv.conv': 'encoder.layers.7.block.1.conv', 'encoder.model.7.block.3.conv.conv': 'encoder.layers.7.block.3.conv', 'encoder.model.7.shortcut.conv.conv': 'encoder.layers.7.shortcut.conv', 'encoder.model.9.conv.conv': 'encoder.layers.9.conv', 'encoder.model.10.block.1.conv.conv': 'encoder.layers.10.block.1.conv', 'encoder.model.10.block.3.conv.conv': 'encoder.layers.10.block.3.conv', 'encoder.model.10.shortcut.conv.conv': 'encoder.layers.10.shortcut.conv', 'encoder.model.12.conv.conv': 'encoder.layers.12.conv', 'encoder.model.13.lstm': 'encoder.layers.13.lstm', 'encoder.model.15.conv.conv': 'encoder.layers.15.conv', } _lowerCAmelCase: Optional[int] = { 'encoder.model.0.conv.norm': 'encoder.layers.0.norm', 'encoder.model.1.block.1.conv.norm': 'encoder.layers.1.block.1.norm', 'encoder.model.1.block.3.conv.norm': 'encoder.layers.1.block.3.norm', 'encoder.model.1.shortcut.conv.norm': 'encoder.layers.1.shortcut.norm', 'encoder.model.3.conv.norm': 'encoder.layers.3.norm', 'encoder.model.4.block.1.conv.norm': 'encoder.layers.4.block.1.norm', 'encoder.model.4.block.3.conv.norm': 'encoder.layers.4.block.3.norm', 'encoder.model.4.shortcut.conv.norm': 'encoder.layers.4.shortcut.norm', 'encoder.model.6.conv.norm': 'encoder.layers.6.norm', 'encoder.model.7.block.1.conv.norm': 'encoder.layers.7.block.1.norm', 'encoder.model.7.block.3.conv.norm': 'encoder.layers.7.block.3.norm', 'encoder.model.7.shortcut.conv.norm': 'encoder.layers.7.shortcut.norm', 'encoder.model.9.conv.norm': 'encoder.layers.9.norm', 'encoder.model.10.block.1.conv.norm': 'encoder.layers.10.block.1.norm', 'encoder.model.10.block.3.conv.norm': 'encoder.layers.10.block.3.norm', 'encoder.model.10.shortcut.conv.norm': 'encoder.layers.10.shortcut.norm', 'encoder.model.12.conv.norm': 'encoder.layers.12.norm', 'encoder.model.15.conv.norm': 'encoder.layers.15.norm', } _lowerCAmelCase: Dict = { 'decoder.model.0.conv.conv': 'decoder.layers.0.conv', 'decoder.model.1.lstm': 'decoder.layers.1.lstm', 'decoder.model.3.convtr.convtr': 'decoder.layers.3.conv', 'decoder.model.4.block.1.conv.conv': 'decoder.layers.4.block.1.conv', 'decoder.model.4.block.3.conv.conv': 'decoder.layers.4.block.3.conv', 'decoder.model.4.shortcut.conv.conv': 'decoder.layers.4.shortcut.conv', 'decoder.model.6.convtr.convtr': 'decoder.layers.6.conv', 'decoder.model.7.block.1.conv.conv': 'decoder.layers.7.block.1.conv', 'decoder.model.7.block.3.conv.conv': 'decoder.layers.7.block.3.conv', 'decoder.model.7.shortcut.conv.conv': 'decoder.layers.7.shortcut.conv', 'decoder.model.9.convtr.convtr': 'decoder.layers.9.conv', 'decoder.model.10.block.1.conv.conv': 'decoder.layers.10.block.1.conv', 'decoder.model.10.block.3.conv.conv': 'decoder.layers.10.block.3.conv', 'decoder.model.10.shortcut.conv.conv': 'decoder.layers.10.shortcut.conv', 'decoder.model.12.convtr.convtr': 'decoder.layers.12.conv', 'decoder.model.13.block.1.conv.conv': 'decoder.layers.13.block.1.conv', 'decoder.model.13.block.3.conv.conv': 'decoder.layers.13.block.3.conv', 'decoder.model.13.shortcut.conv.conv': 'decoder.layers.13.shortcut.conv', 'decoder.model.15.conv.conv': 'decoder.layers.15.conv', } _lowerCAmelCase: Tuple = { 'decoder.model.0.conv.norm': 'decoder.layers.0.norm', 'decoder.model.3.convtr.norm': 'decoder.layers.3.norm', 'decoder.model.4.block.1.conv.norm': 'decoder.layers.4.block.1.norm', 'decoder.model.4.block.3.conv.norm': 'decoder.layers.4.block.3.norm', 'decoder.model.4.shortcut.conv.norm': 'decoder.layers.4.shortcut.norm', 'decoder.model.6.convtr.norm': 'decoder.layers.6.norm', 'decoder.model.7.block.1.conv.norm': 'decoder.layers.7.block.1.norm', 'decoder.model.7.block.3.conv.norm': 'decoder.layers.7.block.3.norm', 'decoder.model.7.shortcut.conv.norm': 'decoder.layers.7.shortcut.norm', 'decoder.model.9.convtr.norm': 'decoder.layers.9.norm', 'decoder.model.10.block.1.conv.norm': 'decoder.layers.10.block.1.norm', 'decoder.model.10.block.3.conv.norm': 'decoder.layers.10.block.3.norm', 'decoder.model.10.shortcut.conv.norm': 'decoder.layers.10.shortcut.norm', 'decoder.model.12.convtr.norm': 'decoder.layers.12.norm', 'decoder.model.13.block.1.conv.norm': 'decoder.layers.13.block.1.norm', 'decoder.model.13.block.3.conv.norm': 'decoder.layers.13.block.3.norm', 'decoder.model.13.shortcut.conv.norm': 'decoder.layers.13.shortcut.norm', 'decoder.model.15.conv.norm': 'decoder.layers.15.norm', } _lowerCAmelCase: str = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } _lowerCAmelCase: Dict = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } _lowerCAmelCase: Tuple = [] _lowerCAmelCase: str = [] def _lowercase( __a : Any , __a : List[str] , __a : Tuple , __a : Union[str, Any] , __a : Optional[Any] ): for attribute in key.split('.' ): a__ =getattr(__a , __a ) if weight_type is not None: a__ =getattr(__a , __a ).shape else: a__ =hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": a__ =value elif weight_type == "weight_g": a__ =value elif weight_type == "weight_v": a__ =value elif weight_type == "bias": a__ =value elif weight_type == "running_mean": a__ =value elif weight_type == "running_var": a__ =value elif weight_type == "num_batches_tracked": a__ =value elif weight_type == "weight_ih_l0": a__ =value elif weight_type == "weight_hh_l0": a__ =value elif weight_type == "bias_ih_l0": a__ =value elif weight_type == "bias_hh_l0": a__ =value elif weight_type == "weight_ih_l1": a__ =value elif weight_type == "weight_hh_l1": a__ =value elif weight_type == "bias_ih_l1": a__ =value elif weight_type == "bias_hh_l1": a__ =value else: a__ =value logger.info(f"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def _lowercase( __a : Optional[int] , __a : Union[str, Any] ): for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: a__ , a__ =key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def _lowercase( __a : str , __a : int , __a : Tuple ): a__ =[] if model_name == "encodec_24khz" or "encodec_32khz": a__ =MAPPING_24K elif model_name == "encodec_48khz": a__ =MAPPING_48K else: raise ValueError(f"""Unsupported model: {model_name}""" ) for name, value in orig_dict.items(): if should_ignore(__a , __a ): logger.info(f"""{name} was ignored""" ) continue a__ =False for key, mapped_key in MAPPING.items(): if "*" in key: a__ , a__ =key.split('.*.' ) if prefix in name and suffix in name: a__ =suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue a__ =True if "*" in mapped_key: a__ =name.split(__a )[0].split('.' )[-2] a__ =mapped_key.replace('*' , __a ) if "weight_g" in name: a__ ='weight_g' elif "weight_v" in name: a__ ='weight_v' elif "weight_ih_l0" in name: a__ ='weight_ih_l0' elif "weight_hh_l0" in name: a__ ='weight_hh_l0' elif "bias_ih_l0" in name: a__ ='bias_ih_l0' elif "bias_hh_l0" in name: a__ ='bias_hh_l0' elif "weight_ih_l1" in name: a__ ='weight_ih_l1' elif "weight_hh_l1" in name: a__ ='weight_hh_l1' elif "bias_ih_l1" in name: a__ ='bias_ih_l1' elif "bias_hh_l1" in name: a__ ='bias_hh_l1' elif "bias" in name: a__ ='bias' elif "weight" in name: a__ ='weight' elif "running_mean" in name: a__ ='running_mean' elif "running_var" in name: a__ ='running_var' elif "num_batches_tracked" in name: a__ ='num_batches_tracked' else: a__ =None set_recursively(__a , __a , __a , __a , __a ) continue if not is_used: unused_weights.append(__a ) logger.warning(f"""Unused weights: {unused_weights}""" ) @torch.no_grad() def _lowercase( __a : str , __a : int , __a : str , __a : Tuple=None , __a : Optional[int]=None , ): if config_path is not None: a__ =EncodecConfig.from_pretrained(__a ) else: a__ =EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": a__ =[8, 5, 4, 4] a__ =[2.2] a__ =64 a__ =3_2000 a__ =2048 a__ =False a__ =False a__ =False elif model_name == "encodec_48khz": a__ =[8, 5, 4, 2] a__ =[3.0, 6.0, 12.0, 24.0] a__ =4_8000 a__ =2 a__ =False a__ ='time_group_norm' a__ =True a__ =1.0 a__ =0.01 else: raise ValueError(f"""Unknown model name: {model_name}""" ) a__ =EncodecModel(__a ) a__ =EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(__a ) a__ =torch.load(__a ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights a__ =original_checkpoint['best_state'] recursively_load_weights(__a , __a , __a ) model.save_pretrained(__a ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(__a ) model.push_to_hub(__a ) if __name__ == "__main__": _lowerCAmelCase: str = argparse.ArgumentParser() parser.add_argument( '--model', default='encodec_24khz', type=str, help='The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _lowerCAmelCase: str = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
20
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings lowercase__ : Dict = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = field(default=a__ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = super().to_dict() for k, v in d.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : List[Any] = v.to_dict() return d
8
0
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = RoFormerTokenizer UpperCamelCase = RoFormerTokenizerFast UpperCamelCase = True UpperCamelCase = True def A__ ( self :List[str] ): '''simple docstring''' super().setUp() def A__ ( self :List[str] , **__snake_case :str ): '''simple docstring''' return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **__snake_case ) def A__ ( self :str , **__snake_case :Dict ): '''simple docstring''' return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **__snake_case ) def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ : List[str] ="""永和服装饰品有限公司,今天天气非常好""" __magic_name__ : Any ="""永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Optional[Any] =self.get_tokenizer() __magic_name__ , __magic_name__ : Optional[int] =self.get_chinese_input_output_texts() __magic_name__ : Any =tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , output_text.split() ) __magic_name__ : Any =tokens + [tokenizer.unk_token] __magic_name__ : Union[str, Any] =[2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : str =self.get_rust_tokenizer() __magic_name__ , __magic_name__ : Any =self.get_chinese_input_output_texts() __magic_name__ : Any =tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , output_text.split() ) __magic_name__ : Optional[int] =tokens + [tokenizer.unk_token] __magic_name__ : Any =[2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def A__ ( self :Tuple ): '''simple docstring''' pass def A__ ( self :Dict ): '''simple docstring''' pass def A__ ( self :Tuple ): '''simple docstring''' pass
21
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : Optional[int] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''lxmert''' lowerCAmelCase = {} def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=9500 , _UpperCAmelCase=1600 , _UpperCAmelCase=400 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=9 , _UpperCAmelCase=5 , _UpperCAmelCase=5 , _UpperCAmelCase=2048 , _UpperCAmelCase=4 , _UpperCAmelCase=6.67 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , **_UpperCAmelCase , ): '''simple docstring''' __A : Tuple = vocab_size __A : int = hidden_size __A : str = num_attention_heads __A : Tuple = hidden_act __A : int = intermediate_size __A : str = hidden_dropout_prob __A : Optional[int] = attention_probs_dropout_prob __A : Optional[Any] = max_position_embeddings __A : Tuple = type_vocab_size __A : Optional[int] = initializer_range __A : Any = layer_norm_eps __A : Optional[Any] = num_qa_labels __A : Optional[int] = num_object_labels __A : Any = num_attr_labels __A : Union[str, Any] = l_layers __A : Optional[int] = x_layers __A : List[Any] = r_layers __A : Tuple = visual_feat_dim __A : Tuple = visual_pos_dim __A : Optional[int] = visual_loss_normalizer __A : int = task_matched __A : List[Any] = task_mask_lm __A : Optional[Any] = task_obj_predict __A : str = task_qa __A : List[Any] = visual_obj_loss __A : Optional[Any] = visual_attr_loss __A : Union[str, Any] = visual_feat_loss __A : Union[str, Any] = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**_UpperCAmelCase)
8
0
'''simple docstring''' import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class A ( nn.Module ): lowercase_ = 42 lowercase_ = 42 lowercase_ = 0.0 lowercase_ = 1 lowercase_ = 1 lowercase_ = True lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = jnp.floataa def __lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _a = [] _a = [] for i in range(self.num_layers ): _a = self.in_channels if i == 0 else self.out_channels _a = FlaxResnetBlockaD( in_channels=lowerCAmelCase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase_ ) _a = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCAmelCase_ ) _a = resnets _a = attentions if self.add_downsample: _a = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str=True ) -> str: """simple docstring""" _a = () for resnet, attn in zip(self.resnets , self.attentions ): _a = resnet(lowerCAmelCase_ , lowerCAmelCase_ , deterministic=lowerCAmelCase_ ) _a = attn(lowerCAmelCase_ , lowerCAmelCase_ , deterministic=lowerCAmelCase_ ) output_states += (hidden_states,) if self.add_downsample: _a = self.downsamplers_a(lowerCAmelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class A ( nn.Module ): lowercase_ = 42 lowercase_ = 42 lowercase_ = 0.0 lowercase_ = 1 lowercase_ = True lowercase_ = jnp.floataa def __lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" _a = [] for i in range(self.num_layers ): _a = self.in_channels if i == 0 else self.out_channels _a = FlaxResnetBlockaD( in_channels=lowerCAmelCase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase_ ) _a = resnets if self.add_downsample: _a = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str]=True ) -> Optional[Any]: """simple docstring""" _a = () for resnet in self.resnets: _a = resnet(lowerCAmelCase_ , lowerCAmelCase_ , deterministic=lowerCAmelCase_ ) output_states += (hidden_states,) if self.add_downsample: _a = self.downsamplers_a(lowerCAmelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class A ( nn.Module ): lowercase_ = 42 lowercase_ = 42 lowercase_ = 42 lowercase_ = 0.0 lowercase_ = 1 lowercase_ = 1 lowercase_ = True lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = jnp.floataa def __lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _a = [] _a = [] for i in range(self.num_layers ): _a = self.in_channels if (i == self.num_layers - 1) else self.out_channels _a = self.prev_output_channel if i == 0 else self.out_channels _a = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase_ ) _a = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCAmelCase_ ) _a = resnets _a = attentions if self.add_upsample: _a = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int]=True ) -> int: """simple docstring""" for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states _a = res_hidden_states_tuple[-1] _a = res_hidden_states_tuple[:-1] _a = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _a = resnet(lowerCAmelCase_ , lowerCAmelCase_ , deterministic=lowerCAmelCase_ ) _a = attn(lowerCAmelCase_ , lowerCAmelCase_ , deterministic=lowerCAmelCase_ ) if self.add_upsample: _a = self.upsamplers_a(lowerCAmelCase_ ) return hidden_states class A ( nn.Module ): lowercase_ = 42 lowercase_ = 42 lowercase_ = 42 lowercase_ = 0.0 lowercase_ = 1 lowercase_ = True lowercase_ = jnp.floataa def __lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" _a = [] for i in range(self.num_layers ): _a = self.in_channels if (i == self.num_layers - 1) else self.out_channels _a = self.prev_output_channel if i == 0 else self.out_channels _a = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase_ ) _a = resnets if self.add_upsample: _a = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int]=True ) -> Optional[Any]: """simple docstring""" for resnet in self.resnets: # pop res hidden states _a = res_hidden_states_tuple[-1] _a = res_hidden_states_tuple[:-1] _a = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _a = resnet(lowerCAmelCase_ , lowerCAmelCase_ , deterministic=lowerCAmelCase_ ) if self.add_upsample: _a = self.upsamplers_a(lowerCAmelCase_ ) return hidden_states class A ( nn.Module ): lowercase_ = 42 lowercase_ = 0.0 lowercase_ = 1 lowercase_ = 1 lowercase_ = False lowercase_ = False lowercase_ = jnp.floataa def __lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" _a = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] _a = [] for _ in range(self.num_layers ): _a = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCAmelCase_ ) _a = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase_ ) _a = resnets _a = attentions def __call__( self : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int]=True ) -> List[str]: """simple docstring""" _a = self.resnets[0](lowerCAmelCase_ , lowerCAmelCase_ ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): _a = attn(lowerCAmelCase_ , lowerCAmelCase_ , deterministic=lowerCAmelCase_ ) _a = resnet(lowerCAmelCase_ , lowerCAmelCase_ , deterministic=lowerCAmelCase_ ) return hidden_states
22
'''simple docstring''' import math import sys def _lowerCAmelCase ( __snake_case : int ) -> int: if number != int(__snake_case ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 __A : str = [-1] * (number + 1) __A : Dict = 0 for i in range(1 , number + 1 ): __A : int = sys.maxsize __A : int = int(math.sqrt(__snake_case ) ) for j in range(1 , root + 1 ): __A : str = 1 + answers[i - (j**2)] __A : Dict = min(__snake_case , __snake_case ) __A : Union[str, Any] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
8
0
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() snake_case__ : List[str] = logging.get_logger(__name__) snake_case__ : int = """https://openaipublic.azureedge.net/jukebox/models/""" snake_case__ : List[Any] = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def _snake_case (__lowercase): if key.endswith('.model.1.bias') and len(key.split('.')) > 10: UpperCamelCase_ = key.replace('.model.1.bias' , '.conv1d_1.bias') elif key.endswith('.model.1.weight') and len(key.split('.')) > 10: UpperCamelCase_ = key.replace('.model.1.weight' , '.conv1d_1.weight') elif key.endswith('.model.3.bias') and len(key.split('.')) > 10: UpperCamelCase_ = key.replace('.model.3.bias' , '.conv1d_2.bias') elif key.endswith('.model.3.weight') and len(key.split('.')) > 10: UpperCamelCase_ = key.replace('.model.3.weight' , '.conv1d_2.weight') if "conditioner_blocks.0." in key: UpperCamelCase_ = key.replace('conditioner_blocks.0' , 'conditioner_blocks') if "prime_prior" in key: UpperCamelCase_ = key.replace('prime_prior' , 'encoder') if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: UpperCamelCase_ = key.replace('.emb.' , '.') if key.endswith('k'): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook') if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.') if "x_emb.emb." in key: UpperCamelCase_ = key.replace('0.x_emb.emb' , 'embed_tokens') if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm') if ".ln" in key: return key.replace('.ln' , '.layer_norm') if "_ln" in key: return key.replace('_ln' , '_layer_norm') if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in') if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head') if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out') if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens') return key def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase): UpperCamelCase_ = {} import re UpperCamelCase_ = re.compile(r'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)') UpperCamelCase_ = re.compile( r'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)') UpperCamelCase_ = re.compile(r'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)') UpperCamelCase_ = re.compile(r'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)') UpperCamelCase_ = re.compile( r'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)') UpperCamelCase_ = re.compile(r'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)') UpperCamelCase_ = re.compile(r'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)') UpperCamelCase_ = re.compile( r'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)') UpperCamelCase_ = re.compile(r'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)') for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(__lowercase): UpperCamelCase_ = re_encoder_block_conv_in.match(__lowercase) UpperCamelCase_ = regex_match.groups() UpperCamelCase_ = int(groups[2]) * 2 + int(groups[3]) UpperCamelCase_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" UpperCamelCase_ = re_encoder_block_conv_in.sub(__lowercase , __lowercase) elif re_encoder_block_resnet.fullmatch(__lowercase): UpperCamelCase_ = re_encoder_block_resnet.match(__lowercase) UpperCamelCase_ = regex_match.groups() UpperCamelCase_ = int(groups[2]) * 2 + int(groups[3]) UpperCamelCase_ = {'1': 1, '3': 2}[groups[-2]] UpperCamelCase_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" UpperCamelCase_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" UpperCamelCase_ = prefix + resnet_block UpperCamelCase_ = re_encoder_block_resnet.sub(__lowercase , __lowercase) elif re_encoder_block_proj_out.fullmatch(__lowercase): UpperCamelCase_ = re_encoder_block_proj_out.match(__lowercase) UpperCamelCase_ = regex_match.groups() UpperCamelCase_ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" UpperCamelCase_ = re_encoder_block_proj_out.sub(__lowercase , __lowercase) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(__lowercase): UpperCamelCase_ = re_decoder_block_conv_out.match(__lowercase) UpperCamelCase_ = regex_match.groups() UpperCamelCase_ = int(groups[2]) * 2 + int(groups[3]) - 2 UpperCamelCase_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" UpperCamelCase_ = re_decoder_block_conv_out.sub(__lowercase , __lowercase) elif re_decoder_block_resnet.fullmatch(__lowercase): UpperCamelCase_ = re_decoder_block_resnet.match(__lowercase) UpperCamelCase_ = regex_match.groups() UpperCamelCase_ = int(groups[2]) * 2 + int(groups[3]) - 2 UpperCamelCase_ = {'1': 1, '3': 2}[groups[-2]] UpperCamelCase_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" UpperCamelCase_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" UpperCamelCase_ = prefix + resnet_block UpperCamelCase_ = re_decoder_block_resnet.sub(__lowercase , __lowercase) elif re_decoder_block_proj_in.fullmatch(__lowercase): UpperCamelCase_ = re_decoder_block_proj_in.match(__lowercase) UpperCamelCase_ = regex_match.groups() UpperCamelCase_ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" UpperCamelCase_ = re_decoder_block_proj_in.sub(__lowercase , __lowercase) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(__lowercase): UpperCamelCase_ = re_prior_cond_conv_out.match(__lowercase) UpperCamelCase_ = regex_match.groups() UpperCamelCase_ = int(groups[1]) * 2 + int(groups[2]) - 2 UpperCamelCase_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" UpperCamelCase_ = re_prior_cond_conv_out.sub(__lowercase , __lowercase) elif re_prior_cond_resnet.fullmatch(__lowercase): UpperCamelCase_ = re_prior_cond_resnet.match(__lowercase) UpperCamelCase_ = regex_match.groups() UpperCamelCase_ = int(groups[1]) * 2 + int(groups[2]) - 2 UpperCamelCase_ = {'1': 1, '3': 2}[groups[-2]] UpperCamelCase_ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" UpperCamelCase_ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" UpperCamelCase_ = prefix + resnet_block UpperCamelCase_ = re_prior_cond_resnet.sub(__lowercase , __lowercase) elif re_prior_cond_proj_in.fullmatch(__lowercase): UpperCamelCase_ = re_prior_cond_proj_in.match(__lowercase) UpperCamelCase_ = regex_match.groups() UpperCamelCase_ = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" UpperCamelCase_ = re_prior_cond_proj_in.sub(__lowercase , __lowercase) # keep original key else: UpperCamelCase_ = original_key UpperCamelCase_ = replace_key(__lowercase) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""") # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: UpperCamelCase_ = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""") UpperCamelCase_ = original_key UpperCamelCase_ = original_key UpperCamelCase_ = value return new_dict @torch.no_grad() def _snake_case (__lowercase=None , __lowercase=None): for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/")[-1]}"""): UpperCamelCase_ = requests.get(f"""{PREFIX}{file}""" , allow_redirects=__lowercase) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=__lowercase) open(f"""{pytorch_dump_folder_path}/{file.split("/")[-1]}""" , 'wb').write(r.content) UpperCamelCase_ = MODEL_MAPPING[model_name.split('/')[-1]] UpperCamelCase_ = JukeboxConfig.from_pretrained(__lowercase) UpperCamelCase_ = JukeboxModel(__lowercase) UpperCamelCase_ = [] UpperCamelCase_ = {} for i, dict_name in enumerate(__lowercase): UpperCamelCase_ = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/")[-1]}""")['model'] UpperCamelCase_ = {} for k in old_dic.keys(): if k.endswith('.b'): UpperCamelCase_ = old_dic[k] elif k.endswith('.w'): UpperCamelCase_ = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: UpperCamelCase_ = old_dic[k] else: UpperCamelCase_ = old_dic[k] UpperCamelCase_ = 'vqvae' if i == 0 else f"""priors.{3 - i}""" UpperCamelCase_ = fix_jukebox_keys(__lowercase , model.state_dict() , __lowercase , __lowercase) weight_dict.append(__lowercase) UpperCamelCase_ = weight_dict.pop(0) model.vqvae.load_state_dict(__lowercase) for i in range(len(__lowercase)): model.priors[i].load_state_dict(weight_dict[2 - i]) Path(__lowercase).mkdir(exist_ok=__lowercase) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , 'w') as txtfile: json.dump(__lowercase , __lowercase) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""") model.save_pretrained(__lowercase) return weight_dict if __name__ == "__main__": snake_case__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) snake_case__ : int = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
23
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( __snake_case : list[int] , __snake_case : list[int] , __snake_case : int ) -> tuple[float, list[float]]: __A : int = list(range(len(__snake_case ) ) ) __A : Optional[Any] = [v / w for v, w in zip(__snake_case , __snake_case )] index.sort(key=lambda __snake_case : ratio[i] , reverse=__snake_case ) __A : float = 0 __A : list[float] = [0] * len(__snake_case ) for i in index: if weight[i] <= capacity: __A : Optional[int] = 1 max_value += value[i] capacity -= weight[i] else: __A : List[Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def _UpperCamelCase (_lowerCamelCase : float , _lowerCamelCase : float )-> tuple: '''simple docstring''' if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
24
