code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''naver-clova-ix/donut-base-finetuned-docvqa''' lowerCAmelCase = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) lowerCAmelCase = '''document_qa''' lowerCAmelCase = AutoProcessor lowerCAmelCase = VisionEncoderDecoderModel lowerCAmelCase = ['''image''', '''text'''] lowerCAmelCase = ['''text'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.') super().__init__(*_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' __A : List[Any] = task_prompt.replace('{user_input}' , _UpperCAmelCase) __A : Tuple = self.pre_processor.tokenizer( _UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors='pt').input_ids __A : Any = self.pre_processor(_UpperCAmelCase , return_tensors='pt').pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return self.model.generate( inputs['pixel_values'].to(self.device) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_UpperCAmelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_UpperCAmelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_UpperCAmelCase , ).sequences def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = self.pre_processor.batch_decode(_UpperCAmelCase)[0] __A : Optional[Any] = sequence.replace(self.pre_processor.tokenizer.eos_token , '') __A : int = sequence.replace(self.pre_processor.tokenizer.pad_token , '') __A : Any = re.sub(R'<.*?>' , '' , _UpperCAmelCase , count=1).strip() # remove first task start token __A : List[str] = self.pre_processor.tokenajson(_UpperCAmelCase) return sequence["answer"]
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Optional[Any]: # noqa: E741 __A : Tuple = len(__snake_case ) __A : Optional[int] = 0 __A : str = [0] * n __A : int = [False] * n __A : Tuple = [False] * n def dfs(__snake_case : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : int ): if parent == root: out_edge_count += 1 __A : str = True __A : Tuple = at for to in l[at]: if to == parent: pass elif not visited[to]: __A : Optional[int] = dfs(__snake_case , __snake_case , __snake_case , __snake_case ) __A : int = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __A : Tuple = True # AP found via cycle if at == low[to]: __A : Optional[Any] = True else: __A : Any = min(low[at] , __snake_case ) return out_edge_count for i in range(__snake_case ): if not visited[i]: __A : Tuple = 0 __A : List[Any] = dfs(__snake_case , __snake_case , -1 , __snake_case ) __A : Union[str, Any] = out_edge_count > 1 for x in range(len(__snake_case ) ): if is_art[x] is True: print(__snake_case ) # Adjacency list of graph lowercase__ : Tuple = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
8
1
'''simple docstring''' import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowercase__ : List[Any] = False class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase=32): '''simple docstring''' set_seed(0) __A : Union[str, Any] = UNetaDModel(sample_size=_UpperCAmelCase , in_channels=3 , out_channels=3) __A : Optional[int] = torch.optim.SGD(model.parameters() , lr=0.0001) return model, optimizer @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable __A : Tuple = DDPMScheduler( num_train_timesteps=1000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule='linear' , clip_sample=_UpperCAmelCase , ) __A : str = DDIMScheduler( num_train_timesteps=1000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule='linear' , clip_sample=_UpperCAmelCase , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0) __A : Optional[Any] = [torch.randn((4, 3, 32, 32)).clip(-1 , 1).to(_UpperCAmelCase) for _ in range(4)] __A : Optional[int] = [torch.randn((4, 3, 32, 32)).to(_UpperCAmelCase) for _ in range(4)] __A : Dict = [torch.randint(0 , 1000 , (4,)).long().to(_UpperCAmelCase) for _ in range(4)] # train with a DDPM scheduler __A ,__A : Union[str, Any] = self.get_model_optimizer(resolution=32) model.train().to(_UpperCAmelCase) for i in range(4): optimizer.zero_grad() __A : Dict = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) __A : Tuple = model(_UpperCAmelCase , timesteps[i]).sample __A : List[str] = torch.nn.functional.mse_loss(_UpperCAmelCase , noise[i]) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM __A ,__A : Any = self.get_model_optimizer(resolution=32) model.train().to(_UpperCAmelCase) for i in range(4): optimizer.zero_grad() __A : Dict = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) __A : int = model(_UpperCAmelCase , timesteps[i]).sample __A : int = torch.nn.functional.mse_loss(_UpperCAmelCase , noise[i]) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-5)) self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-5))
8
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : int = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } lowercase__ : Dict = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _lowerCAmelCase ( __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Any , __snake_case : List[str] ) -> Union[str, Any]: for attribute in key.split('.' ): __A : int = getattr(__snake_case , __snake_case ) if weight_type is not None: __A : Optional[int] = getattr(__snake_case , __snake_case ).shape else: __A : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __A : Tuple = value elif weight_type == "weight_g": __A : Union[str, Any] = value elif weight_type == "weight_v": __A : Optional[Any] = value elif weight_type == "bias": __A : Optional[int] = value else: __A : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( __snake_case : Any , __snake_case : List[str] ) -> List[Any]: __A : Optional[Any] = [] __A : Any = fairseq_model.state_dict() __A : Union[str, Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): __A : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == 'group' , ) __A : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __A : int = True if "*" in mapped_key: __A : Any = name.split(__snake_case )[0].split('.' )[-2] __A : List[Any] = mapped_key.replace('*' , __snake_case ) if "weight_g" in name: __A : Optional[Any] = 'weight_g' elif "weight_v" in name: __A : Union[str, Any] = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: __A : Optional[Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __A : Tuple = 'weight' else: __A : Dict = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[int] ) -> int: __A : int = full_name.split('conv_layers.' )[-1] __A : List[str] = name.split('.' ) __A : Optional[int] = int(items[0] ) __A : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __A : Optional[int] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __A : Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) __A : Dict = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __A : Any = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) @torch.no_grad() def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple=None ) -> Any: # load the pre-trained checkpoints __A : List[str] = torch.load(__snake_case ) __A : Dict = WavLMConfigOrig(checkpoint['cfg'] ) __A : Optional[int] = WavLMOrig(__snake_case ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: __A : List[Any] = WavLMConfig.from_pretrained(__snake_case ) else: __A : Dict = WavLMConfig() __A : Optional[Any] = WavLMModel(__snake_case ) recursively_load_weights(__snake_case , __snake_case ) hf_wavlm.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowercase__ : Any = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
8
1
'''simple docstring''' from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class SCREAMING_SNAKE_CASE (yaml.SafeLoader ): def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : str = [self.constructed_objects[key_node] for key_node, _ in node.value] __A : Dict = [tuple(_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else key for key in keys] __A : str = Counter(_UpperCAmelCase) __A : Optional[int] = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F'Got duplicate yaml keys: {duplicate_keys}') def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' __A : Optional[int] = super().construct_mapping(_UpperCAmelCase , deep=_UpperCAmelCase) self._check_no_duplicates_on_constructed_node(_UpperCAmelCase) return mapping def _lowerCAmelCase ( __snake_case : str ) -> Tuple[Optional[str], str]: __A : Union[str, Any] = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: __A : Optional[int] = full_content[1:].index('---' ) + 1 __A : int = '\n'.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(__snake_case ) class SCREAMING_SNAKE_CASE (a__ ): # class attributes lowerCAmelCase = {'''train_eval_index'''} # train-eval-index in the YAML metadata @classmethod def SCREAMING_SNAKE_CASE ( cls , _UpperCAmelCase): '''simple docstring''' with open(_UpperCAmelCase , encoding='utf-8') as readme_file: __A ,__A : int = _split_yaml_from_readme(readme_file.read()) if yaml_string is not None: return cls.from_yaml_string(_UpperCAmelCase) else: return cls() def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if path.exists(): with open(_UpperCAmelCase , encoding='utf-8') as readme_file: __A : Dict = readme_file.read() else: __A : Optional[Any] = None __A : str = self._to_readme(_UpperCAmelCase) with open(_UpperCAmelCase , 'w' , encoding='utf-8') as readme_file: readme_file.write(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase = None): '''simple docstring''' if readme_content is not None: __A ,__A : Any = _split_yaml_from_readme(_UpperCAmelCase) __A : Union[str, Any] = '---\n' + self.to_yaml_string() + '---\n' + content else: __A : Optional[int] = '---\n' + self.to_yaml_string() + '---\n' return full_content @classmethod def SCREAMING_SNAKE_CASE ( cls , _UpperCAmelCase): '''simple docstring''' __A : Dict = yaml.load(_UpperCAmelCase , Loader=_NoDuplicateSafeLoader) or {} # Convert the YAML keys to DatasetMetadata fields __A : Tuple = { (key.replace('-' , '_') if key.replace('-' , '_') in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return yaml.safe_dump( { (key.replace('_' , '-') if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=_UpperCAmelCase , allow_unicode=_UpperCAmelCase , encoding='utf-8' , ).decode('utf-8') lowercase__ : List[Any] = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser lowercase__ : int = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') lowercase__ : Tuple = ap.parse_args() lowercase__ : int = Path(args.readme_filepath) lowercase__ : Any = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
8
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = 42 class SCREAMING_SNAKE_CASE (a__ , a__ ): @register_to_config def __init__( self , _UpperCAmelCase = 6_5536 , _UpperCAmelCase = None , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = 0 , _UpperCAmelCase = "fourier" , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = 0.0 , _UpperCAmelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _UpperCAmelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _UpperCAmelCase = "UNetMidBlock1D" , _UpperCAmelCase = None , _UpperCAmelCase = (32, 32, 64) , _UpperCAmelCase = None , _UpperCAmelCase = 8 , _UpperCAmelCase = 1 , _UpperCAmelCase = False , ): '''simple docstring''' super().__init__() __A : Dict = sample_size # time if time_embedding_type == "fourier": __A : int = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_UpperCAmelCase , log=_UpperCAmelCase , flip_sin_to_cos=_UpperCAmelCase) __A : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": __A : List[str] = Timesteps( block_out_channels[0] , flip_sin_to_cos=_UpperCAmelCase , downscale_freq_shift=_UpperCAmelCase) __A : List[str] = block_out_channels[0] if use_timestep_embedding: __A : Optional[Any] = block_out_channels[0] * 4 __A : Optional[int] = TimestepEmbedding( in_channels=_UpperCAmelCase , time_embed_dim=_UpperCAmelCase , act_fn=_UpperCAmelCase , out_dim=block_out_channels[0] , ) __A : Dict = nn.ModuleList([]) __A : Dict = None __A : Tuple = nn.ModuleList([]) __A : Tuple = None # down __A : Any = in_channels for i, down_block_type in enumerate(_UpperCAmelCase): __A : Tuple = output_channel __A : Optional[Any] = block_out_channels[i] if i == 0: input_channel += extra_in_channels __A : List[str] = i == len(_UpperCAmelCase) - 1 __A : int = get_down_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_UpperCAmelCase) # mid __A : str = get_mid_block( _UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_UpperCAmelCase , add_downsample=_UpperCAmelCase , ) # up __A : Optional[int] = list(reversed(_UpperCAmelCase)) __A : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: __A : str = out_channels else: __A : List[Any] = block_out_channels[0] for i, up_block_type in enumerate(_UpperCAmelCase): __A : Optional[Any] = output_channel __A : Optional[Any] = ( reversed_block_out_channels[i + 1] if i < len(_UpperCAmelCase) - 1 else final_upsample_channels ) __A : Dict = i == len(_UpperCAmelCase) - 1 __A : str = get_up_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_UpperCAmelCase) __A : Optional[int] = output_channel # out __A : str = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32) __A : Optional[Any] = get_out_block( out_block_type=_UpperCAmelCase , num_groups_out=_UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=_UpperCAmelCase , act_fn=_UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , ): '''simple docstring''' __A : Any = timestep if not torch.is_tensor(_UpperCAmelCase): __A : Any = torch.tensor([timesteps] , dtype=torch.long , device=sample.device) elif torch.is_tensor(_UpperCAmelCase) and len(timesteps.shape) == 0: __A : Any = timesteps[None].to(sample.device) __A : List[Any] = self.time_proj(_UpperCAmelCase) if self.config.use_timestep_embedding: __A : Dict = self.time_mlp(_UpperCAmelCase) else: __A : Dict = timestep_embed[..., None] __A : Tuple = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) __A : List[Any] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) # 2. down __A : int = () for downsample_block in self.down_blocks: __A ,__A : int = downsample_block(hidden_states=_UpperCAmelCase , temb=_UpperCAmelCase) down_block_res_samples += res_samples # 3. mid if self.mid_block: __A : Optional[int] = self.mid_block(_UpperCAmelCase , _UpperCAmelCase) # 4. up for i, upsample_block in enumerate(self.up_blocks): __A : Any = down_block_res_samples[-1:] __A : Optional[int] = down_block_res_samples[:-1] __A : Any = upsample_block(_UpperCAmelCase , res_hidden_states_tuple=_UpperCAmelCase , temb=_UpperCAmelCase) # 5. post-process if self.out_block: __A : Dict = self.out_block(_UpperCAmelCase , _UpperCAmelCase) if not return_dict: return (sample,) return UNetaDOutput(sample=_UpperCAmelCase)
8
1
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class SCREAMING_SNAKE_CASE (a__ ): @require_torch def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' __A : List[Any] = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' __A : Optional[Any] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache __A : Tuple = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_UpperCAmelCase) BertModel.from_pretrained(_UpperCAmelCase) BertTokenizer.from_pretrained(_UpperCAmelCase) pipeline(task='fill-mask' , model=_UpperCAmelCase) # baseline - just load from_pretrained with normal network __A : Dict = [sys.executable, '-c', '\n'.join([load, run, mock])] # should succeed __A : List[str] = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __A : Optional[Any] = '1' __A : Tuple = subprocess.run(_UpperCAmelCase , env=_UpperCAmelCase , check=_UpperCAmelCase , capture_output=_UpperCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn('success' , result.stdout.decode()) @require_torch def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' __A : Optional[int] = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' __A : Dict = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache __A : int = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_UpperCAmelCase) BertModel.from_pretrained(_UpperCAmelCase) BertTokenizer.from_pretrained(_UpperCAmelCase) pipeline(task='fill-mask' , model=_UpperCAmelCase) # baseline - just load from_pretrained with normal network __A : Tuple = [sys.executable, '-c', '\n'.join([load, run, mock])] # should succeed __A : Dict = self.get_env() __A : Optional[Any] = subprocess.run(_UpperCAmelCase , env=_UpperCAmelCase , check=_UpperCAmelCase , capture_output=_UpperCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn('success' , result.stdout.decode()) @require_torch def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' __A : List[str] = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' __A : Dict = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network __A : List[Any] = [sys.executable, '-c', '\n'.join([load, run])] # should succeed __A : List[Any] = self.get_env() __A : List[Any] = subprocess.run(_UpperCAmelCase , env=_UpperCAmelCase , check=_UpperCAmelCase , capture_output=_UpperCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn('success' , result.stdout.decode()) # next emulate no network __A : Dict = [sys.executable, '-c', '\n'.join([load, mock, run])] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __A : Union[str, Any] = '1' __A : Union[str, Any] = subprocess.run(_UpperCAmelCase , env=_UpperCAmelCase , check=_UpperCAmelCase , capture_output=_UpperCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn('success' , result.stdout.decode()) @require_torch def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = '\nfrom transformers import pipeline\n ' __A : Dict = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' __A : Optional[int] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' __A : Optional[int] = self.get_env() __A : int = '1' __A : Tuple = [sys.executable, '-c', '\n'.join([load, mock, run])] __A : Optional[Any] = subprocess.run(_UpperCAmelCase , env=_UpperCAmelCase , check=_UpperCAmelCase , capture_output=_UpperCAmelCase) self.assertEqual(result.returncode , 1 , result.stderr) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '') , ) @require_torch def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = '\nfrom transformers import AutoModel\n ' __A : str = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network __A : Union[str, Any] = [sys.executable, '-c', '\n'.join([load, run])] # should succeed __A : int = self.get_env() __A : Optional[Any] = subprocess.run(_UpperCAmelCase , env=_UpperCAmelCase , check=_UpperCAmelCase , capture_output=_UpperCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn('success' , result.stdout.decode()) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __A : List[str] = '1' __A : Optional[int] = subprocess.run(_UpperCAmelCase , env=_UpperCAmelCase , check=_UpperCAmelCase , capture_output=_UpperCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn('success' , result.stdout.decode())
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> int: if len(__snake_case ) != len(__snake_case ): raise ValueError('String lengths must match!' ) __A : Optional[Any] = 0 for chara, chara in zip(__snake_case , __snake_case ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' class SCREAMING_SNAKE_CASE : # Public class to implement a graph def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : str = row __A : Any = col __A : Union[str, Any] = graph def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Union[str, Any] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __A : Dict = [-1, 0, 1, -1, 1, -1, 0, 1] __A : str = True # Make those cells visited for k in range(8): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _UpperCAmelCase): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): # And finally, count all islands. '''simple docstring''' __A : Tuple = [[False for j in range(self.COL)] for i in range(self.ROW)] __A : Optional[Any] = 0 for i in range(self.ROW): for j in range(self.COL): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) count += 1 return count
8
'''simple docstring''' import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> Union[str, Any]: __A : int = RobertaPreLayerNormConfig.from_pretrained( __snake_case , architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict __A : Tuple = torch.load(hf_hub_download(repo_id=__snake_case , filename='pytorch_model.bin' ) ) __A : str = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): __A : Dict = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue __A : str = tensor_value __A : Union[str, Any] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__snake_case , config=__snake_case , state_dict=__snake_case ) model.save_pretrained(__snake_case ) # convert tokenizer __A : List[Any] = AutoTokenizer.from_pretrained(__snake_case ) tokenizer.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
8
1
'''simple docstring''' import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''): lowercase__ : str = True from torch.cuda.amp import autocast lowercase__ : Optional[int] = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''Whether to log verbose messages or not.'''} , ) lowerCAmelCase = field( default=2.0 , metadata={'''help''': '''Maximum temperature for gumbel softmax.'''} ) lowerCAmelCase = field( default=0.5 , metadata={'''help''': '''Minimum temperature for gumbel softmax.'''} ) lowerCAmelCase = field( default=0.999_995 , metadata={'''help''': '''Decay of gumbel temperature during training.'''} ) def _lowerCAmelCase ( __snake_case : ModelArguments , __snake_case : TrainingArguments ) -> Optional[int]: logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) __A : Union[str, Any] = logging.WARNING if model_args.verbose_logging: __A : Optional[int] = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): __A : str = logging.INFO logger.setLevel(__snake_case ) @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = field( default=a__ , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) lowerCAmelCase = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) lowerCAmelCase = field( default='''validation''' , metadata={ '''help''': ( '''The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) lowerCAmelCase = field( default='''file''' , metadata={'''help''': '''Column in the dataset that contains speech file path. Defaults to \'file\''''} , ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) lowerCAmelCase = field( default=1 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) lowerCAmelCase = field( default=20.0 , metadata={'''help''': '''Filter audio files that are longer than `max_duration_in_seconds` seconds'''} ) @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = "longest" lowerCAmelCase = None lowerCAmelCase = None def __call__( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = self.feature_extractor.pad( _UpperCAmelCase , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) __A : Tuple = self.model._get_feat_extract_output_lengths(batch['input_values'].shape[-1]) __A : Any = batch['input_values'].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula __A : Union[str, Any] = self.model._get_feat_extract_output_lengths(batch['attention_mask'].sum(-1)).to( torch.long) __A : Dict = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch['input_values'].device) # these two operations makes sure that all values # before the output lengths indices are attended to __A : List[str] = 1 __A : Optional[Any] = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() # sample randomly masked indices __A : Optional[Any] = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=_UpperCAmelCase , min_masks=2 , ) return batch class SCREAMING_SNAKE_CASE (a__ ): def __init__( self , *_UpperCAmelCase , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=1.0 , **_UpperCAmelCase): '''simple docstring''' super().__init__(*_UpperCAmelCase , **_UpperCAmelCase) __A : Tuple = 0 __A : List[Any] = max_gumbel_temp __A : int = min_gumbel_temp __A : Union[str, Any] = gumbel_temp_decay def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' model.train() __A : Any = self._prepare_inputs(_UpperCAmelCase) if self.use_amp: with autocast(): __A : Any = self.compute_loss(_UpperCAmelCase , _UpperCAmelCase) else: __A : Tuple = self.compute_loss(_UpperCAmelCase , _UpperCAmelCase) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": __A : Optional[Any] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __A : List[Any] = loss.sum() / (inputs['mask_time_indices']).sum() else: raise ValueError(F'{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']') if self.args.gradient_accumulation_steps > 1: __A : Dict = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_UpperCAmelCase).backward() elif self.use_apex: with amp.scale_loss(_UpperCAmelCase , self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_UpperCAmelCase) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp)) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp)) return loss.detach() def _lowerCAmelCase ( ) -> List[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __A : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __A ,__A ,__A : Any = parser.parse_args_into_dataclasses() configure_logger(__snake_case , __snake_case ) # Downloading and loading a dataset from the hub. __A : Optional[int] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" __A : Optional[int] = DatasetDict() __A : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'{data_args.train_split_name}[:{data_args.validation_split_percentage}%]' , cache_dir=model_args.cache_dir , ) __A : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'{data_args.train_split_name}[{data_args.validation_split_percentage}%:]' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" __A : Dict = DatasetDict() __A : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split='validation' , cache_dir=model_args.cache_dir , ) __A : Any = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'{data_args.train_split_name}' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported __A : List[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=__snake_case ) def prepare_dataset(__snake_case : Optional[Any] ): # check that all files have the correct sampling rate __A ,__A : Tuple = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays __A : List[str] = datasets.map( __snake_case , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['train'].column_names ) # filter audio files that are too long __A : List[str] = vectorized_datasets.filter( lambda __snake_case : len(data['speech'] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(__snake_case : int ): return feature_extractor(batch['speech'] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` __A : str = vectorized_datasets.map( __snake_case , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['train'].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 __A : int = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( 'PreTraining is only supported for ``config.do_stable_layer_norm=True`` and' ' ``config.feat_extract_norm=\'layer\'' ) __A : int = WavaVecaForPreTraining(__snake_case ) __A : Optional[int] = DataCollatorForWavaVecaPretraining(model=__snake_case , feature_extractor=__snake_case ) __A : Dict = WavaVecaPreTrainer( model=__snake_case , data_collator=__snake_case , args=__snake_case , train_dataset=vectorized_datasets['train'] , eval_dataset=vectorized_datasets['validation'] , tokenizer=__snake_case , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
8
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings lowercase__ : Dict = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = field(default=a__ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = super().to_dict() for k, v in d.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : List[Any] = v.to_dict() return d
8
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : Union[str, Any] = { '''configuration_blip_2''': [ '''BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Blip2Config''', '''Blip2QFormerConfig''', '''Blip2VisionConfig''', ], '''processing_blip_2''': ['''Blip2Processor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = [ '''BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Blip2Model''', '''Blip2QFormerModel''', '''Blip2PreTrainedModel''', '''Blip2ForConditionalGeneration''', '''Blip2VisionModel''', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowercase__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : Optional[int] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''lxmert''' lowerCAmelCase = {} def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=9500 , _UpperCAmelCase=1600 , _UpperCAmelCase=400 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=9 , _UpperCAmelCase=5 , _UpperCAmelCase=5 , _UpperCAmelCase=2048 , _UpperCAmelCase=4 , _UpperCAmelCase=6.67 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , **_UpperCAmelCase , ): '''simple docstring''' __A : Tuple = vocab_size __A : int = hidden_size __A : str = num_attention_heads __A : Tuple = hidden_act __A : int = intermediate_size __A : str = hidden_dropout_prob __A : Optional[int] = attention_probs_dropout_prob __A : Optional[Any] = max_position_embeddings __A : Tuple = type_vocab_size __A : Optional[int] = initializer_range __A : Any = layer_norm_eps __A : Optional[Any] = num_qa_labels __A : Optional[int] = num_object_labels __A : Any = num_attr_labels __A : Union[str, Any] = l_layers __A : Optional[int] = x_layers __A : List[Any] = r_layers __A : Tuple = visual_feat_dim __A : Tuple = visual_pos_dim __A : Optional[int] = visual_loss_normalizer __A : int = task_matched __A : List[Any] = task_mask_lm __A : Optional[Any] = task_obj_predict __A : str = task_qa __A : List[Any] = visual_obj_loss __A : Optional[Any] = visual_attr_loss __A : Union[str, Any] = visual_feat_loss __A : Union[str, Any] = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**_UpperCAmelCase)
8
1
'''simple docstring''' import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE (a__ , a__ ): @register_to_config def __init__( self , *, _UpperCAmelCase = 4 , _UpperCAmelCase = 768 , _UpperCAmelCase , _UpperCAmelCase , ): '''simple docstring''' super().__init__() __A : str = nn.Parameter(torch.zeros(_UpperCAmelCase)) # parameters for additional clip time embeddings __A : List[str] = nn.Linear(_UpperCAmelCase , _UpperCAmelCase) __A : List[str] = nn.Linear(_UpperCAmelCase , _UpperCAmelCase) # parameters for encoder hidden states __A : Dict = clip_extra_context_tokens __A : List[Any] = nn.Linear( _UpperCAmelCase , self.clip_extra_context_tokens * cross_attention_dim) __A : Dict = nn.Linear(_UpperCAmelCase , _UpperCAmelCase) __A : List[Any] = nn.LayerNorm(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , *, _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings __A : Optional[int] = image_embeddings.shape[0] __A : List[Any] = self.learned_classifier_free_guidance_embeddings.unsqueeze(0) __A : Dict = classifier_free_guidance_embeddings.expand( _UpperCAmelCase , -1) __A : Union[str, Any] = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] __A : List[str] = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... __A : Any = self.embedding_proj(_UpperCAmelCase) __A : Optional[Any] = self.clip_image_embeddings_project_to_time_embeddings(_UpperCAmelCase) __A : Tuple = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" __A : Tuple = self.clip_extra_context_tokens_proj(_UpperCAmelCase) __A : int = clip_extra_context_tokens.reshape(_UpperCAmelCase , -1 , self.clip_extra_context_tokens) __A : Optional[Any] = clip_extra_context_tokens.permute(0 , 2 , 1) __A : Union[str, Any] = self.encoder_hidden_states_proj(_UpperCAmelCase) __A : Optional[int] = self.text_encoder_hidden_states_norm(_UpperCAmelCase) __A : Any = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1) return text_encoder_hidden_states, additive_clip_time_embeddings
8
'''simple docstring''' import math import sys def _lowerCAmelCase ( __snake_case : int ) -> int: if number != int(__snake_case ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 __A : str = [-1] * (number + 1) __A : Dict = 0 for i in range(1 , number + 1 ): __A : int = sys.maxsize __A : int = int(math.sqrt(__snake_case ) ) for j in range(1 , root + 1 ): __A : str = 1 + answers[i - (j**2)] __A : Dict = min(__snake_case , __snake_case ) __A : Union[str, Any] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : Optional[int] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''lxmert''' lowerCAmelCase = {} def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=9500 , _UpperCAmelCase=1600 , _UpperCAmelCase=400 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=9 , _UpperCAmelCase=5 , _UpperCAmelCase=5 , _UpperCAmelCase=2048 , _UpperCAmelCase=4 , _UpperCAmelCase=6.67 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , **_UpperCAmelCase , ): '''simple docstring''' __A : Tuple = vocab_size __A : int = hidden_size __A : str = num_attention_heads __A : Tuple = hidden_act __A : int = intermediate_size __A : str = hidden_dropout_prob __A : Optional[int] = attention_probs_dropout_prob __A : Optional[Any] = max_position_embeddings __A : Tuple = type_vocab_size __A : Optional[int] = initializer_range __A : Any = layer_norm_eps __A : Optional[Any] = num_qa_labels __A : Optional[int] = num_object_labels __A : Any = num_attr_labels __A : Union[str, Any] = l_layers __A : Optional[int] = x_layers __A : List[Any] = r_layers __A : Tuple = visual_feat_dim __A : Tuple = visual_pos_dim __A : Optional[int] = visual_loss_normalizer __A : int = task_matched __A : List[Any] = task_mask_lm __A : Optional[Any] = task_obj_predict __A : str = task_qa __A : List[Any] = visual_obj_loss __A : Optional[Any] = visual_attr_loss __A : Union[str, Any] = visual_feat_loss __A : Union[str, Any] = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**_UpperCAmelCase)
8
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( __snake_case : list[int] , __snake_case : list[int] , __snake_case : int ) -> tuple[float, list[float]]: __A : int = list(range(len(__snake_case ) ) ) __A : Optional[Any] = [v / w for v, w in zip(__snake_case , __snake_case )] index.sort(key=lambda __snake_case : ratio[i] , reverse=__snake_case ) __A : float = 0 __A : list[float] = [0] * len(__snake_case ) for i in index: if weight[i] <= capacity: __A : Optional[int] = 1 max_value += value[i] capacity -= weight[i] else: __A : List[Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def _lowerCAmelCase ( __snake_case : Dict , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : Optional[int] ) -> List[Any]: for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})' def _lowerCAmelCase ( __snake_case : str , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : str=True ) -> Dict: model.train() __A : List[Any] = model(__snake_case ) __A : int = F.mse_loss(__snake_case , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(__snake_case ) def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Tuple=False ) -> Dict: set_seed(42 ) __A : str = RegressionModel() __A : Dict = deepcopy(__snake_case ) __A : Union[str, Any] = RegressionDataset(length=80 ) __A : List[Any] = DataLoader(__snake_case , batch_size=16 ) model.to(accelerator.device ) if sched: __A : List[Any] = AdamW(params=model.parameters() , lr=1e-3 ) __A : List[Any] = AdamW(params=ddp_model.parameters() , lr=1e-3 ) __A : Dict = LambdaLR(__snake_case , lr_lambda=lambda __snake_case : epoch**0.65 ) __A : Union[str, Any] = LambdaLR(__snake_case , lr_lambda=lambda __snake_case : epoch**0.65 ) # Make a copy of `model` if sched: __A ,__A ,__A ,__A : Optional[int] = accelerator.prepare(__snake_case , __snake_case , __snake_case , __snake_case ) else: __A ,__A : int = accelerator.prepare(__snake_case , __snake_case ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def _lowerCAmelCase ( __snake_case : List[Any] ) -> List[Any]: # Test when on a single CPU or GPU that the context manager does nothing __A ,__A ,__A : Dict = get_training_setup(__snake_case ) # Use a single batch __A ,__A : Optional[Any] = next(iter(__snake_case ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __A ,__A : int = accelerator.gather((ddp_input, ddp_target) ) __A ,__A : List[Any] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__snake_case , __snake_case , __snake_case , __snake_case ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__snake_case ): step_model(__snake_case , __snake_case , __snake_case , __snake_case ) else: # Sync grads step_model(__snake_case , __snake_case , __snake_case , __snake_case ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(__snake_case , __snake_case , __snake_case , __snake_case ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) __A : Union[str, Any] = ddp_input[torch.randperm(len(__snake_case ) )] def _lowerCAmelCase ( __snake_case : Any ) -> Dict: # Test on distributed setup that context manager behaves properly __A ,__A ,__A : Tuple = get_training_setup(__snake_case ) # Use a single batch __A ,__A : Any = next(iter(__snake_case ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __A ,__A : Any = accelerator.gather((ddp_input, ddp_target) ) __A ,__A : Tuple = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__snake_case , __snake_case , __snake_case , __snake_case ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__snake_case ): step_model(__snake_case , __snake_case , __snake_case , __snake_case ) else: # Sync grads step_model(__snake_case , __snake_case , __snake_case , __snake_case ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) __A : Any = ddp_input[torch.randperm(len(__snake_case ) )] def _lowerCAmelCase ( __snake_case : str=False , __snake_case : Any=False ) -> Dict: __A : Optional[Any] = Accelerator( split_batches=__snake_case , dispatch_batches=__snake_case , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __A ,__A ,__A : Tuple = get_training_setup(__snake_case ) for iteration, batch in enumerate(__snake_case ): __A ,__A : List[Any] = batch.values() # Gather the distributed inputs and targs for the base model __A ,__A : Dict = accelerator.gather((ddp_input, ddp_target) ) __A ,__A : str = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # Do "gradient accumulation" (noop) with accelerator.accumulate(__snake_case ): step_model(__snake_case , __snake_case , __snake_case , __snake_case ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(__snake_case ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) __A : List[Any] = ddp_input[torch.randperm(len(__snake_case ) )] GradientState._reset_state() def _lowerCAmelCase ( __snake_case : Optional[int]=False , __snake_case : str=False ) -> Union[str, Any]: __A : int = Accelerator( split_batches=__snake_case , dispatch_batches=__snake_case , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __A ,__A ,__A ,__A ,__A ,__A ,__A : Union[str, Any] = get_training_setup(__snake_case , __snake_case ) for iteration, batch in enumerate(__snake_case ): __A ,__A : Union[str, Any] = batch.values() # Gather the distributed inputs and targs for the base model __A ,__A : Tuple = accelerator.gather((ddp_input, ddp_target) ) __A ,__A : Optional[Any] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(__snake_case )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(__snake_case ): step_model(__snake_case , __snake_case , __snake_case , __snake_case ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n' __A : Union[str, Any] = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(__snake_case )) if accelerator.num_processes > 1: check_model_parameters(__snake_case , __snake_case , __snake_case , __snake_case ) # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) GradientState._reset_state() def _lowerCAmelCase ( ) -> Dict: __A : Tuple = Accelerator() __A : Tuple = RegressionDataset(length=80 ) __A : str = DataLoader(__snake_case , batch_size=16 ) __A : Tuple = RegressionDataset(length=96 ) __A : Tuple = DataLoader(__snake_case , batch_size=16 ) __A ,__A : List[str] = accelerator.prepare(__snake_case , __snake_case ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(__snake_case ): assert id(accelerator.gradient_state.active_dataloader ) == id(__snake_case ) if iteration < len(__snake_case ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(__snake_case ): assert id(accelerator.gradient_state.active_dataloader ) == id(__snake_case ) if batch_num < len(__snake_case ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def _lowerCAmelCase ( ) -> Any: __A : List[Any] = Accelerator() __A : List[str] = accelerator.state if state.local_process_index == 0: print('**Test `accumulate` gradient accumulation with dataloader break**' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('**Test NOOP `no_sync` context manager**' ) test_noop_sync(__snake_case ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('**Test Distributed `no_sync` context manager**' ) test_distributed_sync(__snake_case ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation, ' , f'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , ) test_gradient_accumulation(__snake_case , __snake_case ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('<' , '2.0' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , '`split_batches=False`, `dispatch_batches=False`**' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , f'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , ) test_gradient_accumulation_with_opt_and_scheduler(__snake_case , __snake_case ) def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Optional[int]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
8
'''simple docstring''' from __future__ import annotations import math class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : int = size # approximate the overall size of segment tree with given value __A : Optional[Any] = [0 for i in range(0 , 4 * size)] # create array to store lazy update __A : Optional[Any] = [0 for i in range(0 , 4 * size)] __A : str = [0 for i in range(0 , 4 * size)] # flag for lazy update def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return idx * 2 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return idx * 2 + 1 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if left_element == right_element: __A : List[Any] = a[left_element - 1] else: __A : List[str] = (left_element + right_element) // 2 self.build(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.build(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase) __A : Any = max( self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)]) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.flag[idx] is True: __A : Optional[Any] = self.lazy[idx] __A : Optional[Any] = False if left_element != right_element: __A : List[Any] = self.lazy[idx] __A : Dict = self.lazy[idx] __A : Tuple = True __A : Union[str, Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: __A : Optional[int] = val if left_element != right_element: __A : Tuple = val __A : Any = val __A : Tuple = True __A : Union[str, Any] = True return True __A : str = (left_element + right_element) // 2 self.update(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.update(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : int = max( self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)]) return True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.flag[idx] is True: __A : Union[str, Any] = self.lazy[idx] __A : List[str] = False if left_element != right_element: __A : Union[str, Any] = self.lazy[idx] __A : Optional[int] = self.lazy[idx] __A : str = True __A : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] __A : Any = (left_element + right_element) // 2 __A : int = self.query(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : Union[str, Any] = self.query(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) return max(_UpperCAmelCase , _UpperCAmelCase) def __str__( self): '''simple docstring''' return str([self.query(1 , 1 , self.size , _UpperCAmelCase , _UpperCAmelCase) for i in range(1 , self.size + 1)]) if __name__ == "__main__": lowercase__ : Union[str, Any] = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] lowercase__ : str = 15 lowercase__ : List[Any] = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 1_11) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 2_35) print(segt)
8
1
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int , __snake_case : int ) -> str: if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) __A : Optional[Any] = str(bin(__snake_case ) ) binary_number += "0" * shift_amount return binary_number def _lowerCAmelCase ( __snake_case : int , __snake_case : int ) -> str: if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) __A : List[str] = str(bin(__snake_case ) )[2:] if shift_amount >= len(__snake_case ): return "0b0" __A : Any = binary_number[: len(__snake_case ) - shift_amount] return "0b" + shifted_binary_number def _lowerCAmelCase ( __snake_case : int , __snake_case : int ) -> str: if number >= 0: # Get binary representation of positive number __A : Optional[Any] = '0' + str(bin(__snake_case ) ).strip('-' )[2:] else: # Get binary (2's complement) representation of negative number __A : Union[str, Any] = len(bin(__snake_case )[3:] ) # Find 2's complement of number __A : Any = bin(abs(__snake_case ) - (1 << binary_number_length) )[3:] __A : Optional[Any] = ( '1' + '0' * (binary_number_length - len(__snake_case )) + binary_number ) if shift_amount >= len(__snake_case ): return "0b" + binary_number[0] * len(__snake_case ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__snake_case ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int , __snake_case : int , __snake_case : int ) -> float: __A : Dict = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def _lowerCAmelCase ( ) -> Union[str, Any]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def _lowerCAmelCase ( __snake_case : int , __snake_case : Tuple ) -> List[str]: __A : Tuple = XCLIPTextConfig() # derive patch size from model name __A : Dict = model_name.find('patch' ) __A : Dict = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) __A : List[str] = XCLIPVisionConfig(patch_size=__snake_case , num_frames=__snake_case ) if "large" in model_name: __A : Dict = 7_68 __A : List[Any] = 30_72 __A : int = 12 __A : Tuple = 10_24 __A : str = 40_96 __A : Any = 16 __A : str = 24 __A : Dict = 7_68 __A : Any = 30_72 if model_name == "xclip-large-patch14-16-frames": __A : List[str] = 3_36 __A : List[str] = XCLIPConfig.from_text_vision_configs(__snake_case , __snake_case ) if "large" in model_name: __A : List[str] = 7_68 return config def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Dict: # text encoder if name == "token_embedding.weight": __A : str = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": __A : Any = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: __A : List[Any] = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: __A : Union[str, Any] = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: __A : Any = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: __A : Optional[Any] = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): __A : Optional[Any] = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: __A : Union[str, Any] = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: __A : str = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": __A : Optional[int] = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": __A : Optional[Any] = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): __A : Tuple = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: __A : int = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: __A : List[Any] = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: __A : List[Any] = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: __A : Optional[int] = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: __A : Any = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: __A : List[Any] = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: __A : int = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": __A : Union[str, Any] = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): __A : Optional[int] = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): __A : Any = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def _lowerCAmelCase ( __snake_case : Optional[int] , __snake_case : Optional[int] ) -> Tuple: for key in orig_state_dict.copy().keys(): __A : Dict = orig_state_dict.pop(__snake_case ) if "attn.in_proj" in key: __A : Dict = key.split('.' ) if key.startswith('visual' ): __A : Dict = key_split[3] __A : Tuple = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: __A : Dict = val[ :dim, : ] __A : Tuple = val[ dim : dim * 2, : ] __A : Optional[Any] = val[ -dim:, : ] else: __A : Optional[Any] = val[ :dim ] __A : Optional[int] = val[ dim : dim * 2 ] __A : Tuple = val[ -dim: ] else: if "weight" in key: __A : Dict = val[ :dim, : ] __A : Optional[Any] = val[ dim : dim * 2, : ] __A : Any = val[ -dim:, : ] else: __A : Union[str, Any] = val[:dim] __A : Union[str, Any] = val[ dim : dim * 2 ] __A : Optional[int] = val[-dim:] elif key.startswith('mit' ): __A : List[str] = key_split[2] __A : Optional[Any] = config.vision_config.mit_hidden_size if "weight" in key: __A : Optional[Any] = val[:dim, :] __A : Optional[Any] = val[dim : dim * 2, :] __A : List[Any] = val[-dim:, :] else: __A : str = val[:dim] __A : Dict = val[dim : dim * 2] __A : Tuple = val[-dim:] else: __A : Union[str, Any] = key_split[2] __A : Optional[Any] = config.text_config.hidden_size if "weight" in key: __A : List[str] = val[:dim, :] __A : int = val[ dim : dim * 2, : ] __A : Optional[Any] = val[-dim:, :] else: __A : Union[str, Any] = val[:dim] __A : Tuple = val[ dim : dim * 2 ] __A : str = val[-dim:] else: __A : Dict = rename_key(__snake_case ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: __A : List[Any] = val.T __A : Any = val return orig_state_dict def _lowerCAmelCase ( __snake_case : Union[str, Any] ) -> Optional[int]: if num_frames == 8: __A : Any = 'eating_spaghetti_8_frames.npy' elif num_frames == 16: __A : List[str] = 'eating_spaghetti.npy' elif num_frames == 32: __A : int = 'eating_spaghetti_32_frames.npy' __A : Any = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=__snake_case , repo_type='dataset' , ) __A : Any = np.load(__snake_case ) return list(__snake_case ) def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : Tuple=None , __snake_case : List[Any]=False ) -> Union[str, Any]: __A : List[Any] = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } __A : List[Any] = model_to_url[model_name] __A : List[Any] = 8 if "16-frames" in model_name: __A : int = 16 elif "shot" in model_name: __A : Optional[int] = 32 __A : List[str] = get_xclip_config(__snake_case , __snake_case ) __A : str = XCLIPModel(__snake_case ) model.eval() if "drive" in checkpoint_url: __A : List[str] = 'pytorch_model.bin' gdown.cached_download(__snake_case , __snake_case , quiet=__snake_case ) __A : int = torch.load(__snake_case , map_location='cpu' )['model'] else: __A : Optional[Any] = torch.hub.load_state_dict_from_url(__snake_case )['model'] __A : Dict = convert_state_dict(__snake_case , __snake_case ) __A : Union[str, Any] = XCLIPModel(__snake_case ) __A ,__A : List[str] = model.load_state_dict(__snake_case , strict=__snake_case ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() __A : List[str] = 3_36 if model_name == 'xclip-large-patch14-16-frames' else 2_24 __A : Optional[Any] = VideoMAEImageProcessor(size=__snake_case ) __A : Dict = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) __A : Optional[Any] = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) __A : str = XCLIPProcessor(image_processor=__snake_case , tokenizer=__snake_case ) __A : List[Any] = prepare_video(__snake_case ) __A : List[Any] = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=__snake_case , return_tensors='pt' , padding=__snake_case ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): __A : Optional[int] = model(**__snake_case ) # Verify outputs __A : List[str] = outputs.logits_per_video __A : Tuple = logits_per_video.softmax(dim=1 ) print('Probs:' , __snake_case ) # kinetics-400 if model_name == "xclip-base-patch32": __A : List[Any] = torch.tensor([[0.0_019, 0.9_951, 0.0_030]] ) elif model_name == "xclip-base-patch32-16-frames": __A : str = torch.tensor([[7.0_9_9_9e-0_4, 9.9_8_8_3e-0_1, 4.5_5_8_0e-0_4]] ) elif model_name == "xclip-base-patch16": __A : List[Any] = torch.tensor([[0.0_083, 0.9_681, 0.0_236]] ) elif model_name == "xclip-base-patch16-16-frames": __A : int = torch.tensor([[7.6_9_3_7e-0_4, 9.9_7_2_8e-0_1, 1.9_4_7_3e-0_3]] ) elif model_name == "xclip-large-patch14": __A : Any = torch.tensor([[0.0_062, 0.9_864, 0.0_075]] ) elif model_name == "xclip-large-patch14-16-frames": __A : Any = torch.tensor([[3.3_8_7_7e-0_4, 9.9_9_3_7e-0_1, 2.8_8_8_8e-0_4]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": __A : Optional[int] = torch.tensor([[0.0_555, 0.8_914, 0.0_531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": __A : int = torch.tensor([[3.8_5_5_4e-0_4, 9.9_9_2_9e-0_1, 3.2_7_5_4e-0_4]] ) elif model_name == "xclip-large-patch14-kinetics-600": __A : List[Any] = torch.tensor([[0.0_036, 0.9_920, 0.0_045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": __A : Optional[int] = torch.tensor([[7.1_8_9_0e-0_6, 9.9_9_9_4e-0_1, 5.6_5_5_9e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": __A : int = torch.tensor([[1.0_3_2_0e-0_5, 9.9_9_9_3e-0_1, 6.2_4_3_5e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": __A : Dict = torch.tensor([[4.1_3_7_7e-0_6, 9.9_9_9_0e-0_1, 9.8_3_8_6e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": __A : Optional[Any] = torch.tensor([[4.1_3_4_7e-0_5, 9.9_9_6_2e-0_1, 3.3_4_1_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": __A : List[Any] = torch.tensor([[8.5_8_5_7e-0_5, 9.9_9_2_8e-0_1, 6.3_2_9_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": __A : str = torch.tensor([[8.5_8_5_7e-0_5, 9.9_9_2_8e-0_1, 6.3_2_9_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": __A : str = torch.tensor([[0.0_027, 0.9_904, 0.0_070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": __A : List[Any] = torch.tensor([[9.8_2_1_9e-0_4, 9.9_5_9_3e-0_1, 3.0_8_6_3e-0_3]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": __A : Optional[Any] = torch.tensor([[3.5_0_8_2e-0_4, 9.9_7_8_5e-0_1, 1.7_9_6_6e-0_3]] ) else: raise ValueError(f'Model name {model_name} not supported' ) assert torch.allclose(__snake_case , __snake_case , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__snake_case ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(__snake_case , organization='nielsr' ) processor.push_to_hub(__snake_case , organization='nielsr' ) slow_tokenizer.push_to_hub(__snake_case , organization='nielsr' ) if __name__ == "__main__": lowercase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''xclip-base-patch32''', type=str, help='''Name of the model.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowercase__ : Tuple = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
8
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): '''simple docstring''' __A : Optional[int] = parent __A : str = 13 __A : List[Any] = 7 __A : List[str] = True __A : str = True __A : Optional[Any] = True __A : int = True __A : Dict = 99 __A : Dict = 384 __A : Any = 2 __A : int = 4 __A : Optional[Any] = 37 __A : Optional[int] = 'gelu' __A : Dict = 0.1 __A : Optional[int] = 0.1 __A : Any = 512 __A : int = 16 __A : List[str] = 2 __A : str = 0.02 __A : Any = 3 __A : str = 4 __A : Union[str, Any] = 128 __A : int = 2 __A : List[Any] = 9 __A : List[Any] = 1 __A : List[Any] = None def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __A : str = None if self.use_input_mask: __A : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __A : Optional[Any] = None if self.use_token_type_ids: __A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __A : Optional[int] = None __A : List[str] = None __A : Dict = None if self.use_labels: __A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) __A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __A : str = ids_tensor([self.batch_size] , self.num_choices) __A : List[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = TFConvBertModel(config=_UpperCAmelCase) __A : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __A : Tuple = [input_ids, input_mask] __A : Any = model(_UpperCAmelCase) __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : str = TFConvBertForMaskedLM(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : str = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = self.num_labels __A : Any = TFConvBertForSequenceClassification(config=_UpperCAmelCase) __A : Optional[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Tuple = self.num_choices __A : List[str] = TFConvBertForMultipleChoice(config=_UpperCAmelCase) __A : int = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : Optional[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : List[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : int = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __A : Optional[Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = self.num_labels __A : List[Any] = TFConvBertForTokenClassification(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : int = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = TFConvBertForQuestionAnswering(config=_UpperCAmelCase) __A : Any = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Union[str, Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.prepare_config_and_inputs() ( ( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) , ) : Union[str, Any] = config_and_inputs __A : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = TFConvBertModelTester(self) __A : str = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __A : List[str] = True __A : List[str] = True if hasattr(_UpperCAmelCase , 'use_cache'): __A : List[Any] = True __A : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : Union[str, Any] = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) for model_class in self.all_model_classes: __A : List[str] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase) __A : Optional[int] = model_class(_UpperCAmelCase) __A : Optional[Any] = len(model(_UpperCAmelCase)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase) __A : Union[str, Any] = os.path.join(_UpperCAmelCase , 'saved_model' , '1') __A : Tuple = tf.keras.models.load_model(_UpperCAmelCase) __A : str = model(_UpperCAmelCase) if self.is_encoder_decoder: __A : Optional[int] = outputs['encoder_hidden_states'] __A : str = outputs['encoder_attentions'] else: __A : List[Any] = outputs['hidden_states'] __A : Optional[Any] = outputs['attentions'] self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) __A : str = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) self.assertListEqual( list(output_hidden_states[0].shape[-2:]) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(output_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') self.assertIsNotNone(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Any = True __A : str = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length) __A : Any = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : int = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) __A : Tuple = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) def check_decoder_attentions_output(_UpperCAmelCase): __A : List[str] = len(_UpperCAmelCase) self.assertEqual(out_len % 2 , 0) __A : Any = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCAmelCase): __A : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __A : Dict = True __A : Any = False __A : str = model_class(_UpperCAmelCase) __A : List[str] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : List[str] = len(_UpperCAmelCase) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) if self.is_encoder_decoder: __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : int = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_decoder_attentions_output(_UpperCAmelCase) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __A : int = True __A : Tuple = model_class(_UpperCAmelCase) __A : Dict = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) # Check attention is always last and order is fine __A : Any = True __A : str = True __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : Union[str, Any] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase)) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) @require_tf class SCREAMING_SNAKE_CASE (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') __A : str = tf.constant([[0, 1, 2, 3, 4, 5]]) __A : Optional[int] = model(_UpperCAmelCase)[0] __A : List[Any] = [1, 6, 768] self.assertEqual(output.shape , _UpperCAmelCase) __A : Tuple = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ]) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4)
8
1