'''simple docstring''' from __future__ import annotations import math class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : int = size # approximate the overall size of segment tree with given value __A : Optional[Any] = [0 for i in range(0 , 4 * size)] # create array to store lazy update __A : Optional[Any] = [0 for i in range(0 , 4 * size)] __A : str = [0 for i in range(0 , 4 * size)] # flag for lazy update def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return idx * 2 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return idx * 2 + 1 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if left_element == right_element: __A : List[Any] = a[left_element - 1] else: __A : List[str] = (left_element + right_element) // 2 self.build(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.build(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase) __A : Any = max( self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)]) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.flag[idx] is True: __A : Optional[Any] = self.lazy[idx] __A : Optional[Any] = False if left_element != right_element: __A : List[Any] = self.lazy[idx] __A : Dict = self.lazy[idx] __A : Tuple = True __A : Union[str, Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: __A : Optional[int] = val if left_element != right_element: __A : Tuple = val __A : Any = val __A : Tuple = True __A : Union[str, Any] = True return True __A : str = (left_element + right_element) // 2 self.update(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.update(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : int = max( self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)]) return True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.flag[idx] is True: __A : Union[str, Any] = self.lazy[idx] __A : List[str] = False if left_element != right_element: __A : Union[str, Any] = self.lazy[idx] __A : Optional[int] = self.lazy[idx] __A : str = True __A : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] __A : Any = (left_element + right_element) // 2 __A : int = self.query(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : Union[str, Any] = self.query(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) return max(_UpperCAmelCase , _UpperCAmelCase) def __str__( self): '''simple docstring''' return str([self.query(1 , 1 , self.size , _UpperCAmelCase , _UpperCAmelCase) for i in range(1 , self.size + 1)]) if __name__ == "__main__": lowercase__ : Union[str, Any] = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] lowercase__ : str = 15 lowercase__ : List[Any] = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 1_11) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 2_35) print(segt)
8
0
import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class _UpperCamelCase : '''simple docstring''' def __init__( self : Union[str, Any] , a : Tuple , a : List[str]=13 , a : List[str]=7 , a : Union[str, Any]=True , a : List[Any]=True , a : Any=False , a : List[str]=True , a : str=99 , a : Union[str, Any]=64 , a : Any=5 , a : Dict=4 , a : List[Any]=64 , a : Optional[Any]="gelu" , a : Tuple=0.1 , a : Union[str, Any]=0.1 , a : Dict=512 , a : List[str]=16 , a : Tuple=2 , a : Optional[int]=0.02 , a : Tuple=3 , a : List[Any]=4 , a : Any=None , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = parent SCREAMING_SNAKE_CASE : List[Any] = batch_size SCREAMING_SNAKE_CASE : Any = seq_length SCREAMING_SNAKE_CASE : Tuple = is_training SCREAMING_SNAKE_CASE : List[Any] = use_input_mask SCREAMING_SNAKE_CASE : Union[str, Any] = use_token_type_ids SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Dict = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = type_vocab_size SCREAMING_SNAKE_CASE : str = type_sequence_label_size SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Dict = num_labels SCREAMING_SNAKE_CASE : Optional[int] = num_choices SCREAMING_SNAKE_CASE : Optional[int] = scope def __UpperCamelCase ( self : int ) -> List[str]: """simple docstring""" return MPNetConfig.from_pretrained("microsoft/mpnet-base" ) def __UpperCamelCase ( self : List[Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : Tuple = None if self.use_labels: SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self : Optional[int] , a : Union[str, Any] , a : str , a : int , a : List[str] , a : Union[str, Any] , a : List[str] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = MPNetModel(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Tuple = model(a , a ) SCREAMING_SNAKE_CASE : int = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __UpperCamelCase ( self : List[str] , a : Any , a : Union[str, Any] , a : Dict , a : int , a : List[Any] , a : Dict ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = MPNetForQuestionAnswering(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model( a , attention_mask=a , start_positions=a , end_positions=a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Tuple , a : Union[str, Any] , a : int , a : Optional[int] , a : Dict , a : Any , a : List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE : Dict = MPNetForSequenceClassification(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : List[str] , a : Any , a : Optional[Any] , a : Dict , a : Optional[Any] , a : int , a : Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.num_choices SCREAMING_SNAKE_CASE : Optional[int] = MPNetForMultipleChoice(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : List[Any] = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Optional[Any] , a : str , a : Tuple , a : Optional[int] , a : List[Any] , a : Tuple , a : int ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.num_labels SCREAMING_SNAKE_CASE : List[str] = MPNetForTokenClassification(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE) ,(SCREAMING_SNAKE_CASE)) : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE : List[str] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) lowerCamelCase__ =( { 'feature-extraction': MPNetModel, 'fill-mask': MPNetForMaskedLM, 'question-answering': MPNetForQuestionAnswering, 'text-classification': MPNetForSequenceClassification, 'token-classification': MPNetForTokenClassification, 'zero-shot': MPNetForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =True def __UpperCamelCase ( self : Tuple ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = MPNetModelTester(self ) SCREAMING_SNAKE_CASE : str = ConfigTester(self , config_class=a , hidden_size=37 ) def __UpperCamelCase ( self : int ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*a ) def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*a ) def __UpperCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*a ) def __UpperCamelCase ( self : Any ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*a ) def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*a ) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = MPNetModel.from_pretrained("microsoft/mpnet-base" ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE : List[str] = model(a )[0] SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , a ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , a , atol=1e-4 ) )
25
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int , __snake_case : int , __snake_case : int ) -> float: __A : Dict = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def _lowerCAmelCase ( ) -> Union[str, Any]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> float: """simple docstring""" __snake_case : str = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_lowerCamelCase )] ) __snake_case : Optional[Any] = np.array(_lowerCamelCase ) __snake_case : List[str] = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , _lowerCamelCase ) ) , x.transpose() ) , _lowerCamelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> float: """simple docstring""" __snake_case : Optional[int] = (1, 2, 1) __snake_case : Optional[int] = (1, 1, 0, 7) __snake_case : List[Any] = SARIMAX( _lowerCamelCase , exog=_lowerCamelCase , order=_lowerCamelCase , seasonal_order=_lowerCamelCase ) __snake_case : List[Any] = model.fit(disp=_lowerCamelCase , maxiter=600 , method="""nm""" ) __snake_case : List[Any] = model_fit.predict(1 , len(_lowerCamelCase ) , exog=[test_match] ) return result[0] def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> float: """simple docstring""" __snake_case : Optional[Any] = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(_lowerCamelCase , _lowerCamelCase ) __snake_case : Optional[Any] = regressor.predict(_lowerCamelCase ) return y_pred[0] def _a ( _lowerCamelCase ) -> float: """simple docstring""" train_user.sort() __snake_case : List[str] = np.percentile(_lowerCamelCase , 25 ) __snake_case : Optional[int] = np.percentile(_lowerCamelCase , 75 ) __snake_case : List[Any] = qa - qa __snake_case : List[str] = qa - (iqr * 0.1) return low_lim def _a ( _lowerCamelCase , _lowerCamelCase ) -> bool: """simple docstring""" __snake_case : Tuple = 0 __snake_case : str = 0 for i in list_vote: if i > actual_result: __snake_case : str = not_safe + 1 else: if abs(abs(_lowerCamelCase ) - abs(_lowerCamelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) __UpperCamelCase = [[18231, 0.0, 1], [22621, 1.0, 2], [15675, 0.0, 3], [23583, 1.0, 4]] __UpperCamelCase = pd.DataFrame( data_input, columns=["total_user", "total_even", "days"] ) __UpperCamelCase = Normalizer().fit_transform(data_input_df.values) # split data __UpperCamelCase = normalize_df[:, 2].tolist() __UpperCamelCase = normalize_df[:, 0].tolist() __UpperCamelCase = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) __UpperCamelCase = normalize_df[:, [1, 2]].tolist() __UpperCamelCase = x[: len(x) - 1] __UpperCamelCase = x[len(x) - 1 :] # for linear regression & sarimax __UpperCamelCase = total_date[: len(total_date) - 1] __UpperCamelCase = total_user[: len(total_user) - 1] __UpperCamelCase = total_match[: len(total_match) - 1] __UpperCamelCase = total_date[len(total_date) - 1 :] __UpperCamelCase = total_user[len(total_user) - 1 :] __UpperCamelCase = total_match[len(total_match) - 1 :] # voting system with forecasting __UpperCamelCase = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data __UpperCamelCase = "" if data_safety_checker(res_vote, tst_user) else "not " print("Today's data is {not_str}safe.")
26
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): '''simple docstring''' __A : Optional[int] = parent __A : str = 13 __A : List[Any] = 7 __A : List[str] = True __A : str = True __A : Optional[Any] = True __A : int = True __A : Dict = 99 __A : Dict = 384 __A : Any = 2 __A : int = 4 __A : Optional[Any] = 37 __A : Optional[int] = 'gelu' __A : Dict = 0.1 __A : Optional[int] = 0.1 __A : Any = 512 __A : int = 16 __A : List[str] = 2 __A : str = 0.02 __A : Any = 3 __A : str = 4 __A : Union[str, Any] = 128 __A : int = 2 __A : List[Any] = 9 __A : List[Any] = 1 __A : List[Any] = None def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __A : str = None if self.use_input_mask: __A : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __A : Optional[Any] = None if self.use_token_type_ids: __A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __A : Optional[int] = None __A : List[str] = None __A : Dict = None if self.use_labels: __A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) __A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __A : str = ids_tensor([self.batch_size] , self.num_choices) __A : List[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = TFConvBertModel(config=_UpperCAmelCase) __A : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __A : Tuple = [input_ids, input_mask] __A : Any = model(_UpperCAmelCase) __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : str = TFConvBertForMaskedLM(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : str = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = self.num_labels __A : Any = TFConvBertForSequenceClassification(config=_UpperCAmelCase) __A : Optional[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Tuple = self.num_choices __A : List[str] = TFConvBertForMultipleChoice(config=_UpperCAmelCase) __A : int = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : Optional[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : List[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : int = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __A : Optional[Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = self.num_labels __A : List[Any] = TFConvBertForTokenClassification(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : int = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = TFConvBertForQuestionAnswering(config=_UpperCAmelCase) __A : Any = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Union[str, Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.prepare_config_and_inputs() ( ( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) , ) : Union[str, Any] = config_and_inputs __A : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = TFConvBertModelTester(self) __A : str = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __A : List[str] = True __A : List[str] = True if hasattr(_UpperCAmelCase , 'use_cache'): __A : List[Any] = True __A : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : Union[str, Any] = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) for model_class in self.all_model_classes: __A : List[str] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase) __A : Optional[int] = model_class(_UpperCAmelCase) __A : Optional[Any] = len(model(_UpperCAmelCase)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase) __A : Union[str, Any] = os.path.join(_UpperCAmelCase , 'saved_model' , '1') __A : Tuple = tf.keras.models.load_model(_UpperCAmelCase) __A : str = model(_UpperCAmelCase) if self.is_encoder_decoder: __A : Optional[int] = outputs['encoder_hidden_states'] __A : str = outputs['encoder_attentions'] else: __A : List[Any] = outputs['hidden_states'] __A : Optional[Any] = outputs['attentions'] self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) __A : str = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) self.assertListEqual( list(output_hidden_states[0].shape[-2:]) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(output_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') self.assertIsNotNone(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Any = True __A : str = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length) __A : Any = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : int = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) __A : Tuple = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) def check_decoder_attentions_output(_UpperCAmelCase): __A : List[str] = len(_UpperCAmelCase) self.assertEqual(out_len % 2 , 0) __A : Any = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCAmelCase): __A : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __A : Dict = True __A : Any = False __A : str = model_class(_UpperCAmelCase) __A : List[str] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : List[str] = len(_UpperCAmelCase) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) if self.is_encoder_decoder: __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : int = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_decoder_attentions_output(_UpperCAmelCase) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __A : int = True __A : Tuple = model_class(_UpperCAmelCase) __A : Dict = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) # Check attention is always last and order is fine __A : Any = True __A : str = True __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : Union[str, Any] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase)) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) @require_tf class SCREAMING_SNAKE_CASE (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') __A : str = tf.constant([[0, 1, 2, 3, 4, 5]]) __A : Optional[int] = model(_UpperCAmelCase)[0] __A : List[Any] = [1, 6, 768] self.assertEqual(output.shape , _UpperCAmelCase) __A : Tuple = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ]) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4)
8
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __A : Union[str, Any] = logging.get_logger(__name__) class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = ['input_features', 'is_longer'] def __init__( self , snake_case_=64 , snake_case_=4_8000 , snake_case_=480 , snake_case_=10 , snake_case_=1024 , snake_case_=0.0 , snake_case_=False , snake_case_ = 0 , snake_case_ = 1_4000 , snake_case_ = None , snake_case_ = "fusion" , snake_case_ = "repeatpad" , **snake_case_ , ): super().__init__( feature_size=snake_case_ , sampling_rate=snake_case_ , padding_value=snake_case_ , return_attention_mask=snake_case_ , **snake_case_ , ) _A = top_db _A = truncation _A = padding _A = fft_window_size _A = (fft_window_size >> 1) + 1 _A = hop_length _A = max_length_s _A = max_length_s * sampling_rate _A = sampling_rate _A = frequency_min _A = frequency_max _A = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case_ , min_frequency=snake_case_ , max_frequency=snake_case_ , sampling_rate=snake_case_ , norm=snake_case_ , mel_scale='htk' , ) _A = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case_ , min_frequency=snake_case_ , max_frequency=snake_case_ , sampling_rate=snake_case_ , norm='slaney' , mel_scale='slaney' , ) def lowerCAmelCase__ ( self ): _A = copy.deepcopy(self.__dict__ ) _A = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None ): _A = spectrogram( snake_case_ , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=snake_case_ , log_mel='dB' , ) return log_mel_spectrogram.T def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ ): _A = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _A = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _A = [0] # randomly choose index for each part _A = np.random.choice(ranges[0] ) _A = np.random.choice(ranges[1] ) _A = np.random.choice(ranges[2] ) _A = mel[idx_front : idx_front + chunk_frames, :] _A = mel[idx_middle : idx_middle + chunk_frames, :] _A = mel[idx_back : idx_back + chunk_frames, :] _A = torch.tensor(mel[None, None, :] ) _A = torch.nn.functional.interpolate( snake_case_ , size=[chunk_frames, 64] , mode='bilinear' , align_corners=snake_case_ ) _A = mel_shrink[0][0].numpy() _A = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": _A = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _A = len(snake_case_ ) - max_length _A = np.random.randint(0 , overflow + 1 ) _A = waveform[idx : idx + max_length] _A = self._np_extract_fbank_features(snake_case_ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _A = self._np_extract_fbank_features(snake_case_ , self.mel_filters ) _A = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _A = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _A = np.stack([mel, mel, mel, mel] , axis=0 ) _A = False else: _A = self._random_mel_fusion(snake_case_ , snake_case_ , snake_case_ ) _A = True else: raise NotImplementedError(F"data_truncating {truncation} not implemented" ) else: _A = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _A = int(max_length / len(snake_case_ ) ) _A = np.stack(np.tile(snake_case_ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _A = int(max_length / len(snake_case_ ) ) _A = np.stack(np.tile(snake_case_ , snake_case_ ) ) _A = np.pad(snake_case_ , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": _A = self._np_extract_fbank_features(snake_case_ , self.mel_filters ) _A = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _A = self._np_extract_fbank_features(snake_case_ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , **snake_case_ , ): _A = truncation if truncation is not None else self.truncation _A = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" F" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" F" was sampled with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _A = isinstance(snake_case_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) _A = is_batched_numpy or ( isinstance(snake_case_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _A = [np.asarray(snake_case_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case_ , np.ndarray ): _A = np.asarray(snake_case_ , dtype=np.floataa ) elif isinstance(snake_case_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _A = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _A = [np.asarray(snake_case_ )] # convert to mel spectrogram, truncate and pad if needed. _A = [ self._get_input_mel(snake_case_ , max_length if max_length else self.nb_max_samples , snake_case_ , snake_case_ ) for waveform in raw_speech ] _A = [] _A = [] for mel, longer in padded_inputs: input_mel.append(snake_case_ ) is_longer.append(snake_case_ ) if truncation == "fusion" and sum(snake_case_ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _A = np.random.randint(0 , len(snake_case_ ) ) _A = True if isinstance(input_mel[0] , snake_case_ ): _A = [np.asarray(snake_case_ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _A = [[longer] for longer in is_longer] _A = {'input_features': input_mel, 'is_longer': is_longer} _A = BatchFeature(snake_case_ ) if return_tensors is not None: _A = input_features.convert_to_tensors(snake_case_ ) return input_features
27
'''simple docstring''' import argparse import os import re lowercase__ : Optional[int] = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowercase__ : Dict = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowercase__ : List[str] = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase__ : Tuple = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowercase__ : str = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase__ : str = re.compile(r'''\[([^\]]+)\]''') def _lowerCAmelCase ( __snake_case : str ) -> Tuple: __A : List[Any] = _re_indent.search(__snake_case ) return "" if search is None else search.groups()[0] def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : str="" , __snake_case : Any=None , __snake_case : List[Any]=None ) -> Optional[int]: __A : Tuple = 0 __A : Optional[int] = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(__snake_case ): index += 1 __A : Optional[int] = ['\n'.join(lines[:index] )] else: __A : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __A : Tuple = [lines[index]] index += 1 while index < len(__snake_case ) and (end_prompt is None or not lines[index].startswith(__snake_case )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__snake_case ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(__snake_case ) ) if index < len(__snake_case ) - 1: __A : Union[str, Any] = [lines[index + 1]] index += 1 else: __A : Union[str, Any] = [] else: blocks.append('\n'.join(__snake_case ) ) __A : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__snake_case ) > 0: blocks.append('\n'.join(__snake_case ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__snake_case ): blocks.append('\n'.join(lines[index:] ) ) return blocks def _lowerCAmelCase ( __snake_case : List[Any] ) -> int: def _inner(__snake_case : List[Any] ): return key(__snake_case ).lower().replace('_' , '' ) return _inner def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any=None ) -> List[Any]: # If no key is provided, we use a noop. def noop(__snake_case : List[Any] ): return x if key is None: __A : Optional[Any] = noop # Constants are all uppercase, they go first. __A : str = [obj for obj in objects if key(__snake_case ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __A : List[str] = [obj for obj in objects if key(__snake_case )[0].isupper() and not key(__snake_case ).isupper()] # Functions begin with a lowercase, they go last. __A : str = [obj for obj in objects if not key(__snake_case )[0].isupper()] __A : Tuple = ignore_underscore(__snake_case ) return sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Tuple: # This inner function sort imports between [ ]. def _replace(__snake_case : Tuple ): __A : List[str] = match.groups()[0] if "," not in imports: return f'[{imports}]' __A : int = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Dict = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(__snake_case )] ) + "]" __A : List[Any] = import_statement.split('\n' ) if len(__snake_case ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __A : Optional[int] = 2 if lines[1].strip() == '[' else 1 __A : Any = [(i, _re_strip_line.search(__snake_case ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __A : Optional[int] = sort_objects(__snake_case , key=lambda __snake_case : x[1] ) __A : Any = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__snake_case ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __A : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] ) else: __A : Dict = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Tuple = keys[:-1] __A : List[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(__snake_case )] ) return "\n".join(__snake_case ) else: # Finally we have to deal with imports fitting on one line __A : Optional[Any] = _re_bracket_content.sub(_replace , __snake_case ) return import_statement def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : List[Any]=True ) -> Optional[Any]: with open(__snake_case , 'r' ) as f: __A : Dict = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __A : str = split_code_in_indented_blocks( __snake_case , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__snake_case ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __A : Tuple = main_blocks[block_idx] __A : int = block.split('\n' ) # Get to the start of the imports. __A : Tuple = 0 while line_idx < len(__snake_case ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __A : Optional[int] = len(__snake_case ) else: line_idx += 1 if line_idx >= len(__snake_case ): continue # Ignore beginning and last line: they don't contain anything. __A : Dict = '\n'.join(block_lines[line_idx:-1] ) __A : int = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __A : Optional[int] = split_code_in_indented_blocks(__snake_case , indent_level=__snake_case ) # We have two categories of import key: list or _import_structure[key].append/extend __A : Any = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __A : Dict = [(pattern.search(__snake_case ).groups()[0] if pattern.search(__snake_case ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __A : Optional[Any] = [(i, key) for i, key in enumerate(__snake_case ) if key is not None] __A : Tuple = [x[0] for x in sorted(__snake_case , key=lambda __snake_case : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __A : str = 0 __A : Any = [] for i in range(len(__snake_case ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __A : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(__snake_case ) count += 1 # And we put our main block back together with its first and last line. __A : int = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(__snake_case ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(__snake_case , 'w' ) as f: f.write('\n'.join(__snake_case ) ) def _lowerCAmelCase ( __snake_case : int=True ) -> Optional[Any]: __A : Tuple = [] for root, _, files in os.walk(__snake_case ): if "__init__.py" in files: __A : List[Any] = sort_imports(os.path.join(__snake_case , '__init__.py' ) , check_only=__snake_case ) if result: __A : Dict = [os.path.join(__snake_case , '__init__.py' )] if len(__snake_case ) > 0: raise ValueError(f'Would overwrite {len(__snake_case )} files, run `make style`.' ) if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowercase__ : Union[str, Any] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
8
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : List[str] = '''roformer''' def __init__( self, A=50_000, A=None, A=768, A=12, A=12, A=3_072, A="gelu", A=0.1, A=0.1, A=1_536, A=2, A=0.02, A=1E-12, A=0, A=False, A=True, **A, ): '''simple docstring''' super().__init__(pad_token_id=A, **A ) SCREAMING_SNAKE_CASE : List[Any] = vocab_size SCREAMING_SNAKE_CASE : int = hidden_size if embedding_size is None else embedding_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : Dict = num_hidden_layers SCREAMING_SNAKE_CASE : List[str] = num_attention_heads SCREAMING_SNAKE_CASE : Any = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE : str = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps SCREAMING_SNAKE_CASE : Tuple = rotary_value SCREAMING_SNAKE_CASE : str = use_cache class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def UpperCamelCase_ ( self ): '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[int] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE : Optional[int] = {0: 'batch', 1: 'sequence'} SCREAMING_SNAKE_CASE : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
28
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int ) -> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') lowercase__ : int = int(input('''Enter number: ''').strip()) print(f"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
8
0
"""simple docstring""" from ...processing_utils import ProcessorMixin class __lowerCamelCase ( lowerCAmelCase ): a__: Tuple = 'SpeechT5FeatureExtractor' a__: List[str] = 'SpeechT5Tokenizer' def __init__( self , UpperCAmelCase , UpperCAmelCase ): super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self , *UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ = kwargs.pop('''audio''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''text''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''text_target''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''audio_target''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''sampling_rate''' , UpperCAmelCase ) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''' ) if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''' ) if audio is not None: lowerCamelCase_ = self.feature_extractor(UpperCAmelCase , *UpperCAmelCase , sampling_rate=UpperCAmelCase , **UpperCAmelCase ) elif text is not None: lowerCamelCase_ = self.tokenizer(UpperCAmelCase , **UpperCAmelCase ) else: lowerCamelCase_ = None if audio_target is not None: lowerCamelCase_ = self.feature_extractor(audio_target=UpperCAmelCase , *UpperCAmelCase , sampling_rate=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = targets['''input_values'''] elif text_target is not None: lowerCamelCase_ = self.tokenizer(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = targets['''input_ids'''] else: lowerCamelCase_ = None if inputs is None: return targets if targets is not None: lowerCamelCase_ = labels lowerCamelCase_ = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: lowerCamelCase_ = decoder_attention_mask return inputs def UpperCAmelCase__ ( self , *UpperCAmelCase , **UpperCAmelCase ): lowerCamelCase_ = kwargs.pop('''input_values''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''input_ids''' , UpperCAmelCase ) lowerCamelCase_ = kwargs.pop('''labels''' , UpperCAmelCase ) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''' ) if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''' ) if input_values is not None: lowerCamelCase_ = self.feature_extractor.pad(UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) elif input_ids is not None: lowerCamelCase_ = self.tokenizer.pad(UpperCAmelCase , **UpperCAmelCase ) else: lowerCamelCase_ = None if labels is not None: if "input_ids" in labels or (isinstance(UpperCAmelCase , UpperCAmelCase ) and "input_ids" in labels[0]): lowerCamelCase_ = self.tokenizer.pad(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = targets['''input_ids'''] else: lowerCamelCase_ = self.feature_extractor.feature_size lowerCamelCase_ = self.feature_extractor.num_mel_bins lowerCamelCase_ = self.feature_extractor.pad(UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = feature_size_hack lowerCamelCase_ = targets['''input_values'''] else: lowerCamelCase_ = None if inputs is None: return targets if targets is not None: lowerCamelCase_ = labels lowerCamelCase_ = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: lowerCamelCase_ = decoder_attention_mask return inputs def UpperCAmelCase__ ( self , *UpperCAmelCase , **UpperCAmelCase ): return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase__ ( self , *UpperCAmelCase , **UpperCAmelCase ): return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
29
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : str = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def _lowerCAmelCase ( __snake_case : List[Any] ) -> Tuple: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __A : Optional[Any] = k.replace(__snake_case , __snake_case ) if k.startswith('encoder' ): __A : Any = k.replace('.attn' , '.self_attn' ) __A : Any = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): __A : Tuple = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'encoder_attn_layer_norm' ) __A : int = k.replace('norm3' , 'final_layer_norm' ) return k def _lowerCAmelCase ( __snake_case : List[Any] ) -> Dict: __A : Optional[int] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: __A : Tuple = sd.pop(__snake_case ) __A : Union[str, Any] = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd __A : str = v lowercase__ : Tuple = ['''START'''] @torch.no_grad() def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any , __snake_case : List[Any] ) -> int: __A : List[str] = torch.load(__snake_case , map_location='cpu' ) __A : Tuple = model['model'] __A : str = BlenderbotConfig.from_json_file(__snake_case ) __A : int = BlenderbotForConditionalGeneration(__snake_case ) __A : List[Any] = m.model.state_dict().keys() __A : Optional[int] = [] __A : Optional[int] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __A : Union[str, Any] = rename_state_dict_key(__snake_case ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __A : Optional[Any] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__snake_case ) m.model.load_state_dict(__snake_case , strict=__snake_case ) m.half() m.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
8
0
import colorsys from PIL import Image # type: ignore def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = x UpperCAmelCase_ : List[str] = y for step in range(_lowercase ): # noqa: B007 UpperCAmelCase_ : Union[str, Any] = a * a - b * b + x UpperCAmelCase_ : List[Any] = 2 * a * b + y UpperCAmelCase_ : List[Any] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(_lowercase , 1 , 1 ) ) def lowerCamelCase__ ( _lowercase = 800 , _lowercase = 600 , _lowercase = -0.6 , _lowercase = 0 , _lowercase = 3.2 , _lowercase = 50 , _lowercase = True , ): '''simple docstring''' UpperCAmelCase_ : int = Image.new('''RGB''' , (image_width, image_height) ) UpperCAmelCase_ : List[str] = img.load() # loop through the image-coordinates for image_x in range(_lowercase ): for image_y in range(_lowercase ): # determine the figure-coordinates based on the image-coordinates UpperCAmelCase_ : str = figure_width / image_width * image_height UpperCAmelCase_ : Dict = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCAmelCase_ : Any = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCAmelCase_ : int = get_distance(_lowercase , _lowercase , _lowercase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCAmelCase_ : Dict = get_color_coded_rgb(_lowercase ) else: UpperCAmelCase_ : int = get_black_and_white_rgb(_lowercase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure __a = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
30
'''simple docstring''' import mpmath # for roots of unity import numpy as np class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None): '''simple docstring''' __A : List[Any] = list(poly_a or [0])[:] __A : Optional[int] = list(poly_b or [0])[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __A : Union[str, Any] = len(self.polyA) while self.polyB[-1] == 0: self.polyB.pop() __A : Optional[int] = len(self.polyB) # Add 0 to make lengths equal a power of 2 __A : Optional[Any] = int( 2 ** np.ceil(np.loga(len(self.polyA) + len(self.polyB) - 1))) while len(self.polyA) < self.c_max_length: self.polyA.append(0) while len(self.polyB) < self.c_max_length: self.polyB.append(0) # A complex root used for the fourier transform __A : str = complex(mpmath.root(x=1 , n=self.c_max_length , k=1)) # The product __A : Tuple = self.__multiply() def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(_UpperCAmelCase) <= 1: return dft[0] # __A : Dict = self.c_max_length // 2 while next_ncol > 0: __A : Optional[Any] = [[] for i in range(_UpperCAmelCase)] __A : Tuple = self.root**next_ncol # First half of next step __A : Optional[Any] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j]) current_root *= root # Second half of next step __A : List[str] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j]) current_root *= root # Update __A : Optional[int] = new_dft __A : Tuple = next_ncol // 2 return dft[0] def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.__dft('A') __A : Optional[Any] = self.__dft('B') __A : str = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]] del dft_a del dft_b # Corner Case if len(inverce_c[0]) <= 1: return inverce_c[0] # Inverse DFT __A : Dict = 2 while next_ncol <= self.c_max_length: __A : Optional[int] = [[] for i in range(_UpperCAmelCase)] __A : Any = self.root ** (next_ncol // 2) __A : Tuple = 1 # First half of next step for j in range(self.c_max_length // next_ncol): for i in range(next_ncol // 2): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root)) current_root *= root # Update __A : int = new_inverse_c next_ncol *= 2 # Unpack __A : Optional[int] = [round(x[0].real , 8) + round(x[0].imag , 8) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self): '''simple docstring''' __A : int = 'A = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A])) __A : Optional[Any] = 'B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B])) __A : str = 'A*B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.product)) return F'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
0
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = jnp.ones((batch_size, length) ) / length return scores def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = 20 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(batch_size=2 , length=_lowerCAmelCase ) # tweak scores to not be uniform anymore SCREAMING_SNAKE_CASE_ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch SCREAMING_SNAKE_CASE_ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax SCREAMING_SNAKE_CASE_ = jax.nn.softmax(_lowerCAmelCase , axis=-1 ) SCREAMING_SNAKE_CASE_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) SCREAMING_SNAKE_CASE_ = FlaxTemperatureLogitsWarper(temperature=1.3 ) SCREAMING_SNAKE_CASE_ = jax.nn.softmax(temp_dist_warper_sharper(_lowerCAmelCase , scores.copy() , cur_len=_lowerCAmelCase ) , axis=-1 ) SCREAMING_SNAKE_CASE_ = jax.nn.softmax(temp_dist_warper_smoother(_lowerCAmelCase , scores.copy() , cur_len=_lowerCAmelCase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = 10 SCREAMING_SNAKE_CASE_ = 2 # create ramp distribution SCREAMING_SNAKE_CASE_ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() SCREAMING_SNAKE_CASE_ = ramp_logits[1:, : vocab_size // 2] + vocab_size SCREAMING_SNAKE_CASE_ = FlaxTopKLogitsWarper(3 ) SCREAMING_SNAKE_CASE_ = top_k_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case SCREAMING_SNAKE_CASE_ = 5 SCREAMING_SNAKE_CASE_ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) SCREAMING_SNAKE_CASE_ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] , (batch_size, length) ).copy() SCREAMING_SNAKE_CASE_ = top_k_warp_safety_check(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = 10 SCREAMING_SNAKE_CASE_ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) SCREAMING_SNAKE_CASE_ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) SCREAMING_SNAKE_CASE_ = FlaxTopPLogitsWarper(0.8 ) SCREAMING_SNAKE_CASE_ = np.exp(top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 SCREAMING_SNAKE_CASE_ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # check edge cases with negative and extreme logits SCREAMING_SNAKE_CASE_ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme SCREAMING_SNAKE_CASE_ = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept SCREAMING_SNAKE_CASE_ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) SCREAMING_SNAKE_CASE_ = top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = 20 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_lowerCAmelCase ) # check that min length is applied at length 5 SCREAMING_SNAKE_CASE_ = ids_tensor((batch_size, 20) , vocab_size=20 ) SCREAMING_SNAKE_CASE_ = 5 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = min_dist_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('inf' )] ) # check that min length is not applied anymore at length 15 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 15 SCREAMING_SNAKE_CASE_ = min_dist_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = 20 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the bos_token_id score SCREAMING_SNAKE_CASE_ = ids_tensor((batch_size, 1) , vocab_size=20 ) SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = 20 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 5 SCREAMING_SNAKE_CASE_ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached SCREAMING_SNAKE_CASE_ = ids_tensor((batch_size, 4) , vocab_size=20 ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 10 SCREAMING_SNAKE_CASE_ = 15 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_ = ids_tensor((batch_size, sequence_length) , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = input_ids.copy() SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) SCREAMING_SNAKE_CASE_ = FlaxTopKLogitsWarper(3 ) SCREAMING_SNAKE_CASE_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors SCREAMING_SNAKE_CASE_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 10 # no processor list SCREAMING_SNAKE_CASE_ = temp_dist_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = top_k_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = min_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = bos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = eos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # with processor list SCREAMING_SNAKE_CASE_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) SCREAMING_SNAKE_CASE_ = processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 10 SCREAMING_SNAKE_CASE_ = 15 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_ = ids_tensor((batch_size, sequence_length) , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = input_ids.copy() SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) SCREAMING_SNAKE_CASE_ = FlaxTopKLogitsWarper(3 ) SCREAMING_SNAKE_CASE_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors SCREAMING_SNAKE_CASE_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 10 # no processor list def run_no_processor_list(_lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = temp_dist_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = top_k_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = min_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = bos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = eos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) return scores # with processor list def run_processor_list(_lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) SCREAMING_SNAKE_CASE_ = processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) return scores SCREAMING_SNAKE_CASE_ = jax.jit(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = jax.jit(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = jitted_run_no_processor_list(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = jitted_run_processor_list(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
31
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=[30, 30] , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=None , _UpperCAmelCase=8 , _UpperCAmelCase=10 , ): '''simple docstring''' __A : Union[str, Any] = parent __A : Tuple = batch_size __A : List[str] = image_size __A : Dict = patch_size __A : Optional[Any] = num_channels __A : Tuple = is_training __A : Dict = use_labels __A : List[Any] = hidden_size __A : Tuple = num_hidden_layers __A : int = num_attention_heads __A : Optional[int] = intermediate_size __A : Tuple = hidden_act __A : Any = hidden_dropout_prob __A : Optional[Any] = attention_probs_dropout_prob __A : List[Any] = type_sequence_label_size __A : List[Any] = initializer_range __A : Optional[int] = num_labels __A : List[Any] = scope __A : Any = n_targets __A : Union[str, Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens __A : List[str] = (image_size[1] // patch_size) * (image_size[0] // patch_size) __A : int = num_patches + 1 + self.num_detection_tokens def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]]) __A : Tuple = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) __A : List[Any] = [] for i in range(self.batch_size): __A : Optional[int] = {} __A : Union[str, Any] = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=_UpperCAmelCase) __A : str = torch.rand(self.n_targets , 4 , device=_UpperCAmelCase) labels.append(_UpperCAmelCase) __A : Any = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosModel(config=_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosForObjectDetection(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : str = model(pixel_values=_UpperCAmelCase) __A : List[str] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) __A : Union[str, Any] = model(pixel_values=_UpperCAmelCase , labels=_UpperCAmelCase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.prepare_config_and_inputs() __A ,__A ,__A : Tuple = config_and_inputs __A : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowerCAmelCase = ( {'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' __A : Optional[Any] = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase) if return_labels: if model_class.__name__ == "YolosForObjectDetection": __A : Any = [] for i in range(self.model_tester.batch_size): __A : Tuple = {} __A : Tuple = torch.ones( size=(self.model_tester.n_targets,) , device=_UpperCAmelCase , dtype=torch.long) __A : Optional[Any] = torch.ones( self.model_tester.n_targets , 4 , device=_UpperCAmelCase , dtype=torch.float) labels.append(_UpperCAmelCase) __A : str = labels return inputs_dict def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = YolosModelTester(self) __A : Dict = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Tuple = model_class(_UpperCAmelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __A : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[Any] = model_class(_UpperCAmelCase) __A : str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : int = [*signature.parameters.keys()] __A : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Optional[int] = True # in YOLOS, the seq_len is different __A : Dict = self.model_tester.expected_seq_len for model_class in self.all_model_classes: __A : Dict = True __A : Dict = False __A : Union[str, Any] = True __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : Any = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] __A : List[Any] = True __A : List[str] = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __A : str = len(_UpperCAmelCase) # Check attention is always last and order is fine __A : Dict = True __A : Dict = True __A : Dict = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = 1 self.assertEqual(out_len + added_hidden_states , len(_UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.hidden_states __A : List[str] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) # YOLOS has a different seq_length __A : Dict = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[str] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A : Optional[int] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : List[Any] = YolosModel.from_pretrained(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase) def _lowerCAmelCase ( ) -> int: __A : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return AutoImageProcessor.from_pretrained('hustvl/yolos-small') if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = YolosForObjectDetection.from_pretrained('hustvl/yolos-small').to(_UpperCAmelCase) __A : Any = self.default_image_processor __A : str = prepare_img() __A : int = image_processor(images=_UpperCAmelCase , return_tensors='pt').to(_UpperCAmelCase) # forward pass with torch.no_grad(): __A : str = model(inputs.pixel_values) # verify outputs __A : Tuple = torch.Size((1, 100, 92)) self.assertEqual(outputs.logits.shape , _UpperCAmelCase) __A : Dict = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=_UpperCAmelCase , ) __A : int = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=_UpperCAmelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) # verify postprocessing __A : List[str] = image_processor.post_process_object_detection( _UpperCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]])[0] __A : Optional[int] = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861]).to(_UpperCAmelCase) __A : Union[str, Any] = [75, 75, 17, 63, 17] __A : Any = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495]).to(_UpperCAmelCase) self.assertEqual(len(results['scores']) , 5) self.assertTrue(torch.allclose(results['scores'] , _UpperCAmelCase , atol=1e-4)) self.assertSequenceEqual(results['labels'].tolist() , _UpperCAmelCase) self.assertTrue(torch.allclose(results['boxes'][0, :] , _UpperCAmelCase))
8
0
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class __UpperCamelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=32 , _UpperCamelCase=5 , _UpperCamelCase=4 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=50 , _UpperCamelCase=0.02 , _UpperCamelCase=True , _UpperCamelCase=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = initializer_range _UpperCAmelCase = use_labels _UpperCAmelCase = scope def UpperCamelCase( self ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = self.get_config() return config, input_ids, input_mask, token_labels def UpperCamelCase( self ): return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) def UpperCamelCase( self ): ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = self.prepare_config_and_inputs() _UpperCAmelCase = True _UpperCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase , ): _UpperCAmelCase = BertGenerationEncoder(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , attention_mask=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase , ): _UpperCAmelCase = True _UpperCAmelCase = BertGenerationEncoder(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , attention_mask=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , encoder_attention_mask=_UpperCamelCase , ) _UpperCAmelCase = model( _UpperCamelCase , attention_mask=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase , ): _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = BertGenerationDecoder(config=_UpperCamelCase ).to(_UpperCamelCase ).eval() # first forward pass _UpperCAmelCase = model( _UpperCamelCase , attention_mask=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , encoder_attention_mask=_UpperCamelCase , use_cache=_UpperCamelCase , ) _UpperCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) _UpperCAmelCase = model( _UpperCamelCase , attention_mask=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , encoder_attention_mask=_UpperCamelCase , output_hidden_states=_UpperCamelCase , )['''hidden_states'''][0] _UpperCAmelCase = model( _UpperCamelCase , attention_mask=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , encoder_attention_mask=_UpperCamelCase , past_key_values=_UpperCamelCase , output_hidden_states=_UpperCamelCase , )['''hidden_states'''][0] # select random slice _UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() _UpperCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , *_UpperCamelCase , ): _UpperCAmelCase = BertGenerationDecoder(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( A__ , A__ , A__ , unittest.TestCase ): __A : Dict = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () __A : Tuple = (BertGenerationDecoder,) if is_torch_available() else () __A : Tuple = ( {"""feature-extraction""": BertGenerationEncoder, """text-generation""": BertGenerationDecoder} if is_torch_available() else {} ) def UpperCamelCase( self ): _UpperCAmelCase = BertGenerationEncoderTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def UpperCamelCase( self ): self.config_tester.run_common_tests() def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = '''bert''' self.model_tester.create_and_check_model(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*_UpperCamelCase ) def UpperCamelCase( self ): # This regression test was failing with PyTorch < 1.3 ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() _UpperCAmelCase = None self.model_tester.create_and_check_model_as_decoder( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*_UpperCamelCase ) @slow def UpperCamelCase( self ): _UpperCAmelCase = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) self.assertIsNotNone(_UpperCamelCase ) @require_torch class __UpperCamelCase ( unittest.TestCase ): @slow def UpperCamelCase( self ): _UpperCAmelCase = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) _UpperCAmelCase = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] ) with torch.no_grad(): _UpperCAmelCase = model(_UpperCamelCase )[0] _UpperCAmelCase = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape , _UpperCamelCase ) _UpperCAmelCase = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) @require_torch class __UpperCamelCase ( unittest.TestCase ): @slow def UpperCamelCase( self ): _UpperCAmelCase = BertGenerationDecoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) _UpperCAmelCase = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] ) with torch.no_grad(): _UpperCAmelCase = model(_UpperCamelCase )[0] _UpperCAmelCase = torch.Size([1, 8, 50358] ) self.assertEqual(output.shape , _UpperCamelCase ) _UpperCAmelCase = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) )
32
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: lowercase__ : Optional[int] = None lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ : List[str] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } lowercase__ : Dict = { '''camembert-base''': 5_12, } lowercase__ : str = '''▁''' class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] lowerCAmelCase = CamembertTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **_UpperCAmelCase , ): '''simple docstring''' __A : int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __A : List[str] = vocab_file __A : Optional[int] = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A : Optional[Any] = [self.cls_token_id] __A : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' __A : Optional[int] = [self.sep_token_id] __A : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(_UpperCAmelCase): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return __A : List[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCAmelCase): copyfile(self.vocab_file , _UpperCAmelCase) return (out_vocab_file,)