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=16 , _UpperCAmelCase=[1, 2, 1] , _UpperCAmelCase=[2, 2, 4] , _UpperCAmelCase=2 , _UpperCAmelCase=2.0 , _UpperCAmelCase=True , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase="gelu" , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=10 , _UpperCAmelCase=8 , _UpperCAmelCase=["stage1", "stage2", "stage3"] , _UpperCAmelCase=[1, 2, 3] , ): '''simple docstring''' __A : Union[str, Any] = parent __A : Dict = batch_size __A : Any = image_size __A : List[str] = patch_size __A : List[str] = num_channels __A : Any = embed_dim __A : Dict = depths __A : List[Any] = num_heads __A : str = window_size __A : Union[str, Any] = mlp_ratio __A : str = qkv_bias __A : Dict = hidden_dropout_prob __A : Tuple = attention_probs_dropout_prob __A : int = drop_path_rate __A : str = hidden_act __A : str = use_absolute_embeddings __A : str = patch_norm __A : Dict = layer_norm_eps __A : List[str] = initializer_range __A : str = is_training __A : Union[str, Any] = scope __A : int = use_labels __A : Any = type_sequence_label_size __A : List[str] = encoder_stride __A : str = out_features __A : int = out_indices def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __A : Optional[int] = None if self.use_labels: __A : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __A : Union[str, Any] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = MaskFormerSwinModel(config=_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : Any = model(_UpperCAmelCase) __A : Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) __A : List[str] = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = MaskFormerSwinBackbone(config=_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : List[Any] = model(_UpperCAmelCase) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [13, 16, 16, 16]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , [16, 32, 64]) # verify ValueError with self.parent.assertRaises(_UpperCAmelCase): __A : Optional[int] = ['stem'] __A : Dict = MaskFormerSwinBackbone(config=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = self.prepare_config_and_inputs() __A ,__A ,__A : int = config_and_inputs __A : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCAmelCase = {'''feature-extraction''': MaskFormerSwinModel} if is_torch_available() else {} lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = MaskFormerSwinModelTester(self) __A : Union[str, Any] = ConfigTester(self , config_class=_UpperCAmelCase , embed_dim=37) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' )) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCAmelCase) @unittest.skip('Swin does not use inputs_embeds') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass @unittest.skip('Swin does not support feedforward chunking') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : str = model_class(_UpperCAmelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __A : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : str = model_class(_UpperCAmelCase) __A : Union[str, Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : str = [*signature.parameters.keys()] __A : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : Optional[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[int] = outputs.hidden_states __A : Union[str, Any] = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths) + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) # Swin has a different seq_length __A : int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) __A : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Any = self.model_tester.prepare_config_and_inputs_for_common() __A : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __A : List[Any] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A : List[str] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Any = self.model_tester.prepare_config_and_inputs_for_common() __A : Optional[Any] = 3 __A : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) __A : Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) __A : Optional[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __A : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __A : Optional[int] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A : Optional[int] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width)) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_UpperCAmelCase): __A : Any = 0 return t def check_equivalence(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase={}): with torch.no_grad(): __A : Dict = model(**_UpperCAmelCase , return_dict=_UpperCAmelCase , **_UpperCAmelCase) __A : Union[str, Any] = model(**_UpperCAmelCase , return_dict=_UpperCAmelCase , **_UpperCAmelCase).to_tuple() def recursive_check(_UpperCAmelCase , _UpperCAmelCase): if isinstance(_UpperCAmelCase , (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(_UpperCAmelCase , _UpperCAmelCase): recursive_check(_UpperCAmelCase , _UpperCAmelCase) elif isinstance(_UpperCAmelCase , _UpperCAmelCase): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values()): recursive_check(_UpperCAmelCase , _UpperCAmelCase) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_UpperCAmelCase) , set_nan_tensor_to_zero(_UpperCAmelCase) , atol=1e-5) , msg=( 'Tuple and dict output are not equal. Difference:' F' {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:' F' {torch.isnan(_UpperCAmelCase).any()} and `inf`: {torch.isinf(_UpperCAmelCase)}. Dict has' F' `nan`: {torch.isnan(_UpperCAmelCase).any()} and `inf`: {torch.isinf(_UpperCAmelCase)}.' ) , ) recursive_check(_UpperCAmelCase , _UpperCAmelCase) for model_class in self.all_model_classes: __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : Tuple = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase) __A : List[str] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase) check_equivalence(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : int = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase) __A : Dict = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase) check_equivalence(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : Any = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase) __A : Any = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase) check_equivalence(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , {'output_hidden_states': True}) __A : List[str] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase) __A : str = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase) check_equivalence(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , {'output_hidden_states': True}) @require_torch class SCREAMING_SNAKE_CASE (unittest.TestCase , a__ ): lowerCAmelCase = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCAmelCase = MaskFormerSwinConfig def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = MaskFormerSwinModelTester(self) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : str = self.model_tester.prepare_config_and_inputs_for_common() __A : Tuple = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: __A : Optional[int] = backbone_class(_UpperCAmelCase) backbone.to(_UpperCAmelCase) backbone.eval() __A : Tuple = backbone(**_UpperCAmelCase) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _UpperCAmelCase) self.assertTrue(len(outputs.feature_maps) == len(backbone.channels)) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels)) self.assertIsNone(outputs.hidden_states) self.assertIsNone(outputs.attentions) # Test output_hidden_states=True __A : Dict = backbone(**_UpperCAmelCase , output_hidden_states=_UpperCAmelCase) self.assertIsNotNone(outputs.hidden_states) self.assertTrue(len(outputs.hidden_states) , len(backbone.stage_names)) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __A ,__A ,__A : List[Any] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels)) # Test output_attentions=True if self.has_attentions: __A : Union[str, Any] = backbone(**_UpperCAmelCase , output_attentions=_UpperCAmelCase) self.assertIsNotNone(outputs.attentions)
8
'''simple docstring''' import argparse import os import re lowercase__ : Optional[int] = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowercase__ : Dict = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowercase__ : List[str] = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase__ : Tuple = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowercase__ : str = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase__ : str = re.compile(r'''\[([^\]]+)\]''') def _lowerCAmelCase ( __snake_case : str ) -> Tuple: __A : List[Any] = _re_indent.search(__snake_case ) return "" if search is None else search.groups()[0] def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : str="" , __snake_case : Any=None , __snake_case : List[Any]=None ) -> Optional[int]: __A : Tuple = 0 __A : Optional[int] = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(__snake_case ): index += 1 __A : Optional[int] = ['\n'.join(lines[:index] )] else: __A : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __A : Tuple = [lines[index]] index += 1 while index < len(__snake_case ) and (end_prompt is None or not lines[index].startswith(__snake_case )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__snake_case ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(__snake_case ) ) if index < len(__snake_case ) - 1: __A : Union[str, Any] = [lines[index + 1]] index += 1 else: __A : Union[str, Any] = [] else: blocks.append('\n'.join(__snake_case ) ) __A : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__snake_case ) > 0: blocks.append('\n'.join(__snake_case ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__snake_case ): blocks.append('\n'.join(lines[index:] ) ) return blocks def _lowerCAmelCase ( __snake_case : List[Any] ) -> int: def _inner(__snake_case : List[Any] ): return key(__snake_case ).lower().replace('_' , '' ) return _inner def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any=None ) -> List[Any]: # If no key is provided, we use a noop. def noop(__snake_case : List[Any] ): return x if key is None: __A : Optional[Any] = noop # Constants are all uppercase, they go first. __A : str = [obj for obj in objects if key(__snake_case ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __A : List[str] = [obj for obj in objects if key(__snake_case )[0].isupper() and not key(__snake_case ).isupper()] # Functions begin with a lowercase, they go last. __A : str = [obj for obj in objects if not key(__snake_case )[0].isupper()] __A : Tuple = ignore_underscore(__snake_case ) return sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Tuple: # This inner function sort imports between [ ]. def _replace(__snake_case : Tuple ): __A : List[str] = match.groups()[0] if "," not in imports: return f'[{imports}]' __A : int = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Dict = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(__snake_case )] ) + "]" __A : List[Any] = import_statement.split('\n' ) if len(__snake_case ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __A : Optional[int] = 2 if lines[1].strip() == '[' else 1 __A : Any = [(i, _re_strip_line.search(__snake_case ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __A : Optional[int] = sort_objects(__snake_case , key=lambda __snake_case : x[1] ) __A : Any = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__snake_case ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __A : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] ) else: __A : Dict = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Tuple = keys[:-1] __A : List[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(__snake_case )] ) return "\n".join(__snake_case ) else: # Finally we have to deal with imports fitting on one line __A : Optional[Any] = _re_bracket_content.sub(_replace , __snake_case ) return import_statement def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : List[Any]=True ) -> Optional[Any]: with open(__snake_case , 'r' ) as f: __A : Dict = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __A : str = split_code_in_indented_blocks( __snake_case , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__snake_case ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __A : Tuple = main_blocks[block_idx] __A : int = block.split('\n' ) # Get to the start of the imports. __A : Tuple = 0 while line_idx < len(__snake_case ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __A : Optional[int] = len(__snake_case ) else: line_idx += 1 if line_idx >= len(__snake_case ): continue # Ignore beginning and last line: they don't contain anything. __A : Dict = '\n'.join(block_lines[line_idx:-1] ) __A : int = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __A : Optional[int] = split_code_in_indented_blocks(__snake_case , indent_level=__snake_case ) # We have two categories of import key: list or _import_structure[key].append/extend __A : Any = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __A : Dict = [(pattern.search(__snake_case ).groups()[0] if pattern.search(__snake_case ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __A : Optional[Any] = [(i, key) for i, key in enumerate(__snake_case ) if key is not None] __A : Tuple = [x[0] for x in sorted(__snake_case , key=lambda __snake_case : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __A : str = 0 __A : Any = [] for i in range(len(__snake_case ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __A : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(__snake_case ) count += 1 # And we put our main block back together with its first and last line. __A : int = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(__snake_case ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(__snake_case , 'w' ) as f: f.write('\n'.join(__snake_case ) ) def _lowerCAmelCase ( __snake_case : int=True ) -> Optional[Any]: __A : Tuple = [] for root, _, files in os.walk(__snake_case ): if "__init__.py" in files: __A : List[Any] = sort_imports(os.path.join(__snake_case , '__init__.py' ) , check_only=__snake_case ) if result: __A : Dict = [os.path.join(__snake_case , '__init__.py' )] if len(__snake_case ) > 0: raise ValueError(f'Would overwrite {len(__snake_case )} files, run `make style`.' ) if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowercase__ : Union[str, Any] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
8
1
'''simple docstring''' import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowercase__ : str = logging.getLogger(__name__) def _lowerCAmelCase ( __snake_case : Tuple , __snake_case : Optional[int] ) -> Optional[int]: __A : Tuple = np.argmax(__snake_case , axis=1 ) return np.sum(outputs == labels ) def _lowerCAmelCase ( __snake_case : Optional[int] ) -> int: with open(__snake_case , encoding='utf_8' ) as f: __A : Dict = csv.reader(__snake_case ) __A : Optional[Any] = [] next(__snake_case ) # skip the first line for line in tqdm(__snake_case ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def _lowerCAmelCase ( __snake_case : Tuple , __snake_case : List[Any] , __snake_case : Dict , __snake_case : Dict , __snake_case : List[str] , __snake_case : Union[str, Any] ) -> Any: __A : List[str] = [] for dataset in encoded_datasets: __A : Tuple = len(__snake_case ) __A : List[str] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) __A : Dict = np.zeros((n_batch, 2) , dtype=np.intaa ) __A : Dict = np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa ) __A : Any = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(__snake_case ): __A : Tuple = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __A : Any = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __A : int = with_conta __A : str = with_conta __A : Optional[int] = len(__snake_case ) - 1 __A : List[Any] = len(__snake_case ) - 1 __A : List[Any] = with_conta __A : Tuple = with_conta __A : Dict = mc_label __A : List[str] = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(__snake_case ) for t in all_inputs ) ) return tensor_datasets def _lowerCAmelCase ( ) -> Union[str, Any]: __A : Tuple = argparse.ArgumentParser() parser.add_argument('--model_name' , type=__snake_case , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=__snake_case , type=__snake_case , required=__snake_case , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=__snake_case , default='' ) parser.add_argument('--eval_dataset' , type=__snake_case , default='' ) parser.add_argument('--seed' , type=__snake_case , default=42 ) parser.add_argument('--num_train_epochs' , type=__snake_case , default=3 ) parser.add_argument('--train_batch_size' , type=__snake_case , default=8 ) parser.add_argument('--eval_batch_size' , type=__snake_case , default=16 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=__snake_case , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=__snake_case , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=__snake_case , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=__snake_case , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=__snake_case , default=6.2_5e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=__snake_case , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=__snake_case , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=__snake_case , default=0.01 ) parser.add_argument('--lm_coef' , type=__snake_case , default=0.9 ) parser.add_argument('--n_valid' , type=__snake_case , default=3_74 ) parser.add_argument('--server_ip' , type=__snake_case , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=__snake_case , default='' , help='Can be used for distant debugging.' ) __A : List[Any] = parser.parse_args() print(__snake_case ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__snake_case ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) __A : str = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) __A : List[Any] = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(__snake_case , __snake_case ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __A : Optional[Any] = ['_start_', '_delimiter_', '_classify_'] __A : Tuple = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(__snake_case ) __A : int = tokenizer.convert_tokens_to_ids(__snake_case ) __A : Union[str, Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(__snake_case ) ) model.to(__snake_case ) # Load and encode the datasets def tokenize_and_encode(__snake_case : Optional[Any] ): if isinstance(__snake_case , __snake_case ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(__snake_case ) ) elif isinstance(__snake_case , __snake_case ): return obj return [tokenize_and_encode(__snake_case ) for o in obj] logger.info('Encoding dataset...' ) __A : Tuple = load_rocstories_dataset(args.train_dataset ) __A : List[Any] = load_rocstories_dataset(args.eval_dataset ) __A : Any = (train_dataset, eval_dataset) __A : List[Any] = tokenize_and_encode(__snake_case ) # Compute the max input length for the Transformer __A : Dict = model.config.n_positions // 2 - 2 __A : Any = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) __A : Optional[Any] = min(__snake_case , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __A : str = pre_process_datasets(__snake_case , __snake_case , __snake_case , *__snake_case ) __A ,__A : Optional[int] = tensor_datasets[0], tensor_datasets[1] __A : str = TensorDataset(*__snake_case ) __A : Optional[int] = RandomSampler(__snake_case ) __A : Optional[Any] = DataLoader(__snake_case , sampler=__snake_case , batch_size=args.train_batch_size ) __A : Optional[Any] = TensorDataset(*__snake_case ) __A : str = SequentialSampler(__snake_case ) __A : Tuple = DataLoader(__snake_case , sampler=__snake_case , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: __A : Any = args.max_steps __A : Optional[int] = args.max_steps // (len(__snake_case ) // args.gradient_accumulation_steps) + 1 else: __A : Any = len(__snake_case ) // args.gradient_accumulation_steps * args.num_train_epochs __A : Optional[Any] = list(model.named_parameters() ) __A : List[Any] = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] __A : str = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] __A : Optional[Any] = AdamW(__snake_case , lr=args.learning_rate , eps=args.adam_epsilon ) __A : List[str] = get_linear_schedule_with_warmup( __snake_case , num_warmup_steps=args.warmup_steps , num_training_steps=__snake_case ) if args.do_train: __A ,__A ,__A : Tuple = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): __A : str = 0 __A : str = 0 __A : Tuple = tqdm(__snake_case , desc='Training' ) for step, batch in enumerate(__snake_case ): __A : Tuple = tuple(t.to(__snake_case ) for t in batch ) __A ,__A ,__A ,__A : List[str] = batch __A : str = model(__snake_case , mc_token_ids=__snake_case , lm_labels=__snake_case , mc_labels=__snake_case ) __A : Dict = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __A : Tuple = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __A : List[str] = 'Training loss: {:.2e} lr: {:.2e}'.format(__snake_case , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __A : Dict = model.module if hasattr(__snake_case , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __A : int = os.path.join(args.output_dir , __snake_case ) __A : List[str] = os.path.join(args.output_dir , __snake_case ) torch.save(model_to_save.state_dict() , __snake_case ) model_to_save.config.to_json_file(__snake_case ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned __A : Union[str, Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) __A : List[str] = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(__snake_case ) if args.do_eval: model.eval() __A ,__A : Dict = 0, 0 __A ,__A : Any = 0, 0 for batch in tqdm(__snake_case , desc='Evaluating' ): __A : int = tuple(t.to(__snake_case ) for t in batch ) __A ,__A ,__A ,__A : Any = batch with torch.no_grad(): __A ,__A ,__A ,__A : Any = model( __snake_case , mc_token_ids=__snake_case , lm_labels=__snake_case , mc_labels=__snake_case ) __A : Optional[Any] = mc_logits.detach().cpu().numpy() __A : List[str] = mc_labels.to('cpu' ).numpy() __A : Union[str, Any] = accuracy(__snake_case , __snake_case ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 __A : Optional[Any] = eval_loss / nb_eval_steps __A : Any = eval_accuracy / nb_eval_examples __A : Union[str, Any] = tr_loss / nb_tr_steps if args.do_train else None __A : Any = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} __A : str = os.path.join(args.output_dir , 'eval_results.txt' ) with open(__snake_case , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , __snake_case , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int ) -> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') lowercase__ : int = int(input('''Enter number: ''').strip()) print(f"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
8
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig lowercase__ : Any = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''tapas''' def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1024 , _UpperCAmelCase=[3, 256, 256, 2, 256, 256, 10] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase=10.0 , _UpperCAmelCase=0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase="ratio" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __A : Dict = vocab_size __A : Tuple = hidden_size __A : Any = num_hidden_layers __A : int = num_attention_heads __A : Tuple = hidden_act __A : Tuple = intermediate_size __A : List[Any] = hidden_dropout_prob __A : int = attention_probs_dropout_prob __A : List[str] = max_position_embeddings __A : Optional[int] = type_vocab_sizes __A : str = initializer_range __A : List[str] = layer_norm_eps # Fine-tuning task hyperparameters __A : List[str] = positive_label_weight __A : List[Any] = num_aggregation_labels __A : Optional[Any] = aggregation_loss_weight __A : Tuple = use_answer_as_supervision __A : List[str] = answer_loss_importance __A : Any = use_normalized_answer_loss __A : Any = huber_loss_delta __A : Union[str, Any] = temperature __A : Tuple = aggregation_temperature __A : Optional[Any] = use_gumbel_for_cells __A : List[str] = use_gumbel_for_aggregation __A : Tuple = average_approximation_function __A : List[str] = cell_selection_preference __A : Dict = answer_loss_cutoff __A : Union[str, Any] = max_num_rows __A : Optional[Any] = max_num_columns __A : int = average_logits_per_cell __A : Optional[Any] = select_one_column __A : int = allow_empty_column_selection __A : List[Any] = init_cell_selection_weights_to_zero __A : int = reset_position_index_per_cell __A : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters __A : Optional[Any] = aggregation_labels __A : List[str] = no_aggregation_label_index if isinstance(self.aggregation_labels , _UpperCAmelCase): __A : Optional[Any] = {int(_UpperCAmelCase): v for k, v in aggregation_labels.items()}
8
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : str = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def _lowerCAmelCase ( __snake_case : List[Any] ) -> Tuple: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __A : Optional[Any] = k.replace(__snake_case , __snake_case ) if k.startswith('encoder' ): __A : Any = k.replace('.attn' , '.self_attn' ) __A : Any = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): __A : Tuple = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'encoder_attn_layer_norm' ) __A : int = k.replace('norm3' , 'final_layer_norm' ) return k def _lowerCAmelCase ( __snake_case : List[Any] ) -> Dict: __A : Optional[int] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: __A : Tuple = sd.pop(__snake_case ) __A : Union[str, Any] = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd __A : str = v lowercase__ : Tuple = ['''START'''] @torch.no_grad() def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any , __snake_case : List[Any] ) -> int: __A : List[str] = torch.load(__snake_case , map_location='cpu' ) __A : Tuple = model['model'] __A : str = BlenderbotConfig.from_json_file(__snake_case ) __A : int = BlenderbotForConditionalGeneration(__snake_case ) __A : List[Any] = m.model.state_dict().keys() __A : Optional[int] = [] __A : Optional[int] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __A : Union[str, Any] = rename_state_dict_key(__snake_case ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __A : Optional[Any] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__snake_case ) m.model.load_state_dict(__snake_case , strict=__snake_case ) m.half() m.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
8
1
'''simple docstring''' from __future__ import annotations lowercase__ : Union[str, Any] = 8.988e9 # units = N * m^s * C^-2 def _lowerCAmelCase ( __snake_case : float , __snake_case : float , __snake_case : float , __snake_case : float ) -> dict[str, float]: __A : List[Any] = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if distance < 0: raise ValueError('Distance cannot be negative' ) if force == 0: __A : Tuple = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: __A : str = abs(__snake_case ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: __A : Any = abs(__snake_case ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: __A : str = (COULOMBS_CONSTANT * charge_product / abs(__snake_case )) ** 0.5 return {"distance": distance} raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
8
'''simple docstring''' import mpmath # for roots of unity import numpy as np class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None): '''simple docstring''' __A : List[Any] = list(poly_a or [0])[:] __A : Optional[int] = list(poly_b or [0])[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __A : Union[str, Any] = len(self.polyA) while self.polyB[-1] == 0: self.polyB.pop() __A : Optional[int] = len(self.polyB) # Add 0 to make lengths equal a power of 2 __A : Optional[Any] = int( 2 ** np.ceil(np.loga(len(self.polyA) + len(self.polyB) - 1))) while len(self.polyA) < self.c_max_length: self.polyA.append(0) while len(self.polyB) < self.c_max_length: self.polyB.append(0) # A complex root used for the fourier transform __A : str = complex(mpmath.root(x=1 , n=self.c_max_length , k=1)) # The product __A : Tuple = self.__multiply() def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(_UpperCAmelCase) <= 1: return dft[0] # __A : Dict = self.c_max_length // 2 while next_ncol > 0: __A : Optional[Any] = [[] for i in range(_UpperCAmelCase)] __A : Tuple = self.root**next_ncol # First half of next step __A : Optional[Any] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j]) current_root *= root # Second half of next step __A : List[str] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j]) current_root *= root # Update __A : Optional[int] = new_dft __A : Tuple = next_ncol // 2 return dft[0] def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.__dft('A') __A : Optional[Any] = self.__dft('B') __A : str = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]] del dft_a del dft_b # Corner Case if len(inverce_c[0]) <= 1: return inverce_c[0] # Inverse DFT __A : Dict = 2 while next_ncol <= self.c_max_length: __A : Optional[int] = [[] for i in range(_UpperCAmelCase)] __A : Any = self.root ** (next_ncol // 2) __A : Tuple = 1 # First half of next step for j in range(self.c_max_length // next_ncol): for i in range(next_ncol // 2): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root)) current_root *= root # Update __A : int = new_inverse_c next_ncol *= 2 # Unpack __A : Optional[int] = [round(x[0].real , 8) + round(x[0].imag , 8) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self): '''simple docstring''' __A : int = 'A = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A])) __A : Optional[Any] = 'B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B])) __A : str = 'A*B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.product)) return F'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( '''The RoBERTa Model transformer with early exiting (DeeRoBERTa). ''' , a__ , ) class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = RobertaConfig lowerCAmelCase = '''roberta''' def __init__( self , _UpperCAmelCase): '''simple docstring''' super().__init__(_UpperCAmelCase) __A : Tuple = RobertaEmbeddings(_UpperCAmelCase) self.init_weights() @add_start_docstrings( '''RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. ''' , a__ , ) class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = RobertaConfig lowerCAmelCase = '''roberta''' def __init__( self , _UpperCAmelCase): '''simple docstring''' super().__init__(_UpperCAmelCase) __A : List[str] = config.num_labels __A : List[str] = config.num_hidden_layers __A : Any = DeeRobertaModel(_UpperCAmelCase) __A : Tuple = nn.Dropout(config.hidden_dropout_prob) __A : Optional[Any] = nn.Linear(config.hidden_size , self.config.num_labels) @add_start_docstrings_to_model_forward(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=-1 , _UpperCAmelCase=False , ): '''simple docstring''' __A : Optional[Any] = self.num_layers try: __A : Dict = self.roberta( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , head_mask=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase , ) __A : List[Any] = outputs[1] __A : List[str] = self.dropout(_UpperCAmelCase) __A : List[str] = self.classifier(_UpperCAmelCase) __A : List[Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __A : Optional[int] = e.message __A : Optional[int] = e.exit_layer __A : Tuple = outputs[0] if not self.training: __A : List[str] = entropy(_UpperCAmelCase) __A : List[str] = [] __A : Any = [] if labels is not None: if self.num_labels == 1: # We are doing regression __A : Any = MSELoss() __A : Any = loss_fct(logits.view(-1) , labels.view(-1)) else: __A : Optional[int] = CrossEntropyLoss() __A : Union[str, Any] = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) # work with highway exits __A : Optional[int] = [] for highway_exit in outputs[-1]: __A : str = highway_exit[0] if not self.training: highway_logits_all.append(_UpperCAmelCase) highway_entropy.append(highway_exit[2]) if self.num_labels == 1: # We are doing regression __A : int = MSELoss() __A : Union[str, Any] = loss_fct(highway_logits.view(-1) , labels.view(-1)) else: __A : Union[str, Any] = CrossEntropyLoss() __A : int = loss_fct(highway_logits.view(-1 , self.num_labels) , labels.view(-1)) highway_losses.append(_UpperCAmelCase) if train_highway: __A : Optional[int] = (sum(highway_losses[:-1]),) + outputs # exclude the final highway, of course else: __A : str = (loss,) + outputs if not self.training: __A : Optional[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __A : str = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
8
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=[30, 30] , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=None , _UpperCAmelCase=8 , _UpperCAmelCase=10 , ): '''simple docstring''' __A : Union[str, Any] = parent __A : Tuple = batch_size __A : List[str] = image_size __A : Dict = patch_size __A : Optional[Any] = num_channels __A : Tuple = is_training __A : Dict = use_labels __A : List[Any] = hidden_size __A : Tuple = num_hidden_layers __A : int = num_attention_heads __A : Optional[int] = intermediate_size __A : Tuple = hidden_act __A : Any = hidden_dropout_prob __A : Optional[Any] = attention_probs_dropout_prob __A : List[Any] = type_sequence_label_size __A : List[Any] = initializer_range __A : Optional[int] = num_labels __A : List[Any] = scope __A : Any = n_targets __A : Union[str, Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens __A : List[str] = (image_size[1] // patch_size) * (image_size[0] // patch_size) __A : int = num_patches + 1 + self.num_detection_tokens def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]]) __A : Tuple = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) __A : List[Any] = [] for i in range(self.batch_size): __A : Optional[int] = {} __A : Union[str, Any] = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=_UpperCAmelCase) __A : str = torch.rand(self.n_targets , 4 , device=_UpperCAmelCase) labels.append(_UpperCAmelCase) __A : Any = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosModel(config=_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosForObjectDetection(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : str = model(pixel_values=_UpperCAmelCase) __A : List[str] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) __A : Union[str, Any] = model(pixel_values=_UpperCAmelCase , labels=_UpperCAmelCase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.prepare_config_and_inputs() __A ,__A ,__A : Tuple = config_and_inputs __A : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowerCAmelCase = ( {'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' __A : Optional[Any] = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase) if return_labels: if model_class.__name__ == "YolosForObjectDetection": __A : Any = [] for i in range(self.model_tester.batch_size): __A : Tuple = {} __A : Tuple = torch.ones( size=(self.model_tester.n_targets,) , device=_UpperCAmelCase , dtype=torch.long) __A : Optional[Any] = torch.ones( self.model_tester.n_targets , 4 , device=_UpperCAmelCase , dtype=torch.float) labels.append(_UpperCAmelCase) __A : str = labels return inputs_dict def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = YolosModelTester(self) __A : Dict = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Tuple = model_class(_UpperCAmelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __A : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[Any] = model_class(_UpperCAmelCase) __A : str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : int = [*signature.parameters.keys()] __A : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Optional[int] = True # in YOLOS, the seq_len is different __A : Dict = self.model_tester.expected_seq_len for model_class in self.all_model_classes: __A : Dict = True __A : Dict = False __A : Union[str, Any] = True __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : Any = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] __A : List[Any] = True __A : List[str] = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __A : str = len(_UpperCAmelCase) # Check attention is always last and order is fine __A : Dict = True __A : Dict = True __A : Dict = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = 1 self.assertEqual(out_len + added_hidden_states , len(_UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.hidden_states __A : List[str] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) # YOLOS has a different seq_length __A : Dict = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[str] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A : Optional[int] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : List[Any] = YolosModel.from_pretrained(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase) def _lowerCAmelCase ( ) -> int: __A : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return AutoImageProcessor.from_pretrained('hustvl/yolos-small') if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = YolosForObjectDetection.from_pretrained('hustvl/yolos-small').to(_UpperCAmelCase) __A : Any = self.default_image_processor __A : str = prepare_img() __A : int = image_processor(images=_UpperCAmelCase , return_tensors='pt').to(_UpperCAmelCase) # forward pass with torch.no_grad(): __A : str = model(inputs.pixel_values) # verify outputs __A : Tuple = torch.Size((1, 100, 92)) self.assertEqual(outputs.logits.shape , _UpperCAmelCase) __A : Dict = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=_UpperCAmelCase , ) __A : int = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=_UpperCAmelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) # verify postprocessing __A : List[str] = image_processor.post_process_object_detection( _UpperCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]])[0] __A : Optional[int] = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861]).to(_UpperCAmelCase) __A : Union[str, Any] = [75, 75, 17, 63, 17] __A : Any = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495]).to(_UpperCAmelCase) self.assertEqual(len(results['scores']) , 5) self.assertTrue(torch.allclose(results['scores'] , _UpperCAmelCase , atol=1e-4)) self.assertSequenceEqual(results['labels'].tolist() , _UpperCAmelCase) self.assertTrue(torch.allclose(results['boxes'][0, :] , _UpperCAmelCase))
8
1
'''simple docstring''' from __future__ import annotations import pandas as pd def _lowerCAmelCase ( __snake_case : list[int] , __snake_case : list[int] , __snake_case : int ) -> list[int]: __A : Tuple = [0] * no_of_processes __A : str = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(__snake_case ): __A : int = burst_time[i] __A : str = 0 __A : Tuple = 0 __A : Optional[Any] = 9_99_99_99_99 __A : int = 0 __A : Optional[Any] = False # Process until all processes are completed while complete != no_of_processes: for j in range(__snake_case ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: __A : Dict = remaining_time[j] __A : Optional[int] = j __A : Union[str, Any] = True if not check: increment_time += 1 continue remaining_time[short] -= 1 __A : str = remaining_time[short] if minm == 0: __A : Any = 9_99_99_99_99 if remaining_time[short] == 0: complete += 1 __A : List[Any] = False # Find finish time of current process __A : Any = increment_time + 1 # Calculate waiting time __A : Optional[int] = finish_time - arrival_time[short] __A : Dict = finar - burst_time[short] if waiting_time[short] < 0: __A : List[str] = 0 # Increment time increment_time += 1 return waiting_time def _lowerCAmelCase ( __snake_case : list[int] , __snake_case : int , __snake_case : list[int] ) -> list[int]: __A : Optional[Any] = [0] * no_of_processes for i in range(__snake_case ): __A : Any = burst_time[i] + waiting_time[i] return turn_around_time def _lowerCAmelCase ( __snake_case : list[int] , __snake_case : list[int] , __snake_case : int ) -> None: __A : Union[str, Any] = 0 __A : Optional[int] = 0 for i in range(__snake_case ): __A : Optional[Any] = total_waiting_time + waiting_time[i] __A : List[str] = total_turn_around_time + turn_around_time[i] print(f'Average waiting time = {total_waiting_time / no_of_processes:.5f}' ) print('Average turn around time =' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('''Enter how many process you want to analyze''') lowercase__ : Dict = int(input()) lowercase__ : str = [0] * no_of_processes lowercase__ : int = [0] * no_of_processes lowercase__ : Tuple = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('''Enter the arrival time and burst time for process:--''' + str(i + 1)) lowercase__ , lowercase__ : Dict = map(int, input().split()) lowercase__ : int = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowercase__ : Any = burst_time lowercase__ : Tuple = no_of_processes lowercase__ : List[str] = waiting_time lowercase__ : List[Any] = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) lowercase__ : str = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ '''Process''', '''BurstTime''', '''ArrivalTime''', '''WaitingTime''', '''TurnAroundTime''', ], ) # Printing the dataFrame pd.set_option('''display.max_rows''', fcfs.shape[0] + 1) print(fcfs)
8
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: lowercase__ : Optional[int] = None lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ : List[str] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } lowercase__ : Dict = { '''camembert-base''': 5_12, } lowercase__ : str = '''▁''' class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] lowerCAmelCase = CamembertTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **_UpperCAmelCase , ): '''simple docstring''' __A : int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __A : List[str] = vocab_file __A : Optional[int] = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A : Optional[Any] = [self.cls_token_id] __A : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' __A : Optional[int] = [self.sep_token_id] __A : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(_UpperCAmelCase): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return __A : List[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCAmelCase): copyfile(self.vocab_file , _UpperCAmelCase) return (out_vocab_file,)
8
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : List[Any] = { '''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[Any] = [ '''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PegasusXForConditionalGeneration''', '''PegasusXModel''', '''PegasusXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys lowercase__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowercase__ : Any = '''hf-internal-testing/tiny-random-bert''' lowercase__ : Optional[Any] = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') lowercase__ : List[Any] = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase)) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase))) with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Any = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) self.assertTrue(os.path.isfile(_UpperCAmelCase)) # File is cached at the same place the second time. __A : Tuple = cached_file(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) # Using a specific revision to test the full commit hash. __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='9b8c223') self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): __A : Dict = cached_file('tiny-random-bert' , _UpperCAmelCase) with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): __A : Optional[int] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='aaaa') with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : int = cached_file(_UpperCAmelCase , 'conf') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : Any = cached_file(_UpperCAmelCase , 'conf') with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Dict = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '.no_exist' , _UpperCAmelCase , 'conf'))) __A : List[Any] = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : str = cached_file(_UpperCAmelCase , 'conf' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : List[str] = mock.Mock() __A : Dict = 500 __A : List[str] = {} __A : List[Any] = HTTPError __A : Optional[Any] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=_UpperCAmelCase) as mock_head: __A : Dict = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_connection_errors=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt')) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): get_file_from_repo('bert-base-case' , _UpperCAmelCase) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): get_file_from_repo('bert-base-cased' , _UpperCAmelCase , revision='ahaha') __A : List[str] = get_file_from_repo('bert-base-cased' , _UpperCAmelCase) # The name is the cached name which is not very easy to test, so instead we load the content. __A : List[str] = json.loads(open(_UpperCAmelCase , 'r').read()) self.assertEqual(config['hidden_size'] , 768) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __A : Tuple = Path(_UpperCAmelCase) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , 'a.txt') , str(_UpperCAmelCase)) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , 'b.txt'))
8
1
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase__ : int = logging.get_logger(__name__) lowercase__ : Optional[int] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} lowercase__ : Optional[int] = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } lowercase__ : Optional[int] = { '''allenai/longformer-base-4096''': 40_96, '''allenai/longformer-large-4096''': 40_96, '''allenai/longformer-large-4096-finetuned-triviaqa''': 40_96, '''allenai/longformer-base-4096-extra.pos.embd.only''': 40_96, '''allenai/longformer-large-4096-extra.pos.embd.only''': 40_96, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _lowerCAmelCase ( ) -> Union[str, Any]: __A : Union[str, Any] = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) __A : int = bs[:] __A : Optional[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(__snake_case ) cs.append(2**8 + n ) n += 1 __A : Union[str, Any] = [chr(__snake_case ) for n in cs] return dict(zip(__snake_case , __snake_case ) ) def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Tuple: __A : List[str] = set() __A : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __A : List[Any] = char return pairs class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="replace" , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=False , **_UpperCAmelCase , ): '''simple docstring''' __A : int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else bos_token __A : Dict = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else eos_token __A : List[Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else sep_token __A : str = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else cls_token __A : List[Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else unk_token __A : Optional[int] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else pad_token # Mask token behave like a normal word, i.e. include the space before it __A : Union[str, Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else mask_token super().__init__( errors=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , **_UpperCAmelCase , ) with open(_UpperCAmelCase , encoding='utf-8') as vocab_handle: __A : List[str] = json.load(_UpperCAmelCase) __A : int = {v: k for k, v in self.encoder.items()} __A : Dict = errors # how to handle errors in decoding __A : List[Any] = bytes_to_unicode() __A : List[str] = {v: k for k, v in self.byte_encoder.items()} with open(_UpperCAmelCase , encoding='utf-8') as merges_handle: __A : Dict = merges_handle.read().split('\n')[1:-1] __A : Optional[Any] = [tuple(merge.split()) for merge in bpe_merges] __A : List[Any] = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase)))) __A : Any = {} __A : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __A : List[Any] = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+') @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return len(self.encoder) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if token in self.cache: return self.cache[token] __A : List[Any] = tuple(_UpperCAmelCase) __A : Optional[Any] = get_pairs(_UpperCAmelCase) if not pairs: return token while True: __A : Union[str, Any] = min(_UpperCAmelCase , key=lambda _UpperCAmelCase: self.bpe_ranks.get(_UpperCAmelCase , float('inf'))) if bigram not in self.bpe_ranks: break __A ,__A : int = bigram __A : List[str] = [] __A : str = 0 while i < len(_UpperCAmelCase): try: __A : Any = word.index(_UpperCAmelCase , _UpperCAmelCase) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) __A : Tuple = j if word[i] == first and i < len(_UpperCAmelCase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 __A : Dict = tuple(_UpperCAmelCase) __A : Optional[Any] = new_word if len(_UpperCAmelCase) == 1: break else: __A : Optional[Any] = get_pairs(_UpperCAmelCase) __A : Any = ' '.join(_UpperCAmelCase) __A : Any = word return word def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Tuple = [] for token in re.findall(self.pat , _UpperCAmelCase): __A : Tuple = ''.join( self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_UpperCAmelCase).split(' ')) return bpe_tokens def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return self.encoder.get(_UpperCAmelCase , self.encoder.get(self.unk_token)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return self.decoder.get(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = ''.join(_UpperCAmelCase) __A : List[Any] = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8' , errors=self.errors) return text def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if not os.path.isdir(_UpperCAmelCase): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return __A : int = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) __A : Union[str, Any] = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(_UpperCAmelCase , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCAmelCase , ensure_ascii=_UpperCAmelCase) + '\n') __A : Optional[Any] = 0 with open(_UpperCAmelCase , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _UpperCAmelCase: kv[1]): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!') __A : str = token_index writer.write(' '.join(_UpperCAmelCase) + '\n') index += 1 return vocab_file, merge_file def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A : List[Any] = [self.cls_token_id] __A : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase)) + [1] return [1] + ([0] * len(_UpperCAmelCase)) + [1, 1] + ([0] * len(_UpperCAmelCase)) + [1] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' __A : Optional[int] = [self.sep_token_id] __A : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=False , **_UpperCAmelCase): '''simple docstring''' __A : List[str] = kwargs.pop('add_prefix_space' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(_UpperCAmelCase) > 0 and not text[0].isspace()): __A : List[Any] = ' ' + text return (text, kwargs)
8
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _lowerCAmelCase ( __snake_case : str , __snake_case : str , **__snake_case : List[Any] ) -> Any: __A : Optional[Any] = AutoConfig.from_pretrained(__snake_case , **__snake_case ) __A : int = AutoModelForSeqaSeqLM.from_config(__snake_case ) model.save_pretrained(__snake_case ) AutoTokenizer.from_pretrained(__snake_case ).save_pretrained(__snake_case ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
8
1
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = ['''image_processor''', '''tokenizer'''] lowerCAmelCase = '''LayoutLMv2ImageProcessor''' lowerCAmelCase = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) __A : str = kwargs.pop('feature_extractor') __A : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(_UpperCAmelCase , _UpperCAmelCase) def __call__( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = 0 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = True , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.') if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.') if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.') # first, apply the image processor __A : Dict = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : Optional[int] = [text] # add batch dimension (as the image processor always adds a batch dimension) __A : Dict = features['words'] __A : Any = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # add pixel values __A : Dict = features.pop('pixel_values') if return_overflowing_tokens is True: __A : str = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping']) __A : str = images return encoded_inputs def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Tuple = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx]) if len(_UpperCAmelCase) != len(_UpperCAmelCase): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F' {len(_UpperCAmelCase)} and {len(_UpperCAmelCase)}') return images_with_overflow def SCREAMING_SNAKE_CASE ( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase) @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , ) return self.image_processor
8
'''simple docstring''' from ...configuration_utils import PretrainedConfig lowercase__ : Any = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''tapas''' def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1024 , _UpperCAmelCase=[3, 256, 256, 2, 256, 256, 10] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase=10.0 , _UpperCAmelCase=0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase="ratio" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __A : Dict = vocab_size __A : Tuple = hidden_size __A : Any = num_hidden_layers __A : int = num_attention_heads __A : Tuple = hidden_act __A : Tuple = intermediate_size __A : List[Any] = hidden_dropout_prob __A : int = attention_probs_dropout_prob __A : List[str] = max_position_embeddings __A : Optional[int] = type_vocab_sizes __A : str = initializer_range __A : List[str] = layer_norm_eps # Fine-tuning task hyperparameters __A : List[str] = positive_label_weight __A : List[Any] = num_aggregation_labels __A : Optional[Any] = aggregation_loss_weight __A : Tuple = use_answer_as_supervision __A : List[str] = answer_loss_importance __A : Any = use_normalized_answer_loss __A : Any = huber_loss_delta __A : Union[str, Any] = temperature __A : Tuple = aggregation_temperature __A : Optional[Any] = use_gumbel_for_cells __A : List[str] = use_gumbel_for_aggregation __A : Tuple = average_approximation_function __A : List[str] = cell_selection_preference __A : Dict = answer_loss_cutoff __A : Union[str, Any] = max_num_rows __A : Optional[Any] = max_num_columns __A : int = average_logits_per_cell __A : Optional[Any] = select_one_column __A : int = allow_empty_column_selection __A : List[Any] = init_cell_selection_weights_to_zero __A : int = reset_position_index_per_cell __A : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters __A : Optional[Any] = aggregation_labels __A : List[str] = no_aggregation_label_index if isinstance(self.aggregation_labels , _UpperCAmelCase): __A : Optional[Any] = {int(_UpperCAmelCase): v for k, v in aggregation_labels.items()}
8
1
'''simple docstring''' from __future__ import annotations import math class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : int = size # approximate the overall size of segment tree with given value __A : Optional[Any] = [0 for i in range(0 , 4 * size)] # create array to store lazy update __A : Optional[Any] = [0 for i in range(0 , 4 * size)] __A : str = [0 for i in range(0 , 4 * size)] # flag for lazy update def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return idx * 2 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return idx * 2 + 1 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if left_element == right_element: __A : List[Any] = a[left_element - 1] else: __A : List[str] = (left_element + right_element) // 2 self.build(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.build(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase) __A : Any = max( self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)]) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.flag[idx] is True: __A : Optional[Any] = self.lazy[idx] __A : Optional[Any] = False if left_element != right_element: __A : List[Any] = self.lazy[idx] __A : Dict = self.lazy[idx] __A : Tuple = True __A : Union[str, Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: __A : Optional[int] = val if left_element != right_element: __A : Tuple = val __A : Any = val __A : Tuple = True __A : Union[str, Any] = True return True __A : str = (left_element + right_element) // 2 self.update(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.update(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : int = max( self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)]) return True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.flag[idx] is True: __A : Union[str, Any] = self.lazy[idx] __A : List[str] = False if left_element != right_element: __A : Union[str, Any] = self.lazy[idx] __A : Optional[int] = self.lazy[idx] __A : str = True __A : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] __A : Any = (left_element + right_element) // 2 __A : int = self.query(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : Union[str, Any] = self.query(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) return max(_UpperCAmelCase , _UpperCAmelCase) def __str__( self): '''simple docstring''' return str([self.query(1 , 1 , self.size , _UpperCAmelCase , _UpperCAmelCase) for i in range(1 , self.size + 1)]) if __name__ == "__main__": lowercase__ : Union[str, Any] = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] lowercase__ : str = 15 lowercase__ : List[Any] = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 1_11) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 2_35) print(segt)
8
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=sys.maxsize): '''simple docstring''' __A : Union[str, Any] = 'bilinear' __A : int = max_size __A : Optional[Any] = short_edge_length def __call__( self , _UpperCAmelCase): '''simple docstring''' __A : int = [] for img in imgs: __A ,__A : Dict = img.shape[:2] # later: provide list and randomly choose index for resize __A : List[Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1) if size == 0: return img __A : Tuple = size * 1.0 / min(_UpperCAmelCase , _UpperCAmelCase) if h < w: __A ,__A : Optional[Any] = size, scale * w else: __A ,__A : Optional[Any] = scale * h, size if max(_UpperCAmelCase , _UpperCAmelCase) > self.max_size: __A : Tuple = self.max_size * 1.0 / max(_UpperCAmelCase , _UpperCAmelCase) __A : Tuple = newh * scale __A : Dict = neww * scale __A : Dict = int(neww + 0.5) __A : Optional[int] = int(newh + 0.5) if img.dtype == np.uinta: __A : int = Image.fromarray(_UpperCAmelCase) __A : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR) __A : Dict = np.asarray(_UpperCAmelCase) else: __A : Optional[Any] = img.permute(2 , 0 , 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw __A : Dict = nn.functional.interpolate( _UpperCAmelCase , (newh, neww) , mode=self.interp_method , align_corners=_UpperCAmelCase).squeeze(0) img_augs.append(_UpperCAmelCase) return img_augs class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST) __A : List[Any] = cfg.INPUT.FORMAT __A : Dict = cfg.SIZE_DIVISIBILITY __A : str = cfg.PAD_VALUE __A : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST __A : int = cfg.MODEL.DEVICE __A : Tuple = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : int = lambda _UpperCAmelCase: (x - self.pixel_mean) / self.pixel_std def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = tuple(max(_UpperCAmelCase) for s in zip(*[img.shape for img in images])) __A : Dict = [im.shape[-2:] for im in images] __A : Optional[int] = [ nn.functional.pad( _UpperCAmelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_UpperCAmelCase , _UpperCAmelCase) ] return torch.stack(_UpperCAmelCase), torch.tensor(_UpperCAmelCase) def __call__( self , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' with torch.no_grad(): if not isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : int = [images] if single_image: assert len(_UpperCAmelCase) == 1 for i in range(len(_UpperCAmelCase)): if isinstance(images[i] , torch.Tensor): images.insert(_UpperCAmelCase , images.pop(_UpperCAmelCase).to(self.device).float()) elif not isinstance(images[i] , torch.Tensor): images.insert( _UpperCAmelCase , torch.as_tensor(img_tensorize(images.pop(_UpperCAmelCase) , input_format=self.input_format)) .to(self.device) .float() , ) # resize smallest edge __A : str = torch.tensor([im.shape[:2] for im in images]) __A : List[str] = self.aug(_UpperCAmelCase) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __A : Any = [self.normalizer(_UpperCAmelCase) for x in images] # now pad them to do the following operations __A ,__A : Any = self.pad(_UpperCAmelCase) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __A : str = torch.true_divide(_UpperCAmelCase , _UpperCAmelCase) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _lowerCAmelCase ( __snake_case : Dict , __snake_case : str ) -> Dict: boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : Tuple[int, int] ) -> int: assert torch.isfinite(__snake_case ).all(), "Box tensor contains infinite or NaN!" __A ,__A : int = box_size tensor[:, 0].clamp_(min=0 , max=__snake_case ) tensor[:, 1].clamp_(min=0 , max=__snake_case ) tensor[:, 2].clamp_(min=0 , max=__snake_case ) tensor[:, 3].clamp_(min=0 , max=__snake_case )