8
0
import os from datetime import datetime as dt from github import Github lowerCamelCase__ : int = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: snake_case__ = Github(os.environ['''GITHUB_TOKEN'''] ) snake_case__ = g.get_repo('''huggingface/diffusers''' ) snake_case__ = repo.get_issues(state='''open''' ) for issue in open_issues: snake_case__ = sorted(issue.get_comments() , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase ) snake_case__ = comments[0] if len(__lowerCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
33
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowercase__ : Any = '''hf-internal-testing/tiny-random-bert''' lowercase__ : Optional[Any] = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') lowercase__ : List[Any] = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase)) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase))) with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Any = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) self.assertTrue(os.path.isfile(_UpperCAmelCase)) # File is cached at the same place the second time. __A : Tuple = cached_file(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) # Using a specific revision to test the full commit hash. __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='9b8c223') self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): __A : Dict = cached_file('tiny-random-bert' , _UpperCAmelCase) with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): __A : Optional[int] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='aaaa') with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : int = cached_file(_UpperCAmelCase , 'conf') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : Any = cached_file(_UpperCAmelCase , 'conf') with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Dict = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '.no_exist' , _UpperCAmelCase , 'conf'))) __A : List[Any] = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : str = cached_file(_UpperCAmelCase , 'conf' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : List[str] = mock.Mock() __A : Dict = 500 __A : List[str] = {} __A : List[Any] = HTTPError __A : Optional[Any] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=_UpperCAmelCase) as mock_head: __A : Dict = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_connection_errors=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt')) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): get_file_from_repo('bert-base-case' , _UpperCAmelCase) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): get_file_from_repo('bert-base-cased' , _UpperCAmelCase , revision='ahaha') __A : List[str] = get_file_from_repo('bert-base-cased' , _UpperCAmelCase) # The name is the cached name which is not very easy to test, so instead we load the content. __A : List[str] = json.loads(open(_UpperCAmelCase , 'r').read()) self.assertEqual(config['hidden_size'] , 768) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __A : Tuple = Path(_UpperCAmelCase) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , 'a.txt') , str(_UpperCAmelCase)) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , 'b.txt'))
8
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = '''data2vec-text''' def __init__( self , lowerCamelCase_=3_0_5_2_2 , lowerCamelCase_=7_6_8 , lowerCamelCase_=1_2 , lowerCamelCase_=1_2 , lowerCamelCase_=3_0_7_2 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=1e-12 , lowerCamelCase_=1 , lowerCamelCase_=0 , lowerCamelCase_=2 , lowerCamelCase_="absolute" , lowerCamelCase_=True , lowerCamelCase_=None , **lowerCamelCase_ , ) -> List[str]: super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = position_embedding_type UpperCamelCase = use_cache UpperCamelCase = classifier_dropout class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @property def UpperCAmelCase__ ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ])
34
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _lowerCAmelCase ( __snake_case : str , __snake_case : str , **__snake_case : List[Any] ) -> Any: __A : Optional[Any] = AutoConfig.from_pretrained(__snake_case , **__snake_case ) __A : int = AutoModelForSeqaSeqLM.from_config(__snake_case ) model.save_pretrained(__snake_case ) AutoTokenizer.from_pretrained(__snake_case ).save_pretrained(__snake_case ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
8
0
def a ( A__ , A__ , A__ ) -> int: '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: SCREAMING_SNAKE_CASE__ : Tuple = _modexpt(A__ , exponent // 2 , A__ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(A__ , exponent - 1 , A__ )) % modulo_value def a ( A__ = 1_7_7_7 , A__ = 1_8_5_5 , A__ = 8 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = base for _ in range(1 , A__ ): SCREAMING_SNAKE_CASE__ : Optional[Any] = _modexpt(A__ , A__ , 1_0**digits ) return result if __name__ == "__main__": print(F'''{solution() = }''')
35
'''simple docstring''' from ...configuration_utils import PretrainedConfig lowercase__ : Any = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''tapas''' def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1024 , _UpperCAmelCase=[3, 256, 256, 2, 256, 256, 10] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase=10.0 , _UpperCAmelCase=0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase="ratio" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __A : Dict = vocab_size __A : Tuple = hidden_size __A : Any = num_hidden_layers __A : int = num_attention_heads __A : Tuple = hidden_act __A : Tuple = intermediate_size __A : List[Any] = hidden_dropout_prob __A : int = attention_probs_dropout_prob __A : List[str] = max_position_embeddings __A : Optional[int] = type_vocab_sizes __A : str = initializer_range __A : List[str] = layer_norm_eps # Fine-tuning task hyperparameters __A : List[str] = positive_label_weight __A : List[Any] = num_aggregation_labels __A : Optional[Any] = aggregation_loss_weight __A : Tuple = use_answer_as_supervision __A : List[str] = answer_loss_importance __A : Any = use_normalized_answer_loss __A : Any = huber_loss_delta __A : Union[str, Any] = temperature __A : Tuple = aggregation_temperature __A : Optional[Any] = use_gumbel_for_cells __A : List[str] = use_gumbel_for_aggregation __A : Tuple = average_approximation_function __A : List[str] = cell_selection_preference __A : Dict = answer_loss_cutoff __A : Union[str, Any] = max_num_rows __A : Optional[Any] = max_num_columns __A : int = average_logits_per_cell __A : Optional[Any] = select_one_column __A : int = allow_empty_column_selection __A : List[Any] = init_cell_selection_weights_to_zero __A : int = reset_position_index_per_cell __A : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters __A : Optional[Any] = aggregation_labels __A : List[str] = no_aggregation_label_index if isinstance(self.aggregation_labels , _UpperCAmelCase): __A : Optional[Any] = {int(_UpperCAmelCase): v for k, v in aggregation_labels.items()}
8
0
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger __lowercase : Optional[int] = get_logger(__name__) class _A : '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ = None ): '''simple docstring''' snake_case : Optional[int] = ( os.path.join(SCREAMING_SNAKE_CASE_ ,config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) snake_case : Union[str, Any] = Extractor def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" snake_case : str = os.path.abspath(SCREAMING_SNAKE_CASE_ ) return os.path.join(self.extract_dir ,hash_url_to_filename(SCREAMING_SNAKE_CASE_ ) ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return force_extract or ( not os.path.isfile(SCREAMING_SNAKE_CASE_ ) and not (os.path.isdir(SCREAMING_SNAKE_CASE_ ) and os.listdir(SCREAMING_SNAKE_CASE_ )) ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = False ): '''simple docstring''' snake_case : Optional[Any] = self.extractor.infer_extractor_format(SCREAMING_SNAKE_CASE_ ) if not extractor_format: return input_path snake_case : int = self._get_output_path(SCREAMING_SNAKE_CASE_ ) if self._do_extract(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): self.extractor.extract(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) return output_path class _A ( snake_case ): '''simple docstring''' @classmethod @abstractmethod def snake_case_ ( cls ,SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' ... @staticmethod @abstractmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' ... class _A ( snake_case , snake_case ): '''simple docstring''' __lowerCamelCase : List[bytes] = [] @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE_ ,"""rb""" ) as f: return f.read(SCREAMING_SNAKE_CASE_ ) @classmethod def snake_case_ ( cls ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = b"" ): '''simple docstring''' if not magic_number: snake_case : str = max(len(SCREAMING_SNAKE_CASE_ ) for cls_magic_number in cls.magic_numbers ) try: snake_case : Dict = cls.read_magic_number(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) except OSError: return False return any(magic_number.startswith(SCREAMING_SNAKE_CASE_ ) for cls_magic_number in cls.magic_numbers ) class _A ( snake_case ): '''simple docstring''' @classmethod def snake_case_ ( cls ,SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return tarfile.is_tarfile(SCREAMING_SNAKE_CASE_ ) @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def resolved(SCREAMING_SNAKE_CASE_ ) -> str: return os.path.realpath(os.path.abspath(SCREAMING_SNAKE_CASE_ ) ) def badpath(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) ).startswith(SCREAMING_SNAKE_CASE_ ) def badlink(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> bool: # Links are interpreted relative to the directory containing the link snake_case : Optional[Any] = resolved(os.path.join(SCREAMING_SNAKE_CASE_ ,os.path.dirname(info.name ) ) ) return badpath(info.linkname ,base=SCREAMING_SNAKE_CASE_ ) snake_case : Dict = resolved(SCREAMING_SNAKE_CASE_ ) for finfo in members: if badpath(finfo.name ,SCREAMING_SNAKE_CASE_ ): logger.error(F"""Extraction of {finfo.name} is blocked (illegal path)""" ) elif finfo.issym() and badlink(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): logger.error(F"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" ) elif finfo.islnk() and badlink(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): logger.error(F"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" ) else: yield finfo @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' os.makedirs(SCREAMING_SNAKE_CASE_ ,exist_ok=SCREAMING_SNAKE_CASE_ ) snake_case : List[str] = tarfile.open(SCREAMING_SNAKE_CASE_ ) tar_file.extractall(SCREAMING_SNAKE_CASE_ ,members=TarExtractor.safemembers(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) ) tar_file.close() class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : str = [B'''\x1F\x8B'''] @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' with gzip.open(SCREAMING_SNAKE_CASE_ ,"""rb""" ) as gzip_file: with open(SCREAMING_SNAKE_CASE_ ,"""wb""" ) as extracted_file: shutil.copyfileobj(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : List[str] = [ B'''PK\x03\x04''', B'''PK\x05\x06''', # empty archive B'''PK\x07\x08''', # spanned archive ] @classmethod def snake_case_ ( cls ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = b"" ): '''simple docstring''' if super().is_extractable(SCREAMING_SNAKE_CASE_ ,magic_number=SCREAMING_SNAKE_CASE_ ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(SCREAMING_SNAKE_CASE_ ,"""rb""" ) as fp: snake_case : List[Any] = _EndRecData(SCREAMING_SNAKE_CASE_ ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: snake_case : List[Any] = fp.read(SCREAMING_SNAKE_CASE_ ) # CD is where we expect it to be if len(SCREAMING_SNAKE_CASE_ ) == sizeCentralDir: snake_case : str = struct.unpack(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' os.makedirs(SCREAMING_SNAKE_CASE_ ,exist_ok=SCREAMING_SNAKE_CASE_ ) with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ,"""r""" ) as zip_file: zip_file.extractall(SCREAMING_SNAKE_CASE_ ) zip_file.close() class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = [B'''\xFD\x37\x7A\x58\x5A\x00'''] @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' with lzma.open(SCREAMING_SNAKE_CASE_ ) as compressed_file: with open(SCREAMING_SNAKE_CASE_ ,"""wb""" ) as extracted_file: shutil.copyfileobj(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = [B'''Rar!\x1a\x07\x00''', B'''Rar!\x1a\x07\x01\x00'''] # RAR_ID # RAR5_ID @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if not config.RARFILE_AVAILABLE: raise ImportError("""Please pip install rarfile""" ) import rarfile os.makedirs(SCREAMING_SNAKE_CASE_ ,exist_ok=SCREAMING_SNAKE_CASE_ ) snake_case : Optional[Any] = rarfile.RarFile(SCREAMING_SNAKE_CASE_ ) rf.extractall(SCREAMING_SNAKE_CASE_ ) rf.close() class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : Optional[int] = [B'''\x28\xb5\x2F\xFD'''] @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if not config.ZSTANDARD_AVAILABLE: raise ImportError("""Please pip install zstandard""" ) import zstandard as zstd snake_case : Any = zstd.ZstdDecompressor() with open(SCREAMING_SNAKE_CASE_ ,"""rb""" ) as ifh, open(SCREAMING_SNAKE_CASE_ ,"""wb""" ) as ofh: dctx.copy_stream(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : List[Any] = [B'''\x42\x5A\x68'''] @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' with bza.open(SCREAMING_SNAKE_CASE_ ,"""rb""" ) as compressed_file: with open(SCREAMING_SNAKE_CASE_ ,"""wb""" ) as extracted_file: shutil.copyfileobj(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : Dict = [B'''\x37\x7A\xBC\xAF\x27\x1C'''] @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if not config.PY7ZR_AVAILABLE: raise ImportError("""Please pip install py7zr""" ) import pyazr os.makedirs(SCREAMING_SNAKE_CASE_ ,exist_ok=SCREAMING_SNAKE_CASE_ ) with pyazr.SevenZipFile(SCREAMING_SNAKE_CASE_ ,"""r""" ) as archive: archive.extractall(SCREAMING_SNAKE_CASE_ ) class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : Any = [B'''\x04\x22\x4D\x18'''] @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if not config.LZ4_AVAILABLE: raise ImportError("""Please pip install lz4""" ) import lza.frame with lza.frame.open(SCREAMING_SNAKE_CASE_ ,"""rb""" ) as compressed_file: with open(SCREAMING_SNAKE_CASE_ ,"""wb""" ) as extracted_file: shutil.copyfileobj(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) class _A : '''simple docstring''' __lowerCamelCase : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def snake_case_ ( cls ): '''simple docstring''' return max( len(SCREAMING_SNAKE_CASE_ ) for extractor in cls.extractors.values() if issubclass(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' try: return MagicNumberBaseExtractor.read_magic_number(SCREAMING_SNAKE_CASE_ ,magic_number_length=SCREAMING_SNAKE_CASE_ ) except OSError: return b"" @classmethod def snake_case_ ( cls ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = False ): '''simple docstring''' warnings.warn( """Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'infer_extractor_format' instead.""" ,category=SCREAMING_SNAKE_CASE_ ,) snake_case : Union[str, Any] = cls.infer_extractor_format(SCREAMING_SNAKE_CASE_ ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def snake_case_ ( cls ,SCREAMING_SNAKE_CASE_ ): # <Added version="2.4.0"/> '''simple docstring''' snake_case : str = cls._get_magic_number_max_length() snake_case : Optional[Any] = cls._read_magic_number(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(SCREAMING_SNAKE_CASE_ ,magic_number=SCREAMING_SNAKE_CASE_ ): return extractor_format @classmethod def snake_case_ ( cls ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = "deprecated" ,): '''simple docstring''' os.makedirs(os.path.dirname(SCREAMING_SNAKE_CASE_ ) ,exist_ok=SCREAMING_SNAKE_CASE_ ) # Prevent parallel extractions snake_case : str = str(Path(SCREAMING_SNAKE_CASE_ ).with_suffix(""".lock""" ) ) with FileLock(SCREAMING_SNAKE_CASE_ ): shutil.rmtree(SCREAMING_SNAKE_CASE_ ,ignore_errors=SCREAMING_SNAKE_CASE_ ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): # passed as positional arg warnings.warn( """Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'extractor_format' instead.""" ,category=SCREAMING_SNAKE_CASE_ ,) snake_case : Dict = extractor if extractor != """deprecated""" else extractor_format else: snake_case : Optional[Any] = cls.extractors[extractor_format] return extractor.extract(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) else: warnings.warn( """Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """ """exception in 3.0.0.""" ,category=SCREAMING_SNAKE_CASE_ ,) for extractor in cls.extractors.values(): if extractor.is_extractable(SCREAMING_SNAKE_CASE_ ): return extractor.extract(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ )
36
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=sys.maxsize): '''simple docstring''' __A : Union[str, Any] = 'bilinear' __A : int = max_size __A : Optional[Any] = short_edge_length def __call__( self , _UpperCAmelCase): '''simple docstring''' __A : int = [] for img in imgs: __A ,__A : Dict = img.shape[:2] # later: provide list and randomly choose index for resize __A : List[Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1) if size == 0: return img __A : Tuple = size * 1.0 / min(_UpperCAmelCase , _UpperCAmelCase) if h < w: __A ,__A : Optional[Any] = size, scale * w else: __A ,__A : Optional[Any] = scale * h, size if max(_UpperCAmelCase , _UpperCAmelCase) > self.max_size: __A : Tuple = self.max_size * 1.0 / max(_UpperCAmelCase , _UpperCAmelCase) __A : Tuple = newh * scale __A : Dict = neww * scale __A : Dict = int(neww + 0.5) __A : Optional[int] = int(newh + 0.5) if img.dtype == np.uinta: __A : int = Image.fromarray(_UpperCAmelCase) __A : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR) __A : Dict = np.asarray(_UpperCAmelCase) else: __A : Optional[Any] = img.permute(2 , 0 , 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw __A : Dict = nn.functional.interpolate( _UpperCAmelCase , (newh, neww) , mode=self.interp_method , align_corners=_UpperCAmelCase).squeeze(0) img_augs.append(_UpperCAmelCase) return img_augs class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST) __A : List[Any] = cfg.INPUT.FORMAT __A : Dict = cfg.SIZE_DIVISIBILITY __A : str = cfg.PAD_VALUE __A : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST __A : int = cfg.MODEL.DEVICE __A : Tuple = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : int = lambda _UpperCAmelCase: (x - self.pixel_mean) / self.pixel_std def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = tuple(max(_UpperCAmelCase) for s in zip(*[img.shape for img in images])) __A : Dict = [im.shape[-2:] for im in images] __A : Optional[int] = [ nn.functional.pad( _UpperCAmelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_UpperCAmelCase , _UpperCAmelCase) ] return torch.stack(_UpperCAmelCase), torch.tensor(_UpperCAmelCase) def __call__( self , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' with torch.no_grad(): if not isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : int = [images] if single_image: assert len(_UpperCAmelCase) == 1 for i in range(len(_UpperCAmelCase)): if isinstance(images[i] , torch.Tensor): images.insert(_UpperCAmelCase , images.pop(_UpperCAmelCase).to(self.device).float()) elif not isinstance(images[i] , torch.Tensor): images.insert( _UpperCAmelCase , torch.as_tensor(img_tensorize(images.pop(_UpperCAmelCase) , input_format=self.input_format)) .to(self.device) .float() , ) # resize smallest edge __A : str = torch.tensor([im.shape[:2] for im in images]) __A : List[str] = self.aug(_UpperCAmelCase) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __A : Any = [self.normalizer(_UpperCAmelCase) for x in images] # now pad them to do the following operations __A ,__A : Any = self.pad(_UpperCAmelCase) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __A : str = torch.true_divide(_UpperCAmelCase , _UpperCAmelCase) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _lowerCAmelCase ( __snake_case : Dict , __snake_case : str ) -> Dict: boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : Tuple[int, int] ) -> int: assert torch.isfinite(__snake_case ).all(), "Box tensor contains infinite or NaN!" __A ,__A : int = box_size tensor[:, 0].clamp_(min=0 , max=__snake_case ) tensor[:, 1].clamp_(min=0 , max=__snake_case ) tensor[:, 2].clamp_(min=0 , max=__snake_case ) tensor[:, 3].clamp_(min=0 , max=__snake_case )
8
0
def UpperCamelCase_ ( __a ) -> list[int]: a__ : str = len(__a ) for i in range(__a ): for j in range(i + 1 , __a ): if numbers[j] < numbers[i]: a__, a__ : List[Any] = numbers[j], numbers[i] return numbers if __name__ == "__main__": UpperCamelCase : Dict = input("""Enter numbers separated by a comma:\n""").strip() UpperCamelCase : Any = [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
37
'''simple docstring''' def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Optional[Any]: # noqa: E741 __A : Tuple = len(__snake_case ) __A : Optional[int] = 0 __A : str = [0] * n __A : int = [False] * n __A : Tuple = [False] * n def dfs(__snake_case : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : int ): if parent == root: out_edge_count += 1 __A : str = True __A : Tuple = at for to in l[at]: if to == parent: pass elif not visited[to]: __A : Optional[int] = dfs(__snake_case , __snake_case , __snake_case , __snake_case ) __A : int = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __A : Tuple = True # AP found via cycle if at == low[to]: __A : Optional[Any] = True else: __A : Any = min(low[at] , __snake_case ) return out_edge_count for i in range(__snake_case ): if not visited[i]: __A : Tuple = 0 __A : List[Any] = dfs(__snake_case , __snake_case , -1 , __snake_case ) __A : Union[str, Any] = out_edge_count > 1 for x in range(len(__snake_case ) ): if is_art[x] is True: print(__snake_case ) # Adjacency list of graph lowercase__ : Tuple = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
8
0
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging A_ : Optional[Any] = "\\n\n" A_ : int = "\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n" A_ : Any = "\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to 'cuda' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]\n >>> results = perplexity.compute(model_id='gpt2',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 78.22\n >>> print(round(results[\"perplexities\"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = datasets.load_dataset(\"wikitext\",\n ... \"wikitext-2-raw-v1\",\n ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!='']\n >>> results = perplexity.compute(model_id='gpt2',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 60.35\n >>> print(round(results[\"perplexities\"][0], 2))\n 81.12\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): '''simple docstring''' def __UpperCamelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1_6 , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": snake_case__ : int = """cuda""" else: snake_case__ : Any = """cuda""" if torch.cuda.is_available() else """cpu""" snake_case__ : int = AutoModelForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = model.to(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: snake_case__ : List[Any] = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__SCREAMING_SNAKE_CASE ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" snake_case__ : Dict = model.config.max_length - 1 else: snake_case__ : List[str] = model.config.max_length snake_case__ : str = tokenizer( __SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" , return_attention_mask=__SCREAMING_SNAKE_CASE , ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = encodings["""input_ids"""] snake_case__ : Union[str, Any] = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." snake_case__ : int = [] snake_case__ : Optional[Any] = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0 , len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) ): snake_case__ : Optional[int] = min(start_index + batch_size , len(__SCREAMING_SNAKE_CASE ) ) snake_case__ : int = encoded_texts[start_index:end_index] snake_case__ : Optional[Any] = attn_masks[start_index:end_index] if add_start_token: snake_case__ : Any = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : int = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) snake_case__ : Optional[Any] = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(__SCREAMING_SNAKE_CASE ), attn_mask] , dim=1 ) snake_case__ : Union[str, Any] = encoded_batch with torch.no_grad(): snake_case__ : Any = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ).logits snake_case__ : Optional[Any] = out_logits[..., :-1, :].contiguous() snake_case__ : Tuple = labels[..., 1:].contiguous() snake_case__ : Tuple = attn_mask[..., 1:].contiguous() snake_case__ : Optional[Any] = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , __SCREAMING_SNAKE_CASE ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__SCREAMING_SNAKE_CASE )}
38
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : int = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } lowercase__ : Dict = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _lowerCAmelCase ( __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Any , __snake_case : List[str] ) -> Union[str, Any]: for attribute in key.split('.' ): __A : int = getattr(__snake_case , __snake_case ) if weight_type is not None: __A : Optional[int] = getattr(__snake_case , __snake_case ).shape else: __A : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __A : Tuple = value elif weight_type == "weight_g": __A : Union[str, Any] = value elif weight_type == "weight_v": __A : Optional[Any] = value elif weight_type == "bias": __A : Optional[int] = value else: __A : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( __snake_case : Any , __snake_case : List[str] ) -> List[Any]: __A : Optional[Any] = [] __A : Any = fairseq_model.state_dict() __A : Union[str, Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): __A : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == 'group' , ) __A : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __A : int = True if "*" in mapped_key: __A : Any = name.split(__snake_case )[0].split('.' )[-2] __A : List[Any] = mapped_key.replace('*' , __snake_case ) if "weight_g" in name: __A : Optional[Any] = 'weight_g' elif "weight_v" in name: __A : Union[str, Any] = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: __A : Optional[Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __A : Tuple = 'weight' else: __A : Dict = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[int] ) -> int: __A : int = full_name.split('conv_layers.' )[-1] __A : List[str] = name.split('.' ) __A : Optional[int] = int(items[0] ) __A : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __A : Optional[int] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __A : Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) __A : Dict = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __A : Any = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) @torch.no_grad() def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple=None ) -> Any: # load the pre-trained checkpoints __A : List[str] = torch.load(__snake_case ) __A : Dict = WavLMConfigOrig(checkpoint['cfg'] ) __A : Optional[int] = WavLMOrig(__snake_case ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: __A : List[Any] = WavLMConfig.from_pretrained(__snake_case ) else: __A : Dict = WavLMConfig() __A : Optional[Any] = WavLMModel(__snake_case ) recursively_load_weights(__snake_case , __snake_case ) hf_wavlm.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowercase__ : Any = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