8
1
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int = 2_00 ) -> int: __A : Optional[Any] = [1, 2, 5, 10, 20, 50, 1_00, 2_00] __A : List[str] = [0] * (pence + 1) __A : Optional[Any] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__snake_case , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Optional[Any]: # noqa: E741 __A : Tuple = len(__snake_case ) __A : Optional[int] = 0 __A : str = [0] * n __A : int = [False] * n __A : Tuple = [False] * n def dfs(__snake_case : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : int ): if parent == root: out_edge_count += 1 __A : str = True __A : Tuple = at for to in l[at]: if to == parent: pass elif not visited[to]: __A : Optional[int] = dfs(__snake_case , __snake_case , __snake_case , __snake_case ) __A : int = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __A : Tuple = True # AP found via cycle if at == low[to]: __A : Optional[Any] = True else: __A : Any = min(low[at] , __snake_case ) return out_edge_count for i in range(__snake_case ): if not visited[i]: __A : Tuple = 0 __A : List[Any] = dfs(__snake_case , __snake_case , -1 , __snake_case ) __A : Union[str, Any] = out_edge_count > 1 for x in range(len(__snake_case ) ): if is_art[x] is True: print(__snake_case ) # Adjacency list of graph lowercase__ : Tuple = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
8
1
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int = 10 ) -> str: if not isinstance(__snake_case , __snake_case ) or n < 0: raise ValueError('Invalid input' ) __A : Optional[Any] = 10**n __A : List[str] = 2_84_33 * (pow(2 , 7_83_04_57 , __snake_case )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f"""{solution(10) = }""")
8
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : int = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } lowercase__ : Dict = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _lowerCAmelCase ( __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Any , __snake_case : List[str] ) -> Union[str, Any]: for attribute in key.split('.' ): __A : int = getattr(__snake_case , __snake_case ) if weight_type is not None: __A : Optional[int] = getattr(__snake_case , __snake_case ).shape else: __A : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __A : Tuple = value elif weight_type == "weight_g": __A : Union[str, Any] = value elif weight_type == "weight_v": __A : Optional[Any] = value elif weight_type == "bias": __A : Optional[int] = value else: __A : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( __snake_case : Any , __snake_case : List[str] ) -> List[Any]: __A : Optional[Any] = [] __A : Any = fairseq_model.state_dict() __A : Union[str, Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): __A : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == 'group' , ) __A : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __A : int = True if "*" in mapped_key: __A : Any = name.split(__snake_case )[0].split('.' )[-2] __A : List[Any] = mapped_key.replace('*' , __snake_case ) if "weight_g" in name: __A : Optional[Any] = 'weight_g' elif "weight_v" in name: __A : Union[str, Any] = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: __A : Optional[Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __A : Tuple = 'weight' else: __A : Dict = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[int] ) -> int: __A : int = full_name.split('conv_layers.' )[-1] __A : List[str] = name.split('.' ) __A : Optional[int] = int(items[0] ) __A : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __A : Optional[int] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __A : Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) __A : Dict = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __A : Any = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) @torch.no_grad() def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple=None ) -> Any: # load the pre-trained checkpoints __A : List[str] = torch.load(__snake_case ) __A : Dict = WavLMConfigOrig(checkpoint['cfg'] ) __A : Optional[int] = WavLMOrig(__snake_case ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: __A : List[Any] = WavLMConfig.from_pretrained(__snake_case ) else: __A : Dict = WavLMConfig() __A : Optional[Any] = WavLMModel(__snake_case ) recursively_load_weights(__snake_case , __snake_case ) hf_wavlm.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowercase__ : Any = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
8
1
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ : Optional[int] = logging.get_logger(__name__) lowercase__ : int = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} lowercase__ : Tuple = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } lowercase__ : str = { '''abeja/gpt-neox-japanese-2.7b''': 20_48, } def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Dict ) -> Any: with open(__snake_case , 'r' , encoding='utf-8' ) as f: __A : Optional[int] = json.loads(f.read() ) __A : Any = collections.OrderedDict() __A : Optional[Any] = collections.OrderedDict() __A : Union[str, Any] = collections.OrderedDict() with open(__snake_case , 'r' , encoding='utf-8' ) as f: __A : Dict = f.readlines() __A : Tuple = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(__snake_case ): __A : int = b __A : int = idx for wd in b: __A : Any = idx return vocab, raw_vocab, ids_to_tokens, emoji class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="<|endoftext|>" , _UpperCAmelCase="<|endoftext|>" , _UpperCAmelCase="<|startoftext|>" , _UpperCAmelCase="<|endoftext|>" , _UpperCAmelCase=False , **_UpperCAmelCase , ): '''simple docstring''' super().__init__( unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , do_clean_text=_UpperCAmelCase , **_UpperCAmelCase , ) if not os.path.isfile(_UpperCAmelCase): raise ValueError( F'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`') if not os.path.isfile(_UpperCAmelCase): raise ValueError( F'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`') __A : Tuple = do_clean_text __A ,__A ,__A ,__A : Dict = load_vocab_and_emoji(_UpperCAmelCase , _UpperCAmelCase) __A : int = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji) @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return len(self.raw_vocab) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return dict(self.raw_vocab , **self.added_tokens_encoder) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return self.subword_tokenizer.tokenize(_UpperCAmelCase , clean=self.do_clean_text) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return self.vocab.get(_UpperCAmelCase , self.vocab.get(self.unk_token)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : int = ''.join(_UpperCAmelCase).strip() return out_string def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : int = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase) + [self.eos_token_id]) if len(_UpperCAmelCase) > self.model_max_length: __A : Optional[int] = input_ids[-self.model_max_length :] return input_ids def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' __A : List[str] = 0 if os.path.isdir(_UpperCAmelCase): __A : Dict = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) __A : int = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file']) else: __A : Tuple = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) __A : int = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8') as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!') __A : Dict = token_index writer.write(','.join(_UpperCAmelCase) + '\n') index += 1 with open(_UpperCAmelCase , 'w' , encoding='utf-8') as writer: json.dump(self.emoji , _UpperCAmelCase) return vocab_file, emoji_file class SCREAMING_SNAKE_CASE (a__ ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = vocab # same as swe __A : Union[str, Any] = ids_to_tokens # same as bpe __A : Optional[int] = emoji __A : List[str] = np.max([len(_UpperCAmelCase) for w in self.vocab.keys()]) __A : Optional[int] = re.compile(R'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)') __A : Optional[Any] = re.compile(R'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*') __A : str = re.compile(R'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}') __A : Any = re.compile( R'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*') __A : List[str] = re.compile( R'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*') __A : Any = re.compile( R'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*') __A : str = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' __A : Dict = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' __A : int = str.maketrans({k: '<BLOCK>' for k in keisen + blocks}) def __len__( self): '''simple docstring''' return len(self.ids_to_tokens) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Tuple = self.content_repattera.sub('<URL>' , _UpperCAmelCase) __A : Any = self.content_repattera.sub('<EMAIL>' , _UpperCAmelCase) __A : Union[str, Any] = self.content_repattera.sub('<TEL>' , _UpperCAmelCase) __A : List[str] = self.content_repattera.sub('<DATE>' , _UpperCAmelCase) __A : Optional[Any] = self.content_repattera.sub('<DATE>' , _UpperCAmelCase) __A : Optional[int] = self.content_repattera.sub('<PRICE>' , _UpperCAmelCase) __A : List[str] = content.translate(self.content_transa) while "<BLOCK><BLOCK>" in content: __A : str = content.replace('<BLOCK><BLOCK>' , '<BLOCK>') return content def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' __A : Union[str, Any] = text.replace(' ' , '<SP>') __A : Tuple = text.replace(' ' , '<SP>') __A : Optional[Any] = text.replace('\r\n' , '<BR>') __A : Tuple = text.replace('\n' , '<BR>') __A : List[Any] = text.replace('\r' , '<BR>') __A : Optional[Any] = text.replace('\t' , '<TAB>') __A : Union[str, Any] = text.replace('—' , 'ー') __A : int = text.replace('−' , 'ー') for k, v in self.emoji["emoji"].items(): if k in text: __A : Union[str, Any] = text.replace(_UpperCAmelCase , _UpperCAmelCase) if clean: __A : int = self.clean_text(_UpperCAmelCase) def check_simbol(_UpperCAmelCase): __A : str = x.encode() if len(_UpperCAmelCase) == 1 and len(_UpperCAmelCase) == 2: __A : Dict = (int(e[0]) << 8) + int(e[1]) if ( (c >= 0Xc_2_a_1 and c <= 0Xc_2_b_f) or (c >= 0Xc_7_8_0 and c <= 0Xc_7_8_3) or (c >= 0Xc_a_b_9 and c <= 0Xc_b_b_f) or (c >= 0Xc_c_8_0 and c <= 0Xc_d_a_2) ): return True return False def checkuae(_UpperCAmelCase): __A : Optional[int] = x.encode() if len(_UpperCAmelCase) == 1 and len(_UpperCAmelCase) == 3: __A : Dict = (int(e[0]) << 16) + (int(e[1]) << 8) + int(e[2]) if c >= 0Xe_2_8_0_8_0 and c <= 0Xe_2_b_0_7_f: return True return False __A : Union[str, Any] = 0 __A : int = [] while pos < len(_UpperCAmelCase): __A : Optional[int] = min(len(_UpperCAmelCase) , pos + self.maxlen + 1) if text[pos] == '<' else pos + 3 __A : Dict = [] # (token_id, token, pos) for e in range(_UpperCAmelCase , _UpperCAmelCase , -1): __A : List[str] = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(_UpperCAmelCase) > 2: __A : Union[str, Any] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e)) if len(_UpperCAmelCase) > 0: # the smallest token_id is adopted __A ,__A ,__A : List[Any] = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase: x[0])[0] result.append(_UpperCAmelCase) __A : Optional[int] = e else: __A : int = pos + 1 __A : List[Any] = text[pos:end] if check_simbol(_UpperCAmelCase): result.append('<KIGOU>') elif checkuae(_UpperCAmelCase): result.append('<U2000U2BFF>') else: for i in wd.encode('utf-8'): result.append('<|byte%d|>' % i) __A : Optional[Any] = end return result def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase="\n"): '''simple docstring''' __A : Optional[int] = [] __A : Tuple = [] __A : Any = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2])) else: if len(_UpperCAmelCase) > 0: words.append(bytearray(_UpperCAmelCase).decode('utf-8' , errors='replace')) __A : Tuple = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word]) elif word == "<SP>": words.append(' ') elif word == "<BR>": words.append(_UpperCAmelCase) elif word == "<TAB>": words.append('\t') elif word == "<BLOCK>": words.append('▀') elif word == "<KIGOU>": words.append('ǀ') elif word == "<U2000U2BFF>": words.append('‖') else: words.append(_UpperCAmelCase) if len(_UpperCAmelCase) > 0: words.append(bytearray(_UpperCAmelCase).decode('utf-8' , errors='replace')) __A : Optional[int] = ''.join(_UpperCAmelCase) return text
8
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = 42 class SCREAMING_SNAKE_CASE (a__ , a__ ): @register_to_config def __init__( self , _UpperCAmelCase = 6_5536 , _UpperCAmelCase = None , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = 0 , _UpperCAmelCase = "fourier" , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = 0.0 , _UpperCAmelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _UpperCAmelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _UpperCAmelCase = "UNetMidBlock1D" , _UpperCAmelCase = None , _UpperCAmelCase = (32, 32, 64) , _UpperCAmelCase = None , _UpperCAmelCase = 8 , _UpperCAmelCase = 1 , _UpperCAmelCase = False , ): '''simple docstring''' super().__init__() __A : Dict = sample_size # time if time_embedding_type == "fourier": __A : int = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_UpperCAmelCase , log=_UpperCAmelCase , flip_sin_to_cos=_UpperCAmelCase) __A : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": __A : List[str] = Timesteps( block_out_channels[0] , flip_sin_to_cos=_UpperCAmelCase , downscale_freq_shift=_UpperCAmelCase) __A : List[str] = block_out_channels[0] if use_timestep_embedding: __A : Optional[Any] = block_out_channels[0] * 4 __A : Optional[int] = TimestepEmbedding( in_channels=_UpperCAmelCase , time_embed_dim=_UpperCAmelCase , act_fn=_UpperCAmelCase , out_dim=block_out_channels[0] , ) __A : Dict = nn.ModuleList([]) __A : Dict = None __A : Tuple = nn.ModuleList([]) __A : Tuple = None # down __A : Any = in_channels for i, down_block_type in enumerate(_UpperCAmelCase): __A : Tuple = output_channel __A : Optional[Any] = block_out_channels[i] if i == 0: input_channel += extra_in_channels __A : List[str] = i == len(_UpperCAmelCase) - 1 __A : int = get_down_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_UpperCAmelCase) # mid __A : str = get_mid_block( _UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_UpperCAmelCase , add_downsample=_UpperCAmelCase , ) # up __A : Optional[int] = list(reversed(_UpperCAmelCase)) __A : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: __A : str = out_channels else: __A : List[Any] = block_out_channels[0] for i, up_block_type in enumerate(_UpperCAmelCase): __A : Optional[Any] = output_channel __A : Optional[Any] = ( reversed_block_out_channels[i + 1] if i < len(_UpperCAmelCase) - 1 else final_upsample_channels ) __A : Dict = i == len(_UpperCAmelCase) - 1 __A : str = get_up_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_UpperCAmelCase) __A : Optional[int] = output_channel # out __A : str = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32) __A : Optional[Any] = get_out_block( out_block_type=_UpperCAmelCase , num_groups_out=_UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=_UpperCAmelCase , act_fn=_UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , ): '''simple docstring''' __A : Any = timestep if not torch.is_tensor(_UpperCAmelCase): __A : Any = torch.tensor([timesteps] , dtype=torch.long , device=sample.device) elif torch.is_tensor(_UpperCAmelCase) and len(timesteps.shape) == 0: __A : Any = timesteps[None].to(sample.device) __A : List[Any] = self.time_proj(_UpperCAmelCase) if self.config.use_timestep_embedding: __A : Dict = self.time_mlp(_UpperCAmelCase) else: __A : Dict = timestep_embed[..., None] __A : Tuple = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) __A : List[Any] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) # 2. down __A : int = () for downsample_block in self.down_blocks: __A ,__A : int = downsample_block(hidden_states=_UpperCAmelCase , temb=_UpperCAmelCase) down_block_res_samples += res_samples # 3. mid if self.mid_block: __A : Optional[int] = self.mid_block(_UpperCAmelCase , _UpperCAmelCase) # 4. up for i, upsample_block in enumerate(self.up_blocks): __A : Any = down_block_res_samples[-1:] __A : Optional[int] = down_block_res_samples[:-1] __A : Any = upsample_block(_UpperCAmelCase , res_hidden_states_tuple=_UpperCAmelCase , temb=_UpperCAmelCase) # 5. post-process if self.out_block: __A : Dict = self.out_block(_UpperCAmelCase , _UpperCAmelCase) if not return_dict: return (sample,) return UNetaDOutput(sample=_UpperCAmelCase)
8
1
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _lowerCAmelCase ( ) -> Optional[Any]: __A : Any = ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=__snake_case , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=__snake_case , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=__snake_case ) return parser.parse_args() def _lowerCAmelCase ( ) -> Any: __A : str = parse_args() # Import training_script as a module. __A : Dict = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __A : List[str] = script_fpath.stem __A : Union[str, Any] = importlib.import_module(__snake_case ) # Patch sys.argv __A : int = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> int: if len(__snake_case ) != len(__snake_case ): raise ValueError('String lengths must match!' ) __A : Optional[Any] = 0 for chara, chara in zip(__snake_case , __snake_case ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowercase__ : List[str] = Mapping[str, np.ndarray] lowercase__ : Dict = Mapping[str, Any] # Is a nested dict. lowercase__ : Dict = 0.01 @dataclasses.dataclass(frozen=a__ ) class SCREAMING_SNAKE_CASE : lowerCAmelCase = 42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. lowerCAmelCase = 42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. lowerCAmelCase = 42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. lowerCAmelCase = 42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. lowerCAmelCase = 42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions lowerCAmelCase = None # Optional remark about the protein. Included as a comment in output PDB # files lowerCAmelCase = None # Templates used to generate this protein (prediction-only) lowerCAmelCase = None # Chain corresponding to each parent lowerCAmelCase = None def _lowerCAmelCase ( __snake_case : str ) -> Protein: __A : Optional[Any] = r'(\[[A-Z]+\]\n)' __A : List[str] = [tag.strip() for tag in re.split(__snake_case , __snake_case ) if len(__snake_case ) > 0] __A : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split('\n' ) for l in tags[1::2]] ) __A : List[str] = ["N", "CA", "C"] __A : int = None __A : Dict = None __A : Tuple = None for g in groups: if "[PRIMARY]" == g[0]: __A : Optional[int] = g[1][0].strip() for i in range(len(__snake_case ) ): if seq[i] not in residue_constants.restypes: __A : Optional[int] = 'X' # FIXME: strings are immutable __A : int = np.array( [residue_constants.restype_order.get(__snake_case , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: __A : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(__snake_case , g[1][axis].split() ) ) ) __A : List[str] = np.array(__snake_case ) __A : Tuple = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__snake_case ): __A : Dict = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: __A : Dict = np.array(list(map({'-': 0, '+': 1}.get , g[1][0].strip() ) ) ) __A : Any = np.zeros( ( len(__snake_case ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__snake_case ): __A : Tuple = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__snake_case , atom_mask=__snake_case , aatype=__snake_case , residue_index=np.arange(len(__snake_case ) ) , b_factors=__snake_case , ) def _lowerCAmelCase ( __snake_case : Protein , __snake_case : int = 0 ) -> List[str]: __A : List[str] = [] __A : Dict = prot.remark if remark is not None: pdb_headers.append(f'REMARK {remark}' ) __A : Optional[int] = prot.parents __A : List[Any] = prot.parents_chain_index if parents is not None and parents_chain_index is not None: __A : Tuple = [p for i, p in zip(__snake_case , __snake_case ) if i == chain_id] if parents is None or len(__snake_case ) == 0: __A : List[str] = ['N/A'] pdb_headers.append(f'PARENT {" ".join(__snake_case )}' ) return pdb_headers def _lowerCAmelCase ( __snake_case : Protein , __snake_case : str ) -> str: __A : List[str] = [] __A : Union[str, Any] = pdb_str.split('\n' ) __A : Tuple = prot.remark if remark is not None: out_pdb_lines.append(f'REMARK {remark}' ) __A : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: __A : List[Any] = [] if prot.parents_chain_index is not None: __A : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__snake_case ) , [] ) parent_dict[str(__snake_case )].append(__snake_case ) __A : Dict = max([int(__snake_case ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): __A : Any = parent_dict.get(str(__snake_case ) , ['N/A'] ) parents_per_chain.append(__snake_case ) else: parents_per_chain.append(list(prot.parents ) ) else: __A : Any = [['N/A']] def make_parent_line(__snake_case : Sequence[str] ) -> str: return f'PARENT {" ".join(__snake_case )}' out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) __A : Any = 0 for i, l in enumerate(__snake_case ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__snake_case ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__snake_case ): __A : Union[str, Any] = parents_per_chain[chain_counter] else: __A : List[Any] = ['N/A'] out_pdb_lines.append(make_parent_line(__snake_case ) ) return "\n".join(__snake_case ) def _lowerCAmelCase ( __snake_case : Protein ) -> str: __A : List[str] = residue_constants.restypes + ['X'] def res_atoa(__snake_case : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , 'UNK' ) __A : List[str] = residue_constants.atom_types __A : List[str] = [] __A : Dict = prot.atom_mask __A : Any = prot.aatype __A : Tuple = prot.atom_positions __A : Any = prot.residue_index.astype(np.intaa ) __A : List[Any] = prot.b_factors __A : Any = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('Invalid aatypes.' ) __A : str = get_pdb_headers(__snake_case ) if len(__snake_case ) > 0: pdb_lines.extend(__snake_case ) __A : int = aatype.shape[0] __A : Tuple = 1 __A : int = 0 __A : Union[str, Any] = string.ascii_uppercase __A : Optional[Any] = None # Add all atom sites. for i in range(__snake_case ): __A : Union[str, Any] = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__snake_case , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue __A : Any = 'ATOM' __A : Tuple = atom_name if len(__snake_case ) == 4 else f' {atom_name}' __A : Tuple = '' __A : Tuple = '' __A : Any = 1.00 __A : Any = atom_name[0] # Protein supports only C, N, O, S, this works. __A : int = '' __A : Tuple = 'A' if chain_index is not None: __A : Tuple = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! __A : Any = ( f'{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}' f'{res_name_a:>3} {chain_tag:>1}' f'{residue_index[i]:>4}{insertion_code:>1} ' f'{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}' f'{occupancy:>6.2f}{b_factor:>6.2f} ' f'{element:>2}{charge:>2}' ) pdb_lines.append(__snake_case ) atom_index += 1 __A : str = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: __A : str = True __A : List[Any] = chain_index[i + 1] if should_terminate: # Close the chain. __A : Any = 'TER' __A : List[Any] = ( f'{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}' ) pdb_lines.append(__snake_case ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__snake_case , __snake_case ) ) pdb_lines.append('END' ) pdb_lines.append('' ) return "\n".join(__snake_case ) def _lowerCAmelCase ( __snake_case : Protein ) -> np.ndarray: return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def _lowerCAmelCase ( __snake_case : FeatureDict , __snake_case : ModelOutput , __snake_case : Optional[np.ndarray] = None , __snake_case : Optional[np.ndarray] = None , __snake_case : Optional[str] = None , __snake_case : Optional[Sequence[str]] = None , __snake_case : Optional[Sequence[int]] = None , ) -> Protein: return Protein( aatype=features['aatype'] , atom_positions=result['final_atom_positions'] , atom_mask=result['final_atom_mask'] , residue_index=features['residue_index'] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['final_atom_mask'] ) , chain_index=__snake_case , remark=__snake_case , parents=__snake_case , parents_chain_index=__snake_case , )
8
'''simple docstring''' import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> Union[str, Any]: __A : int = RobertaPreLayerNormConfig.from_pretrained( __snake_case , architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict __A : Tuple = torch.load(hf_hub_download(repo_id=__snake_case , filename='pytorch_model.bin' ) ) __A : str = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): __A : Dict = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue __A : str = tensor_value __A : Union[str, Any] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__snake_case , config=__snake_case , state_dict=__snake_case ) model.save_pretrained(__snake_case ) # convert tokenizer __A : List[Any] = AutoTokenizer.from_pretrained(__snake_case ) tokenizer.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
8
1
'''simple docstring''' from __future__ import annotations import math lowercase__ : List[str] = '''2020.9.26''' lowercase__ : Any = '''xcodz-dot, cclaus, dhruvmanila''' def _lowerCAmelCase ( __snake_case : float , __snake_case : float , __snake_case : float , __snake_case : float , __snake_case : float ) -> tuple[float, float]: if not all(isinstance(__snake_case , (float, int) ) for val in locals().values() ): __A : int = f'Input values must either be float or int: {list(locals().values() )}' raise TypeError(__snake_case ) __A : Any = ((x * distance) / (z + distance)) * scale __A : List[str] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def _lowerCAmelCase ( __snake_case : float , __snake_case : float , __snake_case : float , __snake_case : str , __snake_case : float ) -> tuple[float, float, float]: if not isinstance(__snake_case , __snake_case ): raise TypeError('Axis must be a str' ) __A : str = locals() del input_variables["axis"] if not all(isinstance(__snake_case , (float, int) ) for val in input_variables.values() ): __A : List[Any] = ( 'Input values except axis must either be float or int: ' f'{list(input_variables.values() )}' ) raise TypeError(__snake_case ) __A : Union[str, Any] = (angle % 3_60) / 4_50 * 1_80 / math.pi if axis == "z": __A : Tuple = x * math.cos(__snake_case ) - y * math.sin(__snake_case ) __A : Tuple = y * math.cos(__snake_case ) + x * math.sin(__snake_case ) __A : str = z elif axis == "x": __A : Any = y * math.cos(__snake_case ) - z * math.sin(__snake_case ) __A : List[Any] = z * math.cos(__snake_case ) + y * math.sin(__snake_case ) __A : Any = x elif axis == "y": __A : Optional[Any] = x * math.cos(__snake_case ) - z * math.sin(__snake_case ) __A : List[str] = z * math.cos(__snake_case ) + x * math.sin(__snake_case ) __A : int = y else: raise ValueError('not a valid axis, choose one of \'x\', \'y\', \'z\'' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(f"""{rotate(1.0, 2.0, 3.0, "y", 90.0) = }""")
8
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings lowercase__ : Dict = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = field(default=a__ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = super().to_dict() for k, v in d.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : List[Any] = v.to_dict() return d
8
1
'''simple docstring''' import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class SCREAMING_SNAKE_CASE (unittest.TestCase ): @require_torch def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = pipeline( task='zero-shot-audio-classification' , model='hf-internal-testing/tiny-clap-htsat-unfused') __A : str = load_dataset('ashraq/esc50') __A : str = dataset['train']['audio'][-1]['array'] __A : Union[str, Any] = audio_classifier(_UpperCAmelCase , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner']) self.assertEqual( nested_simplify(_UpperCAmelCase) , [{'score': 0.501, 'label': 'Sound of a dog'}, {'score': 0.499, 'label': 'Sound of vaccum cleaner'}] , ) @unittest.skip('No models are available in TF') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass @slow @require_torch def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = pipeline( task='zero-shot-audio-classification' , model='laion/clap-htsat-unfused' , ) # This is an audio of a dog __A : Any = load_dataset('ashraq/esc50') __A : Dict = dataset['train']['audio'][-1]['array'] __A : Tuple = audio_classifier(_UpperCAmelCase , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner']) self.assertEqual( nested_simplify(_UpperCAmelCase) , [ {'score': 0.999, 'label': 'Sound of a dog'}, {'score': 0.001, 'label': 'Sound of vaccum cleaner'}, ] , ) __A : Tuple = audio_classifier([audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner']) self.assertEqual( nested_simplify(_UpperCAmelCase) , [ [ {'score': 0.999, 'label': 'Sound of a dog'}, {'score': 0.001, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) __A : List[str] = audio_classifier( [audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] , batch_size=5) self.assertEqual( nested_simplify(_UpperCAmelCase) , [ [ {'score': 0.999, 'label': 'Sound of a dog'}, {'score': 0.001, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) @unittest.skip('No models are available in TF') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass
8
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : Optional[int] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''lxmert''' lowerCAmelCase = {} def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=9500 , _UpperCAmelCase=1600 , _UpperCAmelCase=400 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=9 , _UpperCAmelCase=5 , _UpperCAmelCase=5 , _UpperCAmelCase=2048 , _UpperCAmelCase=4 , _UpperCAmelCase=6.67 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , **_UpperCAmelCase , ): '''simple docstring''' __A : Tuple = vocab_size __A : int = hidden_size __A : str = num_attention_heads __A : Tuple = hidden_act __A : int = intermediate_size __A : str = hidden_dropout_prob __A : Optional[int] = attention_probs_dropout_prob __A : Optional[Any] = max_position_embeddings __A : Tuple = type_vocab_size __A : Optional[int] = initializer_range __A : Any = layer_norm_eps __A : Optional[Any] = num_qa_labels __A : Optional[int] = num_object_labels __A : Any = num_attr_labels __A : Union[str, Any] = l_layers __A : Optional[int] = x_layers __A : List[Any] = r_layers __A : Tuple = visual_feat_dim __A : Tuple = visual_pos_dim __A : Optional[int] = visual_loss_normalizer __A : int = task_matched __A : List[Any] = task_mask_lm __A : Optional[Any] = task_obj_predict __A : str = task_qa __A : List[Any] = visual_obj_loss __A : Optional[Any] = visual_attr_loss __A : Union[str, Any] = visual_feat_loss __A : Union[str, Any] = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**_UpperCAmelCase)
8
1
'''simple docstring''' lowercase__ : str = 0 # The first color of the flag. lowercase__ : List[Any] = 1 # The second color of the flag. lowercase__ : str = 2 # The third color of the flag. lowercase__ : List[str] = (red, white, blue) def _lowerCAmelCase ( __snake_case : list ) -> list: if not sequence: return [] if len(__snake_case ) == 1: return list(__snake_case ) __A : str = 0 __A : Tuple = len(__snake_case ) - 1 __A : int = 0 while mid <= high: if sequence[mid] == colors[0]: __A ,__A : Dict = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: __A ,__A : str = sequence[high], sequence[mid] high -= 1 else: __A : Dict = f'The elements inside the sequence must contains only {colors} values' raise ValueError(__snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowercase__ : Union[str, Any] = input('''Enter numbers separated by commas:\n''').strip() lowercase__ : Tuple = [int(item.strip()) for item in user_input.split(''',''')] print(f"""{dutch_national_flag_sort(unsorted)}""")
8
'''simple docstring''' import math import sys def _lowerCAmelCase ( __snake_case : int ) -> int: if number != int(__snake_case ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 __A : str = [-1] * (number + 1) __A : Dict = 0 for i in range(1 , number + 1 ): __A : int = sys.maxsize __A : int = int(math.sqrt(__snake_case ) ) for j in range(1 , root + 1 ): __A : str = 1 + answers[i - (j**2)] __A : Dict = min(__snake_case , __snake_case ) __A : Union[str, Any] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import os lowercase__ : Tuple = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 1_00, '''D''': 5_00, '''M''': 10_00} def _lowerCAmelCase ( __snake_case : str ) -> int: __A : Tuple = 0 __A : Optional[Any] = 0 while index < len(__snake_case ) - 1: __A : str = SYMBOLS[numerals[index]] __A : List[Any] = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def _lowerCAmelCase ( __snake_case : int ) -> str: __A : str = '' __A : List[Any] = num // 10_00 numerals += m_count * "M" num %= 10_00 __A : Dict = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 __A : Any = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def _lowerCAmelCase ( __snake_case : str = "/p089_roman.txt" ) -> int: __A : Dict = 0 with open(os.path.dirname(__snake_case ) + roman_numerals_filename ) as filea: __A : str = filea.readlines() for line in lines: __A : List[str] = line.strip() __A : List[str] = parse_roman_numerals(__snake_case ) __A : str = generate_roman_numerals(__snake_case ) savings += len(__snake_case ) - len(__snake_case ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
8
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( __snake_case : list[int] , __snake_case : list[int] , __snake_case : int ) -> tuple[float, list[float]]: __A : int = list(range(len(__snake_case ) ) ) __A : Optional[Any] = [v / w for v, w in zip(__snake_case , __snake_case )] index.sort(key=lambda __snake_case : ratio[i] , reverse=__snake_case ) __A : float = 0 __A : list[float] = [0] * len(__snake_case ) for i in index: if weight[i] <= capacity: __A : Optional[int] = 1 max_value += value[i] capacity -= weight[i] else: __A : List[Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) def _lowerCAmelCase ( *__snake_case : int , **__snake_case : List[str] ) -> Tuple: requires_backends(__snake_case , ['torch'] ) def _lowerCAmelCase ( *__snake_case : Union[str, Any] , **__snake_case : Dict ) -> Dict: requires_backends(__snake_case , ['torch'] ) def _lowerCAmelCase ( *__snake_case : Any , **__snake_case : List[str] ) -> str: requires_backends(__snake_case , ['torch'] ) def _lowerCAmelCase ( *__snake_case : int , **__snake_case : Tuple ) -> Union[str, Any]: requires_backends(__snake_case , ['torch'] ) def _lowerCAmelCase ( *__snake_case : List[Any] , **__snake_case : Optional[int] ) -> Any: requires_backends(__snake_case , ['torch'] ) def _lowerCAmelCase ( *__snake_case : Optional[Any] , **__snake_case : int ) -> Tuple: requires_backends(__snake_case , ['torch'] ) def _lowerCAmelCase ( *__snake_case : Any , **__snake_case : List[Any] ) -> Union[str, Any]: requires_backends(__snake_case , ['torch'] ) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) class SCREAMING_SNAKE_CASE (metaclass=a__ ): lowerCAmelCase = ['''torch'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch']) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(cls , ['torch'])
8
'''simple docstring''' from __future__ import annotations import math class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : int = size # approximate the overall size of segment tree with given value __A : Optional[Any] = [0 for i in range(0 , 4 * size)] # create array to store lazy update __A : Optional[Any] = [0 for i in range(0 , 4 * size)] __A : str = [0 for i in range(0 , 4 * size)] # flag for lazy update def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return idx * 2 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return idx * 2 + 1 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if left_element == right_element: __A : List[Any] = a[left_element - 1] else: __A : List[str] = (left_element + right_element) // 2 self.build(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.build(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase) __A : Any = max( self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)]) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.flag[idx] is True: __A : Optional[Any] = self.lazy[idx] __A : Optional[Any] = False if left_element != right_element: __A : List[Any] = self.lazy[idx] __A : Dict = self.lazy[idx] __A : Tuple = True __A : Union[str, Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: __A : Optional[int] = val if left_element != right_element: __A : Tuple = val __A : Any = val __A : Tuple = True __A : Union[str, Any] = True return True __A : str = (left_element + right_element) // 2 self.update(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.update(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : int = max( self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)]) return True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.flag[idx] is True: __A : Union[str, Any] = self.lazy[idx] __A : List[str] = False if left_element != right_element: __A : Union[str, Any] = self.lazy[idx] __A : Optional[int] = self.lazy[idx] __A : str = True __A : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] __A : Any = (left_element + right_element) // 2 __A : int = self.query(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : Union[str, Any] = self.query(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) return max(_UpperCAmelCase , _UpperCAmelCase) def __str__( self): '''simple docstring''' return str([self.query(1 , 1 , self.size , _UpperCAmelCase , _UpperCAmelCase) for i in range(1 , self.size + 1)]) if __name__ == "__main__": lowercase__ : Union[str, Any] = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] lowercase__ : str = 15 lowercase__ : List[Any] = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 1_11) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 2_35) print(segt)
8
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ : Any = logging.get_logger(__name__) lowercase__ : str = { '''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''', '''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''', '''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''', '''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''', '''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''', '''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''', '''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''', '''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''', '''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''xmod''' def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=2 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=("en_XX",) , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase) __A : Optional[int] = vocab_size __A : List[Any] = hidden_size __A : Tuple = num_hidden_layers __A : List[Any] = num_attention_heads __A : Optional[Any] = hidden_act __A : Optional[int] = intermediate_size __A : Dict = hidden_dropout_prob __A : Union[str, Any] = attention_probs_dropout_prob __A : List[Any] = max_position_embeddings __A : Optional[int] = type_vocab_size __A : int = initializer_range __A : Optional[Any] = layer_norm_eps __A : Any = position_embedding_type __A : Tuple = use_cache __A : Dict = classifier_dropout __A : Union[str, Any] = pre_norm __A : str = adapter_reduction_factor __A : Tuple = adapter_layer_norm __A : str = adapter_reuse_layer_norm __A : Dict = ln_before_adapter __A : str = list(_UpperCAmelCase) __A : Optional[int] = default_language class SCREAMING_SNAKE_CASE (a__ ): @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' if self.task == "multiple-choice": __A : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __A : List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int , __snake_case : int , __snake_case : int ) -> float: __A : Dict = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def _lowerCAmelCase ( ) -> Union[str, Any]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class SCREAMING_SNAKE_CASE (a__ ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__( features=_UpperCAmelCase , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase , streaming=_UpperCAmelCase , num_proc=_UpperCAmelCase , **_UpperCAmelCase , ) __A : Optional[Any] = Generator( cache_dir=_UpperCAmelCase , features=_UpperCAmelCase , generator=_UpperCAmelCase , gen_kwargs=_UpperCAmelCase , **_UpperCAmelCase , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' if self.streaming: __A : Tuple = self.builder.as_streaming_dataset(split='train') # Build regular (map-style) dataset else: __A : str = None __A : List[Any] = None __A : Optional[Any] = None __A : str = None self.builder.download_and_prepare( download_config=_UpperCAmelCase , download_mode=_UpperCAmelCase , verification_mode=_UpperCAmelCase , base_path=_UpperCAmelCase , num_proc=self.num_proc , ) __A : List[Any] = self.builder.as_dataset( split='train' , verification_mode=_UpperCAmelCase , in_memory=self.keep_in_memory) return dataset
8
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): '''simple docstring''' __A : Optional[int] = parent __A : str = 13 __A : List[Any] = 7 __A : List[str] = True __A : str = True __A : Optional[Any] = True __A : int = True __A : Dict = 99 __A : Dict = 384 __A : Any = 2 __A : int = 4 __A : Optional[Any] = 37 __A : Optional[int] = 'gelu' __A : Dict = 0.1 __A : Optional[int] = 0.1 __A : Any = 512 __A : int = 16 __A : List[str] = 2 __A : str = 0.02 __A : Any = 3 __A : str = 4 __A : Union[str, Any] = 128 __A : int = 2 __A : List[Any] = 9 __A : List[Any] = 1 __A : List[Any] = None def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __A : str = None if self.use_input_mask: __A : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __A : Optional[Any] = None if self.use_token_type_ids: __A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __A : Optional[int] = None __A : List[str] = None __A : Dict = None if self.use_labels: __A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) __A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __A : str = ids_tensor([self.batch_size] , self.num_choices) __A : List[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = TFConvBertModel(config=_UpperCAmelCase) __A : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __A : Tuple = [input_ids, input_mask] __A : Any = model(_UpperCAmelCase) __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : str = TFConvBertForMaskedLM(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : str = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = self.num_labels __A : Any = TFConvBertForSequenceClassification(config=_UpperCAmelCase) __A : Optional[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Tuple = self.num_choices __A : List[str] = TFConvBertForMultipleChoice(config=_UpperCAmelCase) __A : int = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : Optional[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : List[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : int = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __A : Optional[Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = self.num_labels __A : List[Any] = TFConvBertForTokenClassification(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : int = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = TFConvBertForQuestionAnswering(config=_UpperCAmelCase) __A : Any = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Union[str, Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.prepare_config_and_inputs() ( ( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) , ) : Union[str, Any] = config_and_inputs __A : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = TFConvBertModelTester(self) __A : str = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __A : List[str] = True __A : List[str] = True if hasattr(_UpperCAmelCase , 'use_cache'): __A : List[Any] = True __A : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : Union[str, Any] = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) for model_class in self.all_model_classes: __A : List[str] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase) __A : Optional[int] = model_class(_UpperCAmelCase) __A : Optional[Any] = len(model(_UpperCAmelCase)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase) __A : Union[str, Any] = os.path.join(_UpperCAmelCase , 'saved_model' , '1') __A : Tuple = tf.keras.models.load_model(_UpperCAmelCase) __A : str = model(_UpperCAmelCase) if self.is_encoder_decoder: __A : Optional[int] = outputs['encoder_hidden_states'] __A : str = outputs['encoder_attentions'] else: __A : List[Any] = outputs['hidden_states'] __A : Optional[Any] = outputs['attentions'] self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) __A : str = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) self.assertListEqual( list(output_hidden_states[0].shape[-2:]) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(output_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') self.assertIsNotNone(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Any = True __A : str = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length) __A : Any = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : int = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) __A : Tuple = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) def check_decoder_attentions_output(_UpperCAmelCase): __A : List[str] = len(_UpperCAmelCase) self.assertEqual(out_len % 2 , 0) __A : Any = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCAmelCase): __A : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __A : Dict = True __A : Any = False __A : str = model_class(_UpperCAmelCase) __A : List[str] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : List[str] = len(_UpperCAmelCase) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) if self.is_encoder_decoder: __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : int = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_decoder_attentions_output(_UpperCAmelCase) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __A : int = True __A : Tuple = model_class(_UpperCAmelCase) __A : Dict = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) # Check attention is always last and order is fine __A : Any = True __A : str = True __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : Union[str, Any] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase)) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) @require_tf class SCREAMING_SNAKE_CASE (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') __A : str = tf.constant([[0, 1, 2, 3, 4, 5]]) __A : Optional[int] = model(_UpperCAmelCase)[0] __A : List[Any] = [1, 6, 768] self.assertEqual(output.shape , _UpperCAmelCase) __A : Tuple = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ]) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4)
8
1
'''simple docstring''' import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging lowercase__ : Union[str, Any] = logging.get_logger(__name__) def _lowerCAmelCase ( __snake_case : List[Any]=None , __snake_case : Union[str, Any]=None ) -> List[str]: return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = list_field( default=[] , metadata={ '''help''': ( '''Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version''' ''' of all available models''' ) } , ) lowerCAmelCase = list_field( default=[8] , metadata={'''help''': '''List of batch sizes for which memory and time performance will be evaluated'''} ) lowerCAmelCase = list_field( default=[8, 32, 128, 512] , metadata={'''help''': '''List of sequence lengths for which memory and time performance will be evaluated'''} , ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''Whether to benchmark inference of model. Inference can be disabled via --no-inference.'''} , ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'''} , ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'''} ) lowerCAmelCase = field(default=a__ , metadata={'''help''': '''Use FP16 to accelerate inference.'''} ) lowerCAmelCase = field(default=a__ , metadata={'''help''': '''Benchmark training of model'''} ) lowerCAmelCase = field(default=a__ , metadata={'''help''': '''Verbose memory tracing'''} ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'''} , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': '''Whether to perform memory measurements. Memory measurements can be disabled via --no-memory''' } , ) lowerCAmelCase = field(default=a__ , metadata={'''help''': '''Trace memory line by line'''} ) lowerCAmelCase = field(default=a__ , metadata={'''help''': '''Save result to a CSV file'''} ) lowerCAmelCase = field(default=a__ , metadata={'''help''': '''Save all print statements in a log file'''} ) lowerCAmelCase = field(default=a__ , metadata={'''help''': '''Whether to print environment information'''} ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use''' ''' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled''' ''' for debugging / testing and on TPU.''' ) } , ) lowerCAmelCase = field( default=f'''inference_time_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving time results to csv.'''} , ) lowerCAmelCase = field( default=f'''inference_memory_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving memory results to csv.'''} , ) lowerCAmelCase = field( default=f'''train_time_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving time results to csv for training.'''} , ) lowerCAmelCase = field( default=f'''train_memory_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving memory results to csv for training.'''} , ) lowerCAmelCase = field( default=f'''env_info_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving environment information.'''} , ) lowerCAmelCase = field( default=f'''log_{round(time() )}.csv''' , metadata={'''help''': '''Log filename used if print statements are saved in log.'''} , ) lowerCAmelCase = field(default=3 , metadata={'''help''': '''Times an experiment will be run.'''} ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain''' ''' model weights.''' ) } , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' warnings.warn( F'The class {self.__class__} is deprecated. Hugging Face Benchmarking utils' ' are deprecated in general and it is advised to use external Benchmarking libraries ' ' to benchmark Transformer models.' , _UpperCAmelCase , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return json.dumps(dataclasses.asdict(self) , indent=2) @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' if len(self.models) <= 0: raise ValueError( 'Please make sure you provide at least one model name / model identifier, *e.g.* `--models' ' bert-base-cased` or `args.models = [\'bert-base-cased\'].') return self.models @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info('Multiprocessing is currently not possible on TPU.') return False else: return True
8
'''simple docstring''' import argparse import os import re lowercase__ : Optional[int] = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowercase__ : Dict = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowercase__ : List[str] = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase__ : Tuple = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowercase__ : str = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase__ : str = re.compile(r'''\[([^\]]+)\]''') def _lowerCAmelCase ( __snake_case : str ) -> Tuple: __A : List[Any] = _re_indent.search(__snake_case ) return "" if search is None else search.groups()[0] def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : str="" , __snake_case : Any=None , __snake_case : List[Any]=None ) -> Optional[int]: __A : Tuple = 0 __A : Optional[int] = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(__snake_case ): index += 1 __A : Optional[int] = ['\n'.join(lines[:index] )] else: __A : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __A : Tuple = [lines[index]] index += 1 while index < len(__snake_case ) and (end_prompt is None or not lines[index].startswith(__snake_case )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__snake_case ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(__snake_case ) ) if index < len(__snake_case ) - 1: __A : Union[str, Any] = [lines[index + 1]] index += 1 else: __A : Union[str, Any] = [] else: blocks.append('\n'.join(__snake_case ) ) __A : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__snake_case ) > 0: blocks.append('\n'.join(__snake_case ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__snake_case ): blocks.append('\n'.join(lines[index:] ) ) return blocks def _lowerCAmelCase ( __snake_case : List[Any] ) -> int: def _inner(__snake_case : List[Any] ): return key(__snake_case ).lower().replace('_' , '' ) return _inner def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any=None ) -> List[Any]: # If no key is provided, we use a noop. def noop(__snake_case : List[Any] ): return x if key is None: __A : Optional[Any] = noop # Constants are all uppercase, they go first. __A : str = [obj for obj in objects if key(__snake_case ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __A : List[str] = [obj for obj in objects if key(__snake_case )[0].isupper() and not key(__snake_case ).isupper()] # Functions begin with a lowercase, they go last. __A : str = [obj for obj in objects if not key(__snake_case )[0].isupper()] __A : Tuple = ignore_underscore(__snake_case ) return sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Tuple: # This inner function sort imports between [ ]. def _replace(__snake_case : Tuple ): __A : List[str] = match.groups()[0] if "," not in imports: return f'[{imports}]' __A : int = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Dict = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(__snake_case )] ) + "]" __A : List[Any] = import_statement.split('\n' ) if len(__snake_case ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __A : Optional[int] = 2 if lines[1].strip() == '[' else 1 __A : Any = [(i, _re_strip_line.search(__snake_case ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __A : Optional[int] = sort_objects(__snake_case , key=lambda __snake_case : x[1] ) __A : Any = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__snake_case ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __A : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] ) else: __A : Dict = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Tuple = keys[:-1] __A : List[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(__snake_case )] ) return "\n".join(__snake_case ) else: # Finally we have to deal with imports fitting on one line __A : Optional[Any] = _re_bracket_content.sub(_replace , __snake_case ) return import_statement def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : List[Any]=True ) -> Optional[Any]: with open(__snake_case , 'r' ) as f: __A : Dict = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __A : str = split_code_in_indented_blocks( __snake_case , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__snake_case ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __A : Tuple = main_blocks[block_idx] __A : int = block.split('\n' ) # Get to the start of the imports. __A : Tuple = 0 while line_idx < len(__snake_case ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __A : Optional[int] = len(__snake_case ) else: line_idx += 1 if line_idx >= len(__snake_case ): continue # Ignore beginning and last line: they don't contain anything. __A : Dict = '\n'.join(block_lines[line_idx:-1] ) __A : int = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __A : Optional[int] = split_code_in_indented_blocks(__snake_case , indent_level=__snake_case ) # We have two categories of import key: list or _import_structure[key].append/extend __A : Any = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __A : Dict = [(pattern.search(__snake_case ).groups()[0] if pattern.search(__snake_case ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __A : Optional[Any] = [(i, key) for i, key in enumerate(__snake_case ) if key is not None] __A : Tuple = [x[0] for x in sorted(__snake_case , key=lambda __snake_case : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __A : str = 0 __A : Any = [] for i in range(len(__snake_case ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __A : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(__snake_case ) count += 1 # And we put our main block back together with its first and last line. __A : int = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(__snake_case ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(__snake_case , 'w' ) as f: f.write('\n'.join(__snake_case ) ) def _lowerCAmelCase ( __snake_case : int=True ) -> Optional[Any]: __A : Tuple = [] for root, _, files in os.walk(__snake_case ): if "__init__.py" in files: __A : List[Any] = sort_imports(os.path.join(__snake_case , '__init__.py' ) , check_only=__snake_case ) if result: __A : Dict = [os.path.join(__snake_case , '__init__.py' )] if len(__snake_case ) > 0: raise ValueError(f'Would overwrite {len(__snake_case )} files, run `make style`.' ) if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowercase__ : Union[str, Any] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
8
1
'''simple docstring''' from PIL import Image def _lowerCAmelCase ( __snake_case : Image , __snake_case : float ) -> Image: def brightness(__snake_case : int ) -> float: return 1_28 + level + (c - 1_28) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(__snake_case ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 lowercase__ : Optional[int] = change_brightness(img, 1_00) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int ) -> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') lowercase__ : int = int(input('''Enter number: ''').strip()) print(f"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
8
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None class SCREAMING_SNAKE_CASE (a__ ): def __init__( self , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase=512 , _UpperCAmelCase="cls" , _UpperCAmelCase=False , _UpperCAmelCase=True , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase) __A : Any = project_dim __A : List[str] = pooler_fn __A : Tuple = learn_encoder __A : Optional[int] = use_attention_mask class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = [r'''pooler''', r'''logit_scale'''] lowerCAmelCase = [r'''position_ids''', r'''predictions.decoder.bias'''] lowerCAmelCase = '''roberta''' lowerCAmelCase = RobertaSeriesConfig def __init__( self , _UpperCAmelCase): '''simple docstring''' super().__init__(_UpperCAmelCase) __A : List[str] = XLMRobertaModel(_UpperCAmelCase) __A : List[str] = nn.Linear(config.hidden_size , config.project_dim) __A : List[Any] = getattr(_UpperCAmelCase , 'has_pre_transformation' , _UpperCAmelCase) if self.has_pre_transformation: __A : Tuple = nn.Linear(config.hidden_size , config.project_dim) __A : Optional[int] = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps) self.post_init() def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , ): '''simple docstring''' __A : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict __A : Any = self.base_model( input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , head_mask=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , output_attentions=_UpperCAmelCase , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=_UpperCAmelCase , ) if self.has_pre_transformation: __A : Optional[int] = outputs['hidden_states'][-2] __A : Dict = self.pre_LN(_UpperCAmelCase) __A : Optional[Any] = self.transformation_pre(_UpperCAmelCase) return TransformationModelOutput( projection_state=_UpperCAmelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: __A : Optional[Any] = self.transformation(outputs.last_hidden_state) return TransformationModelOutput( projection_state=_UpperCAmelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
8