8
0
from queue import PriorityQueue from typing import Any import numpy as np def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ): for nxt, d in graph[v]: if nxt in visited_forward: continue snake_case_ = cst_fwd.get(SCREAMING_SNAKE_CASE__ , np.inf ) snake_case_ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) snake_case_ = new_cost_f snake_case_ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: snake_case_ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = -1 snake_case_ = set() snake_case_ = set() snake_case_ = {source: 0} snake_case_ = {destination: 0} snake_case_ = {source: None} snake_case_ = {destination: None} snake_case_ = PriorityQueue() snake_case_ = PriorityQueue() snake_case_ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): snake_case_, snake_case_ = queue_forward.get() visited_forward.add(SCREAMING_SNAKE_CASE__ ) snake_case_, snake_case_ = queue_backward.get() visited_backward.add(SCREAMING_SNAKE_CASE__ ) snake_case_ = pass_and_relaxation( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) snake_case_ = pass_and_relaxation( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: snake_case_ = shortest_distance return shortest_path_distance lowerCAmelCase_ = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } lowerCAmelCase_ = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
39
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = 42 class SCREAMING_SNAKE_CASE (a__ , a__ ): @register_to_config def __init__( self , _UpperCAmelCase = 6_5536 , _UpperCAmelCase = None , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = 0 , _UpperCAmelCase = "fourier" , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = 0.0 , _UpperCAmelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _UpperCAmelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _UpperCAmelCase = "UNetMidBlock1D" , _UpperCAmelCase = None , _UpperCAmelCase = (32, 32, 64) , _UpperCAmelCase = None , _UpperCAmelCase = 8 , _UpperCAmelCase = 1 , _UpperCAmelCase = False , ): '''simple docstring''' super().__init__() __A : Dict = sample_size # time if time_embedding_type == "fourier": __A : int = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_UpperCAmelCase , log=_UpperCAmelCase , flip_sin_to_cos=_UpperCAmelCase) __A : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": __A : List[str] = Timesteps( block_out_channels[0] , flip_sin_to_cos=_UpperCAmelCase , downscale_freq_shift=_UpperCAmelCase) __A : List[str] = block_out_channels[0] if use_timestep_embedding: __A : Optional[Any] = block_out_channels[0] * 4 __A : Optional[int] = TimestepEmbedding( in_channels=_UpperCAmelCase , time_embed_dim=_UpperCAmelCase , act_fn=_UpperCAmelCase , out_dim=block_out_channels[0] , ) __A : Dict = nn.ModuleList([]) __A : Dict = None __A : Tuple = nn.ModuleList([]) __A : Tuple = None # down __A : Any = in_channels for i, down_block_type in enumerate(_UpperCAmelCase): __A : Tuple = output_channel __A : Optional[Any] = block_out_channels[i] if i == 0: input_channel += extra_in_channels __A : List[str] = i == len(_UpperCAmelCase) - 1 __A : int = get_down_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_UpperCAmelCase) # mid __A : str = get_mid_block( _UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_UpperCAmelCase , add_downsample=_UpperCAmelCase , ) # up __A : Optional[int] = list(reversed(_UpperCAmelCase)) __A : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: __A : str = out_channels else: __A : List[Any] = block_out_channels[0] for i, up_block_type in enumerate(_UpperCAmelCase): __A : Optional[Any] = output_channel __A : Optional[Any] = ( reversed_block_out_channels[i + 1] if i < len(_UpperCAmelCase) - 1 else final_upsample_channels ) __A : Dict = i == len(_UpperCAmelCase) - 1 __A : str = get_up_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_UpperCAmelCase) __A : Optional[int] = output_channel # out __A : str = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32) __A : Optional[Any] = get_out_block( out_block_type=_UpperCAmelCase , num_groups_out=_UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=_UpperCAmelCase , act_fn=_UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , ): '''simple docstring''' __A : Any = timestep if not torch.is_tensor(_UpperCAmelCase): __A : Any = torch.tensor([timesteps] , dtype=torch.long , device=sample.device) elif torch.is_tensor(_UpperCAmelCase) and len(timesteps.shape) == 0: __A : Any = timesteps[None].to(sample.device) __A : List[Any] = self.time_proj(_UpperCAmelCase) if self.config.use_timestep_embedding: __A : Dict = self.time_mlp(_UpperCAmelCase) else: __A : Dict = timestep_embed[..., None] __A : Tuple = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) __A : List[Any] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) # 2. down __A : int = () for downsample_block in self.down_blocks: __A ,__A : int = downsample_block(hidden_states=_UpperCAmelCase , temb=_UpperCAmelCase) down_block_res_samples += res_samples # 3. mid if self.mid_block: __A : Optional[int] = self.mid_block(_UpperCAmelCase , _UpperCAmelCase) # 4. up for i, upsample_block in enumerate(self.up_blocks): __A : Any = down_block_res_samples[-1:] __A : Optional[int] = down_block_res_samples[:-1] __A : Any = upsample_block(_UpperCAmelCase , res_hidden_states_tuple=_UpperCAmelCase , temb=_UpperCAmelCase) # 5. post-process if self.out_block: __A : Dict = self.out_block(_UpperCAmelCase , _UpperCAmelCase) if not return_dict: return (sample,) return UNetaDOutput(sample=_UpperCAmelCase)
8
0
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __UpperCAmelCase = '''src/diffusers''' __UpperCAmelCase = '''.''' # This is to make sure the diffusers module imported is the one in the repo. __UpperCAmelCase = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) __UpperCAmelCase = spec.loader.load_module() def UpperCamelCase ( snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] ) -> Union[str, Any]: return line.startswith(snake_case__ ) or len(snake_case__ ) <= 1 or re.search(R'^\s*\)(\s*->.*:|:)\s*$' , snake_case__ ) is not None def UpperCamelCase ( snake_case__ : str ) -> Optional[int]: UpperCamelCase : Optional[Any] = object_name.split('.' ) UpperCamelCase : Optional[int] = 0 # First let's find the module where our object lives. UpperCamelCase : List[Any] = parts[i] while i < len(snake_case__ ) and not os.path.isfile(os.path.join(snake_case__ , F"""{module}.py""" ) ): i += 1 if i < len(snake_case__ ): UpperCamelCase : Tuple = os.path.join(snake_case__ , parts[i] ) if i >= len(snake_case__ ): raise ValueError(F"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(snake_case__ , F"""{module}.py""" ) , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase : str = f.readlines() # Now let's find the class / func in the code! UpperCamelCase : Optional[int] = '' UpperCamelCase : str = 0 for name in parts[i + 1 :]: while ( line_index < len(snake_case__ ) and re.search(RF"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(snake_case__ ): raise ValueError(F""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). UpperCamelCase : Optional[int] = line_index while line_index < len(snake_case__ ) and _should_continue(lines[line_index] , snake_case__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 UpperCamelCase : int = lines[start_index:line_index] return "".join(snake_case__ ) __UpperCAmelCase = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') __UpperCAmelCase = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''') __UpperCAmelCase = re.compile(r'''<FILL\s+[^>]*>''') def UpperCamelCase ( snake_case__ : str ) -> Tuple: UpperCamelCase : int = code.split('\n' ) UpperCamelCase : Any = 0 while idx < len(snake_case__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(snake_case__ ): return re.search(R'^(\s*)\S' , lines[idx] ).groups()[0] return "" def UpperCamelCase ( snake_case__ : Dict ) -> Union[str, Any]: UpperCamelCase : Union[str, Any] = len(get_indent(snake_case__ ) ) > 0 if has_indent: UpperCamelCase : int = F"""class Bla:\n{code}""" UpperCamelCase : Optional[int] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=snake_case__ ) UpperCamelCase : List[str] = black.format_str(snake_case__ , mode=snake_case__ ) UpperCamelCase , UpperCamelCase : Tuple = style_docstrings_in_code(snake_case__ ) return result[len('class Bla:\n' ) :] if has_indent else result def UpperCamelCase ( snake_case__ : int , snake_case__ : Optional[int]=False ) -> Optional[Any]: with open(snake_case__ , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase : Union[str, Any] = f.readlines() UpperCamelCase : Dict = [] UpperCamelCase : Optional[int] = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(snake_case__ ): UpperCamelCase : str = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[Any] = search.groups() UpperCamelCase : Any = find_code_in_diffusers(snake_case__ ) UpperCamelCase : str = get_indent(snake_case__ ) UpperCamelCase : List[Any] = line_index + 1 if indent == theoretical_indent else line_index + 2 UpperCamelCase : Tuple = theoretical_indent UpperCamelCase : str = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. UpperCamelCase : Union[str, Any] = True while line_index < len(snake_case__ ) and should_continue: line_index += 1 if line_index >= len(snake_case__ ): break UpperCamelCase : Optional[Any] = lines[line_index] UpperCamelCase : str = _should_continue(snake_case__ , snake_case__ ) and re.search(F"""^{indent}# End copy""" , snake_case__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 UpperCamelCase : int = lines[start_index:line_index] UpperCamelCase : int = ''.join(snake_case__ ) # Remove any nested `Copied from` comments to avoid circular copies UpperCamelCase : List[str] = [line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(snake_case__ ) is None] UpperCamelCase : List[str] = '\n'.join(snake_case__ ) # Before comparing, use the `replace_pattern` on the original code. if len(snake_case__ ) > 0: UpperCamelCase : List[Any] = replace_pattern.replace('with' , '' ).split(',' ) UpperCamelCase : Optional[Any] = [_re_replace_pattern.search(snake_case__ ) for p in patterns] for pattern in patterns: if pattern is None: continue UpperCamelCase , UpperCamelCase , UpperCamelCase : Union[str, Any] = pattern.groups() UpperCamelCase : Optional[int] = re.sub(snake_case__ , snake_case__ , snake_case__ ) if option.strip() == "all-casing": UpperCamelCase : str = re.sub(obja.lower() , obja.lower() , snake_case__ ) UpperCamelCase : Dict = re.sub(obja.upper() , obja.upper() , snake_case__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line UpperCamelCase : Union[str, Any] = blackify(lines[start_index - 1] + theoretical_code ) UpperCamelCase : Dict = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: UpperCamelCase : Optional[int] = lines[:start_index] + [theoretical_code] + lines[line_index:] UpperCamelCase : List[str] = start_index + 1 if overwrite and len(snake_case__ ) > 0: # Warn the user a file has been modified. print(F"""Detected changes, rewriting {filename}.""" ) with open(snake_case__ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(snake_case__ ) return diffs def UpperCamelCase ( snake_case__ : bool = False ) -> int: UpperCamelCase : Tuple = glob.glob(os.path.join(snake_case__ , '**/*.py' ) , recursive=snake_case__ ) UpperCamelCase : List[str] = [] for filename in all_files: UpperCamelCase : Dict = is_copy_consistent(snake_case__ , snake_case__ ) diffs += [F"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(snake_case__ ) > 0: UpperCamelCase : Optional[Any] = '\n'.join(snake_case__ ) raise Exception( 'Found the following copy inconsistencies:\n' + diff + '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __UpperCAmelCase = parser.parse_args() check_copies(args.fix_and_overwrite)
40
'''simple docstring''' def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> int: if len(__snake_case ) != len(__snake_case ): raise ValueError('String lengths must match!' ) __A : Optional[Any] = 0 for chara, chara in zip(__snake_case , __snake_case ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _A ( ): """simple docstring""" __lowercase = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=A__ , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=A__ , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=A__ ) return parser.parse_args() def _A ( ): """simple docstring""" __lowercase = parse_args() # Import training_script as a module. __lowercase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __lowercase = script_fpath.stem __lowercase = importlib.import_module(A__ ) # Patch sys.argv __lowercase = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
41
'''simple docstring''' import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> Union[str, Any]: __A : int = RobertaPreLayerNormConfig.from_pretrained( __snake_case , architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict __A : Tuple = torch.load(hf_hub_download(repo_id=__snake_case , filename='pytorch_model.bin' ) ) __A : str = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): __A : Dict = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue __A : str = tensor_value __A : Union[str, Any] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__snake_case , config=__snake_case , state_dict=__snake_case ) model.save_pretrained(__snake_case ) # convert tokenizer __A : List[Any] = AutoTokenizer.from_pretrained(__snake_case ) tokenizer.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
8
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase__ ) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = field(default='text-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) SCREAMING_SNAKE_CASE_ = Features({'text': Value('string' )} ) SCREAMING_SNAKE_CASE_ = Features({'labels': ClassLabel} ) SCREAMING_SNAKE_CASE_ = "text" SCREAMING_SNAKE_CASE_ = "labels" def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Any: '''simple docstring''' if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , SCREAMING_SNAKE_CASE_ ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) lowerCamelCase_ = copy.deepcopy(self ) lowerCamelCase_ = self.label_schema.copy() lowerCamelCase_ = features[self.label_column] lowerCamelCase_ = label_schema return task_template @property def UpperCamelCase( self ) -> Dict[str, str]: '''simple docstring''' return { self.text_column: "text", self.label_column: "labels", }
42
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings lowercase__ : Dict = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = field(default=a__ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = super().to_dict() for k, v in d.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : List[Any] = v.to_dict() return d
8
0
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE ): # This function is recursive """simple docstring""" lowercase__ = len(SCREAMING_SNAKE_CASE ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowercase__ = array[0] lowercase__ = False lowercase__ = 1 lowercase__ = [] while not is_found and i < array_length: if array[i] < pivot: lowercase__ = True lowercase__ = [element for element in array[i:] if element >= array[i]] lowercase__ = longest_subsequence(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > len(SCREAMING_SNAKE_CASE ): lowercase__ = temp_array else: i += 1 lowercase__ = [element for element in array[1:] if element >= pivot] lowercase__ = [pivot, *longest_subsequence(SCREAMING_SNAKE_CASE )] if len(SCREAMING_SNAKE_CASE ) > len(SCREAMING_SNAKE_CASE ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
43
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : Optional[int] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''lxmert''' lowerCAmelCase = {} def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=9500 , _UpperCAmelCase=1600 , _UpperCAmelCase=400 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=9 , _UpperCAmelCase=5 , _UpperCAmelCase=5 , _UpperCAmelCase=2048 , _UpperCAmelCase=4 , _UpperCAmelCase=6.67 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , **_UpperCAmelCase , ): '''simple docstring''' __A : Tuple = vocab_size __A : int = hidden_size __A : str = num_attention_heads __A : Tuple = hidden_act __A : int = intermediate_size __A : str = hidden_dropout_prob __A : Optional[int] = attention_probs_dropout_prob __A : Optional[Any] = max_position_embeddings __A : Tuple = type_vocab_size __A : Optional[int] = initializer_range __A : Any = layer_norm_eps __A : Optional[Any] = num_qa_labels __A : Optional[int] = num_object_labels __A : Any = num_attr_labels __A : Union[str, Any] = l_layers __A : Optional[int] = x_layers __A : List[Any] = r_layers __A : Tuple = visual_feat_dim __A : Tuple = visual_pos_dim __A : Optional[int] = visual_loss_normalizer __A : int = task_matched __A : List[Any] = task_mask_lm __A : Optional[Any] = task_obj_predict __A : str = task_qa __A : List[Any] = visual_obj_loss __A : Optional[Any] = visual_attr_loss __A : Union[str, Any] = visual_feat_loss __A : Union[str, Any] = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**_UpperCAmelCase)
8
0
'''simple docstring''' from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( 'The RoBERTa Model transformer with early exiting (DeeRoBERTa). ' , A , ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = RobertaConfig lowerCAmelCase_ = 'roberta' def __init__( self : int,__A : Optional[Any] ): super().__init__(__A ) _lowerCamelCase : int = RobertaEmbeddings(__A ) self.init_weights() @add_start_docstrings( 'RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ' , A , ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = RobertaConfig lowerCAmelCase_ = 'roberta' def __init__( self : Dict,__A : int ): super().__init__(__A ) _lowerCamelCase : Tuple = config.num_labels _lowerCamelCase : Union[str, Any] = config.num_hidden_layers _lowerCamelCase : List[Any] = DeeRobertaModel(__A ) _lowerCamelCase : Optional[Any] = nn.Dropout(config.hidden_dropout_prob ) _lowerCamelCase : Any = nn.Linear(config.hidden_size,self.config.num_labels ) @add_start_docstrings_to_model_forward(__A ) def lowerCamelCase_ ( self : Tuple,__A : Dict=None,__A : List[str]=None,__A : Any=None,__A : List[str]=None,__A : Optional[int]=None,__A : Any=None,__A : List[str]=None,__A : List[str]=-1,__A : Dict=False,): _lowerCamelCase : Optional[Any] = self.num_layers try: _lowerCamelCase : Optional[Any] = self.roberta( __A,attention_mask=__A,token_type_ids=__A,position_ids=__A,head_mask=__A,inputs_embeds=__A,) _lowerCamelCase : int = outputs[1] _lowerCamelCase : str = self.dropout(__A ) _lowerCamelCase : Any = self.classifier(__A ) _lowerCamelCase : Dict = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _lowerCamelCase : Tuple = e.message _lowerCamelCase : Optional[Any] = e.exit_layer _lowerCamelCase : Union[str, Any] = outputs[0] if not self.training: _lowerCamelCase : Any = entropy(__A ) _lowerCamelCase : Any = [] _lowerCamelCase : List[Any] = [] if labels is not None: if self.num_labels == 1: # We are doing regression _lowerCamelCase : List[str] = MSELoss() _lowerCamelCase : List[str] = loss_fct(logits.view(-1 ),labels.view(-1 ) ) else: _lowerCamelCase : Tuple = CrossEntropyLoss() _lowerCamelCase : str = loss_fct(logits.view(-1,self.num_labels ),labels.view(-1 ) ) # work with highway exits _lowerCamelCase : Union[str, Any] = [] for highway_exit in outputs[-1]: _lowerCamelCase : List[Any] = highway_exit[0] if not self.training: highway_logits_all.append(__A ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _lowerCamelCase : Optional[Any] = MSELoss() _lowerCamelCase : Any = loss_fct(highway_logits.view(-1 ),labels.view(-1 ) ) else: _lowerCamelCase : List[str] = CrossEntropyLoss() _lowerCamelCase : Optional[int] = loss_fct(highway_logits.view(-1,self.num_labels ),labels.view(-1 ) ) highway_losses.append(__A ) if train_highway: _lowerCamelCase : str = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _lowerCamelCase : str = (loss,) + outputs if not self.training: _lowerCamelCase : List[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _lowerCamelCase : Optional[Any] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
44
'''simple docstring''' import math import sys def _lowerCAmelCase ( __snake_case : int ) -> int: if number != int(__snake_case ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 __A : str = [-1] * (number + 1) __A : Dict = 0 for i in range(1 , number + 1 ): __A : int = sys.maxsize __A : int = int(math.sqrt(__snake_case ) ) for j in range(1 , root + 1 ): __A : str = 1 + answers[i - (j**2)] __A : Dict = min(__snake_case , __snake_case ) __A : Union[str, Any] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
8
0
UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def A ( lowercase__ : bytes ) -> bytes: # Make sure the supplied data is a bytes-like object if not isinstance(lowercase__ , lowercase__ ): UpperCamelCase__ :Dict = f"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(lowercase__ ) UpperCamelCase__ :Any = """""".join(bin(lowercase__ )[2:].zfill(8 ) for byte in data ) UpperCamelCase__ :Optional[Any] = len(lowercase__ ) % 6 != 0 if padding_needed: # The padding that will be added later UpperCamelCase__ :int = b"""=""" * ((6 - len(lowercase__ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(lowercase__ ) % 6) else: UpperCamelCase__ :List[Any] = b"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(lowercase__ ) , 6 ) ).encode() + padding ) def A ( lowercase__ : str ) -> bytes: # Make sure encoded_data is either a string or a bytes-like object if not isinstance(lowercase__ , lowercase__ ) and not isinstance(lowercase__ , lowercase__ ): UpperCamelCase__ :Dict = ( """argument should be a bytes-like object or ASCII string, """ f"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(lowercase__ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(lowercase__ , lowercase__ ): try: UpperCamelCase__ :List[str] = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) UpperCamelCase__ :int = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(lowercase__ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one UpperCamelCase__ :int = encoded_data[:-padding] UpperCamelCase__ :Optional[int] = """""".join( bin(B64_CHARSET.index(lowercase__ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: UpperCamelCase__ :List[str] = """""".join( bin(B64_CHARSET.index(lowercase__ ) )[2:].zfill(6 ) for char in encoded_data ) UpperCamelCase__ :Optional[int] = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(lowercase__ ) , 8 ) ] return bytes(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
45
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( __snake_case : list[int] , __snake_case : list[int] , __snake_case : int ) -> tuple[float, list[float]]: __A : int = list(range(len(__snake_case ) ) ) __A : Optional[Any] = [v / w for v, w in zip(__snake_case , __snake_case )] index.sort(key=lambda __snake_case : ratio[i] , reverse=__snake_case ) __A : float = 0 __A : list[float] = [0] * len(__snake_case ) for i in index: if weight[i] <= capacity: __A : Optional[int] = 1 max_value += value[i] capacity -= weight[i] else: __A : List[Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
8
0
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
46
'''simple docstring''' from __future__ import annotations import math class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : int = size # approximate the overall size of segment tree with given value __A : Optional[Any] = [0 for i in range(0 , 4 * size)] # create array to store lazy update __A : Optional[Any] = [0 for i in range(0 , 4 * size)] __A : str = [0 for i in range(0 , 4 * size)] # flag for lazy update def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return idx * 2 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return idx * 2 + 1 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if left_element == right_element: __A : List[Any] = a[left_element - 1] else: __A : List[str] = (left_element + right_element) // 2 self.build(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.build(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase) __A : Any = max( self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)]) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.flag[idx] is True: __A : Optional[Any] = self.lazy[idx] __A : Optional[Any] = False if left_element != right_element: __A : List[Any] = self.lazy[idx] __A : Dict = self.lazy[idx] __A : Tuple = True __A : Union[str, Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: __A : Optional[int] = val if left_element != right_element: __A : Tuple = val __A : Any = val __A : Tuple = True __A : Union[str, Any] = True return True __A : str = (left_element + right_element) // 2 self.update(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.update(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : int = max( self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)]) return True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.flag[idx] is True: __A : Union[str, Any] = self.lazy[idx] __A : List[str] = False if left_element != right_element: __A : Union[str, Any] = self.lazy[idx] __A : Optional[int] = self.lazy[idx] __A : str = True __A : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] __A : Any = (left_element + right_element) // 2 __A : int = self.query(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : Union[str, Any] = self.query(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) return max(_UpperCAmelCase , _UpperCAmelCase) def __str__( self): '''simple docstring''' return str([self.query(1 , 1 , self.size , _UpperCAmelCase , _UpperCAmelCase) for i in range(1 , self.size + 1)]) if __name__ == "__main__": lowercase__ : Union[str, Any] = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] lowercase__ : str = 15 lowercase__ : List[Any] = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 1_11) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 2_35) print(segt)
8
0
from datetime import datetime import requests def UpperCAmelCase__ ( lowerCamelCase_ : str ): __a : Dict = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' __a : Dict = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(lowerCamelCase_ ).content if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = input('''Enter Video/IGTV url: ''').strip() SCREAMING_SNAKE_CASE__ = F"{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4" with open(file_name, '''wb''') as fp: fp.write(download_video(url)) print(F"Done. Video saved to disk as {file_name}.")