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : str = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def _lowerCAmelCase ( __snake_case : List[Any] ) -> Tuple: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __A : Optional[Any] = k.replace(__snake_case , __snake_case ) if k.startswith('encoder' ): __A : Any = k.replace('.attn' , '.self_attn' ) __A : Any = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): __A : Tuple = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'encoder_attn_layer_norm' ) __A : int = k.replace('norm3' , 'final_layer_norm' ) return k def _lowerCAmelCase ( __snake_case : List[Any] ) -> Dict: __A : Optional[int] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: __A : Tuple = sd.pop(__snake_case ) __A : Union[str, Any] = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd __A : str = v lowercase__ : Tuple = ['''START'''] @torch.no_grad() def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any , __snake_case : List[Any] ) -> int: __A : List[str] = torch.load(__snake_case , map_location='cpu' ) __A : Tuple = model['model'] __A : str = BlenderbotConfig.from_json_file(__snake_case ) __A : int = BlenderbotForConditionalGeneration(__snake_case ) __A : List[Any] = m.model.state_dict().keys() __A : Optional[int] = [] __A : Optional[int] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __A : Union[str, Any] = rename_state_dict_key(__snake_case ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __A : Optional[Any] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__snake_case ) m.model.load_state_dict(__snake_case , strict=__snake_case ) m.half() m.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
8
1
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : List[str] = { '''google/umt5-small''': '''https://huggingface.co/google/umt5-small/resolve/main/config.json''', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''umt5''' lowerCAmelCase = ['''past_key_values'''] def __init__( self , _UpperCAmelCase=25_0112 , _UpperCAmelCase=512 , _UpperCAmelCase=64 , _UpperCAmelCase=1024 , _UpperCAmelCase=8 , _UpperCAmelCase=None , _UpperCAmelCase=6 , _UpperCAmelCase=32 , _UpperCAmelCase=128 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1e-6 , _UpperCAmelCase=1.0 , _UpperCAmelCase="gated-gelu" , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase="T5Tokenizer" , _UpperCAmelCase=True , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , **_UpperCAmelCase , ): '''simple docstring''' super().__init__( is_encoder_decoder=_UpperCAmelCase , tokenizer_class=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __A : List[str] = vocab_size __A : List[Any] = d_model __A : Union[str, Any] = d_kv __A : Dict = d_ff __A : Tuple = num_layers __A : Any = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __A : List[Any] = num_heads __A : Any = relative_attention_num_buckets __A : Tuple = relative_attention_max_distance __A : Optional[int] = dropout_rate __A : List[Any] = layer_norm_epsilon __A : Optional[int] = initializer_factor __A : str = feed_forward_proj __A : int = use_cache __A : str = self.feed_forward_proj.split('-') __A : Dict = act_info[-1] __A : str = act_info[0] == 'gated' if len(_UpperCAmelCase) > 1 and act_info[0] != "gated" or len(_UpperCAmelCase) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'') if feed_forward_proj == "gated-gelu": __A : Tuple = 'gelu_new' @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return self.d_model @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return self.num_heads @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return self.num_layers class SCREAMING_SNAKE_CASE (a__ ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: __A : int = 'past_encoder_sequence + sequence' __A : List[str] = {0: 'batch'} __A : Dict = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __A : List[Any] = {0: 'batch', 1: 'decoder_sequence'} __A : Optional[Any] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='inputs') return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return 13 @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return 5e-4
8
'''simple docstring''' import mpmath # for roots of unity import numpy as np class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None): '''simple docstring''' __A : List[Any] = list(poly_a or [0])[:] __A : Optional[int] = list(poly_b or [0])[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __A : Union[str, Any] = len(self.polyA) while self.polyB[-1] == 0: self.polyB.pop() __A : Optional[int] = len(self.polyB) # Add 0 to make lengths equal a power of 2 __A : Optional[Any] = int( 2 ** np.ceil(np.loga(len(self.polyA) + len(self.polyB) - 1))) while len(self.polyA) < self.c_max_length: self.polyA.append(0) while len(self.polyB) < self.c_max_length: self.polyB.append(0) # A complex root used for the fourier transform __A : str = complex(mpmath.root(x=1 , n=self.c_max_length , k=1)) # The product __A : Tuple = self.__multiply() def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(_UpperCAmelCase) <= 1: return dft[0] # __A : Dict = self.c_max_length // 2 while next_ncol > 0: __A : Optional[Any] = [[] for i in range(_UpperCAmelCase)] __A : Tuple = self.root**next_ncol # First half of next step __A : Optional[Any] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j]) current_root *= root # Second half of next step __A : List[str] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j]) current_root *= root # Update __A : Optional[int] = new_dft __A : Tuple = next_ncol // 2 return dft[0] def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.__dft('A') __A : Optional[Any] = self.__dft('B') __A : str = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]] del dft_a del dft_b # Corner Case if len(inverce_c[0]) <= 1: return inverce_c[0] # Inverse DFT __A : Dict = 2 while next_ncol <= self.c_max_length: __A : Optional[int] = [[] for i in range(_UpperCAmelCase)] __A : Any = self.root ** (next_ncol // 2) __A : Tuple = 1 # First half of next step for j in range(self.c_max_length // next_ncol): for i in range(next_ncol // 2): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root)) current_root *= root # Update __A : int = new_inverse_c next_ncol *= 2 # Unpack __A : Optional[int] = [round(x[0].real , 8) + round(x[0].imag , 8) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self): '''simple docstring''' __A : int = 'A = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A])) __A : Optional[Any] = 'B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B])) __A : str = 'A*B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.product)) return F'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def _lowerCAmelCase ( __snake_case : Optional[int] ) -> str: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def _lowerCAmelCase ( ) -> List[str]: with parallel_backend('spark' ): assert ParallelBackendConfig.backend_name == "spark" __A : Any = [1, 2, 3] with pytest.raises(__snake_case ): with parallel_backend('unsupported backend' ): map_nested(__snake_case , __snake_case , num_proc=2 ) with pytest.raises(__snake_case ): with parallel_backend('unsupported backend' ): map_nested(__snake_case , __snake_case , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('num_proc' , [2, -1] ) def _lowerCAmelCase ( __snake_case : int ) -> Tuple: __A : Optional[Any] = [1, 2] __A : int = {'a': 1, 'b': 2} __A : Dict = {'a': [1, 2], 'b': [3, 4]} __A : Optional[int] = {'a': {'1': 1}, 'b': 2} __A : List[Any] = {'a': 1, 'b': 2, 'c': 3, 'd': 4} __A : List[Any] = [2, 3] __A : Tuple = {'a': 2, 'b': 3} __A : List[Any] = {'a': [2, 3], 'b': [4, 5]} __A : List[Any] = {'a': {'1': 2}, 'b': 3} __A : List[Any] = {'a': 2, 'b': 3, 'c': 4, 'd': 5} with parallel_backend('spark' ): assert map_nested(__snake_case , __snake_case , num_proc=__snake_case ) == expected_map_nested_sa assert map_nested(__snake_case , __snake_case , num_proc=__snake_case ) == expected_map_nested_sa assert map_nested(__snake_case , __snake_case , num_proc=__snake_case ) == expected_map_nested_sa assert map_nested(__snake_case , __snake_case , num_proc=__snake_case ) == expected_map_nested_sa assert map_nested(__snake_case , __snake_case , num_proc=__snake_case ) == expected_map_nested_sa
8
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=[30, 30] , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=None , _UpperCAmelCase=8 , _UpperCAmelCase=10 , ): '''simple docstring''' __A : Union[str, Any] = parent __A : Tuple = batch_size __A : List[str] = image_size __A : Dict = patch_size __A : Optional[Any] = num_channels __A : Tuple = is_training __A : Dict = use_labels __A : List[Any] = hidden_size __A : Tuple = num_hidden_layers __A : int = num_attention_heads __A : Optional[int] = intermediate_size __A : Tuple = hidden_act __A : Any = hidden_dropout_prob __A : Optional[Any] = attention_probs_dropout_prob __A : List[Any] = type_sequence_label_size __A : List[Any] = initializer_range __A : Optional[int] = num_labels __A : List[Any] = scope __A : Any = n_targets __A : Union[str, Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens __A : List[str] = (image_size[1] // patch_size) * (image_size[0] // patch_size) __A : int = num_patches + 1 + self.num_detection_tokens def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]]) __A : Tuple = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) __A : List[Any] = [] for i in range(self.batch_size): __A : Optional[int] = {} __A : Union[str, Any] = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=_UpperCAmelCase) __A : str = torch.rand(self.n_targets , 4 , device=_UpperCAmelCase) labels.append(_UpperCAmelCase) __A : Any = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosModel(config=_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosForObjectDetection(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : str = model(pixel_values=_UpperCAmelCase) __A : List[str] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) __A : Union[str, Any] = model(pixel_values=_UpperCAmelCase , labels=_UpperCAmelCase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.prepare_config_and_inputs() __A ,__A ,__A : Tuple = config_and_inputs __A : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowerCAmelCase = ( {'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' __A : Optional[Any] = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase) if return_labels: if model_class.__name__ == "YolosForObjectDetection": __A : Any = [] for i in range(self.model_tester.batch_size): __A : Tuple = {} __A : Tuple = torch.ones( size=(self.model_tester.n_targets,) , device=_UpperCAmelCase , dtype=torch.long) __A : Optional[Any] = torch.ones( self.model_tester.n_targets , 4 , device=_UpperCAmelCase , dtype=torch.float) labels.append(_UpperCAmelCase) __A : str = labels return inputs_dict def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = YolosModelTester(self) __A : Dict = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Tuple = model_class(_UpperCAmelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __A : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[Any] = model_class(_UpperCAmelCase) __A : str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : int = [*signature.parameters.keys()] __A : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Optional[int] = True # in YOLOS, the seq_len is different __A : Dict = self.model_tester.expected_seq_len for model_class in self.all_model_classes: __A : Dict = True __A : Dict = False __A : Union[str, Any] = True __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : Any = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] __A : List[Any] = True __A : List[str] = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __A : str = len(_UpperCAmelCase) # Check attention is always last and order is fine __A : Dict = True __A : Dict = True __A : Dict = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = 1 self.assertEqual(out_len + added_hidden_states , len(_UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.hidden_states __A : List[str] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) # YOLOS has a different seq_length __A : Dict = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[str] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A : Optional[int] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : List[Any] = YolosModel.from_pretrained(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase) def _lowerCAmelCase ( ) -> int: __A : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return AutoImageProcessor.from_pretrained('hustvl/yolos-small') if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = YolosForObjectDetection.from_pretrained('hustvl/yolos-small').to(_UpperCAmelCase) __A : Any = self.default_image_processor __A : str = prepare_img() __A : int = image_processor(images=_UpperCAmelCase , return_tensors='pt').to(_UpperCAmelCase) # forward pass with torch.no_grad(): __A : str = model(inputs.pixel_values) # verify outputs __A : Tuple = torch.Size((1, 100, 92)) self.assertEqual(outputs.logits.shape , _UpperCAmelCase) __A : Dict = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=_UpperCAmelCase , ) __A : int = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=_UpperCAmelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) # verify postprocessing __A : List[str] = image_processor.post_process_object_detection( _UpperCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]])[0] __A : Optional[int] = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861]).to(_UpperCAmelCase) __A : Union[str, Any] = [75, 75, 17, 63, 17] __A : Any = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495]).to(_UpperCAmelCase) self.assertEqual(len(results['scores']) , 5) self.assertTrue(torch.allclose(results['scores'] , _UpperCAmelCase , atol=1e-4)) self.assertSequenceEqual(results['labels'].tolist() , _UpperCAmelCase) self.assertTrue(torch.allclose(results['boxes'][0, :] , _UpperCAmelCase))
8
1
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class SCREAMING_SNAKE_CASE (unittest.TestCase ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=4 , ): '''simple docstring''' __A : Optional[int] = parent __A : List[str] = batch_size __A : Tuple = seq_length __A : Optional[Any] = is_training __A : str = use_attention_mask __A : Dict = use_token_type_ids __A : int = use_labels __A : Any = vocab_size __A : List[str] = hidden_size __A : str = num_hidden_layers __A : Optional[Any] = num_attention_heads __A : Any = intermediate_size __A : Dict = hidden_act __A : Any = hidden_dropout_prob __A : Optional[int] = attention_probs_dropout_prob __A : Optional[int] = max_position_embeddings __A : Optional[int] = type_vocab_size __A : int = type_sequence_label_size __A : str = initializer_range __A : Tuple = num_choices def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __A : Union[str, Any] = None if self.use_attention_mask: __A : Tuple = random_attention_mask([self.batch_size, self.seq_length]) __A : Dict = None if self.use_token_type_ids: __A : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __A : int = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.prepare_config_and_inputs() __A ,__A ,__A ,__A : Any = config_and_inputs __A : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = self.prepare_config_and_inputs() __A ,__A ,__A ,__A : Optional[int] = config_and_inputs __A : Any = True __A : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) __A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class SCREAMING_SNAKE_CASE (a__ , unittest.TestCase ): lowerCAmelCase = True lowerCAmelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = FlaxRobertaModelTester(self) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for model_class_name in self.all_model_classes: __A : Any = model_class_name.from_pretrained('roberta-base' , from_pt=_UpperCAmelCase) __A : List[str] = model(np.ones((1, 1))) self.assertIsNotNone(_UpperCAmelCase)
8
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: lowercase__ : Optional[int] = None lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ : List[str] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } lowercase__ : Dict = { '''camembert-base''': 5_12, } lowercase__ : str = '''▁''' class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] lowerCAmelCase = CamembertTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **_UpperCAmelCase , ): '''simple docstring''' __A : int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __A : List[str] = vocab_file __A : Optional[int] = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A : Optional[Any] = [self.cls_token_id] __A : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' __A : Optional[int] = [self.sep_token_id] __A : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(_UpperCAmelCase): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return __A : List[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCAmelCase): copyfile(self.vocab_file , _UpperCAmelCase) return (out_vocab_file,)
8
1
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowercase__ : List[str] = '''src/diffusers''' lowercase__ : Dict = '''.''' # This is to make sure the diffusers module imported is the one in the repo. lowercase__ : str = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) lowercase__ : List[Any] = spec.loader.load_module() def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : Union[str, Any] ) -> Tuple: return line.startswith(__snake_case ) or len(__snake_case ) <= 1 or re.search(r'^\s*\)(\s*->.*:|:)\s*$' , __snake_case ) is not None def _lowerCAmelCase ( __snake_case : Dict ) -> List[str]: __A : Tuple = object_name.split('.' ) __A : str = 0 # First let's find the module where our object lives. __A : int = parts[i] while i < len(__snake_case ) and not os.path.isfile(os.path.join(__snake_case , f'{module}.py' ) ): i += 1 if i < len(__snake_case ): __A : Tuple = os.path.join(__snake_case , parts[i] ) if i >= len(__snake_case ): raise ValueError(f'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(__snake_case , f'{module}.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: __A : Optional[int] = f.readlines() # Now let's find the class / func in the code! __A : Tuple = '' __A : Dict = 0 for name in parts[i + 1 :]: while ( line_index < len(__snake_case ) and re.search(rf'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__snake_case ): raise ValueError(f' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). __A : int = line_index while line_index < len(__snake_case ) and _should_continue(lines[line_index] , __snake_case ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __A : List[str] = lines[start_index:line_index] return "".join(__snake_case ) lowercase__ : Optional[int] = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') lowercase__ : Optional[Any] = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''') lowercase__ : Optional[int] = re.compile(r'''<FILL\s+[^>]*>''') def _lowerCAmelCase ( __snake_case : str ) -> Union[str, Any]: __A : Dict = code.split('\n' ) __A : Optional[Any] = 0 while idx < len(__snake_case ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__snake_case ): return re.search(r'^(\s*)\S' , lines[idx] ).groups()[0] return "" def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> List[Any]: __A : Union[str, Any] = len(get_indent(__snake_case ) ) > 0 if has_indent: __A : List[Any] = f'class Bla:\n{code}' __A : Any = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 , preview=__snake_case ) __A : Tuple = black.format_str(__snake_case , mode=__snake_case ) __A ,__A : Tuple = style_docstrings_in_code(__snake_case ) return result[len('class Bla:\n' ) :] if has_indent else result def _lowerCAmelCase ( __snake_case : int , __snake_case : int=False ) -> Union[str, Any]: with open(__snake_case , 'r' , encoding='utf-8' , newline='\n' ) as f: __A : Union[str, Any] = f.readlines() __A : int = [] __A : int = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__snake_case ): __A : Union[str, Any] = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. __A ,__A ,__A : Dict = search.groups() __A : Any = find_code_in_diffusers(__snake_case ) __A : Dict = get_indent(__snake_case ) __A : List[Any] = line_index + 1 if indent == theoretical_indent else line_index + 2 __A : Optional[int] = theoretical_indent __A : Optional[Any] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. __A : Any = True while line_index < len(__snake_case ) and should_continue: line_index += 1 if line_index >= len(__snake_case ): break __A : Tuple = lines[line_index] __A : Tuple = _should_continue(__snake_case , __snake_case ) and re.search(f'^{indent}# End copy' , __snake_case ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __A : Union[str, Any] = lines[start_index:line_index] __A : Optional[Any] = ''.join(__snake_case ) # Remove any nested `Copied from` comments to avoid circular copies __A : Union[str, Any] = [line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(__snake_case ) is None] __A : str = '\n'.join(__snake_case ) # Before comparing, use the `replace_pattern` on the original code. if len(__snake_case ) > 0: __A : str = replace_pattern.replace('with' , '' ).split(',' ) __A : Optional[int] = [_re_replace_pattern.search(__snake_case ) for p in patterns] for pattern in patterns: if pattern is None: continue __A ,__A ,__A : Tuple = pattern.groups() __A : Optional[int] = re.sub(__snake_case , __snake_case , __snake_case ) if option.strip() == "all-casing": __A : Optional[int] = re.sub(obja.lower() , obja.lower() , __snake_case ) __A : str = re.sub(obja.upper() , obja.upper() , __snake_case ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line __A : Any = blackify(lines[start_index - 1] + theoretical_code ) __A : List[str] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: __A : str = lines[:start_index] + [theoretical_code] + lines[line_index:] __A : int = start_index + 1 if overwrite and len(__snake_case ) > 0: # Warn the user a file has been modified. print(f'Detected changes, rewriting {filename}.' ) with open(__snake_case , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(__snake_case ) return diffs def _lowerCAmelCase ( __snake_case : bool = False ) -> int: __A : List[Any] = glob.glob(os.path.join(__snake_case , '**/*.py' ) , recursive=__snake_case ) __A : Optional[Any] = [] for filename in all_files: __A : List[str] = is_copy_consistent(__snake_case , __snake_case ) diffs += [f'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(__snake_case ) > 0: __A : Dict = '\n'.join(__snake_case ) raise Exception( 'Found the following copy inconsistencies:\n' + diff + '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' ) if __name__ == "__main__": lowercase__ : int = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') lowercase__ : Tuple = parser.parse_args() check_copies(args.fix_and_overwrite)
8
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowercase__ : Any = '''hf-internal-testing/tiny-random-bert''' lowercase__ : Optional[Any] = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') lowercase__ : List[Any] = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase)) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase))) with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Any = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) self.assertTrue(os.path.isfile(_UpperCAmelCase)) # File is cached at the same place the second time. __A : Tuple = cached_file(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) # Using a specific revision to test the full commit hash. __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='9b8c223') self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): __A : Dict = cached_file('tiny-random-bert' , _UpperCAmelCase) with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): __A : Optional[int] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='aaaa') with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : int = cached_file(_UpperCAmelCase , 'conf') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : Any = cached_file(_UpperCAmelCase , 'conf') with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Dict = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '.no_exist' , _UpperCAmelCase , 'conf'))) __A : List[Any] = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : str = cached_file(_UpperCAmelCase , 'conf' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : List[str] = mock.Mock() __A : Dict = 500 __A : List[str] = {} __A : List[Any] = HTTPError __A : Optional[Any] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=_UpperCAmelCase) as mock_head: __A : Dict = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_connection_errors=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt')) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): get_file_from_repo('bert-base-case' , _UpperCAmelCase) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): get_file_from_repo('bert-base-cased' , _UpperCAmelCase , revision='ahaha') __A : List[str] = get_file_from_repo('bert-base-cased' , _UpperCAmelCase) # The name is the cached name which is not very easy to test, so instead we load the content. __A : List[str] = json.loads(open(_UpperCAmelCase , 'r').read()) self.assertEqual(config['hidden_size'] , 768) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __A : Tuple = Path(_UpperCAmelCase) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , 'a.txt') , str(_UpperCAmelCase)) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , 'b.txt'))
8
1
'''simple docstring''' import enum import shutil import sys lowercase__ , lowercase__ : List[Any] = shutil.get_terminal_size() lowercase__ : str = {'''UP''': '''A''', '''DOWN''': '''B''', '''RIGHT''': '''C''', '''LEFT''': '''D'''} class SCREAMING_SNAKE_CASE (enum.Enum ): lowerCAmelCase = 0 lowerCAmelCase = 1 def _lowerCAmelCase ( __snake_case : Tuple , __snake_case : Union[str, Any]="" ) -> Union[str, Any]: sys.stdout.write(str(__snake_case ) + end ) sys.stdout.flush() def _lowerCAmelCase ( __snake_case : Any , __snake_case : Any , __snake_case : List[str]="" ) -> Tuple: forceWrite(f'\u001b[{color}m{content}\u001b[0m' , __snake_case ) def _lowerCAmelCase ( ) -> Union[str, Any]: forceWrite('\r' ) def _lowerCAmelCase ( __snake_case : int , __snake_case : str ) -> Any: forceWrite(f'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def _lowerCAmelCase ( ) -> List[Any]: forceWrite(' ' * TERMINAL_WIDTH ) reset_cursor() def _lowerCAmelCase ( ) -> int: reset_cursor() forceWrite('-' * TERMINAL_WIDTH )
8
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _lowerCAmelCase ( __snake_case : str , __snake_case : str , **__snake_case : List[Any] ) -> Any: __A : Optional[Any] = AutoConfig.from_pretrained(__snake_case , **__snake_case ) __A : int = AutoModelForSeqaSeqLM.from_config(__snake_case ) model.save_pretrained(__snake_case ) AutoTokenizer.from_pretrained(__snake_case ).save_pretrained(__snake_case ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
8
1
'''simple docstring''' import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] ) -> Dict: # Initialise PyTorch model __A : Tuple = LxmertConfig.from_json_file(__snake_case ) print(f'Building PyTorch model from configuration: {config}' ) __A : List[str] = LxmertForPreTraining(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(__snake_case , __snake_case , __snake_case ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , __snake_case ) if __name__ == "__main__": lowercase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase__ : Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
8
'''simple docstring''' from ...configuration_utils import PretrainedConfig lowercase__ : Any = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''tapas''' def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1024 , _UpperCAmelCase=[3, 256, 256, 2, 256, 256, 10] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase=10.0 , _UpperCAmelCase=0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase="ratio" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __A : Dict = vocab_size __A : Tuple = hidden_size __A : Any = num_hidden_layers __A : int = num_attention_heads __A : Tuple = hidden_act __A : Tuple = intermediate_size __A : List[Any] = hidden_dropout_prob __A : int = attention_probs_dropout_prob __A : List[str] = max_position_embeddings __A : Optional[int] = type_vocab_sizes __A : str = initializer_range __A : List[str] = layer_norm_eps # Fine-tuning task hyperparameters __A : List[str] = positive_label_weight __A : List[Any] = num_aggregation_labels __A : Optional[Any] = aggregation_loss_weight __A : Tuple = use_answer_as_supervision __A : List[str] = answer_loss_importance __A : Any = use_normalized_answer_loss __A : Any = huber_loss_delta __A : Union[str, Any] = temperature __A : Tuple = aggregation_temperature __A : Optional[Any] = use_gumbel_for_cells __A : List[str] = use_gumbel_for_aggregation __A : Tuple = average_approximation_function __A : List[str] = cell_selection_preference __A : Dict = answer_loss_cutoff __A : Union[str, Any] = max_num_rows __A : Optional[Any] = max_num_columns __A : int = average_logits_per_cell __A : Optional[Any] = select_one_column __A : int = allow_empty_column_selection __A : List[Any] = init_cell_selection_weights_to_zero __A : int = reset_position_index_per_cell __A : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters __A : Optional[Any] = aggregation_labels __A : List[str] = no_aggregation_label_index if isinstance(self.aggregation_labels , _UpperCAmelCase): __A : Optional[Any] = {int(_UpperCAmelCase): v for k, v in aggregation_labels.items()}
8
1
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int = 60_08_51_47_51_43 ) -> int: try: __A : Tuple = int(__snake_case ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) __A : str = 1 __A : Union[str, Any] = 2 while i * i <= n: while n % i == 0: __A : Optional[int] = i n //= i i += 1 if n > 1: __A : List[str] = n return int(__snake_case ) if __name__ == "__main__": print(f"""{solution() = }""")
8
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=sys.maxsize): '''simple docstring''' __A : Union[str, Any] = 'bilinear' __A : int = max_size __A : Optional[Any] = short_edge_length def __call__( self , _UpperCAmelCase): '''simple docstring''' __A : int = [] for img in imgs: __A ,__A : Dict = img.shape[:2] # later: provide list and randomly choose index for resize __A : List[Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1) if size == 0: return img __A : Tuple = size * 1.0 / min(_UpperCAmelCase , _UpperCAmelCase) if h < w: __A ,__A : Optional[Any] = size, scale * w else: __A ,__A : Optional[Any] = scale * h, size if max(_UpperCAmelCase , _UpperCAmelCase) > self.max_size: __A : Tuple = self.max_size * 1.0 / max(_UpperCAmelCase , _UpperCAmelCase) __A : Tuple = newh * scale __A : Dict = neww * scale __A : Dict = int(neww + 0.5) __A : Optional[int] = int(newh + 0.5) if img.dtype == np.uinta: __A : int = Image.fromarray(_UpperCAmelCase) __A : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR) __A : Dict = np.asarray(_UpperCAmelCase) else: __A : Optional[Any] = img.permute(2 , 0 , 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw __A : Dict = nn.functional.interpolate( _UpperCAmelCase , (newh, neww) , mode=self.interp_method , align_corners=_UpperCAmelCase).squeeze(0) img_augs.append(_UpperCAmelCase) return img_augs class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST) __A : List[Any] = cfg.INPUT.FORMAT __A : Dict = cfg.SIZE_DIVISIBILITY __A : str = cfg.PAD_VALUE __A : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST __A : int = cfg.MODEL.DEVICE __A : Tuple = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : int = lambda _UpperCAmelCase: (x - self.pixel_mean) / self.pixel_std def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = tuple(max(_UpperCAmelCase) for s in zip(*[img.shape for img in images])) __A : Dict = [im.shape[-2:] for im in images] __A : Optional[int] = [ nn.functional.pad( _UpperCAmelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_UpperCAmelCase , _UpperCAmelCase) ] return torch.stack(_UpperCAmelCase), torch.tensor(_UpperCAmelCase) def __call__( self , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' with torch.no_grad(): if not isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : int = [images] if single_image: assert len(_UpperCAmelCase) == 1 for i in range(len(_UpperCAmelCase)): if isinstance(images[i] , torch.Tensor): images.insert(_UpperCAmelCase , images.pop(_UpperCAmelCase).to(self.device).float()) elif not isinstance(images[i] , torch.Tensor): images.insert( _UpperCAmelCase , torch.as_tensor(img_tensorize(images.pop(_UpperCAmelCase) , input_format=self.input_format)) .to(self.device) .float() , ) # resize smallest edge __A : str = torch.tensor([im.shape[:2] for im in images]) __A : List[str] = self.aug(_UpperCAmelCase) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __A : Any = [self.normalizer(_UpperCAmelCase) for x in images] # now pad them to do the following operations __A ,__A : Any = self.pad(_UpperCAmelCase) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __A : str = torch.true_divide(_UpperCAmelCase , _UpperCAmelCase) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _lowerCAmelCase ( __snake_case : Dict , __snake_case : str ) -> Dict: boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : Tuple[int, int] ) -> int: assert torch.isfinite(__snake_case ).all(), "Box tensor contains infinite or NaN!" __A ,__A : int = box_size tensor[:, 0].clamp_(min=0 , max=__snake_case ) tensor[:, 1].clamp_(min=0 , max=__snake_case ) tensor[:, 2].clamp_(min=0 , max=__snake_case ) tensor[:, 3].clamp_(min=0 , max=__snake_case )
8
1
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class SCREAMING_SNAKE_CASE (unittest.TestCase ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=True , _UpperCAmelCase=1 / 255 , _UpperCAmelCase=True , ): '''simple docstring''' __A : int = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} __A : Dict = parent __A : Union[str, Any] = batch_size __A : List[str] = num_channels __A : str = min_resolution __A : Optional[int] = max_resolution __A : Optional[int] = do_resize __A : Optional[int] = size __A : Any = do_normalize __A : Dict = image_mean __A : Optional[Any] = image_std __A : Optional[int] = do_rescale __A : List[Any] = rescale_factor __A : int = do_pad def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' if not batched: __A : List[Any] = image_inputs[0] if isinstance(_UpperCAmelCase , Image.Image): __A ,__A : Any = image.size else: __A ,__A : List[Any] = image.shape[1], image.shape[2] if w < h: __A : Union[str, Any] = int(self.size['shortest_edge'] * h / w) __A : Dict = self.size['shortest_edge'] elif w > h: __A : Any = self.size['shortest_edge'] __A : Optional[Any] = int(self.size['shortest_edge'] * w / h) else: __A : Union[str, Any] = self.size['shortest_edge'] __A : str = self.size['shortest_edge'] else: __A : Tuple = [] for image in image_inputs: __A ,__A : int = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) __A : Union[str, Any] = max(_UpperCAmelCase , key=lambda _UpperCAmelCase: item[0])[0] __A : int = max(_UpperCAmelCase , key=lambda _UpperCAmelCase: item[1])[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE (a__ , unittest.TestCase ): lowerCAmelCase = DeformableDetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = DeformableDetrImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_UpperCAmelCase , 'image_mean')) self.assertTrue(hasattr(_UpperCAmelCase , 'image_std')) self.assertTrue(hasattr(_UpperCAmelCase , 'do_normalize')) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize')) self.assertTrue(hasattr(_UpperCAmelCase , 'do_rescale')) self.assertTrue(hasattr(_UpperCAmelCase , 'do_pad')) self.assertTrue(hasattr(_UpperCAmelCase , 'size')) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333}) self.assertEqual(image_processor.do_pad , _UpperCAmelCase) __A : int = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_UpperCAmelCase) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84}) self.assertEqual(image_processor.do_pad , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.image_processing_class(**self.image_processor_dict) # create random PIL images __A : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image) # Test not batched input __A : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt').pixel_values __A ,__A : Optional[int] = self.image_processor_tester.get_expected_values(_UpperCAmelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A ,__A : int = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase) __A : Dict = image_processing(_UpperCAmelCase , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors __A : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray) # Test not batched input __A : Any = image_processing(image_inputs[0] , return_tensors='pt').pixel_values __A ,__A : Union[str, Any] = self.image_processor_tester.get_expected_values(_UpperCAmelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : Tuple = image_processing(_UpperCAmelCase , return_tensors='pt').pixel_values __A ,__A : Tuple = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors __A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor) # Test not batched input __A : Dict = image_processing(image_inputs[0] , return_tensors='pt').pixel_values __A ,__A : Optional[int] = self.image_processor_tester.get_expected_values(_UpperCAmelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : str = image_processing(_UpperCAmelCase , return_tensors='pt').pixel_values __A ,__A : Tuple = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r') as f: __A : Dict = json.loads(f.read()) __A : str = {'image_id': 3_9769, 'annotations': target} # encode them __A : List[Any] = DeformableDetrImageProcessor() __A : Optional[int] = image_processing(images=_UpperCAmelCase , annotations=_UpperCAmelCase , return_tensors='pt') # verify pixel values __A : List[str] = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding['pixel_values'].shape , _UpperCAmelCase) __A : Tuple = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _UpperCAmelCase , atol=1e-4)) # verify area __A : Tuple = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438]) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _UpperCAmelCase)) # verify boxes __A : Tuple = torch.Size([6, 4]) self.assertEqual(encoding['labels'][0]['boxes'].shape , _UpperCAmelCase) __A : Any = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215]) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _UpperCAmelCase , atol=1e-3)) # verify image_id __A : Tuple = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _UpperCAmelCase)) # verify is_crowd __A : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _UpperCAmelCase)) # verify class_labels __A : Optional[Any] = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _UpperCAmelCase)) # verify orig_size __A : Any = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _UpperCAmelCase)) # verify size __A : Dict = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _UpperCAmelCase)) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r') as f: __A : Optional[int] = json.loads(f.read()) __A : int = {'file_name': '000000039769.png', 'image_id': 3_9769, 'segments_info': target} __A : Tuple = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic') # encode them __A : str = DeformableDetrImageProcessor(format='coco_panoptic') __A : Any = image_processing(images=_UpperCAmelCase , annotations=_UpperCAmelCase , masks_path=_UpperCAmelCase , return_tensors='pt') # verify pixel values __A : str = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding['pixel_values'].shape , _UpperCAmelCase) __A : List[str] = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _UpperCAmelCase , atol=1e-4)) # verify area __A : Any = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147]) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _UpperCAmelCase)) # verify boxes __A : Optional[int] = torch.Size([6, 4]) self.assertEqual(encoding['labels'][0]['boxes'].shape , _UpperCAmelCase) __A : Optional[Any] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625]) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _UpperCAmelCase , atol=1e-3)) # verify image_id __A : List[Any] = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _UpperCAmelCase)) # verify is_crowd __A : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _UpperCAmelCase)) # verify class_labels __A : List[str] = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _UpperCAmelCase)) # verify masks __A : Dict = 82_2873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _UpperCAmelCase) # verify orig_size __A : Optional[int] = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _UpperCAmelCase)) # verify size __A : int = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _UpperCAmelCase))
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Optional[Any]: # noqa: E741 __A : Tuple = len(__snake_case ) __A : Optional[int] = 0 __A : str = [0] * n __A : int = [False] * n __A : Tuple = [False] * n def dfs(__snake_case : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : int ): if parent == root: out_edge_count += 1 __A : str = True __A : Tuple = at for to in l[at]: if to == parent: pass elif not visited[to]: __A : Optional[int] = dfs(__snake_case , __snake_case , __snake_case , __snake_case ) __A : int = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __A : Tuple = True # AP found via cycle if at == low[to]: __A : Optional[Any] = True else: __A : Any = min(low[at] , __snake_case ) return out_edge_count for i in range(__snake_case ): if not visited[i]: __A : Tuple = 0 __A : List[Any] = dfs(__snake_case , __snake_case , -1 , __snake_case ) __A : Union[str, Any] = out_edge_count > 1 for x in range(len(__snake_case ) ): if is_art[x] is True: print(__snake_case ) # Adjacency list of graph lowercase__ : Tuple = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
8
1
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class SCREAMING_SNAKE_CASE (a__ ): def __init__( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' __A : int = path_or_paths __A : List[str] = split if split or isinstance(_UpperCAmelCase , _UpperCAmelCase) else 'train' __A : Any = features __A : Dict = cache_dir __A : List[str] = keep_in_memory __A : Union[str, Any] = streaming __A : Tuple = num_proc __A : Union[str, Any] = kwargs @abstractmethod def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass class SCREAMING_SNAKE_CASE (a__ ): def __init__( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' __A : Dict = features __A : Any = cache_dir __A : str = keep_in_memory __A : Optional[Any] = streaming __A : List[str] = num_proc __A : List[Any] = kwargs @abstractmethod def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass
8
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : int = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } lowercase__ : Dict = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _lowerCAmelCase ( __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Any , __snake_case : List[str] ) -> Union[str, Any]: for attribute in key.split('.' ): __A : int = getattr(__snake_case , __snake_case ) if weight_type is not None: __A : Optional[int] = getattr(__snake_case , __snake_case ).shape else: __A : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __A : Tuple = value elif weight_type == "weight_g": __A : Union[str, Any] = value elif weight_type == "weight_v": __A : Optional[Any] = value elif weight_type == "bias": __A : Optional[int] = value else: __A : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( __snake_case : Any , __snake_case : List[str] ) -> List[Any]: __A : Optional[Any] = [] __A : Any = fairseq_model.state_dict() __A : Union[str, Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): __A : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == 'group' , ) __A : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __A : int = True if "*" in mapped_key: __A : Any = name.split(__snake_case )[0].split('.' )[-2] __A : List[Any] = mapped_key.replace('*' , __snake_case ) if "weight_g" in name: __A : Optional[Any] = 'weight_g' elif "weight_v" in name: __A : Union[str, Any] = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: __A : Optional[Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __A : Tuple = 'weight' else: __A : Dict = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[int] ) -> int: __A : int = full_name.split('conv_layers.' )[-1] __A : List[str] = name.split('.' ) __A : Optional[int] = int(items[0] ) __A : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __A : Optional[int] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __A : Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) __A : Dict = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __A : Any = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) @torch.no_grad() def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple=None ) -> Any: # load the pre-trained checkpoints __A : List[str] = torch.load(__snake_case ) __A : Dict = WavLMConfigOrig(checkpoint['cfg'] ) __A : Optional[int] = WavLMOrig(__snake_case ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: __A : List[Any] = WavLMConfig.from_pretrained(__snake_case ) else: __A : Dict = WavLMConfig() __A : Optional[Any] = WavLMModel(__snake_case ) recursively_load_weights(__snake_case , __snake_case ) hf_wavlm.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowercase__ : Any = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
8
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : int = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Any = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowercase__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = 42 class SCREAMING_SNAKE_CASE (a__ , a__ ): @register_to_config def __init__( self , _UpperCAmelCase = 6_5536 , _UpperCAmelCase = None , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = 0 , _UpperCAmelCase = "fourier" , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = 0.0 , _UpperCAmelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _UpperCAmelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _UpperCAmelCase = "UNetMidBlock1D" , _UpperCAmelCase = None , _UpperCAmelCase = (32, 32, 64) , _UpperCAmelCase = None , _UpperCAmelCase = 8 , _UpperCAmelCase = 1 , _UpperCAmelCase = False , ): '''simple docstring''' super().__init__() __A : Dict = sample_size # time if time_embedding_type == "fourier": __A : int = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_UpperCAmelCase , log=_UpperCAmelCase , flip_sin_to_cos=_UpperCAmelCase) __A : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": __A : List[str] = Timesteps( block_out_channels[0] , flip_sin_to_cos=_UpperCAmelCase , downscale_freq_shift=_UpperCAmelCase) __A : List[str] = block_out_channels[0] if use_timestep_embedding: __A : Optional[Any] = block_out_channels[0] * 4 __A : Optional[int] = TimestepEmbedding( in_channels=_UpperCAmelCase , time_embed_dim=_UpperCAmelCase , act_fn=_UpperCAmelCase , out_dim=block_out_channels[0] , ) __A : Dict = nn.ModuleList([]) __A : Dict = None __A : Tuple = nn.ModuleList([]) __A : Tuple = None # down __A : Any = in_channels for i, down_block_type in enumerate(_UpperCAmelCase): __A : Tuple = output_channel __A : Optional[Any] = block_out_channels[i] if i == 0: input_channel += extra_in_channels __A : List[str] = i == len(_UpperCAmelCase) - 1 __A : int = get_down_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_UpperCAmelCase) # mid __A : str = get_mid_block( _UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_UpperCAmelCase , add_downsample=_UpperCAmelCase , ) # up __A : Optional[int] = list(reversed(_UpperCAmelCase)) __A : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: __A : str = out_channels else: __A : List[Any] = block_out_channels[0] for i, up_block_type in enumerate(_UpperCAmelCase): __A : Optional[Any] = output_channel __A : Optional[Any] = ( reversed_block_out_channels[i + 1] if i < len(_UpperCAmelCase) - 1 else final_upsample_channels ) __A : Dict = i == len(_UpperCAmelCase) - 1 __A : str = get_up_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_UpperCAmelCase) __A : Optional[int] = output_channel # out __A : str = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32) __A : Optional[Any] = get_out_block( out_block_type=_UpperCAmelCase , num_groups_out=_UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=_UpperCAmelCase , act_fn=_UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , ): '''simple docstring''' __A : Any = timestep if not torch.is_tensor(_UpperCAmelCase): __A : Any = torch.tensor([timesteps] , dtype=torch.long , device=sample.device) elif torch.is_tensor(_UpperCAmelCase) and len(timesteps.shape) == 0: __A : Any = timesteps[None].to(sample.device) __A : List[Any] = self.time_proj(_UpperCAmelCase) if self.config.use_timestep_embedding: __A : Dict = self.time_mlp(_UpperCAmelCase) else: __A : Dict = timestep_embed[..., None] __A : Tuple = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) __A : List[Any] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) # 2. down __A : int = () for downsample_block in self.down_blocks: __A ,__A : int = downsample_block(hidden_states=_UpperCAmelCase , temb=_UpperCAmelCase) down_block_res_samples += res_samples # 3. mid if self.mid_block: __A : Optional[int] = self.mid_block(_UpperCAmelCase , _UpperCAmelCase) # 4. up for i, upsample_block in enumerate(self.up_blocks): __A : Any = down_block_res_samples[-1:] __A : Optional[int] = down_block_res_samples[:-1] __A : Any = upsample_block(_UpperCAmelCase , res_hidden_states_tuple=_UpperCAmelCase , temb=_UpperCAmelCase) # 5. post-process if self.out_block: __A : Dict = self.out_block(_UpperCAmelCase , _UpperCAmelCase) if not return_dict: return (sample,) return UNetaDOutput(sample=_UpperCAmelCase)
8
1
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase__ : Any = logging.get_logger(__name__) lowercase__ : List[str] = {'''vocab_file''': '''vocab.json'''} lowercase__ : Union[str, Any] = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } lowercase__ : Optional[int] = {'''mgp-str''': 27} class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _UpperCAmelCase , _UpperCAmelCase="[GO]" , _UpperCAmelCase="[GO]" , _UpperCAmelCase="[s]" , _UpperCAmelCase="[GO]" , **_UpperCAmelCase): '''simple docstring''' super().__init__( unk_token=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , **_UpperCAmelCase , ) with open(_UpperCAmelCase , encoding='utf-8') as vocab_handle: __A : Union[str, Any] = json.load(_UpperCAmelCase) __A : str = {v: k for k, v in self.vocab.items()} @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return len(self.vocab) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Dict = [] for s in text: char_tokens.extend(_UpperCAmelCase) return char_tokens def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return self.vocab.get(_UpperCAmelCase , self.vocab.get(self.unk_token)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return self.decoder.get(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if not os.path.isdir(_UpperCAmelCase): logger.error('Vocabulary path ({}) should be a directory'.format(_UpperCAmelCase)) return __A : int = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) with open(_UpperCAmelCase , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_UpperCAmelCase , ensure_ascii=_UpperCAmelCase) + '\n') return (vocab_file,)
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> int: if len(__snake_case ) != len(__snake_case ): raise ValueError('String lengths must match!' ) __A : Optional[Any] = 0 for chara, chara in zip(__snake_case , __snake_case ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : str = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def _lowerCAmelCase ( __snake_case : List[Any] ) -> Tuple: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __A : Optional[Any] = k.replace(__snake_case , __snake_case ) if k.startswith('encoder' ): __A : Any = k.replace('.attn' , '.self_attn' ) __A : Any = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): __A : Tuple = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'encoder_attn_layer_norm' ) __A : int = k.replace('norm3' , 'final_layer_norm' ) return k def _lowerCAmelCase ( __snake_case : List[Any] ) -> Dict: __A : Optional[int] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: __A : Tuple = sd.pop(__snake_case ) __A : Union[str, Any] = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd __A : str = v lowercase__ : Tuple = ['''START'''] @torch.no_grad() def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any , __snake_case : List[Any] ) -> int: __A : List[str] = torch.load(__snake_case , map_location='cpu' ) __A : Tuple = model['model'] __A : str = BlenderbotConfig.from_json_file(__snake_case ) __A : int = BlenderbotForConditionalGeneration(__snake_case ) __A : List[Any] = m.model.state_dict().keys() __A : Optional[int] = [] __A : Optional[int] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __A : Union[str, Any] = rename_state_dict_key(__snake_case ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __A : Optional[Any] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__snake_case ) m.model.load_state_dict(__snake_case , strict=__snake_case ) m.half() m.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
8
'''simple docstring''' import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> Union[str, Any]: __A : int = RobertaPreLayerNormConfig.from_pretrained( __snake_case , architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict __A : Tuple = torch.load(hf_hub_download(repo_id=__snake_case , filename='pytorch_model.bin' ) ) __A : str = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): __A : Dict = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue __A : str = tensor_value __A : Union[str, Any] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__snake_case , config=__snake_case , state_dict=__snake_case ) model.save_pretrained(__snake_case ) # convert tokenizer __A : List[Any] = AutoTokenizer.from_pretrained(__snake_case ) tokenizer.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
8
1
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int ) -> int: __A : Optional[int] = [1] __A ,__A ,__A : List[str] = 0, 0, 0 __A : str = ugly_nums[ia] * 2 __A : Optional[int] = ugly_nums[ia] * 3 __A : Tuple = ugly_nums[ia] * 5 for _ in range(1 , __snake_case ): __A : List[str] = min(__snake_case , __snake_case , __snake_case ) ugly_nums.append(__snake_case ) if next_num == next_a: ia += 1 __A : Union[str, Any] = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 __A : Any = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 __A : int = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f"""{ugly_numbers(2_00) = }""")
8
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings lowercase__ : Dict = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = field(default=a__ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = super().to_dict() for k, v in d.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : List[Any] = v.to_dict() return d
8
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class SCREAMING_SNAKE_CASE (unittest.TestCase ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=0.9 , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , ): '''simple docstring''' __A : List[Any] = size if size is not None else {'shortest_edge': 30} __A : int = crop_size if crop_size is not None else {'height': 30, 'width': 30} __A : Optional[Any] = parent __A : List[Any] = batch_size __A : Any = num_channels __A : Union[str, Any] = min_resolution __A : Union[str, Any] = max_resolution __A : int = do_resize_and_center_crop __A : int = size __A : List[str] = crop_pct __A : str = crop_size __A : Optional[Any] = do_normalize __A : Optional[int] = image_mean __A : Optional[Any] = image_std def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class SCREAMING_SNAKE_CASE (a__ , unittest.TestCase ): lowerCAmelCase = PoolFormerImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = PoolFormerImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize_and_center_crop')) self.assertTrue(hasattr(_UpperCAmelCase , 'size')) self.assertTrue(hasattr(_UpperCAmelCase , 'crop_pct')) self.assertTrue(hasattr(_UpperCAmelCase , 'do_normalize')) self.assertTrue(hasattr(_UpperCAmelCase , 'image_mean')) self.assertTrue(hasattr(_UpperCAmelCase , 'image_std')) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'shortest_edge': 30}) self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30}) __A : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {'shortest_edge': 42}) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84}) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = self.image_processing_class(**self.image_processor_dict) # create random PIL images __A : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image) # Test not batched input __A : List[Any] = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __A : Optional[int] = image_processing(_UpperCAmelCase , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors __A : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __A : Any = image_processing(_UpperCAmelCase , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors __A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor) # Test not batched input __A : Tuple = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __A : str = image_processing(_UpperCAmelCase , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
8
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : Optional[int] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''lxmert''' lowerCAmelCase = {} def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=9500 , _UpperCAmelCase=1600 , _UpperCAmelCase=400 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=9 , _UpperCAmelCase=5 , _UpperCAmelCase=5 , _UpperCAmelCase=2048 , _UpperCAmelCase=4 , _UpperCAmelCase=6.67 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , **_UpperCAmelCase , ): '''simple docstring''' __A : Tuple = vocab_size __A : int = hidden_size __A : str = num_attention_heads __A : Tuple = hidden_act __A : int = intermediate_size __A : str = hidden_dropout_prob __A : Optional[int] = attention_probs_dropout_prob __A : Optional[Any] = max_position_embeddings __A : Tuple = type_vocab_size __A : Optional[int] = initializer_range __A : Any = layer_norm_eps __A : Optional[Any] = num_qa_labels __A : Optional[int] = num_object_labels __A : Any = num_attr_labels __A : Union[str, Any] = l_layers __A : Optional[int] = x_layers __A : List[Any] = r_layers __A : Tuple = visual_feat_dim __A : Tuple = visual_pos_dim __A : Optional[int] = visual_loss_normalizer __A : int = task_matched __A : List[Any] = task_mask_lm __A : Optional[Any] = task_obj_predict __A : str = task_qa __A : List[Any] = visual_obj_loss __A : Optional[Any] = visual_attr_loss __A : Union[str, Any] = visual_feat_loss __A : Union[str, Any] = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**_UpperCAmelCase)
8
1