47
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int , __snake_case : int , __snake_case : int ) -> float: __A : Dict = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def _lowerCAmelCase ( ) -> Union[str, Any]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
'''simple docstring''' from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class A : def __init__( self : Dict , __magic_name__ : Collection[float] | None = None ): """simple docstring""" if components is None: lowerCAmelCase__ = [] lowerCAmelCase__ = list(__magic_name__ ) def __len__( self : Optional[Any] ): """simple docstring""" return len(self.__components ) def __str__( self : Optional[Any] ): """simple docstring""" return "(" + ",".join(map(__magic_name__ , self.__components ) ) + ")" def __add__( self : Dict , __magic_name__ : Vector ): """simple docstring""" lowerCAmelCase__ = len(self ) if size == len(__magic_name__ ): lowerCAmelCase__ = [self.__components[i] + other.component(__magic_name__ ) for i in range(__magic_name__ )] return Vector(__magic_name__ ) else: raise Exception("must have the same size" ) def __sub__( self : Tuple , __magic_name__ : Vector ): """simple docstring""" lowerCAmelCase__ = len(self ) if size == len(__magic_name__ ): lowerCAmelCase__ = [self.__components[i] - other.component(__magic_name__ ) for i in range(__magic_name__ )] return Vector(__magic_name__ ) else: # error case raise Exception("must have the same size" ) @overload def __mul__( self : Optional[Any] , __magic_name__ : float ): """simple docstring""" ... @overload def __mul__( self : Union[str, Any] , __magic_name__ : Vector ): """simple docstring""" ... def __mul__( self : Union[str, Any] , __magic_name__ : float | Vector ): """simple docstring""" if isinstance(__magic_name__ , (float, int) ): lowerCAmelCase__ = [c * other for c in self.__components] return Vector(__magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ) and len(self ) == len(__magic_name__ ): lowerCAmelCase__ = len(self ) lowerCAmelCase__ = [self.__components[i] * other.component(__magic_name__ ) for i in range(__magic_name__ )] return sum(__magic_name__ ) else: # error case raise Exception("invalid operand!" ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" return Vector(self.__components ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : int ): """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("index out of range" ) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : int , __magic_name__ : float ): """simple docstring""" assert -len(self.__components ) <= pos < len(self.__components ) lowerCAmelCase__ = value def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" if len(self.__components ) == 0: raise Exception("Vector is empty" ) lowerCAmelCase__ = [c**2 for c in self.__components] return math.sqrt(sum(__magic_name__ ) ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Vector , __magic_name__ : bool = False ): """simple docstring""" lowerCAmelCase__ = self * other lowerCAmelCase__ = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def A ( UpperCamelCase_ : int ) -> Vector: '''simple docstring''' assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) return Vector([0] * dimension ) def A ( UpperCamelCase_ : int , UpperCamelCase_ : int ) -> Vector: '''simple docstring''' assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) and (isinstance(UpperCamelCase_ , UpperCamelCase_ )) lowerCAmelCase__ = [0] * dimension lowerCAmelCase__ = 1 return Vector(UpperCamelCase_ ) def A ( UpperCamelCase_ : float , UpperCamelCase_ : Vector , UpperCamelCase_ : Vector ) -> Vector: '''simple docstring''' assert ( isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(UpperCamelCase_ , UpperCamelCase_ ) and (isinstance(UpperCamelCase_ , (int, float) )) ) return x * scalar + y def A ( UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> Vector: '''simple docstring''' random.seed(UpperCamelCase_ ) lowerCAmelCase__ = [random.randint(UpperCamelCase_ , UpperCamelCase_ ) for _ in range(UpperCamelCase_ )] return Vector(UpperCamelCase_ ) class A : def __init__( self : Dict , __magic_name__ : list[list[float]] , __magic_name__ : int , __magic_name__ : int ): """simple docstring""" lowerCAmelCase__ = matrix lowerCAmelCase__ = w lowerCAmelCase__ = h def __str__( self : str ): """simple docstring""" lowerCAmelCase__ = "" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : int , __magic_name__ : Matrix ): """simple docstring""" if self.__width == other.width() and self.__height == other.height(): lowerCAmelCase__ = [] for i in range(self.__height ): lowerCAmelCase__ = [ self.__matrix[i][j] + other.component(__magic_name__ , __magic_name__ ) for j in range(self.__width ) ] matrix.append(__magic_name__ ) return Matrix(__magic_name__ , self.__width , self.__height ) else: raise Exception("matrix must have the same dimension!" ) def __sub__( self : Dict , __magic_name__ : Matrix ): """simple docstring""" if self.__width == other.width() and self.__height == other.height(): lowerCAmelCase__ = [] for i in range(self.__height ): lowerCAmelCase__ = [ self.__matrix[i][j] - other.component(__magic_name__ , __magic_name__ ) for j in range(self.__width ) ] matrix.append(__magic_name__ ) return Matrix(__magic_name__ , self.__width , self.__height ) else: raise Exception("matrices must have the same dimension!" ) @overload def __mul__( self : Optional[Any] , __magic_name__ : float ): """simple docstring""" ... @overload def __mul__( self : Optional[Any] , __magic_name__ : Vector ): """simple docstring""" ... def __mul__( self : Optional[int] , __magic_name__ : float | Vector ): """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): # matrix-vector if len(__magic_name__ ) == self.__width: lowerCAmelCase__ = zero_vector(self.__height ) for i in range(self.__height ): lowerCAmelCase__ = [ self.__matrix[i][j] * other.component(__magic_name__ ) for j in range(self.__width ) ] ans.change_component(__magic_name__ , sum(__magic_name__ ) ) return ans else: raise Exception( "vector must have the same size as the " "number of columns of the matrix!" ) elif isinstance(__magic_name__ , (int, float) ): # matrix-scalar lowerCAmelCase__ = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(__magic_name__ , self.__width , self.__height ) return None def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return self.__height def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" return self.__width def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : int , __magic_name__ : int ): """simple docstring""" if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("change_component: indices out of bounds" ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : int , __magic_name__ : int , __magic_name__ : float ): """simple docstring""" if 0 <= x < self.__height and 0 <= y < self.__width: lowerCAmelCase__ = value else: raise Exception("change_component: indices out of bounds" ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : int , __magic_name__ : int ): """simple docstring""" if self.__height != self.__width: raise Exception("Matrix is not square" ) lowerCAmelCase__ = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(__magic_name__ ) ): lowerCAmelCase__ = minor[i][:y] + minor[i][y + 1 :] return Matrix(__magic_name__ , self.__width - 1 , self.__height - 1 ).determinant() def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : int , __magic_name__ : int ): """simple docstring""" if self.__height != self.__width: raise Exception("Matrix is not square" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(__magic_name__ , __magic_name__ ) else: raise Exception("Indices out of bounds" ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" if self.__height != self.__width: raise Exception("Matrix is not square" ) if self.__height < 1: raise Exception("Matrix has no element" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: lowerCAmelCase__ = [ self.__matrix[0][y] * self.cofactor(0 , __magic_name__ ) for y in range(self.__width ) ] return sum(__magic_name__ ) def A ( UpperCamelCase_ : int ) -> Matrix: '''simple docstring''' lowerCAmelCase__ = [[0] * n for _ in range(UpperCamelCase_ )] return Matrix(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def A ( UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> Matrix: '''simple docstring''' random.seed(UpperCamelCase_ ) lowerCAmelCase__ = [ [random.randint(UpperCamelCase_ , UpperCamelCase_ ) for _ in range(UpperCamelCase_ )] for _ in range(UpperCamelCase_ ) ] return Matrix(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
48
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): '''simple docstring''' __A : Optional[int] = parent __A : str = 13 __A : List[Any] = 7 __A : List[str] = True __A : str = True __A : Optional[Any] = True __A : int = True __A : Dict = 99 __A : Dict = 384 __A : Any = 2 __A : int = 4 __A : Optional[Any] = 37 __A : Optional[int] = 'gelu' __A : Dict = 0.1 __A : Optional[int] = 0.1 __A : Any = 512 __A : int = 16 __A : List[str] = 2 __A : str = 0.02 __A : Any = 3 __A : str = 4 __A : Union[str, Any] = 128 __A : int = 2 __A : List[Any] = 9 __A : List[Any] = 1 __A : List[Any] = None def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __A : str = None if self.use_input_mask: __A : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __A : Optional[Any] = None if self.use_token_type_ids: __A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __A : Optional[int] = None __A : List[str] = None __A : Dict = None if self.use_labels: __A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) __A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __A : str = ids_tensor([self.batch_size] , self.num_choices) __A : List[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = TFConvBertModel(config=_UpperCAmelCase) __A : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __A : Tuple = [input_ids, input_mask] __A : Any = model(_UpperCAmelCase) __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : str = TFConvBertForMaskedLM(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : str = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = self.num_labels __A : Any = TFConvBertForSequenceClassification(config=_UpperCAmelCase) __A : Optional[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Tuple = self.num_choices __A : List[str] = TFConvBertForMultipleChoice(config=_UpperCAmelCase) __A : int = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : Optional[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : List[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : int = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __A : Optional[Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = self.num_labels __A : List[Any] = TFConvBertForTokenClassification(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : int = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = TFConvBertForQuestionAnswering(config=_UpperCAmelCase) __A : Any = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Union[str, Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.prepare_config_and_inputs() ( ( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) , ) : Union[str, Any] = config_and_inputs __A : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = TFConvBertModelTester(self) __A : str = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __A : List[str] = True __A : List[str] = True if hasattr(_UpperCAmelCase , 'use_cache'): __A : List[Any] = True __A : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : Union[str, Any] = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) for model_class in self.all_model_classes: __A : List[str] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase) __A : Optional[int] = model_class(_UpperCAmelCase) __A : Optional[Any] = len(model(_UpperCAmelCase)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase) __A : Union[str, Any] = os.path.join(_UpperCAmelCase , 'saved_model' , '1') __A : Tuple = tf.keras.models.load_model(_UpperCAmelCase) __A : str = model(_UpperCAmelCase) if self.is_encoder_decoder: __A : Optional[int] = outputs['encoder_hidden_states'] __A : str = outputs['encoder_attentions'] else: __A : List[Any] = outputs['hidden_states'] __A : Optional[Any] = outputs['attentions'] self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) __A : str = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) self.assertListEqual( list(output_hidden_states[0].shape[-2:]) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(output_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') self.assertIsNotNone(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Any = True __A : str = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length) __A : Any = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : int = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) __A : Tuple = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) def check_decoder_attentions_output(_UpperCAmelCase): __A : List[str] = len(_UpperCAmelCase) self.assertEqual(out_len % 2 , 0) __A : Any = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCAmelCase): __A : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __A : Dict = True __A : Any = False __A : str = model_class(_UpperCAmelCase) __A : List[str] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : List[str] = len(_UpperCAmelCase) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) if self.is_encoder_decoder: __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : int = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_decoder_attentions_output(_UpperCAmelCase) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __A : int = True __A : Tuple = model_class(_UpperCAmelCase) __A : Dict = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) # Check attention is always last and order is fine __A : Any = True __A : str = True __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : Union[str, Any] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase)) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) @require_tf class SCREAMING_SNAKE_CASE (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') __A : str = tf.constant([[0, 1, 2, 3, 4, 5]]) __A : Optional[int] = model(_UpperCAmelCase)[0] __A : List[Any] = [1, 6, 768] self.assertEqual(output.shape , _UpperCAmelCase) __A : Tuple = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ]) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4)
8
0
"""simple docstring""" import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ): a__ : List[Any] = MobileBertTokenizer a__ : str = MobileBertTokenizerFast a__ : str = True a__ : Optional[Any] = True a__ : List[str] = filter_non_english a__ : Optional[Any] = "google/mobilebert-uncased" def a ( self : int ): super().setUp() __UpperCAmelCase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) __UpperCAmelCase = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def a ( self : Any , _lowercase : Union[str, Any] ): __UpperCAmelCase = '''UNwant\u00E9d,running''' __UpperCAmelCase = '''unwanted, running''' return input_text, output_text def a ( self : Optional[int] ): __UpperCAmelCase = self.tokenizer_class(self.vocab_file ) __UpperCAmelCase = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_lowercase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , [9, 6, 7, 12, 10, 11] ) def a ( self : Any ): if not self.test_rust_tokenizer: return __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = self.get_rust_tokenizer() __UpperCAmelCase = '''UNwant\u00E9d,running''' __UpperCAmelCase = tokenizer.tokenize(_lowercase ) __UpperCAmelCase = rust_tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) __UpperCAmelCase = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) __UpperCAmelCase = rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) __UpperCAmelCase = self.get_rust_tokenizer() __UpperCAmelCase = tokenizer.encode(_lowercase ) __UpperCAmelCase = rust_tokenizer.encode(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) # With lower casing __UpperCAmelCase = self.get_tokenizer(do_lower_case=_lowercase ) __UpperCAmelCase = self.get_rust_tokenizer(do_lower_case=_lowercase ) __UpperCAmelCase = '''UNwant\u00E9d,running''' __UpperCAmelCase = tokenizer.tokenize(_lowercase ) __UpperCAmelCase = rust_tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) __UpperCAmelCase = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) __UpperCAmelCase = rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) __UpperCAmelCase = self.get_rust_tokenizer() __UpperCAmelCase = tokenizer.encode(_lowercase ) __UpperCAmelCase = rust_tokenizer.encode(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) def a ( self : Union[str, Any] ): __UpperCAmelCase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def a ( self : Optional[Any] ): __UpperCAmelCase = BasicTokenizer(do_lower_case=_lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def a ( self : int ): __UpperCAmelCase = BasicTokenizer(do_lower_case=_lowercase , strip_accents=_lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def a ( self : Optional[Any] ): __UpperCAmelCase = BasicTokenizer(do_lower_case=_lowercase , strip_accents=_lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def a ( self : str ): __UpperCAmelCase = BasicTokenizer(do_lower_case=_lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def a ( self : List[Any] ): __UpperCAmelCase = BasicTokenizer(do_lower_case=_lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def a ( self : Dict ): __UpperCAmelCase = BasicTokenizer(do_lower_case=_lowercase , strip_accents=_lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def a ( self : List[Any] ): __UpperCAmelCase = BasicTokenizer(do_lower_case=_lowercase , strip_accents=_lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def a ( self : Union[str, Any] ): __UpperCAmelCase = BasicTokenizer(do_lower_case=_lowercase , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def a ( self : Optional[int] ): __UpperCAmelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __UpperCAmelCase = {} for i, token in enumerate(_lowercase ): __UpperCAmelCase = i __UpperCAmelCase = WordpieceTokenizer(vocab=_lowercase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def a ( self : str ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def a ( self : Optional[int] ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def a ( self : Dict ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def a ( self : Dict ): __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_lowercase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(_lowercase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def a ( self : List[Any] ): __UpperCAmelCase = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' ) __UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=_lowercase ) __UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_lowercase ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(_lowercase ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(_lowercase , _lowercase ) assert encoded_sentence == [1_01] + text + [1_02] assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02] def a ( self : Union[str, Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) __UpperCAmelCase = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' __UpperCAmelCase = tokenizer_r.encode_plus( _lowercase , return_attention_mask=_lowercase , return_token_type_ids=_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase , ) __UpperCAmelCase = tokenizer_r.do_lower_case if hasattr(_lowercase , '''do_lower_case''' ) else False __UpperCAmelCase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def a ( self : str ): __UpperCAmelCase = ['''的''', '''人''', '''有'''] __UpperCAmelCase = ''''''.join(_lowercase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = True __UpperCAmelCase = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase ) __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) __UpperCAmelCase = tokenizer_p.encode(_lowercase , add_special_tokens=_lowercase ) __UpperCAmelCase = tokenizer_r.encode(_lowercase , add_special_tokens=_lowercase ) __UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(_lowercase ) __UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(_lowercase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_lowercase , _lowercase ) self.assertListEqual(_lowercase , _lowercase ) __UpperCAmelCase = False __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) __UpperCAmelCase = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase ) __UpperCAmelCase = tokenizer_r.encode(_lowercase , add_special_tokens=_lowercase ) __UpperCAmelCase = tokenizer_p.encode(_lowercase , add_special_tokens=_lowercase ) __UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(_lowercase ) __UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(_lowercase ) # it is expected that only the first Chinese character is not preceded by "##". __UpperCAmelCase = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(_lowercase ) ] self.assertListEqual(_lowercase , _lowercase ) self.assertListEqual(_lowercase , _lowercase )
49
'''simple docstring''' import argparse import os import re lowercase__ : Optional[int] = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowercase__ : Dict = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowercase__ : List[str] = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase__ : Tuple = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowercase__ : str = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase__ : str = re.compile(r'''\[([^\]]+)\]''') def _lowerCAmelCase ( __snake_case : str ) -> Tuple: __A : List[Any] = _re_indent.search(__snake_case ) return "" if search is None else search.groups()[0] def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : str="" , __snake_case : Any=None , __snake_case : List[Any]=None ) -> Optional[int]: __A : Tuple = 0 __A : Optional[int] = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(__snake_case ): index += 1 __A : Optional[int] = ['\n'.join(lines[:index] )] else: __A : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __A : Tuple = [lines[index]] index += 1 while index < len(__snake_case ) and (end_prompt is None or not lines[index].startswith(__snake_case )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__snake_case ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(__snake_case ) ) if index < len(__snake_case ) - 1: __A : Union[str, Any] = [lines[index + 1]] index += 1 else: __A : Union[str, Any] = [] else: blocks.append('\n'.join(__snake_case ) ) __A : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__snake_case ) > 0: blocks.append('\n'.join(__snake_case ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__snake_case ): blocks.append('\n'.join(lines[index:] ) ) return blocks def _lowerCAmelCase ( __snake_case : List[Any] ) -> int: def _inner(__snake_case : List[Any] ): return key(__snake_case ).lower().replace('_' , '' ) return _inner def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any=None ) -> List[Any]: # If no key is provided, we use a noop. def noop(__snake_case : List[Any] ): return x if key is None: __A : Optional[Any] = noop # Constants are all uppercase, they go first. __A : str = [obj for obj in objects if key(__snake_case ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __A : List[str] = [obj for obj in objects if key(__snake_case )[0].isupper() and not key(__snake_case ).isupper()] # Functions begin with a lowercase, they go last. __A : str = [obj for obj in objects if not key(__snake_case )[0].isupper()] __A : Tuple = ignore_underscore(__snake_case ) return sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Tuple: # This inner function sort imports between [ ]. def _replace(__snake_case : Tuple ): __A : List[str] = match.groups()[0] if "," not in imports: return f'[{imports}]' __A : int = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Dict = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(__snake_case )] ) + "]" __A : List[Any] = import_statement.split('\n' ) if len(__snake_case ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __A : Optional[int] = 2 if lines[1].strip() == '[' else 1 __A : Any = [(i, _re_strip_line.search(__snake_case ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __A : Optional[int] = sort_objects(__snake_case , key=lambda __snake_case : x[1] ) __A : Any = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__snake_case ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __A : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] ) else: __A : Dict = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Tuple = keys[:-1] __A : List[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(__snake_case )] ) return "\n".join(__snake_case ) else: # Finally we have to deal with imports fitting on one line __A : Optional[Any] = _re_bracket_content.sub(_replace , __snake_case ) return import_statement def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : List[Any]=True ) -> Optional[Any]: with open(__snake_case , 'r' ) as f: __A : Dict = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __A : str = split_code_in_indented_blocks( __snake_case , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__snake_case ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __A : Tuple = main_blocks[block_idx] __A : int = block.split('\n' ) # Get to the start of the imports. __A : Tuple = 0 while line_idx < len(__snake_case ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __A : Optional[int] = len(__snake_case ) else: line_idx += 1 if line_idx >= len(__snake_case ): continue # Ignore beginning and last line: they don't contain anything. __A : Dict = '\n'.join(block_lines[line_idx:-1] ) __A : int = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __A : Optional[int] = split_code_in_indented_blocks(__snake_case , indent_level=__snake_case ) # We have two categories of import key: list or _import_structure[key].append/extend __A : Any = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __A : Dict = [(pattern.search(__snake_case ).groups()[0] if pattern.search(__snake_case ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __A : Optional[Any] = [(i, key) for i, key in enumerate(__snake_case ) if key is not None] __A : Tuple = [x[0] for x in sorted(__snake_case , key=lambda __snake_case : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __A : str = 0 __A : Any = [] for i in range(len(__snake_case ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __A : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(__snake_case ) count += 1 # And we put our main block back together with its first and last line. __A : int = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(__snake_case ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(__snake_case , 'w' ) as f: f.write('\n'.join(__snake_case ) ) def _lowerCAmelCase ( __snake_case : int=True ) -> Optional[Any]: __A : Tuple = [] for root, _, files in os.walk(__snake_case ): if "__init__.py" in files: __A : List[Any] = sort_imports(os.path.join(__snake_case , '__init__.py' ) , check_only=__snake_case ) if result: __A : Dict = [os.path.join(__snake_case , '__init__.py' )] if len(__snake_case ) > 0: raise ValueError(f'Would overwrite {len(__snake_case )} files, run `make style`.' ) if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowercase__ : Union[str, Any] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