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=[30, 30] , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=None , _UpperCAmelCase=8 , _UpperCAmelCase=10 , ): '''simple docstring''' __A : Union[str, Any] = parent __A : Tuple = batch_size __A : List[str] = image_size __A : Dict = patch_size __A : Optional[Any] = num_channels __A : Tuple = is_training __A : Dict = use_labels __A : List[Any] = hidden_size __A : Tuple = num_hidden_layers __A : int = num_attention_heads __A : Optional[int] = intermediate_size __A : Tuple = hidden_act __A : Any = hidden_dropout_prob __A : Optional[Any] = attention_probs_dropout_prob __A : List[Any] = type_sequence_label_size __A : List[Any] = initializer_range __A : Optional[int] = num_labels __A : List[Any] = scope __A : Any = n_targets __A : Union[str, Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens __A : List[str] = (image_size[1] // patch_size) * (image_size[0] // patch_size) __A : int = num_patches + 1 + self.num_detection_tokens def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]]) __A : Tuple = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) __A : List[Any] = [] for i in range(self.batch_size): __A : Optional[int] = {} __A : Union[str, Any] = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=_UpperCAmelCase) __A : str = torch.rand(self.n_targets , 4 , device=_UpperCAmelCase) labels.append(_UpperCAmelCase) __A : Any = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosModel(config=_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosForObjectDetection(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : str = model(pixel_values=_UpperCAmelCase) __A : List[str] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) __A : Union[str, Any] = model(pixel_values=_UpperCAmelCase , labels=_UpperCAmelCase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.prepare_config_and_inputs() __A ,__A ,__A : Tuple = config_and_inputs __A : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowerCAmelCase = ( {'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' __A : Optional[Any] = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase) if return_labels: if model_class.__name__ == "YolosForObjectDetection": __A : Any = [] for i in range(self.model_tester.batch_size): __A : Tuple = {} __A : Tuple = torch.ones( size=(self.model_tester.n_targets,) , device=_UpperCAmelCase , dtype=torch.long) __A : Optional[Any] = torch.ones( self.model_tester.n_targets , 4 , device=_UpperCAmelCase , dtype=torch.float) labels.append(_UpperCAmelCase) __A : str = labels return inputs_dict def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = YolosModelTester(self) __A : Dict = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Tuple = model_class(_UpperCAmelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __A : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[Any] = model_class(_UpperCAmelCase) __A : str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : int = [*signature.parameters.keys()] __A : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Optional[int] = True # in YOLOS, the seq_len is different __A : Dict = self.model_tester.expected_seq_len for model_class in self.all_model_classes: __A : Dict = True __A : Dict = False __A : Union[str, Any] = True __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : Any = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] __A : List[Any] = True __A : List[str] = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __A : str = len(_UpperCAmelCase) # Check attention is always last and order is fine __A : Dict = True __A : Dict = True __A : Dict = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = 1 self.assertEqual(out_len + added_hidden_states , len(_UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.hidden_states __A : List[str] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) # YOLOS has a different seq_length __A : Dict = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[str] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A : Optional[int] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : List[Any] = YolosModel.from_pretrained(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase) def _lowerCAmelCase ( ) -> int: __A : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return AutoImageProcessor.from_pretrained('hustvl/yolos-small') if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = YolosForObjectDetection.from_pretrained('hustvl/yolos-small').to(_UpperCAmelCase) __A : Any = self.default_image_processor __A : str = prepare_img() __A : int = image_processor(images=_UpperCAmelCase , return_tensors='pt').to(_UpperCAmelCase) # forward pass with torch.no_grad(): __A : str = model(inputs.pixel_values) # verify outputs __A : Tuple = torch.Size((1, 100, 92)) self.assertEqual(outputs.logits.shape , _UpperCAmelCase) __A : Dict = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=_UpperCAmelCase , ) __A : int = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=_UpperCAmelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) # verify postprocessing __A : List[str] = image_processor.post_process_object_detection( _UpperCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]])[0] __A : Optional[int] = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861]).to(_UpperCAmelCase) __A : Union[str, Any] = [75, 75, 17, 63, 17] __A : Any = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495]).to(_UpperCAmelCase) self.assertEqual(len(results['scores']) , 5) self.assertTrue(torch.allclose(results['scores'] , _UpperCAmelCase , atol=1e-4)) self.assertSequenceEqual(results['labels'].tolist() , _UpperCAmelCase) self.assertTrue(torch.allclose(results['boxes'][0, :] , _UpperCAmelCase))
8
'''simple docstring''' import math import sys def _lowerCAmelCase ( __snake_case : int ) -> int: if number != int(__snake_case ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 __A : str = [-1] * (number + 1) __A : Dict = 0 for i in range(1 , number + 1 ): __A : int = sys.maxsize __A : int = int(math.sqrt(__snake_case ) ) for j in range(1 , root + 1 ): __A : str = 1 + answers[i - (j**2)] __A : Dict = min(__snake_case , __snake_case ) __A : Union[str, Any] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings lowercase__ : Dict = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = field(default=a__ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = super().to_dict() for k, v in d.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : List[Any] = v.to_dict() return d
8
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( __snake_case : list[int] , __snake_case : list[int] , __snake_case : int ) -> tuple[float, list[float]]: __A : int = list(range(len(__snake_case ) ) ) __A : Optional[Any] = [v / w for v, w in zip(__snake_case , __snake_case )] index.sort(key=lambda __snake_case : ratio[i] , reverse=__snake_case ) __A : float = 0 __A : list[float] = [0] * len(__snake_case ) for i in index: if weight[i] <= capacity: __A : Optional[int] = 1 max_value += value[i] capacity -= weight[i] else: __A : List[Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: if not is_accelerate_available(): return method __A : Union[str, Any] = version.parse(accelerate.__version__ ).base_version if version.parse(__snake_case ) < version.parse('0.17.0' ): return method def wrapper(self : Optional[int] , *__snake_case : int , **__snake_case : int ): if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ): self._hf_hook.pre_forward(self ) return method(self , *__snake_case , **__snake_case ) return wrapper
8
'''simple docstring''' from __future__ import annotations import math class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : int = size # approximate the overall size of segment tree with given value __A : Optional[Any] = [0 for i in range(0 , 4 * size)] # create array to store lazy update __A : Optional[Any] = [0 for i in range(0 , 4 * size)] __A : str = [0 for i in range(0 , 4 * size)] # flag for lazy update def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return idx * 2 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return idx * 2 + 1 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if left_element == right_element: __A : List[Any] = a[left_element - 1] else: __A : List[str] = (left_element + right_element) // 2 self.build(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.build(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase) __A : Any = max( self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)]) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.flag[idx] is True: __A : Optional[Any] = self.lazy[idx] __A : Optional[Any] = False if left_element != right_element: __A : List[Any] = self.lazy[idx] __A : Dict = self.lazy[idx] __A : Tuple = True __A : Union[str, Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: __A : Optional[int] = val if left_element != right_element: __A : Tuple = val __A : Any = val __A : Tuple = True __A : Union[str, Any] = True return True __A : str = (left_element + right_element) // 2 self.update(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.update(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : int = max( self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)]) return True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.flag[idx] is True: __A : Union[str, Any] = self.lazy[idx] __A : List[str] = False if left_element != right_element: __A : Union[str, Any] = self.lazy[idx] __A : Optional[int] = self.lazy[idx] __A : str = True __A : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] __A : Any = (left_element + right_element) // 2 __A : int = self.query(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : Union[str, Any] = self.query(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) return max(_UpperCAmelCase , _UpperCAmelCase) def __str__( self): '''simple docstring''' return str([self.query(1 , 1 , self.size , _UpperCAmelCase , _UpperCAmelCase) for i in range(1 , self.size + 1)]) if __name__ == "__main__": lowercase__ : Union[str, Any] = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] lowercase__ : str = 15 lowercase__ : List[Any] = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 1_11) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 2_35) print(segt)
8
1
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int , __snake_case : int , __snake_case : int ) -> float: __A : Dict = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def _lowerCAmelCase ( ) -> Union[str, Any]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int , __snake_case : int , __snake_case : int ) -> float: __A : Dict = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def _lowerCAmelCase ( ) -> Union[str, Any]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' from __future__ import annotations import queue class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = data __A : Tuple = None __A : str = None def _lowerCAmelCase ( ) -> TreeNode: print('\n********Press N to stop entering at any point of time********\n' ) __A : Tuple = input('Enter the value of the root node: ' ).strip().lower() __A : queue.Queue = queue.Queue() __A : str = TreeNode(int(__snake_case ) ) q.put(__snake_case ) while not q.empty(): __A : Any = q.get() __A : List[Any] = f'Enter the left node of {node_found.data}: ' __A : Tuple = input(__snake_case ).strip().lower() or 'n' if check == "n": return tree_node __A : Union[str, Any] = TreeNode(int(__snake_case ) ) __A : List[Any] = left_node q.put(__snake_case ) __A : Dict = f'Enter the right node of {node_found.data}: ' __A : Union[str, Any] = input(__snake_case ).strip().lower() or 'n' if check == "n": return tree_node __A : List[Any] = TreeNode(int(__snake_case ) ) __A : int = right_node q.put(__snake_case ) raise def _lowerCAmelCase ( __snake_case : TreeNode ) -> None: if not isinstance(__snake_case , __snake_case ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def _lowerCAmelCase ( __snake_case : TreeNode ) -> None: if not isinstance(__snake_case , __snake_case ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def _lowerCAmelCase ( __snake_case : TreeNode ) -> None: if not isinstance(__snake_case , __snake_case ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def _lowerCAmelCase ( __snake_case : TreeNode ) -> None: if not isinstance(__snake_case , __snake_case ) or not node: return __A : queue.Queue = queue.Queue() q.put(__snake_case ) while not q.empty(): __A : Optional[Any] = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def _lowerCAmelCase ( __snake_case : TreeNode ) -> None: if not isinstance(__snake_case , __snake_case ) or not node: return __A : queue.Queue = queue.Queue() q.put(__snake_case ) while not q.empty(): __A : str = [] while not q.empty(): __A : List[Any] = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__snake_case ) def _lowerCAmelCase ( __snake_case : TreeNode ) -> None: if not isinstance(__snake_case , __snake_case ) or not node: return __A : list[TreeNode] = [] __A : List[str] = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(__snake_case ) __A : List[str] = n.left # end of while means current node doesn't have left child __A : Optional[int] = stack.pop() # start to traverse its right child __A : Optional[int] = n.right def _lowerCAmelCase ( __snake_case : TreeNode ) -> None: if not isinstance(__snake_case , __snake_case ) or not node: return __A : list[TreeNode] = [] __A : List[Any] = node while n or stack: while n: stack.append(__snake_case ) __A : Tuple = n.left __A : int = stack.pop() print(n.data , end=',' ) __A : Optional[Any] = n.right def _lowerCAmelCase ( __snake_case : TreeNode ) -> None: if not isinstance(__snake_case , __snake_case ) or not node: return __A ,__A : int = [], [] __A : Any = node stacka.append(__snake_case ) while stacka: # to find the reversed order of post order, store it in stack2 __A : Optional[int] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__snake_case ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def _lowerCAmelCase ( __snake_case : str = "" , __snake_case : Dict=50 , __snake_case : Optional[int]="*" ) -> str: if not s: return "\n" + width * char __A ,__A : Optional[Any] = divmod(width - len(__snake_case ) - 2 , 2 ) return f'{left * char} {s} {(left + extra) * char}' if __name__ == "__main__": import doctest doctest.testmod() print(prompt('''Binary Tree Traversals''')) lowercase__ : TreeNode = build_tree() print(prompt('''Pre Order Traversal''')) pre_order(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal''')) in_order(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal''')) post_order(node) print(prompt() + '''\n''') print(prompt('''Level Order Traversal''')) level_order(node) print(prompt() + '''\n''') print(prompt('''Actual Level Order Traversal''')) level_order_actual(node) print('''*''' * 50 + '''\n''') print(prompt('''Pre Order Traversal - Iteration Version''')) pre_order_iter(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal - Iteration Version''')) in_order_iter(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal - Iteration Version''')) post_order_iter(node) print(prompt())
8
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): '''simple docstring''' __A : Optional[int] = parent __A : str = 13 __A : List[Any] = 7 __A : List[str] = True __A : str = True __A : Optional[Any] = True __A : int = True __A : Dict = 99 __A : Dict = 384 __A : Any = 2 __A : int = 4 __A : Optional[Any] = 37 __A : Optional[int] = 'gelu' __A : Dict = 0.1 __A : Optional[int] = 0.1 __A : Any = 512 __A : int = 16 __A : List[str] = 2 __A : str = 0.02 __A : Any = 3 __A : str = 4 __A : Union[str, Any] = 128 __A : int = 2 __A : List[Any] = 9 __A : List[Any] = 1 __A : List[Any] = None def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __A : str = None if self.use_input_mask: __A : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __A : Optional[Any] = None if self.use_token_type_ids: __A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __A : Optional[int] = None __A : List[str] = None __A : Dict = None if self.use_labels: __A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) __A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __A : str = ids_tensor([self.batch_size] , self.num_choices) __A : List[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = TFConvBertModel(config=_UpperCAmelCase) __A : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __A : Tuple = [input_ids, input_mask] __A : Any = model(_UpperCAmelCase) __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : str = TFConvBertForMaskedLM(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : str = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = self.num_labels __A : Any = TFConvBertForSequenceClassification(config=_UpperCAmelCase) __A : Optional[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Tuple = self.num_choices __A : List[str] = TFConvBertForMultipleChoice(config=_UpperCAmelCase) __A : int = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : Optional[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : List[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : int = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __A : Optional[Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = self.num_labels __A : List[Any] = TFConvBertForTokenClassification(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : int = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = TFConvBertForQuestionAnswering(config=_UpperCAmelCase) __A : Any = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Union[str, Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.prepare_config_and_inputs() ( ( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) , ) : Union[str, Any] = config_and_inputs __A : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = TFConvBertModelTester(self) __A : str = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __A : List[str] = True __A : List[str] = True if hasattr(_UpperCAmelCase , 'use_cache'): __A : List[Any] = True __A : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : Union[str, Any] = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) for model_class in self.all_model_classes: __A : List[str] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase) __A : Optional[int] = model_class(_UpperCAmelCase) __A : Optional[Any] = len(model(_UpperCAmelCase)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase) __A : Union[str, Any] = os.path.join(_UpperCAmelCase , 'saved_model' , '1') __A : Tuple = tf.keras.models.load_model(_UpperCAmelCase) __A : str = model(_UpperCAmelCase) if self.is_encoder_decoder: __A : Optional[int] = outputs['encoder_hidden_states'] __A : str = outputs['encoder_attentions'] else: __A : List[Any] = outputs['hidden_states'] __A : Optional[Any] = outputs['attentions'] self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) __A : str = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) self.assertListEqual( list(output_hidden_states[0].shape[-2:]) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(output_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') self.assertIsNotNone(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Any = True __A : str = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length) __A : Any = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : int = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) __A : Tuple = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) def check_decoder_attentions_output(_UpperCAmelCase): __A : List[str] = len(_UpperCAmelCase) self.assertEqual(out_len % 2 , 0) __A : Any = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCAmelCase): __A : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __A : Dict = True __A : Any = False __A : str = model_class(_UpperCAmelCase) __A : List[str] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : List[str] = len(_UpperCAmelCase) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) if self.is_encoder_decoder: __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : int = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_decoder_attentions_output(_UpperCAmelCase) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __A : int = True __A : Tuple = model_class(_UpperCAmelCase) __A : Dict = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) # Check attention is always last and order is fine __A : Any = True __A : str = True __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : Union[str, Any] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase)) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) @require_tf class SCREAMING_SNAKE_CASE (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') __A : str = tf.constant([[0, 1, 2, 3, 4, 5]]) __A : Optional[int] = model(_UpperCAmelCase)[0] __A : List[Any] = [1, 6, 768] self.assertEqual(output.shape , _UpperCAmelCase) __A : Tuple = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ]) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4)
8
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : str = logging.get_logger(__name__) lowercase__ : Union[str, Any] = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''sew-d''' def __init__( self , _UpperCAmelCase=32 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase=2 , _UpperCAmelCase=512 , _UpperCAmelCase=256 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=("p2c", "c2p") , _UpperCAmelCase="layer_norm" , _UpperCAmelCase="gelu_python" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-7 , _UpperCAmelCase=1e-5 , _UpperCAmelCase="group" , _UpperCAmelCase="gelu" , _UpperCAmelCase=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , _UpperCAmelCase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _UpperCAmelCase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _UpperCAmelCase=False , _UpperCAmelCase=128 , _UpperCAmelCase=16 , _UpperCAmelCase=True , _UpperCAmelCase=0.05 , _UpperCAmelCase=10 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=10 , _UpperCAmelCase=0 , _UpperCAmelCase="mean" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=256 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase) __A : List[Any] = hidden_size __A : Any = feat_extract_norm __A : List[str] = feat_extract_activation __A : Union[str, Any] = list(_UpperCAmelCase) __A : List[str] = list(_UpperCAmelCase) __A : Dict = list(_UpperCAmelCase) __A : Any = conv_bias __A : str = num_conv_pos_embeddings __A : Optional[int] = num_conv_pos_embedding_groups __A : Optional[Any] = len(self.conv_dim) __A : Union[str, Any] = num_hidden_layers __A : int = intermediate_size __A : Union[str, Any] = squeeze_factor __A : Tuple = max_position_embeddings __A : Optional[Any] = position_buckets __A : Union[str, Any] = share_att_key __A : Union[str, Any] = relative_attention __A : Optional[int] = norm_rel_ebd __A : Dict = list(_UpperCAmelCase) __A : Optional[Any] = hidden_act __A : List[str] = num_attention_heads __A : Union[str, Any] = hidden_dropout __A : List[Any] = attention_dropout __A : List[Any] = activation_dropout __A : Dict = feat_proj_dropout __A : str = final_dropout __A : Dict = layer_norm_eps __A : int = feature_layer_norm_eps __A : int = initializer_range __A : str = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F'but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)' F'= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __A : Dict = apply_spec_augment __A : Optional[Any] = mask_time_prob __A : Union[str, Any] = mask_time_length __A : List[str] = mask_time_min_masks __A : Dict = mask_feature_prob __A : List[Any] = mask_feature_length __A : Dict = mask_feature_min_masks # ctc loss __A : str = ctc_loss_reduction __A : Any = ctc_zero_infinity # sequence classification __A : List[str] = use_weighted_layer_sum __A : List[Any] = classifier_proj_size @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
8
'''simple docstring''' import argparse import os import re lowercase__ : Optional[int] = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowercase__ : Dict = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowercase__ : List[str] = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase__ : Tuple = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowercase__ : str = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase__ : str = re.compile(r'''\[([^\]]+)\]''') def _lowerCAmelCase ( __snake_case : str ) -> Tuple: __A : List[Any] = _re_indent.search(__snake_case ) return "" if search is None else search.groups()[0] def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : str="" , __snake_case : Any=None , __snake_case : List[Any]=None ) -> Optional[int]: __A : Tuple = 0 __A : Optional[int] = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(__snake_case ): index += 1 __A : Optional[int] = ['\n'.join(lines[:index] )] else: __A : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __A : Tuple = [lines[index]] index += 1 while index < len(__snake_case ) and (end_prompt is None or not lines[index].startswith(__snake_case )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__snake_case ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(__snake_case ) ) if index < len(__snake_case ) - 1: __A : Union[str, Any] = [lines[index + 1]] index += 1 else: __A : Union[str, Any] = [] else: blocks.append('\n'.join(__snake_case ) ) __A : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__snake_case ) > 0: blocks.append('\n'.join(__snake_case ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__snake_case ): blocks.append('\n'.join(lines[index:] ) ) return blocks def _lowerCAmelCase ( __snake_case : List[Any] ) -> int: def _inner(__snake_case : List[Any] ): return key(__snake_case ).lower().replace('_' , '' ) return _inner def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any=None ) -> List[Any]: # If no key is provided, we use a noop. def noop(__snake_case : List[Any] ): return x if key is None: __A : Optional[Any] = noop # Constants are all uppercase, they go first. __A : str = [obj for obj in objects if key(__snake_case ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __A : List[str] = [obj for obj in objects if key(__snake_case )[0].isupper() and not key(__snake_case ).isupper()] # Functions begin with a lowercase, they go last. __A : str = [obj for obj in objects if not key(__snake_case )[0].isupper()] __A : Tuple = ignore_underscore(__snake_case ) return sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Tuple: # This inner function sort imports between [ ]. def _replace(__snake_case : Tuple ): __A : List[str] = match.groups()[0] if "," not in imports: return f'[{imports}]' __A : int = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Dict = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(__snake_case )] ) + "]" __A : List[Any] = import_statement.split('\n' ) if len(__snake_case ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __A : Optional[int] = 2 if lines[1].strip() == '[' else 1 __A : Any = [(i, _re_strip_line.search(__snake_case ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __A : Optional[int] = sort_objects(__snake_case , key=lambda __snake_case : x[1] ) __A : Any = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__snake_case ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __A : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] ) else: __A : Dict = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Tuple = keys[:-1] __A : List[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(__snake_case )] ) return "\n".join(__snake_case ) else: # Finally we have to deal with imports fitting on one line __A : Optional[Any] = _re_bracket_content.sub(_replace , __snake_case ) return import_statement def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : List[Any]=True ) -> Optional[Any]: with open(__snake_case , 'r' ) as f: __A : Dict = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __A : str = split_code_in_indented_blocks( __snake_case , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__snake_case ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __A : Tuple = main_blocks[block_idx] __A : int = block.split('\n' ) # Get to the start of the imports. __A : Tuple = 0 while line_idx < len(__snake_case ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __A : Optional[int] = len(__snake_case ) else: line_idx += 1 if line_idx >= len(__snake_case ): continue # Ignore beginning and last line: they don't contain anything. __A : Dict = '\n'.join(block_lines[line_idx:-1] ) __A : int = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __A : Optional[int] = split_code_in_indented_blocks(__snake_case , indent_level=__snake_case ) # We have two categories of import key: list or _import_structure[key].append/extend __A : Any = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __A : Dict = [(pattern.search(__snake_case ).groups()[0] if pattern.search(__snake_case ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __A : Optional[Any] = [(i, key) for i, key in enumerate(__snake_case ) if key is not None] __A : Tuple = [x[0] for x in sorted(__snake_case , key=lambda __snake_case : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __A : str = 0 __A : Any = [] for i in range(len(__snake_case ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __A : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(__snake_case ) count += 1 # And we put our main block back together with its first and last line. __A : int = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(__snake_case ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(__snake_case , 'w' ) as f: f.write('\n'.join(__snake_case ) ) def _lowerCAmelCase ( __snake_case : int=True ) -> Optional[Any]: __A : Tuple = [] for root, _, files in os.walk(__snake_case ): if "__init__.py" in files: __A : List[Any] = sort_imports(os.path.join(__snake_case , '__init__.py' ) , check_only=__snake_case ) if result: __A : Dict = [os.path.join(__snake_case , '__init__.py' )] if len(__snake_case ) > 0: raise ValueError(f'Would overwrite {len(__snake_case )} files, run `make style`.' ) if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowercase__ : Union[str, Any] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
8
1
'''simple docstring''' lowercase__ : Tuple = { '''a''': '''AAAAA''', '''b''': '''AAAAB''', '''c''': '''AAABA''', '''d''': '''AAABB''', '''e''': '''AABAA''', '''f''': '''AABAB''', '''g''': '''AABBA''', '''h''': '''AABBB''', '''i''': '''ABAAA''', '''j''': '''BBBAA''', '''k''': '''ABAAB''', '''l''': '''ABABA''', '''m''': '''ABABB''', '''n''': '''ABBAA''', '''o''': '''ABBAB''', '''p''': '''ABBBA''', '''q''': '''ABBBB''', '''r''': '''BAAAA''', '''s''': '''BAAAB''', '''t''': '''BAABA''', '''u''': '''BAABB''', '''v''': '''BBBAB''', '''w''': '''BABAA''', '''x''': '''BABAB''', '''y''': '''BABBA''', '''z''': '''BABBB''', ''' ''': ''' ''', } lowercase__ : Union[str, Any] = {value: key for key, value in encode_dict.items()} def _lowerCAmelCase ( __snake_case : str ) -> str: __A : Optional[int] = '' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('encode() accepts only letters of the alphabet and spaces' ) return encoded def _lowerCAmelCase ( __snake_case : str ) -> str: if set(__snake_case ) - {"A", "B", " "} != set(): raise Exception('decode() accepts only \'A\', \'B\' and spaces' ) __A : str = '' for word in coded.split(): while len(__snake_case ) != 0: decoded += decode_dict[word[:5]] __A : Dict = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int ) -> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') lowercase__ : int = int(input('''Enter number: ''').strip()) print(f"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
8
1
'''simple docstring''' def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Optional[Any]: # noqa: E741 __A : Tuple = len(__snake_case ) __A : Optional[int] = 0 __A : str = [0] * n __A : int = [False] * n __A : Tuple = [False] * n def dfs(__snake_case : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : int ): if parent == root: out_edge_count += 1 __A : str = True __A : Tuple = at for to in l[at]: if to == parent: pass elif not visited[to]: __A : Optional[int] = dfs(__snake_case , __snake_case , __snake_case , __snake_case ) __A : int = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __A : Tuple = True # AP found via cycle if at == low[to]: __A : Optional[Any] = True else: __A : Any = min(low[at] , __snake_case ) return out_edge_count for i in range(__snake_case ): if not visited[i]: __A : Tuple = 0 __A : List[Any] = dfs(__snake_case , __snake_case , -1 , __snake_case ) __A : Union[str, Any] = out_edge_count > 1 for x in range(len(__snake_case ) ): if is_art[x] is True: print(__snake_case ) # Adjacency list of graph lowercase__ : Tuple = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
8
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : str = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def _lowerCAmelCase ( __snake_case : List[Any] ) -> Tuple: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __A : Optional[Any] = k.replace(__snake_case , __snake_case ) if k.startswith('encoder' ): __A : Any = k.replace('.attn' , '.self_attn' ) __A : Any = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): __A : Tuple = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'encoder_attn_layer_norm' ) __A : int = k.replace('norm3' , 'final_layer_norm' ) return k def _lowerCAmelCase ( __snake_case : List[Any] ) -> Dict: __A : Optional[int] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: __A : Tuple = sd.pop(__snake_case ) __A : Union[str, Any] = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd __A : str = v lowercase__ : Tuple = ['''START'''] @torch.no_grad() def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any , __snake_case : List[Any] ) -> int: __A : List[str] = torch.load(__snake_case , map_location='cpu' ) __A : Tuple = model['model'] __A : str = BlenderbotConfig.from_json_file(__snake_case ) __A : int = BlenderbotForConditionalGeneration(__snake_case ) __A : List[Any] = m.model.state_dict().keys() __A : Optional[int] = [] __A : Optional[int] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __A : Union[str, Any] = rename_state_dict_key(__snake_case ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __A : Optional[Any] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__snake_case ) m.model.load_state_dict(__snake_case , strict=__snake_case ) m.half() m.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
8
1
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowercase__ : int = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l=''' def _lowerCAmelCase ( __snake_case : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: __A : List[str] = BeautifulSoup(requests.get(url + location ).content , 'html.parser' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'} ): __A : List[str] = job.find('a' , attrs={'data-tn-element': 'jobTitle'} ).text.strip() __A : List[Any] = job.find('span' , {'class': 'company'} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('''Bangalore'''), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
8
'''simple docstring''' import mpmath # for roots of unity import numpy as np class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None): '''simple docstring''' __A : List[Any] = list(poly_a or [0])[:] __A : Optional[int] = list(poly_b or [0])[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __A : Union[str, Any] = len(self.polyA) while self.polyB[-1] == 0: self.polyB.pop() __A : Optional[int] = len(self.polyB) # Add 0 to make lengths equal a power of 2 __A : Optional[Any] = int( 2 ** np.ceil(np.loga(len(self.polyA) + len(self.polyB) - 1))) while len(self.polyA) < self.c_max_length: self.polyA.append(0) while len(self.polyB) < self.c_max_length: self.polyB.append(0) # A complex root used for the fourier transform __A : str = complex(mpmath.root(x=1 , n=self.c_max_length , k=1)) # The product __A : Tuple = self.__multiply() def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(_UpperCAmelCase) <= 1: return dft[0] # __A : Dict = self.c_max_length // 2 while next_ncol > 0: __A : Optional[Any] = [[] for i in range(_UpperCAmelCase)] __A : Tuple = self.root**next_ncol # First half of next step __A : Optional[Any] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j]) current_root *= root # Second half of next step __A : List[str] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j]) current_root *= root # Update __A : Optional[int] = new_dft __A : Tuple = next_ncol // 2 return dft[0] def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.__dft('A') __A : Optional[Any] = self.__dft('B') __A : str = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]] del dft_a del dft_b # Corner Case if len(inverce_c[0]) <= 1: return inverce_c[0] # Inverse DFT __A : Dict = 2 while next_ncol <= self.c_max_length: __A : Optional[int] = [[] for i in range(_UpperCAmelCase)] __A : Any = self.root ** (next_ncol // 2) __A : Tuple = 1 # First half of next step for j in range(self.c_max_length // next_ncol): for i in range(next_ncol // 2): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root)) current_root *= root # Update __A : int = new_inverse_c next_ncol *= 2 # Unpack __A : Optional[int] = [round(x[0].real , 8) + round(x[0].imag , 8) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self): '''simple docstring''' __A : int = 'A = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A])) __A : Optional[Any] = 'B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B])) __A : str = 'A*B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.product)) return F'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any , __snake_case : Tuple=0 ) -> Any: # Format the message. if name is None: __A : Union[str, Any] = None else: __A : List[Any] = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}' __A : Dict = fmt.format(__snake_case ) # Print and recurse (if needed). if isinstance(__snake_case , __snake_case ): if msg is not None: print(__snake_case ) for k in val.keys(): recursive_print(__snake_case , val[k] , spaces + 2 ) elif isinstance(__snake_case , torch.Tensor ): print(__snake_case , ':' , val.size() ) else: print(__snake_case , ':' , __snake_case ) def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : List[str] ) -> Union[str, Any]: # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. __A : Optional[Any] = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] __A : Optional[Any] = (num_heads, hidden_size, num_splits) + input_shape[1:] __A : List[str] = param.view(*__snake_case ) __A : Tuple = param.transpose(0 , 2 ) __A : Dict = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] __A : Dict = (num_heads, num_splits, hidden_size) + input_shape[1:] __A : str = param.view(*__snake_case ) __A : Optional[Any] = param.transpose(0 , 1 ).contiguous() __A : Dict = param.view(*__snake_case ) return param def _lowerCAmelCase ( __snake_case : Optional[int] , __snake_case : str , __snake_case : Dict ) -> Union[str, Any]: # The converted output model. __A : str = {} # old versions did not store training args __A : List[str] = input_state_dict.get('args' , __snake_case ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) __A : Tuple = ds_args.padded_vocab_size __A : str = ds_args.max_position_embeddings __A : str = ds_args.hidden_size __A : Any = ds_args.num_layers __A : List[Any] = ds_args.num_attention_heads __A : Union[str, Any] = ds_args.ffn_hidden_size # pprint(config) # The number of heads. __A : List[Any] = config.n_head # The hidden_size per head. __A : List[str] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): __A : Optional[Any] = input_state_dict['checkpoint_version'] else: __A : List[str] = 0.0 # The model. __A : Any = input_state_dict['model'] # The language model. __A : Tuple = model['language_model'] # The embeddings. __A : Any = lm['embedding'] # The word embeddings. __A : int = embeddings['word_embeddings']['weight'] # Truncate the embedding table to vocab_size rows. __A : Union[str, Any] = word_embeddings[: config.vocab_size, :] __A : Any = word_embeddings # The position embeddings. __A : List[Any] = embeddings['position_embeddings']['weight'] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] __A : Dict = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match' ) # Store the position embeddings. __A : Any = pos_embeddings # The transformer. __A : Any = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder'] # The regex to extract layer names. __A : Optional[Any] = re.compile(r'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' ) # The simple map of names for "automated" rules. __A : int = { 'attention.dense': '.attn.c_proj.', 'self_attention.dense': '.attn.c_proj.', 'mlp.dense_h_to_4h': '.mlp.c_fc.', 'mlp.dense_4h_to_h': '.mlp.c_proj.', } # Extract the layers. for key, val in transformer.items(): # Match the name. __A : str = layer_re.match(__snake_case ) # Stop if that's not a layer if m is None: break # The index of the layer. __A : Any = int(m.group(1 ) ) # The name of the operation. __A : List[Any] = m.group(2 ) # Is it a weight or a bias? __A : str = m.group(3 ) # The name of the layer. __A : Dict = f'transformer.h.{layer_idx}' # For layernorm(s), simply store the layer norm. if op_name.endswith('layernorm' ): __A : str = 'ln_1' if op_name.startswith('input' ) else 'ln_2' __A : Union[str, Any] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. __A : Dict = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , __snake_case , __snake_case ) __A : Union[str, Any] = causal_mask # Insert a "dummy" tensor for masked_bias. __A : Any = torch.tensor(-1e4 , dtype=torch.floataa ) __A : List[Any] = masked_bias __A : List[Any] = fix_query_key_value_ordering(__snake_case , __snake_case , 3 , __snake_case , __snake_case ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. __A : List[Any] = out_val.transpose(0 , 1 ).contiguous() # Store. __A : List[Any] = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": __A : Any = fix_query_key_value_ordering(__snake_case , __snake_case , 3 , __snake_case , __snake_case ) # Store. No change of shape. __A : Optional[Any] = out_val # Transpose the weights. elif weight_or_bias == "weight": __A : Union[str, Any] = megatron_to_transformers[op_name] __A : Union[str, Any] = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": __A : Optional[Any] = megatron_to_transformers[op_name] __A : Tuple = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. __A : List[Any] = transformer['final_layernorm.weight'] __A : int = transformer['final_layernorm.bias'] # For LM head, transformers' wants the matrix to weight embeddings. __A : Union[str, Any] = word_embeddings # It should be done! return output_state_dict def _lowerCAmelCase ( ) -> Optional[Any]: # Create the argument parser. __A : List[Any] = argparse.ArgumentParser() parser.add_argument('--print-checkpoint-structure' , action='store_true' ) parser.add_argument( 'path_to_checkpoint' , type=__snake_case , help='Path to the checkpoint file (.zip archive or direct .pt file)' , ) parser.add_argument( '--config_file' , default='' , type=__snake_case , help='An optional config json file describing the pre-trained model.' , ) __A : Optional[Any] = parser.parse_args() # Extract the basename. __A : List[Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'Extracting PyTorch state dictionary from {args.path_to_checkpoint}' ) if args.path_to_checkpoint.endswith('.zip' ): with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint: with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict: __A : Optional[Any] = torch.load(__snake_case , map_location='cpu' ) else: __A : List[Any] = torch.load(args.path_to_checkpoint , map_location='cpu' ) __A : Dict = input_state_dict.get('args' , __snake_case ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: __A : int = 'gelu_fast' elif ds_args.openai_gelu: __A : Dict = 'gelu_new' else: __A : int = 'gelu' else: # in the very early days this used to be "gelu_new" __A : Optional[Any] = 'gelu_new' # Spell out all parameters in case the defaults change. __A : str = GPTaConfig( vocab_size=5_02_57 , n_positions=10_24 , n_embd=10_24 , n_layer=24 , n_head=16 , n_inner=40_96 , activation_function=__snake_case , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type='cls_index' , summary_use_proj=__snake_case , summary_activation=__snake_case , summary_proj_to_labels=__snake_case , summary_first_dropout=0.1 , scale_attn_weights=__snake_case , use_cache=__snake_case , bos_token_id=5_02_56 , eos_token_id=5_02_56 , ) else: __A : int = GPTaConfig.from_json_file(args.config_file ) __A : Optional[Any] = ['GPT2LMHeadModel'] # Convert. print('Converting' ) __A : str = convert_megatron_checkpoint(__snake_case , __snake_case , __snake_case ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(__snake_case , __snake_case ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: __A : List[Any] = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": __A : Tuple = 'gpt2' elif tokenizer_type == "PretrainedFromHF": __A : Optional[int] = ds_args.tokenizer_name_or_path else: raise ValueError(f'Unrecognized tokenizer_type {tokenizer_type}' ) else: __A : int = 'gpt2' __A : Optional[int] = AutoTokenizer.from_pretrained(__snake_case ) __A : List[str] = type(__snake_case ).__name__ __A : int = tokenizer_class # Store the config to file. print('Saving config' ) config.save_pretrained(__snake_case ) # Save tokenizer based on args print(f'Adding {tokenizer_class} tokenizer files' ) tokenizer.save_pretrained(__snake_case ) # Store the state_dict to file. __A : Dict = os.path.join(__snake_case , 'pytorch_model.bin' ) print(f'Saving checkpoint to "{output_checkpoint_file}"' ) torch.save(__snake_case , __snake_case ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
8
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=[30, 30] , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=None , _UpperCAmelCase=8 , _UpperCAmelCase=10 , ): '''simple docstring''' __A : Union[str, Any] = parent __A : Tuple = batch_size __A : List[str] = image_size __A : Dict = patch_size __A : Optional[Any] = num_channels __A : Tuple = is_training __A : Dict = use_labels __A : List[Any] = hidden_size __A : Tuple = num_hidden_layers __A : int = num_attention_heads __A : Optional[int] = intermediate_size __A : Tuple = hidden_act __A : Any = hidden_dropout_prob __A : Optional[Any] = attention_probs_dropout_prob __A : List[Any] = type_sequence_label_size __A : List[Any] = initializer_range __A : Optional[int] = num_labels __A : List[Any] = scope __A : Any = n_targets __A : Union[str, Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens __A : List[str] = (image_size[1] // patch_size) * (image_size[0] // patch_size) __A : int = num_patches + 1 + self.num_detection_tokens def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]]) __A : Tuple = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) __A : List[Any] = [] for i in range(self.batch_size): __A : Optional[int] = {} __A : Union[str, Any] = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=_UpperCAmelCase) __A : str = torch.rand(self.n_targets , 4 , device=_UpperCAmelCase) labels.append(_UpperCAmelCase) __A : Any = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosModel(config=_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosForObjectDetection(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : str = model(pixel_values=_UpperCAmelCase) __A : List[str] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) __A : Union[str, Any] = model(pixel_values=_UpperCAmelCase , labels=_UpperCAmelCase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.prepare_config_and_inputs() __A ,__A ,__A : Tuple = config_and_inputs __A : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowerCAmelCase = ( {'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' __A : Optional[Any] = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase) if return_labels: if model_class.__name__ == "YolosForObjectDetection": __A : Any = [] for i in range(self.model_tester.batch_size): __A : Tuple = {} __A : Tuple = torch.ones( size=(self.model_tester.n_targets,) , device=_UpperCAmelCase , dtype=torch.long) __A : Optional[Any] = torch.ones( self.model_tester.n_targets , 4 , device=_UpperCAmelCase , dtype=torch.float) labels.append(_UpperCAmelCase) __A : str = labels return inputs_dict def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = YolosModelTester(self) __A : Dict = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Tuple = model_class(_UpperCAmelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __A : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[Any] = model_class(_UpperCAmelCase) __A : str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : int = [*signature.parameters.keys()] __A : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Optional[int] = True # in YOLOS, the seq_len is different __A : Dict = self.model_tester.expected_seq_len for model_class in self.all_model_classes: __A : Dict = True __A : Dict = False __A : Union[str, Any] = True __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : Any = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] __A : List[Any] = True __A : List[str] = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __A : str = len(_UpperCAmelCase) # Check attention is always last and order is fine __A : Dict = True __A : Dict = True __A : Dict = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = 1 self.assertEqual(out_len + added_hidden_states , len(_UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.hidden_states __A : List[str] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) # YOLOS has a different seq_length __A : Dict = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[str] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A : Optional[int] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : List[Any] = YolosModel.from_pretrained(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase) def _lowerCAmelCase ( ) -> int: __A : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return AutoImageProcessor.from_pretrained('hustvl/yolos-small') if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = YolosForObjectDetection.from_pretrained('hustvl/yolos-small').to(_UpperCAmelCase) __A : Any = self.default_image_processor __A : str = prepare_img() __A : int = image_processor(images=_UpperCAmelCase , return_tensors='pt').to(_UpperCAmelCase) # forward pass with torch.no_grad(): __A : str = model(inputs.pixel_values) # verify outputs __A : Tuple = torch.Size((1, 100, 92)) self.assertEqual(outputs.logits.shape , _UpperCAmelCase) __A : Dict = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=_UpperCAmelCase , ) __A : int = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=_UpperCAmelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) # verify postprocessing __A : List[str] = image_processor.post_process_object_detection( _UpperCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]])[0] __A : Optional[int] = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861]).to(_UpperCAmelCase) __A : Union[str, Any] = [75, 75, 17, 63, 17] __A : Any = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495]).to(_UpperCAmelCase) self.assertEqual(len(results['scores']) , 5) self.assertTrue(torch.allclose(results['scores'] , _UpperCAmelCase , atol=1e-4)) self.assertSequenceEqual(results['labels'].tolist() , _UpperCAmelCase) self.assertTrue(torch.allclose(results['boxes'][0, :] , _UpperCAmelCase))
8
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowercase__ : List[str] = logging.get_logger(__name__) if is_vision_available(): import PIL class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = ['''pixel_values'''] def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = PILImageResampling.BICUBIC , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = True , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(**_UpperCAmelCase) __A : int = size if size is not None else {'shortest_edge': 224} __A : Any = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase) __A : Union[str, Any] = crop_size if crop_size is not None else {'height': 224, 'width': 224} __A : List[str] = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase , param_name='crop_size') __A : Optional[int] = do_resize __A : str = size __A : List[Any] = resample __A : Dict = do_center_crop __A : Any = crop_size __A : Tuple = do_rescale __A : List[str] = rescale_factor __A : List[Any] = do_normalize __A : Optional[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __A : Optional[int] = image_std if image_std is not None else OPENAI_CLIP_STD __A : Optional[Any] = do_convert_rgb def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = PILImageResampling.BICUBIC , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' __A : List[str] = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}') __A : List[str] = get_resize_output_image_size(_UpperCAmelCase , size=size['shortest_edge'] , default_to_square=_UpperCAmelCase) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' __A : List[str] = get_size_dict(_UpperCAmelCase) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}') return center_crop(_UpperCAmelCase , size=(size['height'], size['width']) , data_format=_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ): '''simple docstring''' __A : Tuple = do_resize if do_resize is not None else self.do_resize __A : int = size if size is not None else self.size __A : Any = get_size_dict(_UpperCAmelCase , param_name='size' , default_to_square=_UpperCAmelCase) __A : Dict = resample if resample is not None else self.resample __A : str = do_center_crop if do_center_crop is not None else self.do_center_crop __A : str = crop_size if crop_size is not None else self.crop_size __A : str = get_size_dict(_UpperCAmelCase , param_name='crop_size' , default_to_square=_UpperCAmelCase) __A : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale __A : int = rescale_factor if rescale_factor is not None else self.rescale_factor __A : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize __A : Union[str, Any] = image_mean if image_mean is not None else self.image_mean __A : Any = image_std if image_std is not None else self.image_std __A : Any = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __A : int = make_list_of_images(_UpperCAmelCase) if not valid_images(_UpperCAmelCase): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # PIL RGBA images are converted to RGB if do_convert_rgb: __A : Any = [convert_to_rgb(_UpperCAmelCase) for image in images] # All transformations expect numpy arrays. __A : Union[str, Any] = [to_numpy_array(_UpperCAmelCase) for image in images] if do_resize: __A : Any = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase) for image in images] if do_center_crop: __A : Tuple = [self.center_crop(image=_UpperCAmelCase , size=_UpperCAmelCase) for image in images] if do_rescale: __A : List[Any] = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase) for image in images] if do_normalize: __A : Any = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase) for image in images] __A : Optional[Any] = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase) for image in images] __A : int = {'pixel_values': images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase)
8
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: lowercase__ : Optional[int] = None lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ : List[str] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } lowercase__ : Dict = { '''camembert-base''': 5_12, } lowercase__ : str = '''▁''' class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] lowerCAmelCase = CamembertTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **_UpperCAmelCase , ): '''simple docstring''' __A : int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __A : List[str] = vocab_file __A : Optional[int] = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A : Optional[Any] = [self.cls_token_id] __A : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' __A : Optional[int] = [self.sep_token_id] __A : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(_UpperCAmelCase): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return __A : List[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCAmelCase): copyfile(self.vocab_file , _UpperCAmelCase) return (out_vocab_file,)
8
1
'''simple docstring''' from math import sqrt def _lowerCAmelCase ( __snake_case : int ) -> bool: assert isinstance(__snake_case , __snake_case ) and ( number >= 0 ), "'number' must been an int and positive" __A : Optional[int] = True # 0 and 1 are none primes. if number <= 1: __A : Tuple = False for divisor in range(2 , int(round(sqrt(__snake_case ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __A : Union[str, Any] = False break # precondition assert isinstance(__snake_case , __snake_case ), "'status' must been from type bool" return status def _lowerCAmelCase ( __snake_case : Tuple ) -> Optional[int]: assert isinstance(__snake_case , __snake_case ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __A : List[str] = list(range(2 , n + 1 ) ) __A : Any = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(__snake_case ) ): for j in range(i + 1 , len(__snake_case ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __A : Any = 0 # filters actual prime numbers. __A : Dict = [x for x in begin_list if x != 0] # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type list" return ans def _lowerCAmelCase ( __snake_case : str ) -> Union[str, Any]: assert isinstance(__snake_case , __snake_case ) and (n > 2), "'N' must been an int and > 2" __A : List[Any] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(__snake_case ): ans.append(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type list" return ans def _lowerCAmelCase ( __snake_case : List[Any] ) -> List[str]: assert isinstance(__snake_case , __snake_case ) and number >= 0, "'number' must been an int and >= 0" __A : Optional[int] = [] # this list will be returns of the function. # potential prime number factors. __A : int = 2 __A : Tuple = number if number == 0 or number == 1: ans.append(__snake_case ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(__snake_case ): while quotient != 1: if is_prime(__snake_case ) and (quotient % factor == 0): ans.append(__snake_case ) quotient /= factor else: factor += 1 else: ans.append(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type list" return ans def _lowerCAmelCase ( __snake_case : str ) -> Optional[int]: assert isinstance(__snake_case , __snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A : Any = 0 # prime factorization of 'number' __A : Dict = prime_factorization(__snake_case ) __A : Union[str, Any] = max(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type int" return ans def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> str: assert isinstance(__snake_case , __snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A : Tuple = 0 # prime factorization of 'number' __A : Any = prime_factorization(__snake_case ) __A : Any = min(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type int" return ans def _lowerCAmelCase ( __snake_case : Union[str, Any] ) -> Optional[int]: assert isinstance(__snake_case , __snake_case ), "'number' must been an int" assert isinstance(number % 2 == 0 , __snake_case ), "compare bust been from type bool" return number % 2 == 0 def _lowerCAmelCase ( __snake_case : List[str] ) -> str: assert isinstance(__snake_case , __snake_case ), "'number' must been an int" assert isinstance(number % 2 != 0 , __snake_case ), "compare bust been from type bool" return number % 2 != 0 def _lowerCAmelCase ( __snake_case : Union[str, Any] ) -> Optional[int]: assert ( isinstance(__snake_case , __snake_case ) and (number > 2) and is_even(__snake_case ) ), "'number' must been an int, even and > 2" __A : List[Any] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __A : List[str] = get_prime_numbers(__snake_case ) __A : Tuple = len(__snake_case ) # run variable for while-loops. __A : Optional[int] = 0 __A : Union[str, Any] = None # exit variable. for break up the loops __A : str = True while i < len_pn and loop: __A : int = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __A : Any = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(__snake_case , __snake_case ) and (len(__snake_case ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : int ) -> Any: assert ( isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __A : List[str] = 0 while numbera != 0: __A : Optional[int] = numbera % numbera __A : Dict = numbera __A : List[Any] = rest # precondition assert isinstance(__snake_case , __snake_case ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _lowerCAmelCase ( __snake_case : Optional[int] , __snake_case : List[Any] ) -> List[Any]: assert ( isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __A : Union[str, Any] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __A : Optional[Any] = prime_factorization(__snake_case ) __A : Union[str, Any] = prime_factorization(__snake_case ) elif numbera == 1 or numbera == 1: __A : str = [] __A : Union[str, Any] = [] __A : Union[str, Any] = max(__snake_case , __snake_case ) __A : Union[str, Any] = 0 __A : Tuple = 0 __A : List[Any] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __A : Dict = prime_fac_a.count(__snake_case ) __A : List[str] = prime_fac_a.count(__snake_case ) for _ in range(max(__snake_case , __snake_case ) ): ans *= n else: __A : int = prime_fac_a.count(__snake_case ) for _ in range(__snake_case ): ans *= n done.append(__snake_case ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __A : str = prime_fac_a.count(__snake_case ) for _ in range(__snake_case ): ans *= n done.append(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> List[Any]: assert isinstance(__snake_case , __snake_case ) and (n >= 0), "'number' must been a positive int" __A : List[Any] = 0 __A : str = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(__snake_case ): ans += 1 # precondition assert isinstance(__snake_case , __snake_case ) and is_prime( __snake_case ), "'ans' must been a prime number and from type int" return ans def _lowerCAmelCase ( __snake_case : Optional[int] , __snake_case : Optional[int] ) -> Dict: assert ( is_prime(__snake_case ) and is_prime(__snake_case ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __A : Any = p_number_a + 1 # jump to the next number __A : List[Any] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(__snake_case ): number += 1 while number < p_number_a: ans.append(__snake_case ) number += 1 # fetch the next prime number. while not is_prime(__snake_case ): number += 1 # precondition assert ( isinstance(__snake_case , __snake_case ) and ans[0] != p_number_a and ans[len(__snake_case ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _lowerCAmelCase ( __snake_case : Dict ) -> str: assert isinstance(__snake_case , __snake_case ) and (n >= 1), "'n' must been int and >= 1" __A : List[str] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(__snake_case ) # precondition assert ans[0] == 1 and ans[len(__snake_case ) - 1] == n, "Error in function getDivisiors(...)" return ans def _lowerCAmelCase ( __snake_case : Union[str, Any] ) -> Dict: assert isinstance(__snake_case , __snake_case ) and ( number > 1 ), "'number' must been an int and >= 1" __A : Optional[Any] = get_divisors(__snake_case ) # precondition assert ( isinstance(__snake_case , __snake_case ) and (divisors[0] == 1) and (divisors[len(__snake_case ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _lowerCAmelCase ( __snake_case : Any , __snake_case : int ) -> List[Any]: assert ( isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __A : Optional[int] = gcd(abs(__snake_case ) , abs(__snake_case ) ) # precondition assert ( isinstance(__snake_case , __snake_case ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _lowerCAmelCase ( __snake_case : Tuple ) -> int: assert isinstance(__snake_case , __snake_case ) and (n >= 0), "'n' must been a int and >= 0" __A : Optional[int] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _lowerCAmelCase ( __snake_case : str ) -> Dict: assert isinstance(__snake_case , __snake_case ) and (n >= 0), "'n' must been an int and >= 0" __A : Union[str, Any] = 0 __A : List[str] = 1 __A : Dict = 1 # this will be return for _ in range(n - 1 ): __A : str = ans ans += fiba __A : List[Any] = tmp return ans