8
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase : Tuple = 16 UpperCamelCase : List[Any] = 32 def A__ ( __lowerCAmelCase : Accelerator , __lowerCAmelCase : int = 16 ): lowerCamelCase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCamelCase__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__lowerCAmelCase : str ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase__ = datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__lowerCAmelCase : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase__ = 16 elif accelerator.mixed_precision != "no": lowerCamelCase__ = 8 else: lowerCamelCase__ = None return tokenizer.pad( __lowerCAmelCase , padding="""longest""" , max_length=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. lowerCamelCase__ = DataLoader( tokenized_datasets["""train"""] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase ) lowerCamelCase__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCamelCase : Optional[Any] = mocked_dataloaders # noqa: F811 def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] ): # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __lowerCAmelCase ) == "1": lowerCamelCase__ = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: lowerCamelCase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="""all""" , project_dir=args.project_dir ) else: lowerCamelCase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase__ = config["""lr"""] lowerCamelCase__ = int(config["""num_epochs"""] ) lowerCamelCase__ = int(config["""seed"""] ) lowerCamelCase__ = int(config["""batch_size"""] ) set_seed(__lowerCAmelCase ) lowerCamelCase__ , lowerCamelCase__ = get_dataloaders(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation lowerCamelCase__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCamelCase__ = batch_size // MAX_GPU_BATCH_SIZE lowerCamelCase__ = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase__ = model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase__ = AdamW(params=model.parameters() , lr=__lowerCAmelCase ) # Instantiate scheduler lowerCamelCase__ = get_linear_schedule_with_warmup( optimizer=__lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(__lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = accelerator.prepare( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: lowerCamelCase__ = os.path.split(__lowerCAmelCase )[-1].split(""".""" )[0] accelerator.init_trackers(__lowerCAmelCase , __lowerCAmelCase ) # Now we train the model for epoch in range(__lowerCAmelCase ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: lowerCamelCase__ = 0 for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCamelCase__ = model(**__lowerCAmelCase ) lowerCamelCase__ = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() lowerCamelCase__ = loss / gradient_accumulation_steps accelerator.backward(__lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase__ = model(**__lowerCAmelCase ) lowerCamelCase__ = outputs.logits.argmax(dim=-1 ) lowerCamelCase__ , lowerCamelCase__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__lowerCAmelCase , references=__lowerCAmelCase , ) lowerCamelCase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __lowerCAmelCase ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { """accuracy""": eval_metric["""accuracy"""], """f1""": eval_metric["""f1"""], """train_loss""": total_loss.item() / len(__lowerCAmelCase ), """epoch""": epoch, } , step=__lowerCAmelCase , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def A__ ( ): lowerCamelCase__ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__lowerCAmelCase , default=__lowerCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) parser.add_argument( """--with_tracking""" , action="""store_true""" , help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" , ) parser.add_argument( """--project_dir""" , type=__lowerCAmelCase , default="""logs""" , help="""Location on where to store experiment tracking logs` and relevent project information""" , ) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
50
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int ) -> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') lowercase__ : int = int(input('''Enter number: ''').strip()) print(f"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
8
0
'''simple docstring''' def __snake_case ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> float: """simple docstring""" UpperCAmelCase = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def __snake_case ( ) -> List[Any]: """simple docstring""" print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
51
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : str = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def _lowerCAmelCase ( __snake_case : List[Any] ) -> Tuple: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __A : Optional[Any] = k.replace(__snake_case , __snake_case ) if k.startswith('encoder' ): __A : Any = k.replace('.attn' , '.self_attn' ) __A : Any = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): __A : Tuple = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'encoder_attn_layer_norm' ) __A : int = k.replace('norm3' , 'final_layer_norm' ) return k def _lowerCAmelCase ( __snake_case : List[Any] ) -> Dict: __A : Optional[int] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: __A : Tuple = sd.pop(__snake_case ) __A : Union[str, Any] = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd __A : str = v lowercase__ : Tuple = ['''START'''] @torch.no_grad() def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any , __snake_case : List[Any] ) -> int: __A : List[str] = torch.load(__snake_case , map_location='cpu' ) __A : Tuple = model['model'] __A : str = BlenderbotConfig.from_json_file(__snake_case ) __A : int = BlenderbotForConditionalGeneration(__snake_case ) __A : List[Any] = m.model.state_dict().keys() __A : Optional[int] = [] __A : Optional[int] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __A : Union[str, Any] = rename_state_dict_key(__snake_case ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __A : Optional[Any] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__snake_case ) m.model.load_state_dict(__snake_case , strict=__snake_case ) m.half() m.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
8
0
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar A = TypeVar('''KEY''') A = TypeVar('''VAL''') @dataclass(frozen=_UpperCamelCase , slots=_UpperCamelCase ) class __lowercase ( Generic[KEY, VAL] ): '''simple docstring''' __lowerCAmelCase = 42 __lowerCAmelCase = 42 class __lowercase ( _Item ): '''simple docstring''' def __init__( self ): super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __bool__( self ): return False A = _DeletedItem() class __lowercase ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__( self , _UpperCAmelCase = 8 , _UpperCAmelCase = 0.7_5 ): __a : Union[str, Any] = initial_block_size __a : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __a : Optional[Any] = capacity_factor __a : Union[str, Any] = 0 def _lowerCamelCase ( self , _UpperCAmelCase ): return hash(_UpperCAmelCase ) % len(self._buckets ) def _lowerCamelCase ( self , _UpperCAmelCase ): return (ind + 1) % len(self._buckets ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : List[str] = self._buckets[ind] if not stored: __a : int = _Item(_UpperCAmelCase , _UpperCAmelCase ) self._len += 1 return True elif stored.key == key: __a : Dict = _Item(_UpperCAmelCase , _UpperCAmelCase ) return True else: return False def _lowerCamelCase ( self ): __a : Optional[int] = len(self._buckets ) * self._capacity_factor return len(self ) >= int(_UpperCAmelCase ) def _lowerCamelCase ( self ): if len(self._buckets ) <= self._initial_block_size: return False __a : Optional[Any] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def _lowerCamelCase ( self , _UpperCAmelCase ): __a : List[str] = self._buckets __a : List[Any] = [None] * new_size __a : int = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def _lowerCamelCase ( self ): self._resize(len(self._buckets ) * 2 ) def _lowerCamelCase ( self ): self._resize(len(self._buckets ) // 2 ) def _lowerCamelCase ( self , _UpperCAmelCase ): __a : int = self._get_bucket_index(_UpperCAmelCase ) for _ in range(len(self._buckets ) ): yield ind __a : Dict = self._get_next_ind(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): for ind in self._iterate_buckets(_UpperCAmelCase ): if self._try_set(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): break def __setitem__( self , _UpperCAmelCase , _UpperCAmelCase ): if self._is_full(): self._size_up() self._add_item(_UpperCAmelCase , _UpperCAmelCase ) def __delitem__( self , _UpperCAmelCase ): for ind in self._iterate_buckets(_UpperCAmelCase ): __a : List[str] = self._buckets[ind] if item is None: raise KeyError(_UpperCAmelCase ) if item is _deleted: continue if item.key == key: __a : Dict = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , _UpperCAmelCase ): for ind in self._iterate_buckets(_UpperCAmelCase ): __a : List[str] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(_UpperCAmelCase ) def __len__( self ): return self._len def __iter__( self ): yield from (item.key for item in self._buckets if item) def __repr__( self ): __a : List[str] = ''' ,'''.join( f"""{item.key}: {item.val}""" for item in self._buckets if item ) return f"""HashMap({val_string})"""
52
'''simple docstring''' import mpmath # for roots of unity import numpy as np class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None): '''simple docstring''' __A : List[Any] = list(poly_a or [0])[:] __A : Optional[int] = list(poly_b or [0])[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __A : Union[str, Any] = len(self.polyA) while self.polyB[-1] == 0: self.polyB.pop() __A : Optional[int] = len(self.polyB) # Add 0 to make lengths equal a power of 2 __A : Optional[Any] = int( 2 ** np.ceil(np.loga(len(self.polyA) + len(self.polyB) - 1))) while len(self.polyA) < self.c_max_length: self.polyA.append(0) while len(self.polyB) < self.c_max_length: self.polyB.append(0) # A complex root used for the fourier transform __A : str = complex(mpmath.root(x=1 , n=self.c_max_length , k=1)) # The product __A : Tuple = self.__multiply() def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(_UpperCAmelCase) <= 1: return dft[0] # __A : Dict = self.c_max_length // 2 while next_ncol > 0: __A : Optional[Any] = [[] for i in range(_UpperCAmelCase)] __A : Tuple = self.root**next_ncol # First half of next step __A : Optional[Any] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j]) current_root *= root # Second half of next step __A : List[str] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j]) current_root *= root # Update __A : Optional[int] = new_dft __A : Tuple = next_ncol // 2 return dft[0] def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.__dft('A') __A : Optional[Any] = self.__dft('B') __A : str = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]] del dft_a del dft_b # Corner Case if len(inverce_c[0]) <= 1: return inverce_c[0] # Inverse DFT __A : Dict = 2 while next_ncol <= self.c_max_length: __A : Optional[int] = [[] for i in range(_UpperCAmelCase)] __A : Any = self.root ** (next_ncol // 2) __A : Tuple = 1 # First half of next step for j in range(self.c_max_length // next_ncol): for i in range(next_ncol // 2): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root)) current_root *= root # Update __A : int = new_inverse_c next_ncol *= 2 # Unpack __A : Optional[int] = [round(x[0].real , 8) + round(x[0].imag , 8) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self): '''simple docstring''' __A : int = 'A = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A])) __A : Optional[Any] = 'B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B])) __A : str = 'A*B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.product)) return F'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
0
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int = 1_3 , lowerCAmelCase_ : int = 6_4 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : int = 1_2_8 , lowerCAmelCase_ : Any=[1_6, 3_2, 6_4, 1_2_8] , lowerCAmelCase_ : int = 7 , lowerCAmelCase_ : int = 4 , lowerCAmelCase_ : int = 3_7 , lowerCAmelCase_ : str = "gelu" , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : int = 1_0 , lowerCAmelCase_ : float = 0.02 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : int = 1_2_8 , lowerCAmelCase_ : List[int] = [2, 2, 2, 2] , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , ) -> str: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = encoder_stride __lowerCAmelCase = num_attention_outputs __lowerCAmelCase = embed_dim __lowerCAmelCase = embed_dim + 1 __lowerCAmelCase = resolution __lowerCAmelCase = depths __lowerCAmelCase = hidden_sizes __lowerCAmelCase = dim __lowerCAmelCase = mlp_expansion_ratio def lowercase ( self : Any ) -> Dict: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase ( self : Any ) -> List[str]: return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def lowercase ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str ) -> List[str]: __lowerCAmelCase = TFEfficientFormerModel(config=lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any ) -> Dict: __lowerCAmelCase = self.type_sequence_label_size __lowerCAmelCase = TFEfficientFormerForImageClassification(lowerCAmelCase_ ) __lowerCAmelCase = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = TFEfficientFormerForImageClassification(lowerCAmelCase_ ) __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase ( self : Any ) -> Any: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) a_ = ( { """feature-extraction""": TFEfficientFormerModel, """image-classification""": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) a_ = False a_ = False a_ = False a_ = False a_ = False def lowercase ( self : List[str] ) -> List[str]: __lowerCAmelCase = TFEfficientFormerModelTester(self ) __lowerCAmelCase = ConfigTester( self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : Optional[Any] ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='EfficientFormer does not use inputs_embeds' ) def lowercase ( self : Dict ) -> Any: pass @unittest.skip(reason='EfficientFormer does not support input and output embeddings' ) def lowercase ( self : Optional[Any] ) -> Union[str, Any]: pass def lowercase ( self : Optional[Any] ) -> List[str]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : Tuple ) -> List[str]: def check_hidden_states_output(lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) if hasattr(self.model_tester , 'encoder_seq_length' ): __lowerCAmelCase = self.model_tester.encoder_seq_length if hasattr(self.model_tester , 'chunk_length' ) and self.model_tester.chunk_length > 1: __lowerCAmelCase = seq_length * self.model_tester.chunk_length else: __lowerCAmelCase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: __lowerCAmelCase = outputs.decoder_hidden_states self.asseretIsInstance(lowerCAmelCase_ , (list, tuple) ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) __lowerCAmelCase = getattr(self.model_tester , 'seq_length' , lowerCAmelCase_ ) __lowerCAmelCase = getattr(self.model_tester , 'decoder_seq_length' , lowerCAmelCase_ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Dict=False ) -> Dict: __lowerCAmelCase = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowercase ( self : str ) -> Dict: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) @unittest.skip(reason='EfficientFormer does not implement masked image modeling yet' ) def lowercase ( self : Dict ) -> Optional[int]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase_ ) def lowercase ( self : Optional[int] ) -> Dict: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @slow def lowercase ( self : Any ) -> List[Any]: for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = TFEfficientFormerModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def lowercase ( self : Optional[int] ) -> Any: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True __lowerCAmelCase = getattr(self.model_tester , 'seq_length' , lowerCAmelCase_ ) __lowerCAmelCase = getattr(self.model_tester , 'encoder_seq_length' , lowerCAmelCase_ ) __lowerCAmelCase = getattr(self.model_tester , 'key_length' , lowerCAmelCase_ ) __lowerCAmelCase = getattr(self.model_tester , 'chunk_length' , lowerCAmelCase_ ) if chunk_length is not None and hasattr(self.model_tester , 'num_hashes' ): __lowerCAmelCase = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase = True __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) __lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def lowercase ( self : str ) -> List[str]: # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model __lowerCAmelCase = model_class(lowerCAmelCase_ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes __lowerCAmelCase = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=lowerCAmelCase_ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } __lowerCAmelCase = model(lowerCAmelCase_ ) self.assertTrue(outputs_dict is not None ) def a_ ( ): __lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : str ) -> Optional[int]: return ( EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300' ) if is_vision_available() else None ) @slow def lowercase ( self : List[str] ) -> List[Any]: __lowerCAmelCase = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300' ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCAmelCase_ , return_tensors='tf' ) # forward pass __lowerCAmelCase = model(**lowerCAmelCase_ , training=lowerCAmelCase_ ) # verify the logits __lowerCAmelCase = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = tf.constant([-0.05_55, 0.48_25, -0.08_52] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : List[str] ) -> Optional[int]: __lowerCAmelCase = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( 'snap-research/efficientformer-l1-300' ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCAmelCase_ , return_tensors='tf' ) # forward pass __lowerCAmelCase = model(**lowerCAmelCase_ , training=lowerCAmelCase_ ) # verify the logits __lowerCAmelCase = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = tf.constant([-0.13_12, 0.43_53, -1.04_99] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
53
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=[30, 30] , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=None , _UpperCAmelCase=8 , _UpperCAmelCase=10 , ): '''simple docstring''' __A : Union[str, Any] = parent __A : Tuple = batch_size __A : List[str] = image_size __A : Dict = patch_size __A : Optional[Any] = num_channels __A : Tuple = is_training __A : Dict = use_labels __A : List[Any] = hidden_size __A : Tuple = num_hidden_layers __A : int = num_attention_heads __A : Optional[int] = intermediate_size __A : Tuple = hidden_act __A : Any = hidden_dropout_prob __A : Optional[Any] = attention_probs_dropout_prob __A : List[Any] = type_sequence_label_size __A : List[Any] = initializer_range __A : Optional[int] = num_labels __A : List[Any] = scope __A : Any = n_targets __A : Union[str, Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens __A : List[str] = (image_size[1] // patch_size) * (image_size[0] // patch_size) __A : int = num_patches + 1 + self.num_detection_tokens def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]]) __A : Tuple = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) __A : List[Any] = [] for i in range(self.batch_size): __A : Optional[int] = {} __A : Union[str, Any] = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=_UpperCAmelCase) __A : str = torch.rand(self.n_targets , 4 , device=_UpperCAmelCase) labels.append(_UpperCAmelCase) __A : Any = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosModel(config=_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosForObjectDetection(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : str = model(pixel_values=_UpperCAmelCase) __A : List[str] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) __A : Union[str, Any] = model(pixel_values=_UpperCAmelCase , labels=_UpperCAmelCase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.prepare_config_and_inputs() __A ,__A ,__A : Tuple = config_and_inputs __A : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowerCAmelCase = ( {'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' __A : Optional[Any] = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase) if return_labels: if model_class.__name__ == "YolosForObjectDetection": __A : Any = [] for i in range(self.model_tester.batch_size): __A : Tuple = {} __A : Tuple = torch.ones( size=(self.model_tester.n_targets,) , device=_UpperCAmelCase , dtype=torch.long) __A : Optional[Any] = torch.ones( self.model_tester.n_targets , 4 , device=_UpperCAmelCase , dtype=torch.float) labels.append(_UpperCAmelCase) __A : str = labels return inputs_dict def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = YolosModelTester(self) __A : Dict = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Tuple = model_class(_UpperCAmelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __A : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[Any] = model_class(_UpperCAmelCase) __A : str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : int = [*signature.parameters.keys()] __A : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Optional[int] = True # in YOLOS, the seq_len is different __A : Dict = self.model_tester.expected_seq_len for model_class in self.all_model_classes: __A : Dict = True __A : Dict = False __A : Union[str, Any] = True __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : Any = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] __A : List[Any] = True __A : List[str] = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __A : str = len(_UpperCAmelCase) # Check attention is always last and order is fine __A : Dict = True __A : Dict = True __A : Dict = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = 1 self.assertEqual(out_len + added_hidden_states , len(_UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.hidden_states __A : List[str] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) # YOLOS has a different seq_length __A : Dict = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[str] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A : Optional[int] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : List[Any] = YolosModel.from_pretrained(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase) def _lowerCAmelCase ( ) -> int: __A : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return AutoImageProcessor.from_pretrained('hustvl/yolos-small') if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = YolosForObjectDetection.from_pretrained('hustvl/yolos-small').to(_UpperCAmelCase) __A : Any = self.default_image_processor __A : str = prepare_img() __A : int = image_processor(images=_UpperCAmelCase , return_tensors='pt').to(_UpperCAmelCase) # forward pass with torch.no_grad(): __A : str = model(inputs.pixel_values) # verify outputs __A : Tuple = torch.Size((1, 100, 92)) self.assertEqual(outputs.logits.shape , _UpperCAmelCase) __A : Dict = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=_UpperCAmelCase , ) __A : int = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=_UpperCAmelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) # verify postprocessing __A : List[str] = image_processor.post_process_object_detection( _UpperCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]])[0] __A : Optional[int] = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861]).to(_UpperCAmelCase) __A : Union[str, Any] = [75, 75, 17, 63, 17] __A : Any = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495]).to(_UpperCAmelCase) self.assertEqual(len(results['scores']) , 5) self.assertTrue(torch.allclose(results['scores'] , _UpperCAmelCase , atol=1e-4)) self.assertSequenceEqual(results['labels'].tolist() , _UpperCAmelCase) self.assertTrue(torch.allclose(results['boxes'][0, :] , _UpperCAmelCase))