8
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowercase__ : Any = '''hf-internal-testing/tiny-random-bert''' lowercase__ : Optional[Any] = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') lowercase__ : List[Any] = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase)) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase))) with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Any = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) self.assertTrue(os.path.isfile(_UpperCAmelCase)) # File is cached at the same place the second time. __A : Tuple = cached_file(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) # Using a specific revision to test the full commit hash. __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='9b8c223') self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): __A : Dict = cached_file('tiny-random-bert' , _UpperCAmelCase) with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): __A : Optional[int] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='aaaa') with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : int = cached_file(_UpperCAmelCase , 'conf') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : Any = cached_file(_UpperCAmelCase , 'conf') with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Dict = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '.no_exist' , _UpperCAmelCase , 'conf'))) __A : List[Any] = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : str = cached_file(_UpperCAmelCase , 'conf' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : List[str] = mock.Mock() __A : Dict = 500 __A : List[str] = {} __A : List[Any] = HTTPError __A : Optional[Any] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=_UpperCAmelCase) as mock_head: __A : Dict = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_connection_errors=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt')) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): get_file_from_repo('bert-base-case' , _UpperCAmelCase) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): get_file_from_repo('bert-base-cased' , _UpperCAmelCase , revision='ahaha') __A : List[str] = get_file_from_repo('bert-base-cased' , _UpperCAmelCase) # The name is the cached name which is not very easy to test, so instead we load the content. __A : List[str] = json.loads(open(_UpperCAmelCase , 'r').read()) self.assertEqual(config['hidden_size'] , 768) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __A : Tuple = Path(_UpperCAmelCase) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , 'a.txt') , str(_UpperCAmelCase)) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , 'b.txt'))
8
1
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss']): __A : List[str] = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = 'sshleifer/tiny-gpt2' __A : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_UpperCAmelCase , multi_process=_UpperCAmelCase , ) __A : Optional[int] = TensorFlowBenchmark(_UpperCAmelCase) __A : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = 'sgugger/tiny-distilbert-classification' __A : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , only_pretrain_model=_UpperCAmelCase , ) __A : List[str] = TensorFlowBenchmark(_UpperCAmelCase) __A : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = 'sshleifer/tiny-gpt2' __A : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , ) __A : int = TensorFlowBenchmark(_UpperCAmelCase) __A : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = 'sshleifer/tiny-gpt2' __A : Optional[int] = AutoConfig.from_pretrained(_UpperCAmelCase) __A : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_UpperCAmelCase , multi_process=_UpperCAmelCase , ) __A : Dict = TensorFlowBenchmark(_UpperCAmelCase , [config]) __A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = 'sshleifer/tiny-gpt2' __A : Tuple = AutoConfig.from_pretrained(_UpperCAmelCase) __A : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , ) __A : Union[str, Any] = TensorFlowBenchmark(_UpperCAmelCase , [config]) __A : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = 'sshleifer/tiny-gpt2' __A : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , ) __A : Any = TensorFlowBenchmark(_UpperCAmelCase) __A : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = 'sshleifer/tiny-gpt2' __A : Optional[Any] = AutoConfig.from_pretrained(_UpperCAmelCase) __A : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , ) __A : Tuple = TensorFlowBenchmark(_UpperCAmelCase , [config]) __A : str = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = 'patrickvonplaten/t5-tiny-random' __A : Optional[Any] = AutoConfig.from_pretrained(_UpperCAmelCase) __A : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , ) __A : Union[str, Any] = TensorFlowBenchmark(_UpperCAmelCase , configs=[config]) __A : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU')) == 0 , 'Cannot do xla on CPU.') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = 'sshleifer/tiny-gpt2' __A : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , use_xla=_UpperCAmelCase , multi_process=_UpperCAmelCase , ) __A : Tuple = TensorFlowBenchmark(_UpperCAmelCase) __A : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: __A : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_UpperCAmelCase , save_to_csv=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_UpperCAmelCase , 'inf_time.csv') , inference_memory_csv_file=os.path.join(_UpperCAmelCase , 'inf_mem.csv') , env_info_csv_file=os.path.join(_UpperCAmelCase , 'env.csv') , multi_process=_UpperCAmelCase , ) __A : str = TensorFlowBenchmark(_UpperCAmelCase) benchmark.run() self.assertTrue(Path(os.path.join(_UpperCAmelCase , 'inf_time.csv')).exists()) self.assertTrue(Path(os.path.join(_UpperCAmelCase , 'inf_mem.csv')).exists()) self.assertTrue(Path(os.path.join(_UpperCAmelCase , 'env.csv')).exists()) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(_UpperCAmelCase): self.assertTrue(hasattr(_UpperCAmelCase , 'sequential')) self.assertTrue(hasattr(_UpperCAmelCase , 'cumulative')) self.assertTrue(hasattr(_UpperCAmelCase , 'current')) self.assertTrue(hasattr(_UpperCAmelCase , 'total')) with tempfile.TemporaryDirectory() as tmp_dir: __A : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_UpperCAmelCase , 'log.txt') , log_print=_UpperCAmelCase , trace_memory_line_by_line=_UpperCAmelCase , eager_mode=_UpperCAmelCase , multi_process=_UpperCAmelCase , ) __A : int = TensorFlowBenchmark(_UpperCAmelCase) __A : Union[str, Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary) self.assertTrue(Path(os.path.join(_UpperCAmelCase , 'log.txt')).exists())
8
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _lowerCAmelCase ( __snake_case : str , __snake_case : str , **__snake_case : List[Any] ) -> Any: __A : Optional[Any] = AutoConfig.from_pretrained(__snake_case , **__snake_case ) __A : int = AutoModelForSeqaSeqLM.from_config(__snake_case ) model.save_pretrained(__snake_case ) AutoTokenizer.from_pretrained(__snake_case ).save_pretrained(__snake_case ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
8
1
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowercase__ : Optional[int] = 3 def _lowerCAmelCase ( __snake_case : int ) -> int: print('Generating primitive root of p' ) while True: __A : Optional[int] = random.randrange(3 , __snake_case ) if pow(__snake_case , 2 , __snake_case ) == 1: continue if pow(__snake_case , __snake_case , __snake_case ) == 1: continue return g def _lowerCAmelCase ( __snake_case : int ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...' ) __A : Tuple = rabin_miller.generate_large_prime(__snake_case ) # select large prime number. __A : List[Any] = primitive_root(__snake_case ) # one primitive root on modulo p. __A : Optional[Any] = random.randrange(3 , __snake_case ) # private_key -> have to be greater than 2 for safety. __A : Any = cryptomath.find_mod_inverse(pow(__snake_case , __snake_case , __snake_case ) , __snake_case ) __A : List[str] = (key_size, e_a, e_a, p) __A : Dict = (key_size, d) return public_key, private_key def _lowerCAmelCase ( __snake_case : str , __snake_case : int ) -> None: if os.path.exists(f'{name}_pubkey.txt' ) or os.path.exists(f'{name}_privkey.txt' ): print('\nWARNING:' ) print( f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' 'Use a different name or delete these files and re-run this program.' ) sys.exit() __A ,__A : str = generate_key(__snake_case ) print(f'\nWriting public key to file {name}_pubkey.txt...' ) with open(f'{name}_pubkey.txt' , 'w' ) as fo: fo.write(f'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}' ) print(f'Writing private key to file {name}_privkey.txt...' ) with open(f'{name}_privkey.txt' , 'w' ) as fo: fo.write(f'{private_key[0]},{private_key[1]}' ) def _lowerCAmelCase ( ) -> None: print('Making key files...' ) make_key_files('elgamal' , 20_48 ) print('Key files generation successful' ) if __name__ == "__main__": main()
8
'''simple docstring''' from ...configuration_utils import PretrainedConfig lowercase__ : Any = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''tapas''' def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1024 , _UpperCAmelCase=[3, 256, 256, 2, 256, 256, 10] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase=10.0 , _UpperCAmelCase=0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase="ratio" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __A : Dict = vocab_size __A : Tuple = hidden_size __A : Any = num_hidden_layers __A : int = num_attention_heads __A : Tuple = hidden_act __A : Tuple = intermediate_size __A : List[Any] = hidden_dropout_prob __A : int = attention_probs_dropout_prob __A : List[str] = max_position_embeddings __A : Optional[int] = type_vocab_sizes __A : str = initializer_range __A : List[str] = layer_norm_eps # Fine-tuning task hyperparameters __A : List[str] = positive_label_weight __A : List[Any] = num_aggregation_labels __A : Optional[Any] = aggregation_loss_weight __A : Tuple = use_answer_as_supervision __A : List[str] = answer_loss_importance __A : Any = use_normalized_answer_loss __A : Any = huber_loss_delta __A : Union[str, Any] = temperature __A : Tuple = aggregation_temperature __A : Optional[Any] = use_gumbel_for_cells __A : List[str] = use_gumbel_for_aggregation __A : Tuple = average_approximation_function __A : List[str] = cell_selection_preference __A : Dict = answer_loss_cutoff __A : Union[str, Any] = max_num_rows __A : Optional[Any] = max_num_columns __A : int = average_logits_per_cell __A : Optional[Any] = select_one_column __A : int = allow_empty_column_selection __A : List[Any] = init_cell_selection_weights_to_zero __A : int = reset_position_index_per_cell __A : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters __A : Optional[Any] = aggregation_labels __A : List[str] = no_aggregation_label_index if isinstance(self.aggregation_labels , _UpperCAmelCase): __A : Optional[Any] = {int(_UpperCAmelCase): v for k, v in aggregation_labels.items()}
8
1
'''simple docstring''' import datasets from .evaluate import evaluate lowercase__ : int = '''\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } ''' lowercase__ : Union[str, Any] = ''' This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. ''' lowercase__ : Optional[int] = ''' Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': the text of the answer references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the SQuAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}] >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}] >>> squad_metric = datasets.load_metric("squad") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE (datasets.Metric ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': {'id': datasets.Value('string'), 'prediction_text': datasets.Value('string')}, 'references': { 'id': datasets.Value('string'), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string'), 'answer_start': datasets.Value('int32'), }), }, }) , codebase_urls=['https://rajpurkar.github.io/SQuAD-explorer/'] , reference_urls=['https://rajpurkar.github.io/SQuAD-explorer/'] , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = {prediction['id']: prediction['prediction_text'] for prediction in predictions} __A : List[Any] = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] __A : Optional[int] = evaluate(dataset=_UpperCAmelCase , predictions=_UpperCAmelCase) return score
8
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=sys.maxsize): '''simple docstring''' __A : Union[str, Any] = 'bilinear' __A : int = max_size __A : Optional[Any] = short_edge_length def __call__( self , _UpperCAmelCase): '''simple docstring''' __A : int = [] for img in imgs: __A ,__A : Dict = img.shape[:2] # later: provide list and randomly choose index for resize __A : List[Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1) if size == 0: return img __A : Tuple = size * 1.0 / min(_UpperCAmelCase , _UpperCAmelCase) if h < w: __A ,__A : Optional[Any] = size, scale * w else: __A ,__A : Optional[Any] = scale * h, size if max(_UpperCAmelCase , _UpperCAmelCase) > self.max_size: __A : Tuple = self.max_size * 1.0 / max(_UpperCAmelCase , _UpperCAmelCase) __A : Tuple = newh * scale __A : Dict = neww * scale __A : Dict = int(neww + 0.5) __A : Optional[int] = int(newh + 0.5) if img.dtype == np.uinta: __A : int = Image.fromarray(_UpperCAmelCase) __A : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR) __A : Dict = np.asarray(_UpperCAmelCase) else: __A : Optional[Any] = img.permute(2 , 0 , 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw __A : Dict = nn.functional.interpolate( _UpperCAmelCase , (newh, neww) , mode=self.interp_method , align_corners=_UpperCAmelCase).squeeze(0) img_augs.append(_UpperCAmelCase) return img_augs class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST) __A : List[Any] = cfg.INPUT.FORMAT __A : Dict = cfg.SIZE_DIVISIBILITY __A : str = cfg.PAD_VALUE __A : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST __A : int = cfg.MODEL.DEVICE __A : Tuple = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : int = lambda _UpperCAmelCase: (x - self.pixel_mean) / self.pixel_std def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = tuple(max(_UpperCAmelCase) for s in zip(*[img.shape for img in images])) __A : Dict = [im.shape[-2:] for im in images] __A : Optional[int] = [ nn.functional.pad( _UpperCAmelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_UpperCAmelCase , _UpperCAmelCase) ] return torch.stack(_UpperCAmelCase), torch.tensor(_UpperCAmelCase) def __call__( self , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' with torch.no_grad(): if not isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : int = [images] if single_image: assert len(_UpperCAmelCase) == 1 for i in range(len(_UpperCAmelCase)): if isinstance(images[i] , torch.Tensor): images.insert(_UpperCAmelCase , images.pop(_UpperCAmelCase).to(self.device).float()) elif not isinstance(images[i] , torch.Tensor): images.insert( _UpperCAmelCase , torch.as_tensor(img_tensorize(images.pop(_UpperCAmelCase) , input_format=self.input_format)) .to(self.device) .float() , ) # resize smallest edge __A : str = torch.tensor([im.shape[:2] for im in images]) __A : List[str] = self.aug(_UpperCAmelCase) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __A : Any = [self.normalizer(_UpperCAmelCase) for x in images] # now pad them to do the following operations __A ,__A : Any = self.pad(_UpperCAmelCase) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __A : str = torch.true_divide(_UpperCAmelCase , _UpperCAmelCase) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _lowerCAmelCase ( __snake_case : Dict , __snake_case : str ) -> Dict: boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : Tuple[int, int] ) -> int: assert torch.isfinite(__snake_case ).all(), "Box tensor contains infinite or NaN!" __A ,__A : int = box_size tensor[:, 0].clamp_(min=0 , max=__snake_case ) tensor[:, 1].clamp_(min=0 , max=__snake_case ) tensor[:, 2].clamp_(min=0 , max=__snake_case ) tensor[:, 3].clamp_(min=0 , max=__snake_case )
8
1
'''simple docstring''' import os from pathlib import Path def _lowerCAmelCase ( ) -> int: from torch.utils.cpp_extension import load __A : Tuple = Path(__snake_case ).resolve().parent.parent.parent / 'kernels' / 'deformable_detr' __A : Any = [ root / filename for filename in [ 'vision.cpp', os.path.join('cpu' , 'ms_deform_attn_cpu.cpp' ), os.path.join('cuda' , 'ms_deform_attn_cuda.cu' ), ] ] load( 'MultiScaleDeformableAttention' , __snake_case , with_cuda=__snake_case , extra_include_paths=[str(__snake_case )] , extra_cflags=['-DWITH_CUDA=1'] , extra_cuda_cflags=[ '-DCUDA_HAS_FP16=1', '-D__CUDA_NO_HALF_OPERATORS__', '-D__CUDA_NO_HALF_CONVERSIONS__', '-D__CUDA_NO_HALF2_OPERATORS__', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Optional[Any]: # noqa: E741 __A : Tuple = len(__snake_case ) __A : Optional[int] = 0 __A : str = [0] * n __A : int = [False] * n __A : Tuple = [False] * n def dfs(__snake_case : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : int ): if parent == root: out_edge_count += 1 __A : str = True __A : Tuple = at for to in l[at]: if to == parent: pass elif not visited[to]: __A : Optional[int] = dfs(__snake_case , __snake_case , __snake_case , __snake_case ) __A : int = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __A : Tuple = True # AP found via cycle if at == low[to]: __A : Optional[Any] = True else: __A : Any = min(low[at] , __snake_case ) return out_edge_count for i in range(__snake_case ): if not visited[i]: __A : Tuple = 0 __A : List[Any] = dfs(__snake_case , __snake_case , -1 , __snake_case ) __A : Union[str, Any] = out_edge_count > 1 for x in range(len(__snake_case ) ): if is_art[x] is True: print(__snake_case ) # Adjacency list of graph lowercase__ : Tuple = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
8
1
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = inspect.getfile(accelerate.test_utils) __A : Any = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ['scripts', 'test_script.py']) __A : List[str] = os.path.sep.join( mod_file.split(os.path.sep)[:-1] + ['scripts', 'test_distributed_data_loop.py']) __A : List[Any] = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ['scripts', 'test_ops.py']) @require_multi_gpu def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' print(F'Found {torch.cuda.device_count()} devices.') __A : Optional[Any] = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1): execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' print(F'Found {torch.cuda.device_count()} devices.') __A : Dict = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', self.operation_file_path] print(F'Command: {cmd}') with patch_environment(omp_num_threads=1): execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__)] with patch_environment(omp_num_threads=1): execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' print(F'Found {torch.cuda.device_count()} devices, using 2 devices only') __A : Optional[int] = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='0,1'): execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy()) if __name__ == "__main__": lowercase__ : List[Any] = Accelerator() lowercase__ : Optional[int] = (accelerator.state.process_index + 2, 10) lowercase__ : Optional[int] = torch.randint(0, 10, shape).to(accelerator.device) lowercase__ : Optional[Any] = '''''' lowercase__ : Dict = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." lowercase__ : Any = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." lowercase__ : str = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
8
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : int = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } lowercase__ : Dict = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _lowerCAmelCase ( __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Any , __snake_case : List[str] ) -> Union[str, Any]: for attribute in key.split('.' ): __A : int = getattr(__snake_case , __snake_case ) if weight_type is not None: __A : Optional[int] = getattr(__snake_case , __snake_case ).shape else: __A : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __A : Tuple = value elif weight_type == "weight_g": __A : Union[str, Any] = value elif weight_type == "weight_v": __A : Optional[Any] = value elif weight_type == "bias": __A : Optional[int] = value else: __A : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( __snake_case : Any , __snake_case : List[str] ) -> List[Any]: __A : Optional[Any] = [] __A : Any = fairseq_model.state_dict() __A : Union[str, Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): __A : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == 'group' , ) __A : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __A : int = True if "*" in mapped_key: __A : Any = name.split(__snake_case )[0].split('.' )[-2] __A : List[Any] = mapped_key.replace('*' , __snake_case ) if "weight_g" in name: __A : Optional[Any] = 'weight_g' elif "weight_v" in name: __A : Union[str, Any] = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: __A : Optional[Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __A : Tuple = 'weight' else: __A : Dict = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[int] ) -> int: __A : int = full_name.split('conv_layers.' )[-1] __A : List[str] = name.split('.' ) __A : Optional[int] = int(items[0] ) __A : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __A : Optional[int] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __A : Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) __A : Dict = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __A : Any = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) @torch.no_grad() def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple=None ) -> Any: # load the pre-trained checkpoints __A : List[str] = torch.load(__snake_case ) __A : Dict = WavLMConfigOrig(checkpoint['cfg'] ) __A : Optional[int] = WavLMOrig(__snake_case ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: __A : List[Any] = WavLMConfig.from_pretrained(__snake_case ) else: __A : Dict = WavLMConfig() __A : Optional[Any] = WavLMModel(__snake_case ) recursively_load_weights(__snake_case , __snake_case ) hf_wavlm.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowercase__ : Any = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
8
1
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors lowercase__ : Optional[Any] = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''sequence-classification''' def __init__( self , _UpperCAmelCase): '''simple docstring''' if type(_UpperCAmelCase) == dict: __A : List[str] = Namespace(**_UpperCAmelCase) __A : str = glue_output_modes[hparams.task] __A : str = glue_tasks_num_labels[hparams.task] super().__init__(_UpperCAmelCase , _UpperCAmelCase , self.mode) def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' return self.model(**_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __A : Any = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None __A : str = self(**_UpperCAmelCase) __A : Optional[int] = outputs[0] __A : Optional[int] = self.trainer.lr_schedulers[0]['scheduler'] __A : Tuple = {'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.hparams __A : str = processors[args.task]() __A : Tuple = processor.get_labels() for mode in ["train", "dev"]: __A : Optional[int] = self._feature_file(_UpperCAmelCase) if os.path.exists(_UpperCAmelCase) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , _UpperCAmelCase) else: logger.info('Creating features from dataset file at %s' , args.data_dir) __A : Dict = ( processor.get_dev_examples(args.data_dir) if mode == 'dev' else processor.get_train_examples(args.data_dir) ) __A : List[str] = convert_examples_to_features( _UpperCAmelCase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , _UpperCAmelCase) torch.save(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = False): '''simple docstring''' __A : Dict = 'dev' if mode == 'test' else mode __A : Any = self._feature_file(_UpperCAmelCase) logger.info('Loading features from cached file %s' , _UpperCAmelCase) __A : Optional[int] = torch.load(_UpperCAmelCase) __A : Any = torch.tensor([f.input_ids for f in features] , dtype=torch.long) __A : List[Any] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long) __A : Any = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long) if self.hparams.glue_output_mode == "classification": __A : int = torch.tensor([f.label for f in features] , dtype=torch.long) elif self.hparams.glue_output_mode == "regression": __A : List[str] = torch.tensor([f.label for f in features] , dtype=torch.float) return DataLoader( TensorDataset(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) , batch_size=_UpperCAmelCase , shuffle=_UpperCAmelCase , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : List[str] = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __A : Any = batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None __A : str = self(**_UpperCAmelCase) __A ,__A : Optional[int] = outputs[:2] __A : Dict = logits.detach().cpu().numpy() __A : Union[str, Any] = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : List[str] = torch.stack([x['val_loss'] for x in outputs]).mean().detach().cpu().item() __A : Optional[Any] = np.concatenate([x['pred'] for x in outputs] , axis=0) if self.hparams.glue_output_mode == "classification": __A : str = np.argmax(_UpperCAmelCase , axis=1) elif self.hparams.glue_output_mode == "regression": __A : Any = np.squeeze(_UpperCAmelCase) __A : Union[str, Any] = np.concatenate([x['target'] for x in outputs] , axis=0) __A : List[Any] = [[] for _ in range(out_label_ids.shape[0])] __A : List[str] = [[] for _ in range(out_label_ids.shape[0])] __A : int = {**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , _UpperCAmelCase , _UpperCAmelCase)} __A : Optional[Any] = dict(results.items()) __A : Tuple = results return ret, preds_list, out_label_list def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A ,__A ,__A : str = self._eval_end(_UpperCAmelCase) __A : int = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A ,__A ,__A : List[str] = self._eval_end(_UpperCAmelCase) __A : Union[str, Any] = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' BaseTransformer.add_model_specific_args(_UpperCAmelCase , _UpperCAmelCase) parser.add_argument( '--max_seq_length' , default=128 , type=_UpperCAmelCase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=_UpperCAmelCase , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets') return parser def _lowerCAmelCase ( ) -> List[Any]: __A : str = argparse.ArgumentParser() add_generic_args(__snake_case , os.getcwd() ) __A : Union[str, Any] = GLUETransformer.add_model_specific_args(__snake_case , os.getcwd() ) __A : Any = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: __A : Optional[int] = os.path.join( './results' , f'{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}' , ) os.makedirs(args.output_dir ) __A : int = GLUETransformer(__snake_case ) __A : int = generic_train(__snake_case , __snake_case ) # Optionally, predict on dev set and write to output_dir if args.do_predict: __A : Union[str, Any] = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=__snake_case ) ) __A : Tuple = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__snake_case ) if __name__ == "__main__": main()
8
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = 42 class SCREAMING_SNAKE_CASE (a__ , a__ ): @register_to_config def __init__( self , _UpperCAmelCase = 6_5536 , _UpperCAmelCase = None , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = 0 , _UpperCAmelCase = "fourier" , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = 0.0 , _UpperCAmelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _UpperCAmelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _UpperCAmelCase = "UNetMidBlock1D" , _UpperCAmelCase = None , _UpperCAmelCase = (32, 32, 64) , _UpperCAmelCase = None , _UpperCAmelCase = 8 , _UpperCAmelCase = 1 , _UpperCAmelCase = False , ): '''simple docstring''' super().__init__() __A : Dict = sample_size # time if time_embedding_type == "fourier": __A : int = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_UpperCAmelCase , log=_UpperCAmelCase , flip_sin_to_cos=_UpperCAmelCase) __A : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": __A : List[str] = Timesteps( block_out_channels[0] , flip_sin_to_cos=_UpperCAmelCase , downscale_freq_shift=_UpperCAmelCase) __A : List[str] = block_out_channels[0] if use_timestep_embedding: __A : Optional[Any] = block_out_channels[0] * 4 __A : Optional[int] = TimestepEmbedding( in_channels=_UpperCAmelCase , time_embed_dim=_UpperCAmelCase , act_fn=_UpperCAmelCase , out_dim=block_out_channels[0] , ) __A : Dict = nn.ModuleList([]) __A : Dict = None __A : Tuple = nn.ModuleList([]) __A : Tuple = None # down __A : Any = in_channels for i, down_block_type in enumerate(_UpperCAmelCase): __A : Tuple = output_channel __A : Optional[Any] = block_out_channels[i] if i == 0: input_channel += extra_in_channels __A : List[str] = i == len(_UpperCAmelCase) - 1 __A : int = get_down_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_UpperCAmelCase) # mid __A : str = get_mid_block( _UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_UpperCAmelCase , add_downsample=_UpperCAmelCase , ) # up __A : Optional[int] = list(reversed(_UpperCAmelCase)) __A : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: __A : str = out_channels else: __A : List[Any] = block_out_channels[0] for i, up_block_type in enumerate(_UpperCAmelCase): __A : Optional[Any] = output_channel __A : Optional[Any] = ( reversed_block_out_channels[i + 1] if i < len(_UpperCAmelCase) - 1 else final_upsample_channels ) __A : Dict = i == len(_UpperCAmelCase) - 1 __A : str = get_up_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_UpperCAmelCase) __A : Optional[int] = output_channel # out __A : str = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32) __A : Optional[Any] = get_out_block( out_block_type=_UpperCAmelCase , num_groups_out=_UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=_UpperCAmelCase , act_fn=_UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , ): '''simple docstring''' __A : Any = timestep if not torch.is_tensor(_UpperCAmelCase): __A : Any = torch.tensor([timesteps] , dtype=torch.long , device=sample.device) elif torch.is_tensor(_UpperCAmelCase) and len(timesteps.shape) == 0: __A : Any = timesteps[None].to(sample.device) __A : List[Any] = self.time_proj(_UpperCAmelCase) if self.config.use_timestep_embedding: __A : Dict = self.time_mlp(_UpperCAmelCase) else: __A : Dict = timestep_embed[..., None] __A : Tuple = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) __A : List[Any] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) # 2. down __A : int = () for downsample_block in self.down_blocks: __A ,__A : int = downsample_block(hidden_states=_UpperCAmelCase , temb=_UpperCAmelCase) down_block_res_samples += res_samples # 3. mid if self.mid_block: __A : Optional[int] = self.mid_block(_UpperCAmelCase , _UpperCAmelCase) # 4. up for i, upsample_block in enumerate(self.up_blocks): __A : Any = down_block_res_samples[-1:] __A : Optional[int] = down_block_res_samples[:-1] __A : Any = upsample_block(_UpperCAmelCase , res_hidden_states_tuple=_UpperCAmelCase , temb=_UpperCAmelCase) # 5. post-process if self.out_block: __A : Dict = self.out_block(_UpperCAmelCase , _UpperCAmelCase) if not return_dict: return (sample,) return UNetaDOutput(sample=_UpperCAmelCase)
8
1
'''simple docstring''' def _lowerCAmelCase ( __snake_case : float ) -> float: if edge <= 0 or not isinstance(__snake_case , __snake_case ): raise ValueError('Length must be a positive.' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def _lowerCAmelCase ( __snake_case : float ) -> float: if edge <= 0 or not isinstance(__snake_case , __snake_case ): raise ValueError('Length must be a positive.' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> int: if len(__snake_case ) != len(__snake_case ): raise ValueError('String lengths must match!' ) __A : Optional[Any] = 0 for chara, chara in zip(__snake_case , __snake_case ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowercase__ : List[str] = getLogger(__name__) lowercase__ : List[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : str , __snake_case : str , __snake_case : int = 8 , __snake_case : str = DEFAULT_DEVICE , __snake_case : Union[str, Any]=False , __snake_case : Optional[int]="summarization" , __snake_case : Dict=None , **__snake_case : List[str] , ) -> Dict: __A : Any = Path(__snake_case ).open('w' , encoding='utf-8' ) __A : List[str] = str(__snake_case ) __A : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(__snake_case ).to(__snake_case ) if fpaa: __A : Tuple = model.half() __A : Dict = AutoTokenizer.from_pretrained(__snake_case ) logger.info(f'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type. __A : List[str] = time.time() # update config with task specific params use_task_specific_params(__snake_case , __snake_case ) if prefix is None: __A : Dict = prefix or getattr(model.config , 'prefix' , '' ) or '' for examples_chunk in tqdm(list(chunks(__snake_case , __snake_case ) ) ): __A : Tuple = [prefix + text for text in examples_chunk] __A : List[Any] = tokenizer(__snake_case , return_tensors='pt' , truncation=__snake_case , padding='longest' ).to(__snake_case ) __A : Any = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **__snake_case , ) __A : Dict = tokenizer.batch_decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case ) for hypothesis in dec: fout.write(hypothesis + '\n' ) fout.flush() fout.close() __A : List[str] = int(time.time() - start_time ) # seconds __A : Dict = len(__snake_case ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def _lowerCAmelCase ( ) -> Optional[int]: return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' ) def _lowerCAmelCase ( __snake_case : Tuple=True ) -> int: __A : Any = argparse.ArgumentParser() parser.add_argument('model_name' , type=__snake_case , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('input_path' , type=__snake_case , help='like cnn_dm/test.source' ) parser.add_argument('save_path' , type=__snake_case , help='where to save summaries' ) parser.add_argument('--reference_path' , type=__snake_case , required=__snake_case , help='like cnn_dm/test.target' ) parser.add_argument('--score_path' , type=__snake_case , required=__snake_case , default='metrics.json' , help='where to save metrics' ) parser.add_argument('--device' , type=__snake_case , required=__snake_case , default=__snake_case , help='cuda, cuda:1, cpu etc.' ) parser.add_argument( '--prefix' , type=__snake_case , required=__snake_case , default=__snake_case , help='will be added to the begininng of src examples' ) parser.add_argument('--task' , type=__snake_case , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=__snake_case , default=8 , required=__snake_case , help='batch size' ) parser.add_argument( '--n_obs' , type=__snake_case , default=-1 , required=__snake_case , help='How many observations. Defaults to all.' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--dump-args' , action='store_true' , help='print the custom hparams with the results' ) parser.add_argument( '--info' , nargs='?' , type=__snake_case , const=datetime_now() , help=( 'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.' ' lang=en-ru. If no value is passed, the current datetime string will be used.' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __A ,__A : Optional[Any] = parser.parse_known_args() __A : List[str] = parse_numeric_n_bool_cl_kwargs(__snake_case ) if parsed_args and verbose: print(f'parsed the following generate kwargs: {parsed_args}' ) __A : List[Any] = [' ' + x.rstrip() if 't5' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __A : Optional[Any] = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=__snake_case ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f'score_path {args.score_path} will be overwritten unless you type ctrl-c.' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('Can\'t mix --fp16 and --device cpu' ) __A : Union[str, Any] = generate_summaries_or_translations( __snake_case , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **__snake_case , ) if args.reference_path is None: return {} # Compute scores __A : Dict = calculate_bleu if 'translation' in args.task else calculate_rouge __A : Dict = [x.rstrip() for x in open(args.save_path ).readlines()] __A : List[str] = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(__snake_case )] __A : dict = score_fn(__snake_case , __snake_case ) scores.update(__snake_case ) if args.dump_args: scores.update(__snake_case ) if args.info: __A : Union[str, Any] = args.info if verbose: print(__snake_case ) if args.score_path is not None: json.dump(__snake_case , open(args.score_path , 'w' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
8
'''simple docstring''' import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> Union[str, Any]: __A : int = RobertaPreLayerNormConfig.from_pretrained( __snake_case , architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict __A : Tuple = torch.load(hf_hub_download(repo_id=__snake_case , filename='pytorch_model.bin' ) ) __A : str = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): __A : Dict = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue __A : str = tensor_value __A : Union[str, Any] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__snake_case , config=__snake_case , state_dict=__snake_case ) model.save_pretrained(__snake_case ) # convert tokenizer __A : List[Any] = AutoTokenizer.from_pretrained(__snake_case ) tokenizer.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
8
1
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowercase__ : Any = '''hf-internal-testing/tiny-random-bert''' lowercase__ : Optional[Any] = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') lowercase__ : List[Any] = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase)) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase))) with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Any = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) self.assertTrue(os.path.isfile(_UpperCAmelCase)) # File is cached at the same place the second time. __A : Tuple = cached_file(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) # Using a specific revision to test the full commit hash. __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='9b8c223') self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): __A : Dict = cached_file('tiny-random-bert' , _UpperCAmelCase) with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): __A : Optional[int] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='aaaa') with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : int = cached_file(_UpperCAmelCase , 'conf') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : Any = cached_file(_UpperCAmelCase , 'conf') with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Dict = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '.no_exist' , _UpperCAmelCase , 'conf'))) __A : List[Any] = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : str = cached_file(_UpperCAmelCase , 'conf' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : List[str] = mock.Mock() __A : Dict = 500 __A : List[str] = {} __A : List[Any] = HTTPError __A : Optional[Any] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=_UpperCAmelCase) as mock_head: __A : Dict = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_connection_errors=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt')) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): get_file_from_repo('bert-base-case' , _UpperCAmelCase) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): get_file_from_repo('bert-base-cased' , _UpperCAmelCase , revision='ahaha') __A : List[str] = get_file_from_repo('bert-base-cased' , _UpperCAmelCase) # The name is the cached name which is not very easy to test, so instead we load the content. __A : List[str] = json.loads(open(_UpperCAmelCase , 'r').read()) self.assertEqual(config['hidden_size'] , 768) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __A : Tuple = Path(_UpperCAmelCase) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , 'a.txt') , str(_UpperCAmelCase)) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , 'b.txt'))
8
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings lowercase__ : Dict = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = field(default=a__ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = super().to_dict() for k, v in d.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : List[Any] = v.to_dict() return d
8
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''dandelin/vilt-b32-finetuned-vqa''' lowerCAmelCase = ( '''This is a tool that answers a question about an image. It takes an input named `image` which should be the ''' '''image containing the information, as well as a `question` which should be the question in English. It ''' '''returns a text that is the answer to the question.''' ) lowerCAmelCase = '''image_qa''' lowerCAmelCase = AutoProcessor lowerCAmelCase = AutoModelForVisualQuestionAnswering lowerCAmelCase = ['''image''', '''text'''] lowerCAmelCase = ['''text'''] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self , ['vision']) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' return self.pre_processor(_UpperCAmelCase , _UpperCAmelCase , return_tensors='pt') def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' with torch.no_grad(): return self.model(**_UpperCAmelCase).logits def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Any = outputs.argmax(-1).item() return self.model.config.idalabel[idx]
8
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : Optional[int] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''lxmert''' lowerCAmelCase = {} def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=9500 , _UpperCAmelCase=1600 , _UpperCAmelCase=400 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=9 , _UpperCAmelCase=5 , _UpperCAmelCase=5 , _UpperCAmelCase=2048 , _UpperCAmelCase=4 , _UpperCAmelCase=6.67 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , **_UpperCAmelCase , ): '''simple docstring''' __A : Tuple = vocab_size __A : int = hidden_size __A : str = num_attention_heads __A : Tuple = hidden_act __A : int = intermediate_size __A : str = hidden_dropout_prob __A : Optional[int] = attention_probs_dropout_prob __A : Optional[Any] = max_position_embeddings __A : Tuple = type_vocab_size __A : Optional[int] = initializer_range __A : Any = layer_norm_eps __A : Optional[Any] = num_qa_labels __A : Optional[int] = num_object_labels __A : Any = num_attr_labels __A : Union[str, Any] = l_layers __A : Optional[int] = x_layers __A : List[Any] = r_layers __A : Tuple = visual_feat_dim __A : Tuple = visual_pos_dim __A : Optional[int] = visual_loss_normalizer __A : int = task_matched __A : List[Any] = task_mask_lm __A : Optional[Any] = task_obj_predict __A : str = task_qa __A : List[Any] = visual_obj_loss __A : Optional[Any] = visual_attr_loss __A : Union[str, Any] = visual_feat_loss __A : Union[str, Any] = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**_UpperCAmelCase)
8
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase__ : List[Any] = { '''configuration_resnet''': ['''RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ResNetConfig''', '''ResNetOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[Any] = [ '''RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ResNetForImageClassification''', '''ResNetModel''', '''ResNetPreTrainedModel''', '''ResNetBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[Any] = [ '''TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFResNetForImageClassification''', '''TFResNetModel''', '''TFResNetPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[str] = [ '''FlaxResNetForImageClassification''', '''FlaxResNetModel''', '''FlaxResNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys lowercase__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
8
'''simple docstring''' import math import sys def _lowerCAmelCase ( __snake_case : int ) -> int: if number != int(__snake_case ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 __A : str = [-1] * (number + 1) __A : Dict = 0 for i in range(1 , number + 1 ): __A : int = sys.maxsize __A : int = int(math.sqrt(__snake_case ) ) for j in range(1 , root + 1 ): __A : str = 1 + answers[i - (j**2)] __A : Dict = min(__snake_case , __snake_case ) __A : Union[str, Any] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): lowerCAmelCase = ViTImageProcessor if is_vision_available() else None @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = (3, 32, 128) __A : List[str] = tempfile.mkdtemp() # fmt: off __A : Any = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on __A : Tuple = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase)))) __A : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(_UpperCAmelCase) + '\n') __A : Tuple = { 'do_normalize': False, 'do_resize': True, 'image_processor_type': 'ViTImageProcessor', 'resample': 3, 'size': {'height': 32, 'width': 128}, } __A : Any = os.path.join(self.tmpdirname , _UpperCAmelCase) with open(self.image_processor_file , 'w' , encoding='utf-8') as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta) __A : Optional[int] = Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1)) return image_input def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = self.get_tokenizer() __A : List[Any] = self.get_image_processor() __A : List[Any] = MgpstrProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) processor.save_pretrained(self.tmpdirname) __A : Any = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCAmelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.get_tokenizer() __A : List[str] = self.get_image_processor() __A : int = MgpstrProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) processor.save_pretrained(self.tmpdirname) __A : int = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') __A : Optional[Any] = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0) __A : Dict = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_UpperCAmelCase , padding_value=1.0) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.char_tokenizer , _UpperCAmelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.get_image_processor() __A : Any = self.get_tokenizer() __A : Any = MgpstrProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : int = self.prepare_image_inputs() __A : Tuple = image_processor(_UpperCAmelCase , return_tensors='np') __A : Optional[Any] = processor(images=_UpperCAmelCase , return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.get_image_processor() __A : Any = self.get_tokenizer() __A : Union[str, Any] = MgpstrProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : Any = 'test' __A : Union[str, Any] = processor(text=_UpperCAmelCase) __A : Tuple = tokenizer(_UpperCAmelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.get_image_processor() __A : Tuple = self.get_tokenizer() __A : List[str] = MgpstrProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : str = 'test' __A : Dict = self.prepare_image_inputs() __A : List[Any] = processor(text=_UpperCAmelCase , images=_UpperCAmelCase) self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'labels']) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase): processor() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.get_image_processor() __A : int = self.get_tokenizer() __A : Optional[int] = MgpstrProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __A : str = processor.char_decode(_UpperCAmelCase) __A : Union[str, Any] = tokenizer.batch_decode(_UpperCAmelCase) __A : Optional[int] = [seq.replace(' ' , '') for seq in decoded_tok] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = self.get_image_processor() __A : Optional[Any] = self.get_tokenizer() __A : Dict = MgpstrProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : int = None __A : Any = self.prepare_image_inputs() __A : Union[str, Any] = processor(text=_UpperCAmelCase , images=_UpperCAmelCase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.get_image_processor() __A : Optional[int] = self.get_tokenizer() __A : Optional[int] = MgpstrProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : Tuple = torch.randn(1 , 27 , 38) __A : Any = torch.randn(1 , 27 , 5_0257) __A : List[Any] = torch.randn(1 , 27 , 3_0522) __A : List[Any] = processor.batch_decode([char_input, bpe_input, wp_input]) self.assertListEqual(list(results.keys()) , ['generated_text', 'scores', 'char_preds', 'bpe_preds', 'wp_preds'])
8
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( __snake_case : list[int] , __snake_case : list[int] , __snake_case : int ) -> tuple[float, list[float]]: __A : int = list(range(len(__snake_case ) ) ) __A : Optional[Any] = [v / w for v, w in zip(__snake_case , __snake_case )] index.sort(key=lambda __snake_case : ratio[i] , reverse=__snake_case ) __A : float = 0 __A : list[float] = [0] * len(__snake_case ) for i in index: if weight[i] <= capacity: __A : Optional[int] = 1 max_value += value[i] capacity -= weight[i] else: __A : List[Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' from __future__ import annotations lowercase__ : Any = [] def _lowerCAmelCase ( __snake_case : list[list[int]] , __snake_case : int , __snake_case : int ) -> bool: for i in range(len(__snake_case ) ): if board[row][i] == 1: return False for i in range(len(__snake_case ) ): if board[i][column] == 1: return False for i, j in zip(range(__snake_case , -1 , -1 ) , range(__snake_case , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__snake_case , -1 , -1 ) , range(__snake_case , len(__snake_case ) ) ): if board[i][j] == 1: return False return True def _lowerCAmelCase ( __snake_case : list[list[int]] , __snake_case : int ) -> bool: if row >= len(__snake_case ): solution.append(__snake_case ) printboard(__snake_case ) print() return True for i in range(len(__snake_case ) ): if is_safe(__snake_case , __snake_case , __snake_case ): __A : Any = 1 solve(__snake_case , row + 1 ) __A : Tuple = 0 return False def _lowerCAmelCase ( __snake_case : list[list[int]] ) -> None: for i in range(len(__snake_case ) ): for j in range(len(__snake_case ) ): if board[i][j] == 1: print('Q' , end=' ' ) else: print('.' , end=' ' ) print() # n=int(input("The no. of queens")) lowercase__ : List[Any] = 8 lowercase__ : Any = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('''The total no. of solutions are :''', len(solution))
8
'''simple docstring''' from __future__ import annotations import math class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : int = size # approximate the overall size of segment tree with given value __A : Optional[Any] = [0 for i in range(0 , 4 * size)] # create array to store lazy update __A : Optional[Any] = [0 for i in range(0 , 4 * size)] __A : str = [0 for i in range(0 , 4 * size)] # flag for lazy update def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return idx * 2 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return idx * 2 + 1 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if left_element == right_element: __A : List[Any] = a[left_element - 1] else: __A : List[str] = (left_element + right_element) // 2 self.build(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.build(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase) __A : Any = max( self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)]) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.flag[idx] is True: __A : Optional[Any] = self.lazy[idx] __A : Optional[Any] = False if left_element != right_element: __A : List[Any] = self.lazy[idx] __A : Dict = self.lazy[idx] __A : Tuple = True __A : Union[str, Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: __A : Optional[int] = val if left_element != right_element: __A : Tuple = val __A : Any = val __A : Tuple = True __A : Union[str, Any] = True return True __A : str = (left_element + right_element) // 2 self.update(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.update(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : int = max( self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)]) return True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.flag[idx] is True: __A : Union[str, Any] = self.lazy[idx] __A : List[str] = False if left_element != right_element: __A : Union[str, Any] = self.lazy[idx] __A : Optional[int] = self.lazy[idx] __A : str = True __A : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] __A : Any = (left_element + right_element) // 2 __A : int = self.query(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : Union[str, Any] = self.query(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) return max(_UpperCAmelCase , _UpperCAmelCase) def __str__( self): '''simple docstring''' return str([self.query(1 , 1 , self.size , _UpperCAmelCase , _UpperCAmelCase) for i in range(1 , self.size + 1)]) if __name__ == "__main__": lowercase__ : Union[str, Any] = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] lowercase__ : str = 15 lowercase__ : List[Any] = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 1_11) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 2_35) print(segt)
8
1
'''simple docstring''' import torch from diffusers import DiffusionPipeline class SCREAMING_SNAKE_CASE (a__ ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' super().__init__() self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase) def __call__( self): '''simple docstring''' __A : int = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) __A : Dict = 1 __A : int = self.unet(_UpperCAmelCase , _UpperCAmelCase).sample __A : Any = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase).prev_sample __A : int = scheduler_output - scheduler_output + torch.ones_like(_UpperCAmelCase) return result
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int , __snake_case : int , __snake_case : int ) -> float: __A : Dict = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def _lowerCAmelCase ( ) -> Union[str, Any]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import torch from torch import nn class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=1 , _UpperCAmelCase=False): '''simple docstring''' super().__init__() __A : Optional[Any] = n_token __A : Tuple = d_embed __A : Dict = d_proj __A : List[Any] = cutoffs + [n_token] __A : Optional[int] = [0] + self.cutoffs __A : Optional[int] = div_val __A : Any = self.cutoffs[0] __A : Optional[Any] = len(self.cutoffs) - 1 __A : Union[str, Any] = self.shortlist_size + self.n_clusters if self.n_clusters > 0: __A : str = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed)) __A : str = nn.Parameter(torch.zeros(self.n_clusters)) __A : Any = nn.ModuleList() __A : str = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(_UpperCAmelCase , _UpperCAmelCase))) else: self.out_projs.append(_UpperCAmelCase) self.out_layers.append(nn.Linear(_UpperCAmelCase , _UpperCAmelCase)) else: for i in range(len(self.cutoffs)): __A ,__A : List[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] __A : List[str] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(_UpperCAmelCase , _UpperCAmelCase))) self.out_layers.append(nn.Linear(_UpperCAmelCase , r_idx - l_idx)) __A : Tuple = keep_order def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if proj is None: __A : Any = nn.functional.linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: __A : Optional[int] = nn.functional.linear(_UpperCAmelCase , proj.t().contiguous()) __A : Optional[Any] = nn.functional.linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=False): '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n __A : Any = hidden[..., :-1, :].contiguous() __A : int = labels[..., 1:].contiguous() __A : int = hidden.view(-1 , hidden.size(-1)) __A : Union[str, Any] = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError('Input and labels should have the same size in the batch dimension.') else: __A : Optional[int] = hidden.view(-1 , hidden.size(-1)) if self.n_clusters == 0: __A : int = self._compute_logit(_UpperCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) if labels is not None: __A : str = labels != -100 __A : Dict = torch.zeros_like(_UpperCAmelCase , dtype=hidden.dtype , device=hidden.device) __A : Dict = ( -nn.functional.log_softmax(_UpperCAmelCase , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1) ) else: __A : List[Any] = nn.functional.log_softmax(_UpperCAmelCase , dim=-1) else: # construct weights and biases __A ,__A : Union[str, Any] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: __A ,__A : Union[str, Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] __A : List[Any] = self.out_layers[0].weight[l_idx:r_idx] __A : List[Any] = self.out_layers[0].bias[l_idx:r_idx] else: __A : Dict = self.out_layers[i].weight __A : Dict = self.out_layers[i].bias if i == 0: __A : str = torch.cat([weight_i, self.cluster_weight] , dim=0) __A : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(_UpperCAmelCase) biases.append(_UpperCAmelCase) __A ,__A ,__A : Any = weights[0], biases[0], self.out_projs[0] __A : str = self._compute_logit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : Tuple = nn.functional.log_softmax(_UpperCAmelCase , dim=1) if labels is None: __A : Dict = hidden.new_empty((head_logit.size(0), self.n_token)) else: __A : Optional[int] = torch.zeros_like(_UpperCAmelCase , dtype=hidden.dtype , device=hidden.device) __A : Any = 0 __A : int = [0] + self.cutoffs for i in range(len(_UpperCAmelCase) - 1): __A ,__A : List[Any] = cutoff_values[i], cutoff_values[i + 1] if labels is not None: __A : Tuple = (labels >= l_idx) & (labels < r_idx) __A : Tuple = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue __A : Optional[int] = labels.index_select(0 , _UpperCAmelCase) - l_idx __A : Optional[int] = head_logprob.index_select(0 , _UpperCAmelCase) __A : List[Any] = hidden.index_select(0 , _UpperCAmelCase) else: __A : List[str] = hidden if i == 0: if labels is not None: __A : str = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1) else: __A : List[str] = head_logprob[:, : self.cutoffs[0]] else: __A ,__A ,__A : Tuple = weights[i], biases[i], self.out_projs[i] __A : Dict = self._compute_logit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : int = nn.functional.log_softmax(_UpperCAmelCase , dim=1) __A : List[Any] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: __A : Optional[int] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None]).squeeze(1) else: __A : List[Any] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i __A : Dict = logprob_i if labels is not None: if (hasattr(self , 'keep_order') and self.keep_order) or keep_order: out.index_copy_(0 , _UpperCAmelCase , -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if self.n_clusters == 0: __A : Tuple = self._compute_logit(_UpperCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) return nn.functional.log_softmax(_UpperCAmelCase , dim=-1) else: # construct weights and biases __A ,__A : Tuple = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: __A ,__A : int = self.cutoff_ends[i], self.cutoff_ends[i + 1] __A : str = self.out_layers[0].weight[l_idx:r_idx] __A : Optional[int] = self.out_layers[0].bias[l_idx:r_idx] else: __A : Optional[int] = self.out_layers[i].weight __A : Optional[int] = self.out_layers[i].bias if i == 0: __A : List[Any] = torch.cat([weight_i, self.cluster_weight] , dim=0) __A : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(_UpperCAmelCase) biases.append(_UpperCAmelCase) __A ,__A ,__A : Optional[int] = weights[0], biases[0], self.out_projs[0] __A : Any = self._compute_logit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : Optional[int] = hidden.new_empty((head_logit.size(0), self.n_token)) __A : str = nn.functional.log_softmax(_UpperCAmelCase , dim=1) __A : Dict = [0] + self.cutoffs for i in range(len(_UpperCAmelCase) - 1): __A ,__A : Optional[Any] = cutoff_values[i], cutoff_values[i + 1] if i == 0: __A : List[Any] = head_logprob[:, : self.cutoffs[0]] else: __A ,__A ,__A : Any = weights[i], biases[i], self.out_projs[i] __A : str = self._compute_logit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : Optional[Any] = nn.functional.log_softmax(_UpperCAmelCase , dim=1) __A : int = head_logprob[:, -i] + tail_logprob_i __A : Tuple = logprob_i return out
8
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): '''simple docstring''' __A : Optional[int] = parent __A : str = 13 __A : List[Any] = 7 __A : List[str] = True __A : str = True __A : Optional[Any] = True __A : int = True __A : Dict = 99 __A : Dict = 384 __A : Any = 2 __A : int = 4 __A : Optional[Any] = 37 __A : Optional[int] = 'gelu' __A : Dict = 0.1 __A : Optional[int] = 0.1 __A : Any = 512 __A : int = 16 __A : List[str] = 2 __A : str = 0.02 __A : Any = 3 __A : str = 4 __A : Union[str, Any] = 128 __A : int = 2 __A : List[Any] = 9 __A : List[Any] = 1 __A : List[Any] = None def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __A : str = None if self.use_input_mask: __A : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __A : Optional[Any] = None if self.use_token_type_ids: __A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __A : Optional[int] = None __A : List[str] = None __A : Dict = None if self.use_labels: __A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) __A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __A : str = ids_tensor([self.batch_size] , self.num_choices) __A : List[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = TFConvBertModel(config=_UpperCAmelCase) __A : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __A : Tuple = [input_ids, input_mask] __A : Any = model(_UpperCAmelCase) __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : str = TFConvBertForMaskedLM(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : str = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = self.num_labels __A : Any = TFConvBertForSequenceClassification(config=_UpperCAmelCase) __A : Optional[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Tuple = self.num_choices __A : List[str] = TFConvBertForMultipleChoice(config=_UpperCAmelCase) __A : int = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : Optional[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : List[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : int = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __A : Optional[Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = self.num_labels __A : List[Any] = TFConvBertForTokenClassification(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : int = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = TFConvBertForQuestionAnswering(config=_UpperCAmelCase) __A : Any = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Union[str, Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.prepare_config_and_inputs() ( ( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) , ) : Union[str, Any] = config_and_inputs __A : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = TFConvBertModelTester(self) __A : str = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __A : List[str] = True __A : List[str] = True if hasattr(_UpperCAmelCase , 'use_cache'): __A : List[Any] = True __A : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : Union[str, Any] = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) for model_class in self.all_model_classes: __A : List[str] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase) __A : Optional[int] = model_class(_UpperCAmelCase) __A : Optional[Any] = len(model(_UpperCAmelCase)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase) __A : Union[str, Any] = os.path.join(_UpperCAmelCase , 'saved_model' , '1') __A : Tuple = tf.keras.models.load_model(_UpperCAmelCase) __A : str = model(_UpperCAmelCase) if self.is_encoder_decoder: __A : Optional[int] = outputs['encoder_hidden_states'] __A : str = outputs['encoder_attentions'] else: __A : List[Any] = outputs['hidden_states'] __A : Optional[Any] = outputs['attentions'] self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) __A : str = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) self.assertListEqual( list(output_hidden_states[0].shape[-2:]) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(output_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') self.assertIsNotNone(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Any = True __A : str = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length) __A : Any = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : int = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) __A : Tuple = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) def check_decoder_attentions_output(_UpperCAmelCase): __A : List[str] = len(_UpperCAmelCase) self.assertEqual(out_len % 2 , 0) __A : Any = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCAmelCase): __A : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __A : Dict = True __A : Any = False __A : str = model_class(_UpperCAmelCase) __A : List[str] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : List[str] = len(_UpperCAmelCase) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) if self.is_encoder_decoder: __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : int = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_decoder_attentions_output(_UpperCAmelCase) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __A : int = True __A : Tuple = model_class(_UpperCAmelCase) __A : Dict = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) # Check attention is always last and order is fine __A : Any = True __A : str = True __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : Union[str, Any] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase)) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) @require_tf class SCREAMING_SNAKE_CASE (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') __A : str = tf.constant([[0, 1, 2, 3, 4, 5]]) __A : Optional[int] = model(_UpperCAmelCase)[0] __A : List[Any] = [1, 6, 768] self.assertEqual(output.shape , _UpperCAmelCase) __A : Tuple = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ]) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4)
8
1
'''simple docstring''' import math class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase=0): # a graph with Node 0,1,...,N-1 '''simple docstring''' __A : List[str] = n __A : List[str] = [ [math.inf for j in range(0 , _UpperCAmelCase)] for i in range(0 , _UpperCAmelCase) ] # adjacency matrix for weight __A : List[str] = [ [math.inf for j in range(0 , _UpperCAmelCase)] for i in range(0 , _UpperCAmelCase) ] # dp[i][j] stores minimum distance from i to j def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Tuple = w def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for k in range(0 , self.n): for i in range(0 , self.n): for j in range(0 , self.n): __A : List[str] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j]) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' return self.dp[u][v] if __name__ == "__main__": lowercase__ : Tuple = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
8
'''simple docstring''' import argparse import os import re lowercase__ : Optional[int] = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowercase__ : Dict = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowercase__ : List[str] = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase__ : Tuple = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowercase__ : str = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase__ : str = re.compile(r'''\[([^\]]+)\]''') def _lowerCAmelCase ( __snake_case : str ) -> Tuple: __A : List[Any] = _re_indent.search(__snake_case ) return "" if search is None else search.groups()[0] def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : str="" , __snake_case : Any=None , __snake_case : List[Any]=None ) -> Optional[int]: __A : Tuple = 0 __A : Optional[int] = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(__snake_case ): index += 1 __A : Optional[int] = ['\n'.join(lines[:index] )] else: __A : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __A : Tuple = [lines[index]] index += 1 while index < len(__snake_case ) and (end_prompt is None or not lines[index].startswith(__snake_case )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__snake_case ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(__snake_case ) ) if index < len(__snake_case ) - 1: __A : Union[str, Any] = [lines[index + 1]] index += 1 else: __A : Union[str, Any] = [] else: blocks.append('\n'.join(__snake_case ) ) __A : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__snake_case ) > 0: blocks.append('\n'.join(__snake_case ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__snake_case ): blocks.append('\n'.join(lines[index:] ) ) return blocks def _lowerCAmelCase ( __snake_case : List[Any] ) -> int: def _inner(__snake_case : List[Any] ): return key(__snake_case ).lower().replace('_' , '' ) return _inner def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any=None ) -> List[Any]: # If no key is provided, we use a noop. def noop(__snake_case : List[Any] ): return x if key is None: __A : Optional[Any] = noop # Constants are all uppercase, they go first. __A : str = [obj for obj in objects if key(__snake_case ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __A : List[str] = [obj for obj in objects if key(__snake_case )[0].isupper() and not key(__snake_case ).isupper()] # Functions begin with a lowercase, they go last. __A : str = [obj for obj in objects if not key(__snake_case )[0].isupper()] __A : Tuple = ignore_underscore(__snake_case ) return sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Tuple: # This inner function sort imports between [ ]. def _replace(__snake_case : Tuple ): __A : List[str] = match.groups()[0] if "," not in imports: return f'[{imports}]' __A : int = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Dict = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(__snake_case )] ) + "]" __A : List[Any] = import_statement.split('\n' ) if len(__snake_case ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __A : Optional[int] = 2 if lines[1].strip() == '[' else 1 __A : Any = [(i, _re_strip_line.search(__snake_case ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __A : Optional[int] = sort_objects(__snake_case , key=lambda __snake_case : x[1] ) __A : Any = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__snake_case ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __A : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] ) else: __A : Dict = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Tuple = keys[:-1] __A : List[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(__snake_case )] ) return "\n".join(__snake_case ) else: # Finally we have to deal with imports fitting on one line __A : Optional[Any] = _re_bracket_content.sub(_replace , __snake_case ) return import_statement def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : List[Any]=True ) -> Optional[Any]: with open(__snake_case , 'r' ) as f: __A : Dict = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __A : str = split_code_in_indented_blocks( __snake_case , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__snake_case ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __A : Tuple = main_blocks[block_idx] __A : int = block.split('\n' ) # Get to the start of the imports. __A : Tuple = 0 while line_idx < len(__snake_case ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __A : Optional[int] = len(__snake_case ) else: line_idx += 1 if line_idx >= len(__snake_case ): continue # Ignore beginning and last line: they don't contain anything. __A : Dict = '\n'.join(block_lines[line_idx:-1] ) __A : int = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __A : Optional[int] = split_code_in_indented_blocks(__snake_case , indent_level=__snake_case ) # We have two categories of import key: list or _import_structure[key].append/extend __A : Any = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __A : Dict = [(pattern.search(__snake_case ).groups()[0] if pattern.search(__snake_case ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __A : Optional[Any] = [(i, key) for i, key in enumerate(__snake_case ) if key is not None] __A : Tuple = [x[0] for x in sorted(__snake_case , key=lambda __snake_case : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __A : str = 0 __A : Any = [] for i in range(len(__snake_case ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __A : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(__snake_case ) count += 1 # And we put our main block back together with its first and last line. __A : int = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(__snake_case ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(__snake_case , 'w' ) as f: f.write('\n'.join(__snake_case ) ) def _lowerCAmelCase ( __snake_case : int=True ) -> Optional[Any]: __A : Tuple = [] for root, _, files in os.walk(__snake_case ): if "__init__.py" in files: __A : List[Any] = sort_imports(os.path.join(__snake_case , '__init__.py' ) , check_only=__snake_case ) if result: __A : Dict = [os.path.join(__snake_case , '__init__.py' )] if len(__snake_case ) > 0: raise ValueError(f'Would overwrite {len(__snake_case )} files, run `make style`.' ) if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowercase__ : Union[str, Any] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
8
1
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=sys.maxsize): '''simple docstring''' __A : Union[str, Any] = 'bilinear' __A : int = max_size __A : Optional[Any] = short_edge_length def __call__( self , _UpperCAmelCase): '''simple docstring''' __A : int = [] for img in imgs: __A ,__A : Dict = img.shape[:2] # later: provide list and randomly choose index for resize __A : List[Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1) if size == 0: return img __A : Tuple = size * 1.0 / min(_UpperCAmelCase , _UpperCAmelCase) if h < w: __A ,__A : Optional[Any] = size, scale * w else: __A ,__A : Optional[Any] = scale * h, size if max(_UpperCAmelCase , _UpperCAmelCase) > self.max_size: __A : Tuple = self.max_size * 1.0 / max(_UpperCAmelCase , _UpperCAmelCase) __A : Tuple = newh * scale __A : Dict = neww * scale __A : Dict = int(neww + 0.5) __A : Optional[int] = int(newh + 0.5) if img.dtype == np.uinta: __A : int = Image.fromarray(_UpperCAmelCase) __A : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR) __A : Dict = np.asarray(_UpperCAmelCase) else: __A : Optional[Any] = img.permute(2 , 0 , 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw __A : Dict = nn.functional.interpolate( _UpperCAmelCase , (newh, neww) , mode=self.interp_method , align_corners=_UpperCAmelCase).squeeze(0) img_augs.append(_UpperCAmelCase) return img_augs class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST) __A : List[Any] = cfg.INPUT.FORMAT __A : Dict = cfg.SIZE_DIVISIBILITY __A : str = cfg.PAD_VALUE __A : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST __A : int = cfg.MODEL.DEVICE __A : Tuple = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : int = lambda _UpperCAmelCase: (x - self.pixel_mean) / self.pixel_std def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = tuple(max(_UpperCAmelCase) for s in zip(*[img.shape for img in images])) __A : Dict = [im.shape[-2:] for im in images] __A : Optional[int] = [ nn.functional.pad( _UpperCAmelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_UpperCAmelCase , _UpperCAmelCase) ] return torch.stack(_UpperCAmelCase), torch.tensor(_UpperCAmelCase) def __call__( self , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' with torch.no_grad(): if not isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : int = [images] if single_image: assert len(_UpperCAmelCase) == 1 for i in range(len(_UpperCAmelCase)): if isinstance(images[i] , torch.Tensor): images.insert(_UpperCAmelCase , images.pop(_UpperCAmelCase).to(self.device).float()) elif not isinstance(images[i] , torch.Tensor): images.insert( _UpperCAmelCase , torch.as_tensor(img_tensorize(images.pop(_UpperCAmelCase) , input_format=self.input_format)) .to(self.device) .float() , ) # resize smallest edge __A : str = torch.tensor([im.shape[:2] for im in images]) __A : List[str] = self.aug(_UpperCAmelCase) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __A : Any = [self.normalizer(_UpperCAmelCase) for x in images] # now pad them to do the following operations __A ,__A : Any = self.pad(_UpperCAmelCase) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __A : str = torch.true_divide(_UpperCAmelCase , _UpperCAmelCase) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _lowerCAmelCase ( __snake_case : Dict , __snake_case : str ) -> Dict: boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : Tuple[int, int] ) -> int: assert torch.isfinite(__snake_case ).all(), "Box tensor contains infinite or NaN!" __A ,__A : int = box_size tensor[:, 0].clamp_(min=0 , max=__snake_case ) tensor[:, 1].clamp_(min=0 , max=__snake_case ) tensor[:, 2].clamp_(min=0 , max=__snake_case ) tensor[:, 3].clamp_(min=0 , max=__snake_case )
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int ) -> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') lowercase__ : int = int(input('''Enter number: ''').strip()) print(f"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
8
1
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class SCREAMING_SNAKE_CASE (a__ , a__ ): @register_to_config def __init__( self , _UpperCAmelCase = 128 , _UpperCAmelCase = 256 , _UpperCAmelCase = 2000.0 , _UpperCAmelCase = 768 , _UpperCAmelCase = 12 , _UpperCAmelCase = 12 , _UpperCAmelCase = 64 , _UpperCAmelCase = 2048 , _UpperCAmelCase = 0.1 , ): '''simple docstring''' super().__init__() __A : Tuple = nn.Sequential( nn.Linear(_UpperCAmelCase , d_model * 4 , bias=_UpperCAmelCase) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=_UpperCAmelCase) , nn.SiLU() , ) __A : Optional[Any] = nn.Embedding(_UpperCAmelCase , _UpperCAmelCase) __A : Dict = False __A : Any = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase) __A : Dict = nn.Dropout(p=_UpperCAmelCase) __A : Dict = nn.ModuleList() for lyr_num in range(_UpperCAmelCase): # FiLM conditional T5 decoder __A : str = DecoderLayer(d_model=_UpperCAmelCase , d_kv=_UpperCAmelCase , num_heads=_UpperCAmelCase , d_ff=_UpperCAmelCase , dropout_rate=_UpperCAmelCase) self.decoders.append(_UpperCAmelCase) __A : Dict = TaLayerNorm(_UpperCAmelCase) __A : Optional[int] = nn.Dropout(p=_UpperCAmelCase) __A : int = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = torch.mul(query_input.unsqueeze(-1) , key_input.unsqueeze(-2)) return mask.unsqueeze(-3) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A ,__A ,__A : Tuple = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. __A : Union[str, Any] = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype) __A : List[str] = self.conditioning_emb(_UpperCAmelCase).unsqueeze(1) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) __A : Union[str, Any] = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. __A : List[Any] = torch.broadcast_to( torch.arange(_UpperCAmelCase , device=decoder_input_tokens.device) , (batch, seq_length) , ) __A : str = self.position_encoding(_UpperCAmelCase) __A : List[str] = self.continuous_inputs_projection(_UpperCAmelCase) inputs += position_encodings __A : str = self.dropout(_UpperCAmelCase) # decoder: No padding present. __A : int = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype) # Translate encoding masks to encoder-decoder masks. __A : str = [(x, self.encoder_decoder_mask(_UpperCAmelCase , _UpperCAmelCase)) for x, y in encodings_and_masks] # cross attend style: concat encodings __A : Union[str, Any] = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1) __A : Dict = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1) for lyr in self.decoders: __A : List[str] = lyr( _UpperCAmelCase , conditioning_emb=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , )[0] __A : Optional[Any] = self.decoder_norm(_UpperCAmelCase) __A : Optional[int] = self.post_dropout(_UpperCAmelCase) __A : Optional[Any] = self.spec_out(_UpperCAmelCase) return spec_out class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=1e-6): '''simple docstring''' super().__init__() __A : str = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_UpperCAmelCase , d_kv=_UpperCAmelCase , num_heads=_UpperCAmelCase , dropout_rate=_UpperCAmelCase)) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_UpperCAmelCase , d_kv=_UpperCAmelCase , num_heads=_UpperCAmelCase , dropout_rate=_UpperCAmelCase , layer_norm_epsilon=_UpperCAmelCase , )) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_UpperCAmelCase , d_ff=_UpperCAmelCase , dropout_rate=_UpperCAmelCase , layer_norm_epsilon=_UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ): '''simple docstring''' __A : Union[str, Any] = self.layer[0]( _UpperCAmelCase , conditioning_emb=_UpperCAmelCase , attention_mask=_UpperCAmelCase , ) if encoder_hidden_states is not None: __A : Optional[Any] = torch.where(encoder_attention_mask > 0 , 0 , -1e1_0).to( encoder_hidden_states.dtype) __A : Dict = self.layer[1]( _UpperCAmelCase , key_value_states=_UpperCAmelCase , attention_mask=_UpperCAmelCase , ) # Apply Film Conditional Feed Forward layer __A : List[Any] = self.layer[-1](_UpperCAmelCase , _UpperCAmelCase) return (hidden_states,) class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' super().__init__() __A : int = TaLayerNorm(_UpperCAmelCase) __A : int = TaFiLMLayer(in_features=d_model * 4 , out_features=_UpperCAmelCase) __A : Optional[Any] = Attention(query_dim=_UpperCAmelCase , heads=_UpperCAmelCase , dim_head=_UpperCAmelCase , out_bias=_UpperCAmelCase , scale_qk=_UpperCAmelCase) __A : Dict = nn.Dropout(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , ): '''simple docstring''' __A : List[str] = self.layer_norm(_UpperCAmelCase) if conditioning_emb is not None: __A : List[Any] = self.FiLMLayer(_UpperCAmelCase , _UpperCAmelCase) # Self-attention block __A : Any = self.attention(_UpperCAmelCase) __A : Any = hidden_states + self.dropout(_UpperCAmelCase) return hidden_states class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' super().__init__() __A : Any = Attention(query_dim=_UpperCAmelCase , heads=_UpperCAmelCase , dim_head=_UpperCAmelCase , out_bias=_UpperCAmelCase , scale_qk=_UpperCAmelCase) __A : List[str] = TaLayerNorm(_UpperCAmelCase , eps=_UpperCAmelCase) __A : List[Any] = nn.Dropout(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , ): '''simple docstring''' __A : Tuple = self.layer_norm(_UpperCAmelCase) __A : str = self.attention( _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , attention_mask=attention_mask.squeeze(1) , ) __A : List[Any] = hidden_states + self.dropout(_UpperCAmelCase) return layer_output class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' super().__init__() __A : Any = TaDenseGatedActDense(d_model=_UpperCAmelCase , d_ff=_UpperCAmelCase , dropout_rate=_UpperCAmelCase) __A : List[Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=_UpperCAmelCase) __A : int = TaLayerNorm(_UpperCAmelCase , eps=_UpperCAmelCase) __A : Optional[int] = nn.Dropout(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=None): '''simple docstring''' __A : Optional[Any] = self.layer_norm(_UpperCAmelCase) if conditioning_emb is not None: __A : Optional[int] = self.film(_UpperCAmelCase , _UpperCAmelCase) __A : Optional[int] = self.DenseReluDense(_UpperCAmelCase) __A : Any = hidden_states + self.dropout(_UpperCAmelCase) return hidden_states class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' super().__init__() __A : List[str] = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase) __A : List[Any] = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase) __A : Optional[int] = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase) __A : Tuple = nn.Dropout(_UpperCAmelCase) __A : Tuple = NewGELUActivation() def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : str = self.act(self.wi_a(_UpperCAmelCase)) __A : List[Any] = self.wi_a(_UpperCAmelCase) __A : int = hidden_gelu * hidden_linear __A : List[Any] = self.dropout(_UpperCAmelCase) __A : int = self.wo(_UpperCAmelCase) return hidden_states class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase=1e-6): '''simple docstring''' super().__init__() __A : Optional[int] = nn.Parameter(torch.ones(_UpperCAmelCase)) __A : Optional[Any] = eps def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : str = hidden_states.to(torch.floataa).pow(2).mean(-1 , keepdim=_UpperCAmelCase) __A : str = hidden_states * torch.rsqrt(variance + self.variance_epsilon) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: __A : Optional[Any] = hidden_states.to(self.weight.dtype) return self.weight * hidden_states class SCREAMING_SNAKE_CASE (nn.Module ): def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (input + 0.044715 * torch.pow(_UpperCAmelCase , 3.0)))) class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' super().__init__() __A : Tuple = nn.Linear(_UpperCAmelCase , out_features * 2 , bias=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Dict = self.scale_bias(_UpperCAmelCase) __A ,__A : str = torch.chunk(_UpperCAmelCase , 2 , -1) __A : Optional[Any] = x * (1 + scale) + shift return x
8
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : str = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def _lowerCAmelCase ( __snake_case : List[Any] ) -> Tuple: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __A : Optional[Any] = k.replace(__snake_case , __snake_case ) if k.startswith('encoder' ): __A : Any = k.replace('.attn' , '.self_attn' ) __A : Any = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): __A : Tuple = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'encoder_attn_layer_norm' ) __A : int = k.replace('norm3' , 'final_layer_norm' ) return k def _lowerCAmelCase ( __snake_case : List[Any] ) -> Dict: __A : Optional[int] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: __A : Tuple = sd.pop(__snake_case ) __A : Union[str, Any] = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd __A : str = v lowercase__ : Tuple = ['''START'''] @torch.no_grad() def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any , __snake_case : List[Any] ) -> int: __A : List[str] = torch.load(__snake_case , map_location='cpu' ) __A : Tuple = model['model'] __A : str = BlenderbotConfig.from_json_file(__snake_case ) __A : int = BlenderbotForConditionalGeneration(__snake_case ) __A : List[Any] = m.model.state_dict().keys() __A : Optional[int] = [] __A : Optional[int] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __A : Union[str, Any] = rename_state_dict_key(__snake_case ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __A : Optional[Any] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__snake_case ) m.model.load_state_dict(__snake_case , strict=__snake_case ) m.half() m.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
8
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase__ : List[str] = { '''configuration_squeezebert''': [ '''SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SqueezeBertConfig''', '''SqueezeBertOnnxConfig''', ], '''tokenization_squeezebert''': ['''SqueezeBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[int] = ['''SqueezeBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[str] = [ '''SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SqueezeBertForMaskedLM''', '''SqueezeBertForMultipleChoice''', '''SqueezeBertForQuestionAnswering''', '''SqueezeBertForSequenceClassification''', '''SqueezeBertForTokenClassification''', '''SqueezeBertModel''', '''SqueezeBertModule''', '''SqueezeBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys lowercase__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
'''simple docstring''' import mpmath # for roots of unity import numpy as np class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None): '''simple docstring''' __A : List[Any] = list(poly_a or [0])[:] __A : Optional[int] = list(poly_b or [0])[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __A : Union[str, Any] = len(self.polyA) while self.polyB[-1] == 0: self.polyB.pop() __A : Optional[int] = len(self.polyB) # Add 0 to make lengths equal a power of 2 __A : Optional[Any] = int( 2 ** np.ceil(np.loga(len(self.polyA) + len(self.polyB) - 1))) while len(self.polyA) < self.c_max_length: self.polyA.append(0) while len(self.polyB) < self.c_max_length: self.polyB.append(0) # A complex root used for the fourier transform __A : str = complex(mpmath.root(x=1 , n=self.c_max_length , k=1)) # The product __A : Tuple = self.__multiply() def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(_UpperCAmelCase) <= 1: return dft[0] # __A : Dict = self.c_max_length // 2 while next_ncol > 0: __A : Optional[Any] = [[] for i in range(_UpperCAmelCase)] __A : Tuple = self.root**next_ncol # First half of next step __A : Optional[Any] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j]) current_root *= root # Second half of next step __A : List[str] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j]) current_root *= root # Update __A : Optional[int] = new_dft __A : Tuple = next_ncol // 2 return dft[0] def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.__dft('A') __A : Optional[Any] = self.__dft('B') __A : str = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]] del dft_a del dft_b # Corner Case if len(inverce_c[0]) <= 1: return inverce_c[0] # Inverse DFT __A : Dict = 2 while next_ncol <= self.c_max_length: __A : Optional[int] = [[] for i in range(_UpperCAmelCase)] __A : Any = self.root ** (next_ncol // 2) __A : Tuple = 1 # First half of next step for j in range(self.c_max_length // next_ncol): for i in range(next_ncol // 2): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root)) current_root *= root # Update __A : int = new_inverse_c next_ncol *= 2 # Unpack __A : Optional[int] = [round(x[0].real , 8) + round(x[0].imag , 8) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self): '''simple docstring''' __A : int = 'A = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A])) __A : Optional[Any] = 'B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B])) __A : str = 'A*B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.product)) return F'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser( description=( '''Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''bert''', choices=['''bert''']) parser.add_argument('''--model_name''', default='''bert-base-uncased''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_bert-base-uncased_0247911.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') lowercase__ : Dict = parser.parse_args() if args.model_type == "bert": lowercase__ : Dict = BertForMaskedLM.from_pretrained(args.model_name) lowercase__ : int = '''bert''' else: raise ValueError('''args.model_type should be "bert".''') lowercase__ : List[Any] = model.state_dict() lowercase__ : Optional[Any] = {} for w in ["word_embeddings", "position_embeddings"]: lowercase__ : Dict = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: lowercase__ : Any = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] lowercase__ : List[Any] = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: lowercase__ : Optional[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] lowercase__ : str = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] lowercase__ : Optional[int] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] lowercase__ : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] lowercase__ : List[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] lowercase__ : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] lowercase__ : List[str] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] lowercase__ : List[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 lowercase__ : int = state_dict['''cls.predictions.decoder.weight'''] lowercase__ : List[Any] = state_dict['''cls.predictions.bias'''] if args.vocab_transform: for w in ["weight", "bias"]: lowercase__ : Optional[Any] = state_dict[f"""cls.predictions.transform.dense.{w}"""] lowercase__ : Union[str, Any] = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
8
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=[30, 30] , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=None , _UpperCAmelCase=8 , _UpperCAmelCase=10 , ): '''simple docstring''' __A : Union[str, Any] = parent __A : Tuple = batch_size __A : List[str] = image_size __A : Dict = patch_size __A : Optional[Any] = num_channels __A : Tuple = is_training __A : Dict = use_labels __A : List[Any] = hidden_size __A : Tuple = num_hidden_layers __A : int = num_attention_heads __A : Optional[int] = intermediate_size __A : Tuple = hidden_act __A : Any = hidden_dropout_prob __A : Optional[Any] = attention_probs_dropout_prob __A : List[Any] = type_sequence_label_size __A : List[Any] = initializer_range __A : Optional[int] = num_labels __A : List[Any] = scope __A : Any = n_targets __A : Union[str, Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens __A : List[str] = (image_size[1] // patch_size) * (image_size[0] // patch_size) __A : int = num_patches + 1 + self.num_detection_tokens def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]]) __A : Tuple = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) __A : List[Any] = [] for i in range(self.batch_size): __A : Optional[int] = {} __A : Union[str, Any] = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=_UpperCAmelCase) __A : str = torch.rand(self.n_targets , 4 , device=_UpperCAmelCase) labels.append(_UpperCAmelCase) __A : Any = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosModel(config=_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosForObjectDetection(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : str = model(pixel_values=_UpperCAmelCase) __A : List[str] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) __A : Union[str, Any] = model(pixel_values=_UpperCAmelCase , labels=_UpperCAmelCase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.prepare_config_and_inputs() __A ,__A ,__A : Tuple = config_and_inputs __A : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowerCAmelCase = ( {'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' __A : Optional[Any] = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase) if return_labels: if model_class.__name__ == "YolosForObjectDetection": __A : Any = [] for i in range(self.model_tester.batch_size): __A : Tuple = {} __A : Tuple = torch.ones( size=(self.model_tester.n_targets,) , device=_UpperCAmelCase , dtype=torch.long) __A : Optional[Any] = torch.ones( self.model_tester.n_targets , 4 , device=_UpperCAmelCase , dtype=torch.float) labels.append(_UpperCAmelCase) __A : str = labels return inputs_dict def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = YolosModelTester(self) __A : Dict = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Tuple = model_class(_UpperCAmelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __A : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[Any] = model_class(_UpperCAmelCase) __A : str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : int = [*signature.parameters.keys()] __A : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Optional[int] = True # in YOLOS, the seq_len is different __A : Dict = self.model_tester.expected_seq_len for model_class in self.all_model_classes: __A : Dict = True __A : Dict = False __A : Union[str, Any] = True __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : Any = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] __A : List[Any] = True __A : List[str] = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __A : str = len(_UpperCAmelCase) # Check attention is always last and order is fine __A : Dict = True __A : Dict = True __A : Dict = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = 1 self.assertEqual(out_len + added_hidden_states , len(_UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.hidden_states __A : List[str] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) # YOLOS has a different seq_length __A : Dict = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[str] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A : Optional[int] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : List[Any] = YolosModel.from_pretrained(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase) def _lowerCAmelCase ( ) -> int: __A : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return AutoImageProcessor.from_pretrained('hustvl/yolos-small') if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = YolosForObjectDetection.from_pretrained('hustvl/yolos-small').to(_UpperCAmelCase) __A : Any = self.default_image_processor __A : str = prepare_img() __A : int = image_processor(images=_UpperCAmelCase , return_tensors='pt').to(_UpperCAmelCase) # forward pass with torch.no_grad(): __A : str = model(inputs.pixel_values) # verify outputs __A : Tuple = torch.Size((1, 100, 92)) self.assertEqual(outputs.logits.shape , _UpperCAmelCase) __A : Dict = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=_UpperCAmelCase , ) __A : int = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=_UpperCAmelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) # verify postprocessing __A : List[str] = image_processor.post_process_object_detection( _UpperCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]])[0] __A : Optional[int] = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861]).to(_UpperCAmelCase) __A : Union[str, Any] = [75, 75, 17, 63, 17] __A : Any = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495]).to(_UpperCAmelCase) self.assertEqual(len(results['scores']) , 5) self.assertTrue(torch.allclose(results['scores'] , _UpperCAmelCase , atol=1e-4)) self.assertSequenceEqual(results['labels'].tolist() , _UpperCAmelCase) self.assertTrue(torch.allclose(results['boxes'][0, :] , _UpperCAmelCase))
8
1
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def _lowerCAmelCase ( __snake_case : Optional[int] , __snake_case : str , __snake_case : Dict , __snake_case : Optional[Any] ) -> List[str]: __A : Any = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, nicht wahr?', } # BLUE scores as follows: # "pair": [fairseq, transformers] __A : Dict = { 'wmt16-en-de-dist-12-1': [28.3, 27.52], 'wmt16-en-de-dist-6-1': [27.4, 27.11], 'wmt16-en-de-12-1': [26.9, 25.75], } __A : Union[str, Any] = f'{src_lang}-{tgt_lang}' __A : Any = f'\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "allenai/{model_name}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n' model_card_dir.mkdir(parents=__snake_case , exist_ok=__snake_case ) __A : Union[str, Any] = os.path.join(__snake_case , 'README.md' ) print(f'Generating {path}' ) with open(__snake_case , 'w' , encoding='utf-8' ) as f: f.write(__snake_case ) # make sure we are under the root of the project lowercase__ : Dict = Path(__file__).resolve().parent.parent.parent lowercase__ : Tuple = repo_dir / '''model_cards''' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: lowercase__ : Any = model_cards_dir / '''allenai''' / model_name write_model_card(model_card_dir, src_lang='''en''', tgt_lang='''de''', model_name=model_name)
8
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: lowercase__ : Optional[int] = None lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ : List[str] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } lowercase__ : Dict = { '''camembert-base''': 5_12, } lowercase__ : str = '''▁''' class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] lowerCAmelCase = CamembertTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **_UpperCAmelCase , ): '''simple docstring''' __A : int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __A : List[str] = vocab_file __A : Optional[int] = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A : Optional[Any] = [self.cls_token_id] __A : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' __A : Optional[int] = [self.sep_token_id] __A : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(_UpperCAmelCase): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return __A : List[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCAmelCase): copyfile(self.vocab_file , _UpperCAmelCase) return (out_vocab_file,)
8
1
'''simple docstring''' import os def _lowerCAmelCase ( __snake_case : str = "matrix.txt" ) -> int: with open(os.path.join(os.path.dirname(__snake_case ) , __snake_case ) ) as in_file: __A : int = in_file.read() __A : List[str] = [[int(__snake_case ) for cell in row.split(',' )] for row in data.strip().splitlines()] __A : Tuple = [[0 for cell in row] for row in grid] __A : Any = len(grid[0] ) __A : Any = [[0 for i in range(__snake_case )] for j in range(__snake_case )] __A : List[str] = grid[0][0] for i in range(1 , __snake_case ): __A : Any = grid[0][i] + dp[0][i - 1] for i in range(1 , __snake_case ): __A : Optional[int] = grid[i][0] + dp[i - 1][0] for i in range(1 , __snake_case ): for j in range(1 , __snake_case ): __A : int = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(f"""{solution() = }""")
8
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowercase__ : Any = '''hf-internal-testing/tiny-random-bert''' lowercase__ : Optional[Any] = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') lowercase__ : List[Any] = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase)) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase))) with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Any = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) self.assertTrue(os.path.isfile(_UpperCAmelCase)) # File is cached at the same place the second time. __A : Tuple = cached_file(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) # Using a specific revision to test the full commit hash. __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='9b8c223') self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): __A : Dict = cached_file('tiny-random-bert' , _UpperCAmelCase) with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): __A : Optional[int] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='aaaa') with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : int = cached_file(_UpperCAmelCase , 'conf') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : Any = cached_file(_UpperCAmelCase , 'conf') with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Dict = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '.no_exist' , _UpperCAmelCase , 'conf'))) __A : List[Any] = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : str = cached_file(_UpperCAmelCase , 'conf' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : List[str] = mock.Mock() __A : Dict = 500 __A : List[str] = {} __A : List[Any] = HTTPError __A : Optional[Any] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=_UpperCAmelCase) as mock_head: __A : Dict = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_connection_errors=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt')) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): get_file_from_repo('bert-base-case' , _UpperCAmelCase) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): get_file_from_repo('bert-base-cased' , _UpperCAmelCase , revision='ahaha') __A : List[str] = get_file_from_repo('bert-base-cased' , _UpperCAmelCase) # The name is the cached name which is not very easy to test, so instead we load the content. __A : List[str] = json.loads(open(_UpperCAmelCase , 'r').read()) self.assertEqual(config['hidden_size'] , 768) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __A : Tuple = Path(_UpperCAmelCase) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , 'a.txt') , str(_UpperCAmelCase)) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , 'b.txt'))
8
1
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int , __snake_case : int ) -> int: while b: __A ,__A : str = b, a % b return a def _lowerCAmelCase ( __snake_case : int , __snake_case : int ) -> int: return a if b == 0 else euclidean_gcd_recursive(__snake_case , a % b ) def _lowerCAmelCase ( ) -> Any: print(f'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(f'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(f'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(f'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(f'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(f'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(f'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(f'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
8
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _lowerCAmelCase ( __snake_case : str , __snake_case : str , **__snake_case : List[Any] ) -> Any: __A : Optional[Any] = AutoConfig.from_pretrained(__snake_case , **__snake_case ) __A : int = AutoModelForSeqaSeqLM.from_config(__snake_case ) model.save_pretrained(__snake_case ) AutoTokenizer.from_pretrained(__snake_case ).save_pretrained(__snake_case ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
8
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = tempfile.mkdtemp() # fmt: off __A : List[Any] = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest'] # fmt: on __A : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) __A : List[Any] = { 'do_resize': True, 'size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.5, 0.5, 0.5], 'image_std': [0.5, 0.5, 0.5], } __A : int = os.path.join(self.tmpdirname , _UpperCAmelCase) with open(self.image_processor_file , 'w' , encoding='utf-8') as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] __A : List[str] = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1)) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.get_tokenizer() __A : List[Any] = self.get_image_processor() __A : Dict = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) processor.save_pretrained(self.tmpdirname) __A : Union[str, Any] = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast)) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) __A : Optional[Any] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') __A : Optional[Any] = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0) __A : Tuple = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_UpperCAmelCase , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast)) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.get_image_processor() __A : Any = self.get_tokenizer() __A : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : List[Any] = self.prepare_image_inputs() __A : str = image_processor(_UpperCAmelCase , return_tensors='np') __A : Tuple = processor(images=_UpperCAmelCase , return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.get_image_processor() __A : Optional[int] = self.get_tokenizer() __A : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : Union[str, Any] = 'lower newer' __A : Optional[Any] = processor(text=_UpperCAmelCase) __A : List[Any] = tokenizer(_UpperCAmelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = self.get_image_processor() __A : Any = self.get_tokenizer() __A : Any = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : Union[str, Any] = 'lower newer' __A : Dict = self.prepare_image_inputs() __A : Dict = processor(text=_UpperCAmelCase , images=_UpperCAmelCase) self.assertListEqual(list(inputs.keys()) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with self.assertRaises(_UpperCAmelCase): processor() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.get_image_processor() __A : Optional[int] = self.get_tokenizer() __A : List[str] = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A : List[str] = processor.batch_decode(_UpperCAmelCase) __A : Union[str, Any] = tokenizer.batch_decode(_UpperCAmelCase) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.get_image_processor() __A : Union[str, Any] = self.get_tokenizer() __A : str = VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : Optional[Any] = 'lower newer' __A : str = self.prepare_image_inputs() __A : str = processor(text=_UpperCAmelCase , images=_UpperCAmelCase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
8
'''simple docstring''' from ...configuration_utils import PretrainedConfig lowercase__ : Any = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''tapas''' def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1024 , _UpperCAmelCase=[3, 256, 256, 2, 256, 256, 10] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase=10.0 , _UpperCAmelCase=0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase="ratio" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __A : Dict = vocab_size __A : Tuple = hidden_size __A : Any = num_hidden_layers __A : int = num_attention_heads __A : Tuple = hidden_act __A : Tuple = intermediate_size __A : List[Any] = hidden_dropout_prob __A : int = attention_probs_dropout_prob __A : List[str] = max_position_embeddings __A : Optional[int] = type_vocab_sizes __A : str = initializer_range __A : List[str] = layer_norm_eps # Fine-tuning task hyperparameters __A : List[str] = positive_label_weight __A : List[Any] = num_aggregation_labels __A : Optional[Any] = aggregation_loss_weight __A : Tuple = use_answer_as_supervision __A : List[str] = answer_loss_importance __A : Any = use_normalized_answer_loss __A : Any = huber_loss_delta __A : Union[str, Any] = temperature __A : Tuple = aggregation_temperature __A : Optional[Any] = use_gumbel_for_cells __A : List[str] = use_gumbel_for_aggregation __A : Tuple = average_approximation_function __A : List[str] = cell_selection_preference __A : Dict = answer_loss_cutoff __A : Union[str, Any] = max_num_rows __A : Optional[Any] = max_num_columns __A : int = average_logits_per_cell __A : Optional[Any] = select_one_column __A : int = allow_empty_column_selection __A : List[Any] = init_cell_selection_weights_to_zero __A : int = reset_position_index_per_cell __A : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters __A : Optional[Any] = aggregation_labels __A : List[str] = no_aggregation_label_index if isinstance(self.aggregation_labels , _UpperCAmelCase): __A : Optional[Any] = {int(_UpperCAmelCase): v for k, v in aggregation_labels.items()}
8
1
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _lowerCAmelCase ( __snake_case : str , __snake_case : str , **__snake_case : List[Any] ) -> Any: __A : Optional[Any] = AutoConfig.from_pretrained(__snake_case , **__snake_case ) __A : int = AutoModelForSeqaSeqLM.from_config(__snake_case ) model.save_pretrained(__snake_case ) AutoTokenizer.from_pretrained(__snake_case ).save_pretrained(__snake_case ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
8
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=sys.maxsize): '''simple docstring''' __A : Union[str, Any] = 'bilinear' __A : int = max_size __A : Optional[Any] = short_edge_length def __call__( self , _UpperCAmelCase): '''simple docstring''' __A : int = [] for img in imgs: __A ,__A : Dict = img.shape[:2] # later: provide list and randomly choose index for resize __A : List[Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1) if size == 0: return img __A : Tuple = size * 1.0 / min(_UpperCAmelCase , _UpperCAmelCase) if h < w: __A ,__A : Optional[Any] = size, scale * w else: __A ,__A : Optional[Any] = scale * h, size if max(_UpperCAmelCase , _UpperCAmelCase) > self.max_size: __A : Tuple = self.max_size * 1.0 / max(_UpperCAmelCase , _UpperCAmelCase) __A : Tuple = newh * scale __A : Dict = neww * scale __A : Dict = int(neww + 0.5) __A : Optional[int] = int(newh + 0.5) if img.dtype == np.uinta: __A : int = Image.fromarray(_UpperCAmelCase) __A : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR) __A : Dict = np.asarray(_UpperCAmelCase) else: __A : Optional[Any] = img.permute(2 , 0 , 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw __A : Dict = nn.functional.interpolate( _UpperCAmelCase , (newh, neww) , mode=self.interp_method , align_corners=_UpperCAmelCase).squeeze(0) img_augs.append(_UpperCAmelCase) return img_augs class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST) __A : List[Any] = cfg.INPUT.FORMAT __A : Dict = cfg.SIZE_DIVISIBILITY __A : str = cfg.PAD_VALUE __A : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST __A : int = cfg.MODEL.DEVICE __A : Tuple = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : int = lambda _UpperCAmelCase: (x - self.pixel_mean) / self.pixel_std def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = tuple(max(_UpperCAmelCase) for s in zip(*[img.shape for img in images])) __A : Dict = [im.shape[-2:] for im in images] __A : Optional[int] = [ nn.functional.pad( _UpperCAmelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_UpperCAmelCase , _UpperCAmelCase) ] return torch.stack(_UpperCAmelCase), torch.tensor(_UpperCAmelCase) def __call__( self , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' with torch.no_grad(): if not isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : int = [images] if single_image: assert len(_UpperCAmelCase) == 1 for i in range(len(_UpperCAmelCase)): if isinstance(images[i] , torch.Tensor): images.insert(_UpperCAmelCase , images.pop(_UpperCAmelCase).to(self.device).float()) elif not isinstance(images[i] , torch.Tensor): images.insert( _UpperCAmelCase , torch.as_tensor(img_tensorize(images.pop(_UpperCAmelCase) , input_format=self.input_format)) .to(self.device) .float() , ) # resize smallest edge __A : str = torch.tensor([im.shape[:2] for im in images]) __A : List[str] = self.aug(_UpperCAmelCase) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __A : Any = [self.normalizer(_UpperCAmelCase) for x in images] # now pad them to do the following operations __A ,__A : Any = self.pad(_UpperCAmelCase) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __A : str = torch.true_divide(_UpperCAmelCase , _UpperCAmelCase) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _lowerCAmelCase ( __snake_case : Dict , __snake_case : str ) -> Dict: boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : Tuple[int, int] ) -> int: assert torch.isfinite(__snake_case ).all(), "Box tensor contains infinite or NaN!" __A ,__A : int = box_size tensor[:, 0].clamp_(min=0 , max=__snake_case ) tensor[:, 1].clamp_(min=0 , max=__snake_case ) tensor[:, 2].clamp_(min=0 , max=__snake_case ) tensor[:, 3].clamp_(min=0 , max=__snake_case )
8
1
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging lowercase__ : Optional[Any] = logging.get_logger(__name__) lowercase__ : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED lowercase__ : Any = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } lowercase__ : List[str] = { '''allenai/led-base-16384''': 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def _lowerCAmelCase ( ) -> Optional[Any]: __A : Union[str, Any] = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) __A : Tuple = bs[:] __A : Tuple = 0 for b in range(2**8 ): if b not in bs: bs.append(__snake_case ) cs.append(2**8 + n ) n += 1 __A : Any = [chr(__snake_case ) for n in cs] return dict(zip(__snake_case , __snake_case ) ) def _lowerCAmelCase ( __snake_case : Tuple ) -> str: __A : List[str] = set() __A : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __A : Dict = char return pairs class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="replace" , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=False , **_UpperCAmelCase , ): '''simple docstring''' __A : Optional[Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else bos_token __A : List[Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else eos_token __A : List[Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else sep_token __A : List[Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else cls_token __A : Optional[Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else unk_token __A : Optional[int] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else pad_token # Mask token behave like a normal word, i.e. include the space before it __A : Tuple = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else mask_token super().__init__( errors=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , **_UpperCAmelCase , ) with open(_UpperCAmelCase , encoding='utf-8') as vocab_handle: __A : List[Any] = json.load(_UpperCAmelCase) __A : Optional[Any] = {v: k for k, v in self.encoder.items()} __A : List[str] = errors # how to handle errors in decoding __A : Dict = bytes_to_unicode() __A : List[Any] = {v: k for k, v in self.byte_encoder.items()} with open(_UpperCAmelCase , encoding='utf-8') as merges_handle: __A : Any = merges_handle.read().split('\n')[1:-1] __A : List[str] = [tuple(merge.split()) for merge in bpe_merges] __A : Optional[int] = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase)))) __A : Optional[Any] = {} __A : Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __A : Optional[int] = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+') @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return len(self.encoder) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if token in self.cache: return self.cache[token] __A : Union[str, Any] = tuple(_UpperCAmelCase) __A : int = get_pairs(_UpperCAmelCase) if not pairs: return token while True: __A : int = min(_UpperCAmelCase , key=lambda _UpperCAmelCase: self.bpe_ranks.get(_UpperCAmelCase , float('inf'))) if bigram not in self.bpe_ranks: break __A ,__A : Union[str, Any] = bigram __A : Tuple = [] __A : List[str] = 0 while i < len(_UpperCAmelCase): try: __A : Any = word.index(_UpperCAmelCase , _UpperCAmelCase) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) __A : int = j if word[i] == first and i < len(_UpperCAmelCase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 __A : Optional[Any] = tuple(_UpperCAmelCase) __A : Dict = new_word if len(_UpperCAmelCase) == 1: break else: __A : Union[str, Any] = get_pairs(_UpperCAmelCase) __A : List[str] = ' '.join(_UpperCAmelCase) __A : Tuple = word return word def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : int = [] for token in re.findall(self.pat , _UpperCAmelCase): __A : Dict = ''.join( self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_UpperCAmelCase).split(' ')) return bpe_tokens def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return self.encoder.get(_UpperCAmelCase , self.encoder.get(self.unk_token)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return self.decoder.get(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = ''.join(_UpperCAmelCase) __A : Any = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8' , errors=self.errors) return text def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if not os.path.isdir(_UpperCAmelCase): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return __A : str = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) __A : Any = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(_UpperCAmelCase , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCAmelCase , ensure_ascii=_UpperCAmelCase) + '\n') __A : List[str] = 0 with open(_UpperCAmelCase , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _UpperCAmelCase: kv[1]): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!') __A : Tuple = token_index writer.write(' '.join(_UpperCAmelCase) + '\n') index += 1 return vocab_file, merge_file def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A : str = [self.cls_token_id] __A : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase)) + [1] return [1] + ([0] * len(_UpperCAmelCase)) + [1, 1] + ([0] * len(_UpperCAmelCase)) + [1] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' __A : int = [self.sep_token_id] __A : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=False , **_UpperCAmelCase): '''simple docstring''' __A : Dict = kwargs.pop('add_prefix_space' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(_UpperCAmelCase) > 0 and not text[0].isspace()): __A : Any = ' ' + text return (text, kwargs) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = PaddingStrategy.DO_NOT_PAD , _UpperCAmelCase = None , _UpperCAmelCase = None , ): '''simple docstring''' __A : Dict = super()._pad( encoded_inputs=_UpperCAmelCase , max_length=_UpperCAmelCase , padding_strategy=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: __A : str = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __A : Dict = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __A : Dict = len(encoded_inputs['global_attention_mask']) != len(_UpperCAmelCase) if needs_to_be_padded: __A : Optional[Any] = len(_UpperCAmelCase) - len(encoded_inputs['global_attention_mask']) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __A : str = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": __A : Any = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side)) return encoded_inputs