8
0
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class A ( __lowercase , unittest.TestCase ): _snake_case =PriorTransformer _snake_case ='''hidden_states''' @property def lowerCAmelCase__ ( self: str ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =4 UpperCAmelCase_ =8 UpperCAmelCase_ =7 UpperCAmelCase_ =floats_tensor((batch_size, embedding_dim) ).to(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor((batch_size, embedding_dim) ).to(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_lowerCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: Tuple=0 ) -> Tuple: '''simple docstring''' torch.manual_seed(_lowerCAmelCase ) UpperCAmelCase_ =4 UpperCAmelCase_ =8 UpperCAmelCase_ =7 UpperCAmelCase_ =torch.randn((batch_size, embedding_dim) ).to(_lowerCAmelCase ) UpperCAmelCase_ =torch.randn((batch_size, embedding_dim) ).to(_lowerCAmelCase ) UpperCAmelCase_ =torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_lowerCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def lowerCAmelCase__ ( self: List[Any] ) -> str: '''simple docstring''' return (4, 8) @property def lowerCAmelCase__ ( self: Optional[int] ) -> Optional[int]: '''simple docstring''' return (4, 8) def lowerCAmelCase__ ( self: Optional[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ ={ "num_attention_heads": 2, "attention_head_dim": 4, "num_layers": 2, "embedding_dim": 8, "num_embeddings": 7, "additional_embeddings": 4, } UpperCAmelCase_ =self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ ( self: List[Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =PriorTransformer.from_pretrained( "hf-internal-testing/prior-dummy" , output_loading_info=_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(_lowerCAmelCase ) UpperCAmelCase_ =model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def lowerCAmelCase__ ( self: Any ) -> Any: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ =self.prepare_init_args_and_inputs_for_common() UpperCAmelCase_ =self.model_class(**_lowerCAmelCase ) UpperCAmelCase_ =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ =[*signature.parameters.keys()] UpperCAmelCase_ =["hidden_states", "timestep"] self.assertListEqual(arg_names[:2] , _lowerCAmelCase ) def lowerCAmelCase__ ( self: List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ =PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy" ) UpperCAmelCase_ =model.to(_lowerCAmelCase ) if hasattr(_lowerCAmelCase , "set_default_attn_processor" ): model.set_default_attn_processor() UpperCAmelCase_ =self.get_dummy_seed_input() with torch.no_grad(): UpperCAmelCase_ =model(**_lowerCAmelCase )[0] UpperCAmelCase_ =output[0, :5].flatten().cpu() print(_lowerCAmelCase ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. UpperCAmelCase_ =torch.tensor([-1.34_36, -0.28_70, 0.75_38, 0.43_68, -0.02_39] ) self.assertTrue(torch_all_close(_lowerCAmelCase , _lowerCAmelCase , rtol=1e-2 ) ) @slow class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: str=1 , _lowerCAmelCase: Any=768 , _lowerCAmelCase: Any=77 , _lowerCAmelCase: Optional[int]=0 ) -> str: '''simple docstring''' torch.manual_seed(_lowerCAmelCase ) UpperCAmelCase_ =batch_size UpperCAmelCase_ =embedding_dim UpperCAmelCase_ =num_embeddings UpperCAmelCase_ =torch.randn((batch_size, embedding_dim) ).to(_lowerCAmelCase ) UpperCAmelCase_ =torch.randn((batch_size, embedding_dim) ).to(_lowerCAmelCase ) UpperCAmelCase_ =torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_lowerCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowerCAmelCase__ ( self: Optional[int] ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.58_61, 0.12_83, -0.09_31, 0.08_82, 0.44_76, 0.13_29, -0.04_98, 0.06_40]], [37, [-0.49_13, 0.01_10, -0.04_83, 0.05_41, 0.49_54, -0.01_70, 0.03_54, 0.16_51]], # fmt: on ] ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: List[str] , _lowerCAmelCase: List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ =PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior" , subfolder="prior" ) model.to(_lowerCAmelCase ) UpperCAmelCase_ =self.get_dummy_seed_input(seed=_lowerCAmelCase ) with torch.no_grad(): UpperCAmelCase_ =model(**_lowerCAmelCase )[0] assert list(sample.shape ) == [1, 768] UpperCAmelCase_ =sample[0, :8].flatten().cpu() print(_lowerCAmelCase ) UpperCAmelCase_ =torch.tensor(_lowerCAmelCase ) assert torch_all_close(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 )
54
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: lowercase__ : Optional[int] = None lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ : List[str] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } lowercase__ : Dict = { '''camembert-base''': 5_12, } lowercase__ : str = '''▁''' class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] lowerCAmelCase = CamembertTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **_UpperCAmelCase , ): '''simple docstring''' __A : int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __A : List[str] = vocab_file __A : Optional[int] = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A : Optional[Any] = [self.cls_token_id] __A : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' __A : Optional[int] = [self.sep_token_id] __A : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(_UpperCAmelCase): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return __A : List[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCAmelCase): copyfile(self.vocab_file , _UpperCAmelCase) return (out_vocab_file,)
8
0
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def UpperCAmelCase ( a_ , a_ , a_=1_0_2_4 , a_=1_0_2_4 , a_=False , **a_ ) -> Union[str, Any]: """simple docstring""" __A = AutoTokenizer.from_pretrained(a_ ) __A = SeqaSeqDataset(a_ , a_ , a_ , a_ , type_path="train" , **a_ ) __A = tok.pad_token_id def get_lens(a_ ): __A = tqdm( DataLoader(a_ , batch_size=5_1_2 , num_workers=8 , shuffle=a_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) __A = [] for batch in dl: __A = batch["input_ids"].ne(a_ ).sum(1 ).tolist() __A = batch["labels"].ne(a_ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(a_ , a_ ): max_lens.append(max(a_ , a_ ) ) else: max_lens.extend(a_ ) return max_lens __A = get_lens(a_ ) __A = SeqaSeqDataset(a_ , a_ , a_ , a_ , type_path="val" , **a_ ) __A = get_lens(a_ ) pickle_save(a_ , train_ds.len_file ) pickle_save(a_ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
55
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowercase__ : Any = '''hf-internal-testing/tiny-random-bert''' lowercase__ : Optional[Any] = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') lowercase__ : List[Any] = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase)) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase))) with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Any = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) self.assertTrue(os.path.isfile(_UpperCAmelCase)) # File is cached at the same place the second time. __A : Tuple = cached_file(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) # Using a specific revision to test the full commit hash. __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='9b8c223') self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): __A : Dict = cached_file('tiny-random-bert' , _UpperCAmelCase) with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): __A : Optional[int] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='aaaa') with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : int = cached_file(_UpperCAmelCase , 'conf') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : Any = cached_file(_UpperCAmelCase , 'conf') with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Dict = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '.no_exist' , _UpperCAmelCase , 'conf'))) __A : List[Any] = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : str = cached_file(_UpperCAmelCase , 'conf' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : List[str] = mock.Mock() __A : Dict = 500 __A : List[str] = {} __A : List[Any] = HTTPError __A : Optional[Any] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=_UpperCAmelCase) as mock_head: __A : Dict = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_connection_errors=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt')) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): get_file_from_repo('bert-base-case' , _UpperCAmelCase) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): get_file_from_repo('bert-base-cased' , _UpperCAmelCase , revision='ahaha') __A : List[str] = get_file_from_repo('bert-base-cased' , _UpperCAmelCase) # The name is the cached name which is not very easy to test, so instead we load the content. __A : List[str] = json.loads(open(_UpperCAmelCase , 'r').read()) self.assertEqual(config['hidden_size'] , 768) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __A : Tuple = Path(_UpperCAmelCase) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , 'a.txt') , str(_UpperCAmelCase)) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , 'b.txt'))
8
0
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union _a : str = TypeVar("T") _a : Dict = Union[List[T], Tuple[T, ...]] _a : str = Union[T, List[T], Dict[str, T]] _a : Union[str, Any] = Union[str, bytes, os.PathLike]
56
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _lowerCAmelCase ( __snake_case : str , __snake_case : str , **__snake_case : List[Any] ) -> Any: __A : Optional[Any] = AutoConfig.from_pretrained(__snake_case , **__snake_case ) __A : int = AutoModelForSeqaSeqLM.from_config(__snake_case ) model.save_pretrained(__snake_case ) AutoTokenizer.from_pretrained(__snake_case ).save_pretrained(__snake_case ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
8
0
from math import log from scipy.constants import Boltzmann, physical_constants A_ : Tuple = 300 # TEMPERATURE (unit = K) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) -> float: if donor_conc <= 0: raise ValueError('Donor concentration should be positive' ) elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive' ) elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive' ) elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
57
'''simple docstring''' from ...configuration_utils import PretrainedConfig lowercase__ : Any = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''tapas''' def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1024 , _UpperCAmelCase=[3, 256, 256, 2, 256, 256, 10] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase=10.0 , _UpperCAmelCase=0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase="ratio" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __A : Dict = vocab_size __A : Tuple = hidden_size __A : Any = num_hidden_layers __A : int = num_attention_heads __A : Tuple = hidden_act __A : Tuple = intermediate_size __A : List[Any] = hidden_dropout_prob __A : int = attention_probs_dropout_prob __A : List[str] = max_position_embeddings __A : Optional[int] = type_vocab_sizes __A : str = initializer_range __A : List[str] = layer_norm_eps # Fine-tuning task hyperparameters __A : List[str] = positive_label_weight __A : List[Any] = num_aggregation_labels __A : Optional[Any] = aggregation_loss_weight __A : Tuple = use_answer_as_supervision __A : List[str] = answer_loss_importance __A : Any = use_normalized_answer_loss __A : Any = huber_loss_delta __A : Union[str, Any] = temperature __A : Tuple = aggregation_temperature __A : Optional[Any] = use_gumbel_for_cells __A : List[str] = use_gumbel_for_aggregation __A : Tuple = average_approximation_function __A : List[str] = cell_selection_preference __A : Dict = answer_loss_cutoff __A : Union[str, Any] = max_num_rows __A : Optional[Any] = max_num_columns __A : int = average_logits_per_cell __A : Optional[Any] = select_one_column __A : int = allow_empty_column_selection __A : List[Any] = init_cell_selection_weights_to_zero __A : int = reset_position_index_per_cell __A : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters __A : Optional[Any] = aggregation_labels __A : List[str] = no_aggregation_label_index if isinstance(self.aggregation_labels , _UpperCAmelCase): __A : Optional[Any] = {int(_UpperCAmelCase): v for k, v in aggregation_labels.items()}
8
0
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(_lowercase ): snake_case_ : int = AutoConfig.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) snake_case_ : str = FlaxAutoModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) @slow def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(_lowercase ): snake_case_ : str = AutoConfig.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) snake_case_ : Dict = FlaxAutoModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) @slow def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: snake_case_ : Optional[Any] = AutoTokenizer.from_pretrained(_lowercase ) snake_case_ : Optional[int] = FlaxBertModel.from_pretrained(_lowercase ) snake_case_ : int = tokenizer("""Do you support jax jitted function?""" , return_tensors=TensorType.JAX ) @jax.jit def eval(**_lowercase ): return model(**_lowercase ) eval(**_lowercase ).block_until_ready() @slow def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: snake_case_ : Any = AutoTokenizer.from_pretrained(_lowercase ) snake_case_ : Tuple = FlaxRobertaModel.from_pretrained(_lowercase ) snake_case_ : Union[str, Any] = tokenizer("""Do you support jax jitted function?""" , return_tensors=TensorType.JAX ) @jax.jit def eval(**_lowercase ): return model(**_lowercase ) eval(**_lowercase ).block_until_ready() def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' with self.assertRaisesRegex( _lowercase , """bert-base is not a local folder and is not a valid model identifier""" ): snake_case_ : Optional[int] = FlaxAutoModel.from_pretrained("""bert-base""" ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( _lowercase , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): snake_case_ : List[Any] = FlaxAutoModel.from_pretrained(_lowercase , revision="""aaaaaa""" ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( _lowercase , """hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack""" , ): snake_case_ : int = FlaxAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' with self.assertRaisesRegex(_lowercase , """Use `from_pt=True` to load this model""" ): snake_case_ : Dict = FlaxAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" )
58
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=sys.maxsize): '''simple docstring''' __A : Union[str, Any] = 'bilinear' __A : int = max_size __A : Optional[Any] = short_edge_length def __call__( self , _UpperCAmelCase): '''simple docstring''' __A : int = [] for img in imgs: __A ,__A : Dict = img.shape[:2] # later: provide list and randomly choose index for resize __A : List[Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1) if size == 0: return img __A : Tuple = size * 1.0 / min(_UpperCAmelCase , _UpperCAmelCase) if h < w: __A ,__A : Optional[Any] = size, scale * w else: __A ,__A : Optional[Any] = scale * h, size if max(_UpperCAmelCase , _UpperCAmelCase) > self.max_size: __A : Tuple = self.max_size * 1.0 / max(_UpperCAmelCase , _UpperCAmelCase) __A : Tuple = newh * scale __A : Dict = neww * scale __A : Dict = int(neww + 0.5) __A : Optional[int] = int(newh + 0.5) if img.dtype == np.uinta: __A : int = Image.fromarray(_UpperCAmelCase) __A : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR) __A : Dict = np.asarray(_UpperCAmelCase) else: __A : Optional[Any] = img.permute(2 , 0 , 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw __A : Dict = nn.functional.interpolate( _UpperCAmelCase , (newh, neww) , mode=self.interp_method , align_corners=_UpperCAmelCase).squeeze(0) img_augs.append(_UpperCAmelCase) return img_augs class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST) __A : List[Any] = cfg.INPUT.FORMAT __A : Dict = cfg.SIZE_DIVISIBILITY __A : str = cfg.PAD_VALUE __A : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST __A : int = cfg.MODEL.DEVICE __A : Tuple = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : int = lambda _UpperCAmelCase: (x - self.pixel_mean) / self.pixel_std def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = tuple(max(_UpperCAmelCase) for s in zip(*[img.shape for img in images])) __A : Dict = [im.shape[-2:] for im in images] __A : Optional[int] = [ nn.functional.pad( _UpperCAmelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_UpperCAmelCase , _UpperCAmelCase) ] return torch.stack(_UpperCAmelCase), torch.tensor(_UpperCAmelCase) def __call__( self , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' with torch.no_grad(): if not isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : int = [images] if single_image: assert len(_UpperCAmelCase) == 1 for i in range(len(_UpperCAmelCase)): if isinstance(images[i] , torch.Tensor): images.insert(_UpperCAmelCase , images.pop(_UpperCAmelCase).to(self.device).float()) elif not isinstance(images[i] , torch.Tensor): images.insert( _UpperCAmelCase , torch.as_tensor(img_tensorize(images.pop(_UpperCAmelCase) , input_format=self.input_format)) .to(self.device) .float() , ) # resize smallest edge __A : str = torch.tensor([im.shape[:2] for im in images]) __A : List[str] = self.aug(_UpperCAmelCase) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __A : Any = [self.normalizer(_UpperCAmelCase) for x in images] # now pad them to do the following operations __A ,__A : Any = self.pad(_UpperCAmelCase) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __A : str = torch.true_divide(_UpperCAmelCase , _UpperCAmelCase) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _lowerCAmelCase ( __snake_case : Dict , __snake_case : str ) -> Dict: boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : Tuple[int, int] ) -> int: assert torch.isfinite(__snake_case ).all(), "Box tensor contains infinite or NaN!" __A ,__A : int = box_size tensor[:, 0].clamp_(min=0 , max=__snake_case ) tensor[:, 1].clamp_(min=0 , max=__snake_case ) tensor[:, 2].clamp_(min=0 , max=__snake_case ) tensor[:, 3].clamp_(min=0 , max=__snake_case )
8
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
59
'''simple docstring''' def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Optional[Any]: # noqa: E741 __A : Tuple = len(__snake_case ) __A : Optional[int] = 0 __A : str = [0] * n __A : int = [False] * n __A : Tuple = [False] * n def dfs(__snake_case : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : int ): if parent == root: out_edge_count += 1 __A : str = True __A : Tuple = at for to in l[at]: if to == parent: pass elif not visited[to]: __A : Optional[int] = dfs(__snake_case , __snake_case , __snake_case , __snake_case ) __A : int = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __A : Tuple = True # AP found via cycle if at == low[to]: __A : Optional[Any] = True else: __A : Any = min(low[at] , __snake_case ) return out_edge_count for i in range(__snake_case ): if not visited[i]: __A : Tuple = 0 __A : List[Any] = dfs(__snake_case , __snake_case , -1 , __snake_case ) __A : Union[str, Any] = out_edge_count > 1 for x in range(len(__snake_case ) ): if is_art[x] is True: print(__snake_case ) # Adjacency list of graph lowercase__ : Tuple = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
8
0
from sklearn.metrics import matthews_corrcoef import datasets lowerCAmelCase_ = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' lowerCAmelCase_ = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' lowerCAmelCase_ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def lowerCamelCase (self ) -> Dict: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__=None ) -> int: '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(__magic_name__ , __magic_name__ , sample_weight=__magic_name__ ) ), }
60
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : int = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } lowercase__ : Dict = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _lowerCAmelCase ( __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Any , __snake_case : List[str] ) -> Union[str, Any]: for attribute in key.split('.' ): __A : int = getattr(__snake_case , __snake_case ) if weight_type is not None: __A : Optional[int] = getattr(__snake_case , __snake_case ).shape else: __A : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __A : Tuple = value elif weight_type == "weight_g": __A : Union[str, Any] = value elif weight_type == "weight_v": __A : Optional[Any] = value elif weight_type == "bias": __A : Optional[int] = value else: __A : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( __snake_case : Any , __snake_case : List[str] ) -> List[Any]: __A : Optional[Any] = [] __A : Any = fairseq_model.state_dict() __A : Union[str, Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): __A : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == 'group' , ) __A : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __A : int = True if "*" in mapped_key: __A : Any = name.split(__snake_case )[0].split('.' )[-2] __A : List[Any] = mapped_key.replace('*' , __snake_case ) if "weight_g" in name: __A : Optional[Any] = 'weight_g' elif "weight_v" in name: __A : Union[str, Any] = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: __A : Optional[Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __A : Tuple = 'weight' else: __A : Dict = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[int] ) -> int: __A : int = full_name.split('conv_layers.' )[-1] __A : List[str] = name.split('.' ) __A : Optional[int] = int(items[0] ) __A : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __A : Optional[int] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __A : Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) __A : Dict = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __A : Any = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) @torch.no_grad() def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple=None ) -> Any: # load the pre-trained checkpoints __A : List[str] = torch.load(__snake_case ) __A : Dict = WavLMConfigOrig(checkpoint['cfg'] ) __A : Optional[int] = WavLMOrig(__snake_case ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: __A : List[Any] = WavLMConfig.from_pretrained(__snake_case ) else: __A : Dict = WavLMConfig() __A : Optional[Any] = WavLMModel(__snake_case ) recursively_load_weights(__snake_case , __snake_case ) hf_wavlm.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowercase__ : Any = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
8
0