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Optional[Any]: # noqa: E741 __A : Tuple = len(__snake_case ) __A : Optional[int] = 0 __A : str = [0] * n __A : int = [False] * n __A : Tuple = [False] * n def dfs(__snake_case : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : int ): if parent == root: out_edge_count += 1 __A : str = True __A : Tuple = at for to in l[at]: if to == parent: pass elif not visited[to]: __A : Optional[int] = dfs(__snake_case , __snake_case , __snake_case , __snake_case ) __A : int = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __A : Tuple = True # AP found via cycle if at == low[to]: __A : Optional[Any] = True else: __A : Any = min(low[at] , __snake_case ) return out_edge_count for i in range(__snake_case ): if not visited[i]: __A : Tuple = 0 __A : List[Any] = dfs(__snake_case , __snake_case , -1 , __snake_case ) __A : Union[str, Any] = out_edge_count > 1 for x in range(len(__snake_case ) ): if is_art[x] is True: print(__snake_case ) # Adjacency list of graph lowercase__ : Tuple = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
8
1
'''simple docstring''' import argparse import os import re lowercase__ : Optional[int] = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowercase__ : Dict = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowercase__ : List[str] = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase__ : Tuple = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowercase__ : str = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase__ : str = re.compile(r'''\[([^\]]+)\]''') def _lowerCAmelCase ( __snake_case : str ) -> Tuple: __A : List[Any] = _re_indent.search(__snake_case ) return "" if search is None else search.groups()[0] def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : str="" , __snake_case : Any=None , __snake_case : List[Any]=None ) -> Optional[int]: __A : Tuple = 0 __A : Optional[int] = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(__snake_case ): index += 1 __A : Optional[int] = ['\n'.join(lines[:index] )] else: __A : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __A : Tuple = [lines[index]] index += 1 while index < len(__snake_case ) and (end_prompt is None or not lines[index].startswith(__snake_case )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__snake_case ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(__snake_case ) ) if index < len(__snake_case ) - 1: __A : Union[str, Any] = [lines[index + 1]] index += 1 else: __A : Union[str, Any] = [] else: blocks.append('\n'.join(__snake_case ) ) __A : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__snake_case ) > 0: blocks.append('\n'.join(__snake_case ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__snake_case ): blocks.append('\n'.join(lines[index:] ) ) return blocks def _lowerCAmelCase ( __snake_case : List[Any] ) -> int: def _inner(__snake_case : List[Any] ): return key(__snake_case ).lower().replace('_' , '' ) return _inner def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any=None ) -> List[Any]: # If no key is provided, we use a noop. def noop(__snake_case : List[Any] ): return x if key is None: __A : Optional[Any] = noop # Constants are all uppercase, they go first. __A : str = [obj for obj in objects if key(__snake_case ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __A : List[str] = [obj for obj in objects if key(__snake_case )[0].isupper() and not key(__snake_case ).isupper()] # Functions begin with a lowercase, they go last. __A : str = [obj for obj in objects if not key(__snake_case )[0].isupper()] __A : Tuple = ignore_underscore(__snake_case ) return sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Tuple: # This inner function sort imports between [ ]. def _replace(__snake_case : Tuple ): __A : List[str] = match.groups()[0] if "," not in imports: return f'[{imports}]' __A : int = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Dict = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(__snake_case )] ) + "]" __A : List[Any] = import_statement.split('\n' ) if len(__snake_case ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __A : Optional[int] = 2 if lines[1].strip() == '[' else 1 __A : Any = [(i, _re_strip_line.search(__snake_case ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __A : Optional[int] = sort_objects(__snake_case , key=lambda __snake_case : x[1] ) __A : Any = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__snake_case ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __A : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] ) else: __A : Dict = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Tuple = keys[:-1] __A : List[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(__snake_case )] ) return "\n".join(__snake_case ) else: # Finally we have to deal with imports fitting on one line __A : Optional[Any] = _re_bracket_content.sub(_replace , __snake_case ) return import_statement def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : List[Any]=True ) -> Optional[Any]: with open(__snake_case , 'r' ) as f: __A : Dict = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __A : str = split_code_in_indented_blocks( __snake_case , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__snake_case ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __A : Tuple = main_blocks[block_idx] __A : int = block.split('\n' ) # Get to the start of the imports. __A : Tuple = 0 while line_idx < len(__snake_case ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __A : Optional[int] = len(__snake_case ) else: line_idx += 1 if line_idx >= len(__snake_case ): continue # Ignore beginning and last line: they don't contain anything. __A : Dict = '\n'.join(block_lines[line_idx:-1] ) __A : int = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __A : Optional[int] = split_code_in_indented_blocks(__snake_case , indent_level=__snake_case ) # We have two categories of import key: list or _import_structure[key].append/extend __A : Any = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __A : Dict = [(pattern.search(__snake_case ).groups()[0] if pattern.search(__snake_case ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __A : Optional[Any] = [(i, key) for i, key in enumerate(__snake_case ) if key is not None] __A : Tuple = [x[0] for x in sorted(__snake_case , key=lambda __snake_case : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __A : str = 0 __A : Any = [] for i in range(len(__snake_case ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __A : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(__snake_case ) count += 1 # And we put our main block back together with its first and last line. __A : int = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(__snake_case ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(__snake_case , 'w' ) as f: f.write('\n'.join(__snake_case ) ) def _lowerCAmelCase ( __snake_case : int=True ) -> Optional[Any]: __A : Tuple = [] for root, _, files in os.walk(__snake_case ): if "__init__.py" in files: __A : List[Any] = sort_imports(os.path.join(__snake_case , '__init__.py' ) , check_only=__snake_case ) if result: __A : Dict = [os.path.join(__snake_case , '__init__.py' )] if len(__snake_case ) > 0: raise ValueError(f'Would overwrite {len(__snake_case )} files, run `make style`.' ) if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowercase__ : Union[str, Any] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
8
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : int = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } lowercase__ : Dict = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _lowerCAmelCase ( __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Any , __snake_case : List[str] ) -> Union[str, Any]: for attribute in key.split('.' ): __A : int = getattr(__snake_case , __snake_case ) if weight_type is not None: __A : Optional[int] = getattr(__snake_case , __snake_case ).shape else: __A : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __A : Tuple = value elif weight_type == "weight_g": __A : Union[str, Any] = value elif weight_type == "weight_v": __A : Optional[Any] = value elif weight_type == "bias": __A : Optional[int] = value else: __A : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( __snake_case : Any , __snake_case : List[str] ) -> List[Any]: __A : Optional[Any] = [] __A : Any = fairseq_model.state_dict() __A : Union[str, Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): __A : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == 'group' , ) __A : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __A : int = True if "*" in mapped_key: __A : Any = name.split(__snake_case )[0].split('.' )[-2] __A : List[Any] = mapped_key.replace('*' , __snake_case ) if "weight_g" in name: __A : Optional[Any] = 'weight_g' elif "weight_v" in name: __A : Union[str, Any] = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: __A : Optional[Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __A : Tuple = 'weight' else: __A : Dict = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[int] ) -> int: __A : int = full_name.split('conv_layers.' )[-1] __A : List[str] = name.split('.' ) __A : Optional[int] = int(items[0] ) __A : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __A : Optional[int] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __A : Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) __A : Dict = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __A : Any = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) @torch.no_grad() def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple=None ) -> Any: # load the pre-trained checkpoints __A : List[str] = torch.load(__snake_case ) __A : Dict = WavLMConfigOrig(checkpoint['cfg'] ) __A : Optional[int] = WavLMOrig(__snake_case ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: __A : List[Any] = WavLMConfig.from_pretrained(__snake_case ) else: __A : Dict = WavLMConfig() __A : Optional[Any] = WavLMModel(__snake_case ) recursively_load_weights(__snake_case , __snake_case ) hf_wavlm.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowercase__ : Any = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
8
1
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE (a__ , unittest.TestCase ): lowerCAmelCase = OpenAIGPTTokenizer lowerCAmelCase = OpenAIGPTTokenizerFast lowerCAmelCase = True lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __A : Optional[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __A : Dict = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase)))) __A : List[Any] = ['#version: 0.2', 'l o', 'lo w', 'e r</w>', ''] __A : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) __A : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w') as fp: fp.write(json.dumps(_UpperCAmelCase)) with open(self.merges_file , 'w') as fp: fp.write('\n'.join(_UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return "lower newer", "lower newer" def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = OpenAIGPTTokenizer(self.vocab_file , self.merges_file) __A : int = 'lower' __A : Dict = ['low', 'er</w>'] __A : Union[str, Any] = tokenizer.tokenize(_UpperCAmelCase) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase) __A : Dict = tokens + ['<unk>'] __A : str = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase) , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase=15): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})'): __A : int = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase) # Simple input __A : Tuple = 'This is a simple input' __A : Dict = ['This is a simple input 1', 'This is a simple input 2'] __A : int = ('This is a simple input', 'This is a pair') __A : List[Any] = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length') # Simple input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length') # Simple input self.assertRaises( _UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , ) # Pair input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length') # Pair input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length') # Pair input self.assertRaises( _UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass @require_ftfy @require_spacy @require_tokenizers class SCREAMING_SNAKE_CASE (a__ ): pass
8
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = 42 class SCREAMING_SNAKE_CASE (a__ , a__ ): @register_to_config def __init__( self , _UpperCAmelCase = 6_5536 , _UpperCAmelCase = None , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = 0 , _UpperCAmelCase = "fourier" , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = 0.0 , _UpperCAmelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _UpperCAmelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _UpperCAmelCase = "UNetMidBlock1D" , _UpperCAmelCase = None , _UpperCAmelCase = (32, 32, 64) , _UpperCAmelCase = None , _UpperCAmelCase = 8 , _UpperCAmelCase = 1 , _UpperCAmelCase = False , ): '''simple docstring''' super().__init__() __A : Dict = sample_size # time if time_embedding_type == "fourier": __A : int = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_UpperCAmelCase , log=_UpperCAmelCase , flip_sin_to_cos=_UpperCAmelCase) __A : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": __A : List[str] = Timesteps( block_out_channels[0] , flip_sin_to_cos=_UpperCAmelCase , downscale_freq_shift=_UpperCAmelCase) __A : List[str] = block_out_channels[0] if use_timestep_embedding: __A : Optional[Any] = block_out_channels[0] * 4 __A : Optional[int] = TimestepEmbedding( in_channels=_UpperCAmelCase , time_embed_dim=_UpperCAmelCase , act_fn=_UpperCAmelCase , out_dim=block_out_channels[0] , ) __A : Dict = nn.ModuleList([]) __A : Dict = None __A : Tuple = nn.ModuleList([]) __A : Tuple = None # down __A : Any = in_channels for i, down_block_type in enumerate(_UpperCAmelCase): __A : Tuple = output_channel __A : Optional[Any] = block_out_channels[i] if i == 0: input_channel += extra_in_channels __A : List[str] = i == len(_UpperCAmelCase) - 1 __A : int = get_down_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_UpperCAmelCase) # mid __A : str = get_mid_block( _UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_UpperCAmelCase , add_downsample=_UpperCAmelCase , ) # up __A : Optional[int] = list(reversed(_UpperCAmelCase)) __A : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: __A : str = out_channels else: __A : List[Any] = block_out_channels[0] for i, up_block_type in enumerate(_UpperCAmelCase): __A : Optional[Any] = output_channel __A : Optional[Any] = ( reversed_block_out_channels[i + 1] if i < len(_UpperCAmelCase) - 1 else final_upsample_channels ) __A : Dict = i == len(_UpperCAmelCase) - 1 __A : str = get_up_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_UpperCAmelCase) __A : Optional[int] = output_channel # out __A : str = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32) __A : Optional[Any] = get_out_block( out_block_type=_UpperCAmelCase , num_groups_out=_UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=_UpperCAmelCase , act_fn=_UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , ): '''simple docstring''' __A : Any = timestep if not torch.is_tensor(_UpperCAmelCase): __A : Any = torch.tensor([timesteps] , dtype=torch.long , device=sample.device) elif torch.is_tensor(_UpperCAmelCase) and len(timesteps.shape) == 0: __A : Any = timesteps[None].to(sample.device) __A : List[Any] = self.time_proj(_UpperCAmelCase) if self.config.use_timestep_embedding: __A : Dict = self.time_mlp(_UpperCAmelCase) else: __A : Dict = timestep_embed[..., None] __A : Tuple = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) __A : List[Any] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) # 2. down __A : int = () for downsample_block in self.down_blocks: __A ,__A : int = downsample_block(hidden_states=_UpperCAmelCase , temb=_UpperCAmelCase) down_block_res_samples += res_samples # 3. mid if self.mid_block: __A : Optional[int] = self.mid_block(_UpperCAmelCase , _UpperCAmelCase) # 4. up for i, upsample_block in enumerate(self.up_blocks): __A : Any = down_block_res_samples[-1:] __A : Optional[int] = down_block_res_samples[:-1] __A : Any = upsample_block(_UpperCAmelCase , res_hidden_states_tuple=_UpperCAmelCase , temb=_UpperCAmelCase) # 5. post-process if self.out_block: __A : Dict = self.out_block(_UpperCAmelCase , _UpperCAmelCase) if not return_dict: return (sample,) return UNetaDOutput(sample=_UpperCAmelCase)
8
1
'''simple docstring''' import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase__ : Optional[Any] = logging.get_logger(__name__) lowercase__ : Optional[int] = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', } lowercase__ : Dict = { '''vocab_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'''}, '''merges_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'''}, } lowercase__ : Optional[int] = { '''ctrl''': 2_56, } lowercase__ : Tuple = { '''Pregnancy''': 16_86_29, '''Christianity''': 76_75, '''Explain''': 10_64_23, '''Fitness''': 6_34_40, '''Saving''': 6_31_63, '''Ask''': 2_71_71, '''Ass''': 9_59_85, '''Joke''': 16_35_09, '''Questions''': 4_56_22, '''Thoughts''': 4_96_05, '''Retail''': 5_23_42, '''Feminism''': 16_43_38, '''Writing''': 1_19_92, '''Atheism''': 19_22_63, '''Netflix''': 4_86_16, '''Computing''': 3_96_39, '''Opinion''': 4_32_13, '''Alone''': 4_49_67, '''Funny''': 5_89_17, '''Gaming''': 4_03_58, '''Human''': 40_88, '''India''': 13_31, '''Joker''': 7_71_38, '''Diet''': 3_62_06, '''Legal''': 1_18_59, '''Norman''': 49_39, '''Tip''': 7_26_89, '''Weight''': 5_23_43, '''Movies''': 4_62_73, '''Running''': 2_34_25, '''Science''': 20_90, '''Horror''': 3_77_93, '''Confession''': 6_05_72, '''Finance''': 1_22_50, '''Politics''': 1_63_60, '''Scary''': 19_19_85, '''Support''': 1_26_54, '''Technologies''': 3_25_16, '''Teenage''': 6_61_60, '''Event''': 3_27_69, '''Learned''': 6_74_60, '''Notion''': 18_27_70, '''Wikipedia''': 3_75_83, '''Books''': 66_65, '''Extract''': 7_60_50, '''Confessions''': 10_27_01, '''Conspiracy''': 7_59_32, '''Links''': 6_36_74, '''Narcissus''': 15_04_25, '''Relationship''': 5_47_66, '''Relationships''': 13_47_96, '''Reviews''': 4_16_71, '''News''': 42_56, '''Translation''': 2_68_20, '''multilingual''': 12_84_06, } def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Dict: __A : str = set() __A : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __A : List[str] = char __A : Optional[int] = set(__snake_case ) return pairs class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = CONTROL_CODES def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="<unk>" , **_UpperCAmelCase): '''simple docstring''' super().__init__(unk_token=_UpperCAmelCase , **_UpperCAmelCase) with open(_UpperCAmelCase , encoding='utf-8') as vocab_handle: __A : Any = json.load(_UpperCAmelCase) __A : Dict = {v: k for k, v in self.encoder.items()} with open(_UpperCAmelCase , encoding='utf-8') as merges_handle: __A : Dict = merges_handle.read().split('\n')[1:-1] __A : Optional[Any] = [tuple(merge.split()) for merge in merges] __A : int = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase)))) __A : int = {} @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return len(self.encoder) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if token in self.cache: return self.cache[token] __A : Optional[int] = tuple(_UpperCAmelCase) __A : str = tuple(list(word[:-1]) + [word[-1] + '</w>']) __A : str = get_pairs(_UpperCAmelCase) if not pairs: return token while True: __A : List[str] = min(_UpperCAmelCase , key=lambda _UpperCAmelCase: self.bpe_ranks.get(_UpperCAmelCase , float('inf'))) if bigram not in self.bpe_ranks: break __A ,__A : Any = bigram __A : Optional[Any] = [] __A : int = 0 while i < len(_UpperCAmelCase): try: __A : Any = word.index(_UpperCAmelCase , _UpperCAmelCase) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) __A : List[str] = j if word[i] == first and i < len(_UpperCAmelCase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 __A : str = tuple(_UpperCAmelCase) __A : Dict = new_word if len(_UpperCAmelCase) == 1: break else: __A : List[str] = get_pairs(_UpperCAmelCase) __A : Any = '@@ '.join(_UpperCAmelCase) __A : List[str] = word[:-4] __A : Any = word return word def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = [] __A : Dict = re.findall(R'\S+\n?' , _UpperCAmelCase) for token in words: split_tokens.extend(list(self.bpe(_UpperCAmelCase).split(' '))) return split_tokens def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return self.encoder.get(_UpperCAmelCase , self.encoder.get(self.unk_token)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return self.decoder.get(_UpperCAmelCase , self.unk_token) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = ' '.join(_UpperCAmelCase).replace('@@ ' , '').strip() return out_string def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if not os.path.isdir(_UpperCAmelCase): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return __A : Tuple = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) __A : Tuple = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(_UpperCAmelCase , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_UpperCAmelCase , ensure_ascii=_UpperCAmelCase) + '\n') __A : Any = 0 with open(_UpperCAmelCase , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _UpperCAmelCase: kv[1]): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!') __A : List[str] = token_index writer.write(' '.join(_UpperCAmelCase) + '\n') index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> int: if len(__snake_case ) != len(__snake_case ): raise ValueError('String lengths must match!' ) __A : Optional[Any] = 0 for chara, chara in zip(__snake_case , __snake_case ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=16 , _UpperCAmelCase=[1, 2, 1] , _UpperCAmelCase=[2, 2, 4] , _UpperCAmelCase=2 , _UpperCAmelCase=2.0 , _UpperCAmelCase=True , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase="gelu" , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=10 , _UpperCAmelCase=8 , ): '''simple docstring''' __A : str = parent __A : int = batch_size __A : Optional[Any] = image_size __A : Dict = patch_size __A : List[str] = num_channels __A : List[str] = embed_dim __A : Any = depths __A : str = num_heads __A : List[str] = window_size __A : Union[str, Any] = mlp_ratio __A : Union[str, Any] = qkv_bias __A : int = hidden_dropout_prob __A : Any = attention_probs_dropout_prob __A : Optional[int] = drop_path_rate __A : List[Any] = hidden_act __A : Optional[Any] = use_absolute_embeddings __A : Optional[int] = patch_norm __A : List[Any] = layer_norm_eps __A : int = initializer_range __A : str = is_training __A : Dict = scope __A : Dict = use_labels __A : int = type_sequence_label_size __A : Union[str, Any] = encoder_stride def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __A : Dict = None if self.use_labels: __A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) __A : int = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Union[str, Any] = SwinvaModel(config=_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : int = model(_UpperCAmelCase) __A : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) __A : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = SwinvaForMaskedImageModeling(config=_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : Tuple = model(_UpperCAmelCase) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images __A : Dict = 1 __A : Any = SwinvaForMaskedImageModeling(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __A : List[Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = self.type_sequence_label_size __A : Union[str, Any] = SwinvaForImageClassification(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : Optional[int] = model(_UpperCAmelCase , labels=_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.prepare_config_and_inputs() __A ,__A ,__A : Tuple = config_and_inputs __A : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) lowerCAmelCase = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = SwinvaModelTester(self) __A : Any = ConfigTester(self , config_class=_UpperCAmelCase , embed_dim=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass @unittest.skip(reason='Swinv2 does not use inputs_embeds') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Union[str, Any] = model_class(_UpperCAmelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __A : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : str = model_class(_UpperCAmelCase) __A : int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : List[Any] = [*signature.parameters.keys()] __A : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __A : List[Any] = True for model_class in self.all_model_classes: __A : Optional[Any] = True __A : int = False __A : List[Any] = True __A : List[Any] = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Any = outputs.attentions __A : Any = len(self.model_tester.depths) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) # check that output_attentions also work using config del inputs_dict["output_attentions"] __A : str = True __A : Union[str, Any] = config.window_size**2 __A : List[Any] = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : int = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : str = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) __A : int = len(_UpperCAmelCase) # Check attention is always last and order is fine __A : int = True __A : List[Any] = True __A : Dict = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) if hasattr(self.model_tester , 'num_hidden_states_types'): __A : List[Any] = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states __A : str = 2 self.assertEqual(out_len + added_hidden_states , len(_UpperCAmelCase)) __A : Tuple = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Dict = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Tuple = outputs.hidden_states __A : str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths) + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) # Swinv2 has a different seq_length __A : Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) __A : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) __A : Tuple = outputs.reshaped_hidden_states self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) __A ,__A ,__A ,__A : Any = reshaped_hidden_states[0].shape __A : Tuple = ( reshaped_hidden_states[0].view(_UpperCAmelCase , _UpperCAmelCase , height * width).permute(0 , 2 , 1) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : int = self.model_tester.prepare_config_and_inputs_for_common() __A : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __A : int = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A : List[str] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __A : Optional[int] = 3 __A : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) __A : Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) __A : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __A : str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __A : Any = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A : Any = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : str = SwinvaModel.from_pretrained(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __A : str = _config_zero_init(_UpperCAmelCase) for model_class in self.all_model_classes: __A : List[str] = model_class(config=_UpperCAmelCase) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class SCREAMING_SNAKE_CASE (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256') if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256').to( _UpperCAmelCase) __A : Any = self.default_image_processor __A : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') __A : Any = image_processor(images=_UpperCAmelCase , return_tensors='pt').to(_UpperCAmelCase) # forward pass with torch.no_grad(): __A : Tuple = model(**_UpperCAmelCase) # verify the logits __A : Optional[int] = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , _UpperCAmelCase) __A : Optional[Any] = torch.tensor([-0.3947, -0.4306, 0.0026]).to(_UpperCAmelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4))
8
'''simple docstring''' import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> Union[str, Any]: __A : int = RobertaPreLayerNormConfig.from_pretrained( __snake_case , architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict __A : Tuple = torch.load(hf_hub_download(repo_id=__snake_case , filename='pytorch_model.bin' ) ) __A : str = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): __A : Dict = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue __A : str = tensor_value __A : Union[str, Any] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__snake_case , config=__snake_case , state_dict=__snake_case ) model.save_pretrained(__snake_case ) # convert tokenizer __A : List[Any] = AutoTokenizer.from_pretrained(__snake_case ) tokenizer.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
8
1
'''simple docstring''' from __future__ import annotations import math def _lowerCAmelCase ( __snake_case : float , __snake_case : int ) -> float: __A : int = u for i in range(1 , __snake_case ): __A : Optional[int] = temp * (u - i) return temp def _lowerCAmelCase ( ) -> None: __A : Dict = int(input('enter the numbers of values: ' ) ) __A : list[list[float]] = [] for _ in range(__snake_case ): y.append([] ) for i in range(__snake_case ): for j in range(__snake_case ): y[i].append(__snake_case ) __A : int = 0 print('enter the values of parameters in a list: ' ) __A : List[str] = list(map(__snake_case , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(__snake_case ): __A : Tuple = float(input() ) __A : Tuple = int(input('enter the value to interpolate: ' ) ) __A : Dict = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __snake_case ): for j in range(n - i ): __A : Dict = y[j + 1][i - 1] - y[j][i - 1] __A : List[Any] = y[0][0] for i in range(1 , __snake_case ): summ += (ucal(__snake_case , __snake_case ) * y[0][i]) / math.factorial(__snake_case ) print(f'the value at {value} is {summ}' ) if __name__ == "__main__": main()
8
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings lowercase__ : Dict = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = field(default=a__ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = super().to_dict() for k, v in d.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : List[Any] = v.to_dict() return d
8
1
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file lowercase__ : Optional[Any] = '''Run commands across TPU VMs for initial setup before running `accelerate launch`.''' def _lowerCAmelCase ( __snake_case : str=None ) -> int: if subparsers is not None: __A : Tuple = subparsers.add_parser('tpu-config' , description=_description ) else: __A : Dict = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments __A : Dict = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=__snake_case , default=__snake_case , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=__snake_case , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=__snake_case , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) __A : Optional[Any] = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=__snake_case , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=__snake_case ) return parser def _lowerCAmelCase ( __snake_case : Dict ) -> Optional[int]: __A : Tuple = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(__snake_case ): __A : Tuple = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: __A : Optional[int] = defaults.command_file if not args.command and defaults.commands is not None: __A : List[str] = defaults.commands if not args.tpu_name: __A : Tuple = defaults.tpu_name if not args.tpu_zone: __A : Union[str, Any] = defaults.tpu_zone if args.accelerate_version == "dev": __A : Union[str, Any] = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": __A : Optional[Any] = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , __snake_case ): __A : Tuple = f'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: __A : str = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , __snake_case ): __A : int = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate __A : Any = ['cd /usr/share'] if args.install_accelerate: new_cmd += [f'pip install {args.accelerate_version}'] new_cmd += args.command __A : List[str] = '; '.join(__snake_case ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess __A : Dict = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'Running {" ".join(__snake_case )}' ) return subprocess.run(__snake_case ) print('Successfully setup pod.' ) def _lowerCAmelCase ( ) -> List[str]: __A : int = tpu_command_parser() __A : Union[str, Any] = parser.parse_args() tpu_command_launcher(__snake_case )
8
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : Optional[int] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''lxmert''' lowerCAmelCase = {} def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=9500 , _UpperCAmelCase=1600 , _UpperCAmelCase=400 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=9 , _UpperCAmelCase=5 , _UpperCAmelCase=5 , _UpperCAmelCase=2048 , _UpperCAmelCase=4 , _UpperCAmelCase=6.67 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , **_UpperCAmelCase , ): '''simple docstring''' __A : Tuple = vocab_size __A : int = hidden_size __A : str = num_attention_heads __A : Tuple = hidden_act __A : int = intermediate_size __A : str = hidden_dropout_prob __A : Optional[int] = attention_probs_dropout_prob __A : Optional[Any] = max_position_embeddings __A : Tuple = type_vocab_size __A : Optional[int] = initializer_range __A : Any = layer_norm_eps __A : Optional[Any] = num_qa_labels __A : Optional[int] = num_object_labels __A : Any = num_attr_labels __A : Union[str, Any] = l_layers __A : Optional[int] = x_layers __A : List[Any] = r_layers __A : Tuple = visual_feat_dim __A : Tuple = visual_pos_dim __A : Optional[int] = visual_loss_normalizer __A : int = task_matched __A : List[Any] = task_mask_lm __A : Optional[Any] = task_obj_predict __A : str = task_qa __A : List[Any] = visual_obj_loss __A : Optional[Any] = visual_attr_loss __A : Union[str, Any] = visual_feat_loss __A : Union[str, Any] = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**_UpperCAmelCase)
8
1
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowercase__ : Optional[int] = logging.get_logger(__name__) @add_end_docstrings(a__ ) class SCREAMING_SNAKE_CASE (a__ ): def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' super().__init__(*_UpperCAmelCase , **_UpperCAmelCase) requires_backends(self , 'vision') self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase=None): '''simple docstring''' __A : int = {} if top_k is not None: __A : Optional[int] = top_k return {}, {}, postprocess_params def __call__( self , _UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' return super().__call__(_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = load_image(_UpperCAmelCase) __A : List[Any] = self.image_processor(images=_UpperCAmelCase , return_tensors=self.framework) return model_inputs def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Dict = self.model(**_UpperCAmelCase) return model_outputs def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=5): '''simple docstring''' if top_k > self.model.config.num_labels: __A : Optional[int] = self.model.config.num_labels if self.framework == "pt": __A : List[str] = model_outputs.logits.softmax(-1)[0] __A ,__A : Optional[int] = probs.topk(_UpperCAmelCase) elif self.framework == "tf": __A : Tuple = stable_softmax(model_outputs.logits , axis=-1)[0] __A : Dict = tf.math.top_k(_UpperCAmelCase , k=_UpperCAmelCase) __A ,__A : Optional[int] = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F'Unsupported framework: {self.framework}') __A : List[Any] = scores.tolist() __A : List[str] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCAmelCase , _UpperCAmelCase)]
8
'''simple docstring''' import math import sys def _lowerCAmelCase ( __snake_case : int ) -> int: if number != int(__snake_case ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 __A : str = [-1] * (number + 1) __A : Dict = 0 for i in range(1 , number + 1 ): __A : int = sys.maxsize __A : int = int(math.sqrt(__snake_case ) ) for j in range(1 , root + 1 ): __A : str = 1 + answers[i - (j**2)] __A : Dict = min(__snake_case , __snake_case ) __A : Union[str, Any] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int , __snake_case : list ) -> Union[str, Any]: _enforce_args(__snake_case , __snake_case ) if n == 0: return 0 __A : Any = float('-inf' ) for i in range(1 , n + 1 ): __A : Optional[int] = max( __snake_case , prices[i - 1] + naive_cut_rod_recursive(n - i , __snake_case ) ) return max_revue def _lowerCAmelCase ( __snake_case : int , __snake_case : list ) -> Optional[int]: _enforce_args(__snake_case , __snake_case ) __A : str = [float('-inf' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(__snake_case , __snake_case , __snake_case ) def _lowerCAmelCase ( __snake_case : int , __snake_case : list , __snake_case : list ) -> Any: if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: __A : str = float('-inf' ) for i in range(1 , n + 1 ): __A : List[str] = max( __snake_case , prices[i - 1] + _top_down_cut_rod_recursive(n - i , __snake_case , __snake_case ) , ) __A : Optional[int] = max_revenue return max_rev[n] def _lowerCAmelCase ( __snake_case : int , __snake_case : list ) -> Any: _enforce_args(__snake_case , __snake_case ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. __A : Union[str, Any] = [float('-inf' ) for _ in range(n + 1 )] __A : Optional[int] = 0 for i in range(1 , n + 1 ): __A : Optional[Any] = max_rev[i] for j in range(1 , i + 1 ): __A : int = max(__snake_case , prices[j - 1] + max_rev[i - j] ) __A : Optional[Any] = max_revenue_i return max_rev[n] def _lowerCAmelCase ( __snake_case : int , __snake_case : list ) -> List[Any]: if n < 0: __A : Optional[Any] = f'n must be greater than or equal to 0. Got n = {n}' raise ValueError(__snake_case ) if n > len(__snake_case ): __A : Optional[int] = ( 'Each integral piece of rod must have a corresponding price. ' f'Got n = {n} but length of prices = {len(__snake_case )}' ) raise ValueError(__snake_case ) def _lowerCAmelCase ( ) -> Tuple: __A : Dict = [6, 10, 12, 15, 20, 23] __A : Tuple = len(__snake_case ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. __A : int = 36 __A : str = top_down_cut_rod(__snake_case , __snake_case ) __A : Optional[int] = bottom_up_cut_rod(__snake_case , __snake_case ) __A : Optional[int] = naive_cut_rod_recursive(__snake_case , __snake_case ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
8
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( __snake_case : list[int] , __snake_case : list[int] , __snake_case : int ) -> tuple[float, list[float]]: __A : int = list(range(len(__snake_case ) ) ) __A : Optional[Any] = [v / w for v, w in zip(__snake_case , __snake_case )] index.sort(key=lambda __snake_case : ratio[i] , reverse=__snake_case ) __A : float = 0 __A : list[float] = [0] * len(__snake_case ) for i in index: if weight[i] <= capacity: __A : Optional[int] = 1 max_value += value[i] capacity -= weight[i] else: __A : List[Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType lowercase__ , lowercase__ , lowercase__ : Optional[int] = False, False, False @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = None lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = None # Automatically constructed lowerCAmelCase = "dict" lowerCAmelCase = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) lowerCAmelCase = field(default='''Audio''' , init=a__ , repr=a__ ) def __call__( self): '''simple docstring''' return self.pa_type def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('To support encoding audio data, please install \'soundfile\'.') from err if isinstance(_UpperCAmelCase , _UpperCAmelCase): return {"bytes": None, "path": value} elif isinstance(_UpperCAmelCase , _UpperCAmelCase): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes __A : Optional[int] = BytesIO() sf.write(_UpperCAmelCase , value['array'] , value['sampling_rate'] , format='wav') return {"bytes": buffer.getvalue(), "path": None} elif value.get('path') is not None and os.path.isfile(value['path']): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('pcm'): # "PCM" only has raw audio bytes if value.get('sampling_rate') is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('To use PCM files, please specify a \'sampling_rate\' in Audio object') if value.get('bytes'): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) __A : Tuple = np.frombuffer(value['bytes'] , dtype=np.intaa).astype(np.floataa) / 3_2767 else: __A : List[Any] = np.memmap(value['path'] , dtype='h' , mode='r').astype(np.floataa) / 3_2767 __A : Optional[Any] = BytesIO(bytes()) sf.write(_UpperCAmelCase , _UpperCAmelCase , value['sampling_rate'] , format='wav') return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('path')} elif value.get('bytes') is not None or value.get('path') is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('bytes'), "path": value.get('path')} else: raise ValueError( F'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.') def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Audio(decode=True) instead.') __A ,__A : Any = (value['path'], BytesIO(value['bytes'])) if value['bytes'] is not None else (value['path'], None) if path is None and file is None: raise ValueError(F'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.') try: import librosa import soundfile as sf except ImportError as err: raise ImportError('To support decoding audio files, please install \'librosa\' and \'soundfile\'.') from err __A : Tuple = xsplitext(_UpperCAmelCase)[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( 'Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ' 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ') elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( 'Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ' 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ') if file is None: __A : List[str] = token_per_repo_id or {} __A : Optional[int] = path.split('::')[-1] try: __A : str = string_to_dict(_UpperCAmelCase , config.HUB_DATASETS_URL)['repo_id'] __A : Union[str, Any] = token_per_repo_id[repo_id] except (ValueError, KeyError): __A : List[Any] = None with xopen(_UpperCAmelCase , 'rb' , use_auth_token=_UpperCAmelCase) as f: __A ,__A : Optional[Any] = sf.read(_UpperCAmelCase) else: __A ,__A : Tuple = sf.read(_UpperCAmelCase) __A : Union[str, Any] = array.T if self.mono: __A : Optional[Any] = librosa.to_mono(_UpperCAmelCase) if self.sampling_rate and self.sampling_rate != sampling_rate: __A : List[Any] = librosa.resample(_UpperCAmelCase , orig_sr=_UpperCAmelCase , target_sr=self.sampling_rate) __A : Optional[Any] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' from .features import Value if self.decode: raise ValueError('Cannot flatten a decoded Audio feature.') return { "bytes": Value('binary'), "path": Value('string'), } def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if pa.types.is_string(storage.type): __A : str = pa.array([None] * len(_UpperCAmelCase) , type=pa.binary()) __A : Optional[int] = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): __A : Optional[Any] = pa.array([None] * len(_UpperCAmelCase) , type=pa.string()) __A : str = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null()) elif pa.types.is_struct(storage.type) and storage.type.get_all_field_indices('array'): __A : Dict = pa.array([Audio().encode_example(_UpperCAmelCase) if x is not None else None for x in storage.to_pylist()]) elif pa.types.is_struct(storage.type): if storage.type.get_field_index('bytes') >= 0: __A : Tuple = storage.field('bytes') else: __A : Any = pa.array([None] * len(_UpperCAmelCase) , type=pa.binary()) if storage.type.get_field_index('path') >= 0: __A : List[Any] = storage.field('path') else: __A : Dict = pa.array([None] * len(_UpperCAmelCase) , type=pa.string()) __A : Optional[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null()) return array_cast(_UpperCAmelCase , self.pa_type) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(_UpperCAmelCase): with xopen(_UpperCAmelCase , 'rb') as f: __A : Union[str, Any] = f.read() return bytes_ __A : int = pa.array( [ (path_to_bytes(x['path']) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) __A : Optional[int] = pa.array( [os.path.basename(_UpperCAmelCase) if path is not None else None for path in storage.field('path').to_pylist()] , type=pa.string() , ) __A : Any = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null()) return array_cast(_UpperCAmelCase , self.pa_type)
8
'''simple docstring''' from __future__ import annotations import math class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : int = size # approximate the overall size of segment tree with given value __A : Optional[Any] = [0 for i in range(0 , 4 * size)] # create array to store lazy update __A : Optional[Any] = [0 for i in range(0 , 4 * size)] __A : str = [0 for i in range(0 , 4 * size)] # flag for lazy update def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return idx * 2 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return idx * 2 + 1 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if left_element == right_element: __A : List[Any] = a[left_element - 1] else: __A : List[str] = (left_element + right_element) // 2 self.build(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.build(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase) __A : Any = max( self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)]) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.flag[idx] is True: __A : Optional[Any] = self.lazy[idx] __A : Optional[Any] = False if left_element != right_element: __A : List[Any] = self.lazy[idx] __A : Dict = self.lazy[idx] __A : Tuple = True __A : Union[str, Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: __A : Optional[int] = val if left_element != right_element: __A : Tuple = val __A : Any = val __A : Tuple = True __A : Union[str, Any] = True return True __A : str = (left_element + right_element) // 2 self.update(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.update(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : int = max( self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)]) return True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.flag[idx] is True: __A : Union[str, Any] = self.lazy[idx] __A : List[str] = False if left_element != right_element: __A : Union[str, Any] = self.lazy[idx] __A : Optional[int] = self.lazy[idx] __A : str = True __A : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] __A : Any = (left_element + right_element) // 2 __A : int = self.query(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : Union[str, Any] = self.query(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) return max(_UpperCAmelCase , _UpperCAmelCase) def __str__( self): '''simple docstring''' return str([self.query(1 , 1 , self.size , _UpperCAmelCase , _UpperCAmelCase) for i in range(1 , self.size + 1)]) if __name__ == "__main__": lowercase__ : Union[str, Any] = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] lowercase__ : str = 15 lowercase__ : List[Any] = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 1_11) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 2_35) print(segt)
8
1
'''simple docstring''' import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE (a__ , unittest.TestCase ): lowerCAmelCase = BioGptTokenizer lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __A : Optional[int] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __A : Union[str, Any] = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase)))) __A : str = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] __A : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) __A : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w') as fp: fp.write(json.dumps(_UpperCAmelCase)) with open(self.merges_file , 'w') as fp: fp.write('\n'.join(_UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : int = 'lower newer' __A : int = 'lower newer' return input_text, output_text def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = BioGptTokenizer(self.vocab_file , self.merges_file) __A : List[Any] = 'lower' __A : Optional[int] = ['low', 'er</w>'] __A : Optional[Any] = tokenizer.tokenize(_UpperCAmelCase) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase) __A : List[Any] = tokens + ['<unk>'] __A : Optional[int] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase) , _UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = BioGptTokenizer.from_pretrained('microsoft/biogpt') __A : Union[str, Any] = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase) __A : Any = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase) __A : Any = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase) __A : List[str] = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase) self.assertTrue(encoded_sentence == [2] + text) self.assertTrue(encoded_pair == [2] + text + [2] + text_a)
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int , __snake_case : int , __snake_case : int ) -> float: __A : Dict = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def _lowerCAmelCase ( ) -> Union[str, Any]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _lowerCAmelCase ( __snake_case : Union[str, Any] ) -> Optional[int]: __A : str = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class SCREAMING_SNAKE_CASE (a__ , a__ , a__ , unittest.TestCase ): lowerCAmelCase = StableDiffusionLatentUpscalePipeline lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''height''', '''width''', '''cross_attention_kwargs''', '''negative_prompt_embeds''', '''prompt_embeds''', } lowerCAmelCase = PipelineTesterMixin.required_optional_params - {'''num_images_per_prompt'''} lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase = frozenset([] ) lowerCAmelCase = True @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = 1 __A : str = 4 __A : Dict = (16, 16) __A : List[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(_UpperCAmelCase) return image def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' torch.manual_seed(0) __A : Dict = UNetaDConditionModel( act_fn='gelu' , attention_head_dim=8 , norm_num_groups=_UpperCAmelCase , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( 'KDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', ) , in_channels=8 , mid_block_type=_UpperCAmelCase , only_cross_attention=_UpperCAmelCase , out_channels=5 , resnet_time_scale_shift='scale_shift' , time_embedding_type='fourier' , timestep_post_act='gelu' , up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D') , ) __A : int = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', ] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) __A : List[Any] = EulerDiscreteScheduler(prediction_type='sample') __A : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='quick_gelu' , projection_dim=512 , ) __A : List[str] = CLIPTextModel(_UpperCAmelCase) __A : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') __A : List[str] = { 'unet': model.eval(), 'vae': vae.eval(), 'scheduler': scheduler, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=0): '''simple docstring''' if str(_UpperCAmelCase).startswith('mps'): __A : Optional[Any] = torch.manual_seed(_UpperCAmelCase) else: __A : Tuple = torch.Generator(device=_UpperCAmelCase).manual_seed(_UpperCAmelCase) __A : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': self.dummy_image.cpu(), 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = 'cpu' __A : str = self.get_dummy_components() __A : Optional[Any] = self.pipeline_class(**_UpperCAmelCase) pipe.to(_UpperCAmelCase) pipe.set_progress_bar_config(disable=_UpperCAmelCase) __A : Optional[Any] = self.get_dummy_inputs(_UpperCAmelCase) __A : List[str] = pipe(**_UpperCAmelCase).images __A : Union[str, Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3)) __A : Any = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055]) __A : List[Any] = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(_UpperCAmelCase , 1e-3) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=7e-3) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=3e-3) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=7e-3) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' super().test_save_load_local(expected_max_difference=3e-3) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3e-3) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = [ 'DDIMScheduler', 'DDPMScheduler', 'PNDMScheduler', 'HeunDiscreteScheduler', 'EulerAncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'KDPM2AncestralDiscreteScheduler', 'DPMSolverSDEScheduler', ] __A : int = self.get_dummy_components() __A : Union[str, Any] = self.pipeline_class(**_UpperCAmelCase) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_UpperCAmelCase) pipe.to(_UpperCAmelCase) pipe.set_progress_bar_config(disable=_UpperCAmelCase) __A : int = self.get_dummy_inputs(_UpperCAmelCase) __A : Union[str, Any] = 2 __A : List[str] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue __A : List[str] = getattr(_UpperCAmelCase , scheduler_enum.name) __A : Optional[Any] = scheduler_cls.from_config(pipe.scheduler.config) __A : Any = pipe(**_UpperCAmelCase)[0] outputs.append(_UpperCAmelCase) assert check_same_shape(_UpperCAmelCase) @require_torch_gpu @slow class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = torch.manual_seed(33) __A : List[str] = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' , torch_dtype=torch.floataa) pipe.to('cuda') __A : List[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa) upscaler.to('cuda') __A : Any = 'a photo of an astronaut high resolution, unreal engine, ultra realistic' __A : Any = pipe(_UpperCAmelCase , generator=_UpperCAmelCase , output_type='latent').images __A : int = upscaler( prompt=_UpperCAmelCase , image=_UpperCAmelCase , num_inference_steps=20 , guidance_scale=0 , generator=_UpperCAmelCase , output_type='np' , ).images[0] __A : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy') assert np.abs((expected_image - image).mean()) < 5e-2 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = torch.manual_seed(33) __A : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa) upscaler.to('cuda') __A : Any = 'the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas' __A : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png') __A : int = upscaler( prompt=_UpperCAmelCase , image=_UpperCAmelCase , num_inference_steps=20 , guidance_scale=0 , generator=_UpperCAmelCase , output_type='np' , ).images[0] __A : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy') assert np.abs((expected_image - image).max()) < 5e-2
8
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): '''simple docstring''' __A : Optional[int] = parent __A : str = 13 __A : List[Any] = 7 __A : List[str] = True __A : str = True __A : Optional[Any] = True __A : int = True __A : Dict = 99 __A : Dict = 384 __A : Any = 2 __A : int = 4 __A : Optional[Any] = 37 __A : Optional[int] = 'gelu' __A : Dict = 0.1 __A : Optional[int] = 0.1 __A : Any = 512 __A : int = 16 __A : List[str] = 2 __A : str = 0.02 __A : Any = 3 __A : str = 4 __A : Union[str, Any] = 128 __A : int = 2 __A : List[Any] = 9 __A : List[Any] = 1 __A : List[Any] = None def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __A : str = None if self.use_input_mask: __A : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __A : Optional[Any] = None if self.use_token_type_ids: __A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __A : Optional[int] = None __A : List[str] = None __A : Dict = None if self.use_labels: __A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) __A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __A : str = ids_tensor([self.batch_size] , self.num_choices) __A : List[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = TFConvBertModel(config=_UpperCAmelCase) __A : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __A : Tuple = [input_ids, input_mask] __A : Any = model(_UpperCAmelCase) __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : str = TFConvBertForMaskedLM(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : str = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = self.num_labels __A : Any = TFConvBertForSequenceClassification(config=_UpperCAmelCase) __A : Optional[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Tuple = self.num_choices __A : List[str] = TFConvBertForMultipleChoice(config=_UpperCAmelCase) __A : int = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : Optional[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : List[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : int = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __A : Optional[Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = self.num_labels __A : List[Any] = TFConvBertForTokenClassification(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : int = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = TFConvBertForQuestionAnswering(config=_UpperCAmelCase) __A : Any = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Union[str, Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.prepare_config_and_inputs() ( ( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) , ) : Union[str, Any] = config_and_inputs __A : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = TFConvBertModelTester(self) __A : str = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __A : List[str] = True __A : List[str] = True if hasattr(_UpperCAmelCase , 'use_cache'): __A : List[Any] = True __A : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : Union[str, Any] = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) for model_class in self.all_model_classes: __A : List[str] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase) __A : Optional[int] = model_class(_UpperCAmelCase) __A : Optional[Any] = len(model(_UpperCAmelCase)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase) __A : Union[str, Any] = os.path.join(_UpperCAmelCase , 'saved_model' , '1') __A : Tuple = tf.keras.models.load_model(_UpperCAmelCase) __A : str = model(_UpperCAmelCase) if self.is_encoder_decoder: __A : Optional[int] = outputs['encoder_hidden_states'] __A : str = outputs['encoder_attentions'] else: __A : List[Any] = outputs['hidden_states'] __A : Optional[Any] = outputs['attentions'] self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) __A : str = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) self.assertListEqual( list(output_hidden_states[0].shape[-2:]) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(output_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') self.assertIsNotNone(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Any = True __A : str = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length) __A : Any = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : int = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) __A : Tuple = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) def check_decoder_attentions_output(_UpperCAmelCase): __A : List[str] = len(_UpperCAmelCase) self.assertEqual(out_len % 2 , 0) __A : Any = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCAmelCase): __A : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __A : Dict = True __A : Any = False __A : str = model_class(_UpperCAmelCase) __A : List[str] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : List[str] = len(_UpperCAmelCase) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) if self.is_encoder_decoder: __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : int = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_decoder_attentions_output(_UpperCAmelCase) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __A : int = True __A : Tuple = model_class(_UpperCAmelCase) __A : Dict = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) # Check attention is always last and order is fine __A : Any = True __A : str = True __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : Union[str, Any] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase)) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) @require_tf class SCREAMING_SNAKE_CASE (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') __A : str = tf.constant([[0, 1, 2, 3, 4, 5]]) __A : Optional[int] = model(_UpperCAmelCase)[0] __A : List[Any] = [1, 6, 768] self.assertEqual(output.shape , _UpperCAmelCase) __A : Tuple = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ]) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4)
8
1